WO2019012969A1 - Solenoid intake valve, and high-pressure fuel pump provided therewith - Google Patents

Solenoid intake valve, and high-pressure fuel pump provided therewith Download PDF

Info

Publication number
WO2019012969A1
WO2019012969A1 PCT/JP2018/023944 JP2018023944W WO2019012969A1 WO 2019012969 A1 WO2019012969 A1 WO 2019012969A1 JP 2018023944 W JP2018023944 W JP 2018023944W WO 2019012969 A1 WO2019012969 A1 WO 2019012969A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve mechanism
press
outer peripheral
peripheral portion
solenoid valve
Prior art date
Application number
PCT/JP2018/023944
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 笹生
早谷 政彦
康久 内山
菅波 正幸
棟方 明広
雅史 根本
壮嗣 秋山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019529032A priority Critical patent/JP6754902B2/en
Priority to DE112018003099.7T priority patent/DE112018003099T5/en
Priority to CN201880044093.4A priority patent/CN110809670B/en
Publication of WO2019012969A1 publication Critical patent/WO2019012969A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • F02M59/485Means for fixing delivery valve casing and barrel to each other or to pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8061Fuel injection apparatus manufacture, repair or assembly involving press-fit, i.e. interference or friction fit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8084Fuel injection apparatus manufacture, repair or assembly involving welding or soldering

Definitions

  • the present invention relates to a solenoid intake valve applied to an internal combustion engine, and a high pressure fuel pump provided with the same.
  • the solenoid valve mechanism 300 is illustrated in FIG. 2 and FIG. 3 of the above Patent Document 1, by what method the solenoid valve mechanism 300 is fixed to the hole formed in the pump body 1 Not clear. Therefore, in the present invention, when the electromagnetic valve mechanism 300 is inserted into the hole formed in the pump body 1 and fixed, the increase in the press-fit load is suppressed to improve the assemblability, or the high-pressure fuel Intended to provide a pump.
  • the present invention comprises a valve body for opening and closing a flow path, a movable core, and a magnetic core for attracting the movable core, and an electromagnetic valve inserted and fixed in an insertion hole.
  • a press-fit portion formed on the distal end side in the insertion direction and press-fit into the small-diameter insertion hole, and an outer circumferential portion having an outer diameter larger than the press-fit portion at the inlet side of the insertion direction than the press-fit portion.
  • a clearance fitting portion which is formed with a predetermined clearance between the large diameter insertion hole having a larger diameter than the small diameter insertion hole, and the insertion on the inlet side of the clearance fitting portion in the insertion direction, And a weld welded to the member in which the hole is to be formed.
  • a solenoid valve mechanism or a high pressure fuel pump capable of improving assemblability by suppressing an increase in press-fit load when inserting and fixing in a hole formed in the pump body 1.
  • the block diagram of the engine system to which the high pressure fuel pump of a present Example was applied is shown. It is a longitudinal cross-sectional view of the high pressure fuel pump of the Example of a present Example. It is the horizontal direction sectional view seen from the upper direction of the high pressure fuel pump of the Example of a present Example. It is the longitudinal cross-sectional view seen from the direction different from FIG. 1 of the high pressure fuel pump of the Example of a present Example. It is an enlarged longitudinal cross-sectional view of the solenoid valve mechanism of the high pressure fuel pump of a present Example, and the state which a solenoid valve mechanism is in the valve opening state is shown. It is a figure explaining the detail of the assembling method of the solenoid valve mechanism of a present Example.
  • FIG. 1 shows the overall configuration of the engine system.
  • the portion surrounded by a broken line shows the main body of a high pressure fuel supply pump (hereinafter referred to as a high pressure fuel pump), and the mechanism / parts shown in the broken line are integrated into the pump body 1 Show.
  • FIG. 1 is a diagram schematically showing the operation of the engine system, and the detailed configuration is different from the configuration of the high pressure fuel pump of FIG.
  • FIG. 2 shows a longitudinal sectional view of the high pressure fuel pump of the present embodiment
  • FIG. 3 is a horizontal sectional view of the high pressure fuel pump as viewed from above.
  • FIG. 4 is a longitudinal sectional view of the high pressure fuel pump as viewed in a direction different from that of FIG.
  • FIG. 5 is an enlarged view of the solenoid valve mechanism 300.
  • the fuel of the fuel tank 20 is pumped up by a feed pump 21 based on a signal from an engine control unit 27 (hereinafter referred to as an ECU).
  • the fuel is pressurized to an appropriate feed pressure and sent through the suction pipe 28 to the low pressure fuel inlet 10a of the high pressure fuel pump.
  • the fuel that has passed through the suction joint 51 from the low pressure fuel suction port 10a reaches the suction port 31b of the solenoid valve mechanism 300 that constitutes the capacity variable mechanism through the damper chamber (10b, 10c) in which the pressure pulsation reduction mechanism 9 is disposed.
  • the solenoid valve mechanism 300 constitutes a solenoid suction valve mechanism.
  • the fuel flowing into the solenoid valve mechanism 300 passes through the suction port opened and closed by the suction valve 30 and flows into the pressure chamber 11.
  • a power to reciprocate the plunger 2 is given by the cam mechanism 93 of the engine.
  • the reciprocating motion of the plunger 2 sucks the fuel from the suction valve 30 during the downward stroke of the plunger 2 and the fuel is pressurized during the upward stroke.
  • the pressurized fuel is pressure-fed through the discharge valve mechanism 8 to the common rail 23 on which the pressure sensor 26 is mounted.
  • the injector 24 injects fuel to the engine based on the signal from the ECU 27.
  • This embodiment is a high pressure fuel pump applied to a so-called direct injection engine system in which the injector 24 directly injects fuel into the cylinder of the engine.
  • the high-pressure fuel pump discharges the desired fuel flow rate of the supplied fuel in response to a signal from the ECU 27 to the solenoid valve mechanism 300.
  • the high pressure fuel pump of the present embodiment is closely fixed to the high pressure fuel pump mounting portion 90 of the internal combustion engine.
  • screw holes 1b are formed in a mounting flange 1a provided on the pump body 1, and a plurality of bolts (not shown) are inserted into the screw holes 1b.
  • the mounting flange 1a is in close contact with and fixed to the high pressure fuel pump mounting portion 90 of the internal combustion engine.
  • An O-ring 61 is fitted into the pump body 1 for sealing between the high pressure fuel pump mounting portion 90 and the pump body 1 to prevent engine oil from leaking outside.
  • a cylinder 6 is attached to the pump body 1 to guide the reciprocating movement of the plunger 2 and to form a pressure chamber 11 together with the pump body 1. That is, the plunger 2 reciprocates inside the cylinder to change the volume of the pressure chamber.
  • a solenoid valve mechanism 300 for supplying fuel to the pressure chamber 11 and a discharge valve mechanism 8 for discharging fuel from the pressure chamber 11 to the discharge passage are provided.
  • the cylinder 6 is press-fit with the pump body 1 at its outer peripheral side.
  • the pump body 1 is formed with an insertion hole for inserting the cylinder 6 from the lower side, and an inner peripheral convex portion deformed to the inner peripheral side to be in contact with the lower surface of the fixing portion 6a of the cylinder 6 at the lower end of the insertion hole Be done.
  • the upper surface of the inner peripheral convex portion of the pump body 1 presses the fixing portion 6a of the cylinder 6 upward in the figure, and the upper end surface of the cylinder 6 is sealed so that the fuel pressurized in the pressurizing chamber 11 does not leak to the low pressure side. ing.
  • a tappet 92 which converts the rotational movement of the cam 93 attached to the camshaft of the internal combustion engine into vertical movement and transmits it to the plunger 2.
  • the plunger 2 is crimped to the tappet 92 by a spring 4 through a retainer 15. As a result, the plunger 2 can be reciprocated up and down with the rotational movement of the cam 93.
  • a plunger seal 13 held at the lower end portion of the inner periphery of the seal holder 7 is installed in a state where the plunger seal 13 slidably contacts the outer periphery of the plunger 2 at the lower portion in the drawing of the cylinder 6.
  • the fuel in the sub chamber 7a is sealed to prevent the fuel from flowing into the internal combustion engine.
  • lubricating oil including engine oil
  • for lubricating sliding parts in the internal combustion engine is prevented from flowing into the inside of the pump body 1.
  • a suction joint 51 is attached to the side surface of the pump body 1 of the high pressure fuel pump.
  • the suction joint 51 is connected to a low pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high pressure fuel pump.
  • the suction filter 52 has a function of preventing foreign matter present between the fuel tank 20 and the low pressure fuel suction port 10a from being absorbed by the flow of fuel into the high pressure fuel pump.
  • the fuel that has passed through the low pressure fuel suction port 10a travels to the pressure pulsation reducing mechanism 9 through the low pressure fuel suction passage vertically connected to the pump body 1 shown in FIG.
  • the pressure pulsation reducing mechanism 9 is disposed in the damper chamber (10b, 10c) between the damper cover 14 and the upper end surface of the pump body 1, and is supported from the lower side by a holding member 9a disposed on the upper end surface of the pump body 1.
  • Ru Specifically, the pressure pulsation reducing mechanism 9 is a metal damper configured by overlapping two metal diaphragms. A gas of 0.3 MPa to 0.6 MPa is enclosed inside the pressure pulsation reducing mechanism 9, and the outer peripheral edge portion is fixed by welding. Therefore, the outer peripheral edge portion is thin and configured to be thicker toward the inner peripheral side.
  • the convex part for fixing the outer-periphery edge part of the pressure pulsation reduction mechanism 9 from lower side is formed in the upper surface of the holding member 9a.
  • a convex portion for fixing the outer peripheral edge portion of the pressure pulsation reducing mechanism 9 from the upper side is formed on the lower surface of the damper cover 14.
  • These convex portions are formed in a circular shape, and the pressure pulsation reducing mechanism 9 is fixed by being pinched by these convex portions.
  • the damper cover 14 is pressed into and fixed to the outer edge of the pump body 1, but at this time, the holding member 9 a is elastically deformed to support the pressure pulsation reducing mechanism 9.
  • damper chambers (10b, 10c) communicating with the low pressure fuel suction port 10a and the low pressure fuel suction passage are formed on the upper and lower surfaces of the pressure pulsation reducing mechanism 9, respectively.
  • the holding member 9a is formed with a passage connecting the upper side and the lower side of the pressure pulsation reducing mechanism 9, whereby the damper chamber (10b, 10c) is a pressure pulsation reducing mechanism It is formed on the upper and lower surfaces of the reference numeral 9.
  • the suction port 31 b is formed in communication with the suction valve seat member 31 forming the suction valve seat 31 a in the vertical direction.
  • the solenoid valve mechanism 300 will be described in detail based on FIG.
  • the coil portion includes a first yoke 42, an electromagnetic coil 43, a second yoke 44, a bobbin 45, a terminal 46, and a connector 47.
  • a coil 43 in which a copper wire is wound around the bobbin 45 a plurality of times is disposed so as to be surrounded by the first yoke 42 and the second yoke 44, and molded and fixed integrally with a connector which is a resin member.
  • the opposite ends of each of the two terminals 46 are electrically connected to both ends of the copper wire of the coil.
  • the terminal 46 is molded integrally with the connector, and the other end is connectable to the engine control unit side.
  • the hole at the center of the first yoke 42 is press-fitted and fixed to the outer core 38.
  • the inner diameter side of the second yoke 44 is configured to be in contact with the fixed core 39 or to be in close proximity to a slight clearance.
  • Both the first yoke 42 and the second yoke 44 are magnetic stainless steel materials in consideration of corrosion resistance in order to form a magnetic circuit, and the bobbin 45 and connector 47 use high strength heat resistant resin in consideration of strength characteristics and heat resistance characteristics.
  • the coil 43 is made of copper, and the terminal 46 is made of brass plated with metal.
  • the solenoid mechanism comprises a rod 35 which is a movable part, an anchor 36, a rod guide 37 which is a fixed part, an outer core 38, a fixed core 39, a rod biasing spring 40 and an anchor biasing spring 41.
  • the rod 35 which is a movable portion, and the anchor portion 36 are configured as separate members.
  • the rod 35 is axially slidably held on the inner peripheral side of the rod guide 37, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. That is, both the rod 35 and the anchor portion 36 are axially slidable in a range that is geometrically restricted.
  • the anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely freely axially in the fuel, thereby eliminating the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
  • the rod guide 37 is radially inserted into the inner peripheral side of the hole into which the suction valve of the pump body 1 is inserted, and is axially butted against one end of the suction valve seat.
  • the pump body 1 is disposed so as to be sandwiched between the outer core 38 welded and fixed to the insertion hole of the pump body 1 and the pump body 1.
  • the rod guide 37 is also provided with a through hole 37a penetrating in the axial direction, and the pressure of the fuel chamber on the anchor portion side moves the anchor portion so that the anchor portion can move freely freely. It is configured not to disturb.
  • the outer core 38 has a thin-walled cylindrical shape on the opposite side of the portion to be welded to the pump body 1 and is fixed by welding so that the fixed core 39 is inserted on the inner peripheral side.
  • a rod biasing spring 40 is disposed on the inner peripheral side of the fixed core 39 with the small diameter portion as a guide, the rod 35 contacts the suction valve 30, and the suction valve 30 is pulled away from the suction valve seat portion 31a, Apply biasing force in the valve opening direction.
  • the anchor biasing spring 41 is configured to apply a biasing force to the anchor 36 in the direction of the rod collar 35a while inserting the forward end into the cylindrical central bearing 37b provided on the center side of the rod guide 37 and maintaining the same axis.
  • the moving amount 36 e of the anchor portion 36 is set larger than the moving amount 30 e of the suction valve 30. This is to ensure that the suction valve 30 closes.
  • the discharge valve mechanism 8 is provided at the outlet of the pressure chamber 11.
  • the discharge valve mechanism 8 comprises a discharge valve seat 8a, a discharge valve 8b contacting and separating with the discharge valve seat 8a, and a discharge valve 8b.
  • the discharge valve spring 8c is biased toward the seat 8a, and the discharge valve stopper 8d determines the stroke (moving distance) of the discharge valve 8b.
  • the discharge valve stopper 8d and the pump body 1 are joined by welding at the contact portion 8e to block the fuel from the outside.
  • the discharge valve 8b In the state where there is no fuel pressure difference between the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is crimped to the discharge valve seat 8a by the biasing force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressure chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high pressure fuel in the pressure chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12 a, the fuel discharge passage 12 b, and the fuel discharge port 12. When the discharge valve 8 b is opened, the discharge valve 8 b contacts the discharge valve stopper 8 d and the stroke is limited. Therefore, the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d.
  • the stroke is too large, and it is possible to prevent the fuel discharged to a high pressure into the discharge valve chamber 12a from flowing back into the pressure chamber 11 again due to the delay of closing the discharge valve 8b. Can be suppressed.
  • the discharge valve 8b repeats opening and closing motions, the discharge valve 8b is guided by the outer peripheral surface of the discharge valve stopper 8d so as to move only in the stroke direction.
  • the discharge valve mechanism 8 serves as a check valve that restricts the flow direction of the fuel.
  • the pressurizing chamber 11 is configured by the pump body 1, the solenoid valve mechanism 300, the plunger 2, the cylinder 6, and the discharge valve mechanism 8.
  • FIG. 5 shows a detailed configuration of the solenoid valve mechanism 300.
  • the plunger 2 moves in the direction of the cam 93 and is in the suction stroke state by the rotation of the cam 93, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases.
  • the suction valve 30 is opened. 30e indicates the maximum opening degree, and at this time, the suction valve 30 contacts the stopper 32. Opening of the suction valve 30 opens the opening 31 c formed in the seat member 31.
  • the fuel passes through the opening 31 c and flows into the pressurizing chamber 11 through the hole 1 c formed in the pump body 1 in the lateral direction.
  • the hole 1 c also constitutes a part of the pressure chamber 11.
  • the rod biasing spring 40 biases the rod convex portion 35a which is convex on the outer diameter side of the rod 35, and is set to have a biasing force necessary and sufficient to open the suction valve 30 in the non-energized state. There is.
  • the volume of the pressure chamber 11 decreases with the upward movement of the plunger 2. In this state, the fuel once sucked into the pressure chamber 11 is again sucked through the opening 30a of the suction valve 30 in the open state. Since the flow is returned to the passage 10d, the pressure in the pressure chamber does not rise. This process is called a return process.
  • the suction valve 30 is closed by the biasing force of the suction valve biasing spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d.
  • the fuel pressure in the pressure chamber 11 rises with the upward movement of the plunger 2, and when the pressure in the fuel outlet 12 becomes higher than that, the high pressure fuel is discharged through the discharge valve mechanism 8 to the common rail 23. Supplied. This stroke is called a discharge stroke.
  • the upward stroke from the lower start point to the upper start point of the plunger 2 consists of a return stroke and a discharge stroke. Then, by controlling the energization timing of the coil 43 of the solenoid valve mechanism 300, it is possible to control the amount of high pressure fuel to be discharged. If the timing for energizing the electromagnetic coil 43 is advanced, the proportion of the return stroke during the compression stroke is small, and the proportion of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small, and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of energizing is delayed, the proportion of the return stroke during the compression stroke is large, and the proportion of the discharge stroke is small.
  • the energization timing of the electromagnetic coil 43 is controlled by a command from the ECU 27. As described above, by controlling the energization timing of the electromagnetic coil 43, the amount of high-pressure discharged fuel can be controlled to the amount required by the internal combustion engine.
  • a pressure pulsation reducing mechanism 9 is provided in the low pressure damper chamber (10b, 10c) for reducing the pressure pulsation generated in the high pressure fuel pump from spreading to the fuel pipe 28.
  • pressure pulsation is generated in the low pressure fuel chamber 10 by the fuel returned to the suction passage 10d. Occurs.
  • the pressure pulsation reducing mechanism 9 provided in the low pressure fuel chamber 10 is formed by a metal diaphragm damper in which two corrugated disc-like metal plates are laminated at their outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced by the expansion and contraction of the metal damper.
  • the plunger 2 has a large diameter portion 2a and a small diameter portion 2b, and the volume of the sub chamber 7a is increased or decreased by the reciprocating movement of the plunger.
  • the sub chamber 7a is in communication with the damper chamber (10b, 10c) by the fuel passage 10e.
  • the flow rate of fuel into and out of the pump in the suction stroke or return stroke of the pump can be reduced, and the pressure pulsation generated inside the high pressure fuel pump can be reduced.
  • the relief valve mechanism 200 includes a relief body 201, a relief valve 202, a relief valve holder 203, a relief spring 204, and a spring stopper 205.
  • the relief body 201 is provided with a tapered seat portion.
  • the load of the relief spring 204 is loaded through the valve holder 203, and the valve 202 is pressed against the seat portion of the relief body 201 and cooperates with the seat portion to shut off the fuel.
  • the valve opening pressure of the relief valve 202 is determined by the load of the relief spring 204.
  • the spring stopper 205 is press-fitted and fixed to the relief body 201, and is a mechanism that adjusts the load of the relief spring 204 depending on the position of the press-fitting.
  • the high pressure fuel in the pressure chamber 11 passes through the discharge valve chamber 12a and the fuel discharge passage 12b, and from the fuel discharge port 12 It is discharged.
  • the fuel discharge port 12 is formed in a discharge joint 60, and the discharge joint 60 is welded and fixed to the pump body 1 at a welding portion 61 to secure a fuel passage.
  • the solenoid valve mechanism 300 is housed in the housing hole 100 provided in the pump body 1 in a three-stage configuration.
  • a first outer peripheral portion 301 is formed on the tip end side in the insertion direction
  • a second outer peripheral portion 302 is formed on the inlet side in the insertion direction than the first outer peripheral portion 301 and on the outer diameter side.
  • the inner peripheral portion of the outer core 38 is press-fit and fixed to the outer peripheral portion of the rod guide 37 of the suction valve sheet member 31 to be integrated.
  • a third outer peripheral portion 303 is formed on the outer core 38 further to the entrance side in the insertion direction than the second outer peripheral portion 302.
  • the housing hole 100 has a first inner peripheral portion 101 on the tip end side of the electromagnetic valve mechanism 300 in the insertion direction, an inlet side on the insertion direction than the first inner peripheral portion 101, and a second inner peripheral portion 102 on the outer diameter side.
  • a third inner circumferential portion 103 is provided further in the insertion direction inlet side than the circumferential portion 102.
  • the first outer peripheral portion 301 of the solenoid valve mechanism 300 is press-fit into the first inner peripheral portion 101.
  • the second outer peripheral portion 302 is fitted with a gap on the second inner peripheral portion 102.
  • the third outer peripheral portion 303 is gap-fitted to the third inner peripheral portion 103 and then fixed by welding.
  • the solenoid valve mechanism 300 includes the valve body (intake valve 30) for opening and closing the flow path, the movable core (anchor portion 36), and the magnetic core (spinned for attracting the movable core (anchor portion 36) And a core 39), and inserted and fixed to the insertion hole (receiving hole 100).
  • the solenoid valve mechanism 300 is formed in the outer peripheral part at the front end side of an insertion direction, and has a press-fit part (1st outer peripheral part 301) press-fit with respect to a small diameter insertion hole (1st inner peripheral part 101).
  • the electromagnetic valve mechanism 300 has an outer peripheral portion (second outer peripheral portion 302) having an outer diameter larger than that of the press-in portion (first outer peripheral portion 301) on the inlet side in the insertion direction than the press-in portion (first outer peripheral portion 301).
  • a clearance fitting portion (having a predetermined gap with the large diameter insertion hole (second inner circumferential portion 102) having a larger diameter than the small diameter insertion hole (first inner circumferential portion 101) It has a second outer peripheral portion 302).
  • the electromagnetic valve mechanism 300 is welded to a member (pump body 1) in which the insertion hole (housing hole 100) is formed on the inlet side in the insertion direction than the gap fitting portion (second outer peripheral portion 302) Part (third outer peripheral part 303).
  • a gap formed by the second outer peripheral portion 302 and the second inner peripheral portion 102 and a gap formed by the third outer peripheral portion 303 and the third inner peripheral portion 103 are the first outer peripheral portion 301 and the first inner peripheral portion. Even when eccentric with respect to the central axis of the portion 101, the gap is set to be 0 or more. With such a configuration, contact between the second outer peripheral portion 302 and the second inner peripheral portion 102 and between the third outer peripheral portion 303 and the third inner peripheral portion 103 can be suppressed, and the solenoid valve mechanism 300 It is possible to improve the assemblability without the occurrence of galling when press-fitting into the housing hole 100.
  • the first outer peripheral portion 301 of the suction valve sheet member 31 is formed in parallel to the insertion direction up to the second outer peripheral portion 302, and forms a fuel passage 10f with the second inner peripheral portion 102.
  • the fuel passage 10f is formed in the entire circumferential direction.
  • the outer peripheral portion (first outer peripheral portion 301) where the press-fit portion (first outer peripheral portion 301) is formed is formed in parallel with the insertion direction until it reaches the clearance fitting portion (second outer peripheral portion 302).
  • the insertion direction front end portion of the clearance fitting portion (second outer peripheral portion 302) and the insertion direction front end portion 102a of the large diameter insertion hole (second inner peripheral portion 102) And a flow passage (fuel passage 10f) is formed therebetween.
  • the outer diameter of the clearance fitting portion (second outer peripheral portion 302) is larger than the outer diameter of the press-fit portion (first outer peripheral portion 301) by 0.1 mm or more.
  • the flow passage (the fuel passage 10f) is formed in the entire circumferential direction on the outer peripheral side of the outer peripheral portion (first outer peripheral portion 301) where the press-fit portion (first outer peripheral portion 301) is formed. This makes it possible to secure the fuel passage.
  • the first outer peripheral portion 301 and the second outer peripheral portion 302 are formed on the suction valve sheet member 31 and are formed of the same member. That is, the press-fit portion (first outer peripheral portion 301) and the gap fitting portion (second outer peripheral portion 302) are integrally configured by the same member.
  • the outer core 38 having the third outer peripheral portion 303 to be fixed by welding is a separate member from the suction valve seat member 31.
  • the outer peripheral portion 31c of the suction valve seat member 31 is press-fit into the inner peripheral portion 38a of the outer core 38 Be done. That is, the same member (the suction valve sheet member 31) described above and the welding member (the outer core 38) in which the welding portion (the third outer peripheral portion 303) is formed are configured separately.
  • a press-fit portion which is press-fit to the outer peripheral portion 31c of the same member (suction valve sheet member 31) is formed on the inner peripheral portion 38a of the welding member (outer core 38).
  • the outer peripheral portion 31 c of the sheet member 31 is located on the inner diameter side of the first outer peripheral portion 301.
  • a press-fit portion (inner circumferential portion 38a) pressed into the outer circumferential portion of the same member (suction valve sheet member 31) by the inner circumferential portion 38a of the welding member (outer core 38) has a small diameter insertion hole (first inner circumferential portion). It is located radially inward of a press-fit portion (first outer circumferential portion 301) which is press-fit into the portion 101). Since the suction valve seat member 31 and the outer core 38 are separate structures, the stroke adjustment member 50 of the rod 35 can be inserted between the suction valve seat member 31 and the outer core 38. Therefore, the stroke variation of the rod 35 can be reduced, and the product quality can be ensured.
  • the third outer peripheral portion 303 of the suction valve sheet member 31 and the third inner peripheral portion 103 of the accommodation hole 100 are welded by laser irradiation from the insertion direction side of the electromagnetic valve mechanism 300.
  • the welded portion (third outer peripheral portion 303) is formed by laser irradiation along the insertion direction with respect to the large diameter insertion hole (second inner peripheral portion 102).
  • the spatter by laser welding intrudes into the inside of the pump body 1, but is accommodated in the space 104 of the accommodation hole 100. That is, in the electromagnetic valve mechanism 300, the sputter capture hole 104 is formed between the gap fitting portion (second outer peripheral portion 302) and the welding portion (third outer peripheral portion 303) in the insertion direction.
  • the gap between the second outer peripheral portion 302 and the large diameter insertion hole (second inner peripheral portion 102) is set to be smaller than the stroke amount (30e) of the suction valve 30 or the stroke amount (not shown) of the discharge valve 8b
  • the solenoid valve mechanism 300 of the present embodiment includes the rod 35 for urging the valve body (intake valve 30) in the valve opening direction, and the same member (intake valve seat member 31) A seat portion on which the seat 30 is seated is formed, and a guide portion 37 for guiding the outer peripheral portion of the rod 35 is formed. Then, the above-described predetermined gap is configured to be smaller than the maximum lift amount of the valve body (the suction valve 30).
  • the high pressure fuel pump of the present embodiment is provided with the solenoid valve mechanism 300 and the discharge valve mechanism 8, and the above-described predetermined gap is configured to be smaller than the maximum lift amount of the discharge valve 8 b of the discharge valve mechanism 8. . Thereby, the influence on the high pressure fuel pump operation can be suppressed.
  • FIG. 7 shows a schematic view of the third outer peripheral portion 303 of the outer core 38 and the third inner peripheral portion 303 of the pump body 1.
  • the gap C is formed between the third outer peripheral portion 303, which is a welded portion, and the third inner peripheral portion 303.
  • the theoretical welding length L is calculated by the overlapping length of the third outer peripheral portion 303 and the third inner peripheral portion 103, but the actual welding length La is a value obtained by subtracting the welding depth d from the welding length L become. Therefore, the overlapping length of the third outer peripheral portion 303 and the third inner peripheral portion 103 may be set so that the welding length satisfying the necessary strength is the actual welding length La.
  • FIG. 8 shows a structure for welding with a laser with a configuration different from that of FIG.
  • a step D may be provided on the welding laser irradiation side of the third outer peripheral portion 303 of the outer core 38 and the third inner peripheral portion 303 of the pump body 1. Since the molten metal of the volume of the corner portion 103c of the outer core 38 can be made to flow into the gap C at the time of welding, it is possible to prevent the occurrence of the welding dent d in the welding portion 138. Therefore, it is possible to consider the theoretical welding length L as the actual welding length La.
  • suction valve sheet member, 31c outer periphery of suction valve seat member 36: movable core (anchor portion) 38: welding member (outer core) 39: magnetic core (fixed core 39)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The purpose of the present invention is to provide a solenoid intake valve which improves assembly by avoiding increasing the press fitting load in the case in which a solenoid valve mechanism 300 is inserted and fixed in a hole formed in a pump body 1, and to provide a high-pressure fuel pump. This solenoid valve mechanism is provided with a valve body that opens and closes a flow path, a movable core, and a magnetic core that attracts the movable core, is inserted and fixed in an insertion hole, and is provided with: a press-fitting part which is formed on the outer peripheral portion on the distal end in the insertion direction and which is press-fitted into a small-diameter insertion hole; a clearance-fitting part which, disposed towards the entrance in the insertion direction with respect to the press-fitting part, is formed on an outer peripheral portion having an outer diameter larger than that of the press fitting part, and which is arranged having a prescribed clearance from a large-diameter insertion hole having a larger diameter than that of the small-diameter insertion hole; and a welded part which, disposed towards the entrance in the insertion direction with respect to the clearance-fitting part, is welded to the member in which the insertion hole is formed.<u/> <u/>

Description

電磁吸入弁、及びこれを備えた高圧燃料ポンプElectromagnetic suction valve and high pressure fuel pump provided with the same
 本発明は、内燃機関に適用される電磁吸入弁、及びこれを備えた高圧燃料ポンプに関する。 The present invention relates to a solenoid intake valve applied to an internal combustion engine, and a high pressure fuel pump provided with the same.
 本発明の高圧燃料ポンプの従来技術として、特許文献1に記載のものがある。この特許文献1の段落0013、0014には、「低圧燃料吸入口10aから吸入ジョイント51を通過した燃料は圧力脈動低減機構9、吸入通路10dを介して容量可変機構を構成する電磁弁機構300の吸入ポート31bに至る。電磁弁機構300に流入した燃料は、吸入弁30を通過し加圧室11に流入する。」と開示されている。 As a prior art of the high pressure fuel pump of this invention, there exists a thing of patent document 1. FIG. In paragraphs 0013 and 0014 of this patent document 1, “the fuel that has passed through the suction joint 51 from the low pressure fuel suction port 10a is a pressure pulsation reduction mechanism 9 and an electromagnetic valve mechanism 300 that constitutes a capacity variable mechanism via the suction passage 10d. The fuel that has flowed into the solenoid valve mechanism 300 passes through the suction valve 30 and flows into the pressurizing chamber 11. "
特開2017-82717号公報JP, 2017-82717, A
 上記特許文献1の図2や図3には、電磁弁機構300が図示されているが、電磁弁機構300がどのような方法により、ポンプボディ1に形成された穴部に固定されているのか、明らかでない。そこで、本発明では、電磁弁機構300をポンプボディ1に形成された穴部に挿入し、固定する場合において、圧入荷重が増大を抑えることで、組み立て性を向上する電磁弁機構、又は高圧燃料ポンプを提供することを目的とする。 Although the solenoid valve mechanism 300 is illustrated in FIG. 2 and FIG. 3 of the above Patent Document 1, by what method the solenoid valve mechanism 300 is fixed to the hole formed in the pump body 1 Not clear. Therefore, in the present invention, when the electromagnetic valve mechanism 300 is inserted into the hole formed in the pump body 1 and fixed, the increase in the press-fit load is suppressed to improve the assemblability, or the high-pressure fuel Intended to provide a pump.
 上記課題を解決するために本発明は、流路を開閉する弁体と、可動コアと、前記可動コアを吸引する磁気コアと、を備え、挿入穴に対して挿入されて固定される電磁弁機構において、 挿入方向先端側の外周部に形成され、小径挿入穴に対して圧入される圧入部と、前記圧入部よりも挿入方向入口側で、かつ前記圧入部よりも外径の大きい外周部に形成され、前記小径挿入穴よりも径の大きい大径挿入穴との間に所定の隙間を有して配置される隙間嵌め部と、前記隙間嵌め部よりも挿入方向入口側で、前記挿入穴が形成される部材に対して溶接される溶接部と、を備えた。 In order to solve the above-mentioned problems, the present invention comprises a valve body for opening and closing a flow path, a movable core, and a magnetic core for attracting the movable core, and an electromagnetic valve inserted and fixed in an insertion hole. In the mechanism, a press-fit portion formed on the distal end side in the insertion direction and press-fit into the small-diameter insertion hole, and an outer circumferential portion having an outer diameter larger than the press-fit portion at the inlet side of the insertion direction than the press-fit portion. A clearance fitting portion which is formed with a predetermined clearance between the large diameter insertion hole having a larger diameter than the small diameter insertion hole, and the insertion on the inlet side of the clearance fitting portion in the insertion direction, And a weld welded to the member in which the hole is to be formed.
 本発明によれば、ポンプボディ1に形成された穴部に挿入し、固定する場合において、圧入荷重が増大を抑えることで、組み立て性を向上する電磁弁機構、又は高圧燃料ポンプを提供することが可能となる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention, it is possible to provide a solenoid valve mechanism or a high pressure fuel pump capable of improving assemblability by suppressing an increase in press-fit load when inserting and fixing in a hole formed in the pump body 1. Is possible. Other configurations, operations and effects of the present invention will be described in detail in the following embodiments.
本実施例の高圧燃料ポンプが適用されたエンジンシステムの構成図を示す。The block diagram of the engine system to which the high pressure fuel pump of a present Example was applied is shown. 本実施例の実施例の高圧燃料ポンプの縦断面図である。It is a longitudinal cross-sectional view of the high pressure fuel pump of the Example of a present Example. 本実施例の実施例の高圧燃料ポンプの上方から見た水平方向断面図である。It is the horizontal direction sectional view seen from the upper direction of the high pressure fuel pump of the Example of a present Example. 本実施例の実施例の高圧燃料ポンプの図1と別方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the direction different from FIG. 1 of the high pressure fuel pump of the Example of a present Example. 本実施例の高圧燃料ポンプの電磁弁機構の拡大縦断面図であり、電磁弁機構が開弁状態にある状態を示す。It is an enlarged longitudinal cross-sectional view of the solenoid valve mechanism of the high pressure fuel pump of a present Example, and the state which a solenoid valve mechanism is in the valve opening state is shown. 本実施例の電磁弁機構の組み立て方法の詳細を説明する図である。It is a figure explaining the detail of the assembling method of the solenoid valve mechanism of a present Example. 本実施例の電磁弁機構の溶接部(接合部)の模式図である。It is a schematic diagram of the welding part (joining part) of the solenoid valve mechanism of a present Example. 図7と別の構成で、本実施例の電磁弁機構の溶接部(接合部)の模式図である。It is a schematic diagram of the welding part (joining part) of the solenoid valve mechanism of a present Example by the structure different from FIG.
 以下、本発明の実施例について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本実施例は高圧燃料ポンプ(高圧燃料供給ポンプ)の特に電磁吸入弁機構の組立性を向上する、電磁吸入弁機構の構造に関する。 
 図1にはエンジンシステムの全体構成図を示す。破線で囲まれた部分が高圧燃料供給ポンプ(以下、高圧燃料ポンプと呼ぶ)の本体を示し、この破線の中に示されている機構・部品はポンプボディ1に一体に組み込まれていることを示す。なお、図1はエンジンシステムの動作を模式的に示す図面であり、詳細な構成は図2以降の高圧燃料ポンプの構成と異なるところがある。図2は本実施例の高圧燃料ポンプの縦断面図を示し、図3は高圧燃料ポンプを上方から見た水平方向断面図である。また図4は高圧燃料ポンプを図2と別方向から見た縦断面図である。図5は電磁弁機構300部の拡大図である。
The present embodiment relates to the structure of an electromagnetic suction valve mechanism that improves the assemblability of a high pressure fuel pump (high pressure fuel supply pump), particularly the electromagnetic suction valve mechanism.
FIG. 1 shows the overall configuration of the engine system. The portion surrounded by a broken line shows the main body of a high pressure fuel supply pump (hereinafter referred to as a high pressure fuel pump), and the mechanism / parts shown in the broken line are integrated into the pump body 1 Show. FIG. 1 is a diagram schematically showing the operation of the engine system, and the detailed configuration is different from the configuration of the high pressure fuel pump of FIG. FIG. 2 shows a longitudinal sectional view of the high pressure fuel pump of the present embodiment, and FIG. 3 is a horizontal sectional view of the high pressure fuel pump as viewed from above. FIG. 4 is a longitudinal sectional view of the high pressure fuel pump as viewed in a direction different from that of FIG. FIG. 5 is an enlarged view of the solenoid valve mechanism 300.
 燃料タンク20の燃料は、エンジンコントロールユニット27(以下ECUと称す)からの信号に基づきフィードポンプ21によって汲み上げられる。この燃料は適切なフィード圧力に加圧されて吸入配管28を通して高圧燃料ポンプの低圧燃料吸入口10aに送られる。 The fuel of the fuel tank 20 is pumped up by a feed pump 21 based on a signal from an engine control unit 27 (hereinafter referred to as an ECU). The fuel is pressurized to an appropriate feed pressure and sent through the suction pipe 28 to the low pressure fuel inlet 10a of the high pressure fuel pump.
 低圧燃料吸入口10aから吸入ジョイント51を通過した燃料は、圧力脈動低減機構9が配置されるダンパ室(10b、10c)を介して容量可変機構を構成する電磁弁機構300の吸入ポート31bに至る。具体的には電磁弁機構300は電磁吸入弁機構を構成する。 The fuel that has passed through the suction joint 51 from the low pressure fuel suction port 10a reaches the suction port 31b of the solenoid valve mechanism 300 that constitutes the capacity variable mechanism through the damper chamber (10b, 10c) in which the pressure pulsation reduction mechanism 9 is disposed. . Specifically, the solenoid valve mechanism 300 constitutes a solenoid suction valve mechanism.
 電磁弁機構300に流入した燃料は、吸入弁30により開閉される吸入口を通過し加圧室11に流入する。エンジンのカム機構93によりプランジャ2に往復運動する動力が与えられる。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁30から燃料を吸入し、上昇行程には、燃料が加圧される。加圧された燃料は、吐出弁機構8を介し、圧力センサ26が装着されているコモンレール23へ燃料が圧送される。そしてECU27からの信号に基づきインジェクタ24がエンジンへ燃料を噴射する。本実施例はインジェクタ24がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムに適用される高圧燃料ポンプである。高圧燃料ポンプは、ECU27から電磁弁機構300への信号により、所望の供給燃料の燃料流量を吐出する。 The fuel flowing into the solenoid valve mechanism 300 passes through the suction port opened and closed by the suction valve 30 and flows into the pressure chamber 11. A power to reciprocate the plunger 2 is given by the cam mechanism 93 of the engine. The reciprocating motion of the plunger 2 sucks the fuel from the suction valve 30 during the downward stroke of the plunger 2 and the fuel is pressurized during the upward stroke. The pressurized fuel is pressure-fed through the discharge valve mechanism 8 to the common rail 23 on which the pressure sensor 26 is mounted. Then, the injector 24 injects fuel to the engine based on the signal from the ECU 27. This embodiment is a high pressure fuel pump applied to a so-called direct injection engine system in which the injector 24 directly injects fuel into the cylinder of the engine. The high-pressure fuel pump discharges the desired fuel flow rate of the supplied fuel in response to a signal from the ECU 27 to the solenoid valve mechanism 300.
 図2、3に示すように本実施例の高圧燃料ポンプは内燃機関の高圧燃料ポンプ取付け部90に密着して固定される。具体的には図3に示すようにポンプボディ1に設けられた取付けフランジ1aにねじ穴1bが形成されており、これに図示しない複数のボルトが挿入される。これにより取付けフランジ1aが内燃機関の高圧燃料ポンプ取付け部90に密着し、固定される。高圧燃料ポンプ取付け部90とポンプボディ1との間のシールのためにOリング61がポンプボディ1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。 As shown in FIGS. 2 and 3, the high pressure fuel pump of the present embodiment is closely fixed to the high pressure fuel pump mounting portion 90 of the internal combustion engine. Specifically, as shown in FIG. 3, screw holes 1b are formed in a mounting flange 1a provided on the pump body 1, and a plurality of bolts (not shown) are inserted into the screw holes 1b. Thus, the mounting flange 1a is in close contact with and fixed to the high pressure fuel pump mounting portion 90 of the internal combustion engine. An O-ring 61 is fitted into the pump body 1 for sealing between the high pressure fuel pump mounting portion 90 and the pump body 1 to prevent engine oil from leaking outside.
 図2、4に示すようにポンプボディ1にはプランジャ2の往復運動をガイドし、ポンプボディ1と共に加圧室11を形成するシリンダ6が取り付けられている。つまり、プランジャ2はシリンダの内部を往復運動することで加圧室の容積を変化させる。また燃料を加圧室11に供給するための電磁弁機構300と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8が設けられている。 As shown in FIGS. 2 and 4, a cylinder 6 is attached to the pump body 1 to guide the reciprocating movement of the plunger 2 and to form a pressure chamber 11 together with the pump body 1. That is, the plunger 2 reciprocates inside the cylinder to change the volume of the pressure chamber. A solenoid valve mechanism 300 for supplying fuel to the pressure chamber 11 and a discharge valve mechanism 8 for discharging fuel from the pressure chamber 11 to the discharge passage are provided.
 シリンダ6はその外周側においてポンプボディ1と圧入される。ポンプボディ1にはシリンダ6を下側から挿入するための挿入穴が形成され、挿入穴の下端でシリンダ6の固定部6aの下面と接触するように内周側に変形させた内周凸部が形成される。ポンプボディ1の内周凸部の上面がシリンダ6の固定部6aを図中上方向へ押圧し、シリンダ6の上端面で加圧室11にて加圧された燃料が低圧側に漏れないようシールしている。 The cylinder 6 is press-fit with the pump body 1 at its outer peripheral side. The pump body 1 is formed with an insertion hole for inserting the cylinder 6 from the lower side, and an inner peripheral convex portion deformed to the inner peripheral side to be in contact with the lower surface of the fixing portion 6a of the cylinder 6 at the lower end of the insertion hole Be done. The upper surface of the inner peripheral convex portion of the pump body 1 presses the fixing portion 6a of the cylinder 6 upward in the figure, and the upper end surface of the cylinder 6 is sealed so that the fuel pressurized in the pressurizing chamber 11 does not leak to the low pressure side. ing.
 プランジャ2の下端には、内燃機関のカムシャフトに取り付けられたカム93の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット92に圧着されている。これによりカム93の回転運動に伴い、プランジャ2を上下に往復運動させることができる。 At the lower end of the plunger 2 is provided a tappet 92 which converts the rotational movement of the cam 93 attached to the camshaft of the internal combustion engine into vertical movement and transmits it to the plunger 2. The plunger 2 is crimped to the tappet 92 by a spring 4 through a retainer 15. As a result, the plunger 2 can be reciprocated up and down with the rotational movement of the cam 93.
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されている。これにより、プランジャ2が摺動したとき、副室7aの燃料をシールし内燃機関内部へ流入するのを防ぐ。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプボディ1の内部に流入するのを防止する。 Further, a plunger seal 13 held at the lower end portion of the inner periphery of the seal holder 7 is installed in a state where the plunger seal 13 slidably contacts the outer periphery of the plunger 2 at the lower portion in the drawing of the cylinder 6. Thus, when the plunger 2 slides, the fuel in the sub chamber 7a is sealed to prevent the fuel from flowing into the internal combustion engine. At the same time, lubricating oil (including engine oil) for lubricating sliding parts in the internal combustion engine is prevented from flowing into the inside of the pump body 1.
 図3、4に示すように高圧燃料ポンプのポンプボディ1の側面部には吸入ジョイント51が取り付けられている。吸入ジョイント51は、車両の燃料タンク20からの燃料を供給する低圧配管に接続されており、燃料はここから高圧燃料ポンプ内部に供給される。吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって高圧燃料ポンプ内に吸収することを防ぐ役目がある。 As shown in FIGS. 3 and 4, a suction joint 51 is attached to the side surface of the pump body 1 of the high pressure fuel pump. The suction joint 51 is connected to a low pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high pressure fuel pump. The suction filter 52 has a function of preventing foreign matter present between the fuel tank 20 and the low pressure fuel suction port 10a from being absorbed by the flow of fuel into the high pressure fuel pump.
 低圧燃料吸入口10aを通過した燃料は、図4に示すポンプボディ1に上下方向に連通した低圧燃料吸入通路を通って圧力脈動低減機構9に向かう。圧力脈動低減機構9はダンパカバー14とポンプボディ1の上端面との間のダンパ室(10b、10c)に配置され、ポンプボディ1の上端面に配置された保持部材9aにより下側から支持される。具体的には、圧力脈動低減機構9は2枚の金属ダイアフラムが重ね合わせて構成される金属ダンパである。圧力脈動低減機構9の内部には0.3MPa~0.6MPaのガスが封入され、外周縁部が溶接で固定される。そのために外周縁部は薄く、内周側に向かって厚くなるように構成される。 The fuel that has passed through the low pressure fuel suction port 10a travels to the pressure pulsation reducing mechanism 9 through the low pressure fuel suction passage vertically connected to the pump body 1 shown in FIG. The pressure pulsation reducing mechanism 9 is disposed in the damper chamber (10b, 10c) between the damper cover 14 and the upper end surface of the pump body 1, and is supported from the lower side by a holding member 9a disposed on the upper end surface of the pump body 1. Ru. Specifically, the pressure pulsation reducing mechanism 9 is a metal damper configured by overlapping two metal diaphragms. A gas of 0.3 MPa to 0.6 MPa is enclosed inside the pressure pulsation reducing mechanism 9, and the outer peripheral edge portion is fixed by welding. Therefore, the outer peripheral edge portion is thin and configured to be thicker toward the inner peripheral side.
 そして図2に示すように、保持部材9aの上面には圧力脈動低減機構9の外周縁部を下側から固定するための凸部が形成される。一方でダンパカバー14の下面には圧力脈動低減機構9の外周縁部を上側から固定するための凸部が形成される。これらの凸部は円形状に形成されており、これらの凸部により挟まれることで圧力脈動低減機構9が固定される。なお、ダンパカバー14はポンプボディ1の外縁部に対して圧入されて固定されるが、この際に保持部材9aが弾性変形して、圧力脈動低減機構9を支持する。このようにして圧力脈動低減機構9の上下面には低圧燃料吸入口10a、低圧燃料吸入通路と連通するダンパ室(10b、10c)が形成される。なお、図には表れていないが、保持部材9aには圧力脈動低減機構9の上側と下側とを連通する通路が形成されており、これによりダンパ室(10b、10c)は圧力脈動低減機構9の上下面に形成される。 And as shown in FIG. 2, the convex part for fixing the outer-periphery edge part of the pressure pulsation reduction mechanism 9 from lower side is formed in the upper surface of the holding member 9a. On the other hand, on the lower surface of the damper cover 14, a convex portion for fixing the outer peripheral edge portion of the pressure pulsation reducing mechanism 9 from the upper side is formed. These convex portions are formed in a circular shape, and the pressure pulsation reducing mechanism 9 is fixed by being pinched by these convex portions. The damper cover 14 is pressed into and fixed to the outer edge of the pump body 1, but at this time, the holding member 9 a is elastically deformed to support the pressure pulsation reducing mechanism 9. Thus, damper chambers (10b, 10c) communicating with the low pressure fuel suction port 10a and the low pressure fuel suction passage are formed on the upper and lower surfaces of the pressure pulsation reducing mechanism 9, respectively. Although not shown in the figure, the holding member 9a is formed with a passage connecting the upper side and the lower side of the pressure pulsation reducing mechanism 9, whereby the damper chamber (10b, 10c) is a pressure pulsation reducing mechanism It is formed on the upper and lower surfaces of the reference numeral 9.
 ダンパ室(10b、10c)を通った燃料は次にポンプボディに上下方向に連通して形成された低圧燃料吸入通路10dを介して電磁弁機構300の吸入ポート31bに至る。なお、吸入ポート31bは吸入弁シート31aを形成する吸入弁シート部材31に上下方向に連通して形成される。 The fuel having passed through the damper chamber (10b, 10c) then reaches the suction port 31b of the solenoid valve mechanism 300 via the low pressure fuel suction passage 10d formed in vertical communication with the pump body. The suction port 31 b is formed in communication with the suction valve seat member 31 forming the suction valve seat 31 a in the vertical direction.
 図5に基づいて電磁弁機構300について詳細に説明する。コイル部は、第1ヨーク42、電磁コイル43、第2ヨーク44、ボビン45、端子46、コネクタ47から成る。ボビン45に銅線が複数回巻かれたコイル43が、第1ヨーク42と第2ヨーク44により取り囲まれる形で配置され、樹脂部材であるコネクタと一体にモールドされ固定される。二つの端子46のそれぞれの方端はコイルの銅線の両端にそれぞれ通電可能に接続される。端子46も同様にコネクタと一体にモールドされ残りの方端がエンジン制御ユニット側と接続可能な構成としている。 The solenoid valve mechanism 300 will be described in detail based on FIG. The coil portion includes a first yoke 42, an electromagnetic coil 43, a second yoke 44, a bobbin 45, a terminal 46, and a connector 47. A coil 43 in which a copper wire is wound around the bobbin 45 a plurality of times is disposed so as to be surrounded by the first yoke 42 and the second yoke 44, and molded and fixed integrally with a connector which is a resin member. The opposite ends of each of the two terminals 46 are electrically connected to both ends of the copper wire of the coil. Similarly, the terminal 46 is molded integrally with the connector, and the other end is connectable to the engine control unit side.
 コイル部は第1ヨーク42の中心部の穴部が、アウターコア38に圧入され固定される。その時、第2ヨーク44の内径側は、固定コア39と接触もしくは僅かなクリアランス近接する構成となる。 In the coil portion, the hole at the center of the first yoke 42 is press-fitted and fixed to the outer core 38. At that time, the inner diameter side of the second yoke 44 is configured to be in contact with the fixed core 39 or to be in close proximity to a slight clearance.
 第1ヨーク42、第2ヨーク44共に、磁気回路を構成するために、また耐食性を考慮し磁性ステンレス材料とし、ボビン45、コネクタ47は強度特性、耐熱特性を考慮し、高強度耐熱樹脂を用いる。コイルに43は銅、端子46には真鍮に金属めっきを施した物を使用する。 Both the first yoke 42 and the second yoke 44 are magnetic stainless steel materials in consideration of corrosion resistance in order to form a magnetic circuit, and the bobbin 45 and connector 47 use high strength heat resistant resin in consideration of strength characteristics and heat resistance characteristics. . The coil 43 is made of copper, and the terminal 46 is made of brass plated with metal.
 このように、アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、アンカー部36で磁気回路を形成し、コイルに電流を与えると、固定コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。アウターコア38において、固定コア39とアンカー部36とがお互い磁気吸引力を発生させる軸方向部位を極力薄肉にすることで、磁束のほぼ全てが固定コア39とアンカー部36の間を通過するため、効率良く磁気吸引力を得ることができる。 Thus, when a magnetic circuit is formed by the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, and the anchor portion 36 and a current is applied to the coil, magnetic attraction is generated between the fixed core 39 and the anchor portion 36. Forces are generated and forces are drawn together. In the outer core 38, almost all of the magnetic flux passes between the fixed core 39 and the anchor portion 36 by making the axial direction portion where the fixed core 39 and the anchor portion 36 mutually generate magnetic attraction force as thin as possible. The magnetic attraction can be obtained efficiently.
 ソレノイド機構部は、可動部であるロッド35、アンカー部36、固定部であるロッドガイド37、アウターコア38、固定コア39、そして、ロッド付勢ばね40、アンカー部付勢ばね41からなる。 The solenoid mechanism comprises a rod 35 which is a movable part, an anchor 36, a rod guide 37 which is a fixed part, an outer core 38, a fixed core 39, a rod biasing spring 40 and an anchor biasing spring 41.
 可動部であるロッド35とアンカー部36は、別部材に構成している。ロッド35はロッドガイド37の内周側で軸方向に摺動自在に保持され、アンカー部36の内周側は、ロッド35の外周側で摺動自在に保持される。すなわち、ロッド35及びアンカー部36共に幾何学的に規制される範囲で軸方向に摺動可能に構成されている。 The rod 35, which is a movable portion, and the anchor portion 36 are configured as separate members. The rod 35 is axially slidably held on the inner peripheral side of the rod guide 37, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. That is, both the rod 35 and the anchor portion 36 are axially slidable in a range that is geometrically restricted.
 アンカー部36は燃料中で軸方向に自在に滑らかに動くために、部品軸方向に貫通する貫通穴36aを1つ以上有し、アンカー部前後の圧力差による動きの制限を極力排除している。 The anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely freely axially in the fuel, thereby eliminating the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
 ロッドガイド37は、径方向には、ポンプボディ1の吸入弁が挿入される穴の内周側に挿入され、軸方向には、吸入弁シートの一端部に突き当てられる。ポンプボディ1の挿入穴に溶接固定されるアウターコア38とポンプボディ1との間に挟み込まれる形で配置される構成としている。ロッドガイド37にもアンカー部36と同様に軸方向に貫通する貫通穴37aが設けられ、アンカー部が自在に滑らかに動くことができる様、アンカー部側の燃料室の圧力がアンカー部の動きを妨げない様に構成している。 The rod guide 37 is radially inserted into the inner peripheral side of the hole into which the suction valve of the pump body 1 is inserted, and is axially butted against one end of the suction valve seat. The pump body 1 is disposed so as to be sandwiched between the outer core 38 welded and fixed to the insertion hole of the pump body 1 and the pump body 1. Similar to the anchor portion 36, the rod guide 37 is also provided with a through hole 37a penetrating in the axial direction, and the pressure of the fuel chamber on the anchor portion side moves the anchor portion so that the anchor portion can move freely freely. It is configured not to disturb.
 アウターコア38は、ポンプボディ1と溶接される部位との反対側の形状を薄肉円筒形状としており、その内周側に固定コア39が挿入される形で溶接固定される。固定コア39の内周側にはロッド付勢ばね40が、細径部をガイドに配置され、ロッド35が吸入弁30と接触し、吸入弁30が吸入弁シート部31aから引き離す方向、すなわち吸入弁の開弁方向に付勢力を与える。 The outer core 38 has a thin-walled cylindrical shape on the opposite side of the portion to be welded to the pump body 1 and is fixed by welding so that the fixed core 39 is inserted on the inner peripheral side. A rod biasing spring 40 is disposed on the inner peripheral side of the fixed core 39 with the small diameter portion as a guide, the rod 35 contacts the suction valve 30, and the suction valve 30 is pulled away from the suction valve seat portion 31a, Apply biasing force in the valve opening direction.
 アンカー部付勢ばね41は、ロッドガイド37の中心側に設けた円筒径の中央軸受部37bに方端を挿入し同軸を保ちながら、アンカー部36にロッドつば部35a方向に付勢力を与える配置としている。アンカー部36の移動量36eは吸入弁30の移動量30eよりも大きく設定される。確実に吸入弁30が閉弁するためである。 The anchor biasing spring 41 is configured to apply a biasing force to the anchor 36 in the direction of the rod collar 35a while inserting the forward end into the cylindrical central bearing 37b provided on the center side of the rod guide 37 and maintaining the same axis. And The moving amount 36 e of the anchor portion 36 is set larger than the moving amount 30 e of the suction valve 30. This is to ensure that the suction valve 30 closes.
 吐出弁機構8は図3に示すように加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dから構成される。吐出弁ストッパ8dとポンプボディ1は当接部8eで溶接により接合され燃料と外部を遮断している。 As shown in FIG. 3, the discharge valve mechanism 8 is provided at the outlet of the pressure chamber 11. The discharge valve mechanism 8 comprises a discharge valve seat 8a, a discharge valve 8b contacting and separating with the discharge valve seat 8a, and a discharge valve 8b. The discharge valve spring 8c is biased toward the seat 8a, and the discharge valve stopper 8d determines the stroke (moving distance) of the discharge valve 8b. The discharge valve stopper 8d and the pump body 1 are joined by welding at the contact portion 8e to block the fuel from the outside.
 加圧室11と吐出弁室12aに燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室12aの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cに逆らって開弁する。そして、加圧室11内の高圧の燃料は吐出弁室12a、燃料吐出通路12b、燃料吐出口12を経てコモンレール23へと吐出される。吐出弁8bは開弁した際、吐出弁ストッパ8dと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、吐出弁室12aへ高圧吐出された燃料が、再び加圧室11内に逆流してしまうのを防止でき、高圧燃料ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ストッパ8dの外周面にてガイドしている。以上のようにすることで、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。 In the state where there is no fuel pressure difference between the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is crimped to the discharge valve seat 8a by the biasing force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressure chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high pressure fuel in the pressure chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12 a, the fuel discharge passage 12 b, and the fuel discharge port 12. When the discharge valve 8 b is opened, the discharge valve 8 b contacts the discharge valve stopper 8 d and the stroke is limited. Therefore, the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d. As a result, the stroke is too large, and it is possible to prevent the fuel discharged to a high pressure into the discharge valve chamber 12a from flowing back into the pressure chamber 11 again due to the delay of closing the discharge valve 8b. Can be suppressed. Further, when the discharge valve 8b repeats opening and closing motions, the discharge valve 8b is guided by the outer peripheral surface of the discharge valve stopper 8d so as to move only in the stroke direction. By doing as described above, the discharge valve mechanism 8 serves as a check valve that restricts the flow direction of the fuel.
 以上に説明したように、加圧室11は、ポンプボディ1、電磁弁機構300、プランジャ2、シリンダ6、吐出弁機構8にて構成される。 As described above, the pressurizing chamber 11 is configured by the pump body 1, the solenoid valve mechanism 300, the plunger 2, the cylinder 6, and the discharge valve mechanism 8.
 図5は電磁弁機構300の詳細な構成を示す。カム93の回転により、プランジャ2がカム93の方向に移動して吸入行程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入ポート31bの圧力よりも低くなると、吸入弁30は開弁状態になる。30eは最大開度を示しており、このとき、吸入弁30はストッパ32に接触する。吸入弁30が開弁することにより、シート部材31に形成された開口部31cが開口する。燃料は開口部31cを通り、ポンプボディ1に横方向に形成された穴1cを介して加圧室11に流入する。なお、穴1cも加圧室11の一部を構成する。 FIG. 5 shows a detailed configuration of the solenoid valve mechanism 300. As shown in FIG. When the plunger 2 moves in the direction of the cam 93 and is in the suction stroke state by the rotation of the cam 93, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. When the fuel pressure in the pressure chamber 11 becomes lower than the pressure of the suction port 31b in this stroke, the suction valve 30 is opened. 30e indicates the maximum opening degree, and at this time, the suction valve 30 contacts the stopper 32. Opening of the suction valve 30 opens the opening 31 c formed in the seat member 31. The fuel passes through the opening 31 c and flows into the pressurizing chamber 11 through the hole 1 c formed in the pump body 1 in the lateral direction. The hole 1 c also constitutes a part of the pressure chamber 11.
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ上昇行程に移る。ここで電磁コイル43は無通電状態を維持したままであり磁気付勢力は作用しない。ロッド付勢ばね40はロッド35の外径側に凸となるロッド凸部35aを付勢し、無通電状態において吸入弁30を開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の上昇運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の吸入弁30の開口部30aを通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。 After the plunger 2 completes the suction stroke, the plunger 2 turns upward and shifts to the upward stroke. Here, the electromagnetic coil 43 remains in the non-energized state, and the magnetic bias does not act. The rod biasing spring 40 biases the rod convex portion 35a which is convex on the outer diameter side of the rod 35, and is set to have a biasing force necessary and sufficient to open the suction valve 30 in the non-energized state. There is. The volume of the pressure chamber 11 decreases with the upward movement of the plunger 2. In this state, the fuel once sucked into the pressure chamber 11 is again sucked through the opening 30a of the suction valve 30 in the open state. Since the flow is returned to the passage 10d, the pressure in the pressure chamber does not rise. This process is called a return process.
 この状態で、エンジンコントロールユニット27(以下ECUと呼ぶ)からの制御信号が電磁弁機構300に印加されると、電磁コイル43には端子46を介して電流が流れる。磁気コア39とアンカー36との間に磁気吸引力が作用し、磁気コア39及びアンカー36が磁気吸引面Sで接触する。磁気吸引力はロッド付勢ばね40の付勢力に打ち勝ってアンカー36を付勢し、アンカー36がロッド凸部35aと係合して、ロッド35を吸入弁30から離れる方向に移動させる。 In this state, when a control signal from the engine control unit 27 (hereinafter referred to as an ECU) is applied to the solenoid valve mechanism 300, a current flows in the solenoid coil 43 through the terminal 46. A magnetic attraction force acts between the magnetic core 39 and the anchor 36, and the magnetic core 39 and the anchor 36 contact on the magnetic attraction surface S. The magnetic attraction force overcomes the biasing force of the rod biasing spring 40 to bias the anchor 36, and the anchor 36 engages with the rod projection 35a to move the rod 35 away from the suction valve 30.
 このとき、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁30が閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、コモンレール23へと供給される。この行程を吐出行程と称する。 At this time, the suction valve 30 is closed by the biasing force of the suction valve biasing spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d. After the valve is closed, the fuel pressure in the pressure chamber 11 rises with the upward movement of the plunger 2, and when the pressure in the fuel outlet 12 becomes higher than that, the high pressure fuel is discharged through the discharge valve mechanism 8 to the common rail 23. Supplied. This stroke is called a discharge stroke.
 すなわち、プランジャ2の下始点から上始点までの間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁弁機構300のコイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル43へ通電するタイミングを早くすれば、圧縮行程中の、戻し行程の割合が小さく、吐出行程の割合が大きい。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば圧縮行程中の、戻し行程の割合が大きく吐出行程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル43への通電タイミングは、ECU27からの指令によって制御される。以上のように電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。 That is, the upward stroke from the lower start point to the upper start point of the plunger 2 consists of a return stroke and a discharge stroke. Then, by controlling the energization timing of the coil 43 of the solenoid valve mechanism 300, it is possible to control the amount of high pressure fuel to be discharged. If the timing for energizing the electromagnetic coil 43 is advanced, the proportion of the return stroke during the compression stroke is small, and the proportion of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small, and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of energizing is delayed, the proportion of the return stroke during the compression stroke is large, and the proportion of the discharge stroke is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small. The energization timing of the electromagnetic coil 43 is controlled by a command from the ECU 27. As described above, by controlling the energization timing of the electromagnetic coil 43, the amount of high-pressure discharged fuel can be controlled to the amount required by the internal combustion engine.
 低圧のダンパ室(10b、10c)には高圧燃料ポンプ内で発生した圧力脈動が燃料配管28へ波及するのを低減減させる圧力脈動低減機構9が設置されている。一度加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁30を通して吸入通路10dへと戻される場合、吸入通路10dへ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。 A pressure pulsation reducing mechanism 9 is provided in the low pressure damper chamber (10b, 10c) for reducing the pressure pulsation generated in the high pressure fuel pump from spreading to the fuel pipe 28. In the case where the fuel that has once flowed into the pressurizing chamber 11 is returned to the suction passage 10d through the suction valve 30 that is in the open state again for volume control, pressure pulsation is generated in the low pressure fuel chamber 10 by the fuel returned to the suction passage 10d. Occurs. However, the pressure pulsation reducing mechanism 9 provided in the low pressure fuel chamber 10 is formed by a metal diaphragm damper in which two corrugated disc-like metal plates are laminated at their outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced by the expansion and contraction of the metal damper.
 プランジャ2は、大径部2aと小径部2bを有し、プランジャの往復運動によって副室7aの体積は増減する。副室7aは燃料通路10eによりダンパ室(10b、10c)と連通している。プランジャ2の下降時は、副室7aからダンパ室(10b、10c)へ、上昇時は、ダンパ室(10b、10c)から副室7aへと燃料の流れが発生する。 The plunger 2 has a large diameter portion 2a and a small diameter portion 2b, and the volume of the sub chamber 7a is increased or decreased by the reciprocating movement of the plunger. The sub chamber 7a is in communication with the damper chamber (10b, 10c) by the fuel passage 10e. When the plunger 2 is lowered, a flow of fuel is generated from the auxiliary chamber 7a to the damper chamber (10b, 10c), and when raised, from the damper chamber (10b, 10c) to the auxiliary chamber 7a.
 このことにより、ポンプの吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料ポンプ内部で発生する圧力脈動を低減する機能を有している。 As a result, the flow rate of fuel into and out of the pump in the suction stroke or return stroke of the pump can be reduced, and the pressure pulsation generated inside the high pressure fuel pump can be reduced.
 次に、図2、3等に示すリリーフ弁機構200について説明する。 
 リリーフ弁機構200はリリーフボディ201、リリーフ弁202、リリーフ弁ホルダ203、リリーフばね204、ばねストッパ205からなる。リリーフボディ201には、テーパー形状のシート部が設けられている。バルブ202はリリーフばね204の荷重がバルブホルダ203を介して負荷され、リリーフボディ201のシート部に押圧され、シート部と協働して燃料を遮断している。リリーフ弁202の開弁圧力はリリーフばね204の荷重によって決定せられる。ばねストッパ205はリリーフボディ201に圧入固定されており、圧入固定の位置によってリリーフばね204の荷重を調整する機構である。
Next, the relief valve mechanism 200 shown in FIGS. 2 and 3 will be described.
The relief valve mechanism 200 includes a relief body 201, a relief valve 202, a relief valve holder 203, a relief spring 204, and a spring stopper 205. The relief body 201 is provided with a tapered seat portion. The load of the relief spring 204 is loaded through the valve holder 203, and the valve 202 is pressed against the seat portion of the relief body 201 and cooperates with the seat portion to shut off the fuel. The valve opening pressure of the relief valve 202 is determined by the load of the relief spring 204. The spring stopper 205 is press-fitted and fixed to the relief body 201, and is a mechanism that adjusts the load of the relief spring 204 depending on the position of the press-fitting.
 ここで、加圧室11の燃料が加圧されて吐出弁8bが開弁すると、加圧室11内の高圧の燃料は吐出弁室12a、燃料吐出通路12bを通って、燃料吐出口12から吐出される。燃料吐出口12は吐出ジョイント60に形成されており、吐出ジョイント60はポンプボディ1に溶接部61にて溶接固定され燃料通路を確保している。 
 高圧燃料ポンプの電磁吸入弁300の故障等により、燃料吐出口12の圧力が異常に高圧になり、リリーフ弁機構200のセット圧力より大きくなると異常高圧燃料はリリーフ通路213を介して低圧側であるダンパ室10cにリリーフされる。
Here, when the fuel in the pressure chamber 11 is pressurized and the discharge valve 8b is opened, the high pressure fuel in the pressure chamber 11 passes through the discharge valve chamber 12a and the fuel discharge passage 12b, and from the fuel discharge port 12 It is discharged. The fuel discharge port 12 is formed in a discharge joint 60, and the discharge joint 60 is welded and fixed to the pump body 1 at a welding portion 61 to secure a fuel passage.
When the pressure of the fuel discharge port 12 becomes abnormally high pressure due to a failure of the electromagnetic suction valve 300 of the high pressure fuel pump, etc. and becomes larger than the set pressure of the relief valve mechanism 200, the abnormally high pressure fuel is on the low pressure side via the relief passage 213 The damper chamber 10c is relieved.
 以下、本実施例の電磁弁機構300の詳細な構成について、図5乃び図6を用いて説明する。本実施例では、高速で大流量を達成する電磁弁機構300を備えた高圧燃料ポンプにおいて、組立不良発生を抑制することにより組立性を改善した高圧燃料ポンプを提供することを目的とする。 Hereinafter, the detailed configuration of the solenoid valve mechanism 300 of the present embodiment will be described with reference to FIG. 5 and FIG. In this embodiment, it is an object of the present invention to provide a high pressure fuel pump provided with a solenoid valve mechanism 300 for achieving a high flow rate and a large flow rate, wherein the assemblability is improved by suppressing the occurrence of assembly defects.
 電磁弁機構300はポンプボディ1に設けられた収容穴100に三段構成で収容される。電磁弁機構300の吸入弁シート部材31には、挿入方向先端側に第一外周部301、第一外周部301より挿入方向入口側、かつ外径側に第二外周部302が形成される。ここでアウターコア38の内周部が吸入弁シート部材31のロッドガイド37の外周部に圧入されて固定されて一体化される。そのうえでアウターコア38に第二外周部302よりさらに挿入方向入口側に第三外周部303が形成される。同様に収容穴100は電磁弁機構300の挿入方向先端側に第一内周部101、第一内周部101より挿入方向入口側、かつ外径側に第二内周部102、第二内周部102よりさらに挿入方向入口側に第三内周部103を有している。 The solenoid valve mechanism 300 is housed in the housing hole 100 provided in the pump body 1 in a three-stage configuration. In the suction valve sheet member 31 of the solenoid valve mechanism 300, a first outer peripheral portion 301 is formed on the tip end side in the insertion direction, and a second outer peripheral portion 302 is formed on the inlet side in the insertion direction than the first outer peripheral portion 301 and on the outer diameter side. Here, the inner peripheral portion of the outer core 38 is press-fit and fixed to the outer peripheral portion of the rod guide 37 of the suction valve sheet member 31 to be integrated. In addition, a third outer peripheral portion 303 is formed on the outer core 38 further to the entrance side in the insertion direction than the second outer peripheral portion 302. Similarly, the housing hole 100 has a first inner peripheral portion 101 on the tip end side of the electromagnetic valve mechanism 300 in the insertion direction, an inlet side on the insertion direction than the first inner peripheral portion 101, and a second inner peripheral portion 102 on the outer diameter side. A third inner circumferential portion 103 is provided further in the insertion direction inlet side than the circumferential portion 102.
 本実施例において、電磁弁機構300の第一外周部301は、第一内周部101に圧入される。また第二外周部302は、第二内周部102に隙間ばめされる。また第三外周部303は第三内周部103に隙間ばめされた後、溶接固定される。 In the present embodiment, the first outer peripheral portion 301 of the solenoid valve mechanism 300 is press-fit into the first inner peripheral portion 101. In addition, the second outer peripheral portion 302 is fitted with a gap on the second inner peripheral portion 102. In addition, the third outer peripheral portion 303 is gap-fitted to the third inner peripheral portion 103 and then fixed by welding.
 以上の通り、本実施例の電磁弁機構300は流路を開閉する弁体(吸入弁30)と、可動コア(アンカー部36)と、可動コア(アンカー部36)を吸引する磁気コア(固定コア39)と、を備え、挿入穴(収容穴100)に対して挿入されて固定される。そして、電磁弁機構300は、挿入方向先端側の外周部に形成され、小径挿入穴(第一内周部101)に対して圧入される圧入部(第一外周部301)を有する。また、電磁弁機構300は、圧入部(第一外周部301)よりも挿入方向入口側で、かつ圧入部(第一外周部301)よりも外径の大きい外周部(第二外周部302)に形成され、小径挿入穴(第一内周部101)よりも径の大きい大径挿入穴(第二内周部102)との間に所定の隙間を有して配置される隙間嵌め部(第二外周部302)を有する。さらに、電磁弁機構300は、隙間嵌め部(第二外周部302)よりも挿入方向入口側で、挿入穴(収容穴100)が形成される部材(ポンプボディ1)に対して溶接される溶接部(第三外周部303)を有する。 As described above, the solenoid valve mechanism 300 according to the present embodiment includes the valve body (intake valve 30) for opening and closing the flow path, the movable core (anchor portion 36), and the magnetic core (spinned for attracting the movable core (anchor portion 36) And a core 39), and inserted and fixed to the insertion hole (receiving hole 100). And the solenoid valve mechanism 300 is formed in the outer peripheral part at the front end side of an insertion direction, and has a press-fit part (1st outer peripheral part 301) press-fit with respect to a small diameter insertion hole (1st inner peripheral part 101). Further, the electromagnetic valve mechanism 300 has an outer peripheral portion (second outer peripheral portion 302) having an outer diameter larger than that of the press-in portion (first outer peripheral portion 301) on the inlet side in the insertion direction than the press-in portion (first outer peripheral portion 301). A clearance fitting portion (having a predetermined gap with the large diameter insertion hole (second inner circumferential portion 102) having a larger diameter than the small diameter insertion hole (first inner circumferential portion 101) It has a second outer peripheral portion 302). Furthermore, the electromagnetic valve mechanism 300 is welded to a member (pump body 1) in which the insertion hole (housing hole 100) is formed on the inlet side in the insertion direction than the gap fitting portion (second outer peripheral portion 302) Part (third outer peripheral part 303).
 ここで、仮に電磁弁機構300の上記した第一外周部301、第二外周部302、第三外周部303の何れもが圧入によって、ポンプボディ1に固定されているとする。このように圧入箇所が三段となると、一段目の圧入部材の軸中心と、二段目、及び三段目の軸中心が偏心する。これにより、二段目、三段目の圧入締め代が増加し、圧入不良が発生するという課題があることを本発明者らは突き止めたものである。これに対し上記の本実施例の構成によれば、このような課題を解決し、組立不良発生を抑制することができ組立性を改善することが可能となる。 Here, it is assumed that all of the first outer peripheral portion 301, the second outer peripheral portion 302, and the third outer peripheral portion 303 of the solenoid valve mechanism 300 are fixed to the pump body 1 by press fitting. As described above, when the press-fit portion is three-tiered, the axial center of the first-stage press-fit member is eccentric to the axial centers of the second and third stages. As a result, the inventors of the present invention have found that there is a problem that the press-in interference in the second and third stages is increased, and a press-in failure occurs. On the other hand, according to the configuration of the above-described embodiment, such problems can be solved, the occurrence of assembly defects can be suppressed, and the assemblability can be improved.
 第二外周部302と第二内周部102とで形成される隙間、及び第三外周部303と第三内周部103とで形成される隙間は、第一外周部301と第一内周部101の中心軸に対して偏心した場合においても、隙間が0以上となるように設定されている。このような構成とすることで、第二外周部302と第二内周部102、及び第三外周部303と第三内周部103同士の接触を抑制することができ、電磁弁機構300を収容穴100に圧入する際にかじりが発生することなく、組立性を向上することが可能となる。 A gap formed by the second outer peripheral portion 302 and the second inner peripheral portion 102 and a gap formed by the third outer peripheral portion 303 and the third inner peripheral portion 103 are the first outer peripheral portion 301 and the first inner peripheral portion. Even when eccentric with respect to the central axis of the portion 101, the gap is set to be 0 or more. With such a configuration, contact between the second outer peripheral portion 302 and the second inner peripheral portion 102 and between the third outer peripheral portion 303 and the third inner peripheral portion 103 can be suppressed, and the solenoid valve mechanism 300 It is possible to improve the assemblability without the occurrence of galling when press-fitting into the housing hole 100.
 吸入弁シート部材31の第一外周部301は、第二外周部302に至るまで、挿入方向に対し平行に形成され、第二内周部102との間に燃料通路10fを形成する。この燃料通路10fは全周方向に形成される。 The first outer peripheral portion 301 of the suction valve sheet member 31 is formed in parallel to the insertion direction up to the second outer peripheral portion 302, and forms a fuel passage 10f with the second inner peripheral portion 102. The fuel passage 10f is formed in the entire circumferential direction.
 すなわち、本実施例において圧入部(第一外周部301)が形成される外周部(第一外周部301)は隙間嵌め部(第二外周部302)に至るまで、挿入方向と平行に形成され、外周部(第一外周部301)の外周側において、隙間嵌め部(第二外周部302)の挿入方向先端部と、大径挿入穴(第二内周部102)の挿入方向先端部102aとの間に流路(燃料通路10f)が形成される。隙間嵌め部(第二外周部302)の外径は、圧入部
(第一外周部301)の外径に対して直径0.1mm以上大きく形成されている。また流路(燃料通路10f)は、圧入部(第一外周部301)が形成される外周部(第一外周部301)の外周側において、周方向全体に形成されている。これにより、燃料通路を確保することが可能となる。
That is, in the present embodiment, the outer peripheral portion (first outer peripheral portion 301) where the press-fit portion (first outer peripheral portion 301) is formed is formed in parallel with the insertion direction until it reaches the clearance fitting portion (second outer peripheral portion 302). On the outer peripheral side of the outer peripheral portion (first outer peripheral portion 301), the insertion direction front end portion of the clearance fitting portion (second outer peripheral portion 302) and the insertion direction front end portion 102a of the large diameter insertion hole (second inner peripheral portion 102) And a flow passage (fuel passage 10f) is formed therebetween. The outer diameter of the clearance fitting portion (second outer peripheral portion 302) is larger than the outer diameter of the press-fit portion (first outer peripheral portion 301) by 0.1 mm or more. Further, the flow passage (the fuel passage 10f) is formed in the entire circumferential direction on the outer peripheral side of the outer peripheral portion (first outer peripheral portion 301) where the press-fit portion (first outer peripheral portion 301) is formed. This makes it possible to secure the fuel passage.
 第一外周部301と第二外周部302は吸入弁シート部材31に形成されており、同一部材でとなっている。つまり、圧入部(第一外周部301)と、隙間嵌め部(第二外周部302)とは同一の部材で一体に構成されている。溶接固定される第三外周部303を有するアウターコア38は吸入弁シート部材31とは別部材となっており、アウターコア38の内周部38aには吸入弁シート部材31の外周部31cが圧入される。つまり上記した同一の部材(吸入弁シート部材31)と、溶接部(第三外周部303)が形成される溶接部材(アウターコア38)とは別体の部材で構成される。溶接部材(アウターコア38)の内周部38aに同一の部材(吸入弁シート部材31)の外周部31cに対して圧入される圧入部が形成されている。 The first outer peripheral portion 301 and the second outer peripheral portion 302 are formed on the suction valve sheet member 31 and are formed of the same member. That is, the press-fit portion (first outer peripheral portion 301) and the gap fitting portion (second outer peripheral portion 302) are integrally configured by the same member. The outer core 38 having the third outer peripheral portion 303 to be fixed by welding is a separate member from the suction valve seat member 31. The outer peripheral portion 31c of the suction valve seat member 31 is press-fit into the inner peripheral portion 38a of the outer core 38 Be done. That is, the same member (the suction valve sheet member 31) described above and the welding member (the outer core 38) in which the welding portion (the third outer peripheral portion 303) is formed are configured separately. A press-fit portion which is press-fit to the outer peripheral portion 31c of the same member (suction valve sheet member 31) is formed on the inner peripheral portion 38a of the welding member (outer core 38).
 シート部材31の外周部31cは第一外周部301よりも内径側に位置している。溶接部材(アウターコア38)の内周部38aで同一の部材(吸入弁シート部材31)の外周部に対して圧入される圧入部(内周部38a)は、小径挿入穴(第一内周部101)に対して圧入される圧入部(第一外周部301)よりも径方向内側に位置する。吸入弁シート部材31とアウターコア38が別体構造となっているため、吸入弁シート部材31とアウターコア38の間に、ロッド35のストローク調整部材50を挿入できる。したがって、ロッド35のストロークばらつきを低減することができ、製品品質を確保することが可能となる。 The outer peripheral portion 31 c of the sheet member 31 is located on the inner diameter side of the first outer peripheral portion 301. A press-fit portion (inner circumferential portion 38a) pressed into the outer circumferential portion of the same member (suction valve sheet member 31) by the inner circumferential portion 38a of the welding member (outer core 38) has a small diameter insertion hole (first inner circumferential portion). It is located radially inward of a press-fit portion (first outer circumferential portion 301) which is press-fit into the portion 101). Since the suction valve seat member 31 and the outer core 38 are separate structures, the stroke adjustment member 50 of the rod 35 can be inserted between the suction valve seat member 31 and the outer core 38. Therefore, the stroke variation of the rod 35 can be reduced, and the product quality can be ensured.
 吸入弁シート部材31の第三外周部303と収容穴100の第三内周部103は、電磁弁機構300の挿入方向側からレーザ照射することにより溶接される。溶接部(第三外周部303)は大径挿入穴(第二内周部102)に対して挿入方向に沿うようにレーザ照射されることで形成されている。このとき、レーザ溶接によるスパッタがポンプボディ1の内部に侵入するが、収容穴100の空間104に収容される。つまり電磁弁機構300は、挿入方向において隙間嵌め部(第二外周部302)と溶接部(第三外周部303)との間にスパッタ捕獲穴104が形成されている。 The third outer peripheral portion 303 of the suction valve sheet member 31 and the third inner peripheral portion 103 of the accommodation hole 100 are welded by laser irradiation from the insertion direction side of the electromagnetic valve mechanism 300. The welded portion (third outer peripheral portion 303) is formed by laser irradiation along the insertion direction with respect to the large diameter insertion hole (second inner peripheral portion 102). At this time, the spatter by laser welding intrudes into the inside of the pump body 1, but is accommodated in the space 104 of the accommodation hole 100. That is, in the electromagnetic valve mechanism 300, the sputter capture hole 104 is formed between the gap fitting portion (second outer peripheral portion 302) and the welding portion (third outer peripheral portion 303) in the insertion direction.
 第二外周部302と大径挿入穴(第二内周部102)の隙間は吸入弁30のストローク量(30e)、あるいは吐出弁8bのストローク量(図示せず)より小さくなるよう設定されている。つまり、本実施例の電磁弁機構300は、弁体(吸入弁30)を開弁方向に付勢するロッド35を備え、同一の部材(吸入弁シート部材31)には、弁体(吸入弁30)が着座するシート部が形成されるとともに、ロッド35の外周部をガイドするガイド部37が形成されている。そして、上記した所定の隙間が、弁体(吸入弁30)の最大リフト量よりも小さくなるように構成されている。また本実施例の高圧燃料ポンプは、電磁弁機構300と吐出弁機構8を備え、上記した所定の隙間は吐出弁機構8の吐出弁8bの最大リフト量よりも小さくなるように構成されている。これにより、高圧燃料ポンプ作動に対する影響を抑制することができる。 The gap between the second outer peripheral portion 302 and the large diameter insertion hole (second inner peripheral portion 102) is set to be smaller than the stroke amount (30e) of the suction valve 30 or the stroke amount (not shown) of the discharge valve 8b There is. That is, the solenoid valve mechanism 300 of the present embodiment includes the rod 35 for urging the valve body (intake valve 30) in the valve opening direction, and the same member (intake valve seat member 31) A seat portion on which the seat 30 is seated is formed, and a guide portion 37 for guiding the outer peripheral portion of the rod 35 is formed. Then, the above-described predetermined gap is configured to be smaller than the maximum lift amount of the valve body (the suction valve 30). Further, the high pressure fuel pump of the present embodiment is provided with the solenoid valve mechanism 300 and the discharge valve mechanism 8, and the above-described predetermined gap is configured to be smaller than the maximum lift amount of the discharge valve 8 b of the discharge valve mechanism 8. . Thereby, the influence on the high pressure fuel pump operation can be suppressed.
 図7にアウターコア38の第三外周部303と、ポンプボディ1の第三内周部303の模式図を示す。前述したように、溶接部である第三外周部303と、第三内周部303の間に隙間Cが形成されている。溶接時には隙間Cにアウターコア38、及びポンプボディ1の溶融金属が流入するが、隙間Cの容積を充足できない場合、溶接部138に溶接部へこみdを生じる可能性がある。理論溶接長さLは第三外周部303と第三内周部103の重ね合わせの長さで計算されるが、実溶接長さLaは溶接長さLから溶接部へこみdを引いた値となる。よって、必要強度を満足する溶接長さが実溶接長さLaとなるよう、第三外周部303と第三内周部103の重ね合わせの長さを設定すればよい。 FIG. 7 shows a schematic view of the third outer peripheral portion 303 of the outer core 38 and the third inner peripheral portion 303 of the pump body 1. As described above, the gap C is formed between the third outer peripheral portion 303, which is a welded portion, and the third inner peripheral portion 303. When welding, the outer core 38 and the molten metal of the pump body 1 flow into the gap C, but if the volume of the gap C can not be satisfied, there is a possibility that the weld portion 138 may cause a weld dent d. The theoretical welding length L is calculated by the overlapping length of the third outer peripheral portion 303 and the third inner peripheral portion 103, but the actual welding length La is a value obtained by subtracting the welding depth d from the welding length L Become. Therefore, the overlapping length of the third outer peripheral portion 303 and the third inner peripheral portion 103 may be set so that the welding length satisfying the necessary strength is the actual welding length La.
 図8は図7とは異なる構成によりレーザで溶接を行うための構造を示す。図8に示すようにアウターコア38の第三外周部303とポンプボディ1の第三内周部303の溶接レーザ照射側に段差Dを設ける構造としてもよい。溶接時にアウターコア38の角部103cの容積分の溶融金属を隙間Cに流入させることができるため、溶接部138に溶接へこみdが生じることを防止することができる。よって、理論溶接長さLを実溶接長さLaとして考えることが可能となる。 FIG. 8 shows a structure for welding with a laser with a configuration different from that of FIG. As shown in FIG. 8, a step D may be provided on the welding laser irradiation side of the third outer peripheral portion 303 of the outer core 38 and the third inner peripheral portion 303 of the pump body 1. Since the molten metal of the volume of the corner portion 103c of the outer core 38 can be made to flow into the gap C at the time of welding, it is possible to prevent the occurrence of the welding dent d in the welding portion 138. Therefore, it is possible to consider the theoretical welding length L as the actual welding length La.
 以上の発明により、高速、大流量を達成する電磁弁機構において、電磁弁機構の組立不良発生を抑制することにより組立性を改善した高圧燃料ポンプを供給することが可能となる。 According to the above-described invention, it is possible to supply a high-pressure fuel pump with improved assemblability by suppressing occurrence of assembly failure of the solenoid valve mechanism in the solenoid valve mechanism achieving high speed and large flow rate.
1…ポンプボディ、2…プランジャ、8…吐出弁機構、9…圧力脈動低減機構、11…加圧室、12…燃料吐出口、30…弁体(吸入弁)、31…吸入弁シート部材、31c…吸入弁シート部材の外周部、36…可動コア(アンカー部)、38…溶接部材(アウターコア)、39…磁気コア(固定コア39)、100…挿入穴(収容穴)、101…小径挿入穴(第一内周部)、102…第二内周部、103…第三内周部103、300…電磁弁機構、301…圧入部(第一外周部)、302…隙間嵌め部(第二外周部)、303…溶接部(第三外周部) DESCRIPTION OF SYMBOLS 1 ... pump body, 2 ... plunger, 8 ... discharge valve mechanism, 9 ... pressure pulsation reduction mechanism, 11 ... pressurization chamber, 12 ... fuel discharge port, 30 ... valve body (intake valve), 31 ... suction valve sheet member, 31c: outer periphery of suction valve seat member 36: movable core (anchor portion) 38: welding member (outer core) 39: magnetic core (fixed core 39) 100: insertion hole (housing hole) 101: small diameter Insertion hole (first inner circumferential portion) 102: second inner circumferential portion 103: third inner circumferential portion 103, 300 electromagnetic valve mechanism 301: press-fit portion (first outer circumferential portion) 302: clearance fitting portion Second outer peripheral portion), 303 ... welded portion (third outer peripheral portion)

Claims (12)

  1.  流路を開閉する弁体と、可動コアと、前記可動コアを吸引する磁気コアと、を備え、挿入穴に対して挿入されて固定される電磁弁機構において、
     挿入方向先端側の外周部に形成され、小径挿入穴に対して圧入される圧入部と、
     前記圧入部よりも挿入方向入口側で、かつ前記圧入部よりも外径の大きい外周部に形成され、前記小径挿入穴よりも径の大きい大径挿入穴との間に所定の隙間を有して配置される隙間嵌め部と、
     前記隙間嵌め部よりも挿入方向入口側で、前記挿入穴が形成される部材に対して溶接される溶接部と、を備えた電磁弁機構。
    An electromagnetic valve mechanism comprising a valve body for opening and closing a flow path, a movable core, and a magnetic core for attracting the movable core, wherein the electromagnetic valve mechanism is inserted and fixed to the insertion hole,
    A press-fit portion which is formed on the outer periphery at the tip end side in the insertion direction and which is press-fit into the small diameter insertion hole
    It is formed on the inlet side in the insertion direction than the press-fit portion, and is formed on the outer peripheral portion having a larger outer diameter than the press-fit portion, and has a predetermined gap between it and the large diameter insertion hole having a larger diameter than the small diameter insertion hole. A clearance fit portion to be disposed,
    An electromagnetic valve mechanism comprising a welded portion welded to a member in which the insertion hole is formed on the inlet side in the insertion direction than the gap fitting portion;
  2.  請求項1に記載の電磁弁機構において、
     前記圧入部が形成される外周部は前記隙間嵌め部に至るまで、挿入方向と平行に形成され、
     前記外周部の外周側において、前記隙間嵌め部の挿入方向先端部と、前記大径挿入穴の挿入方向入口部との間に流路が形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 1,
    An outer peripheral portion on which the press-fit portion is formed is formed in parallel with the insertion direction until the gap fitting portion is reached,
    An electromagnetic valve mechanism in which a flow passage is formed on the outer peripheral side of the outer peripheral portion between the insertion direction distal end portion of the clearance fitting portion and the insertion direction inlet portion of the large diameter insertion hole.
  3.  請求項1に記載の電磁弁機構において、
     前記圧入部と、前記隙間嵌め部とは同一の部材で一体に構成された電磁弁機構。
    In the solenoid valve mechanism according to claim 1,
    An electromagnetic valve mechanism in which the press-fit portion and the clearance fit portion are integrally formed of the same member.
  4.  請求項3に記載の電磁弁機構において、
     前記同一の部材と、前記溶接部が形成される溶接部材とは別体の部材で構成され、前記溶接部材の内周部に前記同一の部材の外周部に対して圧入される圧入部が形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 3,
    The same member and the welding member in which the welding portion is formed are formed as separate members, and a press-fit portion is formed on the inner peripheral portion of the welding member to be pressed into the outer peripheral portion of the same member. Solenoid valve mechanism.
  5.  請求項4に記載の電磁弁機構において、
     前記溶接部材の内周部で前記同一の部材の外周部に対して圧入される圧入部は、小径挿入穴に対して圧入される圧入部よりも径方向内側に位置する電磁弁機構。
    In the solenoid valve mechanism according to claim 4,
    An electromagnetic valve mechanism in which a press-fit portion pressed into the outer peripheral portion of the same member at an inner peripheral portion of the welding member is located radially inward of a press-fit portion pressed into the small diameter insertion hole.
  6.  請求項1に記載の電磁弁機構において、
     前記溶接部は前記大径挿入穴に対して挿入方向に沿うようにレーザ照射されることで形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 1,
    The electromagnetic valve mechanism formed by the laser irradiation of the said welding part along the insertion direction with respect to the said large diameter insertion hole.
  7.  請求項1に記載の電磁弁機構において、
     挿入方向において前記隙間嵌め部と前記溶接部との間にスパッタ捕獲穴が形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 1,
    An electromagnetic valve mechanism in which a spatter capture hole is formed between the clearance fitting portion and the welding portion in the insertion direction.
  8.  請求項2に記載の電磁弁機構において、
     前記流路は、前記圧入部が形成される外周部の外周側において、周方向全体に形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 2,
    The solenoid valve mechanism formed in the whole circumferential direction on the outer peripheral side of the outer peripheral portion where the press-fit portion is formed.
  9.  請求項3に記載の電磁弁機構において、
     前記弁体を開弁方向に付勢するロッドを備え、
     前記同一の部材には前記弁体が着座するシート部が形成されるとともに、前記ロッドの外周部をガイドするガイド部が形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 3,
    A rod for biasing the valve body in a valve opening direction;
    An electromagnetic valve mechanism in which a seat portion on which the valve body is seated is formed on the same member, and a guide portion for guiding an outer peripheral portion of the rod is formed.
  10.  請求項1に記載の電磁弁機構において、
     前記隙間嵌め部の外径は、前記圧入部の外径に対して直径0.1mm以上大きく形成された電磁弁機構。
    In the solenoid valve mechanism according to claim 1,
    The electromagnetic valve mechanism in which the outer diameter of the said clearance gap fitting part was formed 0.1 mm or more in diameter large with respect to the outer diameter of the said press-fit part.
  11.  請求項1に記載の電磁弁機構において、前記所定の隙間が、前記弁体の最大リフト量よりも小さくなるように構成された電磁弁機構。 The electromagnetic valve mechanism according to claim 1, wherein the predetermined gap is smaller than a maximum lift amount of the valve body.
  12.  請求項1に記載の電磁弁機構と吐出弁機構を備えた高圧燃料ポンプにおいて、
     前記所定の隙間は前記吐出弁機構の吐出弁の最大リフト量よりも小さくなるように構成された高圧燃料ポンプ。
    A high-pressure fuel pump comprising the solenoid valve mechanism according to claim 1 and a discharge valve mechanism,
    The high pressure fuel pump, wherein the predetermined gap is smaller than the maximum lift amount of the discharge valve of the discharge valve mechanism.
PCT/JP2018/023944 2017-07-14 2018-06-25 Solenoid intake valve, and high-pressure fuel pump provided therewith WO2019012969A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019529032A JP6754902B2 (en) 2017-07-14 2018-06-25 Electromagnetic suction valve and high-pressure fuel pump equipped with it
DE112018003099.7T DE112018003099T5 (en) 2017-07-14 2018-06-25 SOLENOID INLET VALVE AND HIGH PRESSURE FUEL PUMP
CN201880044093.4A CN110809670B (en) 2017-07-14 2018-06-25 Electromagnetic suction valve and high-pressure fuel pump provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-137637 2017-07-14
JP2017137637 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019012969A1 true WO2019012969A1 (en) 2019-01-17

Family

ID=65001598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023944 WO2019012969A1 (en) 2017-07-14 2018-06-25 Solenoid intake valve, and high-pressure fuel pump provided therewith

Country Status (4)

Country Link
JP (1) JP6754902B2 (en)
CN (1) CN110809670B (en)
DE (1) DE112018003099T5 (en)
WO (1) WO2019012969A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082810A (en) * 2010-10-15 2012-04-26 Hitachi Automotive Systems Ltd High-pressure fuel supply pump having electromagnetically-driven intake valve
WO2016208359A1 (en) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 Flow rate control valve and high-pressure fuel supply pump
WO2017038298A1 (en) * 2015-08-28 2017-03-09 日立オートモティブシステムズ株式会社 High-pressure fuel pump and method for producing same
JP2017066956A (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900390B2 (en) * 1997-11-19 2007-04-04 株式会社デンソー Fuel supply device
DE69938615T2 (en) * 1999-02-09 2009-06-10 Hitachi, Ltd. High pressure fuel pump for an internal combustion engine
DE10109611A1 (en) * 2001-02-28 2002-09-05 Bosch Gmbh Robert Fuel injector
CN100410526C (en) * 2004-01-14 2008-08-13 博世株式会社 Fuel supply pump and tappet structure body
CN100467857C (en) * 2006-02-23 2009-03-11 株式会社电装 Adjusting device
JP4625789B2 (en) * 2006-07-20 2011-02-02 日立オートモティブシステムズ株式会社 High pressure fuel pump
JP5039507B2 (en) * 2007-10-31 2012-10-03 日立オートモティブシステムズ株式会社 High pressure fuel supply pump and method of manufacturing the same
US8083206B2 (en) * 2008-07-08 2011-12-27 Caterpillar Inc. Precision ground armature assembly for solenoid actuator and fuel injector using same
CN102619660B (en) * 2011-01-28 2015-06-24 株式会社电装 High pressure pump
JP5677329B2 (en) * 2012-01-20 2015-02-25 日立オートモティブシステムズ株式会社 High pressure fuel supply pump with electromagnetically driven suction valve
JP6596304B2 (en) * 2015-10-30 2019-10-23 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082810A (en) * 2010-10-15 2012-04-26 Hitachi Automotive Systems Ltd High-pressure fuel supply pump having electromagnetically-driven intake valve
WO2016208359A1 (en) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 Flow rate control valve and high-pressure fuel supply pump
WO2017038298A1 (en) * 2015-08-28 2017-03-09 日立オートモティブシステムズ株式会社 High-pressure fuel pump and method for producing same
JP2017066956A (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump

Also Published As

Publication number Publication date
DE112018003099T5 (en) 2020-03-26
JP6754902B2 (en) 2020-09-16
CN110809670B (en) 2021-07-16
CN110809670A (en) 2020-02-18
JPWO2019012969A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US10731615B2 (en) Flow rate control valve and high-pressure fuel supply pump
JP4866893B2 (en) Electromagnetically driven valve mechanism and high-pressure fuel supply pump using the same
JP6689178B2 (en) High pressure fuel supply pump
WO2019097991A1 (en) High-pressure fuel pump
JP5909502B2 (en) High pressure fuel supply pump
JP6779370B2 (en) High pressure fuel pump
EP3543519B1 (en) High-pressure fuel supply pump
WO2019012970A1 (en) High-pressure fuel pump
CN109072843B (en) Control device for high-pressure fuel supply pump and high-pressure fuel supply pump
WO2021054006A1 (en) Electromagnetic suction valve and high-pressure fuel supply pump
WO2019107101A1 (en) High-pressure fuel supply pump
JP7178504B2 (en) Fuel pump
US20230003215A1 (en) Electromagnetic valve mechanism and high-pressure fuel supply pump
JP6681448B2 (en) High pressure fuel supply pump
JP6754902B2 (en) Electromagnetic suction valve and high-pressure fuel pump equipped with it
JP7077212B2 (en) High pressure fuel pump
JP2019090365A (en) Fuel supply pump
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump
JP6932629B2 (en) High pressure fuel pump
JP6151399B2 (en) High pressure fuel supply pump
JP2023071061A (en) Fuel pump
JP6397961B2 (en) High pressure fuel supply pump
JP2023169731A (en) Fuel pump
JP2018031332A (en) High pressure fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529032

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18831533

Country of ref document: EP

Kind code of ref document: A1