WO2019011159A1 - 一种获得人体骨架的成像方法 - Google Patents

一种获得人体骨架的成像方法 Download PDF

Info

Publication number
WO2019011159A1
WO2019011159A1 PCT/CN2018/094310 CN2018094310W WO2019011159A1 WO 2019011159 A1 WO2019011159 A1 WO 2019011159A1 CN 2018094310 W CN2018094310 W CN 2018094310W WO 2019011159 A1 WO2019011159 A1 WO 2019011159A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
skeleton
bone
scanning
position information
Prior art date
Application number
PCT/CN2018/094310
Other languages
English (en)
French (fr)
Inventor
郑永平
Original Assignee
中慧医学成像有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中慧医学成像有限公司 filed Critical 中慧医学成像有限公司
Priority to EP18832029.5A priority Critical patent/EP3653128A4/en
Priority to US16/629,579 priority patent/US11344279B2/en
Priority to JP2020501255A priority patent/JP7055860B2/ja
Priority to AU2018301579A priority patent/AU2018301579B2/en
Priority to CA3069585A priority patent/CA3069585A1/en
Publication of WO2019011159A1 publication Critical patent/WO2019011159A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0097Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying acoustic waves and detecting light, i.e. acoustooptic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to an imaging method for obtaining a human skeleton.
  • a three-dimensional human skeleton is usually obtained by X-ray or CT imaging in the case where a human subject is lying down.
  • the human body absorbs harmful radiation such as X-rays of a certain amount, which poses a potential risk.
  • the human body should scan under the condition of lying down, and the scanned three-dimensional human skeleton will have a certain difference from the skeleton shape when the human body stands.
  • the multi-planar X-ray imaging EOS system can acquire two orthogonal two-dimensional images when standing in the human body through a relatively small X-ray dose, ie Two orthogonal images of the front-rear direction and the left-right direction of the human body, and then the image is processed by software, and combined with the normal spine skeleton model to obtain the three-dimensional map effect of the spine, but the three-dimensional skeleton obtained by this method is used.
  • the part containing the software estimate is not completely accurate, and although the amount of radiation in this method is relatively small, there is still the effect of radiation on the human body and it needs to be installed in a special radiation-proof room.
  • the object of the present invention is to provide an imaging method for obtaining a human skeleton by using a three-dimensional ultrasound system to obtain a skeleton of the human body without any radiation effect, in view of the problem that the existing skeleton detecting method is not accurate enough and causes certain radiation harm to the human body. And easy to use.
  • the technical solution provided by the present invention for the technical problem thereof is to provide an imaging method for obtaining a skeleton, which comprises the following steps:
  • the imaging method further comprises the following steps between step S4 and step S6:
  • step S3 further comprises:
  • the cross-sectional image obtained by scanning the same bone position from different angles of the S3.1 imaging probe can be image processed to enhance the reflection of the bone surface, including image averaging, median filtering or strongest signal selection.
  • step S3 further comprises:
  • the imaging probe can use different ultrasonic frequencies, or a combination of multiple probes to acquire multiple images, and image processing to enhance the reflection of the bone surface, wherein the image processing Includes averaging, median filtering, or strongest signal selection.
  • the imaging method further comprises after step S4:
  • S4.2 displays the cross-sectional image in real time.
  • the imaging method further comprises after step S4:
  • the imaging method further comprises the following steps:
  • the imaging probe employs scanning of the target area in different directions and angles.
  • the imaging method further comprises after step S1:
  • S1.1 installs a micro-space positioning device on a different body part in which the target sub-area to be detected is located.
  • step S7 further comprises:
  • the standard skeleton model is a normal human body standard skeleton model
  • the three-dimensional skeleton model is a skeleton model generated by simulating the standard skeleton model by the bone position information.
  • the imaging method is one of ultrasound imaging, photoacoustic imaging, terahertz (THz) imaging, infrared imaging, and optical tomography (OCT).
  • THz terahertz
  • OCT optical tomography
  • the skeleton comprises bones of the spine, thorax, ribs, pelvis, and limbs.
  • the imaging probe scan can be performed manually, semi-automatically, or by mechanical means.
  • the invention provides an imaging method for obtaining a human skeleton, which uses a three-dimensional ultrasound system to obtain a skeleton of a sample body, has no radiation influence and is convenient and easy to use.
  • FIG. 1 is a flow chart of an imaging method for acquiring a human skeleton according to the present invention
  • Figure 2 is a cross-sectional image of a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional image of a coronal plane of a skeleton of a target area in a preferred embodiment of the present invention
  • Fig. 5 is a three-dimensional skeleton model of a human body obtained by the present invention.
  • the invention discloses an imaging method for acquiring a human skeleton, which is one of ultrasonic imaging, photoacoustic imaging, terahertz (THz) imaging, infrared imaging, and optical tomography (OCT).
  • the drawings of the present invention take the human spine bone as an example, but it does not mean that the human skeleton in the present invention includes only the human spine bone.
  • the human skeleton in the present invention includes the spine bone, the thorax, the rib, the pelvis, and The bones of the limbs and other parts of the human body are not limited here.
  • the imaging probe scanning mentioned in the present invention may be performed manually or semi-automatically or mechanically, and is not limited herein.
  • the main steps S1-S7 are shown in Figure 1.
  • the target area is determined and the scanning object is fixed (step S1), which is an imaging part or area to be detected, and may be a single area, and the plurality of continuous areas may also be a plurality of separated areas.
  • the scanning object may be various parts of the human body, and is not limited herein.
  • the imaging area is determined using the space sensor (step S2).
  • the imaging area can contain single or multiple target areas.
  • the space sensor is used to monitor the spatial position coordinates and scanning direction of the probe in real time.
  • the space sensor is directly mounted on the movable imaging probe.
  • the space sensor can also be loaded on other components that move together with the imaging probe, which is not limited herein.
  • the imaging area is scanned using the imaging probe to obtain a series of sectional images in which the spatial position coordinates and the scanning angle of the imaging probe are recorded (step S3).
  • the single cross-sectional image is shown in FIG.
  • the acquisition data of step S3 includes the cross-sectional image itself of the ultrasonic scanning and the spatial positioning data of the imaging probe obtained by the spatial sensor, that is, the spatial position coordinate and the scanning angle of the imaging probe, and the data acquisition process is performed by the imaging probe, the space sensor and the center in real time.
  • the control module is completed. Specifically, the space sensor is connected to the imaging probe for obtaining spatial positioning data of the imaging probe; the central control module is connected to the space sensor and the imaging probe for processing and displaying data and images.
  • the imaging probe can flexibly scan the same target area from different orientations and angles until a clear cross-sectional image is obtained, or the cross-sectional image obtained by scanning the same bone position from different angles can be processed by image processing.
  • image processing includes averaging, median filtering, or strongest signal selection (step S3.1) to obtain clear bone surface features. It can be understood that, at the same bone position, the imaging probe can adopt different ultrasonic frequencies, or a combination of multiple probes to acquire multiple images, and enhance the reflection of the bone surface by image processing, wherein the image processing method includes The average, median filtering or strongest signal selection (step S3.2) facilitates the processing of the cross-sectional image in subsequent steps.
  • the above scanning for the same part may be a manual scanning or a mechanical scanning. If the robot is used for scanning, the robot can scan the target area for three hundred and sixty degrees to obtain a cross-sectional image of each angle of the defense line.
  • the scanning method is not limited here.
  • the feature may For feature points, feature lines or feature surfaces, the selection of the feature can be automatically selected by manual selection or by an algorithm, such as automatically detecting the highest brightness point.
  • the above feature points, characteristic lines or feature surfaces may be reflection signals of the bone surface, or may be formed according to the shadow formed by the bone on the ultrasonic image, that is, the position of the bone in the three-dimensional space may be reflected by the reflection signal of the bone surface. Judging from the shadow formed by the bone on the ultrasound image.
  • the positional information of the bone in the three-dimensional space that is, the three-dimensional positional coordinates of the bone, can be determined.
  • the target area is continuously scanned until the bone position information and the sectional image in the skeleton in the entire area are all collected (step S6).
  • the target area collected by the imaging probe is The cross-sectional image of the skeleton, further, the reflection signal of the obtained bone surface can be projected in various directions in a three-dimensional space, thereby obtaining a similar effect like the X-ray projection.
  • the skeleton is displayed in a three-dimensional space (step S7), and as shown in FIG. 4, a three-dimensional image of the skeleton of the target region is displayed.
  • step S7 can further include displaying information such as a standard skeleton model, a three-dimensional skeleton model, and the like, and specific details will be described in the subsequent sections.
  • the image forming probe further performs scanning in different directions and different angles, extracting the bone position information in a cross-sectional image, and using the bone position information for performing phase Detection of bone position information in the adjacent cross-sectional image (step S5).
  • the ultrasound imaging device automatically adjusts the depth of focus to the depth of the bone surface, so that when the next adjacent cross-sectional image is acquired, the adjusted depth of focus is directly Use, and so on, to make focusing faster, and the process of detecting collected data is more efficient.
  • the depth-dependent ultrasound signal magnification is also adjusted accordingly so that the brightness of the image above or below the bone surface position is correspondingly reduced, thereby making the reflected signal on the bone surface more visible. Increases the efficiency of data collection while obtaining a clearer cross-sectional image.
  • step S4 determines the position of the bone in the three-dimensional space by the feature of the bone surface reflection in the cross-sectional image
  • the imaging method of the present invention is After step S4, the method further includes:
  • S4.1 performs image processing on the cross-sectional image.
  • the image processing includes image processing in terms of brightness, contrast, noise, and smoothness.
  • the central control module can display the obtained cross-sectional image in real time or display the bone in three-dimensional space, such as displaying a three-dimensional image of the skeleton of the currently scanned target area (as shown in FIG. 4).
  • the bone can be displayed in the three-dimensional space after scanning the entire target area, which is not limited herein.
  • the method further includes the following steps after step S4:
  • the cross-sectional image is displayed in real time (step S4.2).
  • the imaging probe scans to different locations and orientations
  • the image displayed on the screen moves and rotates accordingly so that the operator can see the obtained cross-sectional image and the included bone surface information in real time.
  • the bone is displayed in a three-dimensional space in real time (S4.3).
  • displaying the bone in three-dimensional space may include displaying a three-dimensional image of the bone, which may include displaying a three-dimensional model of the bone, such as a three-dimensional skeleton model and a standard skeleton model, etc., as described in detail in subsequent sections.
  • the imaging method of the present invention is in steps S4.2 and S4. Between 3 further includes:
  • the image processing includes image processing in terms of brightness, contrast, noise, and smoothness.
  • the scanning process may be a segmented scanning process, and the method may further include the following steps:
  • the data is paused using the pause command; when the imaging probe is moved to another target sub-area, a pause is given. Cancel the image acquisition by canceling the instruction to continue collecting data in this target sub-area. This eliminates the need to scan areas outside the target area, ie areas that are not of interest, thereby increasing data collection and processing efficiency.
  • the pause command or the pause cancel command may be a switch, a button or a voice command or the like.
  • the above scanning for a plurality of different target sub-areas may be manual scanning or mechanical scanning. If the robot is used for scanning, the robot can scan 360 degrees around the target to obtain a cross section of each line of defense.
  • the image and the specific scanning method are not limited herein.
  • the imaging probe can be scanned in different directions, or can be repeatedly scanned in different directions in the same place.
  • the image imaging direction can be perpendicular to the radial direction of the bone, such as scanning ribs.
  • the imaging probe can be scanned along the rib direction.
  • the imaging method further includes installing a micro-space positioning device on the different body parts where the target sub-area to be detected is located (step 1.1), so that the human body can be known The movement during the scanning process, so that the bone position information can be corrected accordingly.
  • the central control module stores a standard skeleton model, which can be displayed in real time together with the cross-sectional image of the skeleton or the three-dimensional map of the skeleton, or can be stored and processed by the data such as the bone position information collected in step S3.
  • the skeletal model is fitted to generate a three-dimensional skeleton model.
  • the standard skeleton model refers to a standard skeleton model of the human body under healthy and normal conditions
  • the three-dimensional skeleton model refers to a skeleton model generated by fitting the collected skeleton position information with a standard skeleton model.
  • the standard skeleton model corresponding to the target area can also be displayed in real time (step Sa), so that the operator gets a good reference in the scanning process. Further, it may further include displaying the position and angle information of the imaging probe according to the spatial sensor, and displaying the position of the imaging probe relative to the standard skeleton model during the scanning in real time (step Sb). Further, the central control module adjusts the stored standard skeleton model according to the obtained bone position information in the skeleton to display the three-dimensional skeleton model (step Sc), as shown in FIG. 5.
  • the imaging method for acquiring a human skeleton disclosed by the present invention can quickly and intuitively obtain the skeleton structure of the human body without any radiation, thereby avoiding X-ray detection and CT detection to the human body. Radiation damage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种获取人体骨架的成像方法,包括如下步骤:S1、确定目标区域并固定扫描对象;S2、使用空间传感器确定成像区域;S3、使用成像探头扫描目标区域以获得一系列记录了成像探头的空间位置坐标和扫描角度的截面图像;S4、通过截面图像中骨头表面反射的特征以及成像探头的所述空间位置坐标和所述扫描角度确定骨头在三维空间中的位置,并得到骨头位置信息;S6、持续扫描目标区域直到整个目标区域内的骨架中的骨头位置信息和截面图像被全部采集;S7、在三维空间中显示所述骨架。使用这一方法可以在没有任何辐射的情况下得到人体的骨架结构。

Description

一种获得人体骨架的成像方法 技术领域
本发明涉及图像处理技术领域,尤其涉及一种获得人体骨架的成像方法。
背景技术
现有技术中,三维人体骨架通常采用X光或CT成像在人体对象躺着的情况下获得。在成像过程中人体会吸收到一定计量的X光射线等有害的辐射,从而有潜在的风险。同时,人体要在躺着的情况下进行扫描,其扫描出的三维人体骨架与人体站立情况下的骨架形状会有一定的不同。另外,由于CT设备一定要在专门的房间安装及使用以避免辐射泄漏,多平面X光成像EOS系统可以通过相对较小的X光剂量在人体站立时获取两张正交的二维图,即人体前-后方向和左-右方向的两张正交图,然后通过软件对图像进行处理,并结合正常的脊柱骨架模型以获得脊柱的三维图效果,但是采用这一方法获得的三维骨架中含有软件估算的部分,测量结果并不完全准确,而且尽管此种方法的辐射量相对较小,但仍然存在有辐射对人体造成危害的影响而且需要在特别的可以防辐射的房间安装。
技术问题
因此,如何在能够准确获得人体三维骨架的同时,避免检测方法的辐射对人体造成的危害已经成为行业内亟需解决的问题。
技术解决方案
本发明的目的是针对现有的骨架检测方法不够准确且会对人体造成一定辐射危害的问题,提供了一种获得人体骨架的成像方法,其利用三维超声系统获得检测体的骨架,没有辐射影响而且方便易用。
本发明就其技术问题提供的技术方案为:提供一种获得骨架的成像方法,其特征在于,包括以下步骤:
S1、确定目标区域并固定扫描对象;
S2、使用空间传感器确定成像区域;
S3、使用成像探头扫描目标区域以获得一系列记录了成像探头的空间位置坐标和扫描角度的截面图像;
S4、通过截面图像中骨头表面反射的特征以及成像探头的所述空间位置坐标和所述扫描角度确定骨头在三维空间中的位置,并得到骨头位置信息;
S6、持续扫描目标区域直到整个目标区域内的骨架中的骨头位置信息和截面图像被全部采集;
S7、在三维空间中显示所述骨架。
优选地,所述成像方法在步骤S4和步骤S6之间进一步包括以下步骤:
S5、提取一幅截面图像中的所述骨头位置信息,并将所述骨头位置信息用于进行相邻的截面图像中的骨头位置信息的检测;
优选地,所述步骤S3进一步包括:
S3.1成像探头从不同角度扫描同一个骨头位置所获得的截面图像可以通过图像处理的方式以增强骨头表面的反射,所述图像处理包括平均、中值滤波或最强信号选取。
优选地,所述步骤S3进一步包括:
S3.2在同一个骨头位置上,成像探头可以采用不同的超声频率,或多个探头的组合来获取多张图像,通过图像处理的方式,以增强骨骼表面的反射,其中,所述图像处理包括平均、中值滤波或最强信号选取。
优选地,所述成像方法在步骤S4之后进一步包括:
S4.2实时显示所述截面图像。
优选地,所述成像方法在步骤S4之后进一步包括:
S4.3 根据所述截面图像和所述骨头位置信息,实时在三维空间中显示骨头。
优选地,当目标区域包含多个位于人体不同部位上的目标子区域或人体上同一部位但不相同的目标子区域时,所述成像方法进一步包括以下步骤:
S8、使用暂停指令暂停目标子区域的采集数据;
S9、使用暂停取消指令继续通过步骤S1-步骤S7在另一目标子区域采集数据。
优选地,成像探头采用以不同的方向和角度扫描目标区域。
优选地,当目标区域包含多个人体在不同部位的目标子区域时,该成像方法在步骤S1之后进一步包括:
S1.1在所需检测的目标子区域位于的不同的人体部位上安装微型空间定位装置。
优选地,所述步骤S7进一步包括:
Sa、实时显示与目标区域相应的标准骨架模型;或
Sb、根据所述成像探头的空间位置坐标和扫描角度,实时显示在扫描过程中成像探头相对于标准骨架模型的位置;或
Sc、根据所获得的骨架中的骨头位置信息对标准骨架模型进行调整,以显示三维骨架模型;
所述标准骨架模型为正常的人体标准骨架模型,所述三维骨架模型为通过所述骨头位置信息对所述标准骨架模型进行模拟而生成的骨架模型。
优选地,所述的成像方法是超声成像、光声成像、太赫兹(THz)成像、红外线成像、光层析成像(OCT)中的其中一种。
优选地,所述的骨架包括脊柱骨、胸廓、肋骨、盆骨、及四肢的骨头。
优选地,所述成像探头扫描可以由手动进行、半自动、或由机械装置进行。
有益效果
本发明提供了一种获得人体骨架的成像方法,其利用三维超声系统获得检测体的骨架,没有辐射影响而且方便易用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明的一种获取人体骨架的成像方法流程图;
图2为本发明一优选实施例中的截面图像;
图3为本发明一优选实施例中目标区域的骨架的冠状面截面图像;
图4为本发明一优选实施例中目标区域的骨架的三维图像;
图5为本发明所获得的人体三维骨架模型。
本发明的最佳实施方式
为了使本领域技术人员能够更加清楚地理解本发明,下面将结合附图及具体实施例对本发明做进一步详细的描述。
本发明公开了一种获取人体骨架的成像方法,该成像方法是超声成像、光声成像、太赫兹(THz)成像、红外线成像、光层析成像(OCT)中的其中一种。本发明的附图以人体脊柱骨为例,但并不意味着本发明中的人体骨架仅包括人体脊柱骨,事实上,本发明中的人体骨架包括脊柱骨、胸廓、肋骨、盆骨、及四肢的骨头等人体骨架部分,在此不做限定。在本发明中提到的成像探头扫描可以采用手动进行,也可以采用半自动或机械装置进行,在此不做限定。
主要步骤S1-S7如图1所示。确定目标区域并固定扫描对象(步骤S1),所述目标区域为需要被检测的成像部位或区域,可以为单个区域,多个连续区域也可以为多个分离的区域。所述扫描对象可以是人体的各个部位,在此不做限制。
使用空间传感器确定成像区域(步骤S2)。成像区域可以包含单个或者多个目标区域。空间传感器用于实时监测探头的空间位置坐标和扫描方向。在本实施例中,空间传感器直接装载在可移动的成像探头上,在本发明的其他实施例中,空间传感器还可以装载在其他与成像探头一起移动的部件上,在此不做限定。
使用成像探头扫描目标区域以获得一系列记录了成像探头的空间位置坐标和扫描角度的截面图像(步骤S3)。在本发明一优选实施例中,单张截面图像如图2所示。步骤S3的采集数据包括超声波扫描的截面图像本身以及由空间传感器获得的成像探头的空间定位数据,即成像探头的空间位置坐标和扫描角度,该数据采集过程实时地由成像探头、空间传感器以及中心控制模块完成,具体地,空间传感器与成像探头相连,用于获得的成像探头的空间定位数据;中心控制模块与空间传感器和成像探头相连,用于进行数据和图像的处理和显示。在扫描过程中,成像探头可以灵活地从不同的方位和角度扫描同一目标区域,直至获得清晰的的截面图像,或者从各个不同角度扫描同一个骨头位置所获得的截面图像可以通过图像处理的方式以增强骨头表面的反射,图像处理包括平均、中值滤波或最强信号选取(步骤S3.1),以获得清晰的骨头表面特征。可以理解地,在同一个骨头位置上,成像探头可以采用不同的超声频率,或多个探头的组合来获取多张图像,通过图像处理的方式,增强骨骼表面的反射,其中,图像处理方式包括平均、中值滤波或最强信号选取(步骤S3.2),从而方便后续步骤中对截面图像的处理。其中,以上针对同一部位的扫描可以是手动扫描,也可以是机械扫描,如采用机械手进行扫描,机械手可以环绕目标部位进行三百六十度的扫描,以获得各个防线个角度的截面图像,具体扫描方式在此不做限定。
通过截面图像中骨头表面反射的特征以及成像探头的空间位置坐标和扫描角度确定骨头在三维空间中的位置确定骨头在三维空间中的位置,并得到骨头位置信息(步骤S4),所述特征可以为特征点、特征线或者特征面,对该特征的选择可以通过人工选择或者通过算法自动检测,如自动检测亮度最高的点等。以上特征点、特征线或者特征面除了可以是骨头表面的反射信号,也可以根据骨头在超声图像上形成的阴影,也即,骨头在三维空间中的位置除了利用骨头表面的反射信号,也可以根据骨头在超声图像上形成的阴影来判断。由于探头的空间位置坐标和扫描角度信息在步骤S3中已被测量,结合超声反射的特征,即可以确定骨头在三维空间中的位置信息,即骨头的三维位置坐标。
持续扫描目标区域直到整个区域内的骨架中的骨头位置信息和截面图像被全部采集(步骤S6),在本发明一优选实施例中,如图3所示,通过成像探头采集到的目标区域的骨架的截面图像,进一步地,对所获得的骨头表面的反射信号可以在三维空间中作各个方向的投影,从而得到类似X光投影类似的效果。然后,在三维空间中显示所述骨架(步骤S7),如图4所示,显示出目标区域的骨架的三维图像。可以理解地,步骤S7还可以进一步包括显示出标准骨架模型,三维骨架模型等信息,具体细节将在后续部分中进行说明。
为了更高效地提高截面图像的质量,在成像探头进行不同方向和不同角度的扫描过程中进一步包括,提取一幅截面图像中的所述骨头位置信息,并将所述骨头位置信息用于进行相邻的截面图像中的骨头位置信息的检测(步骤S5)。当在一幅截面图像上的骨头表面位置确定后,超声成像装置会自动将聚焦深度调整到骨头表面的深度,于是,在获取下一张邻近的截面图像时,调整过的聚焦深度会被直接使用,如此类推,从而使得聚焦更快速,检测采集数据的过程更加高效。当聚焦深度确定后,与深度有关的超声信号放大倍数(TGC)也会做相应的调整,使得在比骨头表面位置上或下的图像的亮度会相应降低,从而使得骨头表面的反射信号更加明显,增加了数据采集的效率,同时可以获得更加清晰的截面图像。
当步骤S3中所采集的截面图像质量不足以进行分析以取得骨头位置信息,即步骤S4对无法通过截面图像中骨头表面反射的特征确定骨头在三维空间中的位置时,本发明的成像方法在步骤S4之后进一步包括:
S4.1 对所述截面图像进行图像处理。所述图像处理包括诸如亮度、对比度、噪声以及光滑度等方面的图像处理。
可以理解的是,在扫描过程中,中心控制模块可以实时显示获得的截面图像或者在三维空间中显示骨头,如显示当前扫描到的目标区域的骨架的三维图像(如图4所示),也可以在扫描完全部目标区域之后才在三维空间中显示骨头,在此不做限定。当需要中心控制模块在扫描过程中显示获得的截面图像或者在三维空间中显示骨头时,该方法在步骤S4之后进一步包括以下步骤:
实时显示截面图像(步骤S4.2)。当成像探头扫描到不同的部位和方位时,屏幕上显示的图像会相应地移动和转动从而让操作者可以实时看到所获得的截面图像以及所包含的骨头表面信息。根据所述截面图像和所述骨头位置信息,如图4所示,实时在三维空间中显示骨头(S4.3)。可以理解地,在三维空间中显示骨头可以包括显示骨头的三维图像,可以包括显示骨头的三维模型,如三维骨架模型和标准骨架模型等,详情在后续部分中进行描述。
在步骤S4.3实时显示三维空间中的骨头的过程中,当步骤S3中所采集的截面图像质量不足以进行分析以取得骨头位置信息时,本发明的成像方法在步骤S4.2和S4.3之间进一步包括:
S4.2.1 对所述截面图像进行图像处理。所述图像处理包括诸如亮度、对比度、噪声以及光滑度等方面的图像处理。
当目标区域包含多个位于人体不同部位上的目标子区域或人体上同一部位但不相同的目标子区域时,为了使得上述超声波扫描过程快捷有效,且使得采集数据均为目标区域内的数据,从而避免采集到目标区域外的数据造成额外的运算量等弊端,上述扫描过程可以为分段式的扫描过程,此时,该方法还可以进一步包括如下步骤 :
S8、使用暂停指令暂停目标子区域的采集数据。
S9、使用暂停取消指令继续通过步骤S1-步骤S7在另一目标子区域采集数据。
也即通过步骤S1-S7完成每个目标子区域的扫描并获得目标子区域的骨头位置信息之后,使用暂停指令暂停采集数据;当成像探头被移动到另外一个目标子区域之后,再给一个暂停取消指令即可恢复图像采集,从而继续采集这一目标子区域内的数据。这样就不需要扫描目标区域外的区域,即不感兴趣的区域,从而提高了数据采集和处理效率。该暂停指令或暂停取消指令可以为开关、按键或语音指令等。
以上针对多个不同的目标子区域的扫描可以是手动扫描,也可以是机械扫描,如采用机械手进行扫描,机械手可以环绕目标部位进行三百六十度的扫描,以获得各个防线个角度的截面图像,具体扫描方式在此不做限定。
在不同的人体位置,成像探头可以以不同的方向扫描,也可以在同一个地方重复用不同的方向扫描,比如扫描大腿骨时,图像成像方向可以与骨的径向垂直,比如扫描肋骨是,成像探头可以沿着肋骨方向扫描。而扫描脊柱时,可以运用多方向重复扫描,从而可以增加图像的清晰度。
当目标区域包含多个人体在不同部位的目标子区域时,该成像方法进一步包括在所需检测的目标子区域位于的不同的人体部位上安装微型空间定位装置(步骤1.1),从而可以知道人体在扫描过程中的移动情况,从而可以对骨头位置信息做相应的修正。
进一步地,中心控制模块中存储有标准骨架模型,可以和骨架的截面图像或者骨架的三维图一起实时显示,也可以通过存储和处理步骤S3中采集到的骨头位置信息等数据,将其与标准骨架模型进行拟合,以生成三维骨架模型。在本申请的说明书中,标准骨架模型指的是人体在健康和正常情况下的标准骨架模型,三维骨架模型指的是通过采集到的骨架位置信息与标准骨架模型进行拟合生成的骨架模型。在步骤S4.3和S7后还可以实时显示与目标区域相应的标准骨架模型(步骤Sa),从而使操作者在扫描过程中得到很好的参考。进一步地,还可以包括根据空间传感器提供成像探头的位置和角度信息,实时显示在扫描过程中成像探头相对于标准骨架模型的位置(步骤Sb)。更进一步地,中心控制模块根据所获得的骨架中的骨头位置信息对存储的标准骨架模型进行调整,以显示三维骨架模型(步骤Sc),如图5所示。
综上所述,采用本发明所公开的一种获取人体骨架的成像方法,其可以在在没有任何辐射的情况下快速直观地得到人体的骨架结构,从而避免了X光检测和CT检测给人体带来的辐射伤害。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (13)

  1. 一种获得骨架的成像方法,所述骨架包括骨头,其特征在于,包括以下步骤:
    S1、确定目标区域并固定扫描对象;
    S2、使用空间传感器确定成像区域;
    S3、使用成像探头扫描目标区域以获得一系列记录了成像探头的空间位置坐标和扫描角度的截面图像;
    S4、通过截面图像中骨头表面反射的特征以及成像探头的所述空间位置坐标和所述扫描角度确定骨头在三维空间中的位置,并得到骨头位置信息;
    S6、持续扫描目标区域直到整个目标区域内的骨架中的骨头位置信息和截面图像被全部采集;
    S7、在三维空间中显示所述骨架。
  2. 根据权利要求1所述的骨架的成像方法,其特征在于,所述成像方法在步骤S4和步骤S6之间进一步包括以下步骤:
    S5、提取一幅截面图像中的所述骨头位置信息,并将所述骨头位置信息用于进行相邻的截面图像中的骨头位置信息的检测。
  3. 根据权利要求1所述的骨架的成像方法,其特征在于,所述步骤S3进一步包括:
    S3.1成像探头从不同角度扫描同一个骨头位置所获得的截面图像可以通过图像处理的方式以增强骨头表面的反射,所述图像处理包括平均、中值滤波或最强信号选取。
  4. 根据权利要求1所述的骨架的成像方法,其特征在于,所述步骤S3进一步包括:
    S3.2在同一个骨头位置上,成像探头可以采用不同的超声频率,或多个探头的组合来获取多张图像,通过图像处理方式,以增强骨骼表面的反射,其中,所述图像处理包括平均、中值滤波或最强信号选取。
  5. 根据权利要求1所述的骨架的成像方法,其特征在于,所述成像方法在步骤S4之后进一步包括:
    S4.2实时显示所述截面图像。
  6. 根据权利要求1所述的骨架的成像方法,其特征在于,所述成像方法在步骤S4之后进一步包括:
    S4.3 根据所述截面图像和所述骨头位置信息,实时在三维空间中显示所述骨头。
  7. 根据权利要求1所述的骨架的成像方法,其特征在于,当目标区域包含多个位于人体不同部位上的目标子区域或人体上同一部位但不相同的目标子区域时,所述成像方法进一步包括以下步骤:
    S8、使用暂停指令暂停目标子区域的采集数据;
    S9、使用暂停取消指令继续通过步骤S1-步骤S7在另一目标子区域采集数据。
  8. 根据权利要求1所述的骨架的成像方法,其特征在于,成像探头采用以不同的方向和角度扫描目标区域。
  9. 根据权利要求1所述的骨架的成像方法,其特征在于,当目标区域包含多个人体在不同部位的目标子区域时,该成像方法在步骤S1之后进一步包括:
    S1.1在所需检测的目标子区域位于的不同的人体部位上安装微型空间定位装置。
  10. 根据权利要求1所述的骨架的成像方法,其特征在于,所述步骤S7进一步包括:
    Sa、实时显示与目标区域相应的标准骨架模型;或
    Sb、根据所述成像探头的空间位置坐标和扫描角度,实时显示在扫描过程中成像探头相对于标准骨架模型的位置;或
    Sc、根据所获得的骨架中的骨头位置信息对标准骨架模型进行调整,以显示三维骨架模型;
    所述标准骨架模型为正常的人体标准骨架模型,所述三维骨架模型为通过所述骨头位置信息对所述标准骨架模型进行模拟而生成的骨架模型。
  11. 根据权利要求1-10所述的骨架的成像方法,其特征在于,所述的成像方法是超声成像、光声成像、太赫兹成像、红外线成像、光层析成像中的其中一种。
  12. 根据权利要求1-11所述的骨架的成像方法,其特征在于,所述的骨架包括脊柱骨、胸廓、肋骨、盆骨、及四肢的骨头。
  13. 根据权利要求1所述的骨架的成像方法,其特征在于,所述成像探头扫描由手动进行、半自动、或由机械装置进行。
     
PCT/CN2018/094310 2017-07-11 2018-07-03 一种获得人体骨架的成像方法 WO2019011159A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18832029.5A EP3653128A4 (en) 2017-07-11 2018-07-03 IMAGING PROCESS FOR OBTAINING A HUMAN SKELETON
US16/629,579 US11344279B2 (en) 2017-07-11 2018-07-03 Imaging method for obtaining human skeleton
JP2020501255A JP7055860B2 (ja) 2017-07-11 2018-07-03 人体の骨格を取得するイメージング方法
AU2018301579A AU2018301579B2 (en) 2017-07-11 2018-07-03 Imaging method for obtaining human skeleton
CA3069585A CA3069585A1 (en) 2017-07-11 2018-07-03 Imaging method for obtaining human skeleton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710563512.2A CN109223031A (zh) 2017-07-11 2017-07-11 一种获得人体骨架的成像方法
CN201710563512.2 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019011159A1 true WO2019011159A1 (zh) 2019-01-17

Family

ID=65002333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094310 WO2019011159A1 (zh) 2017-07-11 2018-07-03 一种获得人体骨架的成像方法

Country Status (7)

Country Link
US (1) US11344279B2 (zh)
EP (1) EP3653128A4 (zh)
JP (1) JP7055860B2 (zh)
CN (1) CN109223031A (zh)
AU (1) AU2018301579B2 (zh)
CA (1) CA3069585A1 (zh)
WO (1) WO2019011159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017147A (zh) * 2019-05-31 2020-12-01 杭州三坛医疗科技有限公司 一种骨骼图像的提取方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3485816A1 (en) * 2017-11-21 2019-05-22 Koninklijke Philips N.V. Method and apparatus for guiding an ultrasound probe
CN111540043A (zh) * 2020-04-30 2020-08-14 京东方科技集团股份有限公司 骨骼模型表面轮廓生成装置、方法、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240994A1 (en) * 2009-03-23 2010-09-23 The Hong Kong Polytechnic University Method and apparatus for ultrasound imaging and elasticity measurement
CN102497821A (zh) * 2009-07-27 2012-06-13 香港理工大学 用于评估脊柱侧凸的三维(3d)超声成像系统
CN103417243A (zh) * 2012-05-24 2013-12-04 中慧医学成像有限公司 一种三维超声成像装置、系统和方法
CN203468632U (zh) * 2013-08-29 2014-03-12 中慧医学成像有限公司 具有机械臂的医学成像系统
CN105982693A (zh) * 2015-01-27 2016-10-05 中慧医学成像有限公司 一种成像方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476873A (en) * 1982-09-03 1984-10-16 Medtronic, Inc. Ultrasound scanning system for skeletal imaging
GB0404269D0 (en) * 2004-02-26 2004-03-31 Leuven K U Res & Dev Time-dependent three-dimensional musculo-skeletal modeling based on dynamic surface measurements of bodies
JP2008307087A (ja) 2007-06-12 2008-12-25 Toshiba Corp 超音波診断装置
JP5525355B2 (ja) 2010-07-12 2014-06-18 国立大学法人 東京大学 超音波診断装置
JP6000569B2 (ja) * 2011-04-01 2016-09-28 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム
US10368834B2 (en) 2011-04-26 2019-08-06 University Of Virginia Patent Foundation Bone surface image reconstruction using ultrasound
US9713508B2 (en) * 2012-04-30 2017-07-25 Christopher Schlenger Ultrasonic systems and methods for examining and treating spinal conditions
DE102012215294B4 (de) * 2012-08-29 2023-06-15 Siemens Healthcare Gmbh Verfahren zum Erzeugen eines Volumenmodells von einem Herz und zugehörige C-Bogen-Röntgenanlage
EP2961324B1 (en) * 2013-02-28 2023-01-11 Rivanna Medical, Inc. Systems and methods for ultrasound imaging
JP2015061592A (ja) * 2013-08-21 2015-04-02 コニカミノルタ株式会社 超音波診断装置、超音波画像処理方法およびコンピュータ読み取り可能な非一時的な記録媒体
KR20150098119A (ko) 2014-02-19 2015-08-27 삼성전자주식회사 의료 영상 내 거짓양성 병변후보 제거 시스템 및 방법
US20170079828A1 (en) * 2015-09-22 2017-03-23 Lim Innovations, Inc. Scoliosis treatment system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240994A1 (en) * 2009-03-23 2010-09-23 The Hong Kong Polytechnic University Method and apparatus for ultrasound imaging and elasticity measurement
CN102497821A (zh) * 2009-07-27 2012-06-13 香港理工大学 用于评估脊柱侧凸的三维(3d)超声成像系统
CN103417243A (zh) * 2012-05-24 2013-12-04 中慧医学成像有限公司 一种三维超声成像装置、系统和方法
CN203468632U (zh) * 2013-08-29 2014-03-12 中慧医学成像有限公司 具有机械臂的医学成像系统
CN105982693A (zh) * 2015-01-27 2016-10-05 中慧医学成像有限公司 一种成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653128A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017147A (zh) * 2019-05-31 2020-12-01 杭州三坛医疗科技有限公司 一种骨骼图像的提取方法及装置
CN112017147B (zh) * 2019-05-31 2024-03-22 杭州三坛医疗科技有限公司 一种骨骼图像的提取方法及装置

Also Published As

Publication number Publication date
JP7055860B2 (ja) 2022-04-18
CA3069585A1 (en) 2019-01-17
EP3653128A1 (en) 2020-05-20
JP2020528303A (ja) 2020-09-24
AU2018301579B2 (en) 2023-12-21
AU2018301579A1 (en) 2020-02-27
US20210077064A1 (en) 2021-03-18
EP3653128A4 (en) 2021-03-17
US11344279B2 (en) 2022-05-31
CN109223031A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
JP6994494B2 (ja) エラストグラフィ測定システム及びその方法
JP5738507B2 (ja) 超音波プローブの軌跡表現装置及び超音波診断装置
JP5400466B2 (ja) 画像診断装置、画像診断方法
US10278660B2 (en) Medical imaging apparatus and method for displaying a selected region of interest
JP5143333B2 (ja) 異なる種類の画像において異常部を観察するための画像処理を行うシステム及び方法
US9113817B2 (en) System for locating anatomical objects in ultrasound imaging
US11653897B2 (en) Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus
CN1853574A (zh) 超声数据以预获取图像的配准
JP2017527401A (ja) 超音波撮像装置
CN1853573A (zh) 使用超声以预获取图像配准电解剖图
JP2010166973A (ja) 超音波診断装置および位置情報取得プログラム
EP3465539B1 (en) Synchronized surface and internal tumor detection
WO2019011159A1 (zh) 一种获得人体骨架的成像方法
WO2012073164A1 (en) Device and method for ultrasound imaging
JP2006246974A (ja) リファレンス像表示機能を有する超音波診断装置
JP7451460B2 (ja) マンモグラフィにおけるユーザおよび/または患者の経験の改善のための方法およびシステム
JP2003260046A (ja) マンモグラフィの方法及び装置
JP6662612B2 (ja) 医用画像診断装置
US11170541B2 (en) Depth map creation apparatus that creates a plurality of depth maps on the basis of a plurality of spatial frequency components and plurality of tomographic images
JP5701362B2 (ja) 画像診断装置、画像診断方法
JP2020044266A (ja) 医用情報処理装置、x線診断装置及び医用情報処理プログラム
JP2013135869A (ja) 医用画像処理装置
US20230301510A1 (en) Robotic-assisted optical coherence tomography (oct)
JP4924249B2 (ja) 透過像撮影システム、および透過像撮影方法
KR101194283B1 (ko) 도형 템플릿을 이용하여 이미지를 측정하는 초음파 검사기 및 초음파 검사기의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3069585

Country of ref document: CA

Ref document number: 2020501255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832029

Country of ref document: EP

Effective date: 20200211

ENP Entry into the national phase

Ref document number: 2018301579

Country of ref document: AU

Date of ref document: 20180703

Kind code of ref document: A