WO2019010591A1 - 一种可旋转并联控制的大流量高频响数字阀 - Google Patents

一种可旋转并联控制的大流量高频响数字阀 Download PDF

Info

Publication number
WO2019010591A1
WO2019010591A1 PCT/CN2017/000432 CN2017000432W WO2019010591A1 WO 2019010591 A1 WO2019010591 A1 WO 2019010591A1 CN 2017000432 W CN2017000432 W CN 2017000432W WO 2019010591 A1 WO2019010591 A1 WO 2019010591A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
spool
sleeve
spiral groove
valve core
Prior art date
Application number
PCT/CN2017/000432
Other languages
English (en)
French (fr)
Inventor
王亚娟
Original Assignee
王亚娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王亚娟 filed Critical 王亚娟
Priority to PCT/CN2017/000432 priority Critical patent/WO2019010591A1/zh
Publication of WO2019010591A1 publication Critical patent/WO2019010591A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • the invention relates to an electro-hydraulic servo valve in the field of fluid transmission and control, in particular to a high-frequency large-flow digital servo valve which can be controlled in parallel.
  • Electro-hydraulic servo systems are widely used in aerospace, metallurgy, marine and military heavy industry, and their core components are electro-hydraulic servo valves.
  • the high-frequency response of the electro-hydraulic servo valve significantly improves the control performance of high-end equipment such as large composite presses, friction welders, high-frequency electro-hydraulic shakers, electro-hydraulic servo diverters and space simulators.
  • the traditional electro-hydraulic servo valve generally adopts the pre-stage drive power slide valve stage, and the input signal is an analog signal, and the characteristic of the anti-interference ability of the analog signal restricts the further improvement of the system control precision.
  • the current design of electro-hydraulic servo valves mainly focuses on the realization of high frequency response under digitalization and large flow.
  • digitization the movement of the valve core is realized by the servo motor driving the ball screw and the main valve core, and the rotary motion of the ball screw is changed into the axial movement of the valve core, and the servo valve is digitally controlled to realize the servo valve.
  • Digitization (such as reference patent 201110332448.X); or use the servo screw device to merge the pilot stage of the valve with the main stage to realize the integration of guidance and control.
  • the valve core rotates to generate hydraulic driving force to drive its own movement.
  • the digital control servo motor drives the valve core.
  • Rotation to achieve digitization (such as reference patent 200910153014.6); or the use of high-speed switching valve pilot stage control main stage mode, by controlling the on-off time of high-speed switching valve to achieve the main valve servo control, that is, digital control high-speed switching valve to achieve digital (such as reference Patent WO2012112292A1).
  • the electro-mechanical converter is made of super-magnetostrictive material as the pilot stage, the electro-mechanical converter has a large bandwidth, and the control main stage can realize the high-frequency sound under large flow rate (for example, refer to patent 201310149224.4); or for large flow cartridge valves, two servo valves are used as pilot stages for control to improve the dynamic response of the main stage (eg, reference patent 200810061616.4).
  • the existing patented design helps to digitize the large flow valve while increasing its frequency response, but it has the following shortcomings, mainly as follows:
  • the frequency response of the digital servo valve has encountered a bottleneck.
  • the servo motor is generally used to drive the spool to rotate to control the main valve.
  • the servo motor has a smaller rotation angle corresponding to each pulse.
  • the number of steps required for the servo motor to rotate at the same angle increases, which lowers the response speed of the spool and limits the further improvement of the servo valve frequency response under high precision.
  • the gain of the pilot stage driving main stage needs to be improved.
  • the pilot stage of the servo screw mechanism is integrated with the main stage. Increasing the diameter of the valve core can increase the flow capacity of the main valve and increase the gain of the main drive stage. It is more suitable as a valve core for a large flow digital valve.
  • the single-side gain control method used in this type of servo screw mechanism fails to fully utilize the controllable area of the valve core to maximize the gain of the pilot stage drive main stage to further enhance the main valve. The response speed of the core action.
  • the object of the present invention is to provide a high-flow high-frequency digital valve which can be controlled by rotary parallel control, realizes digital control and high-frequency sound of a large-flow servo valve through parallel rotation of a valve core and a valve sleeve, and adopts a spiral groove array of a valve sleeve.
  • the structure forms a multi-stage gain for precise control of high flow, high frequency response and end position.
  • a high-flow high-frequency digital valve capable of rotating parallel control comprising a valve body, a valve sleeve, a valve core, a left servo motor, a right servo motor, a left end cover and a right end cover; the valve sleeve is rotatably mounted in the valve body, the valve The core is rotatably mounted within the valve sleeve.
  • the left servo motor is mounted on the valve body through the left end cover, the left servo motor output shaft is fixedly connected to the valve sleeve, and the right servo motor is mounted on the valve body through the right end cover, and the valve core is connected to the right servo motor output shaft.
  • the left side of the valve body and the valve sleeve are connected by bearings, and the fixing sleeve is fixedly connected to the right side of the valve sleeve and placed in the valve body, and the valve body and the fixed sleeve are connected by bearings.
  • the left side of the valve body and the valve sleeve are connected by a left tapered roller bearing, and the right side tapered roller bearing is connected between the valve body and the fixed sleeve.
  • the left end face of the left second spool shaft section on the valve core and the valve sleeve form a left control cavity
  • the left upper spool core section has a left upper spool hole and a lower left spool hole
  • the left second spool core section has a valve
  • the left side has a left spiral groove, the left spiral groove is connected with the left control cavity, the left spiral groove is located between the upper left valve core hole and the lower left valve core hole
  • the right control cavity is formed, and the right upper spool core section has a right upper spool hole and a lower right spool hole, and the right outer spool sleeve has a right spiral groove on the inner side of the valve sleeve, and the right spiral groove and the right control volume
  • the cavity is connected, and the right spiral groove is located between the upper right spool hole and the lower right spool hole.
  • a left bearing adjusting washer for adjusting the pre-tightening amount of the left tapered roller bearing is disposed between the left end cover and the valve body, and a right bearing adjusting pad for adjusting the pre-tightening amount of the right tapered roller bearing is disposed between the right end cover and the valve body sheet.
  • the left tapered roller bearing and the right tapered roller bearing are mounted face to face.
  • Both ends of the spool are provided with a left butterfly spring and a right butterfly spring for centering.
  • a left spool adjusting washer and a right spool adjusting washer for calibrating the zero position are provided at both ends of the spool.
  • the left spiral groove is uniformly distributed in the circumferential direction by 1 to 5, and the helical spiral angles of the spiral grooves are different, and the right spiral groove is uniformly distributed in the circumferential direction by 1 to 5, and the helical spiral angles of the spiral grooves are different.
  • the upper left spool hole is connected to the high pressure oil
  • the lower left spool hole is connected to the low pressure oil
  • the upper right spool hole is connected to the high pressure oil
  • the lower right spool hole is connected to the low pressure oil.
  • the spiral groove has a spiral angle of 10 to 80 degrees.
  • Multi-stage gain switching of the servo valve is realized by the servo screw mechanism of the multi-stage spiral angle.
  • a plurality of spiral grooves having different helix angles are opened inside the valve sleeve, so that the rotary motion of the spool is converted into the gain of the axial movement, thereby achieving multi-stage gain.
  • the mechanism can reasonably switch the control gain of the servo valve according to the different requirements of the large flow rate and high precision of the control system in the control process, thereby ensuring the large flow and high frequency response required by the control process, and ensuring the accuracy of the terminal position control.
  • the valve has strong engineering adaptability.
  • Figure 1 is a schematic illustration of the internal structure of the present invention.
  • Figure 2 is a diagram showing the positional relationship of the valve sleeve spiral groove and the spool hole and the spool hole structure.
  • Figure 3 is a hydraulic control bridge that characterizes the valve port formed by the spool and the valve sleeve.
  • Figure 4 is a graph showing the relationship between the angle of rotation and the axial displacement of the servo screw mechanism.
  • Figure 5 is a diagram showing the positional relationship between the valve sleeve spiral groove and the spool hole to characterize the secondary variable gain.
  • Figure 6 is a diagram showing the positional relationship between the valve sleeve spiral groove and the valve core hole which characterizes the three-stage variable gain.
  • valve body 2, valve sleeve, 2A, first hole, 2B, second hole, 2C, first hole screw plug, 2D, second hole screw plug, 2X, left spiral groove, 2Y, right Spiral groove, 3, spool, 3B, left spool core section, 3C, right spool core section, 3D, left control volume, 3E, right control volume, 3F, spring chamber, 3G, left two valve Mandrel section, 3H, right two spool spool section, 3P1, upper left spool bore, 3T1, lower left spool bore, 3P2, lower right spool bore, 3T2, upper right spool bore, 4, fixed sleeve, 5, right Bushing, 6, right tapered roller bearing, 7, right bearing adjusting washer, 8, right end cover, 9, right servo motor, 9A, right servo motor output shaft, 10, right spool adjusting washer, 11, right Butterfly spring, 12, spool seal array, 13, valve sleeve seal array, 14, left s
  • Fig. 1 schematically shows a schematic view of the internal structure of an embodiment of the present invention.
  • a high-flow high-frequency digital valve capable of rotary parallel control comprising a valve body 1, a valve sleeve 2, a valve core 3, a left servo motor 15, a right servo motor 9, a left end cover 16, and a right end cover 8; the valve sleeve 2 can be Rotatingly mounted in the valve body 1, the spool 3 is rotatably mounted in the valve sleeve 2.
  • the left servo motor 15 is mounted on the valve body 1 through the left end cover 16, the left servo motor output shaft 15A is fixedly coupled to the valve sleeve 2, and the right servo motor 9 is mounted on the valve body 1 through the right end cover 8, and the spool 3 is connected to the right servo Motor output shaft 9A.
  • the left side of the valve body 1 and the valve sleeve 2 are connected by bearings, and the fixing sleeve 4 is fixedly connected to the right side of the valve sleeve 2 and placed in the valve body 1, and the valve body 1 and the fixed sleeve 4 are connected by bearings.
  • valve body 1 and the valve sleeve 2 are connected by a left tapered roller bearing 18, and the valve body 1 and the fixed sleeve 4 are connected by a right tapered roller bearing 6.
  • a left bearing adjustment washer 17 for adjusting the pre-tightening amount of the left tapered roller bearing 18 is disposed between the left end cover 16 and the valve body 1, and a right tapered roller bearing 6 is provided between the right end cover 8 and the valve body 1 A tight amount of right bearing adjusts the spacer 7.
  • the left tapered roller bearing 18 and the right tapered roller bearing 6 are mounted face to face.
  • the left and right butterfly springs 20 and the right butterfly spring 11 are disposed at both ends of the valve body 3, and the left butterfly spring 20 and the right butterfly spring 11 are both in a compressed state, and the spool 3 and the valve are realized at the initial position.
  • the sleeve 2 is in the intermediate mating position, that is, the spool 3 is in the neutral position.
  • the pressure of the spring chamber 3F is unloaded by the first hole 2A and the second hole 2B on the valve sleeve 2 communicating back to the oil port T1.
  • a left spool adjusting washer 19 and a right spool adjusting washer 10 for calibrating the zero position are disposed at both ends of the spool 3.
  • the left butterfly spring 20 and the right butterfly spring 11 realize the centering of the valve core 3, and the valve port is not in the zero-open position, the left valve core adjustment pad can be adjusted by the fit.
  • the sheet 19 and the right spool adjust the thickness of the spacer 10 to achieve a zero opening position of the valve port to align the zero position.
  • the left spiral groove 2X is uniformly distributed in the circumferential direction by 1 to 5, and the helical spiral angles of the spiral grooves are different, and the right spiral groove 2Y is uniformly distributed in the circumferential direction by 1 to 5, and the helical spiral angles of the spiral grooves are different.
  • the upper left spool hole 3P1 is connected to high pressure oil
  • the lower left spool hole 3T1 is connected to low pressure oil
  • the upper right spool bore 3T2 is connected to high pressure oil
  • the lower right spool bore 3P2 is connected to low pressure oil.
  • the spiral groove has a spiral angle of 10 to 80 degrees.
  • the spool plug 21 is fixedly coupled to the left spool spool section 3B.
  • Figure 2 is a diagram showing the positional relationship of the valve sleeve spiral groove and the spool hole and the spool hole structure.
  • the servo screw mechanism is used to convert the rotary motion of the spool 3 into axial movement.
  • the valve sleeve 2 is matched with the left second spool shaft section 3G with a left spiral groove 2X, the left spiral groove 2X is in communication with the left control cavity 3D, and the valve sleeve 2 is aligned with the right second spool shaft section 3H.
  • the left second spool shaft section 3G has the upper left spool hole 3P1 and the lower left spool bore 3T1, and the right second valve
  • the mandrel section 3H has an upper right spool hole 3T2 and a lower right spool hole 3P2.
  • the two holes in the same axial direction that is, the left upper valve core hole 3P1 and the upper right valve core hole 3T2 are different in oil port, and the left lower valve core hole 3T1 and the lower right valve core hole 3P2 are also connected with different oil ports, so that the left control capacity is different.
  • the pressure magnitude of the chamber 3D and the right control chamber 3E change in opposite directions, thereby increasing the control gain.
  • the upper left spool hole 3P1 and the lower right spool hole 3P2 are connected to the high pressure port P, and the lower left spool hole 3T1 and the upper right spool hole 3T2 are respectively connected to the oil ports T1 and T2.
  • the pressure of the left control chamber 3D is lowered, the pressure of the right control chamber 3E is increased, and the hydraulic force drives the spool 3 to move to the left until the lower left spool hole 3T1 and the lower right spool hole 3P2 are respectively corresponding to the spiral groove.
  • the oil passage is broken and the spool 3 stops moving.
  • the spool 3 is also rotated counterclockwise. As the axial movement of the spool 3, the main oil passage of the four-side spool formed by the spool 3 and the valve sleeve 2 opens, and the main oil passage enters the working state.
  • the working principle of the invention is as follows: the servo screw mechanism formed by the valve core 3 and the valve sleeve 2 controls the left control cavity 3D and the right control cavity on both sides of the valve core 3 through the rotation of the valve core 3
  • the pressure of 3E realizes the axial movement of the spool 3, that is, the integration of guiding and guiding.
  • the spool 3 rotates, the corresponding oil port is turned on, so that the pressures of the left control chamber 3D and the right control chamber 3E are correspondingly changed, thereby pushing the spool 3 to move axially until the spiral groove on the sleeve 2 is
  • the oil passage of the spool hole is broken, and finally the rotary motion of the spool 3 is converted into an axial movement.
  • the valve core 3 and the valve sleeve 2 cooperate to form a four-side sliding valve structure.
  • the area gradient of the main oil passage is increased, so that the valve has a large flow capacity.
  • the natural frequency of the main spool can be effectively increased.
  • the right servo motor 9 is digitally controlled to rotate the spool 3
  • the left servo motor 15 is digitally controlled to rotate the valve sleeve 2 in combination with the two-way rotation control of the spool 3 and the valve sleeve 2.
  • the valve sleeve 2 rotates counterclockwise, and the bidirectional rotation of the spool 3 and the valve sleeve 2 causes the valve hole and the spiral groove on the spool 3 to rotate counterclockwise with respect to only the spool 3
  • the opening is increased, the response speed at which the spool 3 is rotated to move axially increases, and the frequency response and dynamic characteristics of the valve can be further improved without lowering the control accuracy.
  • the right servo motor output shaft 9A and the right one spool shaft shaft segment 3C are connected by a spline or a flat key, and the spool 3 can also realize axial movement during the rotation of the right servo motor 9 to drive the spool 3;
  • the motor output shaft 15A is fixedly connected to the valve sleeve shaft section 2E, and the valve sleeve 2 can only perform a rotary motion by the left servo motor 15.
  • the right tapered roller bearing 6 and the left tapered roller bearing 18 are mounted face to face, can withstand large axial loads, and realize the right tapered roller bearing by changing the thickness of the right bearing adjusting washer 7 or the length of the right bushing 5. Pre-tightening and positioning of 6; pre-tightening and positioning of the left tapered roller bearing 18 is achieved by changing the length of the left bearing adjustment washer 17 or the left sleeve 14.
  • the centering of the spool 3 is achieved by the right butterfly spring 11 and the left butterfly spring 20, and the adjustment of the right spool adjusting washer 10 and the left spool adjusting washer 19 can calibrate the initial zero position.
  • the pilot control valve port is formed by the spiral groove on the valve sleeve 2 and the circular hole of the valve core 3. This structure has low requirements on oil, and is equivalent to the ordinary valve member, thereby effectively improving the anti-pollution ability of the servo valve.
  • Figure 3 is a hydraulic control bridge that characterizes the valve port formed by the spool and the valve sleeve. Due to the left two spool spool section 3G on the spool 3 and The valve hole is opened on the right second spool shaft section 3H, and the oil ports of the two holes in the same axial direction are different, and cooperate with the spiral groove on the valve sleeve 2, which makes the left control at the two ends of the valve core 3 The cavity 3D and the right control cavity 3E form two hydraulic half bridges.
  • the solid arrow shown in Fig. 3 indicates that the liquid resistance at the position becomes large, and the hollow arrow indicates that the liquid resistance at the position becomes small. At this time, the state in Fig.
  • Figure 4 illustrates the relationship between the angle of rotation and the axial displacement of the servo screw mechanism.
  • M1 represents a rotation of the spool 3 relative to the valve sleeve 2, and in the circumferential direction of the spool 3, the spool hole is offset from the spiral groove distance y;
  • M2 represents the axial movement distance of the spool 3 based on the state indicated by M1.
  • x the oil passage of the spool hole and the spiral groove is cut off;
  • M3 represents a schematic diagram of the synthesis of M1 and M2.
  • Figure 5 is a diagram showing the positional relationship between the valve sleeve spiral groove and the spool hole to characterize the secondary variable gain.
  • the inside of the valve sleeve 2 is evenly opened with two spiral grooves L1 and L2 of different spiral angles, which are separated by 180 degrees.
  • the spiral groove of the valve sleeve 2 and the valve core 3 and the cylindrical surface of the valve hole are flattened.
  • the larger the spiral angle the smaller the axial displacement, that is, the higher the resolution. . Therefore, for different working conditions, the valve sleeve is rotated by 180° to make different spiral grooves participate in the work, and different resolutions or different gains can be obtained.
  • the above structure can be used to make a small spiral angle into the work during the control process, achieving large flow control and approaching the terminal.
  • the larger spiral angle is involved in the work, further improving the control precision of the servo valve.
  • This two-stage variable gain method further improves the adaptability of the valve's high-precision servo control in the case of large flow.
  • Figure 6 is a diagram showing the positional relationship between the valve sleeve spiral groove and the valve core hole which characterizes the three-stage variable gain.
  • more than three n-stage spiral grooves can be evenly opened inside the valve sleeve, and the spiral angle of the n-stage spiral groove is set to be different, and each rotation is 360/n degrees. It is possible to make the spiral groove with different spiral angles to work, and select the appropriate spiral groove to participate in the work according to the requirements of control speed and precision, which will greatly improve the adaptability of the valve. Under the common large-diameter valve core structure, too many spiral grooves will increase the processing difficulty and reduce the strength, so the spiral groove opened inside the valve sleeve does not exceed 5 levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种可旋转并联控制的大流量高频响数字阀,由阀体(1)、阀套(2)、左伺服电机(15)和右伺服电机(9)等部分组成,阀套(2)可旋转的安装在阀体(1)内,阀芯(3)可旋转的安装在阀套(2)内;阀芯轴两端均开有通高压油或低压油的阀芯孔,与阀套两侧对应位置所开螺旋槽(2X、2Y)配合,通过阀芯(3)左右侧容腔压力控制实现阀芯(3)轴向移动;右伺服电机(9)带动阀芯(3)旋转,左伺服电机(15)带动阀套(2)旋转,通过阀芯(3)和阀套(2)的并联控制实现双向旋转,突破了传统仅有阀芯(3)旋转导致的频率极限;阀套(2)上开有不同螺旋升角的螺旋槽机构,使阀芯(3)转动变为轴向移动具有多级增益功能。该数字阀通过阀芯(3)和阀套(2)的并联旋转数字控制、具有多级增益功能的螺旋槽阵列结构,达到伺服阀大流量、高频响及终端位置的精确控制。

Description

一种可旋转并联控制的大流量高频响数字阀 技术领域
本发明涉及流体传动及控制领域的电液伺服阀,尤其涉及一种可并联控制的高频大流量数字伺服阀。
背景技术
电液伺服系统广泛应用在航空航天、冶金、船舶和军事重工等诸多领域,其核心元件是电液伺服阀。电液伺服阀的高频响特点显著提升了高端装备(如大型复合材料压机、摩擦焊机、高频电液振动台、电液伺服转向器和空间模拟器等)的控制性能。传统的电液伺服阀一般采用前置级驱动功率滑阀级,输入信号为模拟信号,其模拟信号抗干扰能力差的特点制约了系统控制精度的进一步提升。随着数字控制技术的发展,抗干扰能力迅速增强,计算机与总线直接参与控制成为可能,这为数字化伺服阀的发展提供了技术支撑;此外,高端装备的迅猛发展,对伺服阀的大流量、高频响、抗污染提出了苛刻的要求,同时也为发展大流量、高频响、数字式、抗污染的伺服阀提供了广阔的市场空间。
当前电液伺服阀的设计,主要围绕着实现数字化和大流量下的高频响两方面展开。(1)在数字化方面:通过伺服电机带动滚珠丝杠和主阀芯实现阀芯的移动,将滚珠丝杠的旋转运动变为阀芯的轴向移动,通过伺服电机的数字控制实现伺服阀的数字化(如参考专利201110332448.X);或者采用伺服螺旋装置将阀的先导级与主级合并,以实现导控一体,阀芯旋转后产生液压驱动力推动自身移动,数字控制伺服电机带动阀芯旋转实现数字化(如参考专利200910153014.6);或者采用高速开关阀的先导级控制主级方式,通过控制高速开关阀的通断时间实现主阀的伺服控制,即数字控制高速开关阀实现数字化(如参考专利WO2012112292A1)。(2)在大流量下的高频响方面:采用超磁致伸缩材料制成电机械转换器作为先导级,此电机械转换器频宽大,控制主级可实现大流量下的高频响(如参考专利201310149224.4);或者针对大流量插装阀,用两个伺服阀作为先导级进行控制,以提高主级的动态响应(如参考专利200810061616.4)。现有专利设计有助于实现大流量阀的数字化,同时提高其频率响应,但存在以下一些不足,主要表现为:
1)数字式伺服阀的频响提升遇到瓶颈。在数字式伺服阀的设计中,一般采用伺服电机带动阀芯旋转,实现对主阀的控制。为了提高控制的分辨率或精度,要求伺服电机每一脉冲对应的转角越小越好。然而随着每一脉冲对应的转角变小,导致伺服电机转动相同角度所需的步数增加,这降低了阀芯的响应速度,限制了高精度情况下伺服阀频响的进一步提升。
2)先导级驱动主级的增益有待提高。伺服螺旋机构的先导级与主级同为一体,增大阀芯直径即可提升主阀的通流能力并提高驱动主级的增益,较适合于作为大流量数字阀的阀芯。 目前该类伺服螺旋机构中所采用的单边增益控制方式(如参考专利200910153014.6),未能全面利用阀芯的可控面积,最大程度的提升先导级驱动主级的增益,以进一步提升主阀芯动作的响应速度。
3)终端位置精确控制的适应性有待加强。由于伺服阀在设计时兼顾了大流量和高频响,流量增益大,难以在伺服系统终端位置上实现精确控制,由此制约了其在大型复合材料压机、摩擦焊机等装备中的应用,限制了其高精度控制性能的提升,降低了该阀的工程适应性。
发明内容
本发明目的是提供一种可旋转并联控制的大流量高频响数字阀,通过阀芯和阀套的并联旋转实现大流量伺服阀的数字控制和高频响,同时采用阀套的螺旋槽阵列结构,形成多级增益以实现大流量、高频响及终端位置的精确控制。
为了达到上述目的,本发明采用的技术方案如下:
一种可旋转并联控制的大流量高频响数字阀,包括阀体、阀套、阀芯、左伺服电机、右伺服电机、左端盖、右端盖;阀套可旋转的安装在阀体内,阀芯可旋转的安装在阀套内。
左伺服电机通过左端盖安装在阀体上,左伺服电机输出轴固定连接于阀套,右伺服电机通过右端盖安装在阀体上,阀芯连接于右伺服电机输出轴。
阀体和阀套的左侧通过轴承连接,固定套固定连接于阀套右侧并置于阀体内,阀体和固定套通过轴承连接。
阀体和阀套的左侧用左圆锥滚子轴承连接,阀体和固定套之间用右圆锥滚子轴承连接。
阀芯上的左二阀芯轴段的左端面、阀套形成左控制容腔,左二阀芯轴段上开有左上阀芯孔和左下阀芯孔,左二阀芯轴段外的阀套内侧开有左螺旋槽,左螺旋槽与左控制容腔连通,左螺旋槽位于左上阀芯孔和左下阀芯孔之间;阀芯上的右二阀芯轴段的右端面、阀套形成右控制容腔,右二阀芯轴段上开有右上阀芯孔和右下阀芯孔,右二阀芯轴段外的阀套内侧开有右螺旋槽,右螺旋槽与右控制容腔连通,右螺旋槽位于右上阀芯孔和右下阀芯孔之间。
左端盖和阀体之间设置有用于调节左圆锥滚子轴承预紧量的左轴承调整垫片,右端盖和阀体之间设置有用于调节右圆锥滚子轴承预紧量的右轴承调节垫片。
左圆锥滚子轴承和右圆锥滚子轴承面对面安装。
阀芯两端设置用于对中的左蝶形弹簧和右蝶形弹簧。
阀芯两端设置用于校准零位的左阀芯调整垫片和右阀芯调整垫片。
左螺旋槽沿圆周方向均布1~5个,各螺旋槽螺旋升角不同,右螺旋槽沿圆周方向均布1~5个,各螺旋槽螺旋升角不同。
左上阀芯孔接高压油,左下阀芯孔接低压油,右上阀芯孔接高压油,右下阀芯孔接低压油。
螺旋槽的螺旋升角度数为10~80度。
本发明具备的有益效果是:
1)通过所设计的阀芯阀套并联旋转机构,突破大流量数字阀频响提升的瓶颈。阀芯和阀套的同步双向旋转控制,摆脱了传统仅有阀芯旋转导致的频率极限,不仅保证了伺服阀的控制精度,相对于传统数字阀其频响有效提升。
2)利用双边增益控制结构,提高将阀芯旋转运动转变为轴向移动的响应速度。通过在阀芯两端均开有控制阀孔,使阀芯同一轴线方向上的两控制阀孔分别接高低压口且配合使用,从而使阀芯两侧敏感腔的压力同时变化,由此提高了其动态响应。
3)通过多级螺旋升角的伺服螺旋机构,实现伺服阀的多级增益切换。在阀套内侧开有数个具有不同螺旋升角的螺旋槽,从而使阀芯旋转运动转变为轴向移动的增益不同,由此实现多级增益。该机构可根据控制系统在控制过程中的大流量和高精度的不同要求,合理切换伺服阀的控制增益,既保证控制过程所需的大流量与高频响,又保证终端位置控制的精度,使该阀具备了较强的工程适应性。
附图说明
图1是本发明内部结构的示意图。
图2是表征阀套螺旋槽和阀芯孔的位置关系及阀芯孔结构。
图3是表征阀芯与阀套所形成阀口的液压控制桥路。
图4是表征伺服螺旋机构的旋转角度与轴向位移关系。
图5是表征二级变增益的阀套螺旋槽与阀芯孔位置关系。
图6是表征三级变增益的阀套螺旋槽与阀芯孔位置关系。
图中:1、阀体,2、阀套,2A、第一孔,2B、第二孔,2C、第一孔螺塞,2D、第二孔螺塞,2X、左螺旋槽,2Y、右螺旋槽,3、阀芯,3B、左一阀芯轴段,3C、右一阀芯轴段,3D、左控制容腔,3E、右控制容腔,3F、弹簧腔,3G、左二阀芯轴段,3H、右二阀芯轴段,3P1、左上阀芯孔,3T1、左下阀芯孔,3P2、右下阀芯孔,3T2、右上阀芯孔,4、固定套,5、右轴套,6、右圆锥滚子轴承,7、右轴承调节垫片,8、右端盖,9、右伺服电机,9A、右伺服电机输出轴,10、右阀芯调整垫片,11、右蝶形弹簧,12、阀芯密封圈阵列,13、阀套密封圈阵列,14、左轴套,15、左伺服电机,15A、左伺服电机输出轴,16、左端盖,17、左轴承调整垫片,18、左圆锥滚子轴承,19、左阀芯调整垫片,20左蝶形弹簧,21、阀芯螺塞。
具体实施方式
下面结合附图和实施例,说明本发明的具体实施方式。
图1示意性地表示了本发明实施方案的内部结构的示意图。
一种可旋转并联控制的大流量高频响数字阀,包括阀体1、阀套2、阀芯3、左伺服电机15、右伺服电机9、左端盖16、右端盖8;阀套2可旋转的安装在阀体1内,阀芯3可旋转的安装在阀套2内。
左伺服电机15通过左端盖16安装在阀体1上,左伺服电机输出轴15A固定连接于阀套2,右伺服电机9通过右端盖8安装在阀体1上,阀芯3连接于右伺服电机输出轴9A。
阀体1和阀套2的左侧通过轴承连接,固定套4固定连接于阀套2右侧并置于阀体1内,阀体1和固定套4通过轴承连接。
阀体1和阀套2的左侧用左圆锥滚子轴承18连接,阀体1和固定套4之间用右圆锥滚子轴承6连接。
阀芯3上的左二阀芯轴段3G的左端面、阀套2形成左控制容腔3D,左二阀芯轴段3G上开有左上阀芯孔3P1和左下阀芯孔3T1,左二阀芯轴段3G外的阀套2内侧开有左螺旋槽2X,左螺旋槽2X与左控制容腔3D连通,左螺旋槽2X位于左上阀芯孔3P1和左下阀芯孔3T1之间;阀芯3上的右二阀芯轴段3H的右端面、阀套2形成右控制容腔3E,右二阀芯轴段3H上开有右上阀芯孔3T2和右下阀芯孔3P2,右二阀芯轴段3H外的阀套2内侧开有右螺旋槽2Y,右螺旋槽2Y与右控制容腔3E连通,右螺旋槽2Y位于右上阀芯孔3T2和右下阀芯孔3P2之间。
左端盖16和阀体1之间设置有用于调节左圆锥滚子轴承18预紧量的左轴承调整垫片17,右端盖8和阀体1之间设置有用于调节右圆锥滚子轴承6预紧量的右轴承调节垫片7。
左圆锥滚子轴承18和右圆锥滚子轴承6面对面安装。
阀芯3两端设置用于对中的左蝶形弹簧20和右蝶形弹簧11,并使左蝶形弹簧20和右蝶形弹簧11均处于压缩状态,实现初始位置时阀芯3与阀套2处于中间配合位置,即阀芯3处于中位。
弹簧腔3F的压力通过阀套2上的第一孔2A和第二孔2B连通回油口T1将压力卸载。
阀芯3两端设置用于校准零位的左阀芯调整垫片19和右阀芯调整垫片10。当伺服阀设计为零开口阀时,由于左蝶形弹簧20和右蝶形弹簧11实现阀芯3的对中,并不能确保阀口处于零开口位置,可通过配合的调节左阀芯调整垫片19和右阀芯调整垫片10的厚度来达到阀口处于零开口位置,从而校准零位。
左螺旋槽2X沿圆周方向均布1~5个,各螺旋槽螺旋升角不同,右螺旋槽2Y沿圆周方向均布1~5个,各螺旋槽螺旋升角不同。
左上阀芯孔3P1接高压油,左下阀芯孔3T1接低压油,右上阀芯孔3T2接高压油,右下阀芯孔3P2接低压油。
螺旋槽的螺旋升角度数为10~80度。
阀芯螺塞21固定连接于左一阀芯轴段3B内。
图2是表征阀套螺旋槽和阀芯孔的位置关系及阀芯孔结构。采用伺服螺旋机构,实现将阀芯3的旋转运动转化为轴向移动。阀套2与左二阀芯轴段3G相配合的位置开有左螺旋槽2X,左螺旋槽2X与左控制容腔3D相通,阀套2与右二阀芯轴段3H相配合的位置开有右螺旋槽2Y,右螺旋槽2Y与右控制容腔3E相通。左二阀芯轴段3G开有左上阀芯孔3P1和左下阀芯孔3T1,右二阀 芯轴段3H开有右上阀芯孔3T2和右下阀芯孔3P2。在同一轴线方向上的两孔即左上阀芯孔3P1和右上阀芯孔3T2所接油口不同,左下阀芯孔3T1和右下阀芯孔3P2所接油口也不同,以使左控制容腔3D和右控制容腔3E的压力大小变化趋势相反,从而提高控制增益。图2中左上阀芯孔3P1和右下阀芯孔3P2接高压油口P,左下阀芯孔3T1和右上阀芯孔3T2分别接回油口T1和T2。
阀芯3旋转变为其轴向移动的具体工作过程:当阀芯3按照图2中C-C视图的F方向旋转,即阀芯3顺时针旋转,左下阀芯孔3T1与左螺旋槽2X相通,将左控制容腔3D的压力油通过左下阀芯孔3T1和左螺旋槽2X引入回油口T1;右下阀芯孔3P2与右螺旋槽2Y相通,将P口的高压油通过右下阀芯孔3P2和右螺旋槽2Y引入右控制容腔3E。此时,左控制容腔3D压力降低,右控制容腔3E的压力升高,液压作用力驱动阀芯3向左移动,直至左下阀芯孔3T1与右下阀芯孔3P2均与相应螺旋槽的油路断开,阀芯3停止继续移动。阀芯3逆时针旋转亦然。随着阀芯3的轴向移动,阀芯3与阀套2形成的四边滑阀主油路打开,使主油路进入工作状态。
结合图1和图2,本发明工作原理如下:阀芯3与阀套2所形成的伺服螺旋机构,通过阀芯3的旋转控制阀芯3两侧的左控制容腔3D和右控制容腔3E的压力,实现阀芯3的轴向移动,即实现导控一体。当阀芯3旋转后,相应的油口接通,使左控制容腔3D和右控制容腔3E压力发生相应变化,从而推动阀芯3发生轴向移动,直至阀套2上的螺旋槽与阀芯孔的油路断开,最终实现阀芯3的旋转运动转变为轴向移动。阀芯3和阀套2配合形成四边滑阀结构,通过增大阀芯3直径,增大主油路的面积梯度,从而使阀具备大流量通流能力。尽可能缩小左控制容腔3D和右控制容腔3E的体积,可有效提高主阀芯的液压固有频率。右伺服电机9采用数字方式控制使阀芯3旋转,左伺服电机15采用数字方式来控制使阀套2旋转,结合阀芯3和阀套2的双向旋转控制。例如当阀芯3顺时针旋转时,阀套2逆时针旋转,相对于仅有阀芯3旋转的情况,阀芯3和阀套2的双向旋转使阀芯3上的阀孔与螺旋槽的开口增大,则阀芯3转动变为轴向移动的响应速度增大,在不降低控制精度的前提下,可进一步提高该阀的频率响应和动态特性。
右伺服电机输出轴9A与右一阀芯轴段3C采用花键或平键等方式连接,在右伺服电机9带动阀芯3旋转的过程中,阀芯3也可实现轴向移动;左伺服电机输出轴15A与阀套轴段2E固定连接,阀套2在左伺服电机15的带动下仅能实现旋转运动。
右圆锥滚子轴承6和左圆锥滚子轴承18采用面对面安装,能承受较大的轴向载荷,通过改变右轴承调节垫片7的厚度或右轴套5的长度,实现右圆锥滚子轴承6的预紧和定位;通过改变左轴承调整垫片17或左轴套14的长度,实现左圆锥滚子轴承18的预紧和定位。
采用右蝶形弹簧11和左蝶形弹簧20实现阀芯3的对中,调节右阀芯调整垫片10和左阀芯调整垫片19可校准初始零位。
先导控制阀口由阀套2的上的螺旋槽与阀芯3的圆孔形成,这种结构对油液的要求低,与普通阀件相当,因此有效提升了伺服阀的抗污染能力。
图3是表征阀芯与阀套所形成阀口的液压控制桥路。由于阀芯3上的左二阀芯轴段3G和 右二阀芯轴段3H上都开有阀孔,在同一轴线方向上的两孔所接油口不同,且与阀套2上的螺旋槽相配合,这使得在阀芯3两端的左控制容腔3D和右控制容腔3E形成两个液压半桥。图3中所示实心箭头表示该位置液阻变大,空心箭头表示该位置液阻变小,此时图3中的状态表示左控制容腔3D的控制压力增大,右控制容腔3E的控制压力减小。因此,阀芯3两端的控制容腔压力大小呈相反趋势变化,压力变化的响应速度比单一控制容腔模式快,由此进一步提高了将旋转运动转换为轴向运动的响应速度。
图4表征伺服螺旋机构的旋转角度与轴向位移关系。图4中M1表示阀芯3相对阀套2旋转,在阀芯3圆周方向,阀芯孔偏移螺旋槽距离y的示意图;M2表示在M1所示状态基础上,阀芯3轴向移动距离x,使阀芯孔与螺旋槽的油路切断;M3表示M1和M2的合成示意图。
阀套2和阀芯3均可旋转,设阀套2旋转角度为δ2,阀芯3反向旋转角度为δ1,则圆周方向螺旋槽和阀孔相对转动的距离y=(δ12)R,其中R为阀芯半径,由于阀套2和阀芯3相对旋转后,在液压桥路作用下,阀芯3将产生轴向移动距离x,且x=y/tanθ,其中θ为螺旋升角。故螺旋升角越大,在阀芯3相同转角下,阀芯3的轴向移动距离x越小,即伺服螺旋机构的分辨率将获得进一步提升,更有利于高精确控制。
图5是表征二级变增益的阀套螺旋槽与阀芯孔位置关系。阀套2内侧均匀的开有两条不同螺旋升角的螺旋槽L1和L2,二者相隔180度。将阀套2与阀芯3配合表面的螺旋槽和阀孔所在的圆柱面展平显示,在相同阀芯转角情况下,螺旋升角越大其轴向位移越小,即其分辨率越高。因此针对不同工况,将阀套旋转180°使不同的螺旋槽参与工作,可得到不同的分辨率即不同的增益。在执行器运动过程中需大流量控制、终端位置需高精度控制的诸多工程应用中,可通过上述结构,在控制过程中使较小的螺旋升角参与工作,实现大流量控制,接近终端时,使较大的螺旋升角参与工作,进一步提升伺服阀的控制精度。这种二级变增益的方式,在大流量情况下进一步了提高阀的高精度伺服控制的适应性。
图6是表征三级变增益的阀套螺旋槽与阀芯孔位置关系。根据被控执行器控制速度与控制精度的不同要求,可进一步在阀套内侧均匀的开有三条以上的n级螺旋槽,设置n级螺旋槽的螺旋升角不同,每旋转360/n度,即可使不同螺旋升角的螺旋槽参与工作,根据控制速度与精度的要求选择合适的螺旋槽参与工作,这将大幅提高阀的适应性。在常见大通径阀芯结构下,螺旋槽过多将增大加工难度且降低强度,因此阀套内侧所开螺旋槽不超过5级。

Claims (10)

  1. 一种可旋转并联控制的大流量高频响数字阀,其特征在于它包括阀体(1)、阀套(2)、阀芯(3)、左伺服电机(15)、右伺服电机(9)、左端盖(16)、右端盖(8);阀套(2)可旋转的安装在阀体(1)内,阀芯(3)可旋转的安装在阀套(2)内;
    左伺服电机(15)通过左端盖(16)安装在阀体(1)上,左伺服电机输出轴(15A)固定连接于阀套(2),右伺服电机(9)通过右端盖(8)安装在阀体(1)上,阀芯(3)连接于右伺服电机输出轴(9A);
    阀体(1)和阀套(2)的左侧通过轴承连接,固定套(4)固定连接于阀套(2)右侧并置于阀体(1)内,阀体(1)和固定套(4)通过轴承连接。
  2. 根据权利要求1所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的阀体(1)和阀套(2)的左侧用左圆锥滚子轴承(18)连接,阀体(1)和固定套(4)之间用右圆锥滚子轴承(6)连接。
  3. 根据权利要求1所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的阀芯(3)上的左二阀芯轴段(3G)的左端面、阀套(2)形成左控制容腔(3D),左二阀芯轴段(3G)上开有左上阀芯孔(3P1)和左下阀芯孔(3T1),左二阀芯轴段(3G)外的阀套(2)内侧开有左螺旋槽(2X),左螺旋槽(2X)与左控制容腔(3D)连通,左螺旋槽(2X)位于左上阀芯孔(3P1)和左下阀芯孔(3T1)之间;阀芯(3)上的右二阀芯轴段(3H)的右端面、阀套(2)形成右控制容腔(3E),右二阀芯轴段(3H)上开有右上阀芯孔(3T2)和右下阀芯孔(3P2),右二阀芯轴段(3H)外的阀套(2)内侧开有右螺旋槽(2Y),右螺旋槽(2Y)与右控制容腔(3E)连通,右螺旋槽(2Y)位于右上阀芯孔(3T2)和右下阀芯孔(3P2)之间。
  4. 根据权利要求1所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的左端盖(16)和阀体(1)之间设置有用于调节左圆锥滚子轴承(18)预紧量的左轴承调整垫片(17),右端盖(8)和阀体(1)之间设置有用于调节右圆锥滚子轴承(6)预紧量的右轴承调节垫片(7)。
  5. 根据权利要求1所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的左圆锥滚子轴承(18)和右圆锥滚子轴承(6)面对面安装。
  6. 根据权利要求1所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的阀芯(3)两端设置用于对中的左蝶形弹簧(20)和右蝶形弹簧(11)。
  7. 根据权利要求1所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的阀芯(3)两端设置用于校准零位的左阀芯调整垫片(19)和右阀芯调整垫片(10)。
  8. 根据权利要求3所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的左螺旋槽(2X)沿圆周方向均布1~5个,各螺旋槽螺旋升角不同,右螺旋槽(2Y)沿圆周 方向均布1~5个,各螺旋槽螺旋升角不同。
  9. 根据权利要求3所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的左上阀芯孔(3P1)接高压油,左下阀芯孔(3T1)接低压油,右上阀芯孔(3T2)接高压油,右下阀芯孔(3P2)接低压油。
  10. 根据权利要求8所述的一种可旋转并联控制的大流量高频响数字阀,其特征在于所述的螺旋槽的螺旋升角度数为10~80度。
PCT/CN2017/000432 2017-07-12 2017-07-12 一种可旋转并联控制的大流量高频响数字阀 WO2019010591A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/000432 WO2019010591A1 (zh) 2017-07-12 2017-07-12 一种可旋转并联控制的大流量高频响数字阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/000432 WO2019010591A1 (zh) 2017-07-12 2017-07-12 一种可旋转并联控制的大流量高频响数字阀

Publications (1)

Publication Number Publication Date
WO2019010591A1 true WO2019010591A1 (zh) 2019-01-17

Family

ID=65000894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000432 WO2019010591A1 (zh) 2017-07-12 2017-07-12 一种可旋转并联控制的大流量高频响数字阀

Country Status (1)

Country Link
WO (1) WO2019010591A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754811A (ja) * 1993-08-17 1995-02-28 Mitsubishi Heavy Ind Ltd 流体圧サーボ弁
CN101963166A (zh) * 2010-10-22 2011-02-02 浙江工业大学 双模式电气数字阀
CN103541943A (zh) * 2013-11-05 2014-01-29 南通锻压设备股份有限公司 一种可旋转并联控制的大流量高频响数字阀
CN203627366U (zh) * 2013-11-05 2014-06-04 南通锻压设备股份有限公司 一种可旋转并联控制的大流量高频响数字阀
CN106321932A (zh) * 2016-06-23 2017-01-11 南通联恒新材料有限公司 一种可旋转并联控制的大流量高频响数字阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754811A (ja) * 1993-08-17 1995-02-28 Mitsubishi Heavy Ind Ltd 流体圧サーボ弁
CN101963166A (zh) * 2010-10-22 2011-02-02 浙江工业大学 双模式电气数字阀
CN103541943A (zh) * 2013-11-05 2014-01-29 南通锻压设备股份有限公司 一种可旋转并联控制的大流量高频响数字阀
CN203627366U (zh) * 2013-11-05 2014-06-04 南通锻压设备股份有限公司 一种可旋转并联控制的大流量高频响数字阀
CN106321932A (zh) * 2016-06-23 2017-01-11 南通联恒新材料有限公司 一种可旋转并联控制的大流量高频响数字阀

Similar Documents

Publication Publication Date Title
CN103541943B (zh) 一种可旋转并联控制的大流量高频响数字阀
CN203627366U (zh) 一种可旋转并联控制的大流量高频响数字阀
CN111649021B (zh) 二维力反馈式电液伺服阀
US4729544A (en) Electric-powered, lever-amplified actuating means for valves and other devices
US3763747A (en) Fluid-operable linear actuators
CN109989953B (zh) 一种双电机驱动并置双阀芯转动式多功能液压调节阀
EP2075488A1 (en) A selfadapting screw transmission mechanism with variable lead
US20140021384A1 (en) Electronically controlled valve assembly
CN106321932A (zh) 一种可旋转并联控制的大流量高频响数字阀
US20080217569A1 (en) Low Torque Gate Valve Mechanism
CN106763005A (zh) 一种凸轮式的旋转直接驱动电液压力伺服阀
WO2024164768A1 (zh) 数字液压缸
US4794845A (en) Direct drive rotary servo valve
WO2019010591A1 (zh) 一种可旋转并联控制的大流量高频响数字阀
US4503888A (en) Servovalve spool control for digital rotary servovalve
WO2019047459A1 (zh) 一种高精度数字液压马达
CN105526205B (zh) 一体式压扭联轴器型2d电液比例换向阀
CA2552134C (en) Motion control apparatus with backlash reduction
CN105452724A (zh) 非反向驱动丝杠机构
CN116517904A (zh) 一种带闭环反馈的数字液压伺服控制阀
US3862587A (en) Hydraulic motor
US9115729B2 (en) Floating action type servo-valve
CN112081938B (zh) 一种压电驱动大流量燃油阀
CN208487196U (zh) 一种可动态控制齿轮侧隙的装置
JPH04296251A (ja) 摩擦車式無段変速機の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917760

Country of ref document: EP

Kind code of ref document: A1