WO2019012697A1 - Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope - Google Patents

Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope Download PDF

Info

Publication number
WO2019012697A1
WO2019012697A1 PCT/JP2017/025774 JP2017025774W WO2019012697A1 WO 2019012697 A1 WO2019012697 A1 WO 2019012697A1 JP 2017025774 W JP2017025774 W JP 2017025774W WO 2019012697 A1 WO2019012697 A1 WO 2019012697A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic
moving frame
diaphragms
lens unit
pair
Prior art date
Application number
PCT/JP2017/025774
Other languages
French (fr)
Japanese (ja)
Inventor
猛志 齊藤
松本 和宏
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/025774 priority Critical patent/WO2019012697A1/en
Publication of WO2019012697A1 publication Critical patent/WO2019012697A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording

Definitions

  • the present invention relates to a stereoscopic optical unit having a movable lens frame, a stereoscopic imaging device having the stereoscopic optical unit and a stereoscopic endoscope.
  • a plurality of observation optical systems may be provided in parallel, and the observation optical system may be disposed so as to have parallax by setting convergence angles formed by the imaging optical axes of the plurality of optical systems, and stereoscopically view the observation region
  • a stereoscopic endoscope apparatus which can be used.
  • a camera having a stereoscopic imaging optical system as disclosed in Japanese Patent Application Laid-Open No. 2012-113281 is incorporated.
  • the optimal three-dimensional effect differs depending on the distance to the subject, and the parallax is small when the object is close and large when the object is far.
  • the size of the imaging device increases.
  • the conventional stereoscopic imaging optical system constitutes a binocular optical system having a variable stereo base (distance between principal rays of right and left optical systems) optimum for a camera, and an imaging apparatus equipped with this binocular optical system Then, since the stereo base can be changed according to the shooting conditions, it is possible to easily acquire a stereoscopic image capable of comfortable stereoscopic vision.
  • two parallel optical systems are provided, and drive means is provided to drive the position of the stop disposed in each optical system.
  • the stereo base is adjusted by decentering these diaphragms to adjust the three-dimensional effect.
  • the stereoscopic base can be made narrower or wider than the optical axis interval of the two optical systems, and a stereoscopic image capable of comfortable stereoscopic vision. I am trying to get
  • the conventional camera calculates parallax information from images obtained from the left and right imaging elements, and performs feedback by an image driving an aperture so as to be an optimal stereo base.
  • the unit of the imaging apparatus becomes large. That is, in the prior art, although stereoscopic effect adjustment with sufficient parallax can be achieved, since the diaphragm and the focus each have a drive mechanism, the size can not be reduced, and the diameter and size of the insertion portion can be reduced. Had the problem of being unsuitable.
  • the present invention has been made in view of the above circumstances, and provides a stereoscopic optical unit, a stereoscopic image pickup apparatus, and a stereoscopic endoscope which can be miniaturized with a simple configuration and can achieve optimal stereoscopic vision.
  • the purpose is that.
  • a stereoscopic optical unit includes a moving frame in which two objective optical systems are juxtaposed, and a driving unit that drives the moving frame in a direction along the optical axis of the two objective optical systems.
  • a pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening, and the pair of diaphragm members interlocked according to the advancing and retracting movement of the moving frame by the drive unit, And an interlocking drive mechanism for moving the aperture in a direction orthogonal to the optical axes of the two objective optical systems.
  • a stereoscopic imaging apparatus includes a moving frame in which two objective optical systems are juxtaposed, and a driving unit that drives the moving frame in a direction along the optical axis of the two objective optical systems.
  • a pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening, and the pair of diaphragm members interlocked according to the advancing and retracting movement of the moving frame by the drive unit,
  • a stereoscopic drive unit having an interlock drive mechanism for moving the aperture in a direction orthogonal to the optical axes of the two objective optical systems, and an imaging device for receiving light of the stereoscopic drive unit Do.
  • a stereoscopic endoscope includes a moving frame in which two objective optical systems are juxtaposed, and a driving unit that drives the moving frame in a direction along an optical axis of the two objective optical systems. And a pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening, and interlocking the pair of diaphragm members according to forward and backward movement of the moving frame by the drive unit, A stereoscopic optical unit having an interlocking drive mechanism for moving the aperture in a direction orthogonal to the optical axes of the two objective optical systems, and an image pickup device for receiving the light of the stereoscopic optical unit A stereoscopic image pickup apparatus is provided.
  • a perspective view showing the configuration of an endoscope A schematic view showing a stereoscopic imaging device provided at the tip of the insertion portion
  • a schematic view showing a moving lens unit driven by an actuator Front view showing the moving frame
  • Top view showing the moving frame
  • Front view showing a moving lens unit in a state where a fixing portion is provided
  • Top view showing the movable lens unit in a state in which the fixing portion is provided
  • Front view showing a moving lens unit in a state in which two diaphragms are provided
  • Top view showing the moving lens unit in a state in which a shading plate is provided and two diaphragms are in close proximity
  • Front view showing a moving lens unit in which a light shielding plate is provided and two diaphragm blades are separated
  • Top view showing the moving lens unit in a state in which a light shield
  • FIG. 1 is a perspective view showing the configuration of an endoscope
  • FIG. 2 is a schematic view showing a stereoscopic imaging device provided at the distal end of the insertion portion
  • FIG. 3 is a schematic view showing a moving lens unit driven by an actuator.
  • 4 is a front view showing the moving frame
  • FIG. 5 is a top view showing the moving frame
  • FIG. 6 is a front view showing the moving lens unit in the state in which the fixing portion is provided
  • FIG. 7 is a movement in the state in which the fixing portion is provided
  • 8 is a front view showing a moving lens unit in a state in which two diaphragms are provided
  • FIG. 9 is a top view in which a moving lens unit in a state in which two diaphragms are provided.
  • 10 is a front view showing a moving lens unit in which a light shielding plate is provided and two diaphragms are in close proximity
  • FIG. 11 is a top view showing a moving lens unit in which a light shielding plate is provided and two diaphragms are in proximity
  • FIG. 12 is provided with a light shielding plate
  • FIG. 13 is a front view showing the moving lens unit in a state where the squeezing wings are separated
  • FIG. 13 is a top view showing the moving lens unit in a state in which two light blocking plates are separated and the two squeezing wings are separated
  • FIG. 15 is a front view showing the moving lens unit in a separated state
  • FIG. 15 is a cross-sectional view showing a state in which two diaphragms overlap.
  • a stereoscopic endoscope (hereinafter sometimes referred to simply as an endoscope) 1 has a long insertion portion 2 and an operation portion 3 connected to the proximal end of the insertion portion 2. And a light guide connector 4 connected to a light source device (not shown) and a video connector 5 connected to a video system center (not shown).
  • the operation unit 3 and the light guide connector 4 are connected via the flexible cable 6, and the light guide connector 4 and the video connector 5 are connected via the communication cable 7.
  • a distal end portion 11 mainly formed of a hard member such as stainless steel or hard resin, a curved portion 12, and a rigid tube 13 mainly made of stainless steel or a metal tube such as stainless steel are continuously provided in order from the distal end.
  • the insertion portion 2 is a portion to be inserted into the body, and various cables for communication and driving, a light guide (not shown) for transmitting illumination light, and the like are incorporated inside.
  • the operation unit 3 is provided with angle levers 14 and 15 for remotely operating the bending unit 12, a light source device, and various switches 16 for operating the video system center and the like.
  • the angle levers 14 and 15 are bending operation means capable of operating the bending portion 12 of the insertion portion 2 in four directions, up, down, left, and right.
  • the endoscope 1 of the present embodiment is a rigid endoscope apparatus in which most of the insertion portion 2 other than the bending portion 12 is rigid.
  • the endoscope 1 may be a flexible endoscope apparatus in which the insertion portion 2 is soft.
  • a stereoscopic imaging device (hereinafter abbreviated as an imaging device) 30 disposed at the distal end portion 11 of the insertion portion 2 will be described based on FIGS. 2 and 3.
  • the imaging device 30 is disposed in the distal end portion 11, and a composite cable 31 in which various cables for communication and driving are bundled is extended rearward.
  • the composite cable 31 is inserted and disposed in the insertion portion 2, and is electrically connected to the video connector 5 from the operation portion 3 via the flexible cable 6 and the communication cable 7.
  • the imaging device 30 is provided with a plurality of objective optical systems that constitute a binocular lens for acquiring a stereoscopic image.
  • the imaging device 30 is provided with a moving lens unit 32 as a stereoscopic optical unit having a moving frame 35 holding the two moving lenses 33 and 34 among the plurality of objective optical systems.
  • the moving lenses 33 and 34 held by the moving frame are not limited to two.
  • the imaging device 30 is provided with two imaging elements 21 and 22 on which the light of the optical axes O1 and O2 collected by the plurality of objective optical systems is incident. It has a circuit board (not shown) to which elements 21 and 22 are electrically connected.
  • the imaging device is a very small electronic component, and a plurality of elements that output an electrical signal according to incident light at a predetermined timing are arranged in a planar light receiving unit, and, for example, in general A format called a CCD (charge coupled device), a CMOS (complementary metal oxide semiconductor) sensor or the like, or other various formats are applied.
  • a CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • an imaging signal photoelectrically converted by the two imaging elements 21 and 22 is generated and output as a video signal by the circuit board. That is, in the present embodiment, an optical image (an endoscopic view image) captured by the two imaging elements 21 and 22 is transmitted to the video connector 5 (see FIG. 1) as a video signal.
  • the imaging device 30 can also make an imaging element into one by light-receiving two lights condensed with the several objective optical system by a big imaging element, dividing
  • the endoscope apparatus 1 of this Embodiment is what is called 3D endoscope which can make the image of a subject into a stereo image, Since the principle etc. which produce the stereo image are known, I omit explanation.
  • the movable lens unit 32 is disposed movably in the direction along the optical axes O1 and O2 of the two movable lenses 33 and 34 (direction FB in the figure) There is.
  • the moving lens unit 32 holds the two moving lenses 33 and 34 in parallel, in which the moving frame 35 is an objective optical system.
  • the moving frame 35 is disposed inside a fixed frame (not shown) so as to be able to move forward and backward.
  • a total of four permanent magnets 38a, 38b, 39a, 39b are arranged in a predetermined magnetization direction in the separating direction.
  • coils 23, 24 are disposed to face the permanent magnets 38a, 38b, 39a, 39b.
  • Each of the coils 23 and 24 is fixed to a fixed frame (not shown) by an adhesive or the like, is electrically connected to the electric cable in the composite cable 31, and the direction of the generated electric field is switched. Switch.
  • the moving frame 35 of the moving lens unit 32 is provided with a rectilinear guide in the advancing and retracting direction to move along the optical axes O1 and O2 in a fixed frame (not shown) by a guide or the like not shown.
  • the voice coil is formed by the permanent magnets 38a, 38b, 39a, 39b fixed to the moving frame 35, and the coils 23, 24 switching the attraction and repulsion to the permanent magnets 38a, 38b, 39a, 39b.
  • a motor hereinafter, abbreviated as VCM
  • VCM motor
  • an actuator 10 as a drive unit for advancing and retracting the moving lens unit 32 is configured.
  • the configuration of the actuator 10 using the VCM for moving the moving frame 35 forward and backward by the two coils 23 and 24 is illustrated, but the present invention is not limited to this.
  • a permanent magnet that is paired with the coil may be provided only on one side of the moving frame 35.
  • the actuator 10 for driving the moving frame 35 back and forth is not limited to the VCM, and may be a driving unit such as a stepping motor or an SMA wire that expands and contracts by electric heating.
  • the operation lever 3 may be provided in the operation unit 3 (see FIG. 1) to drive the movable frame 35 forward and backward by pulling and loosening the wire.
  • the moving lens unit 32 of the present embodiment provided in the imaging device 30 will be described in detail below based on FIG.
  • permanent magnets 38a, 38b, 39a, 39b are provided on a moving frame 35 provided on upper and lower surfaces as viewed in the plane of the drawing, and It has two moving lenses 33 and 34 as a pair of left and right held so as to be juxtaposed.
  • the moving frame 35 is formed to be laterally long in cross-sectional shape and arc-shaped on both sides, and is formed of a nonmagnetic member such as hard resin or nonmagnetic metal or a magnetic member.
  • the moving frame 35 has two arm portions 41 and 42 extending forward from both upper sides.
  • the two arms 41 and 42 are provided with first pins 43 and 44 arranged to project upward.
  • the two moving lenses 33, 34 held by the moving frame 35 are juxtaposed in the left-right direction as viewed in the plane of the drawing, and here, the cross-sectional shape is horizontally long and both side portions are formed in an arc. .
  • the fixing portion 51 as a first light shielding mask formed in a plate shape is disposed opposite to the tip surface of the moving frame 35.
  • the lower portion of the fixing portion 51 is formed in a stepped shape, and is fixed to a fixing frame (not shown).
  • the fixed portion 51 has openings 52 and 53 which are two windows for exposing a part of the movable lenses 33 and 34, two first bearings 54 juxtaposed to the lower side of the plate surface, and an upper surface A second bearing 55 juxtaposed inside the two arms 41 and 42 of the moving frame 35 is formed.
  • the two openings 52 and 53 have an elongated hole shape in the left-right direction in which both side portions are formed in an arc shape.
  • two swinging wings 61 and 62 which are a pair of narrowing members, turn around pivot shafts 63 and 64 provided at the lower end. It is arranged freely.
  • the pivot shafts 63 and 64 are attached to the first bearing 54 of the fixed portion 51, respectively.
  • the two diaphragms 61 and 62 are formed with openings 65 and 66 which are perfect circular diaphragm holes, and the shape is set such that the overlapping portion does not enter the other openings 65 and 66 at the time of close rotation.
  • second pins 67 and 68 are provided at upper ends of the two diaphragms 61 and 62.
  • the two second pins 67 and 68 are engaged with link portions 71 and 72 which constitute an interlocking drive mechanism provided on the left and right of the upper surface side of the fixed portion 51.
  • the two link portions 71 and 72 are pivotable around pivot shafts 73 and 74 attached to the second bearings 55 disposed inside the two arm portions 41 and 42 of the movable frame 35. Are located in
  • the two link portions 71 and 72 are substantially L-shaped, and pivoting shafts 73 and 74 are provided at bent portions.
  • the first long holes 75 and 76 in which the first pins 43 and 44 of the moving frame 35 are respectively engaged with the free ends of the two link portions 71 and 72, and the second ones of the diaphragms 61 and 62.
  • the second long holes 77 and 78 are formed in which the pins 67 and 68 of the second embodiment are inserted.
  • the moving lens unit 32 is mounted on the object side so that a light shielding plate 81 as a second light shielding mask faces the two diaphragm blades 61 and 62, as shown in FIGS.
  • the light shielding plate 81 is formed with openings 82 and 83 in the left-right direction in which both side portions exposing the openings 65 and 66 of the diaphragm wings 61 and 62 are formed in an arc shape.
  • the light shielding plate 81 is fixed to the fixing portion 51 by a fixing member (not shown) such as a screw provided with a spacer so as not to inhibit the rotation of the diaphragm wings 61 and 62.
  • the two link portions 71 and 72 pivot By pivoting around 63, 64, the free ends provided with the second elongated holes 77, 78 move toward the center side where they approach each other (the state shown in FIG. 11).
  • the first pins 43 and 44 of the moving frame 35 engaged in the first long holes 75 and 76 also move forward on the object side.
  • the two link portions 71 and 72 are interlocked with the movement of the moving frame 35 as the free ends of the first long holes 75 and 76 formed in the first pins 43 and 44 are pushed forward. To rotate.
  • the free end provided with the second long holes 77 and 78 of the two link portions 71 and 72 has the second pins 67 and 68 of the incorporated diaphragm wings 61 and 62 at the center side. Move inward in the left and right direction. As a result, the two diaphragms 61 and 62 are pivoted around the pivots 63 and 64 and move inward in the left-right direction, which is the center side in the direction in which the two approach each other (shown in FIGS. 8 and 10). State).
  • the openings 65 and 66 of the two fluctuating wings 61 and 62 are moved in the approaching direction, the distance between them narrows, and the distance between the two chief rays having the optical axes O1 and O2 narrows. That is, the openings 65 and 66 of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation distance L1 of the light flux centers (O1 and O2) entering becomes short (see FIG. 11).
  • the first pins 43 and 44 of the moving frame 35 engaged in the first long holes 75 and 76 also move backward on the image side.
  • the two link portions 71 and 72 are interlocked with the movement of the moving frame 35 by pulling the free ends of the first pins 43 and 44 in which the first long holes 75 and 76 are formed to the rear side. To rotate.
  • the openings 65 and 66 of the two diaphragms 61 and 62 are moved in the direction away from each other, the distance between them is increased, and the distance between chief rays having the optical axes O1 and O2 is increased. That is, the two diaphragms 61 and 62 move away from each other in the direction orthogonal to the optical axes O1 and O2, so that the centers of the openings 65 and 66 are separated and enter the light flux center (O1 and O2).
  • the predetermined separation distance L2 of O2) becomes long (see FIG. 13).
  • the position of the movable frame can be detected and controlled by a position sensor (not shown) and its peripheral circuit so that an optimum focus and three-dimensional effect can be obtained even at any position other than the stopper position.
  • the positions of the openings 65 and 66 are deviated along the optical axes O1 and O2 due to their respective thicknesses. Therefore, as shown in FIG. 15, in each of the diaphragms 61 and 62, the step portions 61a and 62a are formed in the overlapping portions, and the surfaces thereof are positioned substantially in the same plane. As a result, the amounts of the two lights incident on the moving lenses 33 and 34 after passing through the openings 65 and 66 of the diaphragms 61 and 62 become substantially the same.
  • the endoscope 1 has a configuration in which the moving lens 33, 34 of the moving lens unit 32 is used as a focusing lens, and the two diaphragms 61, 62 are driven synchronously with the movement of the moving frame 35 So that the predetermined separation distance L1 between the openings 65 and 66 of the two fluctuating wings 61 and 62 becomes short during near point observation in focus, and in the case of far point observation in which the far point is in focus
  • the two diaphragms 61 and 62 in synchronization with the movement of the moving frame 35 so that the predetermined separation distance L2 of the openings 65 and 66 becomes long, the three-dimensional effect and the focus of the 3D image can be obtained. By adjusting at the same time, it is possible to obtain a good 3D image stereoscopic effect.
  • the endoscope 1 uses the movable lenses 33 and 34 of the movable lens unit 32 as zoom lenses, and the predetermined separation distance L1 of the openings 65 and 66 of the two diaphragms 61 and 62 is short during near point observation.
  • the predetermined separation distance L2 of the openings 65 and 66 becomes long in the far-point observation. The three-dimensional effect of a good 3D image can be obtained.
  • the two diaphragms 61 and 62 have a link mechanism in conjunction with the forward and backward movement of the moving frame 35 of the moving lens unit 32 incorporated in the imaging device 30.
  • predetermined separation distances L1 and L2 of two light flux centers (optical axes O1 and O2) which become principal rays for stereoscopic vision are variable.
  • the endoscope 1 mechanically sets the amount of driving the diaphragms 61 and 62 of the movable lens unit 32, the number of driving sources, position sensors, etc. can be reduced, and image processing can be performed. There is no need to construct a complex system such as driving control of a driving source based on the above.
  • the moving lens unit 32 can drive the moving frame 35 and the diaphragms 61 and 62 with one actuator 10, so that the unit of the imaging device 30 can be miniaturized. Therefore, by preventing the enlargement of the imaging device 30 incorporated in the distal end portion 11, the enlargement of the distal end portion 11 is also prevented, and the configuration is also applicable to the endoscope 1 having the insertion portion 2 with a reduced diameter.
  • the stereoscopic endoscope 1 is provided with the stereoscopic imaging device 30 incorporating the moving lens unit 32, which is a stereoscopic optical unit that can be miniaturized with a simple configuration and can achieve optimal stereoscopic vision. Can.
  • FIG. 16 is a front view showing a moving lens unit in a state in which two diaphragms of the first modification are in proximity to each other
  • FIG. 17 is a view of the moving lens unit in a state in which two diaphragms of the first modification are in proximity to each other
  • FIG. 18 is a front view showing the moving lens unit in a state in which the two diaphragms of the first modification are separated from each other.
  • FIG. 19 is a movable lens unit in a state in which the two diaphragms of the first modification are separated from each other. Is a top view showing FIG.
  • the moving lens unit 32 of this modification is configured such that the moving frame 35 is provided on the front side of the two diaphragm wings 61 and 62, and the moving frame 35 By moving rearward (in the direction of arrow B) on the image side, the openings 65 and 66 of the two diaphragms 61 and 62 may be moved in the direction in which they approach.
  • the distance between the two diaphragms 61 and 62 narrows, and the centers of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation of the light flux centers (O1 and O2) enters
  • the distance L1 becomes short (see FIG. 17).
  • the moving lens unit 32 moves 2 forward by moving the moving frame 35 to the object side (arrow F direction) opposite to the object side.
  • the two diaphragms 61 and 62 move outward in the direction in which they move away from each other.
  • the openings 65 and 66 of the two diaphragms 61 and 62 are spaced apart from each other, and the centers of the openings 65 and 66 move away from each other in the direction orthogonal to the optical axes O1 and O2.
  • the predetermined separation distance L2 of the light flux centers (O1 and O2) which are separated from each other at the center thereof is increased (see FIG. 18).
  • the objective optical system is set such that when the moving frame 35 moves backward, the near point is in focus and when the moving frame 35 moves forward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
  • FIG. 20 is a front view showing a moving lens unit in a state in which two diaphragms of the second modification are in proximity to each other
  • FIG. 21 is a diagram showing the moving lens unit in a state in which two diaphragms of the second modification are in proximity to each other
  • FIG. 22 is a front view showing the moving lens unit in a state in which the two diaphragms of the second modification are separated from each other.
  • FIG. 23 is a movable lens unit in a state in which the two diaphragms of the first modification are separated from each other. Is a top view showing FIG.
  • the moving lens unit 32 has a configuration in which the second bearing 55 is provided outside the two arm portions 41 and 42 of the moving frame 35 in the fixed portion 51.
  • the openings 65 and 66 of the two fluctuating wings 61 and 62 move in the direction in which they approach.
  • the distance between the two diaphragms 61 and 62 narrows, and the centers of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation of the light flux centers (O1 and O2) enters
  • the distance L1 becomes short (see FIG. 21).
  • the moving frame 35 moves forward (in the direction of arrow F) on the object side to move the two diaphragms 61 and 62. It becomes the structure which moves to the outward side which is a direction which mutually separates.
  • the openings 65 and 66 of the two diaphragms 61 and 62 are spaced apart from each other, and the centers of the openings 65 and 66 move away from each other in the direction orthogonal to the optical axes O1 and O2.
  • the predetermined separation distance L2 of the light flux centers (O1, O2) where the centers are apart and light is incident see FIG. 23).
  • the objective optical system is set such that when the moving frame 35 moves backward, the near point is in focus and when the moving frame 35 moves forward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
  • FIG. 24 is a front view showing a moving lens unit in a state in which two diaphragms of the third modification are in proximity to each other
  • FIG. 25 is a front view of the moving lens unit in a state in which two diaphragms of the third modification are in proximity to each other
  • FIG. 26 is a front view showing the moving lens unit in a state in which the two diaphragms of the third modification are separated from each other.
  • FIG. 27 is a movable lens unit in the state in which two diaphragms of the third modification are separated from each other. Is a top view showing FIG.
  • the moving lens unit 32 As shown in FIGS. 25 and 26, the moving lens unit 32 according to the present modification is provided with the moving frame 35 on the front side of the two diaphragm wings 61 and 62, and the two arms of the moving frame 35 in the fixed portion 51.
  • the moving frame 35 moves forward (in the direction of the arrow F) on the object side at the time of near point observation.
  • the openings 65 and 66 of 62 move in the approaching direction.
  • the distance between the two diaphragms 61 and 62 narrows, and the centers of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation of the light flux centers (O1 and O2) enters
  • the distance L1 becomes short (see FIG. 26).
  • the moving frame 35 moves rearward (in the direction of arrow B) on the image side to move the two diaphragms 61 and 62. It becomes the structure which moves to the outward side which is a direction which mutually separates.
  • the openings 65 and 66 of the two diaphragms 61 and 62 are spaced apart from each other, and the centers of the openings 65 and 66 move away from each other in the direction orthogonal to the optical axes O1 and O2.
  • the predetermined separation distance L2 of the light flux centers (O1 and O2) which are separated from each other at the center thereof is increased (see FIG. 28).
  • the objective optical system is set such that when the moving frame 35 moves forward, the near point is in focus and when the moving frame 35 moves backward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
  • FIG. 29 is a front view showing a moving lens unit in a state in which two diaphragms of the fourth modification are in proximity to each other
  • FIG. 30 is a view of the moving lens unit in a state in which two diaphragms in the fourth modification are in proximity to each other
  • FIG. 31 is a front view showing a moving lens unit in a state in which two diaphragms of the fourth modification are separated
  • FIG. 32 is a mobile lens unit in a state in which two diaphragms of the fourth modification are separated. Is a top view showing FIG.
  • the two diaphragm plates 56 and 57 which are a pair of diaphragm members, slide in the recess 26 formed on the object-side surface of the fixed portion 25. Is configured to
  • the two diaphragms 56 and 57 are formed with openings 58 and 59 which are perfect circular diaphragm holes.
  • Cam pins 84 and 85 are provided above and below the two diaphragms 56 and 57, respectively.
  • These two diaphragm plates 56, 57 are arranged side by side in the recess 26 of the fixed portion 25 and are formed in the fixed portion 25 in a rail groove (not shown) in which four claws 56a, 57a are formed to project vertically and horizontally. It is taken care of. As a result, sliding movement of the two diaphragms 56 and 57 in the direction orthogonal to the optical axes O1 and O2 is guided, and the two diaphragms 56 and 57 are not separated from the fixed portion 25.
  • the moving frame 35 is provided with plate-like portions 46 extended on the front side, which is the object side, vertically.
  • the plate-like portions 46 are formed with cam grooves 47 and 48 which are interlocking drive mechanisms in which the cam pins 84 and 85 of the two diaphragm plates 56 and 57 are engaged.
  • the cam grooves 47 and 48 are formed obliquely in the central direction of the moving frame 35 from the front to the rear, and guide and move the cam pins 84 and 85 in accordance with the forward and backward movement of the moving frame 35.
  • the moving lens unit 32 is also engaged with the cam grooves 47 and 48 when the moving frame 35 moves forward (in the direction of arrow F in FIG. 30) to the object side by the actuator 10 of the VCM. , 85 are reciprocated in the direction close to each other. As a result, the two diaphragms 56 and 57 move inward in the left-right direction, which is the center side in the direction in which they approach each other, by the cam mechanism.
  • the openings 58 and 59 of the two diaphragms 56 and 57 are moved in the approaching direction, the distance between them narrows, and the distance between the two chief rays having the optical axes O1 and O2 narrows. That is, the openings 58 and 59 of the two diaphragms 56 and 57 move in the direction orthogonal to the optical axes O1 and O2, respectively, and the predetermined separation distance of the light flux centers (O1 and O2) entering is It becomes short.
  • the moving lens unit 32 moves the cam groove 47, 48 when the moving frame 35 moves to the rear side (direction of arrow B in FIG. 32) on the image side.
  • the cam pins 84 and 85 engaged with each other are drawn out in directions away from each other.
  • the two diaphragms 56 and 57 move outward in the left-right direction, which is the direction in which the two separate from each other.
  • the openings 58 and 59 of the two diaphragms 56 and 57 are moved in the direction away from each other, the distance between them is increased, and the distance between chief rays having the optical axes O1 and O2 is increased. That is, when the two diaphragms 56 and 57 move away from each other in the direction orthogonal to the optical axes O1 and O2, respectively, the centers of the apertures 58 and 59 move away from each other and enter the light beam centers (O1 and O2).
  • the predetermined separation distance of O2) becomes long.
  • FIG. 33 is a front view showing a moving lens unit in a state in which two diaphragms of the fifth modification are in proximity to each other
  • FIG. 34 is a view of the moving lens unit in a state in which two diaphragms of the fifth modification are in proximity to each other
  • FIG. 35 is a front view showing a moving lens unit in a state in which two diaphragms of the fifth modification are separated
  • FIG. 36 is a mobile lens unit in a state in which two diaphragms of the fifth modification are separated Is a top view showing FIG.
  • the moving lens unit 32 of this modification is a link mechanism using a mechanism in which two diaphragms 56 and 57 slide as a link mechanism using two link portions 71 and 72, etc.
  • the moving frame 35 moves forward (in the direction of the arrow F) on the object side, whereby the openings 58 and 59 of the two diaphragms 56 and 57 move in the direction in which they approach.
  • the distance between the two diaphragms 56 and 57 decreases, and the centers of the diaphragms 56 and 57 move close to each other in the direction orthogonal to the optical axes O1 and O2.
  • the distance L1 becomes short (see FIG. 34).
  • the two diaphragms 56 and 57 are moved by moving the moving frame 35 rearward (in the arrow B direction) on the image side. It becomes the structure which moves to the outward side which is a direction which mutually separates.
  • the openings 58 and 59 of the two diaphragms 56 and 57 are separated from each other, and the centers of the openings 58 and 59 move away from each other in the direction orthogonal to the optical axes O1 and O2.
  • the predetermined separation distance L2 of the light flux centers (O1 and O2) which are separated from each other and enters the light becomes long (see FIG. 36).
  • the objective optical system is set such that when the moving frame 35 moves forward, the near point is in focus and when the moving frame 35 moves backward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
  • the rigid endoscope is illustrated in the present embodiment, the present invention is not limited to this, and it is a technology which can be applied to a flexible endoscope and an industrial endoscope.
  • the configuration requirements can be eliminated if the problems described can be solved and the described advantages can be obtained.
  • the configuration can be extracted as the invention.

Abstract

A stereoscopic optical unit 32 comprising: a moving frame 32 having two objective optical systems 33, 34 arranged side-by-side therein; a drive unit 10 that drives the moving frame 32 forward and backwards in a direction along the optical axes O1, O2 of the two objective optical systems 33, 34; a pair of aperture members 61, 62 movably provided on the object side of the moving frame 32 and having openings 65, 66; and interlocking device mechanisms 71, 72 that interlock the pair of aperture members 61, 62 in accordance with the forward/back movement of the moving frame 32 by the drive unit 10 and move the openings 65, 66 in a direction orthogonal to the optical axes O1, O2 of the two objective optical systems 33, 34.

Description

立体視光学ユニット、立体視撮像装置および立体視内視鏡Stereoscopic optical unit, stereoscopic imaging apparatus and stereoscopic endoscope
 本発明は、移動レンズ枠を備えた立体視光学ユニットおよびこの立体視光学ユニットを備えた立体視撮像装置および立体視内視鏡に関する。 The present invention relates to a stereoscopic optical unit having a movable lens frame, a stereoscopic imaging device having the stereoscopic optical unit and a stereoscopic endoscope.
 近年、細長の挿入部を体腔内などに挿入して、直接目視できない被検部位を観察することのできる内視鏡装置が広く用いられている。 2. Description of the Related Art In recent years, an endoscope apparatus capable of observing a test site which can not be directly visually observed by inserting an elongated insertion portion into a body cavity or the like has been widely used.
 通常の内視鏡装置では、被検部位を遠近感のない平面としてしか見ることができないため、例えば体腔壁表面の微細な凹凸等を観察することが困難であり、内視鏡観察による診断、各種処置などを容易にできない不具合があった。 In a typical endoscope apparatus, it is difficult to observe, for example, fine irregularities on the surface of a body cavity wall, because the test site can be viewed only as a flat surface without perspective. Diagnosis by endoscopic observation, There was a problem that various measures could not be made easy.
 そこで、複数の観察光学系を並列に設けて、これら複数の光学系の撮影光軸がなす輻輳角を設定して視差を持つように観察光学系を配置し、観察部位を立体視することができるようにした立体視内視鏡装置が知られている。 Therefore, a plurality of observation optical systems may be provided in parallel, and the observation optical system may be disposed so as to have parallax by setting convergence angles formed by the imaging optical axes of the plurality of optical systems, and stereoscopically view the observation region There is known a stereoscopic endoscope apparatus which can be used.
 このような立体視内視鏡においては、例えば、日本国特開2012-113281号報に開示されるような立体撮像光学系を有するカメラが内蔵されている。 In such a stereoscopic endoscope, for example, a camera having a stereoscopic imaging optical system as disclosed in Japanese Patent Application Laid-Open No. 2012-113281 is incorporated.
 ところで、立体画像の立体感については、被写体との距離により最適な立体感が異なり、被写体が近い場合は視差を小さく、遠い場合は視差を大きくすることが望ましい。 By the way, with regard to the three-dimensional effect of a three-dimensional image, it is desirable that the optimal three-dimensional effect differs depending on the distance to the subject, and the parallax is small when the object is close and large when the object is far.
 しかし、視差を小さくしたり、大きくしたりするために、左右の光学系全体の間隔を動かす構成では、撮像装置が大型化してしまう。 However, in the configuration in which the distance between the entire left and right optical systems is moved in order to reduce or increase the parallax, the size of the imaging device increases.
 そのため、従来の立体撮像光学系は、カメラ用に最適なステレオベース(左右の光学系の主光線間隔)が可変の2眼式光学系を構成し、この2眼式光学系を搭載した撮像装置では撮影条件に応じてステレオベースを変えることができるため、快適な立体視が可能な立体画像を容易に取得できるようにしている。 Therefore, the conventional stereoscopic imaging optical system constitutes a binocular optical system having a variable stereo base (distance between principal rays of right and left optical systems) optimum for a camera, and an imaging apparatus equipped with this binocular optical system Then, since the stereo base can be changed according to the shooting conditions, it is possible to easily acquire a stereoscopic image capable of comfortable stereoscopic vision.
 具体的には、平行な2つの光学系を有し、それぞれの光学系に配置された絞りの位置を駆動する駆動手段を備えている。これらの絞りを偏心させることでステレオベースを調整して、立体感を調整するようにしている。 Specifically, two parallel optical systems are provided, and drive means is provided to drive the position of the stop disposed in each optical system. The stereo base is adjusted by decentering these diaphragms to adjust the three-dimensional effect.
 このように従来の立体撮像光学系は、絞りを偏心することで、2つの光学系の光軸間隔よりもステレオベースを狭くしたり、広くしたりして、快適な立体視が可能な立体画像を得られるようにしている。 As described above, according to the conventional stereoscopic imaging optical system, by decentering the stop, the stereoscopic base can be made narrower or wider than the optical axis interval of the two optical systems, and a stereoscopic image capable of comfortable stereoscopic vision. I am trying to get
 また、従来のカメラは、左右の撮像素子から得られる画像より視差情報を算出し、最適なステレオベースとなるように絞りを駆動する画像によるフィードバックを行っている。 Further, the conventional camera calculates parallax information from images obtained from the left and right imaging elements, and performs feedback by an image driving an aperture so as to be an optimal stereo base.
 しかしながら、従来の立体撮像光学系では、絞りを駆動させる量を演算する際、撮像素子で取得した左右の光学系の画像を処理して求めており、システムが複雑化するという問題がある。 However, in the conventional stereoscopic imaging optical system, when calculating the amount for driving the diaphragm, the image of the left and right optical systems acquired by the imaging device is obtained by processing, and there is a problem that the system becomes complicated.
 さらに、従来の立体撮像光学系は、絞りとフォーカスレンズを個別に動かす必要があるため、撮像装置のユニットが大型化する。即ち、従来の技術では、十分な視差をもつ立体感調整を達成できるが、絞りおよびフォーカス各々に駆動機構をもつため小型化できず、挿入部の細径および小型化した立体視内視鏡には不向きであるという課題があった。 Furthermore, in the conventional stereoscopic imaging optical system, since it is necessary to move the diaphragm and the focus lens separately, the unit of the imaging apparatus becomes large. That is, in the prior art, although stereoscopic effect adjustment with sufficient parallax can be achieved, since the diaphragm and the focus each have a drive mechanism, the size can not be reduced, and the diameter and size of the insertion portion can be reduced. Had the problem of being unsuitable.
 そこで、本発明は、上記事情に鑑みてなされたものであり、簡単な構成で小型化でき、最適な立体視が可能な立体視光学ユニット、立体視撮像装置および立体視内視鏡を提供することを目的としている。 Therefore, the present invention has been made in view of the above circumstances, and provides a stereoscopic optical unit, a stereoscopic image pickup apparatus, and a stereoscopic endoscope which can be miniaturized with a simple configuration and can achieve optimal stereoscopic vision. The purpose is that.
 本発明の一態様における立体視光学ユニットは、2つの対物光学系が並設された移動枠と、前記移動枠を前記2つの対物光学系の光軸に沿った方向に進退駆動する駆動部と、前記移動枠の物体側、あるいは撮像側で可動自在に設けられ、開口を有する一対の絞部材と、前記駆動部による前記移動枠の進退移動に応じて前記一対の絞部材を連動させ、前記開口を前記2つの対物光学系の光軸に対して直交する方向に移動させる連動駆動機構と、を具備する。 A stereoscopic optical unit according to one aspect of the present invention includes a moving frame in which two objective optical systems are juxtaposed, and a driving unit that drives the moving frame in a direction along the optical axis of the two objective optical systems. A pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening, and the pair of diaphragm members interlocked according to the advancing and retracting movement of the moving frame by the drive unit, And an interlocking drive mechanism for moving the aperture in a direction orthogonal to the optical axes of the two objective optical systems.
 本発明の一態様における立体視撮像装置は、2つの対物光学系が並設された移動枠と、前記移動枠を前記2つの対物光学系の光軸に沿った方向に進退駆動する駆動部と、前記移動枠の物体側、あるいは撮像側で可動自在に設けられ、開口を有する一対の絞部材と、前記駆動部による前記移動枠の進退移動に応じて前記一対の絞部材を連動させ、前記開口を前記2つの対物光学系の光軸に対して直交する方向に移動させる連動駆動機構と、を備えた立体視光学ユニットと、前記立体視光学ユニットの光を受光する撮像素子と、を具備する。 A stereoscopic imaging apparatus according to an aspect of the present invention includes a moving frame in which two objective optical systems are juxtaposed, and a driving unit that drives the moving frame in a direction along the optical axis of the two objective optical systems. A pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening, and the pair of diaphragm members interlocked according to the advancing and retracting movement of the moving frame by the drive unit, A stereoscopic drive unit having an interlock drive mechanism for moving the aperture in a direction orthogonal to the optical axes of the two objective optical systems, and an imaging device for receiving light of the stereoscopic drive unit Do.
 本発明の一態様における立体視内視鏡は、2つの対物光学系が並設された移動枠と、前記移動枠を前記2つの対物光学系の光軸に沿った方向に進退駆動する駆動部と、前記移動枠の物体側、あるいは撮像側で可動自在に設けられ、開口を有する一対の絞部材と、前記駆動部による前記移動枠の進退移動に応じて前記一対の絞部材を連動させ、前記開口を前記2つの対物光学系の光軸に対して直交する方向に移動させる連動駆動機構と、を備えた立体視光学ユニットと、前記立体視光学ユニットの光を受光する撮像素子と、を具備する立体視撮像装置を備える。 A stereoscopic endoscope according to one aspect of the present invention includes a moving frame in which two objective optical systems are juxtaposed, and a driving unit that drives the moving frame in a direction along an optical axis of the two objective optical systems. And a pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening, and interlocking the pair of diaphragm members according to forward and backward movement of the moving frame by the drive unit, A stereoscopic optical unit having an interlocking drive mechanism for moving the aperture in a direction orthogonal to the optical axes of the two objective optical systems, and an image pickup device for receiving the light of the stereoscopic optical unit A stereoscopic image pickup apparatus is provided.
内視鏡の構成を示す斜視図A perspective view showing the configuration of an endoscope 挿入部の先端部に設けられる立体視撮像装置を示す模式図A schematic view showing a stereoscopic imaging device provided at the tip of the insertion portion アクチュエータによって駆動する移動レンズユニットを示す模式図A schematic view showing a moving lens unit driven by an actuator 移動枠を示す正面図Front view showing the moving frame 移動枠を示す上面図Top view showing the moving frame 固定部が設けられた状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state where a fixing portion is provided 固定部が設けられた状態の移動レンズユニットを示す上面図Top view showing the movable lens unit in a state in which the fixing portion is provided 2つの絞羽が設けられた状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms are provided 2つの絞羽が設けられた状態の移動レンズユニットを示す上面図Top view showing the moving lens unit with two stops 遮光板が設けられ、2つの絞羽が近接した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in which a light shielding plate is provided and two diaphragms are in close proximity 遮光板が設けられ、2つの絞羽が近接した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which a shading plate is provided and two diaphragms are in close proximity 遮光板が設けられ、2つの絞羽が離反した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in which a light shielding plate is provided and two diaphragm blades are separated 遮光板が設けられ、2つの絞羽が離反した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which a light shielding plate is provided and two diaphragms are separated 2つの絞羽が離反した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two squeezing wings are separated 2つの絞羽が重なった状態を示す断面図Sectional view showing a state in which two squeegees overlap 第1の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the first modification are close to each other 第1の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which two diaphragms of the first modification are close to each other 第1の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two frangible wings of the first modification are separated 第1の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図Top view showing the movable lens unit in a state in which the two diaphragms of the first modification are separated 第2の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the second modification are close to each other 第2の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which two diaphragms of the second modification are close to each other 第2の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two frangible wings of the second modification are separated 第1の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図Top view showing the movable lens unit in a state in which the two diaphragms of the first modification are separated 第3の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the third modification are close to each other 第3の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which two diaphragms of the third modification are close to each other 第3の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the third modification are separated 第3の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which the two diaphragms of the third modification are separated 第4の変形例の2つの絞板が近接した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the fourth modification are close to each other 第4の変形例の2つの絞板が近接した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which two diaphragms of the fourth modification are close to each other 第4の変形例の2つの絞板が離間した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the fourth modification are separated 第4の変形例の2つの絞板が離反した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which the two diaphragms of the fourth modification are separated 第5の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the fifth modification are close to each other 第5の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which two diaphragms of the fifth modification are close to each other 第5の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図Front view showing a moving lens unit in a state in which two diaphragms of the fifth modification are separated 第5の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図Top view showing the moving lens unit in a state in which the two diaphragms of the fifth modification are separated
 以下、図面を参照して本発明の実施の形態を説明する。 
 図1は、内視鏡の構成を示す斜視図、図2は挿入部の先端部に設けられる立体視撮像装置を示す模式図、図3はアクチュエータによって駆動する移動レンズユニットを示す模式図、図4は移動枠を示す正面図、図5は移動枠を示す上面図、図6は固定部が設けられた状態の移動レンズユニットを示す正面図、図7は固定部が設けられた状態の移動レンズユニットを示す上面図、図8は2つの絞羽が設けられた状態の移動レンズユニットを示す正面図、図9は2つの絞羽が設けられた状態の移動レンズユニットを示す上面図、図10は遮光板が設けられ、2つの絞羽が近接した状態の移動レンズユニットを示す正面図、図11は遮光板が設けられ、2つの絞羽が近接した状態の移動レンズユニットを示す上面図、図12は遮光板が設けられ、2つの絞羽が離反した状態の移動レンズユニットを示す正面図、図13は遮光板が設けられ、2つの絞羽が離反した状態の移動レンズユニットを示す上面図、図14は2つの絞羽が離反した状態の移動レンズユニットを示す正面図、図15は2つの絞羽が重なった状態を示す断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing the configuration of an endoscope, FIG. 2 is a schematic view showing a stereoscopic imaging device provided at the distal end of the insertion portion, and FIG. 3 is a schematic view showing a moving lens unit driven by an actuator. 4 is a front view showing the moving frame, FIG. 5 is a top view showing the moving frame, FIG. 6 is a front view showing the moving lens unit in the state in which the fixing portion is provided, and FIG. 7 is a movement in the state in which the fixing portion is provided 8 is a front view showing a moving lens unit in a state in which two diaphragms are provided, and FIG. 9 is a top view in which a moving lens unit in a state in which two diaphragms are provided. 10 is a front view showing a moving lens unit in which a light shielding plate is provided and two diaphragms are in close proximity, and FIG. 11 is a top view showing a moving lens unit in which a light shielding plate is provided and two diaphragms are in proximity , FIG. 12 is provided with a light shielding plate, 2 FIG. 13 is a front view showing the moving lens unit in a state where the squeezing wings are separated, FIG. 13 is a top view showing the moving lens unit in a state in which two light blocking plates are separated and the two squeezing wings are separated, FIG. 15 is a front view showing the moving lens unit in a separated state, and FIG. 15 is a cross-sectional view showing a state in which two diaphragms overlap.
 なお、以下の説明に用いる各図において、各構成要素を図面上で認識可能な程度の大きさとするため、構成要素毎に縮尺を異ならせてあるものもある。また、本発明は、これらの図に記載された構成要素の数量、構成要素の形状、構成要素の大きさの比率、及び各構成要素の相対的な位置関係のみに限定されるものではない。 In each of the drawings used in the following description, in order to make each component have a size that can be recognized in the drawings, there is a case where the scale is different for each component. Further, the present invention is not limited only to the number of components described in the drawings, the shapes of the components, the ratio of the sizes of the components, and the relative positional relationship between the components.
 図1に示すように、立体視内視鏡(以下、単に内視鏡という場合がある)1は、長尺な挿入部2と、この挿入部2の基端と連設された操作部3と、図示しない光源装置に接続するライトガイドコネクタ4と、図示しないビデオシステムセンターに接続するビデオコネクタ5と、を有して主に構成されている。 As shown in FIG. 1, a stereoscopic endoscope (hereinafter sometimes referred to simply as an endoscope) 1 has a long insertion portion 2 and an operation portion 3 connected to the proximal end of the insertion portion 2. And a light guide connector 4 connected to a light source device (not shown) and a video connector 5 connected to a video system center (not shown).
 なお、内視鏡1は、操作部3とライトガイドコネクタ4とが軟性ケーブル6を介して接続されており、ライトガイドコネクタ4とビデオコネクタ5とが通信ケーブル7を介して接続されている。 In the endoscope 1, the operation unit 3 and the light guide connector 4 are connected via the flexible cable 6, and the light guide connector 4 and the video connector 5 are connected via the communication cable 7.
 挿入部2には、主にステンレス、硬質樹脂などの硬性部材から形成された先端部11、湾曲部12、及び主にステンレスなど金属管の硬性管13が先端側から順に連設されている。この挿入部2は、体内に挿入する部分となっており、内部に通信、駆動用の各種ケーブル、及び照明光を伝送する図示しないライトガイドなどが組み込まれている。 In the insertion portion 2, a distal end portion 11 mainly formed of a hard member such as stainless steel or hard resin, a curved portion 12, and a rigid tube 13 mainly made of stainless steel or a metal tube such as stainless steel are continuously provided in order from the distal end. The insertion portion 2 is a portion to be inserted into the body, and various cables for communication and driving, a light guide (not shown) for transmitting illumination light, and the like are incorporated inside.
 操作部3には、湾曲部12を遠隔操作するアングルレバー14,15および光源装置、ビデオシステムセンターなどを操作するための各種スイッチ16が備えられている。アングルレバー14,15は、挿入部2の湾曲部12を上下左右の4方向に操作可能な湾曲操作手段である。なお、本実施の形態の内視鏡1は、湾曲部12以外の大部分の挿入部2が硬質となっている硬性内視鏡装置である。なお、内視鏡1は、挿入部2が軟性の軟性内視鏡装置としてもよい。 The operation unit 3 is provided with angle levers 14 and 15 for remotely operating the bending unit 12, a light source device, and various switches 16 for operating the video system center and the like. The angle levers 14 and 15 are bending operation means capable of operating the bending portion 12 of the insertion portion 2 in four directions, up, down, left, and right. The endoscope 1 of the present embodiment is a rigid endoscope apparatus in which most of the insertion portion 2 other than the bending portion 12 is rigid. The endoscope 1 may be a flexible endoscope apparatus in which the insertion portion 2 is soft.
 次に、図2および図3に基づいて、挿入部2の先端部11に配設された立体視撮像装置(以下、撮像装置と略記する)30について説明する。 
 図2に示すように、撮像装置30は、先端部11内に配設され、通信、駆動用の各種ケーブルが束ねられた複合ケーブル31が後方に延設されている。この複合ケーブル31は、挿入部2内に挿通配置され、操作部3から軟性ケーブル6および通信ケーブル7を介してビデオコネクタ5と電気的に接続されている。
Next, a stereoscopic imaging device (hereinafter abbreviated as an imaging device) 30 disposed at the distal end portion 11 of the insertion portion 2 will be described based on FIGS. 2 and 3.
As shown in FIG. 2, the imaging device 30 is disposed in the distal end portion 11, and a composite cable 31 in which various cables for communication and driving are bundled is extended rearward. The composite cable 31 is inserted and disposed in the insertion portion 2, and is electrically connected to the video connector 5 from the operation portion 3 via the flexible cable 6 and the communication cable 7.
 撮像装置30には、立体画像を取得するための2眼レンズを構成する複数の対物光学系が配設されている。そして、撮像装置30は、複数の対物光学系のうち、ここでは2つの移動レンズ33,34を保持する移動枠35を有する立体視光学ユニットとしての移動レンズユニット32が配設されている。なお、移動枠に保持される移動レンズ33,34は、2つに限定されることはない。 The imaging device 30 is provided with a plurality of objective optical systems that constitute a binocular lens for acquiring a stereoscopic image. The imaging device 30 is provided with a moving lens unit 32 as a stereoscopic optical unit having a moving frame 35 holding the two moving lenses 33 and 34 among the plurality of objective optical systems. The moving lenses 33 and 34 held by the moving frame are not limited to two.
 また、撮像装置30は、図3に示すように、複数の対物光学系によって集光された光軸O1,O2の光が入射する2つの撮像素子21,22が配設されており、これら撮像素子21,22が電気的に接続される図示しない回路基板を有している。 Further, as shown in FIG. 3, the imaging device 30 is provided with two imaging elements 21 and 22 on which the light of the optical axes O1 and O2 collected by the plurality of objective optical systems is incident. It has a circuit board (not shown) to which elements 21 and 22 are electrically connected.
 なお、撮像素子は、非常に小型な電子部品であり、入射される光に応じた電気信号を所定のタイミングで出力する複数の素子が面状の受光部に配列されたものであり、例えば一般にCCD(電荷結合素子)、CMOS(相補型金属酸化膜半導体)センサなどと称される形式、あるいはその他の各種の形式が適用されている。 Note that the imaging device is a very small electronic component, and a plurality of elements that output an electrical signal according to incident light at a predetermined timing are arranged in a planar light receiving unit, and, for example, in general A format called a CCD (charge coupled device), a CMOS (complementary metal oxide semiconductor) sensor or the like, or other various formats are applied.
 そして、2つの撮像素子21,22によって光電変換された撮像信号が回路基板によって映像信号に生成され出力される。即ち、本実施形態では、2つの撮像素子21,22により撮像された光学像(内視鏡像)が、映像信号としてビデオコネクタ5(図1参照)に伝送される。 Then, an imaging signal photoelectrically converted by the two imaging elements 21 and 22 is generated and output as a video signal by the circuit board. That is, in the present embodiment, an optical image (an endoscopic view image) captured by the two imaging elements 21 and 22 is transmitted to the video connector 5 (see FIG. 1) as a video signal.
 また撮像装置30は、複数の対物光学系によって集光された2つの光を大きな撮像素子で受光し、左右の画像に分割し処理することで撮像素子を1つとすることもできる。 Moreover, the imaging device 30 can also make an imaging element into one by light-receiving two lights condensed with the several objective optical system by a big imaging element, dividing | segmenting into an image on either side, and processing it.
 なお、本実施の形態の内視鏡装置1は、被検体の像を立体画像とすることができる所謂3D内視鏡であるが、その立体画像を生成する原理などは周知であるため、その説明を省略する。 In addition, although the endoscope apparatus 1 of this Embodiment is what is called 3D endoscope which can make the image of a subject into a stereo image, Since the principle etc. which produce the stereo image are known, I omit explanation.
 移動レンズユニット32は、撮像装置30の図示しない固定枠内において、2つの移動レンズ33,34の光軸O1,O2に沿った方向(図中F-B方向)に進退自在に配設されている。 In the fixed frame (not shown) of the imaging device 30, the movable lens unit 32 is disposed movably in the direction along the optical axes O1 and O2 of the two movable lenses 33 and 34 (direction FB in the figure) There is.
 移動レンズユニット32は、上記したように移動枠35が対物光学系である2つの移動レンズ33,34を並設して保持している。この移動枠35は、図示しない固定枠の内部に進退自在となるように配設されている。 As described above, the moving lens unit 32 holds the two moving lenses 33 and 34 in parallel, in which the moving frame 35 is an objective optical system. The moving frame 35 is disposed inside a fixed frame (not shown) so as to be able to move forward and backward.
 移動枠35は、離反する方向に複数、ここでは2つずつの合計4つの永久磁石38a,38b,39a,39bが所定の着磁方向によって配設されている。 In the moving frame 35, a total of four permanent magnets 38a, 38b, 39a, 39b are arranged in a predetermined magnetization direction in the separating direction.
 また、永久磁石38a,38b,39a,39bに対向するようにコイル23,24が配設されている。なお、各コイル23,24は、図示しない固定枠に接着剤などによって固定されており、複合ケーブル31内の電気ケーブルと電気的に接続され、通電方向が切り替えられることで、発生する磁界方向が切り替わる。 In addition, coils 23, 24 are disposed to face the permanent magnets 38a, 38b, 39a, 39b. Each of the coils 23 and 24 is fixed to a fixed frame (not shown) by an adhesive or the like, is electrically connected to the electric cable in the composite cable 31, and the direction of the generated electric field is switched. Switch.
 また、移動レンズユニット32の移動枠35は、図示しないガイドなどによって、固定枠(不図示)内で光軸O1,O2に沿って移動する進退方向への直進ガイドが成されている。 Further, the moving frame 35 of the moving lens unit 32 is provided with a rectilinear guide in the advancing and retracting direction to move along the optical axes O1 and O2 in a fixed frame (not shown) by a guide or the like not shown.
 このように、移動枠35に固定された永久磁石38a,38b,39a,39bと、これら永久磁石38a,38b,39a,39bに対して引力および斥力を切り替えるコイル23,24と、によって、ボイスコイルモータ(以下、VCMと略記する)が構成され、移動レンズユニット32を進退させる駆動部としてのアクチュエータ10が構成される。 Thus, the voice coil is formed by the permanent magnets 38a, 38b, 39a, 39b fixed to the moving frame 35, and the coils 23, 24 switching the attraction and repulsion to the permanent magnets 38a, 38b, 39a, 39b. A motor (hereinafter, abbreviated as VCM) is configured, and an actuator 10 as a drive unit for advancing and retracting the moving lens unit 32 is configured.
 なお、本実施の形態では、2つのコイル23,24によって、移動枠35を進退移動するVCMを用いたアクチュエータ10の構成を例示しているが、これに限定されることなく、1つのコイルと、そのコイルに対となる永久磁石を移動枠35の一方のみに設けてもよい。 In the present embodiment, the configuration of the actuator 10 using the VCM for moving the moving frame 35 forward and backward by the two coils 23 and 24 is illustrated, but the present invention is not limited to this. Alternatively, a permanent magnet that is paired with the coil may be provided only on one side of the moving frame 35.
 さらに、移動枠35を進退駆動するアクチュエータ10は、VCMに限定されることなく、ステッピングモータ、通電加熱により伸縮するSMAワイヤなどの駆動部としてもよい。なお、操作部3(図1参照)に操作レバーを設けてワイヤを牽引弛緩して移動枠35を進退駆動する駆動構成としてもよい。 Furthermore, the actuator 10 for driving the moving frame 35 back and forth is not limited to the VCM, and may be a driving unit such as a stepping motor or an SMA wire that expands and contracts by electric heating. The operation lever 3 may be provided in the operation unit 3 (see FIG. 1) to drive the movable frame 35 forward and backward by pulling and loosening the wire.
 次に、図4以降に基づいて、撮像装置30に設けられる本実施の形態の移動レンズユニット32について以下に詳しく説明する。 
 移動レンズユニット32は、図4および図5に示すように、永久磁石38a,38b,39a,39bが、ここでは紙面に向かって見た上下面に設けられる移動枠35と、この移動枠35に並設するように保持された左右一対となる2つの移動レンズ33,34と、を有している。
Next, the moving lens unit 32 of the present embodiment provided in the imaging device 30 will be described in detail below based on FIG.
In the moving lens unit 32, as shown in FIGS. 4 and 5, permanent magnets 38a, 38b, 39a, 39b are provided on a moving frame 35 provided on upper and lower surfaces as viewed in the plane of the drawing, and It has two moving lenses 33 and 34 as a pair of left and right held so as to be juxtaposed.
 移動枠35は、ここでは横断面形状が横長で両側部分が円弧状に形成されており、硬質樹脂、非磁性金属などの非磁性部材または磁性部材から形成されている。この移動枠35には、上部両側から前方に延設された2つの腕部41,42を有している。 Here, the moving frame 35 is formed to be laterally long in cross-sectional shape and arc-shaped on both sides, and is formed of a nonmagnetic member such as hard resin or nonmagnetic metal or a magnetic member. The moving frame 35 has two arm portions 41 and 42 extending forward from both upper sides.
 これら2つの腕部41,42は、上部方向に突出するよう配設された第1のピン43,44が設けられている。 The two arms 41 and 42 are provided with first pins 43 and 44 arranged to project upward.
 この移動枠35に保持された2つの移動レンズ33,34は、紙面に向かって見た左右方向に並設されており、ここでは横断面形状が横長で両側部分が円弧状に形成されている。 The two moving lenses 33, 34 held by the moving frame 35 are juxtaposed in the left-right direction as viewed in the plane of the drawing, and here, the cross-sectional shape is horizontally long and both side portions are formed in an arc. .
 そして、移動レンズユニット32は、図6および図7に示すように、移動枠35の先端面に、板状に形成された第1の遮光マスクとしての固定部51が対向配置される。この固定部51は、下部側が段形状に形成されおり、図示しない固定枠に固定されている。 Then, as shown in FIGS. 6 and 7, in the moving lens unit 32, the fixing portion 51 as a first light shielding mask formed in a plate shape is disposed opposite to the tip surface of the moving frame 35. The lower portion of the fixing portion 51 is formed in a stepped shape, and is fixed to a fixing frame (not shown).
 固定部51には、移動レンズ33,34の一部を露出する2つの窓部である開口52,53と、板面の下部側に並設された2つの第1の軸受54と、上面において、移動枠35の2つの腕部41,42よりも内側で並設された第2の軸受55と、が形成されている。なお、2つの開口52,53は、両側部分が円弧状に形成された左右方向の長孔形状となっている。 The fixed portion 51 has openings 52 and 53 which are two windows for exposing a part of the movable lenses 33 and 34, two first bearings 54 juxtaposed to the lower side of the plate surface, and an upper surface A second bearing 55 juxtaposed inside the two arms 41 and 42 of the moving frame 35 is formed. The two openings 52 and 53 have an elongated hole shape in the left-right direction in which both side portions are formed in an arc shape.
 この固定部51の先端面51aには、図8および図9に示すように、一対の絞部材である2つの絞羽61,62が下端に設けられた回動軸63,64回りに回動自在に配設される。なお、回動軸63,64は、固定部51の第1の軸受54にそれぞれ装着される。 As shown in FIGS. 8 and 9, on the tip end surface 51a of the fixed portion 51, two swinging wings 61 and 62, which are a pair of narrowing members, turn around pivot shafts 63 and 64 provided at the lower end. It is arranged freely. The pivot shafts 63 and 64 are attached to the first bearing 54 of the fixed portion 51, respectively.
 2つの絞羽61,62は、真円状の絞孔である開口65,66が形成され、近接回動時に、重畳部が他方の開口65,66に進入しない形状が設定されている。なお、2つの絞羽61,62の上端には、第2のピン67,68が設けられている。 The two diaphragms 61 and 62 are formed with openings 65 and 66 which are perfect circular diaphragm holes, and the shape is set such that the overlapping portion does not enter the other openings 65 and 66 at the time of close rotation. In addition, second pins 67 and 68 are provided at upper ends of the two diaphragms 61 and 62.
 2つの第2のピン67,68は、固定部51の上面側の左右に設けられた連動駆動機構を構成するリンク部71,72に係合される。2つのリンク部71,72は、移動枠35の2つの腕部41,42よりも内側に配設された第2の軸受55のそれぞれに装着された回動軸73,74回りに回動自在に配設されている。 The two second pins 67 and 68 are engaged with link portions 71 and 72 which constitute an interlocking drive mechanism provided on the left and right of the upper surface side of the fixed portion 51. The two link portions 71 and 72 are pivotable around pivot shafts 73 and 74 attached to the second bearings 55 disposed inside the two arm portions 41 and 42 of the movable frame 35. Are located in
 また、2つのリンク部71,72は、略L字形状をしており、屈曲部分に回動軸73,74が設けられる。そして、2つのリンク部71,72の自由端部分に、移動枠35の第1のピン43,44がそれぞれ係入される第1の長孔75,76と、絞羽61,62の第2のピン67,68が係入される第2の長孔77,78と、が形成されている。 The two link portions 71 and 72 are substantially L-shaped, and pivoting shafts 73 and 74 are provided at bent portions. The first long holes 75 and 76 in which the first pins 43 and 44 of the moving frame 35 are respectively engaged with the free ends of the two link portions 71 and 72, and the second ones of the diaphragms 61 and 62. The second long holes 77 and 78 are formed in which the pins 67 and 68 of the second embodiment are inserted.
 そして、移動レンズユニット32は、図10および図11に示すように、第2の遮光マスクとしての遮光板81が2つの絞羽61,62に対向するように物体側に装着される。 The moving lens unit 32 is mounted on the object side so that a light shielding plate 81 as a second light shielding mask faces the two diaphragm blades 61 and 62, as shown in FIGS.
 遮光板81は、絞羽61,62の開口65,66を露出する両側部分が円弧状に形成された左右方向の長孔形状の開口82,83が形成されている。なお、遮光板81は、絞羽61,62の回動を阻害しないように、スペーサが設けられたネジなどの図示しない固定部材によって固定部51に固定される。 The light shielding plate 81 is formed with openings 82 and 83 in the left-right direction in which both side portions exposing the openings 65 and 66 of the diaphragm wings 61 and 62 are formed in an arc shape. The light shielding plate 81 is fixed to the fixing portion 51 by a fixing member (not shown) such as a screw provided with a spacer so as not to inhibit the rotation of the diaphragm wings 61 and 62.
 以上のように構成された移動レンズユニット32は、ここではVCMのアクチュエータ10によって、移動枠35が物体側となる前方(矢印F方向)に移動すると、2つのリンク部71,72が回動軸63,64回りに回動して、第2の長孔77,78が設けられている自由端が互いに近接する中央側に移動する(図11に示す状態)。 Here, in the moving lens unit 32 configured as described above, when the moving frame 35 moves forward (in the direction of arrow F) to the object side by the actuator 10 of the VCM, the two link portions 71 and 72 pivot By pivoting around 63, 64, the free ends provided with the second elongated holes 77, 78 move toward the center side where they approach each other (the state shown in FIG. 11).
 即ち、移動枠35は、物体側となる前方に移動すると、第1の長孔75,76に係入されている移動枠35の第1のピン43,44も物体側である前方へ移動する。これにより、2つのリンク部71,72は、第1のピン43,44に第1の長孔75,76が形成された自由端が前方側へ押されて、移動枠35の動きに連動して回動する。 That is, when the moving frame 35 moves forward on the object side, the first pins 43 and 44 of the moving frame 35 engaged in the first long holes 75 and 76 also move forward on the object side. . As a result, the two link portions 71 and 72 are interlocked with the movement of the moving frame 35 as the free ends of the first long holes 75 and 76 formed in the first pins 43 and 44 are pushed forward. To rotate.
 そして、2つのリンク部71,72の第2の長孔77,78が設けられている自由端は、係入されている絞羽61,62の第2のピン67,68を中央側となる左右方向の内側に移動する。これにより、2つの絞羽61,62は、回動軸63,64回りに回動され、互いが近接する方向である中央側となる左右方向の内側に移動する(図8および図10に示す状態)。 And the free end provided with the second long holes 77 and 78 of the two link portions 71 and 72 has the second pins 67 and 68 of the incorporated diaphragm wings 61 and 62 at the center side. Move inward in the left and right direction. As a result, the two diaphragms 61 and 62 are pivoted around the pivots 63 and 64 and move inward in the left-right direction, which is the center side in the direction in which the two approach each other (shown in FIGS. 8 and 10). State).
 そのため、2つの絞羽61,62の開口65,66は、近接する方向に移動され、互いの間隔が狭まり、光軸O1,O2を有する2つの主光線間隔が狭まる。即ち、2つの絞羽61,62の開口65,66は、それぞれの中心が光軸O1,O2に直交する方向に近接移動して入光する光束中心(O1,O2)の所定の離間距離L1が短くなる(図11参照)。 Therefore, the openings 65 and 66 of the two fluctuating wings 61 and 62 are moved in the approaching direction, the distance between them narrows, and the distance between the two chief rays having the optical axes O1 and O2 narrows. That is, the openings 65 and 66 of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation distance L1 of the light flux centers (O1 and O2) entering Becomes short (see FIG. 11).
 一方、移動レンズユニット32は、図12および図13に示すように、移動枠35が物体側の反対側となる像側の後方(矢印B方向)に移動すると、2つのリンク部71,72が回動軸63,64回りに回動して、第2の長孔77,78が設けられている自由端が互いに離反する左右方向の外方側に移動する。 On the other hand, as shown in FIG. 12 and FIG. 13, when the moving frame 35 moves rearward (in the direction of arrow B) on the image side, which is the opposite side to the object side, the two link portions 71 and 72 move. By pivoting around the pivots 63 and 64, the free ends provided with the second elongated holes 77 and 78 move outward in the lateral direction in which they are separated from each other.
 このとき、移動枠35は、像側となる後方に移動すると、第1の長孔75,76に係入されている移動枠35の第1のピン43,44も像側である後方へ移動する。これにより、2つのリンク部71,72は、第1のピン43,44に第1の長孔75,76が形成された自由端が後方側へ引っ張られて、移動枠35の動きに連動して回動する。 At this time, when the moving frame 35 moves backward on the image side, the first pins 43 and 44 of the moving frame 35 engaged in the first long holes 75 and 76 also move backward on the image side. Do. As a result, the two link portions 71 and 72 are interlocked with the movement of the moving frame 35 by pulling the free ends of the first pins 43 and 44 in which the first long holes 75 and 76 are formed to the rear side. To rotate.
 そして、2つのリンク部71,72の第2の長孔77,78が設けられている自由端は、係入されている絞羽61,62の第2のピン67,68を外方側となる左右方向に離れるように移動する。これにより、2つの絞羽61,62は、図14に示すように、回動軸63,64回りに回動され、互いが離反する方向である外方側に移動する。 The free ends of the two link portions 71 and 72 where the second long holes 77 and 78 are provided are the second pins 67 and 68 of the hooks 61 and 62 engaged. Move away in the left-right direction. As a result, as shown in FIG. 14, the two swinging wings 61 and 62 are pivoted around the pivots 63 and 64, and move outward, which is a direction in which the two are separated.
 そのため、2つの絞羽61,62の開口65,66は、離反する方向に移動され、互いの間隔が広がり、光軸O1,O2を有する主光線間隔が広まる。即ち、2つの絞羽61,62は、それぞれの中心が光軸O1,O2に直交する方向に離反移動することで、開口65,66のそれぞれの中心が離れて入光する光束中心(O1,O2)の所定の離間距離L2が長くなる(図13参照)。 Therefore, the openings 65 and 66 of the two diaphragms 61 and 62 are moved in the direction away from each other, the distance between them is increased, and the distance between chief rays having the optical axes O1 and O2 is increased. That is, the two diaphragms 61 and 62 move away from each other in the direction orthogonal to the optical axes O1 and O2, so that the centers of the openings 65 and 66 are separated and enter the light flux center (O1 and O2). The predetermined separation distance L2 of O2) becomes long (see FIG. 13).
 なお、図示しない位置センサとその周辺回路により、可動枠の位置を検出、制御しストッパ位置ではない任意の位置においても、最適なピントと立体感を得ることができる。 The position of the movable frame can be detected and controlled by a position sensor (not shown) and its peripheral circuit so that an optimum focus and three-dimensional effect can be obtained even at any position other than the stopper position.
 ところで、絞羽61,62は、それぞれの厚みにより開口65,66の位置が、光軸O1,O2に沿ってずれてしまう。そのため、図15に示すように、各絞羽61,62は、重なる部分に段部61a,62aが形成され、表面が略同一面内に位置するようにしている。これにより、絞羽61,62の開口65,66を通過して、移動レンズ33,34に入射される2つの光の量が略同じとなる。 By the way, the positions of the openings 65 and 66 are deviated along the optical axes O1 and O2 due to their respective thicknesses. Therefore, as shown in FIG. 15, in each of the diaphragms 61 and 62, the step portions 61a and 62a are formed in the overlapping portions, and the surfaces thereof are positioned substantially in the same plane. As a result, the amounts of the two lights incident on the moving lenses 33 and 34 after passing through the openings 65 and 66 of the diaphragms 61 and 62 become substantially the same.
 また、内視鏡1は、移動レンズユニット32の移動レンズ33,34をフォーカスレンズとして、移動枠35の動きに2つの絞羽61,62を同期して駆動する構成とすることで、近点にピントがあっている近点観察の際に、2つの絞羽61,62の開口65,66の所定の離間距離L1が短くなるようにし、遠点にピントがあっている遠点観察の際に開口65,66の所定の離間距離L2が長くなるように、移動枠35の動きに2つの絞羽61,62を同期して駆動する構成とすることで、3D画像の立体感とピントを同時に調整し、良好な3D画像の立体感を得ることができる。 Further, the endoscope 1 has a configuration in which the moving lens 33, 34 of the moving lens unit 32 is used as a focusing lens, and the two diaphragms 61, 62 are driven synchronously with the movement of the moving frame 35 So that the predetermined separation distance L1 between the openings 65 and 66 of the two fluctuating wings 61 and 62 becomes short during near point observation in focus, and in the case of far point observation in which the far point is in focus By setting the two diaphragms 61 and 62 in synchronization with the movement of the moving frame 35 so that the predetermined separation distance L2 of the openings 65 and 66 becomes long, the three-dimensional effect and the focus of the 3D image can be obtained. By adjusting at the same time, it is possible to obtain a good 3D image stereoscopic effect.
 さらに、内視鏡1は、移動レンズユニット32の移動レンズ33,34をズームレンズとして、近点観察の際に、2つの絞羽61,62の開口65,66の所定の離間距離L1が短くなるようにし、遠点観察の際に開口65,66の所定の離間距離L2が長くなるように、移動枠35の動きに2つの絞羽61,62を同期して駆動する構成とすることで、良好な3D画像の立体感を得ることができる。 Furthermore, the endoscope 1 uses the movable lenses 33 and 34 of the movable lens unit 32 as zoom lenses, and the predetermined separation distance L1 of the openings 65 and 66 of the two diaphragms 61 and 62 is short during near point observation. By driving the two diaphragms 61 and 62 in synchronization with the movement of the moving frame 35 so that the predetermined separation distance L2 of the openings 65 and 66 becomes long in the far-point observation. The three-dimensional effect of a good 3D image can be obtained.
 以上に説明したように、本実施の形態の内視鏡1は、撮像装置30に内蔵される移動レンズユニット32の移動枠35の進退移動に連動して2つの絞羽61,62がリンク機構によって駆動することで、立体視のための主光線となる2つの光束中心(光軸O1,O2)の所定の離間距離L1,L2を可変する構成となっている。 As described above, in the endoscope 1 of the present embodiment, the two diaphragms 61 and 62 have a link mechanism in conjunction with the forward and backward movement of the moving frame 35 of the moving lens unit 32 incorporated in the imaging device 30. By driving by this, predetermined separation distances L1 and L2 of two light flux centers (optical axes O1 and O2) which become principal rays for stereoscopic vision are variable.
 これにより、内視鏡1は、移動レンズユニット32の絞羽61,62を駆動する量を機械的に設定しているため、複数の駆動源、位置センサなどの数を減らせると共に、画像処理に基づいた駆動源の駆動制御を行うなどの複雑なシステムなどを構築する必要がない。 As a result, since the endoscope 1 mechanically sets the amount of driving the diaphragms 61 and 62 of the movable lens unit 32, the number of driving sources, position sensors, etc. can be reduced, and image processing can be performed. There is no need to construct a complex system such as driving control of a driving source based on the above.
 移動レンズユニット32は、移動枠35および絞羽61,62の駆動を1つのアクチュエータ10で行えるため、撮像装置30のユニットを小型化することができる。従って、先端部11に内蔵される撮像装置30の大型化の防止により、先端部11の大型化も防止され、細径化した挿入部2を有する内視鏡1にも適用できる構成となる。 The moving lens unit 32 can drive the moving frame 35 and the diaphragms 61 and 62 with one actuator 10, so that the unit of the imaging device 30 can be miniaturized. Therefore, by preventing the enlargement of the imaging device 30 incorporated in the distal end portion 11, the enlargement of the distal end portion 11 is also prevented, and the configuration is also applicable to the endoscope 1 having the insertion portion 2 with a reduced diameter.
 以上の説明により、簡単な構成で小型にでき、最適な立体視が可能な立体視光学ユニットである移動レンズユニット32を内蔵する立体視撮像装置30を備えた立体視内視鏡1とすることができる。 According to the above description, the stereoscopic endoscope 1 is provided with the stereoscopic imaging device 30 incorporating the moving lens unit 32, which is a stereoscopic optical unit that can be miniaturized with a simple configuration and can achieve optimal stereoscopic vision. Can.
(第1の変形例)
 図16は、第1の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図、図17は第1の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図、図18は第1の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図、図19は第1の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図である。
(First modification)
FIG. 16 is a front view showing a moving lens unit in a state in which two diaphragms of the first modification are in proximity to each other, and FIG. 17 is a view of the moving lens unit in a state in which two diaphragms of the first modification are in proximity to each other. FIG. 18 is a front view showing the moving lens unit in a state in which the two diaphragms of the first modification are separated from each other. FIG. 19 is a movable lens unit in a state in which the two diaphragms of the first modification are separated from each other. Is a top view showing FIG.
 本変形例の移動レンズユニット32は、図16および図17に示すように、移動枠35を2つの絞羽61,62よりも前方側に設けた構成として、近点観察時に、移動枠35が像側となる後方(矢印B方向)に移動することで、2つの絞羽61,62の開口65,66が近接する方向に移動するようにしてもよい。 As shown in FIGS. 16 and 17, the moving lens unit 32 of this modification is configured such that the moving frame 35 is provided on the front side of the two diaphragm wings 61 and 62, and the moving frame 35 By moving rearward (in the direction of arrow B) on the image side, the openings 65 and 66 of the two diaphragms 61 and 62 may be moved in the direction in which they approach.
 これにより、2つの絞羽61,62は、互いの間隔が狭まり、それぞれの中心が光軸O1,O2に直交する方向に近接移動して入光する光束中心(O1,O2)の所定の離間距離L1が短くなる(図17参照)。 As a result, the distance between the two diaphragms 61 and 62 narrows, and the centers of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation of the light flux centers (O1 and O2) enters The distance L1 becomes short (see FIG. 17).
 一方、移動レンズユニット32は、遠点観察時に、図18および図19に示すように、移動枠35が物体側の反対側となる物体側の前方(矢印F方向)に移動することで、2つの絞羽61,62が互いに離反する方向である外方側に移動する構成となる。 On the other hand, at the time of far-point observation, as shown in FIG. 18 and FIG. 19, the moving lens unit 32 moves 2 forward by moving the moving frame 35 to the object side (arrow F direction) opposite to the object side. The two diaphragms 61 and 62 move outward in the direction in which they move away from each other.
 これにより、2つの絞羽61,62の開口65,66は、互いの間隔が広がり、それぞれの中心が光軸O1,O2に直交する方向に離反移動することで、開口65,66のそれぞれの中心が離れて入光する光束中心(O1,O2)の所定の離間距離L2が長くなる(図18参照)。 As a result, the openings 65 and 66 of the two diaphragms 61 and 62 are spaced apart from each other, and the centers of the openings 65 and 66 move away from each other in the direction orthogonal to the optical axes O1 and O2. The predetermined separation distance L2 of the light flux centers (O1 and O2) which are separated from each other at the center thereof is increased (see FIG. 18).
 なお、ここでは、移動枠35が後方に移動した際に、近点にピントが合い、移動枠35が前方に移動した際に、遠点にピントが合うように対物光学系が設定されているものである。このような構成としても、上述した実施の形態と同様な作用効果を有した立体視撮像装置30を備えた立体視内視鏡1とすることができる。 Here, the objective optical system is set such that when the moving frame 35 moves backward, the near point is in focus and when the moving frame 35 moves forward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
(第2の変形例)
 図20は、第2の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図、図21は第2の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図、図22は第2の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図、図23は第1の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図である。
(Second modification)
FIG. 20 is a front view showing a moving lens unit in a state in which two diaphragms of the second modification are in proximity to each other, and FIG. 21 is a diagram showing the moving lens unit in a state in which two diaphragms of the second modification are in proximity to each other. FIG. 22 is a front view showing the moving lens unit in a state in which the two diaphragms of the second modification are separated from each other. FIG. 23 is a movable lens unit in a state in which the two diaphragms of the first modification are separated from each other. Is a top view showing FIG.
 本変形例の移動レンズユニット32は、固定部51に移動枠35の2つの腕部41,42よりも外側に第2の軸受55を設けた構成として、図20および図21に示すように、近点観察時に、移動枠35が像側となる後方(矢印B方向)に移動することで、2つの絞羽61,62の開口65,66が近接する方向に移動する。 As shown in FIGS. 20 and 21, the moving lens unit 32 according to the present modification has a configuration in which the second bearing 55 is provided outside the two arm portions 41 and 42 of the moving frame 35 in the fixed portion 51. By moving the moving frame 35 rearward (in the direction of the arrow B) on the image side during near point observation, the openings 65 and 66 of the two fluctuating wings 61 and 62 move in the direction in which they approach.
 これにより、2つの絞羽61,62は、互いの間隔が狭まり、それぞれの中心が光軸O1,O2に直交する方向に近接移動して入光する光束中心(O1,O2)の所定の離間距離L1が短くなる(図21参照)。 As a result, the distance between the two diaphragms 61 and 62 narrows, and the centers of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation of the light flux centers (O1 and O2) enters The distance L1 becomes short (see FIG. 21).
 一方、移動レンズユニット32は、遠点観察時に、図22および図23に示すように、移動枠35が物体側の前方(矢印F方向)に移動することで、2つの絞羽61,62が互いに離反する方向である外方側に移動する構成となる。 On the other hand, in the moving lens unit 32, as shown in FIGS. 22 and 23, at the time of far-point observation, the moving frame 35 moves forward (in the direction of arrow F) on the object side to move the two diaphragms 61 and 62. It becomes the structure which moves to the outward side which is a direction which mutually separates.
 これにより、2つの絞羽61,62の開口65,66は、互いの間隔が広がり、それぞれの中心が光軸O1,O2に直交する方向に離反移動することで、開口65,66のそれぞれの中心が離れて入光する光束中心(O1,O2)の所定の離間距離L2が長くなる(図23参照)。 As a result, the openings 65 and 66 of the two diaphragms 61 and 62 are spaced apart from each other, and the centers of the openings 65 and 66 move away from each other in the direction orthogonal to the optical axes O1 and O2. The predetermined separation distance L2 of the light flux centers (O1, O2) where the centers are apart and light is incident (see FIG. 23).
 なお、ここでは、移動枠35が後方に移動した際に、近点にピントが合い、移動枠35が前方に移動した際に、遠点にピントが合うように対物光学系が設定されているものである。このような構成としても、上述した実施の形態と同様な作用効果を有した立体視撮像装置30を備えた立体視内視鏡1とすることができる。 Here, the objective optical system is set such that when the moving frame 35 moves backward, the near point is in focus and when the moving frame 35 moves forward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
(第3の変形例)
 図24は、第3の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図、図25は第3の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図、図26は第3の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図、図27は第3の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図である。
(Third modification)
FIG. 24 is a front view showing a moving lens unit in a state in which two diaphragms of the third modification are in proximity to each other, and FIG. 25 is a front view of the moving lens unit in a state in which two diaphragms of the third modification are in proximity to each other. FIG. 26 is a front view showing the moving lens unit in a state in which the two diaphragms of the third modification are separated from each other. FIG. 27 is a movable lens unit in the state in which two diaphragms of the third modification are separated from each other. Is a top view showing FIG.
 本変形例の移動レンズユニット32は、図25および図26に示すように、移動枠35を2つの絞羽61,62よりも前方側に設けると共に、固定部51に移動枠35の2つの腕部41,42よりも外側に第2の軸受55を設けた構成として、近点観察時に、移動枠35が物体側となる前方(矢印F方向)に移動することで、2つの絞羽61,62の開口65,66が近接する方向に移動する。 As shown in FIGS. 25 and 26, the moving lens unit 32 according to the present modification is provided with the moving frame 35 on the front side of the two diaphragm wings 61 and 62, and the two arms of the moving frame 35 in the fixed portion 51. As a configuration in which the second bearing 55 is provided outside the portions 41 and 42, the moving frame 35 moves forward (in the direction of the arrow F) on the object side at the time of near point observation. The openings 65 and 66 of 62 move in the approaching direction.
 これにより、2つの絞羽61,62は、互いの間隔が狭まり、それぞれの中心が光軸O1,O2に直交する方向に近接移動して入光する光束中心(O1,O2)の所定の離間距離L1が短くなる(図26参照)。 As a result, the distance between the two diaphragms 61 and 62 narrows, and the centers of the two diaphragms 61 and 62 move close to each other in the direction orthogonal to the optical axes O1 and O2, and the predetermined separation of the light flux centers (O1 and O2) enters The distance L1 becomes short (see FIG. 26).
 一方、移動レンズユニット32は、遠点観察時に、図27および図28に示すように、移動枠35が像側の後方(矢印B方向)に移動することで、2つの絞羽61,62が互いに離反する方向である外方側に移動する構成となる。 On the other hand, in the moving lens unit 32, as shown in FIG. 27 and FIG. 28, at the time of far point observation, the moving frame 35 moves rearward (in the direction of arrow B) on the image side to move the two diaphragms 61 and 62. It becomes the structure which moves to the outward side which is a direction which mutually separates.
 これにより、2つの絞羽61,62の開口65,66は、互いの間隔が広がり、それぞれの中心が光軸O1,O2に直交する方向に離反移動することで、開口65,66のそれぞれの中心が離れて入光する光束中心(O1,O2)の所定の離間距離L2が長くなる(図28参照)。 As a result, the openings 65 and 66 of the two diaphragms 61 and 62 are spaced apart from each other, and the centers of the openings 65 and 66 move away from each other in the direction orthogonal to the optical axes O1 and O2. The predetermined separation distance L2 of the light flux centers (O1 and O2) which are separated from each other at the center thereof is increased (see FIG. 28).
 なお、ここでは、移動枠35が前方に移動した際に、近点にピントが合い、移動枠35が後方に移動した際に、遠点にピントが合うように対物光学系が設定されているものである。このような構成としても、上述した実施の形態と同様な作用効果を有した立体視撮像装置30を備えた立体視内視鏡1とすることができる。 Here, the objective optical system is set such that when the moving frame 35 moves forward, the near point is in focus and when the moving frame 35 moves backward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
(第4の変形例)
 図29は、第4の変形例の2つの絞板が近接した状態の移動レンズユニットを示す正面図、図30は第4の変形例の2つの絞板が近接した状態の移動レンズユニットを示す上面図、図31は第4の変形例の2つの絞板が離間した状態の移動レンズユニットを示す正面図、図32は第4の変形例の2つの絞板が離反した状態の移動レンズユニットを示す上面図である。
(The 4th modification)
FIG. 29 is a front view showing a moving lens unit in a state in which two diaphragms of the fourth modification are in proximity to each other, and FIG. 30 is a view of the moving lens unit in a state in which two diaphragms in the fourth modification are in proximity to each other. FIG. 31 is a front view showing a moving lens unit in a state in which two diaphragms of the fourth modification are separated, and FIG. 32 is a mobile lens unit in a state in which two diaphragms of the fourth modification are separated. Is a top view showing FIG.
 本変形例の移動レンズユニット32は、図29および図30に示すように、固定部25の物体側の表面に形成された凹部26に一対の絞部材である2つの絞板56,57がスライドする構成となっている。 In the movable lens unit 32 of this modification, as shown in FIGS. 29 and 30, the two diaphragm plates 56 and 57, which are a pair of diaphragm members, slide in the recess 26 formed on the object-side surface of the fixed portion 25. Is configured to
 具体的には、2つの絞板56,57は、真円状の絞孔である開口58,59が形成されている。なお、2つの絞板56,57の上下には、カムピン84,85が設けられている。 Specifically, the two diaphragms 56 and 57 are formed with openings 58 and 59 which are perfect circular diaphragm holes. Cam pins 84 and 85 are provided above and below the two diaphragms 56 and 57, respectively.
 これら2つの絞板56,57は、固定部25の凹部26に左右並べて配置され、それぞれ上下左右に突起形成された4つの爪部56a,57aが固定部25に形成される図示しないレール溝に係入されている。これにより、2つの絞板56,57は、光軸O1,O2に直交する方向のスライド移動がガイドされ、固定部25から外れないようになっている。 These two diaphragm plates 56, 57 are arranged side by side in the recess 26 of the fixed portion 25 and are formed in the fixed portion 25 in a rail groove (not shown) in which four claws 56a, 57a are formed to project vertically and horizontally. It is taken care of. As a result, sliding movement of the two diaphragms 56 and 57 in the direction orthogonal to the optical axes O1 and O2 is guided, and the two diaphragms 56 and 57 are not separated from the fixed portion 25.
 移動枠35は、物体側となる前方側に延設された板状部46が上下に設けられている。これら板状部46には、2つの絞板56,57のカムピン84,85が係入する連動駆動機構であるカム溝47,48が形成されている。 The moving frame 35 is provided with plate-like portions 46 extended on the front side, which is the object side, vertically. The plate-like portions 46 are formed with cam grooves 47 and 48 which are interlocking drive mechanisms in which the cam pins 84 and 85 of the two diaphragm plates 56 and 57 are engaged.
 これらカム溝47,48は、前方から後方に向けて移動枠35の中央方向に斜めに形成されており、移動枠35の前後の移動に合わせてカムピン84,85をガイドして移動させる。 The cam grooves 47 and 48 are formed obliquely in the central direction of the moving frame 35 from the front to the rear, and guide and move the cam pins 84 and 85 in accordance with the forward and backward movement of the moving frame 35.
 本変形例の移動レンズユニット32は、ここでもVCMのアクチュエータ10によって、移動枠35が物体側となる前方(図30の矢印F方向)に移動すると、カム溝47,48に係入するカムピン84,85が互いに近接する方向に繰り込まれる。これにより、2つの絞板56,57は、カム機構により互いが近接する方向である中央側となる左右方向の内側に移動する。 The moving lens unit 32 according to the present modification is also engaged with the cam grooves 47 and 48 when the moving frame 35 moves forward (in the direction of arrow F in FIG. 30) to the object side by the actuator 10 of the VCM. , 85 are reciprocated in the direction close to each other. As a result, the two diaphragms 56 and 57 move inward in the left-right direction, which is the center side in the direction in which they approach each other, by the cam mechanism.
 そのため、2つの絞板56,57の開口58,59は、近接する方向に移動され、互いの間隔が狭まり、光軸O1,O2を有する2つの主光線間隔が狭まる。即ち、2つの絞板56,57の開口58,59は、それぞれの中心が光軸O1,O2に直交する方向に近接移動して入光する光束中心(O1,O2)の所定の離間距離が短くなる。 Therefore, the openings 58 and 59 of the two diaphragms 56 and 57 are moved in the approaching direction, the distance between them narrows, and the distance between the two chief rays having the optical axes O1 and O2 narrows. That is, the openings 58 and 59 of the two diaphragms 56 and 57 move in the direction orthogonal to the optical axes O1 and O2, respectively, and the predetermined separation distance of the light flux centers (O1 and O2) entering is It becomes short.
 一方、移動レンズユニット32は、図31および図32に示すように、移動枠35が物体側の反対側となる像側の後方(図32の矢印B方向)に移動すると、カム溝47,48に係入するカムピン84,85が互いに離反する方向に繰り出される。これにより、2つの絞板56,57は、互いが離反する方向である左右方向の外方側に移動する。 On the other hand, as shown in FIGS. 31 and 32, the moving lens unit 32 moves the cam groove 47, 48 when the moving frame 35 moves to the rear side (direction of arrow B in FIG. 32) on the image side. The cam pins 84 and 85 engaged with each other are drawn out in directions away from each other. As a result, the two diaphragms 56 and 57 move outward in the left-right direction, which is the direction in which the two separate from each other.
 そのため、2つの絞板56,57の開口58,59は、離反する方向に移動され、互いの間隔が広がり、光軸O1,O2を有する主光線間隔が広まる。即ち、2つの絞板56,57は、それぞれの中心が光軸O1,O2に直交する方向に離反移動することで、開口58,59のそれぞれの中心が離れて入光する光束中心(O1,O2)の所定の離間距離が長くなる。 Therefore, the openings 58 and 59 of the two diaphragms 56 and 57 are moved in the direction away from each other, the distance between them is increased, and the distance between chief rays having the optical axes O1 and O2 is increased. That is, when the two diaphragms 56 and 57 move away from each other in the direction orthogonal to the optical axes O1 and O2, respectively, the centers of the apertures 58 and 59 move away from each other and enter the light beam centers (O1 and O2). The predetermined separation distance of O2) becomes long.
 したがって、このような移動レンズユニット32としても、上述の実施の形態と同様の作用効果を有する構成となる。 Therefore, even such a movable lens unit 32 has the same function and effect as those of the above-described embodiment.
(第5の変形例)
 図33は、第5の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す正面図、図34は第5の変形例の2つの絞羽が近接した状態の移動レンズユニットを示す上面図、図35は第5の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す正面図、図36は第5の変形例の2つの絞羽が離反した状態の移動レンズユニットを示す上面図である。
(Fifth modification)
FIG. 33 is a front view showing a moving lens unit in a state in which two diaphragms of the fifth modification are in proximity to each other, and FIG. 34 is a view of the moving lens unit in a state in which two diaphragms of the fifth modification are in proximity to each other. FIG. 35 is a front view showing a moving lens unit in a state in which two diaphragms of the fifth modification are separated, and FIG. 36 is a mobile lens unit in a state in which two diaphragms of the fifth modification are separated Is a top view showing FIG.
 本変形例の移動レンズユニット32は、図33および図34に示すように、2つの絞板56,57がスライドする機構を2つのリンク部71,72などを用いたリンク機構として、近点観察時に、移動枠35が物体側となる前方(矢印F方向)に移動することで、2つの絞板56,57の開口58,59が近接する方向に移動する。 As shown in FIGS. 33 and 34, the moving lens unit 32 of this modification is a link mechanism using a mechanism in which two diaphragms 56 and 57 slide as a link mechanism using two link portions 71 and 72, etc. At the same time, the moving frame 35 moves forward (in the direction of the arrow F) on the object side, whereby the openings 58 and 59 of the two diaphragms 56 and 57 move in the direction in which they approach.
 これにより、2つの絞板56,57は、互いの間隔が狭まり、それぞれの中心が光軸O1,O2に直交する方向に近接移動して入光する光束中心(O1,O2)の所定の離間距離L1が短くなる(図34参照)。 As a result, the distance between the two diaphragms 56 and 57 decreases, and the centers of the diaphragms 56 and 57 move close to each other in the direction orthogonal to the optical axes O1 and O2. The distance L1 becomes short (see FIG. 34).
 一方、移動レンズユニット32は、遠点観察時に、図35および図36に示すように、移動枠35が像側の後方(矢印B方向)に移動することで、2つの絞板56,57が互いに離反する方向である外方側に移動する構成となる。 On the other hand, in the moving lens unit 32, as shown in FIGS. 35 and 36, at the time of far point observation, the two diaphragms 56 and 57 are moved by moving the moving frame 35 rearward (in the arrow B direction) on the image side. It becomes the structure which moves to the outward side which is a direction which mutually separates.
 これにより、2つの絞板56,57の開口58,59は、互いの間隔が広がり、それぞれの中心が光軸O1,O2に直交する方向に離反移動することで、開口58,59のそれぞれの中心が離れて入光する光束中心(O1,O2)の所定の離間距離L2が長くなる(図36参照)。 As a result, the openings 58 and 59 of the two diaphragms 56 and 57 are separated from each other, and the centers of the openings 58 and 59 move away from each other in the direction orthogonal to the optical axes O1 and O2. The predetermined separation distance L2 of the light flux centers (O1 and O2) which are separated from each other and enters the light becomes long (see FIG. 36).
 なお、ここでは、移動枠35が前方に移動した際に、近点にピントが合い、移動枠35が後方に移動した際に、遠点にピントが合うように対物光学系が設定されているものである。このような構成としても、上述した実施の形態と同様な作用効果を有した立体視撮像装置30を備えた立体視内視鏡1とすることができる。 Here, the objective optical system is set such that when the moving frame 35 moves forward, the near point is in focus and when the moving frame 35 moves backward, the far point is in focus. It is a thing. Even with such a configuration, it is possible to provide the stereoscopic endoscope 1 including the stereoscopic imaging device 30 having the same function and effect as the above-described embodiment.
 なお、本実施の形態では、硬性内視鏡を例示しているが、これに限定されることなく、軟性内視鏡、工業用内視鏡にも適用することができる技術である。 In addition, although the rigid endoscope is illustrated in the present embodiment, the present invention is not limited to this, and it is a technology which can be applied to a flexible endoscope and an industrial endoscope.
 以上の実施の形態に記載した発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施の形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得るものである。 The invention described in the above embodiment is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention at the implementation stage. Furthermore, the above embodiments include inventions of various stages, and various inventions can be extracted by appropriate combinations of a plurality of disclosed configuration requirements.
 例えば、実施の形態に示される全構成要件から幾つかの構成要件が削除されても、述べられている課題が解決でき、述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得るものである。 For example, even if some of the configuration requirements are removed from all the configuration requirements shown in the embodiment, the configuration requirements can be eliminated if the problems described can be solved and the described advantages can be obtained. The configuration can be extracted as the invention.

Claims (7)

  1.  2つの対物光学系が並設された移動枠と、
     前記移動枠を前記2つの対物光学系の光軸に沿った方向に進退駆動する駆動部と、
     前記移動枠の物体側あるいは撮像側で可動自在に設けられ、開口を有する一対の絞部材と、
     前記駆動部による前記移動枠の進退移動に応じて前記一対の絞部材を連動させ、前記開口を前記2つの対物光学系の光軸に対して直交する方向に移動させる連動駆動機構と、
     を具備することを特徴とする立体視光学ユニット。
    A moving frame in which two objective optical systems are juxtaposed
    A driving unit configured to drive the moving frame forward and backward in a direction along an optical axis of the two objective optical systems;
    A pair of diaphragm members movably provided on the object side or the imaging side of the moving frame and having an opening;
    An interlocking drive mechanism that interlocks the pair of diaphragm members according to the movement of the moving frame by the drive unit and moves the opening in a direction orthogonal to the optical axes of the two objective optical systems;
    A stereoscopic optical unit comprising:
  2.  前記連動駆動機構は、リンク機構であることを特徴とする請求項1に記載の立体視光学ユニット。 The stereoscopic vision optical unit according to claim 1, wherein the interlocking drive mechanism is a link mechanism.
  3.  前記移動枠に連設され、前記一対の絞部材を回動保持する固定部と、
     前記移動枠に設けられた第1のピンが係入する第1の長孔と、
     前記一対の絞部材に設けられた第2のピンが係入する第2の長孔と、
     前記固定部に回動自在に配設され、前記第1の長孔および前記第2の長孔が形成され、前記移動枠の進退移動に応じて前記一対の絞部材を駆動させる一対のリンク部材と、
     を備えたことを特徴とする請求項2に記載の立体視光学ユニット。
    A fixing portion connected to the moving frame and rotatably holding the pair of diaphragm members;
    A first long hole into which a first pin provided in the moving frame is inserted;
    A second elongated hole into which a second pin provided in the pair of diaphragm members is inserted;
    A pair of link members disposed rotatably on the fixed portion, formed with the first elongated hole and the second elongated hole, and driving the pair of diaphragm members in accordance with forward and backward movement of the movable frame When,
    The stereoscopic vision optical unit according to claim 2, comprising:
  4.  前記連動駆動機構は、カム機構であることを特徴とする請求項1に記載の立体視光学ユニット。 The stereoscopic vision optical unit according to claim 1, wherein the interlocking drive mechanism is a cam mechanism.
  5.  前記移動枠に連設され、前記一対の絞部材を保持する固定部と、
     前記一対の絞部材に設けられたカムピンが係入され、前記移動枠の進退移動に応じて前記一対の絞部材をスライド移動させるカム溝を有していることを特徴とする請求項4に記載の立体視光学ユニット。
    A fixed portion connected to the moving frame and holding the pair of diaphragm members;
    The cam pin provided in said pair of diaphragm members is engaged, It has a cam groove which slides said pair of diaphragm members according to the advance / retraction movement of said movable frame, It is characterized by the above-mentioned. Stereoscopic optical unit.
  6.  請求項1に記載の立体視光学ユニットと、
     前記立体視光学ユニットの光を受光する固体撮像素子と、
     を具備することを特徴とする立体視撮像装置。
    A stereoscopic optical unit according to claim 1;
    A solid-state imaging device for receiving the light of the stereoscopic optical unit;
    A stereoscopic imaging apparatus comprising:
  7.  請求項6に記載の立体視撮像装置を具備することを特徴とする立体視内視鏡。 A stereoscopic endoscope comprising the stereoscopic imaging device according to claim 6.
PCT/JP2017/025774 2017-07-14 2017-07-14 Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope WO2019012697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025774 WO2019012697A1 (en) 2017-07-14 2017-07-14 Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025774 WO2019012697A1 (en) 2017-07-14 2017-07-14 Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope

Publications (1)

Publication Number Publication Date
WO2019012697A1 true WO2019012697A1 (en) 2019-01-17

Family

ID=65002508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025774 WO2019012697A1 (en) 2017-07-14 2017-07-14 Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope

Country Status (1)

Country Link
WO (1) WO2019012697A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539627A (en) * 2023-06-14 2023-08-04 深圳杰泰科技有限公司 Endoscope probe, three-dimensional measurement endoscope and flaw detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197339A (en) * 1990-11-29 1992-07-16 Nidek Co Ltd Stereo visual fundus camera
JPH06202006A (en) * 1992-12-28 1994-07-22 Olympus Optical Co Ltd Stereoscopic hard endoscope
WO1995030929A1 (en) * 1994-05-09 1995-11-16 Image Technology International, Inc. Parallax controllable multiple-lens camera
US20160316189A1 (en) * 2013-12-10 2016-10-27 Lg Electronics Inc. 3d camera module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197339A (en) * 1990-11-29 1992-07-16 Nidek Co Ltd Stereo visual fundus camera
JPH06202006A (en) * 1992-12-28 1994-07-22 Olympus Optical Co Ltd Stereoscopic hard endoscope
WO1995030929A1 (en) * 1994-05-09 1995-11-16 Image Technology International, Inc. Parallax controllable multiple-lens camera
US20160316189A1 (en) * 2013-12-10 2016-10-27 Lg Electronics Inc. 3d camera module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539627A (en) * 2023-06-14 2023-08-04 深圳杰泰科技有限公司 Endoscope probe, three-dimensional measurement endoscope and flaw detection method
CN116539627B (en) * 2023-06-14 2023-09-22 深圳杰泰科技有限公司 Endoscope probe, three-dimensional measurement endoscope and flaw detection method

Similar Documents

Publication Publication Date Title
US9507141B2 (en) Stereoscopic endoscope device
JP4898614B2 (en) Imaging device
JPS5846308A (en) Zoom lens for endoscope with moving solid-state image pickup element
US20200166740A1 (en) Linear actuator for endoscope, optical unit for endoscope, and endoscope
US11287602B2 (en) Optical unit and endoscope
EP2485496A2 (en) Stereoscopic imaging apparatus
JP6253857B1 (en) Stereoscopic endoscope and stereoscopic endoscope system
US20190274526A1 (en) Stereoscopic image pickup apparatus and stereoscopic endoscope
JPWO2016147468A1 (en) Imaging unit and endoscope
JP5946777B2 (en) Stereo imaging device
WO2019012697A1 (en) Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope
JP2015112336A (en) Endoscope system
US10739548B2 (en) Optical unit and endoscope
WO2011086890A1 (en) Lens barrel adapter, lens barrel and imaging device
JP6444765B2 (en) Imaging apparatus and endoscope
CN107405049B (en) Stereoscopic endoscope device
US20210315444A1 (en) Optical apparatus and endoscope
JP6069324B2 (en) Single-axis stereoscopic imaging device with dual sampling lens
JP2011215238A (en) Stereoscopic camera
US20220273161A1 (en) Surgical image-capturing system, signal processing device, and signal processing method
WO2019146144A1 (en) Optical unit and endoscope
JPWO2020170312A1 (en) Endoscope
JP2012222765A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP