WO2019009677A1 - Advanced-high strength hot-rolled steel sheet and method for manufacturing same - Google Patents

Advanced-high strength hot-rolled steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2019009677A1
WO2019009677A1 PCT/KR2018/007721 KR2018007721W WO2019009677A1 WO 2019009677 A1 WO2019009677 A1 WO 2019009677A1 KR 2018007721 W KR2018007721 W KR 2018007721W WO 2019009677 A1 WO2019009677 A1 WO 2019009677A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
hot
high strength
strength hot
Prior art date
Application number
PCT/KR2018/007721
Other languages
French (fr)
Korean (ko)
Inventor
공종판
정제숙
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201880044939.4A priority Critical patent/CN110869526B/en
Publication of WO2019009677A1 publication Critical patent/WO2019009677A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a super high strength hot-rolled steel sheet and a method of manufacturing the same, and more particularly, to a super high-strength hot-rolled steel sheet having a high tensile strength of 980 MPa, To a hot-rolled steel sheet and a manufacturing method thereof.
  • AHSS AHSS
  • a steel sheet to be applied to an automobile body is required not only to have high strength and high ductility, but also to have good weldability and welded part mechanical properties.
  • the so-called DP (dual phase) steel is a steel mainly composed of two phases of ferrite and martensite, and is one of the representative steels having a low yield strength.
  • Patent Documents 1 and 2 The technology related to the production of such AHSS hot-rolled steel is disclosed in Patent Documents 1 and 2.
  • all of these methods relate to a method of manufacturing in a conventional hot-melt mill, It is difficult to avoid.
  • the target material is to be produced at a low temperature below Ms (martensitic transformation starting temperature)
  • Ms martensitic transformation starting temperature
  • Patent Document 3 relates to a method for producing a hot-rolled DP steel having a tensile strength of 590 MPa by batch method in a mini-mill process, and the final steel sheet thickness is about 3.0 mm.
  • Patent Document 1 U.S. Patent No. 4285741
  • Patent Document 2 U.S. Patent No. 4325751
  • Patent Document 3 Korean Published Patent Application No. 10-2012-0052022
  • a preferred aspect of the present invention is to provide an ultrahigh-strength hot-rolled steel sheet having excellent surface quality and weldability and being significantly reduced in width, lengthwise material deviation, and edge cracks.
  • Another aspect of the present invention is to provide a method of manufacturing an ultra-high-strength hot-rolled steel sheet excellent in surface quality and weldability, and significantly reduced in width, lengthwise material deviation, and edge cracks, by a performance- .
  • a method of manufacturing a steel sheet which is produced by a performance-rolling direct process, comprising 0.030 to 0.085% of C, 1.8 to 3.0% of Mn, 0.03 to 1.0% of Si, 0.005 to 0.05% , S: 0.01% or less, Cr: 0.2 to 2.0%, Al: 0.01 to 0.07%, Ti: 0.005 to 0.10%, B: 0.0005 to 0.0050%, N: 0.001 to 0.010%, and other Fe and other unavoidable impurities And an ultrahigh-strength hot-rolled steel sheet having a microstructure containing 40 to 60% of ferrite, 30 to 50% of martensite and 10 to 20% of bainite in an areal fraction.
  • Al and Ti can satisfy the following relational expression (1).
  • Ceq expressed by the following formula (2) may be 0.18 to 0.28.
  • the hot-rolled steel sheet may contain at least one of Cu, Ni, Mo, Sn, and Pb as a tramp element, and the total content thereof may be 0.2 wt% or less.
  • the bainite may be formed at the interface between ferrite and martensite.
  • the mean size of the ferrite crystal grains measured by the circle equivalent diameter may be 5 ⁇ or less.
  • the hot-rolled steel sheet may comprise 25-1000 / ⁇ m the Ti (C, N) precipitates, the Ti (C, N) average size of the precipitate can be 50nm or less in circle equivalent diameter.
  • the rolling process includes a rough rolling process for producing a bar plate, and a molar fraction (%) of an AlN precipitate at an edge portion of the roughly rolled bar plate may satisfy the following formula (3) .
  • the hot-rolled steel sheet may have a tensile strength of 980 MPa or more, an elongation of 10% or more, and a deviation (material deviation) of tensile strength of 30 MPa or less.
  • the thickness of the hot-rolled steel sheet may be 3.0 mm or less.
  • a method of manufacturing a steel sheet which is manufactured through a performance-rolling direct process, and which comprises 0.030 to 0.085% of C, 1.8 to 3.0% of C, 0.03 to 1.0% of Si, 0.005 0.001 to 0.050% of N, 0.001 to 0.010% of N, 0.001 to 0.010% of Cr, 0.2 to 2.0% of Cr, 0.01 to 0.07% of Al, 0.005 to 0.10% of Ti, And has a microstructure containing an impurity and an area fraction of 40 to 60% of ferrite, 30 to 50% of martensite, and 10 to 20% of bainite, and in the case of resistance spot welding after pickling treatment,
  • Al and Ti can satisfy the following relational expression (1).
  • Ceq expressed by the following formula (2) may be 0.18 to 0.28.
  • the hot-rolled steel sheet may contain at least one of Cu, Ni, Mo, Sn, and Pb as a tramp element, and the total content thereof may be 0.2 wt% or less.
  • the Vickers hardness of the fused portion corresponding to the nugget may be 350 to 450 Hv, and the difference between the hardness of the base material and the minimum hardness of the softened portion may be 100 Hv or less.
  • the microstructure of the molten portion corresponding to the nugget may include a martensite structure having an area ratio of 95% or more.
  • the rolling process includes a rough rolling process for producing a bar plate, and the molar fraction (%) of the AlN precipitate at the edge portion of the roughly rolled bar plate can satisfy the following formula (3).
  • a method of manufacturing a hot-rolled steel sheet by a direct-rolling-performance-rolling process comprising the steps of: C: 0.030-0.085%; Mn: 1.8-3.0%; Si: 0.001 to 0.05% of P, 0.2 to 2.0% of Cr, 0.01 to 0.07% of Al, 0.005 to 0.10% of Ti, 0.0005 to 0.0050% of B, 0.001 to 0.010% of N, Continuously cast molten steel containing remaining Fe and other unavoidable impurities into a slab having a thickness of 60 to 120 mm;
  • Al and Ti can satisfy the following relational expression (1).
  • Ceq expressed by the following formula (2) may be 0.18 to 0.28.
  • the molten steel may contain at least one of Cu, Ni, Mo, Sn and Pb as a tramp element, and the total content thereof may be 0.2 wt% or less.
  • the casting speed of the continuous casting may be 4 to 8 mpm.
  • the slab may be heated before the surface descaling step, and the slab heating temperature may be 900 to 1200 ° C.
  • the surface temperature of the rough-rolled slab at the time of rough rolling may be 900 to 1200 ° C, and the edge temperature of the rough-rolled bar-plate edge may be 780 to 1100 ° C.
  • the temperature of the rough rolling out side bar plate edge portion can be controlled so that the AlN mole fraction (%) precipitated at the bar plate edge portion temperature satisfies the following formula (3).
  • the cumulative rolling reduction during the rough rolling may be 60 to 90%.
  • the sheet passing speed may be 200 to 600 mpm, and the thickness of the hot-rolled steel sheet produced by the finish rolling may be 3.0 mm or less.
  • the rolling speed difference between the top and the tail of the steel sheet during the finish rolling may be 10% or less.
  • the present invention not only the surface quality is improved by using the continuous continuous rolling mode in the performance-rolling direct process, but also the material variation in the width and length direction of the steel sheet is remarkably reduced, and the yield rate is excellent. , It is possible to produce an ultra-high strength hot-rolled steel sheet having a thickness of 3.0 mm or less and a tensile strength of 980 MPa. In addition, edge cracks can be significantly reduced.
  • the hot-rolled steel sheet produced by the present invention is superior in the quality of the edges and the surface scale, and is capable of producing advanced PO by a general hot-rolling pickling process, It can be differentiated from existing minilmill and hot-milling processes that can only be produced by itself, so it is excellent in terms of price competition and can significantly improve value-added.
  • Fig. 3 shows the ferrite grain size distribution of Inventive Example 7.
  • Example 4 is a transmission electron microscope (TEM) micrograph of the precipitate of Inventive Example 7 taken.
  • Fig. 6 shows the distribution of the precipitate size (nm) in Inventive Example 7.
  • Fig. 9 shows a state diagram of the inventive example 7.
  • FIG. 11 is a graph showing changes in mole fraction of AlN / TiN according to the temperature of Inventive Example 7.
  • Example 13 is a graph showing the change in the mole fraction of AlN according to the temperature of Conventional Example 1.
  • 17 is a SEM micrograph of the molten portion of the present invention.
  • Figure 18 shows a lay-out of a preferred example of a performance-rolling direct process that the present invention may be applied to.
  • Figure 19 shows another preferred lay-out of a performance-rolling direct process in which the present invention may be applied.
  • the present inventors conducted research and experiments on an ultra-high-strength hot-rolled steel sheet excellent in surface quality and weldability, and significantly reduced in width, lengthwise material deviation, and edge cracks through a performance-rolling direct process, The present invention has been completed.
  • the present invention relates to an ultrahigh-strength hot-rolled steel sheet excellent in surface quality and weldability by properly controlling steel composition, microstructure and manufacturing conditions in a performance-rolling direct-cutting process, and significantly reducing width, lengthwise material deviation and edge cracks, And a method for manufacturing the same.
  • a super high strength hot-rolled steel sheet is manufactured by a performance-rolling direct process, and comprises 0.030 to 0.085% of C, 1.8 to 3.0% of C, 0.03 to 1.0% of Si, 0.005 to 0.05%, S: 0.01% or less, Cr: 0.2 to 2.0%, Al: 0.01 to 0.07%, Ti: 0.005 to 0.10%, B: 0.0005 to 0.0050% Contains inevitable impurities, and has a microstructure including an area fraction of 40 to 60% of ferrite, 30 to 50% of martensite and 10 to 20% of bainite.
  • the alloy composition of the present invention will be described in detail.
  • the unit of each element content is% by weight.
  • Carbon (C) is a very important element for increasing the strength of a steel sheet and securing a composite structure composed of ferrite and martensite.
  • the C content is less than 0.030%, it may be difficult to secure the desired strength in the present invention.
  • an apodization reaction L + Delta Ferrite ⁇ Austentite
  • the C content is preferably 0.03 to 0.085%.
  • Manganese (Mn) is an element that has a very strong effect of solid solution strengthening, and at the same time promotes the formation of composite structure composed of ferrite and martensite. If the Mn content is less than 1.8%, it may be difficult to obtain the desired strength in the present invention. On the other hand, when the Mn content exceeds 3.0%, alloy steel cost rise and weldability and hot rolling property may be weakened. Therefore, the Mn content is preferably 1.8 to 3.0%. , More preferably 1.9 to 2.8%, and even more preferably 2.0 to 2.6%.
  • Silicon (Si) is a useful element that can secure strength without deteriorating the ductility of the steel sheet. It is also an element promoting the formation of martensite by promoting ferrite formation and promoting C concentration in untransformed austenite. When the Si content is less than 0.03%, it is difficult to sufficiently secure the above effect. On the other hand, when the Si content is more than 1.0%, the scale of the steel is generated on the surface of the steel sheet, and traces remain on the surface of the steel sheet after pickling, and the surface quality may be deteriorated. Therefore, the Si content is preferably 0.03 to 1.0%. , More preferably 0.030 to 0.80%, and even more preferably 0.035 to 0.50%.
  • Phosphorus (P) is an element having an effect of strengthening the steel sheet.
  • the P content is less than 0.005%, it is difficult to secure the effect.
  • the P content exceeds 0.05%, the grain boundary and / or the intergranular grain boundary may be segregated to cause brittleness. Therefore, the content of P is preferably limited to 0.005 to 0.05%. , More preferably 0.006 to 0.040%, and even more preferably 0.010 to 0.025%.
  • S Sulfur
  • S is an impurity which segregates during MnS nonmetallic inclusions and performance solidification in steel and can cause high temperature cracks. Therefore, the content thereof should be controlled as low as possible and preferably controlled to be 0.01% or less.
  • Chromium (Cr) is an element that improves hardenability and increases the strength of steel.
  • the Cr content is preferably 0.2 to 2.0%. , More preferably 0.3 to 1.8%, and even more preferably 0.5 to 1.4%.
  • Aluminum (Al) plays a role in suppressing the formation of carbides and increasing the ductility of steel.
  • the Al content is less than 0.01%, the above-mentioned effect is insufficient.
  • the Al content is more than 0.07%, a large amount of AlN precipitates are formed to deteriorate the edge quality of the cast steel or bar plate due to deterioration of high temperature ductility, and the steel can be thickened on the surface of the steel plate to deteriorate the plating ability. Therefore, the Al content is preferably 0.01 to 0.07%. , More preferably 0.015 to 0.06%, and even more preferably 0.02 to 0.05%.
  • Titanium (Ti) is an element for forming precipitates and nitrides, which increases the strength of steel.
  • Ti is an element that reduces the sensitivity of edge cracking by preventing the deterioration of high-temperature ductility by reducing the amount of AlN precipitate by removing solute N through the formation of TiN near the solidification temperature.
  • the Ti content is preferably 0.005 to 0.10%. , More preferably 0.008 to 0.08%, and even more preferably 0.01 to 0.075%.
  • B Boron
  • the B content is preferably 0.0005 to 0.0050%. , More preferably 0.001 to 0.0040%, and even more preferably 0.001 to 0.0025%.
  • Nitrogen (N) is an austenite stabilizing and nitriding element.
  • the N content is preferably 0.001 to 0.010%. , More preferably 0.0025 to 0.0095%, and even more preferably 0.0040 to 0.0090%.
  • Al and Ti can satisfy the following relational expression (1).
  • the above Ti, Al and N not only satisfy the above-mentioned numerical ranges but can be controlled so as to satisfy the above formula (1) in order to improve the surface quality and significantly reduce the edge crack while securing high strength.
  • Aluminum (Al) in the steel reacts with nitrogen (N) to form AlN precipitates.
  • the slab / bar plate cracks are induced in the slab cooling conditions under which these precipitates are precipitated during the production of thin slabs to lower the edge quality of the slab or hot- It is possible to appropriately add Ti to remove solute N through the formation of TiN near the solidification temperature of molten steel to reduce the amount of AlN precipitate to control the defect.
  • the steel sheet of the present invention has excellent RSW weldability and weld material properties.
  • the steel sheet of the present invention not only satisfies the alloy composition described above, but also has Ceq of 0.18 to 0.28 expressed by the following formula (2).
  • the above formula (2) is a component relational expression for securing the weldability of the steel sheet.
  • the Ceq value is more preferably from 0.18 to 0.27, and still more preferably from 0.18 to 0.26.
  • Ceq is less than 0.18, the curing ability is low and it may be difficult to secure the target tensile strength.
  • Ceq exceeds 0.28 the weldability is lowered and the physical properties of the welded portion may deteriorate. More preferably 0.18 to 0.27, and even more preferably 0.19 to 0.26.
  • the remainder of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
  • the tram element is an impurity element derived from scrap used as a raw material in a steelmaking process. If the total amount exceeds 0.2%, surface cracking of the thin slab and surface quality of the hot-rolled steel sheet may be deteriorated.
  • the fraction of ferrite and martensite combined is 80% or more in area fraction, and the remainder is composed of bainite structure.
  • it contains 40 to 60% of ferrite in an area fraction, 30 to 50% of martensite and 10 to 20% of bainite.
  • the ferrite fraction exceeds 60%, it is difficult to secure the desired strength.
  • the ferrite fraction is less than 40%, the fraction of the remaining martensite and bainite structure increases, which is difficult to secure the ductility.
  • the martensite fraction exceeds 50%, the strength becomes too high to secure the ductility.
  • the martensite fraction is less than 30%, it may be difficult to secure the desired strength.
  • the DP (dual phase) composed of two phases of ferrite + martensite has a high martensite fraction, so that martensite is tempered in the heat affected zone during welding, resulting in softening phenomenon and a decrease in strength.
  • the bainite structure is secured to some extent instead of the martensite, such problems can be solved and the strength and workability can be secured simultaneously due to the bainite structure characteristics.
  • bainite is a structure having an intermediate strength between ferrite and martensite, and when the bainite structure is formed at these two texture interfaces, the above problems can be improved and the workability can be improved.
  • the average size of the ferrite grains measured by the circle equivalent diameter may be 5 ⁇ or less. More preferably not more than 4 mu m, and even more preferably not more than 3 mu m. In order to simultaneously secure strength and workability through securing a ferrite structure having fine crystal grains, when the size of the ferrite crystal grains exceeds 5 ⁇ , it may be difficult to secure the desired strength and workability.
  • the hot-rolled steel sheet of the present invention may contain 5 to 1000 Ti / 2 ⁇ 2 precipitates, more preferably 5 to 500 Ti / 2 ⁇ 2 , and still more preferably 5 To 200 pieces / ⁇ 2 , and the Ti (C, N) precipitate may have an average size of 50 nm or less in circle equivalent diameter.
  • Ti (C, N) precipitates are meant to include TiN, Ti (C, N), TiC and complex precipitates thereof.
  • the size of the precipitate exceeds 50 nm, it may be difficult to effectively secure the strength.
  • the number of precipitates is less than 5 / ⁇ 2 , it may be difficult to secure a desired strength.
  • the number of precipitates is more than 1000 / ⁇ 2 , the elongation rate is lowered due to the increase of the strength, and processing may become difficult.
  • the molar fraction (%) of the AlN precipitate at the edge portion of the rough- (3) can be satisfied.
  • the thickness of the hot-rolled steel sheet of the present invention may be 3.0 mm or less, preferably 2.0 mm or less, and more preferably 1.5 mm or less.
  • the hot-rolled steel sheet of the present invention may have a tensile strength of 980 MPa or more, an elongation of 10% or more, a deviation (material variation) of tensile strength of 30 MPa or less, and preferably 20 MPa or less.
  • a super high strength hot-rolled steel sheet is manufactured by a performance-rolling direct process, and includes 0.030 to 0.085% of C, 1.8 to 3.0% of C, 0.03 to 1.0% of Si, 0.03 to 1.0% of C, : 0.005 to 0.05%, S: 0.01% or less, Cr: 0.2 to 2.0%, Al: 0.01 to 0.07%, Ti: 0.005 to 0.10%, B: 0.0005 to 0.0050% And other inevitable impurities and has a microstructure containing 40 to 60% of ferrite in an area fraction, 30 to 50% of martensite and 10 to 20% of bainite, and in resistance point welding after pickling treatment,
  • the appropriate welding range in resistance spot welding is a key index for evaluating the weldability and can be defined as the range between the upper limit current and the lower limit current.
  • the optimum welding range between the lower current satisfying the minimum nugget diameter of 4t 1/2 (t is the base material thickness (mm)) and the upper current causing the expansion is more than 1.5 (kA), and the minimum nugget diameter is 5t 1 / 2
  • the appropriate welding range between the lower current limit and the upper current limit may be 1.0 (KA) or more.
  • the minimum nugget diameter 4t 1/2 means a minimum nugget diameter required to switch to the pull-out fracture (Pull Out Fracture, POF) at the interface fracture (Fracture Interfacial, IF).
  • the upper limit current is defined as the value obtained by subtracting 0.2 (kA) from the current generated by scattering.
  • the ductility ratio (CTS / TSS) is defined as the ratio of Tensile Shear Strength (TSS) to Cross Tensile Strength (CTS), and is a comprehensive index that determines the mechanical properties of the weld in the AHSS RSW .
  • the ductility ratio of the developed steel may be at least 35% over a given appropriate welding current range. If it is less than 35%, the passenger may not be able to stably protect the passenger in the event of a body collision in order to open the weld strength characteristic and the collision stability.
  • the Vickers hardness of the fusion zone which is the RSW nugget of the steel sheet of the present invention, is 350 to 450 Hv. If it is lower than 350Hv, sufficient hardness of the molten part can not be secured and the strength of the welded part may be low. However, when it exceeds 450 Hv, the strength of the welded portion and especially the impact absorption energy may be low because the hardness of the molten portion is too high, the sensitivity of cracking is high, and the interfacial fracture where fracture occurs at the nugget interface becomes high.
  • the Vickers hardness of the fusion zone is more preferably 360 to 440 Hv, and even more preferably 370 to 430 Hv.
  • the softened part is a typical phenomenon observed in the AHSS welded part having a high martensite fraction, and when the softened part hardness is too low, the softened part may be judged and the strength of the welded part may be low. Accordingly, in the present invention, the difference between the hardness of the base metal and the minimum hardness of the softening zone may be 100 Hv or less. More preferably 90 Hv or less, and even more preferably 80 Hv or less. If it is more than this value, breakage occurs in the softened portion, and it may be difficult to secure sufficient strength of the welded portion.
  • the microstructure of the nugget (melting portion) of the RSW of the inventive steel sheet preferably has a martensite structure in the nugget of 95% or more.
  • a method of manufacturing a hot-rolled steel sheet by a direct-rolling process which comprises continuously casting molten steel having the alloy composition described above into a slab having a thickness of 60 to 120 mm ;
  • the molten steel having the above-mentioned alloy composition is continuously cast to prepare a slab having a thickness of 60 to 120 mm.
  • the casting speed is preferably set to, for example, 4 to 8 mpm.
  • the reason why the casting speed is preferably 4 mpm or more is because a high speed casting and a rolling process are connected to each other and a casting speed higher than a certain level is required to secure the target rolling temperature.
  • the casting speed is slow, there is a risk of segregation from the cast steel. If such segregation occurs, it is difficult to secure strength and workability, and the risk of material variation in the width direction or the longitudinal direction is increased.
  • the operation success rate may be reduced due to instability of the molten steel bath surface, so that the casting speed is preferably set to 4 to 8 mpm. More preferably 4.2 to 7.2 mpm, and even more preferably 4.5 to 6.5 mpm.
  • the thickness of the slab is more than 120 mm, high-speed casting is difficult, and the rolling load during rough rolling is increased.
  • the slab thickness is less than 60 mm, the temperature of the cast steel is rapidly decreased.
  • the thickness of the slab is limited to 60 to 120 mm. More preferably 70 to 110 mm, and even more preferably 80 to 100 mm.
  • the slab may be heated before the surface descaling step, and the slab heating temperature may be 900 to 1200 ° C.
  • the surface temperature of the slab is less than 900 ⁇ , there is a possibility that cracks are generated in the edge portion of the bar plate in the course of an increase in the rough rolling load and in the rough rolling. In this case, the edge of the hot rolled steel sheet may be defective. If the slab surface temperature exceeds 1200 ° C, problems such as deterioration of hot rolling surface quality due to the remnant of a hot rolling scale may occur. Therefore, the heating temperature of the slab is preferably in the range of 900 to 1200 ° C. More preferably 950 to 1150 ⁇ ⁇ , and still more preferably 1000 to 1100 ⁇ ⁇ .
  • the scale is removed by injecting cooling water at a pressure of 50 to 350 bar into the cast slab or the heated slab after casting.
  • cooling water of 50 ° C or less is sprayed at a pressure of 50 to 350 bar in a roughing scale breaker (hereinafter, referred to as 'RSB') to obtain a surface scale thickness of, for example, 300 ⁇ m or less
  • 'RSB' roughing scale breaker
  • the scale can be removed. If the pressure is less than 50 bar, a large amount of arithmetic scale scale or the like may remain on the surface of the slab and the surface quality may become dull after pickling. On the other hand, if the temperature exceeds 350 bar, the edge temperature of the bar plate may drop rapidly, and an edge crack may occur.
  • the cooling water injection pressure may be more preferably 100 to 300 bar, and still more preferably 150 to 250 bar.
  • the scale-removed slab is rough-rolled, for example, in a roughing mill composed of 2 to 5 stands to obtain a bar plate.
  • the surface temperature of the slab at the inlet side of the roughing mill is preferably in the range of 900 to 1200 ° C.
  • the surface temperature of the slab is less than 900 ⁇ , there is a possibility that cracks are generated in the edge portion of the bar plate in the course of an increase in the rough rolling load and in the rough rolling. In this case, the edge of the hot rolled steel sheet may be defective.
  • the slab surface temperature exceeds 1200 ° C, problems such as deterioration of hot rolling surface quality due to the remnant of a hot rolling scale may occur. Therefore, the surface temperature of the slab preferably ranges from 900 to 1200 ° C. More preferably 950 to 1150 ⁇ ⁇ , and still more preferably 1000 to 1100 ⁇ ⁇ .
  • the edge temperature of the rough-rolled bar plate at the time of rough rolling has a range of 780 to 1100 ° C. If the edge portion temperature is less than 780 ° C, the AlN precipitates precipitate and the susceptibility to edge cracking may become very high as the high temperature ductility deteriorates. On the other hand, when the edge temperature exceeds 1100 ° C, the temperature of the center of the thin slab becomes too high, so that a large number of arithmetic scale may occur and the surface quality may become poor after pickling.
  • the temperature at the edge of the bar plate at the time of rough rolling during the rough rolling may be more preferably 800 to 1080 ° C, and still more preferably 820 to 1060 ° C.
  • the edge temperature of the bar-rolling-out side bar plate not only satisfies the above-described respective numerical ranges but also satisfies the following formula (3) in order to improve surface and edge quality while ensuring high strength.
  • cumulative rolling reduction during rough rolling plays an important role in obtaining a uniform target material in the present invention. That is, as the reduction rate in rough rolling increases, microstructures such as Mn, Si, and Cr, which are important elements in the manufacture of high strength steel, become uniform and the temperature gradient in the width and thickness direction of the strip becomes smaller. Valid. However, if the cumulative rolling reduction is less than 60%, the above effects can not be sufficiently exhibited. If the cumulative rolling reduction exceeds 90%, the rolling resistance increases greatly and the manufacturing cost rises. It is preferable to perform rolling. , More preferably 65 to 85%, and still more preferably 70 to 80%.
  • the scale is removed by injecting cooling water into the bar plate at a pressure of 50 to 350 bar.
  • cooling water of 50 ° C or less is sprayed at a pressure of 50 to 350 bar in a Finishing Mill Scale Breaker (FSB) nozzle, so that the surface scale thickness is, for example,
  • FFB Finishing Mill Scale Breaker
  • the scale can be removed so as to be not more than 30 mu m.
  • the cooling water injection pressure is more preferably 100 to 300 bar, and even more preferably 150 to 250 bar.
  • the bar plate on which the scale has been removed is finish-rolled in a finishing mill composed of a plurality of stands, for example, three to six stands.
  • the ultrahigh strength steel of 980 MPa class which is the object of the present invention, utilizes the formation of the transformed structure as an strengthening mechanism, there is a high possibility that the material properties change according to the strain rate during finish rolling. That is, when the rolling speed difference between the top and the tail of the steel sheet exceeds 10% during finishing rolling in a finishing mill composed of a plurality of stands, a uniform cooling rate and a uniform cooling rate in a subsequent run- It is difficult to obtain the target coiling temperature, which results in causing a material variation in the width or length direction of the strip. Therefore, it is preferable to control so that the difference in rolling speed between the top of the steel sheet and the tail in the finishing rolling step does not exceed 10%.
  • the finishing rolling temperature is preferably Ar 3 -30 ⁇ to Ar 3 + 60 ⁇ .
  • the finish rolling temperature is lower than Ar 3 -30 ° C, the load of the roll during hot rolling is greatly increased to increase the energy consumption and the working speed, and since a sufficient austenite fraction can not be secured, the target microstructure and material are secured Can not.
  • the finish rolling temperature is higher than Ar 3 + 60 ° C, the crystal grains can not cooperate with each other to obtain a high strength. In order to obtain a sufficient bainite and martensite structure, the cooling rate must be further increased.
  • the finishing rolling temperature is more preferably Ar 3 -20 ⁇ to Ar 3 + 50 ⁇ .
  • the finish rolling can be performed such that the sheet passing speed is 200 to 600 mpm and the thickness of the hot-rolled steel sheet is 3.0 mm or less. Preferably 2.0 mm or less, and more preferably 1.6 mm or less.
  • finish rolling speed exceeds 600 mPm, it is possible to cause an operation accident such as plate breakage, and because isothermal constant velocity rolling is difficult, uniform temperature can not be ensured and material deviation may occur. On the other hand, in the case of less than 200 mpm, the finish rolling speed is too slow to secure the finishing rolling temperature.
  • the finish-rolled hot-rolled steel sheet is, for example, air-cooled for 1 to 8 seconds in a run-out table, cooled to a martensitic transformation completion temperature (Mf) or less at a cooling rate of 150 ° C / sec or more and wound.
  • Mf martensitic transformation completion temperature
  • the cooled hot rolled steel sheet undergoes air cooling for 1 to 8 seconds on the runout table. If the time is less than 1 second, the C concentration in the retained austenite is insufficient and the time for ferrite transformation is insufficient, And if it exceeds 8 seconds, there is a problem in securing a desired tensile strength due to excessive transformation of ferrite, and also a problem that a length of the equipment is long or productivity is lowered. Therefore, the air- To 8 seconds.
  • the air cooling time is more preferably 1.5 to 6.5 seconds, and still more preferably 2.0 to 5.0 seconds.
  • the cooling rate during the cooling after the air cooling is 150 ° C / sec or more, and the coiling temperature is preferably not higher than the martensitic transformation completion temperature (Mf).
  • the cooling rate is slower than 150 ° C / sec, ferrite transformation is promoted and cementite is formed, making it difficult to obtain a desired material. Further, when the coiling temperature exceeds the martensitic transformation completion temperature (Mf), it is difficult to obtain a sufficient martensite structure and the martensite obtained by cooling can be auto tempered to obtain a desired tensile strength Can be difficult.
  • Mf martensitic transformation completion temperature
  • the pickling treatment that can be used in the present invention is not particularly limited as long as it is generally applicable to a treatment method used in a hot-rolling pickling process.
  • the high-strength hot-rolled steel sheet having a small material deviation of 980 MPa and excellent in surface quality according to one aspect of the present invention can be manufactured through the performance-rolling direct-joining process as shown in FIGS. 18 and 19.
  • the performance-to-rolling direct process layout comprises a high-speed continuous casting machine 100 for producing slabs (a) of a first thickness and a high-speed continuous casting machine 100 for producing slabs of a second thickness
  • a thin slab a having a thickness of 60 to 120 mm is manufactured in the continuous casting machine 100 and the bar plate b is further heated in the heater 200 to ensure a sufficient finish rolling temperature.
  • a roughing scale breaker 300 hereinafter, referred to as 'RSB'
  • a finishing mill scale breaker (FSB) 500 are placed in front of the finishing mill 600 in front of the roughing mill 400 (Pickled & Oiled), which is excellent in surface quality when picking hot-rolled steel sheets in a later process, is also possible.
  • the layout of the performance-rolling direct process includes the slab addition heater 200 in front of the roughing mill 400 in addition to the one shown in FIG. 18, whereby the slab edge temperature can be easily secured and the occurrence of edge defects can be reduced It is advantageous for ensuring surface quality.
  • a space of at least one slab length is secured before the roughing mill, and batch rolling is also possible.
  • Table 1 Molten steel having the composition shown in Table 1 below was prepared.
  • Table 1 below shows the C content of the initiation of the apodization reaction and is a value calculated using Thermo-Calc-3.0.1 Console Mode (Database: TCFE6), a commercial thermodynamic software.
  • a hot-rolled steel sheet having a thickness of 1.6 mm was produced in the continuous rolling mode in the performance-to-rolling direct connection process according to the production conditions shown in Table 2 below (Inventive Example 1 -7 and Comparative Examples 1 to 11).
  • a hot-rolled steel sheet having a thickness of 3.2 mm was produced in the batch mode in the conventional mini-mill process by applying the manufacturing conditions shown in Table 2.
  • RSB Rolling Mill Scale Breaker, rough rolling scale brake
  • FSB Feishing Mill Scale Breaker, finishing rolling scale brake
  • the microstructure phase fraction, ferrite grain size (FGS), yield strength (YS), tensile strength Table 3 shows the results of measuring elongation (EL), deviation (material deviation) (? TS) of tensile strength, occurrence of edge cracks and PO surface quality.
  • the area fraction of ferrite (F), martensite (M) and bainite (B) was determined by scanning electron microscope (SEM) (FGS, Ferrite Grain Size) of 10 areas randomly photographed at a magnification of 3,000 times using Scanning Electron Microscope, image area ratio measurement using Image-Plus Pro software, Shows an average value measured at a circle-equivalent diameter using Image-Plus Pro software after randomly photographing 10 points at 3,000 times magnification using Electron Backscatter Diffraction (EBSD).
  • SEM scanning electron microscope
  • the tensile strength is a value measured by taking a JIS No. 5 specimen in a direction perpendicular to the rolling direction at a width W / 4, and a tensile strength deviation (material deviation) [? TS (MPa)] is a tensile strength It represents the value obtained by subtracting the minimum value from the maximum value among the intensity values.
  • the formula (1) is represented by 1.9Al-3.4Ti, and each symbol represents a value (weight (%) / atomic weight of each element) obtained by dividing the weight (%) of each element by the atomic weight,
  • Example No. 2 Steel grade Rough rolling out bar plate edge temperature ( ⁇ ) Equation (3) (%) RSB (Bar) FSB (Bar) Finishing rolling temperature ( ⁇ ) Ar 3 (° C) Ar 3 -30 ⁇ ( ⁇ ) Mf ( ⁇ ⁇ ) Air cooling time (sec) ROT cooling rate (° C / sec) Coiling temperature ( ⁇ ) Inventory 1 Inventive Steel A 880 ⁇ 8.3X10 -7 189 216 811 760 730 282 3.4 225 165 Inventory 2 890 ⁇ 8.3X10 -7 200 230 815 3.5 215 170 Inventory 3 895 ⁇ 8.3X10 -7 181 210 814 3.2 210 169 Honorable 4 Invention steel B 900 ⁇ 8.3X10 -7 205 200 815 761 731 299 3.1 195 175 Inventory 5 882 ⁇ 8.3X10 -7 210 195 820 3.5 200 180 Inventory 6 892 ⁇ 8.3X10 -7 195 210 816 3.7 215
  • F Ferrite (ferrite)
  • M Martensite (martensite)
  • B Bainite (bainite) structure
  • FGS Ferrite Grain Size
  • YS Yield Strength
  • TS Tensile Strength
  • EL Elongation As shown in Tables 1, 2 and 3, Examples 1 to 7 satisfying the range of the present invention satisfy the target tensile strength (980 MPa or more) and elongation (10% or more) without slip of the molten steel in the production of the slab, and the edge surface quality and the surface quality Are also excellent. It is also understood that tensile strength and yield strength of Examples 1 to 7 are higher than those of Conventional Example 1. [
  • Inventive Example 7 was photographed using an optical microscope and a scanning electron microscope (SEM), the photographs of the optical microscope were shown in Fig. 1, and the photographs of the scanning electron microscope were shown in Fig. 1 and 2, it can be seen that the microstructure of the inventive example 7 is composed of ferrite (F) and M (martensite) in a phase and some bainite (B) is uniformly present .
  • SEM scanning electron microscope
  • the ferrite grain size distribution of Inventive Example 7 was measured using EBSD (Electron Backscatter Diffraction), and the results are shown in FIG. From Fig. 3, it can be seen that the crystal grains of 5 mu m or less are finely dispersed.
  • Example 7 The precipitate of Example 7 was photographed with a transmission electron microscope (TEM), and the photograph is shown in Fig. 4.
  • the left side of Fig. 4 is a 50,000 magnification photograph, and the right side is a 300,000 magnification photograph. From FIG. 4, it can be seen that the TiN, Ti (C, N) and the rounded TiC precipitates are uniformly distributed in the matrix.
  • the deposit number is 5-30 / ⁇ m 2 mainly distributed in the range
  • the average number of precipitates was 15 / ⁇ 2 .
  • the number of precipitates is obtained by quantifying the number of precipitates existing within a square of 1 mu m x 1 mu m in a tissue photograph obtained by making a sample by the carbon (carbon) replica method and photographing 50 places randomly at a magnification of 100,000 times with TEM .
  • the distribution of the precipitate size in Inventive Example 7 was observed. The results are shown in Fig. 6. As can be seen from Fig. 6, the precipitate size was mainly distributed in the range of 5 to 50 nm, and the average precipitate size was 20 nm.
  • the precipitate size was obtained by measuring the precipitate size using Image-Plus Pro software after preparing a sample by the carbon re-firing method and photographing 5 sheets of 50,000 times, 20 sheets of 100,000 sheets and 5 sheets of 300,000 sheets by TEM. TEM images were taken at different magnifications to precisely measure fine (less than 50 nm) precipitates and coarse (greater than 50 nm) precipitates.
  • FIG. 7 shows a surface photograph of the PO material obtained by pickling the hot-rolled steel sheet of Inventive Example 7, and FIG. 7 shows that the surface quality is excellent.
  • Comparative Examples 1, 2 and 3 do not satisfy the air cooling time, cooling rate, and coiling temperature proposed in the present invention, and do not satisfy the target microstructure and tensile strength.
  • Comparative Example 4 shows that the surface of the steel strip is hardly cooled because the surface of the steel strip is higher than the pressure of the FSB 1 and 2 columns proposed in the present invention and the finish rolling temperature is lowered rapidly so that the desired microstructure and tensile strength are not satisfied .
  • Comparative Examples 5 and 6 did not satisfy the RSB or FSB pressure suggested in the present invention, indicating that the surface quality is favorable.
  • Comparative Example 8 did not satisfy the C content shown in the present invention, and molten steel leakage occurred in the slab, Respectively.
  • the cause of casting interruption can be explained by the phase transformation behavior.
  • FIGS. 9 and 10 show state diagrams of Example 7 and Comparative Example 8 calculated using the Thermo-Calc-3.0.1 Console Mode (Database: TCFE6).
  • Thermo-Calc-3.0.1 Console Mode Database: TCFE6
  • the comparative example 7 did not satisfy the formula (3) proposed in the present invention, and the comparative example 10 did not satisfy the formula (1) and the formula (3) . These edge cracks are closely related to the precipitation behavior of AlN.
  • FIG. 11 and 12 show the precipitation behavior according to the temperature of the inventive example 7 and the comparative example 10 calculated using Thermo-Calc-3.0.1 (Database: TCFE6), respectively.
  • Fig. 13 shows the conventional example 1.
  • Fig. As can be seen from this result, in the case of Inventive Example 7 which satisfies the formula (1) and the Ti content proposed in the present invention, TiN precipitates near the solidification temperature of the molten steel and the amount of AlN precipitates is remarkably decreased, . However, in the case of Comparative Example 10 and Comparative Example 1 which do not satisfy the formula (1) and Ti content, AlN precipitates at a high temperature and a large amount of AlN is precipitated in the edge temperature range (780 to 1100 ° C) . Therefore, in order to secure surface and edge quality while ensuring high strength, it is preferable to precisely control it so as to satisfy equations (1) and (3).
  • Comparative Example 9 did not satisfy the target tensile strength because the Mn content was not satisfied in the present invention and Comparative Example 11 did not satisfy the edge temperature range of the rough rolling out side bar plate proposed in the present invention It can be seen that the arithmetic scale is generated in large quantity and the surface quality of the PO material is heat.
  • FIG. 14 shows a cross-sectional structural change of a nugget according to the welding current with respect to the inventive example 7.
  • the nugget diameter was defined as the straight line distance between the bond line (BL) and the bond line, as in the cross-section after cutting the nugget at 1/2.
  • the nugget diameter increases with the increase of the welding current, and it is found that the nugget has a healthy weld portion without defects such as cracks and pores.
  • FIG. 15 shows the hardness distribution of the resistance spot weld portion . The hardness was measured with a Vickers hardness gauge at 200 ⁇ intervals with 200 g load on the nugget diagonal.
  • the weld is divided into nose (Fusion, FZ), heat affected zone (HAZ), softening zone (SZ) near the base material and base material (BM).
  • the hardness of the molten portion has a value of 370 to 400 Hv, and the difference between the hardness of the base material and the minimum hardness of the softened portion is 100 Hv or less.
  • the softened part is a typical phenomenon observed in the AHSS weld part having a high martensite fraction. When the hardness of the softened part is too low, the softened part may be judged and the strength of the welded part may be low. Therefore, it is preferable that the difference between the hardness of the base material and the minimum hardness of the softened portion is 100 Hv or less.
  • the ductility ratio (CTS / TSS) is defined as the ratio of Tensile Shear Strength (TSS) to Cross Tensile Strength (CTS) and is used as a comprehensive index to judge the characteristics of the weld in the AHSS RSW .
  • TSS Tensile Shear Strength
  • CTS Cross Tensile Strength
  • the reason why 5t1 / 2 is used is that AHSS with a tensile strength of 980 MPa or higher has a high carbon equivalent (Ceq) and a rapid cooling rate specific to RSW, so that a martensite structure is formed in the molten portion and the fracture shear sensitivity to the interface , So it is indicated as 4t 1/2 that is based on the existing standard is not suitable.
  • the upper limit current is defined as a value obtained by subtracting 0.2 (kA) from the current generated by scattering. As can be seen from this result, IF break occurred at current satisfying 4t 1/2 , and POF break occurred at current more than this.
  • the appropriate welding range in RSW is a key index for evaluating weldability and can be defined as the interval between the upper limit current and the lower limit current.
  • the optimum welding range between the lower current limit and the upper current limit satisfying the minimum nugget diameter of 4t 1/2 is 2.6 (kA), and the minimum nugget diameter is 5t 1/2 , the optimum welding range is 1.8kA. It can be seen that the ductility ratio has more than 45% in the given appropriate welding current range regardless of the fracture.
  • Example 17 shows a SEM micrograph of a molten portion with respect to Example 7. It can be seen that a full lath martensite structure is uniformly present, which has a high carbon equivalent (Ceq) It is judged to be due to rapid cooling rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to an advanced-high strength hot-rolled steel sheet, having tensile strength of 980MPa, and a method for manufacturing same, the method enabling enhanced surface quality, processability and weldability as well as significantly reduced deviation of the material in the width and length directions of the steel sheet by means of an endless rolling mode in a continuous casting-direct rolling process. According to a preferable aspect of the present invention, provided are an advanced-high strength hot-rolled steel sheet, having a microstructure, and a method for manufacturing same, the advanced-high strength hot-rolled steel sheet manufactured by means of a continuous casting-direct rolling process and comprising, in weight %, 0.030-0.085% of C, 1.8-3.0% of Mn, 0.03-1.0% of Si, 0.005-0.05% of P, 0.01% or less of S, 0.2-2.0% of Cr, 0.01-0.07% of Al, 0.005-0.10% of Ti, 0.0005-0.0050% of B, 0.001-0.010% of N, the remainder being Fe, and other inevitable impurities and, in an area fraction, 40-60% of ferrite, 30-50% of martensite and 10-20% of bainite.

Description

초고강도 열연강판 및 그 제조 방법Ultra-high strength hot-rolled steel sheet and manufacturing method thereof
본 발명은 초고강도 열연강판 및 그 제조 방법에 관한 것으로서, 보다 상세하게는, 연주-압연 직결공정에서 연연속압연 모드를 이용하여 인장강도 980MPa급의 재질편차가 적고 표면 품질 및 용접성이 우수한 초고강도 열연강판 및 그 제조방법에 관한 것이다.The present invention relates to a super high strength hot-rolled steel sheet and a method of manufacturing the same, and more particularly, to a super high-strength hot-rolled steel sheet having a high tensile strength of 980 MPa, To a hot-rolled steel sheet and a manufacturing method thereof.
최근, 자동차 승객 및 보행자의 안전규제 강화로 인해 안전장치 부착이 의무화됨에 따라 자동차의 연비향상을 위한 경량화와 반대되는 상황으로 차체의 무게가 증가되는 문제가 있다. In recent years, as safety regulations for passengers and pedestrians in automobiles have been strengthened, attachment of safety devices has become mandatory, which leads to a problem that the weight of the vehicle body is increased due to the contrary to weight reduction for improving fuel efficiency of automobiles.
또한, 친환경적이며 연비의 효율이 높은 하이브리드(Hybrid), 전기자동차에 대한 소비자들의 관심이 증대되고 있다. 이러한 친환경적이며 안전한 차를 생산하기 위하여 차체 구조의 경량화 및 차체 소재의 안정성 확보가 이루어져야 한다. In addition, consumers are increasingly interested in hybrid and electric vehicles, which are environmentally friendly and have high fuel efficiency. In order to produce such an environmentally friendly and safe car, the weight of the car body structure and the stability of the car body material must be secured.
그러나 이와는 반대로 하이브리드 자동차는 기존의 가솔린 엔진과 더불어 전기엔진, 전기 배터리, 그리고 2차 연료보관 탱크 등의 여러 장치가 추가되고 있다. 또한, 운전자의 편의 시설 등이 지속적으로 추가되면서 차체의 중량은 증가되고 있다. 외부적인 중량 증가분을 보완하면서 차체의 경량화를 실현하기 위해서는 얇으면서 고강도-고연성을 유지할 수 있는 소재의 개발이 필수적이다. However, on the contrary, hybrid cars are being added to existing gasoline engines as well as a number of other devices such as electric engines, electric batteries, and secondary fuel storage tanks. In addition, the weight of the vehicle body is increasing as the driver's convenience facilities are continuously added. It is essential to develop a material that is thin and capable of maintaining high strength and high ductility in order to realize weight saving of the vehicle while compensating for the increase in external weight.
따라서, 이러한 문제를 해결하기 위해서는 인장강도 980MPa이상의 고강도 및 고연성을 확보 할 수 있는 AHSS(Advanced High Strength Steel, 이하 AHSS) 강판의 개발이 요구되고 있다. Accordingly, in order to solve such a problem, development of an AHSS (hereinafter referred to as "AHSS") steel sheet capable of securing high strength and high ductility of tensile strength of 980 MPa or more is required.
또한, 이러한 AHSS 강판을 자동차 차체에 적용하여 최종 제품으로 제조하기 위해서는 용접공정이 필수적이며, 저항점용접(Resistance spot welding, 이하 RSW)이 가장 많이 적용되고 있다. In addition, welding process is indispensable to manufacture such AHSS steel plate as an end product by applying to an automobile body, and resistance spot welding (RSW) is most widely applied.
따라서, 자동차 차체에 적용되는 강판은 고강도 및 고연성뿐만 아니라, 우수한 용접성 및 용접부 기계적 특성을 갖는 것이 필요하다.Therefore, a steel sheet to be applied to an automobile body is required not only to have high strength and high ductility, but also to have good weldability and welded part mechanical properties.
한편, 대부분 자동차용 강판은 프레스 가공에 의해서 성형되기 때문에 낮은 항복강도, 높은 연성과 함께 균일한 재질특성을 갖는 것이 필요하다.On the other hand, since most automotive steel sheets are formed by press working, it is necessary to have uniform material characteristics with low yield strength and high ductility.
AHSS 강판 중에서 소위 DP(Dual Phase)강은 페라이트와 마르텐사이트의 2상으로 주로 이루어진 강으로 낮은 항복강도를 갖는 대표적인 강종 중 하나이다.Among the AHSS steel plates, the so-called DP (dual phase) steel is a steel mainly composed of two phases of ferrite and martensite, and is one of the representative steels having a low yield strength.
이러한 AHSS 열연 DP강의 제조와 관련된 기술로는 특허문헌 1 및 2 등이 있으나, 이들은 모두 기존 열연밀에서 제조하는 방법에 관한 것으로서 실제 라인에서 생산 시 재질편차가 폭 및 길이 방향으로 크게 발생하는 문제를 피하기 어려운 실정이다. 또한, 기존 열연밀에서 DP강을 제조하는 경우에는 통상 최종 마무리 압연의 속도가 400mpm 이상으로 빠르기 때문에 Ms(마르텐사이트 변태 시작 온도)이하의 낮은 온도로 권취해야 하는 DP강의 제조 특성상 목표로 하는 재질을 안정적으로 확보하기가 쉽지 않다는 문제점이 있다. 나아가, 기존 열연밀에서 마무리 압연 온도를 일정하게 유지하기 위해서 테일(Tail)부에 필연적으로 압연 속도를 가속화 함에 따라 폭 및 길이방향의 재질편차가 크게 발생하는 문제점이 있다.The technology related to the production of such AHSS hot-rolled steel is disclosed in Patent Documents 1 and 2. However, all of these methods relate to a method of manufacturing in a conventional hot-melt mill, It is difficult to avoid. Further, when DP steel is manufactured from a conventional hot-rolled mill, since the final finish rolling speed is faster than 400 mpm, the target material is to be produced at a low temperature below Ms (martensitic transformation starting temperature) There is a problem in that it is not easy to stably secure. Further, in order to keep the finishing rolling temperature constant in the conventional hot-rolled mill, there is a problem that material variations in the width and length direction are largely generated as the rolling speed is necessarily accelerated in the tail portion.
한편, 최근 주목을 받고 있는 새로운 철강 제조공정인 소위 박 슬라브를 이용한 제조공정(미니밀 공정)은 공정 특성 상 스트립의 폭 및 길이방향으로의 온도편차가 작기 때문에 재질편차가 양호한 변태 조직 강을 제조할 수 있는 잠재 능력을 지닌 공정으로 주목 받고 있다.On the other hand, a fabrication process (mini-mill process) using a so-called thin slab, which is a new steel manufacturing process that has recently been attracting attention, has been widely used in the manufacture of a textured steel having a good material deviation since the width of the strip and the temperature deviation in the longitudinal direction are small It is attracting attention as a process with potential to be able to.
특허문헌 3은 미니밀 공정에서 배치(Batch) 방식으로 인장강도 590MPa급 열연 DP강의 제조 방법에 관한 것으로 최종 강판 두께가 3.0mm 정도이다. Patent Document 3 relates to a method for producing a hot-rolled DP steel having a tensile strength of 590 MPa by batch method in a mini-mill process, and the final steel sheet thickness is about 3.0 mm.
이러한 이유는 기존 미니밀 공정의 경우 바 플레이트(Bar Plate)가 코일 박스(Coil Box)에 감겼다 풀리는 배치 방식으로 하나의 강판을 생산할 때 마다 이러한 과정을 거쳐야 하기 때문에 마무리 압연 시 스트립(Strip)의 직진성 및 통판성이 좋지 않고, 판 파단 위험성이 아주 높아 두께 3.0mm 이하의 열연 강판의 코일(Coil)을 생산하기가 어렵다. The reason for this is that in the case of the existing mini-mill process, the bar plate is coiled in a coil box, and this process must be performed every time a single steel plate is produced by a disposing arrangement. Therefore, And it is difficult to produce coils of hot-rolled steel sheets having a thickness of 3.0 mm or less because of a high risk of plate breakage.
따라서 상술한 문제점들을 극복할 수 있는 제조공정의 개발이 요구된다. 이뿐만 아니라 전 세계적으로 차체 승객 충돌 안정성 및 CO2 환경 규제 등의 강력한 요구에 따라 재질 편차가 작고, 용접성이 우수한 인장강도 980MPa급 이상의 박물 (강판 두께 3.0mm 이하) AHSS강판 제조가 가능한 제조공정의 개발이 절실히 필요하다.Therefore, it is required to develop a manufacturing process capable of overcoming the above-mentioned problems. In addition to this, it is possible to manufacture AHSS steel sheet with less tensile strength of 980 MPa or more (steel sheet thickness less than 3.0 mm) and excellent weldability due to strong demand for collision stability of passenger and CO 2 environment around the world. Development is urgently needed.
(선행기술문헌)(Prior art document)
(특허문헌 1) 미국 특허 제4285741호(Patent Document 1) U.S. Patent No. 4285741
(특허문헌 2) 미국 특허 제4325751호(Patent Document 2) U.S. Patent No. 4325751
(특허문헌 3) 한국 공개특허공보 제10-2012-0052022호(Patent Document 3) Korean Published Patent Application No. 10-2012-0052022
본 발명의 바람직한 일 측면은 연주-압연 직결 공정으로 제조되는 것으로서 표면품질 및 용접성이 우수하고 동시에 강판의 폭, 길이 방향 재질편차 및 에지 크랙을 현저히 감소시킨 초고강도 열연강판을 제공하고자 하는 것이다.A preferred aspect of the present invention is to provide an ultrahigh-strength hot-rolled steel sheet having excellent surface quality and weldability and being significantly reduced in width, lengthwise material deviation, and edge cracks.
본 발명의 바람직한 다른 일 측면은 표면품질 및 용접성이 우수하고 동시에 강판의 폭, 길이 방향 재질편차 및 에지 크랙을 현저히 감소시킨 초고강도 열연강판을 연주-압연 직결 공정으로 제조하는 방법을 제공하고자 하는 것이다.Another aspect of the present invention is to provide a method of manufacturing an ultra-high-strength hot-rolled steel sheet excellent in surface quality and weldability, and significantly reduced in width, lengthwise material deviation, and edge cracks, by a performance- .
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.On the other hand, the object of the present invention is not limited to the above description. It will be understood by those of ordinary skill in the art that there is no difficulty in understanding the additional problems of the present invention.
본 발명의 바람직한 일 측면에 의하면, 연주-압연 직결 공정으로 제조되는 것으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 그리고 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함하는 미세조직을 갖는 초고강도 열연강판이 제공된다. According to a preferred aspect of the present invention, there is provided a method of manufacturing a steel sheet, which is produced by a performance-rolling direct process, comprising 0.030 to 0.085% of C, 1.8 to 3.0% of Mn, 0.03 to 1.0% of Si, 0.005 to 0.05% , S: 0.01% or less, Cr: 0.2 to 2.0%, Al: 0.01 to 0.07%, Ti: 0.005 to 0.10%, B: 0.0005 to 0.0050%, N: 0.001 to 0.010%, and other Fe and other unavoidable impurities And an ultrahigh-strength hot-rolled steel sheet having a microstructure containing 40 to 60% of ferrite, 30 to 50% of martensite and 10 to 20% of bainite in an areal fraction.
바람직하게는, 상기 열연강판에서 Al 및 Ti는 하기 관계식(1)을 만족시킬 수 있다.Preferably, in the hot-rolled steel sheet, Al and Ti can satisfy the following relational expression (1).
[관계식 1][Relation 1]
1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
[상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
상기 열연강판에서 하기 식(2)로 표현되는 Ceq가 0.18~0.28일 수 있다.In the hot-rolled steel sheet, Ceq expressed by the following formula (2) may be 0.18 to 0.28.
[관계식 2][Relation 2]
Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
[상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
상기 열연강판에는 트램프 원소로서 Cu, Ni, Mo, Sn 및 Pb 중 1 이상이 포함될 수 있고, 그 함량 합계는 0.2 중량% 이하일 수 있다.The hot-rolled steel sheet may contain at least one of Cu, Ni, Mo, Sn, and Pb as a tramp element, and the total content thereof may be 0.2 wt% or less.
상기 베이나이트는 페라이트와 마르텐사이트의 계면에 형성될 수 있다.The bainite may be formed at the interface between ferrite and martensite.
상기 페라이트 결정립의 원상당 직경으로 측정한 평균 크기는 5㎛ 이하일 수 있다. The mean size of the ferrite crystal grains measured by the circle equivalent diameter may be 5 탆 or less.
상기 열연강판은 Ti(C,N) 석출물을 5~1000개/㎛2 포함할 수 있으며, 상기 Ti(C,N) 석출물의 평균 사이즈는 원상당 직경으로 50nm 이하일 수 있다. The hot-rolled steel sheet may comprise 25-1000 / ㎛ the Ti (C, N) precipitates, the Ti (C, N) average size of the precipitate can be 50nm or less in circle equivalent diameter.
바람직하게는, 상기 압연공정이 바 플레이트(Bar Plate)를 제조하는 조압연 공정을 포함하고, 조압연된 바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%)이 하기 식(3)을 만족할 수 있다.Preferably, the rolling process includes a rough rolling process for producing a bar plate, and a molar fraction (%) of an AlN precipitate at an edge portion of the roughly rolled bar plate may satisfy the following formula (3) .
[관계식 3][Relation 3]
바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
상기 열연강판은 인장강도가 980MPa 이상이고, 연신율이 10%이상이고, 인장강도의 편차(재질편차)가 30MPa 이하일 수 있다.The hot-rolled steel sheet may have a tensile strength of 980 MPa or more, an elongation of 10% or more, and a deviation (material deviation) of tensile strength of 30 MPa or less.
상기 열연강판의 두께는 3.0mm 이하일 수 있다.The thickness of the hot-rolled steel sheet may be 3.0 mm or less.
또한, 본 발명의 바람직한 다른 일 측면에 의하면, 연주-압연 직결 공정으로 제조되는 것으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함하는 미세조직을 갖고, 그리고 산세처리후 저항점용접 시, 용접된 용접강판에서 최소 너깃직경 4t1/2[t=모재두께 (mm)]를 만족하는 하한전류와 비산이 발생하는 상한전류 사이의 적정용접 범위는 1.5(kA)이상이고, 최소 너깃직경 5t1/2[t=모재두께 (mm)]를 만족하는 하한전류와 상한전류 사이의 적정용접 범위는 1.0(KA)이상이고, 십자인장강도(Cross Tensile Strength, CTS) 대비 인장전단강도(Tensile Shear Strength, TSS)의 비율인 연성비가 35% 이상인 초고강도 열연강판이 제공된다.According to another aspect of the present invention, there is provided a method of manufacturing a steel sheet, which is manufactured through a performance-rolling direct process, and which comprises 0.030 to 0.085% of C, 1.8 to 3.0% of C, 0.03 to 1.0% of Si, 0.005 0.001 to 0.050% of N, 0.001 to 0.010% of N, 0.001 to 0.010% of Cr, 0.2 to 2.0% of Cr, 0.01 to 0.07% of Al, 0.005 to 0.10% of Ti, And has a microstructure containing an impurity and an area fraction of 40 to 60% of ferrite, 30 to 50% of martensite, and 10 to 20% of bainite, and in the case of resistance spot welding after pickling treatment, The optimum welding range between the lower current satisfying the minimum nugget diameter of 4 t 1/2 [t = the base metal thickness (mm)] and the upper current limit causing the scattering in steel is 1.5 (kA) or more and the minimum nugget diameter is 5 t 1/2 The appropriate welding range between the lower current limit and the upper limit current satisfying [t = base metal thickness (mm)] is 1.0 (KA) or more and the tensile shear strength (TS) relative to the cross tensile strength S) having a ductility ratio of 35% or more is provided.
바람직하게는, 상기 열연강판에서 Al 및 Ti는 하기 관계식(1)을 만족시킬 수 있다.Preferably, in the hot-rolled steel sheet, Al and Ti can satisfy the following relational expression (1).
[관계식 1][Relation 1]
1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
[상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
상기 열연강판에서 하기 식(2)로 표현되는 Ceq가 0.18~0.28일 수 있다.In the hot-rolled steel sheet, Ceq expressed by the following formula (2) may be 0.18 to 0.28.
[관계식 2][Relation 2]
Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
[상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
상기 열연강판에는 트램프 원소로서 Cu, Ni, Mo, Sn 및 Pb 중 1 이상이 포함될 수 있고, 그 함량 합계는 0.2 중량% 이하일 수 있다.The hot-rolled steel sheet may contain at least one of Cu, Ni, Mo, Sn, and Pb as a tramp element, and the total content thereof may be 0.2 wt% or less.
상기 너깃에 해당되는 용융부의 비커스 경도는 350~450Hv일 수 있고, 모재 경도와 연화부 최소 경도와의 차이가 100Hv이하일 수 있다.The Vickers hardness of the fused portion corresponding to the nugget may be 350 to 450 Hv, and the difference between the hardness of the base material and the minimum hardness of the softened portion may be 100 Hv or less.
상기 너깃에 해당되는 용융부의 미세조직은 면적율로 95%이상의 마르텐사이트 조직을 포함할 수 있다.The microstructure of the molten portion corresponding to the nugget may include a martensite structure having an area ratio of 95% or more.
바람직하게는, 상기 압연공정이 바 플레이트를 제조하는 조압연 공정을 포함하고, 조압연된 바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%)이 하기 식(3)을 만족할 수 있다.Preferably, the rolling process includes a rough rolling process for producing a bar plate, and the molar fraction (%) of the AlN precipitate at the edge portion of the roughly rolled bar plate can satisfy the following formula (3).
[관계식 3][Relation 3]
바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
또한, 본 발명의 바람직한 또 다른 일 측면에 의하면, 연주-압연 직결 공정으로 열연강판을 제조하는 방법으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 용강을 두께 60 ~ 120mm의 슬라브로 연속주조하는 단계;According to still another aspect of the present invention, there is provided a method of manufacturing a hot-rolled steel sheet by a direct-rolling-performance-rolling process, comprising the steps of: C: 0.030-0.085%; Mn: 1.8-3.0%; Si: 0.001 to 0.05% of P, 0.2 to 2.0% of Cr, 0.01 to 0.07% of Al, 0.005 to 0.10% of Ti, 0.0005 to 0.0050% of B, 0.001 to 0.010% of N, Continuously cast molten steel containing remaining Fe and other unavoidable impurities into a slab having a thickness of 60 to 120 mm;
상기 슬라브에 냉각수를 50~350bar의 압력으로 분사하여 표면 스케일을 제거하는 단계;Spraying the slab with cooling water at a pressure of 50 to 350 bar to remove the surface scale;
상기 스케일이 제거된 슬라브를 조압연하여 바 플레이트(Bar Plate)를 얻는 단계;Rolling the scaled slab to obtain a bar plate;
상기 바 플레이트에 50~350bar의 압력으로 냉각수를 분사하여 표면 스케일을 제거하는 단계;Spraying cooling water onto the bar plate at a pressure of 50 to 350 bar to remove surface scale;
상기 스케일이 제거된 바 플레이트를 Ar3-30℃~Ar3+60℃의 온도범위에서 마무리 압연하여 열연강판을 얻는 단계;Finishing rolling the bar plate from which the scale has been removed in a temperature range of Ar 3 -30 캜 to Ar 3 + 60 캜 to obtain a hot-rolled steel sheet;
상기 열연강판을 런 아웃 테이블(Run Out Table)에서 1~8초 동안 공냉한 후, 150℃/sec이상의 냉각속도로 마르텐사이트 변태 완료 온도(Mf)이하로 냉각하는 단계; 및Cooling the hot-rolled steel sheet in a run-out table for 1 to 8 seconds and cooling to a martensitic transformation completion temperature (Mf) or less at a cooling rate of 150 ° C / sec or more; And
상기 냉각된 열연강판을 마르텐사이트 변태 완료 온도(Mf)이하에서 권취하는 단계;를 포함하는 초고강도 열연강판의 제조방법이 제공된다.And winding the cooled hot-rolled steel sheet at a martensitic transformation completion temperature (Mf) or lower.
바람직하게는, 상기 용강에서 Al 및 Ti는 하기 관계식(1)을 만족시킬 수 있다.Preferably, in the molten steel, Al and Ti can satisfy the following relational expression (1).
[관계식 1][Relation 1]
1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
[상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
상기 용강에서 하기 식(2)로 표현되는 Ceq가 0.18~0.28일 수 있다.In the molten steel, Ceq expressed by the following formula (2) may be 0.18 to 0.28.
[관계식 2][Relation 2]
Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
[상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
상기 용강에는 트램프 원소로서 Cu, Ni, Mo, Sn 및 Pb 중 1 이상이 포함될 수 있고, 그 함량 합계는 0.2 중량% 이하일 수 있다.The molten steel may contain at least one of Cu, Ni, Mo, Sn and Pb as a tramp element, and the total content thereof may be 0.2 wt% or less.
상기 연속주조의 주조속도는 4~8mpm일 수 있다. The casting speed of the continuous casting may be 4 to 8 mpm.
상기 슬라브는 표면스케일 제거 단계 전에 가열될 수 있으며, 슬라브 가열온도는 900~1200℃일 수 있다.The slab may be heated before the surface descaling step, and the slab heating temperature may be 900 to 1200 ° C.
상기 조압연 시 조압연 입측 슬라브의 표면 온도는 900~1200℃이고, 조압연 츨측 바 플레이트 에지부 온도는 780~1100℃일 수 있다.The surface temperature of the rough-rolled slab at the time of rough rolling may be 900 to 1200 ° C, and the edge temperature of the rough-rolled bar-plate edge may be 780 to 1100 ° C.
상기 조압연 출측 바 플레이트 에지부 온도는 상기 바 플레이트 에지부 온도에서 석출된 AlN 몰 분율(%)이 하기 식(3)을 만족하도록 제어될 수 있다.The temperature of the rough rolling out side bar plate edge portion can be controlled so that the AlN mole fraction (%) precipitated at the bar plate edge portion temperature satisfies the following formula (3).
[관계식 3][Relation 3]
바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
상기 조압연 시 누적 압하율은 60 ~ 90%일 수 있다.The cumulative rolling reduction during the rough rolling may be 60 to 90%.
상기 마무리 압연 시 통판속도는 200~600mpm일 수 있고, 마무리 압연에 의해 제조되는 열연강판의 두께는 3.0mm 이하일 수 있다.During the finish rolling, the sheet passing speed may be 200 to 600 mpm, and the thickness of the hot-rolled steel sheet produced by the finish rolling may be 3.0 mm or less.
상기 마무리 압연 시 강판의 탑(Top)과 테일(Tail)의 압연속도 차이는 10%이하일 수 있다. The rolling speed difference between the top and the tail of the steel sheet during the finish rolling may be 10% or less.
상기 열연강판을 산세처리하여 PO(Pickled & Oiled)재를 얻는 단계를 추가로 포함할 수 있다.And picking up the hot-rolled steel sheet to obtain a pickled & &lt; RTI ID = 0.0 &gt; (PO) &lt; / RTI &gt;
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.In addition, the solution of the above-mentioned problems does not list all the features of the present invention. The various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.
본 발명에 의하면, 연주-압연 직결 공정에서 연연속압연 모드를 이용하여 표면 품질이 우수할 뿐만 아니라 강판의 폭 및 길이 방향으로의 재질편차를 현저히 감소시키며, 실수율이 우수하고, 얇은 두께, 예를 들면, 3.0mm 이하의 두께를 갖는 인장강도 980MPa급 초고강도 열연강판을 제조할 수 있고, 이에 더하여 에지 크랙을 현저히 감소시킬 수 있다. According to the present invention, not only the surface quality is improved by using the continuous continuous rolling mode in the performance-rolling direct process, but also the material variation in the width and length direction of the steel sheet is remarkably reduced, and the yield rate is excellent. , It is possible to produce an ultra-high strength hot-rolled steel sheet having a thickness of 3.0 mm or less and a tensile strength of 980 MPa. In addition, edge cracks can be significantly reduced.
또한, 본 발명에 의해 제조된 열연강판은 박물(두께 3.0mm 이하)이고 에지부와 표면 스케일 품질이 양호하여 일반적인 열연 산세공정으로 고급 PO재 제조가 가능하여, 두께가 3.0mm를 초과하는 열연강판 만의 생산이 가능한 기존 미니밀 공정 및 열연밀 공정과 차별화되어 가격 경쟁면에서 우수하고, 부가가치를 월등히 향상시킬 수 있다. 이 뿐만 아니라, 박 슬라브 연주법을 통해 기존 열연밀에서의 재가열 공정을 생략할 수 있어 에너지 절감 및 생산성 향상을 도모할 수 있다. 또한, 박 슬라브 연주법을 통해 전기로에서 고철 등의 스크랩을 용해한 강을 사용할 수 있어 자원의 재활용성을 높여줄 수 있다.In addition, the hot-rolled steel sheet produced by the present invention is superior in the quality of the edges and the surface scale, and is capable of producing advanced PO by a general hot-rolling pickling process, It can be differentiated from existing minilmill and hot-milling processes that can only be produced by itself, so it is excellent in terms of price competition and can significantly improve value-added. In addition, it is possible to omit the reheating step in the existing hot melt mill through the thin slab method, thereby saving energy and improving the productivity. In addition, it is possible to use the steel in which the scrap of scrap iron is dissolved in the electric furnace through the thin slab reclamation method, thereby enhancing the recyclability of resources.
도 1은 발명예7의 광학현미경 조직사진이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig.
도 2는 발명예7의 주사전자현미경(SEM) 조직사진이다.2 is a scanning electron microscope (SEM) structural photograph of Inventive Example 7. Fig.
도 3은 발명예7의 페라이트 결정립 크기 분포를 나타낸 것이다.Fig. 3 shows the ferrite grain size distribution of Inventive Example 7. Fig.
도 4는 발명예7의 석출물을 촬영한 투과전자현미경(TEM) 조직사진이다.4 is a transmission electron microscope (TEM) micrograph of the precipitate of Inventive Example 7 taken.
도 5는 발명예7의 단위 면적당(㎛2) 석출물 개수 분포를 나타낸 것이다.5 shows the distribution of the number of precipitates (탆 2 ) per unit area of Inventive Example 7.
도 6은 발명예7의 석출물 사이즈(nm) 분포를 나타낸 것이다.Fig. 6 shows the distribution of the precipitate size (nm) in Inventive Example 7.
도 7은 발명예7의 PO재 표면 사진이다.7 is a PO material surface photograph of Inventive Example 7. Fig.
도 8은 용강 유출이 발생한 비교예8의 슬라브 사진이다. 8 is a photograph of a slab of Comparative Example 8 in which molten steel outflow occurred.
도 9는 발명예7의 상태도를 나타낸 것이다.Fig. 9 shows a state diagram of the inventive example 7. Fig.
도 10은 비교예8의 상태도를 나타낸 것이다.10 shows a state diagram of Comparative Example 8. Fig.
도 11은 발명예7의 온도에 따른 AlN/TiN 몰분율 변화를 나타낸 그래프이다.11 is a graph showing changes in mole fraction of AlN / TiN according to the temperature of Inventive Example 7.
도 12는 비교예10의 온도에 따른 AlN 몰분율 변화를 나타낸 그래프이다.12 is a graph showing the change in the mole fraction of AlN according to the temperature of Comparative Example 10.
도 13은 종래예1의 온도에 따른 AlN 몰분율 변화를 나타낸 그래프이다.13 is a graph showing the change in the mole fraction of AlN according to the temperature of Conventional Example 1.
도 14는 발명예7에 대한 용접전류에 따른 너깃의 단면 조직사진이다.14 is a cross-sectional photograph of the nugget according to the welding current for the case 7;
도 15는 발명예7에 대한 저항점용접부 경도 분포를 나타낸 것이다.15 shows the distribution of the hardness of the resistance spot welded portion according to Inventive Example 7.
도 16은 발명예7에 대한 용접전류에 따른 연성비 변화를 나타낸 것이다.16 shows the ductility ratio variation according to the welding current for the inventive example 7.
도 17은 발명예7에 대한 용융부의 SEM 조직 사진이다.17 is a SEM micrograph of the molten portion of the present invention.
도 18은 본 발명이 적용될 수 있는 연주-압연 직결공정의 바람직한 일례의 레이 아웃(lay-out)을 나타낸 것이다.Figure 18 shows a lay-out of a preferred example of a performance-rolling direct process that the present invention may be applied to.
도 19는 본 발명이 적용될 수 있는 연주-압연 직결공정의 바람직한 다른 일례의 레이 아웃(lay-out)을 나타낸 것이다.Figure 19 shows another preferred lay-out of a performance-rolling direct process in which the present invention may be applied.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art.
본 발명자들은 연주-압연 직결 공정을 통해, 표면품질 및 용접성이 우수하고, 동시에 강판의 폭, 길이 방향 재질편차 및 에지 크랙을 현저히 감소시킨 초고강도 열연강판에 대하여, 연구 및 실험을 행하고, 그 결과에 기초하여 본 발명을 완성하였다.The present inventors conducted research and experiments on an ultra-high-strength hot-rolled steel sheet excellent in surface quality and weldability, and significantly reduced in width, lengthwise material deviation, and edge cracks through a performance-rolling direct process, The present invention has been completed.
본 발명은 연주-압연 직결 공정에서 강 조성, 미세조직 및 제조조건을 적절히 제어하여 표면품질 및 용접성이 우수하고 동시에 강판의 폭, 길이 방향 재질편차 및 에지 크랙을 현저히 감소시킨 초고강도 열연강판 및 그 제조방법을 제공하는 것이다.The present invention relates to an ultrahigh-strength hot-rolled steel sheet excellent in surface quality and weldability by properly controlling steel composition, microstructure and manufacturing conditions in a performance-rolling direct-cutting process, and significantly reducing width, lengthwise material deviation and edge cracks, And a method for manufacturing the same.
이하, 본 발명의 바람직한 일 측면에 따른 초고강도 열연강판에 대하여 상세히 설명한다.Hereinafter, a super high strength hot rolled steel sheet according to a preferred embodiment of the present invention will be described in detail.
본 발명의 바람직한 일 측면에 따른 초고강도 열연강판은 연주-압연 직결 공정으로 제조되는 것으로, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 그리고 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함하는 미세조직을 갖는다. A super high strength hot-rolled steel sheet according to a preferred embodiment of the present invention is manufactured by a performance-rolling direct process, and comprises 0.030 to 0.085% of C, 1.8 to 3.0% of C, 0.03 to 1.0% of Si, 0.005 to 0.05%, S: 0.01% or less, Cr: 0.2 to 2.0%, Al: 0.01 to 0.07%, Ti: 0.005 to 0.10%, B: 0.0005 to 0.0050% Contains inevitable impurities, and has a microstructure including an area fraction of 40 to 60% of ferrite, 30 to 50% of martensite and 10 to 20% of bainite.
먼저, 본 발명의 합금조성에 대하여 상세히 설명한다. 이하, 각 원소 함량의 단위는 중량%이다.First, the alloy composition of the present invention will be described in detail. Hereinafter, the unit of each element content is% by weight.
C: 0.030~0.085%C: 0.030 to 0.085%
탄소(C)는 강판의 강도를 증가시키고, 페라이트와 마르텐사이트로 이루어진 복합조직을 확보하는 데 매우 중요한 원소이다. C 함량이 0.030% 미만인 경우에는 본 발명에서 목표로 하는 강도 확보가 어려울 수 있다. 반면에 C 함량이 0.085%를 초과하는 경우에는 용강 응고 시 아포정 반응(L+Delta Ferrite→Austentite)이 일어나 불균일한 두께의 응고 셀이 형성되어 용강 유출이 발생하여 조업 사고를 유발할 수 있다. 따라서, C 함량은 0.03~0.085%인 것이 바람직하다. 보다 바람직하게는, 0.040~0.080% 이며, 보다 더 바람직하게는, 0.055~0.075%이다.Carbon (C) is a very important element for increasing the strength of a steel sheet and securing a composite structure composed of ferrite and martensite. When the C content is less than 0.030%, it may be difficult to secure the desired strength in the present invention. On the other hand, when the C content exceeds 0.085%, an apodization reaction (L + Delta Ferrite → Austentite) occurs at the time of solidification of molten steel, and a solidified cell having a non-uniform thickness is formed, resulting in molten steel outflow. Therefore, the C content is preferably 0.03 to 0.085%. , More preferably 0.040 to 0.080%, and even more preferably 0.055 to 0.075%.
Mn: 1.8~3.0%Mn: 1.8 to 3.0%
망간(Mn)은 고용강화 효과가 매우 큰 원소임과 동시에 페라이트와 마르텐사이트로 이루어진 복합조직 형성을 촉진하는 원소이다. Mn 함량이 1.8% 미만인 경우에는 본 발명에서 목표로 하는 강도 확보가 어려울 수 있다. 반면에, Mn 함량이 3.0%를 초과하는 경우에는 합금강 원가 상승과 용접성 및 열간 압연성 등이 열위 해질 수 있다. 따라서, Mn 함량은 1.8 ~ 3.0%인 것이 바람직하다. 보다 바람직하게는, 1.9~2.8% 이며, 보다 더 바람직하게는, 2.0~2.6% 이다.Manganese (Mn) is an element that has a very strong effect of solid solution strengthening, and at the same time promotes the formation of composite structure composed of ferrite and martensite. If the Mn content is less than 1.8%, it may be difficult to obtain the desired strength in the present invention. On the other hand, when the Mn content exceeds 3.0%, alloy steel cost rise and weldability and hot rolling property may be weakened. Therefore, the Mn content is preferably 1.8 to 3.0%. , More preferably 1.9 to 2.8%, and even more preferably 2.0 to 2.6%.
Si: 0.03~1.0%Si: 0.03 to 1.0%
규소(Si)는 강판의 연성을 저하시키지 않으면서 강도를 확보할 수 있는 유용한 원소이다. 또한, 페라이트 형성을 촉진하고 미변태 오스테나이트로의 C 농축을 조장함으로써 마르텐사이트 형성을 촉진하는 원소이다. Si 함량이 0.03% 미만인 경우에는 상술한 효과를 충분히 확보하기 어렵다. 반면에, Si 함량이 1.0%를 초과하는 경우에는 강판 표면에 적 스케일이 생성되어 산세 후 강판 표면에 흔적이 잔류하여 표면 품질이 저하될 수 있다. 따라서, Si 함량은 0.03~1.0%인 것이 바람직하다. 보다 바람직하게는, 0.030~0.80%이며, 보다 더 바람직하게는, 0.035~0.50% 이다. Silicon (Si) is a useful element that can secure strength without deteriorating the ductility of the steel sheet. It is also an element promoting the formation of martensite by promoting ferrite formation and promoting C concentration in untransformed austenite. When the Si content is less than 0.03%, it is difficult to sufficiently secure the above effect. On the other hand, when the Si content is more than 1.0%, the scale of the steel is generated on the surface of the steel sheet, and traces remain on the surface of the steel sheet after pickling, and the surface quality may be deteriorated. Therefore, the Si content is preferably 0.03 to 1.0%. , More preferably 0.030 to 0.80%, and even more preferably 0.035 to 0.50%.
P: 0.005~0.05%P: 0.005 to 0.05%
인(P)은 강판을 강화시키는 효과를 갖는 원소이다. P 함량이 0.005% 미만인 경우 그 효과를 확보하기 어렵다. 반면에, P 함량이 0.05%를 초과하는 경우에는 결정립계 및/또는 상간 입계에 편석되어 취성을 유발할 수 있다. 따라서, P의 함량은 0.005~0.05%로 제한하는 것이 바람직하다. 보다 바람직하게는, 0.006~0.040%이며, 보다 더 바람직하게는, 0.010~0.025%이다.Phosphorus (P) is an element having an effect of strengthening the steel sheet. When the P content is less than 0.005%, it is difficult to secure the effect. On the other hand, when the P content exceeds 0.05%, the grain boundary and / or the intergranular grain boundary may be segregated to cause brittleness. Therefore, the content of P is preferably limited to 0.005 to 0.05%. , More preferably 0.006 to 0.040%, and even more preferably 0.010 to 0.025%.
S: 0.01% 이하S: not more than 0.01%
황(S)은 불순물로서 강 중에 MnS 비금속 개재물 및 연주 응고 중에 편석되어 고온 크랙을 유발할 수 있다. 따라서, 그 함량은 가능한 낮게 제어되어야 하며, 0.01% 이하로 제어하는 것이 바람직하다.Sulfur (S) is an impurity which segregates during MnS nonmetallic inclusions and performance solidification in steel and can cause high temperature cracks. Therefore, the content thereof should be controlled as low as possible and preferably controlled to be 0.01% or less.
Cr: 0.2~2.0%Cr: 0.2 to 2.0%
크롬(Cr)은 경화능을 향상시키고 강의 강도를 증가시키는 원소이다. Cr 함량이 0.2% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Cr 함량이 2.0%를 초과하는 경우에는 강판의 연성이 저하되는 문제가 있다. 따라서, Cr 함량은 0.2~2.0%인 것이 바람직하다. 보다 바람직하게는, 0.3~1.8% 이며, 보다 더 바람직하게는, 0.5~1.4% 이다.Chromium (Cr) is an element that improves hardenability and increases the strength of steel. When the Cr content is less than 0.2%, the above-mentioned effect is insufficient. On the other hand, when the Cr content exceeds 2.0%, there is a problem that the ductility of the steel sheet deteriorates. Therefore, the Cr content is preferably 0.2 to 2.0%. , More preferably 0.3 to 1.8%, and even more preferably 0.5 to 1.4%.
Al: 0.01~0.07%Al: 0.01 to 0.07%
알루미늄(Al)은 탄화물 형성을 억제하여 강의 연성을 증가시키는 역할을 한다. Al 함량이 0.01% 미만인 경우에는 상술한 효과가 불충분하다. 반면에, Al 함량이 0.07% 초과인 경우에는 AlN 석출물이 다량 형성되어 고온연성 저하로 인해 주편 또는 바 플레이트의 에지 품질을 저하시킬 수 있으며, 강판의 표면에 농화되어 도금성을 나쁘게 할 수 있다. 따라서, Al 함량은 0.01~0.07%인 것이 바람직하다. 보다 바람직하게는, 0.015~0.06% 이며, 보다 더 바람직하게는, 0.02~0.05% 이다.Aluminum (Al) plays a role in suppressing the formation of carbides and increasing the ductility of steel. When the Al content is less than 0.01%, the above-mentioned effect is insufficient. On the other hand, when the Al content is more than 0.07%, a large amount of AlN precipitates are formed to deteriorate the edge quality of the cast steel or bar plate due to deterioration of high temperature ductility, and the steel can be thickened on the surface of the steel plate to deteriorate the plating ability. Therefore, the Al content is preferably 0.01 to 0.07%. , More preferably 0.015 to 0.06%, and even more preferably 0.02 to 0.05%.
Ti: 0.005~0.10%Ti: 0.005 to 0.10%
티타늄(Ti)은 석출물 및 질화물 형성원소로서 강의 강도를 증가시키는 원소이다. 또한 Ti은 응고온도 근처에서 TiN의 형성을 통해 고용 N를 제거하여 AlN 석출물량을 감소시켜 고온연성 저하를 방지하여 에지(Edge) 크랙 발생 민감성을 감소시키는 원소이다. Ti 함량이 0.005% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Ti 함량이 0.10%를 초과하는 경우에는 제조 비용의 상승 및 페라이트의 연성을 저하시킬 수 있다. 따라서, Ti 함량은 0.005~0.10%인 것이 바람직하다. 보다 바람직하게는, 0.008~0.08%이며, 보다 더 바람직하게는, 0.01~0.075%이다.Titanium (Ti) is an element for forming precipitates and nitrides, which increases the strength of steel. In addition, Ti is an element that reduces the sensitivity of edge cracking by preventing the deterioration of high-temperature ductility by reducing the amount of AlN precipitate by removing solute N through the formation of TiN near the solidification temperature. When the Ti content is less than 0.005%, the above-mentioned effect is insufficient. On the other hand, if the Ti content exceeds 0.10%, the manufacturing cost may increase and the ductility of the ferrite may be deteriorated. Therefore, the Ti content is preferably 0.005 to 0.10%. , More preferably 0.008 to 0.08%, and even more preferably 0.01 to 0.075%.
B: 0.0005~0.0050%B: 0.0005 to 0.0050%
보론(B)은 강의 경화능을 증가시키는 원소이다. B 함량이 0.0005% 미만인 경우에는 상술한 효과가 불충분하고, 0.0050% 초과하게 되면 오스테나이트 재결정 온도를 상승시키며 용접성을 나쁘게 한다. 또한, BN등의 석출물이 과다 석출되어 고온 연성 저하로 인해 주편 및/또는 바 플레이트(Bar plate)의 에지 품질이 열위할 수 있다. 따라서, B 함량은 0.0005~0.0050%인 것이 바람직하다. 보다 바람직하게는, 0.001~0.0040%이며, 보다 더 바람직하게는, 0.001~0.0025%이다.Boron (B) is an element that increases the hardenability of steel. When the B content is less than 0.0005%, the above-mentioned effect is insufficient. When the B content exceeds 0.0050%, the austenite recrystallization temperature is increased and the weldability is deteriorated. Further, excessive precipitation of precipitates such as BN may deteriorate the edge quality of the cast steel and / or the bar plate due to deterioration of high-temperature ductility. Therefore, the B content is preferably 0.0005 to 0.0050%. , More preferably 0.001 to 0.0040%, and even more preferably 0.001 to 0.0025%.
N: 0.001~0.010%N: 0.001 to 0.010%
질소(N)는 오스테나이트 안정화 및 질화물 형성 원소이다.Nitrogen (N) is an austenite stabilizing and nitriding element.
N 함량이 0.001% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 N 함량이 0.010%를 초과하는 경우에는 석출물 형성 원소와 반응하여 석출 강화 효과를 증가시키지만, 연성의 급격한 하락을 초래할 수 있다. 따라서 N 함량은 0.001~0.010%인 것이 바람직하다. 보다 바람직하게는, 0.0025~0.0095% 이며, 보다 더 바람직하게는, 0.0040~0.0090% 이다. When the N content is less than 0.001%, the above-mentioned effect is insufficient. On the other hand, when the N content exceeds 0.010%, the precipitation strengthening effect is increased by reacting with the precipitate-forming element, but it may cause a drastic decrease in ductility. Therefore, the N content is preferably 0.001 to 0.010%. , More preferably 0.0025 to 0.0095%, and even more preferably 0.0040 to 0.0090%.
바람직하게는, 상기 열연강판에서 Al 및 Ti는 하기 관계식(1)을 만족시킬 수 있다.Preferably, in the hot-rolled steel sheet, Al and Ti can satisfy the following relational expression (1).
[관계식 1][Relation 1]
1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
[상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
상기 Ti, Al 및 N은 상술한 각 수치범위를 만족할 뿐만 아니라, 고강도를 확보하면서도 표면 품질을 향상시키고 에지 크랙을 현저히 감소시키기 위하여 상기 식(1)을 만족하도록 제어될 수 있다.The above Ti, Al and N not only satisfy the above-mentioned numerical ranges but can be controlled so as to satisfy the above formula (1) in order to improve the surface quality and significantly reduce the edge crack while securing high strength.
강 중의 알루미늄(Al)은 질소(N)와 반응하여 AlN 석출물을 형성하는데, 박 슬라브 제조 시 이들 석출물이 석출하는 주편 냉각 조건에서 슬라브/바 플레이트 크랙을 유발하여 주편 또는 열연강판의 에지 품질을 저하시킬 수 있기 때문에 Ti을 적절히 첨가하여 용강 응고온도 근처에서 TiN의 형성을 통해 고용 N를 제거하여 AlN 석출물량을 감소시켜, 상기 결함을 제어할 수 있다.Aluminum (Al) in the steel reacts with nitrogen (N) to form AlN precipitates. The slab / bar plate cracks are induced in the slab cooling conditions under which these precipitates are precipitated during the production of thin slabs to lower the edge quality of the slab or hot- It is possible to appropriately add Ti to remove solute N through the formation of TiN near the solidification temperature of molten steel to reduce the amount of AlN precipitate to control the defect.
상기 식(1)에서 1.9Al-3.4Ti 값이 0.002 이상인 경우에는 AlN 석출물량을 감소시킬 Ti이 충분하지 않기 때문에 슬라브/ 바 플레이트 에지 크랙을 유발 시켜 열연강판의 품질을 열위 하게 할 수 있다. When the value of 1.9Al-3.4Ti in the above formula (1) is 0.002 or more, since the amount of Ti to reduce the amount of AlN precipitates is insufficient, the slab / bar plate edge cracks can be caused and the quality of the hot-rolled steel sheet can be reduced.
한편, 본 발명의 강판을 자동차 차체에 적용하여 최종 제품을 생산하기 위해서는 용접공정이 행해지며, 저항점용접(Resistance Spot Welding, 이하 RSW)이 가장 많이 적용되고 있다. 본 발명의 강판은 우수한 RSW 용접성 및 용접부 물성을 갖는다.Meanwhile, in order to produce the final product by applying the steel sheet of the present invention to an automobile body, a welding process is performed, and resistance spot welding (RSW) is applied most. The steel sheet of the present invention has excellent RSW weldability and weld material properties.
본 발명의 강판은 상술한 합금조성을 만족할 뿐만 아니라 하기 식(2)로 표현되는 Ceq가 0.18~0.28일 수 있다.The steel sheet of the present invention not only satisfies the alloy composition described above, but also has Ceq of 0.18 to 0.28 expressed by the following formula (2).
[관계식 2][Relation 2]
Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
[상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
상기 식(2)는 강판의 용접성을 확보하기 위한 성분관계식으로서, 본 발명에서는 상기 Ceq 값을 0.18~0.28로 관리함으로써, 우수한 점용접성을 확보할 수 있으며, 용접부에 우수한 기계적 물성을 부여할 수 있다. 상기 Ceq 값은 보다 바람직하게는 0.18~0.27이며, 보다 더 바람직하게는 0.18~0.26일 수 있다.The above formula (2) is a component relational expression for securing the weldability of the steel sheet. In the present invention, by controlling the Ceq value to 0.18 to 0.28, excellent spot weldability can be ensured and excellent mechanical properties can be imparted to the welded portion . The Ceq value is more preferably from 0.18 to 0.27, and still more preferably from 0.18 to 0.26.
Ceq가 0.18 미만인 경우에는 경화능이 낮아 목표로 하는 인장강도을 확보하기 어려울 수 있다. 반면에, Ceq가 0.28를 초과하는 경우에는 용접성이 저하되어 용접부의 물성이 열화될 수 있다. 보다 바람직하게는, 0.18~0.27 이며, 보다 더 바람직하게는, 0.19~0.26 이다.When Ceq is less than 0.18, the curing ability is low and it may be difficult to secure the target tensile strength. On the other hand, when Ceq exceeds 0.28, the weldability is lowered and the physical properties of the welded portion may deteriorate. More preferably 0.18 to 0.27, and even more preferably 0.19 to 0.26.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
이때, 상술한 합금조성 외에 트램프 원소로서 Cu, Ni, Mo, Sn 및 Pb 중 1 이상을 포함하고, 그 함량의 합계가 0.2 중량% 이하일 수 있다.At this time, in addition to the alloy composition described above, at least one of Cu, Ni, Mo, Sn, and Pb may be included as a tram element, and the total content thereof may be 0.2 wt% or less.
트램프 원소는 제강공정에서 원료로 사용하는 스크랩에서 비롯된 불순물 원소로서, 그 합계가 0.2% 초과인 경우에는 박 슬라브의 표면 크랙 및 열연강판의 표면 품질을 저하시킬 수 있다.The tram element is an impurity element derived from scrap used as a raw material in a steelmaking process. If the total amount exceeds 0.2%, surface cracking of the thin slab and surface quality of the hot-rolled steel sheet may be deteriorated.
이하, 본 발명의 바람직한 일 측면에 따른 열연강판의 미세조직에 대하여 상세히 설명한다.Hereinafter, the microstructure of the hot-rolled steel sheet according to one preferred embodiment of the present invention will be described in detail.
본 발명에 따른 열연강판의 미세조직은 페라이트와 마르텐사이트를 합한 분율은 면적분율로 80% 이상이고, 나머지는 베이나이트 조직으로 구성된다. 바람직하게는 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함한다.In the microstructure of the hot-rolled steel sheet according to the present invention, the fraction of ferrite and martensite combined is 80% or more in area fraction, and the remainder is composed of bainite structure. Preferably, it contains 40 to 60% of ferrite in an area fraction, 30 to 50% of martensite and 10 to 20% of bainite.
페라이트 분율이 60%를 초과하는 경우에는 목표로 하는 강도 확보에 어려움이 있고, 40% 미만인 경우에는 나머지 마르텐사이트 및 베이나이트 조직의 분율이 높아져 연성을 확보함에 있어 어려움이 있다. When the ferrite fraction exceeds 60%, it is difficult to secure the desired strength. When the ferrite fraction is less than 40%, the fraction of the remaining martensite and bainite structure increases, which is difficult to secure the ductility.
또한, 마르텐사이트 분율이 50%를 초과하는 경우에는 강도가 너무 높아져 연성을 확보함에 있어 어려움이 있고, 30% 미만인 경우에는 목표로 하는 강도 확보에 어려움이 있을 수 있다.When the martensite fraction exceeds 50%, the strength becomes too high to secure the ductility. When the martensite fraction is less than 30%, it may be difficult to secure the desired strength.
한편, 상기 열연강판의 미세조직에 베이나이트 조직을 일부 포함시키는 이유는 아래와 같다. On the other hand, the reason why the bainite structure is partially included in the microstructure of the hot-rolled steel sheet is as follows.
일반적으로, 페라이트 + 마르텐사이트 2상으로 구성된 DP(Dual Phase)의 경우 마르텐사이트 분율이 높아 용접시 열영향부에서 마르텐사이트가 템퍼링(Tempering)되어 연화현상이 발생하여 강도가 하락하는 문제점이 있다. 만약, 마르텐사이트 대신 베이나이트 조직을 어느 정도 확보 시 이러한 문제점을 개선시킬 수 있을 뿐만 아니라 베이나이트의 조직 특성 상 강도와 가공성을 동시에 확보할 수 있다. 또한 DP강의 경우 연질인 페라이트와 경질인 마르텐사이트 두 상간의 계면강도 차이에 의해 계면에서 우선 파단이 발생하여 가공성이 열위한 문제점이 있다. 그러나 베이나이트는 페라이트와 마르텐사이트의 중간 강도를 갖는 조직으로 이 두 조직 계면에 베이나이트 조직을 구성시킬 경우 상기와 같은 문제점이 개선되어 가공성을 향상 시킬 수 있다. Generally, the DP (dual phase) composed of two phases of ferrite + martensite has a high martensite fraction, so that martensite is tempered in the heat affected zone during welding, resulting in softening phenomenon and a decrease in strength. If the bainite structure is secured to some extent instead of the martensite, such problems can be solved and the strength and workability can be secured simultaneously due to the bainite structure characteristics. Also, in the case of DP steel, there is a problem in that, due to the difference in interfacial strength between the soft ferrite and the hard martensite, fracture occurs at the interface first and the workability is improved. However, bainite is a structure having an intermediate strength between ferrite and martensite, and when the bainite structure is formed at these two texture interfaces, the above problems can be improved and the workability can be improved.
상기 베이나이트 분율이 10% 미만이 경우 상술한 효과가 불충분하다. 반면에 20%를 초과하는 경우에는 강도가 너무 높아져 연성을 확보함에 있어 어려움이 있을 수 있다.When the bainite fraction is less than 10%, the above-mentioned effect is insufficient. On the other hand, if it exceeds 20%, the strength becomes too high and it may be difficult to secure the ductility.
상기 페라이트 결정립은 원상당 직경으로 측정한 평균 크기가 5㎛ 이하일 수 있다. 보다 바람직하게는 4㎛ 이하이며, 보다 더 바람직하게는 3㎛ 이하일 수 있다. 미세 결정립을 갖는 페라이트 조직의 확보를 통해 강도와 가공성을 동시에 확보하기 위함으로, 상기 페라이트 결정립의 크기가 5㎛를 초과하는 경우에는 목표로 하는 강도 및 가공성을 확보하기 어려울 수 있다.The average size of the ferrite grains measured by the circle equivalent diameter may be 5 탆 or less. More preferably not more than 4 mu m, and even more preferably not more than 3 mu m. In order to simultaneously secure strength and workability through securing a ferrite structure having fine crystal grains, when the size of the ferrite crystal grains exceeds 5 탆, it may be difficult to secure the desired strength and workability.
한편, 본 발명의 열연강판은 Ti(C,N) 석출물을 5~1000개/㎛2 포함할 수 있으며, 보다 바람직하게는 5~500개/㎛2 포함할 수 있고, 보다 더 바람직하게는 5~200개/㎛2를 포함할 수 있으며, 상기 Ti(C,N) 석출물은 평균 사이즈가 원상당 직경으로 50nm 이하일 수 있다. 여기서 Ti(C, N) 석출물이란, TiN, Ti(C,N), TiC 및 이들의 복합 석출물을 포함하는 의미이다. On the other hand, the hot-rolled steel sheet of the present invention may contain 5 to 1000 Ti / 22 precipitates, more preferably 5 to 500 Ti / 22 , and still more preferably 5 To 200 pieces / 탆 2 , and the Ti (C, N) precipitate may have an average size of 50 nm or less in circle equivalent diameter. Here, Ti (C, N) precipitates are meant to include TiN, Ti (C, N), TiC and complex precipitates thereof.
상기 석출물의 크기가 50nm를 초과하는 경우에는 효과적으로 강도를 확보하기 어려울 수 있다. 또한, 석출물의 개수가 5개/㎛2 미만인 경우에는 목표로 하는 강도를 확보하기 어려울 수 있다. 반면에 석출물의 개수가 1000개/㎛2 를 초과인 경우에는 강도 상승에 따라 연신율이 열위해져서 가공이 어려워질 수 있다. When the size of the precipitate exceeds 50 nm, it may be difficult to effectively secure the strength. When the number of precipitates is less than 5 / 탆 2 , it may be difficult to secure a desired strength. On the other hand, in the case where the number of precipitates is more than 1000 / 탆 2 , the elongation rate is lowered due to the increase of the strength, and processing may become difficult.
상기 열연강판이 바 플레이트를 제조하는 조압연 공정을 포함하는 연주-압연 직결 공정으로 제조되는 경우, 에지 크랙을 현저히 감소시키기 위하여 조압연된 바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%)이 하기 식(3)을 만족하도록 할 수 있다.In the case where the hot-rolled steel sheet is manufactured by a performance-rolling direct process including a rough rolling process for producing a bar plate, the molar fraction (%) of the AlN precipitate at the edge portion of the rough- (3) can be satisfied.
[관계식 3][Relation 3]
바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
상기 식(3)에서 바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%)이 8.3X10-6 이상일 경우 바 플레이트 에지 크랙이 발생 할 수 있어 열연강판의 품질이 열위하게 될 수 있다.When the molar fraction (%) of the AlN precipitate at the edge portion of the bar plate in the formula (3) is 8.3X10 -6 or more, cracking of the bar plate edge may occur, and the quality of the hot rolled steel sheet may be poor.
나아가, 본 발명의 열연강판의 두께는 3.0mm 이하일 수 있고, 바람직하게는2.0mm 이하일 수 있으며, 보다 더 바람직하게는 1.5mm 이하 일 수 있다.Further, the thickness of the hot-rolled steel sheet of the present invention may be 3.0 mm or less, preferably 2.0 mm or less, and more preferably 1.5 mm or less.
본 발명의 열연강판은 인장강도가 980MPa 이상이며, 연신율이 10% 이상이고, 인장강도의 편차(재질편차)가 30MPa 이하일 수 있고, 바람직하게는, 20MPa 이하일 수 있다. The hot-rolled steel sheet of the present invention may have a tensile strength of 980 MPa or more, an elongation of 10% or more, a deviation (material variation) of tensile strength of 30 MPa or less, and preferably 20 MPa or less.
본 발명의 바람직한 다른 일 측면에 따르는 초고강도 열연강판은 연주-압연 직결 공정으로 제조되는 것으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함하는 미세조직을 갖고, 그리고 산세처리 후 저항점용접 시, 용접된 용접강판에서 최소 너깃직경 4t1/2[t=모재두께 (mm)]를 만족하는 하한전류와 비산이 발생하는 상한전류 사이의 적정용접 범위는 1.5(kA)이상이고, 최소 너깃직경 5t1/2[t=모재두께 (mm)]를 만족하는 하한전류와 상한전류 사이의 적정용접 범위는 1.0(KA)이상이고, 십자인장강도(Cross Tensile Strength, CTS) 대비 인장전단강도(Tensile Shear Strength, TSS)의 비율인 연성비가 35% 이상이다.A super high strength hot-rolled steel sheet according to another preferred embodiment of the present invention is manufactured by a performance-rolling direct process, and includes 0.030 to 0.085% of C, 1.8 to 3.0% of C, 0.03 to 1.0% of Si, 0.03 to 1.0% of C, : 0.005 to 0.05%, S: 0.01% or less, Cr: 0.2 to 2.0%, Al: 0.01 to 0.07%, Ti: 0.005 to 0.10%, B: 0.0005 to 0.0050% And other inevitable impurities and has a microstructure containing 40 to 60% of ferrite in an area fraction, 30 to 50% of martensite and 10 to 20% of bainite, and in resistance point welding after pickling treatment, The optimum welding range between the lower current satisfying the minimum nugget diameter of 4 t 1/2 [t = the base material thickness (mm)] and the upper current causing the scattering is 1.5 (kA) or more and the minimum nugget diameter is 5 t 1 / 2 [t = thickness of base material (mm)] appropriate range of the welding current and the upper current to meet the lower limit is not less than 1.0 (KA), the cross tensile strength (cross tensile strength, CTS) compared to the tensile shear strength (Tensi le shear strength, TSS) is 35% or more.
저항점용접(RSW)에서 적정용접범위는 용접성을 평가하는 주요 지표이며, 상한전류와 하한전류 사이의 범위로 정의할 수 있다. 최소너깃직경 4t1/2(t는 모재두께 (mm))를 만족하는 하한전류와 비산(Expulsion)이 발생하는 상한전류 사이의 적정용접 범위는 1.5(kA)이상이며, 최소너깃직경 5t1/2를 만족하는 하한전류와 상한전류 사이의 적정용접 범위는 1.0(KA)이상 일 수 있다. The appropriate welding range in resistance spot welding (RSW) is a key index for evaluating the weldability and can be defined as the range between the upper limit current and the lower limit current. The optimum welding range between the lower current satisfying the minimum nugget diameter of 4t 1/2 (t is the base material thickness (mm)) and the upper current causing the expansion is more than 1.5 (kA), and the minimum nugget diameter is 5t 1 / 2 , the appropriate welding range between the lower current limit and the upper current limit may be 1.0 (KA) or more.
만약 상기 적정용접 범위가 상기 범위 이하일 경우 용접이 가능한 범위가 너무 좁아 차체 부품 용접 시 용접이 어려울 뿐만 아니라, 용접 불량품이 과다하게 발생할 수 있다. 여기서, 최소너깃직경 4t1/ 2은 계면파단(Interfacial Fracture, IF)에서 풀 아웃 파단 (Pull Out Fracture, POF)으로 천이하기 위해 요구되는 최소 너깃 직경을 의미한다. 그리고, 인장강도 980MPa급 이상의 AHSS에서는 높은 탄소당량(Ceq)와 RSW 특유의 빠른 냉각속도에 의해 용융부에 마르텐사이트 조직이 생성되어 계면으로 파단이 일어나는 계면판단의 민감성이 높아져 기존 연강(Mild) 기준인 4t1/2가 맞지 않을 수 있어 최소너깃직경 5t1/2를 만족하는 하한전류 관리가 중요할 수 있다. 또한 상한전류는 비산이 발생한 전류에서 0.2(kA)를 뺀 값으로 정의하였다.If the appropriate welding range is less than the above range, the range in which the welding is possible is too narrow, which is not only difficult to weld in the case of the body part welding but also may cause excessive welding defective products. Here, the minimum nugget diameter 4t 1/2 means a minimum nugget diameter required to switch to the pull-out fracture (Pull Out Fracture, POF) at the interface fracture (Fracture Interfacial, IF). In AHSS with a tensile strength of 980 MPa or more, martensite structure is formed in the molten portion due to a high carbon equivalent (Ceq) and a rapid cooling rate peculiar to the RSW, so that the sensitivity of the interfacial determination at the interface is increased, 4t 1/2 can not be matched and the lower current management satisfying the minimum nugget diameter 5t 1/2 may be important. The upper limit current is defined as the value obtained by subtracting 0.2 (kA) from the current generated by scattering.
한편 RSW에서 연성비(CTS/TSS)는 십자인장강도(Cross Tensile Strength, CTS) 대비 인장전단강도(Tensile Shear Strength, TSS)의 비율로 정의되며, AHSS RSW에서 용접부 기계적 특성을 판단하는 종합적인 지표로 사용된다. 상기 개발강의 연성비는 주어진 적정용접전류 범위에서 35% 이상 일 수 있다. 만약 35%미만일 경우 용접부 강도 특성 및 충돌 안정성이 열위하여 차체 충돌 시 승객을 안정적으로 보호할 수 없을 수 있다.In RSW, the ductility ratio (CTS / TSS) is defined as the ratio of Tensile Shear Strength (TSS) to Cross Tensile Strength (CTS), and is a comprehensive index that determines the mechanical properties of the weld in the AHSS RSW . The ductility ratio of the developed steel may be at least 35% over a given appropriate welding current range. If it is less than 35%, the passenger may not be able to stably protect the passenger in the event of a body collision in order to open the weld strength characteristic and the collision stability.
더 나아가, 본 발명 강판의 RSW 너깃(Nugget)인 용융부(Fusion Zone)의 비커스 경도는 350~450Hv를 갖는 것이 바람직하다. 만약 350Hv보다 낮을 시 충분한 용융부 경도를 확보하지 못해, 용접부 강도가 낮을 수 있다. 그러나, 450Hv 를 초과하면, 용융부 경도가 너무 높아, 크랙 발생 민감성이 높고, 너깃 계면에서 파단이 일어나는 계면파단의 민감성이 높아지기 때문에 용접부 강도와 특히 충격 흡수 에너지가 낮을 수 있다. 상기 용융부(Fusion Zone)의 비커스 경도는 보다 바람직하게는 360~440Hv이며, 보다 더 바람직하게는 370~430Hv이다. Furthermore, it is preferable that the Vickers hardness of the fusion zone, which is the RSW nugget of the steel sheet of the present invention, is 350 to 450 Hv. If it is lower than 350Hv, sufficient hardness of the molten part can not be secured and the strength of the welded part may be low. However, when it exceeds 450 Hv, the strength of the welded portion and especially the impact absorption energy may be low because the hardness of the molten portion is too high, the sensitivity of cracking is high, and the interfacial fracture where fracture occurs at the nugget interface becomes high. The Vickers hardness of the fusion zone is more preferably 360 to 440 Hv, and even more preferably 370 to 430 Hv.
한편, 연화부는 마르텐사이트 분율이 높은 AHSS 용접부에서 관찰되는 전형적인 현상으로 연화부 경도가 너무 낮을 시 연화부에서 판단이 일어나 용접부 강도가 낮을 수 있다. 따라서, 본 발명에서는 모재(Base metal) 경도와 연화부(Softening zone) 최소 경도와의 차가 100Hv이하일 수 있다. 보다 바람직하게는 90Hv이하일 수 있고, 보다 더 바람직하게는 80Hv이하일 수 있다. 만약, 이 값 이상일 경우 연화부에서 파단이 일어나, 충분한 용접부 강도 확보가 어려울 수 있기 때문이다. On the other hand, the softened part is a typical phenomenon observed in the AHSS welded part having a high martensite fraction, and when the softened part hardness is too low, the softened part may be judged and the strength of the welded part may be low. Accordingly, in the present invention, the difference between the hardness of the base metal and the minimum hardness of the softening zone may be 100 Hv or less. More preferably 90 Hv or less, and even more preferably 80 Hv or less. If it is more than this value, breakage occurs in the softened portion, and it may be difficult to secure sufficient strength of the welded portion.
상기 본 발명 강판의 RSW의 너깃(용용부)의 미세조직은 너깃내에 95%이상 마르텐사이트 조직을 갖는 것이 바람직하다. The microstructure of the nugget (melting portion) of the RSW of the inventive steel sheet preferably has a martensite structure in the nugget of 95% or more.
이하, 본 발명의 바람직한 또 다른 일 측면에 따른 초고강도 열연강판의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method of manufacturing an ultra-high strength hot-rolled steel sheet according to another preferred embodiment of the present invention will be described in detail.
본 발명의 바람직한 또 다른 일 측면에 따른 초고강도 열연강판의 제조방법은 연주-압연 직결 공정으로 열연강판을 제조하는 방법으로서, 상술한 합금조성을 갖는 용강을 두께 60 ~ 120mm의 슬라브로 연속주조하는 단계;According to still another aspect of the present invention, there is provided a method of manufacturing a hot-rolled steel sheet by a direct-rolling process, which comprises continuously casting molten steel having the alloy composition described above into a slab having a thickness of 60 to 120 mm ;
상기 슬라브에 냉각수를 50~350bar의 압력으로 분사하여 표면 스케일을 제거하는 단계;Spraying the slab with cooling water at a pressure of 50 to 350 bar to remove the surface scale;
상기 스케일이 제거된 슬라브를 조압연하여 바 플레이트(Bar Plate)를 얻는 단계;Rolling the scaled slab to obtain a bar plate;
상기 바 플레이트에 50~350bar의 압력으로 냉각수를 분사하여 표면 스케일을 제거하는 단계;Spraying cooling water onto the bar plate at a pressure of 50 to 350 bar to remove surface scale;
상기 스케일이 제거된 바 플레이트를 Ar3-30℃~Ar3+60℃의 온도범위에서 마무리 압연하여 열연강판을 얻는 단계;Finishing rolling the bar plate from which the scale has been removed in a temperature range of Ar 3 -30 캜 to Ar 3 + 60 캜 to obtain a hot-rolled steel sheet;
상기 열연강판을 런 아웃 테이블(Run Out Table)에서 1~8초 동안 공냉한 후, 150℃/sec이상으로 마르텐사이트 변태 완료 온도(Mf)이하로 냉각하는 단계; 및Cooling the hot-rolled steel sheet in a run-out table for 1 to 8 seconds and then cooling it to a martensitic transformation completion temperature (Mf) of 150 ° C / sec or more; And
상기 냉각된 열연강판을 마르텐사이트 변태 완료 온도(Mf)이하에서 권취하는 단계;를 포함한다.And winding the cooled hot-rolled steel sheet at a martensitic transformation completion temperature (Mf) or lower.
이하, 각 단계별로 상세히 설명한다.Hereinafter, each step will be described in detail.
연속주조 단계Continuous casting step
상술한 합금조성을 갖는 용강을 연속주조하여 두께 60~120mm의 슬라브를 제조한다. 이때, 주조속도는 예를 들면, 4~8mpm으로 설정하는 것이 바람직하다. 상기 주조속도를 4mpm 이상으로 하는 것이 바람직한 이유는 고속주조와 압연과정이 연결되어 이루어져, 목표 압연 온도를 확보하기 위해서는 일정 이상의 주조 속도가 요구되기 때문이다. 또한 주조속도가 느릴 경우 주편에서부터 편석이 발생할 위험이 있으며, 이러한 편석이 발생하면 강도 및 가공성 확보가 어려울 뿐만 아니라, 폭 방향 또는 길이 방향으로의 재질편차가 발생할 위험성이 커지게 된다. 상기 주조속도가 8mpm을 초과하는 경우에는 용강 탕면 불안정에 의해 조업 성공율이 저감될 수 있으므로, 상기 주조속도는 4~8mpm으로 설정하는 것이 바람직하다. 보다 바람직하게는 4.2~7.2mpm이며, 보다 더 바람직하게는 4.5~6.5mpm이다.The molten steel having the above-mentioned alloy composition is continuously cast to prepare a slab having a thickness of 60 to 120 mm. At this time, the casting speed is preferably set to, for example, 4 to 8 mpm. The reason why the casting speed is preferably 4 mpm or more is because a high speed casting and a rolling process are connected to each other and a casting speed higher than a certain level is required to secure the target rolling temperature. In addition, if the casting speed is slow, there is a risk of segregation from the cast steel. If such segregation occurs, it is difficult to secure strength and workability, and the risk of material variation in the width direction or the longitudinal direction is increased. When the casting speed exceeds 8 mpm, the operation success rate may be reduced due to instability of the molten steel bath surface, so that the casting speed is preferably set to 4 to 8 mpm. More preferably 4.2 to 7.2 mpm, and even more preferably 4.5 to 6.5 mpm.
한편, 상기 슬라브의 두께가 120mm를 초과하는 경우에는 고속주조가 어려울 뿐만 아니라, 조압연 시 압연 부하가 증가하게 되고, 60mm미만인 경우에는 주편의 온도 하락이 급격하게 일어나 균일한 조직을 형성하기 어렵다. 이를 해결하기 위해서는 부가적으로 가열 설비를 설치할 수 있으나, 이는 생산 원가를 증가시키는 요인이 되므로, 가능한 배제하는 것이 바람직하다. 따라서, 슬라브의 두께는 60~120mm로 한정한다. 보다 바람직하게는 70~110mm이며, 보다 더 바람직하게는 80~100mm이다.On the other hand, when the thickness of the slab is more than 120 mm, high-speed casting is difficult, and the rolling load during rough rolling is increased. When the slab thickness is less than 60 mm, the temperature of the cast steel is rapidly decreased. In order to solve this problem, it is possible to additionally provide a heating device, but this increases the production cost, so it is preferable to exclude it. Therefore, the thickness of the slab is limited to 60 to 120 mm. More preferably 70 to 110 mm, and even more preferably 80 to 100 mm.
상기 슬라브는 표면스케일 제거 단계 전에 가열될 수 있으며, 슬라브 가열온도는 900~1200℃일 수 있다. 상기 슬라브의 표면온도가 900℃ 미만인 경우에는 조압연 하중 증가 및 조압연 과정에서 바 플레이트 에지부에 크랙이 발생할 가능성이 있고, 이 경우 열연강판의 에지부 결함을 초래할 수 있다. 만약, 슬라브 표면온도가 1200℃을 초과하는 경우에는 열연 스케일(scale) 잔존에 따른 열연 표면 품질 저하와 같은 문제가 발생할 수 있다. 따라서 상기 슬라브의 가열온도는 900~1200℃의 범위를 갖는 것이 바람직하다. 보다 바람직하게는 950~1150℃이며, 보다 더 바람직하게는 1000~1100℃일 수 있다.The slab may be heated before the surface descaling step, and the slab heating temperature may be 900 to 1200 ° C. When the surface temperature of the slab is less than 900 캜, there is a possibility that cracks are generated in the edge portion of the bar plate in the course of an increase in the rough rolling load and in the rough rolling. In this case, the edge of the hot rolled steel sheet may be defective. If the slab surface temperature exceeds 1200 ° C, problems such as deterioration of hot rolling surface quality due to the remnant of a hot rolling scale may occur. Therefore, the heating temperature of the slab is preferably in the range of 900 to 1200 ° C. More preferably 950 to 1150 占 폚, and still more preferably 1000 to 1100 占 폚.
슬라브 스케일 제거 단계Slab scale removal step
상기 주조된 슬라브 또는 주조 후 가열된 슬라브에 냉각수를 50~350bar의 압력으로 분사하여 스케일을 제거한다. 예를 들어, 조압연 스케일 브레이커(Roughing Mill Scale Breaker, 이하 'RSB'라 함) 노즐에서 50℃ 이하의 냉각수를 50~350bar 압력으로 분사하여, 표면 스케일 두께가 예를 들면, 300㎛ 이하가 되도록 스케일을 제거할 수 있다. 상기 압력이 50bar 미만인 경우에는 슬라브 표면에 산수형 스케일 등이 다량 잔존하여 산세 후 표면 품질이 열위해질 수 있다. 반면 350bar를 초과할 경우 바 플레이트 에지 온도가 급격히 하락하여 에지 크랙이 발생할 수 있다. 상기 냉각수 분사 압력은 보다 바람직하게는 100~300bar일 수 있으며, 보다 더 바람직하게는 150~250bar일 수 있다.The scale is removed by injecting cooling water at a pressure of 50 to 350 bar into the cast slab or the heated slab after casting. For example, cooling water of 50 ° C or less is sprayed at a pressure of 50 to 350 bar in a roughing scale breaker (hereinafter, referred to as 'RSB') to obtain a surface scale thickness of, for example, 300 μm or less The scale can be removed. If the pressure is less than 50 bar, a large amount of arithmetic scale scale or the like may remain on the surface of the slab and the surface quality may become dull after pickling. On the other hand, if the temperature exceeds 350 bar, the edge temperature of the bar plate may drop rapidly, and an edge crack may occur. The cooling water injection pressure may be more preferably 100 to 300 bar, and still more preferably 150 to 250 bar.
조압연 단계Rough rolling step
상기 스케일이 제거된 슬라브를 예를 들면, 2 ~ 5개의 스탠드로 구성된 조압연기에서 조압연하여 바 플레이트를 얻는다. 조압연기의 입측에서 슬라브의 표면온도는 900~1200℃의 범위를 갖는 것이 바람직하다. 상기 슬라브의 표면온도가 900℃ 미만인 경우에는 조압연 하중 증가 및 조압연 과정에서 바 플레이트 에지부에 크랙이 발생할 가능성이 있고, 이 경우 열연강판의 에지부 결함을 초래할 수 있다. 만약, 슬라브 표면온도가 1200℃을 초과하는 경우에는 열연 스케일(scale) 잔존에 따른 열연 표면 품질 저하와 같은 문제가 발생할 수 있다. 따라서 상기 슬라브의 표면온도는 900~1200℃의 범위를 갖는 것이 바람직하다. 보다 바람직하게는 950~1150℃이며, 보다 더 바람직하게는 1000~1100℃일 수 있다.The scale-removed slab is rough-rolled, for example, in a roughing mill composed of 2 to 5 stands to obtain a bar plate. The surface temperature of the slab at the inlet side of the roughing mill is preferably in the range of 900 to 1200 ° C. When the surface temperature of the slab is less than 900 캜, there is a possibility that cracks are generated in the edge portion of the bar plate in the course of an increase in the rough rolling load and in the rough rolling. In this case, the edge of the hot rolled steel sheet may be defective. If the slab surface temperature exceeds 1200 ° C, problems such as deterioration of hot rolling surface quality due to the remnant of a hot rolling scale may occur. Therefore, the surface temperature of the slab preferably ranges from 900 to 1200 ° C. More preferably 950 to 1150 占 폚, and still more preferably 1000 to 1100 占 폚.
상기 조압연 시 조압연 츨측 바 플레이트(Bar plate) 에지부 온도는 780~1100℃의 범위를 갖는 것이 바람직하다. 상기 에지부 온도가 780℃ 미만인 경우에는 AlN 석출물이 석출되어 고온연성 저하에 따라 에지 크랙 발생 민감성이 아주 높아 질 수 있다. 반면에, 에지부 온도가 1100℃를 초과하는 경우에는 박 슬라브 중심부 온도가 너무 높게 되어 산수형 스케일이 다량 발생하여 산세 후 표면 품질이 열위하게 될 수 있다. 상기 조압연 시 조압연 츨측 바 플레이트(Bar plate) 에지부 온도는 보다 바람직하게는 800~1080℃일 수 있으며, 보다 더 바람직하게는 820~1060℃일 수 있다.It is preferable that the edge temperature of the rough-rolled bar plate at the time of rough rolling has a range of 780 to 1100 ° C. If the edge portion temperature is less than 780 ° C, the AlN precipitates precipitate and the susceptibility to edge cracking may become very high as the high temperature ductility deteriorates. On the other hand, when the edge temperature exceeds 1100 ° C, the temperature of the center of the thin slab becomes too high, so that a large number of arithmetic scale may occur and the surface quality may become poor after pickling. The temperature at the edge of the bar plate at the time of rough rolling during the rough rolling may be more preferably 800 to 1080 ° C, and still more preferably 820 to 1060 ° C.
이때, 조압연 출측 바 플레이트 에지부 온도는 상술한 각 수치범위를 만족할 뿐만 아니라, 고강도를 확보하면서도 표면 및 에지 품질을 향상시키기 위해서는 하기 식(3)을 만족하도록 제어하는 것이 바람직하다.At this time, it is preferable that the edge temperature of the bar-rolling-out side bar plate not only satisfies the above-described respective numerical ranges but also satisfies the following formula (3) in order to improve surface and edge quality while ensuring high strength.
[관계식 3][Relation 3]
바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
조압연 시 바 조압연 출측 바 플레이트 에지부 온도가 상기 식(3)을 만족하도록 제어되지 않을 경우, 즉, 상기 식(3)에서 바 플레이트 에지부 온도에서 석출된 AlN 몰 분율(%)이 8.3X10-6 이상일 경우 바 플레이트 에지 크랙이 발생 할 수 있어 열연강판의 품질이 열위하게 될 수 있다.(3), that is, when the AlN mole fraction (%) precipitated at the bar plate edge portion temperature in the equation (3) is 8.3 If X10 -6 or higher, cracking of the bar plate edge may occur and the quality of the hot-rolled steel sheet may be poor.
한편, 조압연 시의 누적 압하율은 본 발명에서 목표로 하는 재질이 균일한 제품을 얻는데 중요한 역할을 한다. 즉 조압연 시 압하율이 높을수록 고강도강 제조에 중요한 원소들인 Mn, Si, Cr등의 미시적인 분포가 균일해질 뿐 아니라, 스트립의 폭 및 두께 방향의 온도구배도 작아지므로 균일한 재질을 얻는데 매우 유효하다. 하지만 누적 압하율이 60% 미만인 경우는 상기의 효과가 충분히 발휘되지 못하며, 90%를 초과하는 경우는 압연변형 저항이 크게 증가해 제조 비용이 상승하므로, 누적 압하율이 60 ~ 90%가 되도록 조압연하는 것이 바람직하다. 보다 바람직하게는 65~85%이며, 보다 더 바람직하게는 70~80%일 수 있다.On the other hand, cumulative rolling reduction during rough rolling plays an important role in obtaining a uniform target material in the present invention. That is, as the reduction rate in rough rolling increases, microstructures such as Mn, Si, and Cr, which are important elements in the manufacture of high strength steel, become uniform and the temperature gradient in the width and thickness direction of the strip becomes smaller. Valid. However, if the cumulative rolling reduction is less than 60%, the above effects can not be sufficiently exhibited. If the cumulative rolling reduction exceeds 90%, the rolling resistance increases greatly and the manufacturing cost rises. It is preferable to perform rolling. , More preferably 65 to 85%, and still more preferably 70 to 80%.
바 플레이트 스케일 제거 단계Bar plate scale removal step
상기 바 플레이트에 냉각수를 50~350bar의 압력으로 분사하여 스케일을 제거한다. 예를 들어, 바 플레이트를 마무리 압연 전에 마무리압연 스케일 브레이커(Finishing Mill Scale Breaker, 이하 'FSB'라 함) 노즐에서 50℃ 이하의 냉각수를 50~350bar 압력으로 분사하여 표면 스케일 두께가 예를 들면, 30㎛ 이하가 되도록 스케일을 제거할 수 있다. 상기 냉각수 분사 압력은 보다 바람직하게는 100~300bar이며, 보다 더 바람직하게는 150~250bar이다. The scale is removed by injecting cooling water into the bar plate at a pressure of 50 to 350 bar. For example, before the finish rolling of the bar plate, cooling water of 50 ° C or less is sprayed at a pressure of 50 to 350 bar in a Finishing Mill Scale Breaker (FSB) nozzle, so that the surface scale thickness is, for example, The scale can be removed so as to be not more than 30 mu m. The cooling water injection pressure is more preferably 100 to 300 bar, and even more preferably 150 to 250 bar.
상기 압력이 50bar 미만인 경우에는 스케일의 제거가 불충분하여 마무리 압연 후 강판 표면에 방추형, 비늘형 스케일이 다량 생성되어 산세 후 표면 품질이 열위하게 된다. 반면에 상기 압력이 350bar를 초과하는 경우에는 마무리압연 온도가 너무 낮게 되어 효과적인 오스테나이트 분율을 얻지 못해 목표로 하는 인장강도를 확보하기 어렵다. If the pressure is less than 50 bar, scale removal is insufficient, and a large amount of spindle-shaped scale scale is produced on the surface of the steel sheet after finishing rolling, and surface quality after pickling becomes poor. On the other hand, when the pressure exceeds 350 bar, the finish rolling temperature becomes too low to obtain an effective austenite fraction and it is difficult to secure a target tensile strength.
마무리 압연 단계Finishing rolling step
상기 스케일이 제거된 바 플레이트를 다수개의 스탠드, 예를 들면, 3 내지 6개의 스탠드로 이루어진 사상압연기에서 마무리 압연한다. The bar plate on which the scale has been removed is finish-rolled in a finishing mill composed of a plurality of stands, for example, three to six stands.
본 발명에서 목적으로 하는 980MPa급의 초고강도강은 변태조직의 형성을 강화기구로 이용하고 있기 때문에 마무리 압연 시 변형속도에 따라 재질특성이 변화할 가능성이 매우 높다. 즉, 다수개의 스탠드로 이루어진 사상압연기에서 마무리 압연시 강판의 탑(Top)과 테일(Tail)의 압연속도 차이가 10%를 초과하게 되면 후속하는 런아웃 테이블(Run Out Table)에서 균일한 냉각속도 및 목표 권취온도를 얻기가 어려워서 결국 스트립의 폭 또는 길이방향의 재질편차를 발생시키는 원인이 된다. 따라서, 마무리 압연 단계에서 강판의 탑(Top)과 테일(Tail)의 압연속도 차이는 10%를 초과하지 않도록 제어하는 것이 바람직하다.Since the ultrahigh strength steel of 980 MPa class, which is the object of the present invention, utilizes the formation of the transformed structure as an strengthening mechanism, there is a high possibility that the material properties change according to the strain rate during finish rolling. That is, when the rolling speed difference between the top and the tail of the steel sheet exceeds 10% during finishing rolling in a finishing mill composed of a plurality of stands, a uniform cooling rate and a uniform cooling rate in a subsequent run- It is difficult to obtain the target coiling temperature, which results in causing a material variation in the width or length direction of the strip. Therefore, it is preferable to control so that the difference in rolling speed between the top of the steel sheet and the tail in the finishing rolling step does not exceed 10%.
상기 마무리 압연 온도는 Ar3-30℃~Ar3+60℃가 바람직하다. 상기 마무리 압연 온도가 Ar3-30℃ 미만인 경우에는 열간압연시 롤의 부하가 크게 증가하여 에너지 소비 증가 및 작업속도가 늦어지고, 충분한 오스테나이트 분율을 확보하지 못해 목표로 하는 미세조직 및 재질을 확보할 수 없다. 반면에 마무리 압연 온도가 Ar3+60℃를 초과하는 경우에는 결정립이 조대하여 높은 강도를 얻을 수 없고, 충분한 베이나이트, 마르텐사이트 조직을 얻기 위해서는 냉각속도를 더욱 빨리 해야하는 단점이 있다. 상기 마무리 압연 온도는 보다 바람직하게는 Ar3-20℃~Ar3+50℃이다.The finishing rolling temperature is preferably Ar 3 -30 캜 to Ar 3 + 60 캜. When the finish rolling temperature is lower than Ar 3 -30 ° C, the load of the roll during hot rolling is greatly increased to increase the energy consumption and the working speed, and since a sufficient austenite fraction can not be secured, the target microstructure and material are secured Can not. On the other hand, when the finish rolling temperature is higher than Ar 3 + 60 ° C, the crystal grains can not cooperate with each other to obtain a high strength. In order to obtain a sufficient bainite and martensite structure, the cooling rate must be further increased. The finishing rolling temperature is more preferably Ar 3 -20 캜 to Ar 3 + 50 캜.
이때, 상기 마무리 압연은 통판속도가 200~600mpm이고, 열연강판의 두께가 3.0mm 이하가 되도록 행할 수 있다. 바람직하게는 2.0mm 이하의 두께가 되도록 행할 수 있고, 보다 더 바람직하게는 1.6mm 이하의 두께가 되도록 행할 수 있다.At this time, the finish rolling can be performed such that the sheet passing speed is 200 to 600 mpm and the thickness of the hot-rolled steel sheet is 3.0 mm or less. Preferably 2.0 mm or less, and more preferably 1.6 mm or less.
상기 마무리 압연 속도가 600mpm을 초과하는 경우에는 판파단과 같은 조업 사고가 일어날 수 있으며, 등온등속 압연이 어려워 균일한 온도가 확보되지 않아 재질편차가 발생될 수 있다. 반면에, 200mpm 미만인 경우에는 마무리 압연 속도가 너무 느려 마무리 압연 온도를 확보하기 어려울 수 있다. If the finish rolling speed exceeds 600 mPm, it is possible to cause an operation accident such as plate breakage, and because isothermal constant velocity rolling is difficult, uniform temperature can not be ensured and material deviation may occur. On the other hand, in the case of less than 200 mpm, the finish rolling speed is too slow to secure the finishing rolling temperature.
냉각 및 권취 단계Cooling and winding steps
상기 마무리 압연된 열연강판을 예를 들면, 런아웃 테이블에서 1~8초 동안 공냉한 후, 150℃/sec이상의 냉각속도로 마르텐사이트 변태 완료 온도(Mf)이하로 냉각하고, 권취한다. The finish-rolled hot-rolled steel sheet is, for example, air-cooled for 1 to 8 seconds in a run-out table, cooled to a martensitic transformation completion temperature (Mf) or less at a cooling rate of 150 ° C / sec or more and wound.
상기 냉각된 열연강판은 런아웃 테이불 상에서 1 ~ 8초의 공냉 과정을 거치게 되는데, 그 시간이 1초 미만인 경우는 잔류 오스테나이트로의 C 농화가 부족하고 페라이트 변태를 위한 시간이 부족하여 연신율이 저하될 위험성이 커지며, 8초를 초과하는 경우는 페라이트의 과다 변태로 인해 목표로 하는 인장강도를 확보 함에 있어 어려움이 있을 뿐만 아니라 설비 길이가 길어져야 하거나 생산성이 저하하는 문제점이 발생하므로, 공냉 유지시간은 1 ~ 8초로 설정하는 것이 바람직하다. 상기 공냉 시간은 보다 더 바람직하게는 1.5 ~ 6.5초이며, 보다 더 바람직하게는 2.0 ~ 5.0초이다.The cooled hot rolled steel sheet undergoes air cooling for 1 to 8 seconds on the runout table. If the time is less than 1 second, the C concentration in the retained austenite is insufficient and the time for ferrite transformation is insufficient, And if it exceeds 8 seconds, there is a problem in securing a desired tensile strength due to excessive transformation of ferrite, and also a problem that a length of the equipment is long or productivity is lowered. Therefore, the air- To 8 seconds. The air cooling time is more preferably 1.5 to 6.5 seconds, and still more preferably 2.0 to 5.0 seconds.
한편, 상기 공냉 후, 실시되는 냉각 시 냉각속도는 150℃/sec 이상이 바람직하고, 권취온도는 마르텐사이트 변태 완료 온도(Mf) 이하가 바람직하다.On the other hand, it is preferable that the cooling rate during the cooling after the air cooling is 150 ° C / sec or more, and the coiling temperature is preferably not higher than the martensitic transformation completion temperature (Mf).
상기 냉각속도가 150℃/sec 보다 느리면 페라이트 변태가 촉진되고 세멘타이트가 형성되어 원하는 재질을 얻기가 어렵다. 또한 상기 권취 온도가 마르텐사이트 변태 완료 온도(Mf)를 초과하게 되면 충분한 마르텐사이트 조직을 얻기가 어려울 뿐만 아니라 냉각에 의해 얻어진 마르텐사이트가 오토 템퍼링(Auto Tempering)될 수 있어 목표로 하는 인장강도를 얻기가 어려워질 수 있다. If the cooling rate is slower than 150 ° C / sec, ferrite transformation is promoted and cementite is formed, making it difficult to obtain a desired material. Further, when the coiling temperature exceeds the martensitic transformation completion temperature (Mf), it is difficult to obtain a sufficient martensite structure and the martensite obtained by cooling can be auto tempered to obtain a desired tensile strength Can be difficult.
한편, 본 발명에서는 상기 열연강판을 산세처리하여 PO(Pickled & Oiled)재를 얻는 단계를 추가로 포함할 수 있다.Meanwhile, in the present invention, it is possible to further include a step of pickling the hot-rolled steel sheet to obtain a pickled &
본 발명에서는 슬라브 및 바 플레이트 스케일 제거 단계에서 스케일을 충분히 제거하였기 때문에 일반적인 산세처리로도 표면품질이 우수한 PO재를 얻을 수 있다. 따라서 본 발명에서 사용할 수 있는 산세 처리는 일반적으로 열연산세공정에서 사용되는 처리 방법이라면 적용 가능하므로 특별히 제한하지 않는다.In the present invention, scales are sufficiently removed in the step of removing the slab and bar plate scale, so that a PO material having excellent surface quality can be obtained even by a general pickling treatment. Therefore, the pickling treatment that can be used in the present invention is not particularly limited as long as it is generally applicable to a treatment method used in a hot-rolling pickling process.
이하, 본 발명이 적용될 수 있는 연주-압연 직결공정의 바람직한 일례의 레이 아웃(lay-out)을 나타내는 도 18 및 본 발명이 적용될 수 있는 연주-압연 직결공정의 바람직한 다른 일례의 레이 아웃(lay-out)을 나타내는 도 19를 통해 본 발명의 열연강판을 제조하는 방법의 일례에 대하여 설명한다.18, which illustrates a preferred lay-out of a performance-rolling direct process, to which the present invention may be applied, and another preferred example of a performance-rolling direct process, to which the present invention may be applied, out of the hot-rolled steel sheet according to the present invention will be described with reference to Fig.
본 발명의 일 측면에 따른 인장장도 980MPa급의 재질편차가 적고 표면품질이 우수한 고강도 열연강판은 도 18 및 도 19와 같은 연주-압연 직결공정을 통하여 제조될 수 있다. The high-strength hot-rolled steel sheet having a small material deviation of 980 MPa and excellent in surface quality according to one aspect of the present invention can be manufactured through the performance-rolling direct-joining process as shown in FIGS. 18 and 19.
도 18에 나타난 바와 같이, 연주~압연 직결공정 레이 아웃은 제 1 두께의 슬라브(Slab)(a)를 생산하는 고속 연속주조기(100)와, 상기 슬라브를 상기 제 1 두께보다 얇은 제 2 두께의 바 플레이트(b)로 압연시키는 조압연기(400), 상기 제 2 두께의 바를 제 3 두께의 열연강판(c)으로 압연시키는 사상압연기(600) 및 상기 열연강판을 권취하는 권취기(900)를 포함된다. As shown in FIG. 18, the performance-to-rolling direct process layout comprises a high-speed continuous casting machine 100 for producing slabs (a) of a first thickness and a high-speed continuous casting machine 100 for producing slabs of a second thickness A roughing mill 600 for rolling the bar of the second thickness to a hot-rolled steel sheet c of a third thickness, and a winder 900 for winding the hot-rolled steel sheet, .
상기 연속주조기(100)에서 두께 60~120mm의 박 슬라브(a)를 제조하고, 가열기(200)에서 바 플레이트(b)를 추가 가열하여 마무리 압연 온도를 충분히 확보 할 수 있다. 조압연기(400) 앞에 조압연 스케일 브레이커(300) (Roughing Mill Scale Breaker, 이하 'RSB')와 사상압연기(600) 앞에 사상압연 스케일 브레이커(500)(Fishing Mill Scale Breaker, 이하 'FSB')가 구비되어 있어 표면 스케일 제거가 용이하여 후공정에서 열연 강판을 산세 시 표면품질이 우수한 PO(Pickled & Oiled)재 생산도 가능하다. 또한, 연주-압연 직결공정으로 등온등속압연이 가능하여 강판 폭, 길이 방향 온도 편차가 현저히 낮아 ROT[Run Out Table(700)](이하 "런아웃 테이블")에서 정밀 냉각제어가 가능하여 재질 편차가 우수한 고강도 열연강판의 생산이 가능하다. 이렇게 압연 및 냉각이 완료된 열연강판은 고속전단기(800)에 의해 절단되고, 권취기(900)에 의해 권취되어 제품으로 생산된다.A thin slab a having a thickness of 60 to 120 mm is manufactured in the continuous casting machine 100 and the bar plate b is further heated in the heater 200 to ensure a sufficient finish rolling temperature. A roughing scale breaker 300 (hereinafter, referred to as 'RSB') and a finishing mill scale breaker (FSB) 500 are placed in front of the finishing mill 600 in front of the roughing mill 400 (Pickled & Oiled), which is excellent in surface quality when picking hot-rolled steel sheets in a later process, is also possible. In addition, it is possible to perform isothermal constant-speed rolling by the performance-rolling direct process, so that the steel plate width and the longitudinal temperature deviation are remarkably low, so precise cooling control is possible in ROT [Run Out Table (700)] It is possible to produce excellent high strength hot rolled steel sheets. The hot-rolled steel sheet thus rolled and cooled is cut by a high-speed shear machine 800 and wound by a winder 900 to be produced as a product.
도 19는 연주-압연 직결공정 레이아웃은 도 18의 것에 더하여, 조압연기(400) 앞에 슬라브 추가 가열기(200)를 포함하고 있으며, 이로 인하여 슬라브 에지 온도 확보가 용이하여 에지 결함 발생을 낮게 할 수 있어 표면 품질 확보에 유리하다. 또한, 조압연기 이전에 슬라브 1매 이상의 길이만큼의 공간을 확보하고 있어, 배치(Batch)압연도 가능하다.19, the layout of the performance-rolling direct process includes the slab addition heater 200 in front of the roughing mill 400 in addition to the one shown in FIG. 18, whereby the slab edge temperature can be easily secured and the occurrence of edge defects can be reduced It is advantageous for ensuring surface quality. In addition, a space of at least one slab length is secured before the roughing mill, and batch rolling is also possible.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.
(실시예 1) (Example 1)
하기 표 1에 나타낸 성분조성을 갖는 용강을 준비하였다. 그리고, 하기 표1에는 아포정 반응 시작 임계 C 함량이 기재되어 있으며, 상용 열역학 소프트웨어인 Thermo-Calc-3.0.1 Console Mode (Database: TCFE6)를 이용하여 계산한 값이다. Molten steel having the composition shown in Table 1 below was prepared. Table 1 below shows the C content of the initiation of the apodization reaction and is a value calculated using Thermo-Calc-3.0.1 Console Mode (Database: TCFE6), a commercial thermodynamic software.
상기 용강을 이용하여, 하기 표 2의 제조조건에 따라 연주~압연 직결 공정에서 연연속압연 모드로 1.6mm 두께의 열연강판을 제조하였다(발명예 1 -7 및 비교예 1~11). 종래예 1의 경우, 표 2에 기재된 제조조건을 적용하여 기존 미니밀 공정에서 배치 모드로 3.2mm 두께의 열연강판을 제조한 것이다. Using the molten steel, a hot-rolled steel sheet having a thickness of 1.6 mm was produced in the continuous rolling mode in the performance-to-rolling direct connection process according to the production conditions shown in Table 2 below (Inventive Example 1 -7 and Comparative Examples 1 to 11). In the case of Conventional Example 1, a hot-rolled steel sheet having a thickness of 3.2 mm was produced in the batch mode in the conventional mini-mill process by applying the manufacturing conditions shown in Table 2. [
하기 표 2에는 Ar3 온도 및 Mf 온도가 기재되어 있으며, 이 Ar3 온도 및 Mf 온도는 상용 열역학 소프트웨어인 JmatPro-v9.1를 이용하여 계산한 값이다.In Table 2 below, the Ar 3 temperature and the Mf temperature are described, and the Ar 3 temperature and the Mf temperature are values calculated using a commercial thermodynamic software, JmatPro-v9.1.
하기 표 2에서 RSB(Roughing Mill Scale Breaker, 조압연 스케일 브레이크)는 조압연 전의 냉각수 분사 압력이며, FSB(Finishing Mill Scale Breaker, 마무리 압연 스케일 브레이크)는 조압연 후의 냉각수 분사압력을 나타낸다.In Table 2, RSB (Roughing Mill Scale Breaker, rough rolling scale brake) is the cooling water injection pressure before rough rolling and FSB (Finishing Mill Scale Breaker, finishing rolling scale brake) represents cooling water injection pressure after rough rolling.
한편, 주조 안정성 평가 결과와 상기와 같이 제조된 열연강판을 산세처리하여 PO재를 얻은 후, 미세조직[상 분율, 페라이트 결정립 크기(FGS)], 항복강도(YS), 인장강도(TS), 연신율(EL), 인장강도의 편차(재질편차)(△TS), 에지 크랙 발생 여부 및 PO 표면품질을 측정한 결과를 하기 표 3에 나타내었다. On the other hand, after the result of the casting stability evaluation and the hot-rolled steel sheet produced as described above were pickled to obtain a PO material, the microstructure (phase fraction, ferrite grain size (FGS), yield strength (YS), tensile strength Table 3 shows the results of measuring elongation (EL), deviation (material deviation) (? TS) of tensile strength, occurrence of edge cracks and PO surface quality.
표 3에서, 주조 안정성은 슬라브 제조 시 용강유출 [BO(Break Out)] 여부로 판단하였으며, 페라이트(F), 마르텐사이트(M), 베이나이트(B)의 면적분율은 주사전자현미경(SEM, Scanning Electron Microscope)을 이용하여 3,000배의 배율로 10군데를 랜덤(Random)으로 촬영한 후, Image-Plus Pro 소프트웨어를 이용하여 면적율을 측정한 평균값을 나타내고, 페라이트 결정립 크기(FGS, Ferrite Grain Size)는 EBSD(Electron BackScatter Diffraction)를 이용하여 3,000배의 배율로 10군데를 랜덤(Random)으로 촬영한 후, Image-Plus Pro 소프트웨어를 이용하여 원상당 직경으로 측정한 평균값을 나타낸다. The area fraction of ferrite (F), martensite (M) and bainite (B) was determined by scanning electron microscope (SEM) (FGS, Ferrite Grain Size) of 10 areas randomly photographed at a magnification of 3,000 times using Scanning Electron Microscope, image area ratio measurement using Image-Plus Pro software, Shows an average value measured at a circle-equivalent diameter using Image-Plus Pro software after randomly photographing 10 points at 3,000 times magnification using Electron Backscatter Diffraction (EBSD).
또한, 인장강도은 JIS 5호 시편을 폭 W/4지점에서 압연 직각방향으로 채취하여 측정한 값이며, 인장강도 편차(재질편차)[ΔTS(MPa)]는 코일의 폭 및 길이 방향으로 측정한 인장강도 값 중 최대값에서 최소값을 뺀 값을 나타낸다. The tensile strength is a value measured by taking a JIS No. 5 specimen in a direction perpendicular to the rolling direction at a width W / 4, and a tensile strength deviation (material deviation) [? TS (MPa)] is a tensile strength It represents the value obtained by subtracting the minimum value from the maximum value among the intensity values.
엣지 크랙 발생유무는 바 플레이트 및 코일에서 육안으로 1차 확인하고, 표면 결함 detector인 SDD(Surface Defect Detector) 장치를 이용하여 2차 확인한 것이고, PO재 표면품질의 평가기준은 하기와 같다. The presence or absence of edge cracks was confirmed by naked eyes in the bar plate and the coil, and secondly by SDD (Surface Defect Detector), which is a surface defect detector.
○: 광택도 폭 방향 평균 편차가 20% 이하○: gloss average deviation in the width direction is not more than 20%
X : 광택도 폭 방향 평균 편차가 20% 초과X: gloss average deviation in width direction is more than 20%
강종Steel grade 합금원소(중량%)Alloy element (% by weight) 아포정 반응 시작 임계 C (%)Apoptotic response threshold C (%) 식(1)Equation (1) 식(2)Equation (2)
CC MnMn SiSi PP SS TiTi AlAl CrCr BB NN
발명강 AInventive Steel A 0.0680.068 2.202.20 0.0500.050 0.0150.015 0.00100.0010 0.0230.023 0.0350.035 0.800.80 0.00150.0015 0.00700.0070 0.0850.085 0.00080.0008 0.210.21
발명강 BInvention steel B 0.0690.069 2.232.23 0.0450.045 0.0150.015 0.00110.0011 0.0250.025 0.0380.038 0.790.79 0.00130.0013 0.00690.0069 0.0870.087 0.00090.0009 0.210.21
발명강 CInventive Steel C 0.0660.066 2.212.21 0.0400.040 0.0140.014 0.00090.0009 0.0260.026 0.0390.039 0.820.82 0.00160.0016 0.00760.0076 0.0860.086 0.00090.0009 0.220.22
비교강 DComparative Steel D 0.1210.121 2.192.19 0.0450.045 0.0110.011 0.00110.0011 0.0240.024 0.0320.032 0.890.89 0.00140.0014 0.00810.0081 0.1070.107 0.00050.0005 0.260.26
비교강 EComparative Steel E 0.0690.069 1.751.75 0.0520.052 0.0160.016 0.00110.0011 0.0250.025 0.0360.036 0.810.81 0.00150.0015 0.00710.0071 0.0950.095 0.00080.0008 0.190.19
비교강 FComparative Steel F 0.0700.070 2.222.22 0.0610.061 0.0150.015 0.00130.0013 0.0020.002 0.0350.035 0.790.79 0.00140.0014 0.00800.0080 0.0890.089 0.00230.0023 0.220.22
종래강 GConventional steel G 0.0500.050 1.451.45 0.6800.680 0.0200.020 0.00220.0022 0.0010.001 0.0410.041 -- -- 0.00700.0070 0.0530.053 0.00270.0027 0.230.23
상기 표 1에서 식(1)은 1.9Al - 3.4Ti로 표시되며, 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 값이며, 식(2)는 Ceq = C + Si/30 + Mn/20 + 2P + 3S이며, 각 원소기호는 각 원소 함량을 중량%로 나타낸 값이다. In Table 1, the formula (1) is represented by 1.9Al-3.4Ti, and each symbol represents a value (weight (%) / atomic weight of each element) obtained by dividing the weight (%) of each element by the atomic weight, The formula (2) is Ceq = C + Si / 30 + Mn / 20 + 2P + 3S, and each symbol represents the content of each element in weight%.
실시예No.Example No. 2. 강종Steel grade 조압연 출측 바 플레이트 에지 온도(℃)Rough rolling out bar plate edge temperature (캜) 식(3) (%)Equation (3) (%) RSB(Bar)RSB (Bar) FSB (Bar)FSB (Bar) 마무리압연온도(℃)Finishing rolling temperature (캜) Ar3(℃)Ar 3 (° C) Ar3-30℃(℃)Ar 3 -30 캜 (캜) Mf(℃)Mf (占 폚) 공냉시간(sec)Air cooling time (sec) ROT냉각속도(℃/sec)ROT cooling rate (° C / sec) 권취온도(℃)Coiling temperature (캜)
발명예1Inventory 1 발명강 AInventive Steel A 880880 <8.3X10-7 <8.3X10 -7 189189 216216 811811 760760 730730 282282 3.43.4 225225 165165
발명예2Inventory 2 890890 <8.3X10-7 <8.3X10 -7 200200 230230 815815 3.53.5 215215 170170
발명예3Inventory 3 895895 <8.3X10-7 <8.3X10 -7 181181 210210 814814 3.23.2 210210 169169
발명예4Honorable 4 발명강 BInvention steel B 900900 <8.3X10-7 <8.3X10 -7 205205 200200 815815 761761 731731 299299 3.13.1 195195 175175
발명예5Inventory 5 882882 <8.3X10-7 <8.3X10 -7 210210 195195 820820 3.53.5 200200 180180
발명예6Inventory 6 892892 <8.3X10-7 <8.3X10 -7 195195 210210 816816 3.73.7 215215 168168
발병예7Example 7 발명강 CInventive Steel C 885885 <8.3X10-7 <8.3X10 -7 190190 220220 809809 759759 729729 281281 3.23.2 219219 175175
비교예1Comparative Example 1 891891 <8.3X10-7 <8.3X10 -7 198198 223223 810810 8.58.5 221221 169169
비교예2Comparative Example 2 889889 <8.3X10-7 <8.3X10 -7 200200 219219 808808 3.13.1 9595 172172
비교예3Comparative Example 3 882882 <8.3X10-7 <8.3X10 -7 201201 211211 807807 3.03.0 228228 298298
비교예4Comparative Example 4 895895 <8.3X10-7 <8.3X10 -7 199199 395395 710710 2.92.9 230230 169169
비교예5Comparative Example 5 886886 <8.3X10-7 <8.3X10 -7 4040 220220 810810 3.23.2 223223 166166
비교예6Comparative Example 6 890890 <8.3X10-7 <8.3X10 -7 195195 3030 812812 3.13.1 230230 174174
비교예7Comparative Example 7 770770 8.31X108.31X10 -6-6 180180 200200 712712 3.03.0 230230 155155
비교예8Comparative Example 8 비교강 DComparative Steel D -- -- -- -- -- 740740 710710 259259 -- -- --
비교예9Comparative Example 9 비교강 EComparative Steel E 885885 <8.3X10-7 <8.3X10 -7 197197 212212 803803 790790 760760 305305 3.43.4 229229 155155
비교예10Comparative Example 10 비교강 FComparative Steel F 880880 41.41. 05X1005X10 -5-5 195195 209209 811811 775775 745745 280280 3.03.0 220220 165165
비교예11Comparative Example 11 11101110 00 200200 250250 825825 3.23.2 219219 162162
종래예1Conventional Example 1 종래강 GConventional steel G 885885 51.51. 05X10 05X10 -5-5 3535 2525 780780 870870 840840 341341 5.15.1 7070 200200
상기 표 2에서 식(3)은 조압연 출측 바 플레이트 온도에서 석출된 AlN 석출물의 몰 분율(%) 값을 나타낸 것이다In the above Table 2, the formula (3) shows the molar fraction (%) of the precipitated AlN precipitates at the rough rolling out side bar plate temperature
실시예 No.Example No. 2. 강종Steel grade 주조안정성(용강유출여부)Casting stability (whether molten steel is spilled) 미세조직 (면적%)Microstructure (area%) FGS (㎛)FGS (占 퐉) 인장특성Tensile Properties 에지 크랙 발생 여부Edge cracking PO재 표면품질PO surface quality
FF MM BB YS(MPa)YS (MPa) TS(MPa)TS (MPa) ΔTS(MPa)? TS (MPa) EL(%)EL (%)
발명예1Inventory 1 발명강 AInventive Steel A XX 4949 3838 1313 1.61.6 769769 10101010 1313 1313 XX OO
발명예2Inventory 2 XX 4848 4040 1212 1.71.7 759759 10091009 1414 1313 XX OO
발명예3Inventory 3 XX 4949 3939 1212 1.61.6 760760 10111011 1313 1313 XX OO
발명예4Honorable 4 발명강 BInvention steel B XX 4848 4141 1111 1.81.8 761761 10081008 1414 1313 XX OO
발명예5Inventory 5 XX 4848 3939 1313 1.51.5 755755 10091009 1313 1313 XX OO
발명예6Inventory 6 XX 4747 4141 1212 1.61.6 756756 10051005 1313 1414 XX OO
발병예7Example 7 발명강 CInventive Steel C XX 4949 3939 1212 1.61.6 771771 10091009 1212 1313 XX OO
비교예1Comparative Example 1 XX 6262 3030 88 1.81.8 687687 895895 1111 1515 XX OO
비교예2Comparative Example 2 XX 6262 2828 1010 1.71.7 659659 879879 1212 1616 XX OO
비교예3Comparative Example 3 XX 6262 2929 99 2.02.0 620620 838838 1010 1717 XX OO
비교예4Comparative Example 4 XX 6464 2828 88 2.02.0 570570 820820 1212 1717 XX OO
비교예5Comparative Example 5 XX 5050 3838 1212 1.61.6 760760 10111011 1212 1212 XX XX
비교예6Comparative Example 6 XX 5050 3939 1111 1.61.6 765765 10081008 1414 1313 XX XX
비교예7Comparative Example 7 XX 6565 2727 88 1.91.9 568568 816816 1313 1717 OO OO
비교예8Comparative Example 8 비교강 DComparative Steel D OO 용강유출로 인해 주조 중단, 미측정Casting stopped due to molten steel outflow, unmeasured
비교예9Comparative Example 9 비교강 EComparative Steel E XX 5959 2929 1212 1.81.8 721721 910910 1414 1414 XX OO
비교예10Comparative Example 10 비교강 FComparative Steel F XX 5252 3737 1111 2.02.0 750750 10011001 1515 1212 OO OO
비교예11Comparative Example 11 XX 5050 3939 1111 1.91.9 770770 10091009 1313 1414 XX XX
종래예1Conventional Example 1 종래강 GConventional steel G XX 7575 2525 -- 5.25.2 451451 611611 3535 2929 OO XX
상기 표 3에서 F은 Ferrite(페라이트), M은 Martensite(마르텐사이트), B는 Bainite(베이나이트) 조직이며, FGS은 Ferrite Grain Size이다. YS는 Yield Strength (항복강도), TS는 Tensile Strength (인장강도), EL은 Elongation (연신율)을 나타낸다.상기 표 1, 표 2 및 표 3에 나타난 바와 같이, 강 조성 및 제조조건이 모두 본 발명의 범위를 만족하는 발명예 1~7은 슬라브(Slab) 제조 시 용강 유출이 없으며, 목표로 하는 인장강도(980MPa 이상) 및 연신율 (10% 이상)을 만족하고, 에지 표면 품질 및 PO재의 표면 품질도 모두 우수함을 알 수 있다. 또한, 발명예 1 ~7의 인장강도와 항복강도는 종래예1의 것 보다 높음을 알 수 있다.In Table 3, F is Ferrite (ferrite), M is Martensite (martensite), B is Bainite (bainite) structure, and FGS is Ferrite Grain Size. YS represents Yield Strength, TS represents Tensile Strength, and EL Elongation. As shown in Tables 1, 2 and 3, Examples 1 to 7 satisfying the range of the present invention satisfy the target tensile strength (980 MPa or more) and elongation (10% or more) without slip of the molten steel in the production of the slab, and the edge surface quality and the surface quality Are also excellent. It is also understood that tensile strength and yield strength of Examples 1 to 7 are higher than those of Conventional Example 1. [
한편, 광학현미경과 주사전자현미경(SEM, Scanning Electron Microscope)을 이용하여 발명예 7의 조직을 촬영하고, 광학현미경 조직사진은 도 1에 나타내고, 주사전자현미경 조직사진은 도 2에 나타내었다. 도 1 및 도 2로부터, 발명예 7의 미세조직은 페라이트(F)와 M(마르텐사이트)가 주 상(phase)으로 구성되어 있으며, 일부 베이나이트(B)가 균일하게 존재함을 알 수 있다.On the other hand, the structure of Inventive Example 7 was photographed using an optical microscope and a scanning electron microscope (SEM), the photographs of the optical microscope were shown in Fig. 1, and the photographs of the scanning electron microscope were shown in Fig. 1 and 2, it can be seen that the microstructure of the inventive example 7 is composed of ferrite (F) and M (martensite) in a phase and some bainite (B) is uniformly present .
EBSD(Electron Backscatter Diffraction)를 이용하여 발명예 7의 페라이트 결정립 크기 분포를 측정하고, 그 결과를 도 3에 나타내었다. 도 3으로부터 5㎛이하의 결정립이 미세하게 분포함을 알 수 있다.The ferrite grain size distribution of Inventive Example 7 was measured using EBSD (Electron Backscatter Diffraction), and the results are shown in FIG. From Fig. 3, it can be seen that the crystal grains of 5 mu m or less are finely dispersed.
투과전자현미경(Transmission Electron Microscope, TEM)으로 발명예 7의 석출물을 촬영하고, 그 사진을 도 4에 나타내었으며, 도 4의 왼쪽은 50,000배율 사진이고, 오른쪽은 300,000배율 사진이다. 도 4로부터 기지 조직 내에 사각형태의 TiN, Ti(C,N)과 둥근 형태의 TiC 석출물이 균일하게 분포하고 있음을 알 수 있다. The precipitate of Example 7 was photographed with a transmission electron microscope (TEM), and the photograph is shown in Fig. 4. The left side of Fig. 4 is a 50,000 magnification photograph, and the right side is a 300,000 magnification photograph. From FIG. 4, it can be seen that the TiN, Ti (C, N) and the rounded TiC precipitates are uniformly distributed in the matrix.
발명예 7의 단위 면적당(㎛2) 석출물 개수의 분포를 관찰하고, 그 결과를 도 5에 나타내었으며, 도 5에서 알 수 있는 바와 같이, 석출물 개수는 5~30개/㎛2 범위에 주로 분포하며, 평균 석출물 개수는 15개/㎛2이였다. 여기서 석출물 개수는 카본(Carbon) 레프리카(Replica) 방법으로 샘플을 만들고, TEM으로 100,000배의 배율로 50군데를 랜덤으로 촬영한 조직사진에서 1㎛×1㎛ 정사각형 내에 존재하는 석출물 개수를 정량화한 것이다.Observing the invention example 7 per unit area (㎛ 2) distribution of the precipitate the number of, and as described in the showed the results in Figure 5, can be seen in Figure 5, the deposit number is 5-30 / ㎛ 2 mainly distributed in the range , And the average number of precipitates was 15 / 탆 2 . Here, the number of precipitates is obtained by quantifying the number of precipitates existing within a square of 1 mu m x 1 mu m in a tissue photograph obtained by making a sample by the carbon (carbon) replica method and photographing 50 places randomly at a magnification of 100,000 times with TEM .
발명예 7의 석출물 사이즈의 분포를 관찰하고, 그 결과를 도 6에 나타내었으며, 도 6으로부터 알 수 있는 바와 같이, 석출물 사이즈는 5~50nm 범위에 주로 분포하며, 평균 석출물 사이즈는 20nm이였다. 여기서 석출물 사이즈는 카본 레프리카 방법으로 샘플을 만들고, TEM으로 50,000배 5장, 100,000배 20장, 300,000배 5장을 랜덤으로 촬영한 후, Image-Plus Pro 소프트웨어를 이용하여 석출물 사이즈를 측정한 것이다. 배율을 달리하여 TEM 사진을 촬영한 이유는 미세한(50nm이하) 석출물과 조대한 (50nm 이상) 석출물 사이즈를 정밀하게 측정하기 위함이다.The distribution of the precipitate size in Inventive Example 7 was observed. The results are shown in Fig. 6. As can be seen from Fig. 6, the precipitate size was mainly distributed in the range of 5 to 50 nm, and the average precipitate size was 20 nm. Here, the precipitate size was obtained by measuring the precipitate size using Image-Plus Pro software after preparing a sample by the carbon re-firing method and photographing 5 sheets of 50,000 times, 20 sheets of 100,000 sheets and 5 sheets of 300,000 sheets by TEM. TEM images were taken at different magnifications to precisely measure fine (less than 50 nm) precipitates and coarse (greater than 50 nm) precipitates.
발명예 7의 열연강판을 산세처리하여 얻은 PO재의 표면 사진을 도 7에 나타내었으며, 도 7로부터 표면품질이 우수함을 알 수 있다.FIG. 7 shows a surface photograph of the PO material obtained by pickling the hot-rolled steel sheet of Inventive Example 7, and FIG. 7 shows that the surface quality is excellent.
반면에, 비교예 1, 2 및 3은 본 발명에서 제시한 공냉시간, 냉각속도 및 권취온도를 만족하지 못한 것으로, 목표로 하는 미세조직 및 인장강도를 만족하지 못함을 알 수 있다.On the other hand, Comparative Examples 1, 2 and 3 do not satisfy the air cooling time, cooling rate, and coiling temperature proposed in the present invention, and do not satisfy the target microstructure and tensile strength.
비교예 4는 본 발명에서 제시한 FSB 1열과 2열의 압력 보다 높아 강판(Strip) 표면이 강냉되어 마무리 압연온도가 급격이 낮아진 것으로, 목표로 하는 미세조직 및 인장강도를 만족하지 못함을 알 수 있다.Comparative Example 4 shows that the surface of the steel strip is hardly cooled because the surface of the steel strip is higher than the pressure of the FSB 1 and 2 columns proposed in the present invention and the finish rolling temperature is lowered rapidly so that the desired microstructure and tensile strength are not satisfied .
비교예 5 및 6은 본 발명에서 제시한 RSB 또는 FSB 압력을 만족하지 못한 것으로, 표면품질이 열위함을 알 수 있다.Comparative Examples 5 and 6 did not satisfy the RSB or FSB pressure suggested in the present invention, indicating that the surface quality is favorable.
비교예 8은 본 발명에서 제시한 C 함량을 만족하지 못한 것으로, 용강 유출이 발생된 비교예 8의 슬라브 사진을 나타내는 도 8에서도 알 수 있는 바와 같이, 슬라브에 용강유출이 발생하여 주조 중단이 발생하였다. 이러한 주조중단 원인은 상변태 거동으로 설명이 가능하다. As can be seen from FIG. 8 showing a slab photograph of Comparative Example 8 where molten steel outflow occurred, Comparative Example 8 did not satisfy the C content shown in the present invention, and molten steel leakage occurred in the slab, Respectively. The cause of casting interruption can be explained by the phase transformation behavior.
도 9과 도 10은 Thermo-Calc-3.0.1 Console Mode (Database: TCFE6)를 이용하여 계산한 발명예 7과 비교예8의 상태도를 나타낸 것이다. 발명예 7의 상태도에서 알 수 있듯이 소강 C 성분이 아포정 반응 시작 임계 C 보다 낮아 아포정 반응이 일어나지 않아 용강 유출 없이 고속주조가 가능하였음을 알 수 있다. FIGS. 9 and 10 show state diagrams of Example 7 and Comparative Example 8 calculated using the Thermo-Calc-3.0.1 Console Mode (Database: TCFE6). As can be seen from the state diagram of Inventive Example 7, since the low-temperature C component is lower than the initiation reaction critical temperature C, the apodization reaction does not occur and high-speed casting is possible without molten steel leakage.
그러나, 비교예 8의 경우 소강 C 성분이 아포정 반응 시작 임계 C 보다 높아 아포정 반응이 일어나게 되어 불균일한 응고 쉘의 형성으로 인해 용강유출이 발생 한 것으로 추정된다. However, in the case of Comparative Example 8, since the low-temperature C component is higher than the apoptosis initiation threshold C, apodization reaction occurs, and it is presumed that molten steel outflow occurs due to the formation of a non-uniform solidification shell.
비교예 7은 본 발명에서 제시한 식(3)을 만족하지 못한 것이고, 비교예 10은 본 발명에서 제시한 식(1)과 식(3)을 만족하지 못한 것으로, 에지 크랙이 발생함을 알 수 있다. 이러한 에지 크랙은 AlN의 석출거동과 밀접한 관계를 가진다.The comparative example 7 did not satisfy the formula (3) proposed in the present invention, and the comparative example 10 did not satisfy the formula (1) and the formula (3) . These edge cracks are closely related to the precipitation behavior of AlN.
도 11과 12은 Thermo-Calc-3.0.1 (Database: TCFE6)를 이용하여 계산한 발명예 7과 비교예 10의 온도에 따른 석출 거동을 각각 나타내는 것이다. 그리고, 도 13은 종래예 1에 대하여 나타낸 것이다. 이 결과에서 알 수 있듯이 본 발명에서 제시한 식(1)과 Ti 함량을 만족하는 발명예 7의 경우 용강 응고 온도 근방에서 TiN이 석출되어 AlN 석출물량이 현저히 감소하고, 낮은 온도에서 석출되는 것을 알 수 있다. 그러나, 식 (1)과 Ti 함량을 만족하지 못하는 비교예 10과 종래예 1의 경우 AlN이 고온에서 석출되고, 조압연 출측 바 플레이트의 에지 온도 범위(780~1100℃)에서 AlN이 다량 석출되는 것을 알 수 있다. 따라서, 고강도를 확보하면서도 표면 및 에지 품질을 확보 하기 위해서는 식(1) 및 식(3)을 만족하도록 정밀하게 제어하는 것이 바람직하다.11 and 12 show the precipitation behavior according to the temperature of the inventive example 7 and the comparative example 10 calculated using Thermo-Calc-3.0.1 (Database: TCFE6), respectively. Fig. 13 shows the conventional example 1. Fig. As can be seen from this result, in the case of Inventive Example 7 which satisfies the formula (1) and the Ti content proposed in the present invention, TiN precipitates near the solidification temperature of the molten steel and the amount of AlN precipitates is remarkably decreased, . However, in the case of Comparative Example 10 and Comparative Example 1 which do not satisfy the formula (1) and Ti content, AlN precipitates at a high temperature and a large amount of AlN is precipitated in the edge temperature range (780 to 1100 ° C) . Therefore, in order to secure surface and edge quality while ensuring high strength, it is preferable to precisely control it so as to satisfy equations (1) and (3).
비교예 9는 본 발명에서 제시한 Mn 함량을 만족하지 못한 것으로, 목표로 하는 인장강도를 만족하지 못하고, 비교예 11은 본 발명에서 제시한 조압연 출측 바 플레이트의 에지부 온도 범위를 만족하지 못하여 산수형 스케일이 다량 발생하여 PO재 표면 품질이 열위함을 알 수 있다.Comparative Example 9 did not satisfy the target tensile strength because the Mn content was not satisfied in the present invention and Comparative Example 11 did not satisfy the edge temperature range of the rough rolling out side bar plate proposed in the present invention It can be seen that the arithmetic scale is generated in large quantity and the surface quality of the PO material is heat.
(실시예 2) (Example 2)
본 발명에 부합되는 강판을 자동차 차체에 적용하여 최종 제품을 생산하는 공정에서는 대부분 용접공정이 실시되며, 저항점용접(Resistance Spot Welding, 이하 RSW)이 가장 많이 실시되고 있다. 따라서, 강판에 대해 RSW 용접부 평가가 필요하다. 이에, 실시예 1의 발명예 7의 강판에 대하여 RSW 용접부 평가를 실시하고, 그 결과를 도 14 내지 도 17에 나타내었다.In the process of applying the steel sheet according to the present invention to an automobile body and producing a final product, most welding processes are performed, and resistance spot welding (RSW) is most frequently performed. Therefore, it is necessary to evaluate the RSW welded part of the steel sheet. Thus, the steel sheet of Inventive Example 7 of Example 1 was subjected to the RSW weld portion evaluation, and the results are shown in Figs. 14 to 17. Fig.
이 때, RSW 용접부 평가는 하기 표 4에서 제시된 ISO 18728-2의 규정에 따라 진행하였으며, 너깃 직경과 강도에 가장 영향을 많이 미치는 용접전류를 0.2(kA) 간격으로 변화시키며 용접성 및 용접부 인장특성을 평가하였다.At this time, the evaluation of the RSW welded part was carried out according to the ISO 18728-2 shown in Table 4, and the welding current having the greatest influence on the nugget diameter and strength was changed at intervals of 0.2 (kA) Respectively.
용접조건(Single phase AC, 60Hz)Welding conditions (Single phase AC, 60Hz) 전극 사양Electrode Specifications
가압력 (kN)Pressing force (kN) 용접시간 (cycle)Welding time (cycle) 유지시간 (cycle)Holding time (cycle) Squeeze 시간 (cycle)Squeeze time (cycle) 냉각수 수량(l /min)Number of cooling water (l / min) 용접 전류(kA)Welding current (kA)
44 1717 1717 4040 44 5.0~9.05.0 to 9.0 Cr-Cu alloy,R type, 6mmCr-Cu alloy, R type, 6 mm
도 14는 발명예 7에 대해 용접전류에 따른 너깃(Nugget)의 단면 조직 변화를 나타낸 것이다. 너깃 직경은 너깃을 1/2로 절단 후 단면조직에서와 같이 본드 라인(Bond Line, BL)과 본드 라인 사이의 직선거리로 정의하였다. 도 14에서 알 수 있듯이 용접전류 증가에 따라 너깃직경이 증가하며, 너깃부내에 크랙 및 기공 등의 결함 없이 건전한 용접부를 가짐을 알 수 있다.도 15는 발명예 7에 대해 저항점용접부 경도 분포를 나타낸 것이다. 여기서 경도는 비커스 경도기를 이용하여 너깃 대각선으로 200㎛간격, 200g 하중으로 측정하였다. 용접부는 너깃인 용용부(Fusion, FZ), 열영향부(HAZ), 모재 근처 준 HAZ에서의 연하부(Softening Zone, SZ)와 모재(Base Meatl, BM)로 구분된다. 도 15로부터 용융부의 경도는 370~400Hv값을 갖고, 모재 경도와 연화부 최소 경도와의 차이는 100Hv이하임을 알 수 있다. 연화부는 마르텐사이트 분율이 높은 AHSS 용접부에서 관찰되는 전형적인 현상으로 연화부 경도가 너무 낮을 시 연화부에서 판단이 일어나 용접부 강도가 낮을 수 있다. 따라서, 모재 경도를 연화부 최소 경도와의 차가 100Hv이하가 되도록 하는 것이 바람직하다.14 shows a cross-sectional structural change of a nugget according to the welding current with respect to the inventive example 7. Fig. The nugget diameter was defined as the straight line distance between the bond line (BL) and the bond line, as in the cross-section after cutting the nugget at 1/2. As can be seen from FIG. 14, the nugget diameter increases with the increase of the welding current, and it is found that the nugget has a healthy weld portion without defects such as cracks and pores. FIG. 15 shows the hardness distribution of the resistance spot weld portion . The hardness was measured with a Vickers hardness gauge at 200 탆 intervals with 200 g load on the nugget diagonal. The weld is divided into nose (Fusion, FZ), heat affected zone (HAZ), softening zone (SZ) near the base material and base material (BM). 15, it can be seen that the hardness of the molten portion has a value of 370 to 400 Hv, and the difference between the hardness of the base material and the minimum hardness of the softened portion is 100 Hv or less. The softened part is a typical phenomenon observed in the AHSS weld part having a high martensite fraction. When the hardness of the softened part is too low, the softened part may be judged and the strength of the welded part may be low. Therefore, it is preferable that the difference between the hardness of the base material and the minimum hardness of the softened portion is 100 Hv or less.
도 16은 발명예 7에 대해 용접전류에 따른 연성비(%) 변화를 나타낸 것이다. 여기서 연성비(CTS/TSS)는 십자인장강도(Cross Tensile Strength, CTS) 대비 인장전단강도(Tensile Shear Strength, TSS)의 비율로 정의되며, AHSS RSW에서 용접부 특성을 판단하는 종합적인 지표로 사용된다. 그리고, 도 16에서 계면파단(Interfacial Fracture, IF)에서 풀 아웃 파단 (Pull Out Fracture, POF)으로 천이하기 위한 최소 너깃직경 4t1/2(t=모재의 두께)와 5t1/2를 만족하는 하한전류를 표기하였다. 16 shows the change in ductility ratio (%) according to the welding current with respect to the inventive example 7. The ductility ratio (CTS / TSS) is defined as the ratio of Tensile Shear Strength (TSS) to Cross Tensile Strength (CTS) and is used as a comprehensive index to judge the characteristics of the weld in the AHSS RSW . In FIG. 16, the minimum nugget diameter 4t1 / 2 (t = thickness of the base material) and 5t1 / 2 for transition to the pull out fracture (POF) in the interface fracture (IF) The lower limit current is indicated.
여기서, 5t1/2를 같이 표기한 이유는 인장강도 980MPa급 이상의 AHSS에서는 높은 탄소당량(Ceq)와 RSW 특유의 빠른 냉각속도에 의해 용융부에 마르텐사이트 조직이 생성되어 계면으로의 파단 전단 민감도가 증가 하기 때문에 기존 연강기준인 4t1/2가 맞지 않을 수 있기 때문에 같이 표기하였다. 그리고, 상한전류는 비산이 발생한 전류에서 0.2(kA)를 뺀 값으로 정의하였다. 이 결과에서 알 수 있듯이 4t1/2를 만족하는 전류에서는 IF 파단이 일어났고, 이 이상의 전류에서는 POF 파단이 일어났다. The reason why 5t1 / 2 is used is that AHSS with a tensile strength of 980 MPa or higher has a high carbon equivalent (Ceq) and a rapid cooling rate specific to RSW, so that a martensite structure is formed in the molten portion and the fracture shear sensitivity to the interface , So it is indicated as 4t 1/2 that is based on the existing standard is not suitable. The upper limit current is defined as a value obtained by subtracting 0.2 (kA) from the current generated by scattering. As can be seen from this result, IF break occurred at current satisfying 4t 1/2 , and POF break occurred at current more than this.
한편, RSW에서 적정용접범위는 용접성을 평가하는 주요 지표이며, 상한전류와 하한전류 사이의 간격으로 정의할 수 있다. 최소 너깃직경 4t1/2를 만족하는 하한전류와 상한전류 사이의 적정용접 범위는 2.6(kA)이며, 최소너깃직경 5t1/2의 경우는 1.8kA을 갖는다. 그리고, 파단에 상관없이 연성비는 주어진 적정용접전류 범위에서 45% 이상을 가짐을 알 수 있다. On the other hand, the appropriate welding range in RSW is a key index for evaluating weldability and can be defined as the interval between the upper limit current and the lower limit current. The optimum welding range between the lower current limit and the upper current limit satisfying the minimum nugget diameter of 4t 1/2 is 2.6 (kA), and the minimum nugget diameter is 5t 1/2 , the optimum welding range is 1.8kA. It can be seen that the ductility ratio has more than 45% in the given appropriate welding current range regardless of the fracture.
도 17은 발명예 7에 대한 용융부의 SEM 조직 사진을 나타낸 것으로, 풀(full) 래스(Lath) 마르텐사이트 조직이 균일하게 존재함을 알 수 있고, 이는 탄소당량(Ceq)이 높고, RSW 특유의 빠른 냉각속도로 인한 것으로 판단된다.17 shows a SEM micrograph of a molten portion with respect to Example 7. It can be seen that a full lath martensite structure is uniformly present, which has a high carbon equivalent (Ceq) It is judged to be due to rapid cooling rate.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. It will be possible.
(부호의 설명)(Explanation of Symbols)
a: 슬라브 b: 바 플레이트a: Slab b: Bar plate
c: 열연강판c: Hot-rolled steel sheet
100: 연속주조기 200: 가열기 100: continuous casting machine 200: heater
300: RSB(Roughing Mill Scale Breaker, 조압연 스케일 브레이크)300: RSB (Roughing Mill Scale Breaker, rough rolling scale brake)
400: 조압연기400: rough rolling mill
500: FSB(Fishing Mill Scale Breaker, 마무리 압연 스케일 브레이크) 500: FSB (Fishing Mill Scale Breaker, Finishing Rolled Scale Breaker)
600: 사상압연기 700: 런아웃 테이블 600: finishing mill 700: run-out table
800: 고속전단기 900: 권취기800: High speed shear machine 900: Winder

Claims (29)

  1. 연주-압연 직결 공정으로 제조되는 것으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 그리고 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함하는 미세조직을 갖는 초고강도 열연강판.The steel sheet according to any one of claims 1 to 3, which is manufactured by a casting and rolling direct rolling process, wherein the steel sheet comprises 0.030 to 0.085% of C, 1.8 to 3.0% of Cr, 0.03 to 1.0% of Si, 0.005 to 0.05% of P, 0.001 to 0.050% of N, 0.001 to 0.010% of N, the balance of Fe and other unavoidable impurities, and an area fraction of 40 to 60% % Of ferrite, 30 to 50% of martensite, and 10 to 20% of bainite.
  2. 제1항에 있어서, 상기 Al 및 Ti이 하기 관계식(1)을 만족하는 초고강도 열연강판.The super-high strength hot-rolled steel sheet according to claim 1, wherein Al and Ti satisfy the following relational expression (1).
    [관계식 1][Relation 1]
    1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
    [상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
  3. 제1항에 있어서, 하기 식(2)로 표현되는 Ceq가 0.18~0.28인 초고강도 열연강판.The ultra-high strength hot-rolled steel sheet according to claim 1, wherein Ceq expressed by the following formula (2) is 0.18 to 0.28.
    [관계식 2][Relation 2]
    Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
    [상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
  4. 제1항에 있어서, 상기 열연강판에는 트램프 원소로서 Cu, Ni, Mo, Sn 및 Pb 중 1 이상이 포함되고, 그 함량 합계가 0.2 중량% 이하인 초고강도 열연강판.The super-high strength hot-rolled steel sheet according to claim 1, wherein the hot-rolled steel sheet contains at least one of Cu, Ni, Mo, Sn and Pb as a tramp element and the total content thereof is 0.2 wt% or less.
  5. 제1항에 있어서, 상기 베이나이트는 페라이트와 마르텐사이트의 계면에 형성되어 있는 초고강도 열연강판.The ultra-high strength hot-rolled steel sheet according to claim 1, wherein the bainite is formed at an interface between ferrite and martensite.
  6. 제1항에 있어서, 상기 페라이트 결정립의 원상당 직경으로 측정한 평균 크기가 5㎛ 이하인 초고강도 열연강판.The ultra-high strength hot-rolled steel sheet according to claim 1, wherein an average size of the ferrite grain measured by the circle equivalent diameter is 5 탆 or less.
  7. 제1항에 있어서, 상기 열연강판은 Ti(C,N) 석출물을 5~1000개/㎛2 포함하고, 상기 Ti(C,N) 석출물의 평균 사이즈가 원상당 직경으로 50nm 이하인 초고강도 열연강판.The hot-rolled steel sheet according to claim 1, wherein the hot-rolled steel sheet contains 5 to 1000 Ti / 2 N precipitates, and the average size of the Ti (C, N) precipitates is 50 nm or less in circle- .
  8. 제1항 또는 제2항에 있어서, 상기 압연공정이 바 플레이트를 제조하는 조압연 공정을 포함하고, 조압연된 바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%)이 하기 식(3)을 만족하는 초고강도 열연강판.3. The method according to claim 1 or 2, wherein the rolling process comprises a rough rolling process for producing a bar plate, wherein a molar fraction (%) of the AlN precipitate at the edge portion of the rough- Super high strength hot-rolled steel sheet.
    [관계식 3][Relation 3]
    바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
  9. 제1항에 있어서, 상기 열연강판은 인장강도가 980MPa 이상이고, 연신율이 10%이상이고, 인장강도의 편차가 30MPa 이하인 초고강도 열연강판.The super-high strength hot-rolled steel sheet according to claim 1, wherein the hot-rolled steel sheet has a tensile strength of 980 MPa or more, an elongation of 10% or more, and a tensile strength variation of 30 MPa or less.
  10. 제1항에 있어서, 상기 열연강판의 두께는 3.0mm 이하인 초고강도 열연강판.The ultra-high strength hot-rolled steel sheet according to claim 1, wherein the thickness of the hot-rolled steel sheet is 3.0 mm or less.
  11. 연주-압연 직결 공정으로 제조되는 것으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 면적분율로 40~60%의 페라이트, 30~50%의 마르텐사이트 및 10~20%의 베이나이트를 포함하는 미세조직을 갖고, 그리고 산세처리후 저항점용접 시, 용접된 용접강판에서 최소 너깃직경 4t1/2[t=모재두께 (mm)]를 만족하는 하한전류와 비산이 발생하는 상한전류 사이의 적정용접 범위는 1.5(kA)이상이고, 최소 너깃직경 5t1/2[t=모재두께 (mm)]를 만족하는 하한전류와 상한전류 사이의 적정용접 범위는 1.0(KA)이상이고, 십자인장강도(Cross Tensile Strength, CTS) 대비 인장전단강도(Tensile Shear Strength, TSS)의 비율인 연성비가 35% 이상인 초고강도 열연강판.The steel sheet according to any one of claims 1 to 3, which is manufactured by a casting and rolling direct rolling process, wherein the steel sheet comprises 0.030 to 0.085% of C, 1.8 to 3.0% of Cr, 0.03 to 1.0% of Si, 0.005 to 0.05% of P, And the balance of Fe and other unavoidable impurities, in an area fraction of from 40 to 60%, preferably from 0.2 to 2.0%, from 0.01 to 0.07% of Al, from 0.005 to 0.10% of Ti, from 0.0005 to 0.0050% Of ferrites, 30 to 50% of martensite and 10 to 20% of bainite, and having a minimum nugget diameter of 4 t 1/2 [t = The optimum welding range between the lower current satisfying the base metal thickness (mm) and the upper current limit causing the scattering is 1.5 (kA) or more and the minimum nugget diameter is 5t 1/2 [t = base metal thickness (mm)] The optimum welding range between the lower limit current and the upper limit current is 1.0 (KA) or more, and the ultrahigh-strength hot-rolled steel sheet having a ductility ratio of 35% or more, which is a ratio of Tensile Shear Strength (TSS) to Cross Tensile Strength (CTS) River .
  12. 제11항에 있어서, 상기 Al 및 Ti이 하기 관계식(1)을 만족하는 초고강도 열연강판.The ultra-high strength hot-rolled steel sheet according to claim 11, wherein Al and Ti satisfy the following relational expression (1).
    [관계식 1][Relation 1]
    1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
    [상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
  13. 제11항에 있어서, 하기 식(2)로 표현되는 Ceq가 0.18~0.28인 초고강도 열연강판.The ultra-high strength hot-rolled steel sheet according to claim 11, wherein Ceq expressed by the following formula (2) is 0.18 to 0.28.
    [관계식 2][Relation 2]
    Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
    [상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
  14. 제11항 또는 제12항에 있어서, 상기 압연공정이 바 플레이트를 제조하는 조압연 공정을 포함하고, 조압연된 바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%)이 하기 식(3)을 만족하는 초고강도 열연강판.The method according to claim 11 or 12, wherein the rolling process comprises a rough rolling process for producing a bar plate, wherein a molar fraction (%) of the AlN precipitate at the edge of the roughly rolled bar plate satisfies the following formula (3) Super high strength hot-rolled steel sheet.
    [관계식 3][Relation 3]
    바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
  15. 제11항에 있어서, 상기 너깃에 해당되는 용융부의 비커스 경도가 350~450Hv이고, 모재 경도와 연화부 최소 경도와의 차이가 100Hv이하인 초고강도 열연강판.The ultrahigh-strength hot-rolled steel sheet according to claim 11, wherein a Vickers hardness of the melted portion corresponding to the nugget is 350 to 450 Hv and a difference between the hardness of the base material and the minimum hardness of the softened portion is 100 Hv or less.
  16. 제11항에 있어서, 상기 너깃에 해당되는 용융부의 미세조직이 면적율로 95%이상 마르텐사이트 조직을 포함하는 초고강도 열연강판.The ultrahigh-strength hot-rolled steel sheet according to claim 11, wherein the microstructure of the molten portion corresponding to the nugget comprises martensite structure in an area ratio of 95% or more.
  17. 연주-압연 직결 공정으로 열연강판을 제조하는 방법으로서, 중량%로, C: 0.030~0.085%, Mn: 1.8~3.0%, Si: 0.03~1.0%, P: 0.005~0.05%, S: 0.01% 이하, Cr: 0.2~2.0%, Al: 0.01~0.07%, Ti: 0.005~0.10%, B: 0.0005~0.0050%, N: 0.001~0.010%, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 용강을 두께 60 ~ 120mm의 슬라브로 연속주조하는 단계;A method for producing a hot-rolled steel sheet by a performance-rolling direct process, comprising the steps of: C: 0.030 to 0.085%, Mn: 1.8 to 3.0%, Si: 0.03 to 1.0%, P: 0.005 to 0.05% The molten steel containing 0.2 to 2.0% of Cr, 0.01 to 0.07% of Al, 0.005 to 0.10% of Ti, 0.0005 to 0.0050% of B, 0.001 to 0.010% of N and the balance of Fe and other unavoidable impurities in a thickness of 60 Continuous casting in a slab of ~ 120 mm;
    상기 슬라브에 냉각수를 50~350bar의 압력으로 분사하여 표면 스케일을 제거하는 단계;Spraying the slab with cooling water at a pressure of 50 to 350 bar to remove the surface scale;
    상기 스케일이 제거된 슬라브를 조압연하여 바 플레이트(Bar Plate)를 얻는 단계;Rolling the scaled slab to obtain a bar plate;
    상기 바 플레이트에 50~350bar의 압력으로 냉각수를 분사하여 표면 스케일을 제거하는 단계;Spraying cooling water onto the bar plate at a pressure of 50 to 350 bar to remove surface scale;
    상기 스케일이 제거된 바 플레이트를 Ar3-30℃~Ar3+60℃의 온도범위에서 마무리 압연하여 열연강판을 얻는 단계;Finishing rolling the bar plate from which the scale has been removed in a temperature range of Ar 3 -30 캜 to Ar 3 + 60 캜 to obtain a hot-rolled steel sheet;
    상기 열연강판을 런 아웃 테이블(Run Out Table)에서 1~8초 동안 공냉한 후, 150℃/sec이상의 냉각속도로 마르텐사이트 변태 완료 온도(Mf)이하로 냉각하는 단계; 및Cooling the hot-rolled steel sheet in a run-out table for 1 to 8 seconds and cooling to a martensitic transformation completion temperature (Mf) or less at a cooling rate of 150 ° C / sec or more; And
    상기 냉각된 열연강판을 마르텐사이트 변태 완료 온도(Mf)이하에서 권취하는 단계;를 포함하는 초고강도 열연강판의 제조방법.And winding the cooled hot-rolled steel sheet at a martensitic transformation completion temperature (Mf) or lower.
  18. 제17항에 있어서, 상기 Al 및 Ti이 하기 관계식(1)을 만족하는 초고강도 열연강판의 제조방법.18. The method of producing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein Al and Ti satisfy the following relational expression (1).
    [관계식 1][Relation 1]
    1.9Al - 3.4Ti < 0.002 1.9Al - 3.4 Ti <0.002
    [상기 식(1)에서 각 원소기호는 각 원소의 중량(%)을 원자량으로 나눈 값(각 원소의 중량(%)/원자량)을 나타낸 것이고, 1.9와 3.4는 각각 Al/N 원자량비와 Ti/N 원자량비를 나타낸 것임]1.9 and 3.4 represent values of Al / N atomic ratio and Ti (atomic weight), respectively. In the formula (1), each symbol represents the weight (%) of each element divided by the atomic weight / N atomic ratio]
  19. 제17항에 있어서, 하기 식(2)로 표현되는 Ceq가 0.18~0.28인 초고강도 열연강판의 제조방법The method for producing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein Ceq expressed by the following formula (2) is 0.18 to 0.28
    [관계식 2][Relation 2]
    Ceq = C + Si/30 + Mn/20 + 2P + 3SCeq = C + Si / 30 + Mn / 20 + 2P + 3S
    [상기 식(2)에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값임] [Each symbol of the element in the formula (2) is a value indicating the content of each element in weight%
  20. 제17항에 있어서, 상기 용강에는 트램프 원소로서 Cu, Ni, Mo, Sn 및 Pb 중 1 이상이 포함되고, 그 함량 합계가 0.2 중량% 이하인 초고강도 열연강판의 제조방법.18. The method of producing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein the molten steel contains at least one of Cu, Ni, Mo, Sn, and Pb as a tram element and the total content thereof is 0.2 wt% or less.
  21. 제17항에 있어서, 상기 연속주조 시 주조속도가 4~8mpm인 초고강도 열연강판의 제조방법.The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein the casting speed during continuous casting is 4 to 8 mpm.
  22. 제17항에 있어서, 상기 슬라브는 표면스케일 제거 단계 전에 가열되는 초고강도 열연강판의 제조방법.18. The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein the slab is heated before the surface-scaling step.
  23. 제22항에 있어서, 상기 슬라브의 가열온도가 900~1200℃인 초고강도 열연강판의 제조방법.The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 22, wherein the heating temperature of the slab is 900 to 1200 占 폚.
  24. 제17항 또는 제18항에 있어서, 상기 조압연 시 조압연 입측 슬라브의 표면 온도가 900~1200℃이고, 조압연 츨측 바 플레이트 에지부 온도가 780~1100℃인 초고강도 열연강판의 제조방법.The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 17 or 18, wherein the surface temperature of the rough-rolled ingot slab at the time of rough rolling is 900 to 1200 占 폚 and the edge temperature of the rough-rolled bar bar plate is 780 to 1100 占 폚.
  25. 제24항에 있어서, 상기 조압연 출측 바 플레이트 에지부 온도는 바 플레이트 에지부 온도에서 석출된 AlN 석출물의 몰 분율(%)이 하기 식(3)을 만족하도록 제어되는 초고강도 열연강판의 제조방법.The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 24, wherein the rough rolling-out side bar plate edge temperature is controlled so that the molar fraction (%) of AlN precipitates precipitated at the bar plate edge temperature satisfies the following formula .
    [관계식 3][Relation 3]
    바 플레이트의 에지 부의 AlN 석출물의 몰 분율(%) < 8.3X10-6 Molar fraction (%) of AlN precipitate at the edge of the bar plate < 8.3X10 -6
  26. 제17항에 있어서, 상기 조압연 시 누적 압하율이 60 ~ 90%인 초고강도 열연강판의 제조방법.18. The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein the cumulative rolling reduction during rough rolling is 60 to 90%.
  27. 제17항에 있어서, 상기 마무리 압연 시 통판속도가 200~600mpm이고, 마무리 압연에 의해 제조되는 열연강판의 두께가 3.0mm 이하인 초고강도 열연강판의 제조방법.18. The method of producing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein the steel sheet has a thickness of not more than 3.0 mm, and the steel sheet has a through-hole speed of 200 to 600 mpm during finish rolling.
  28. 제17항에 있어서, 상기 마무리 압연 시 강판의 탑(Top)과 테일(Tail)의 압연속도 차이가 10%이하인 초고강도 열연강판의 제조방법.18. The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 17, wherein the rolling speed difference between the top and the tail of the steel sheet during the finish rolling is 10% or less.
  29. 제17항에 있어서, 상기 권취된 열연강판을 산세처리하여 PO(Pickled & Oiled)재를 얻는 단계를 추가로 포함하는 초고강도 열연강판의 제조방법.18. The method of manufacturing an ultra-high strength hot-rolled steel sheet according to claim 17, further comprising the step of pickling the rolled hot-rolled steel sheet to obtain a pickled &
PCT/KR2018/007721 2017-07-07 2018-07-06 Advanced-high strength hot-rolled steel sheet and method for manufacturing same WO2019009677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880044939.4A CN110869526B (en) 2017-07-07 2018-07-06 Ultrahigh-strength hot-rolled steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0086648 2017-07-07
KR1020170086648A KR101949027B1 (en) 2017-07-07 2017-07-07 Ultra-high strength hot-rolled steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019009677A1 true WO2019009677A1 (en) 2019-01-10

Family

ID=64950223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007721 WO2019009677A1 (en) 2017-07-07 2018-07-06 Advanced-high strength hot-rolled steel sheet and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR101949027B1 (en)
CN (1) CN110869526B (en)
WO (1) WO2019009677A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086073A (en) * 2021-11-19 2022-02-25 安徽工业大学 Production method of hot-rolled high-strength structural steel
CN114086084A (en) * 2021-11-04 2022-02-25 湖南华菱涟钢特种新材料有限公司 Hot-rolled dual-phase steel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480946B (en) * 2020-11-12 2023-06-09 上海梅山钢铁股份有限公司 Production method of low-aluminum peritectic steel molten steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063955A (en) * 1998-08-12 2000-02-29 Nkk Corp Production of thin dual-phase hot rolled steel strip
KR20130140205A (en) * 2011-05-25 2013-12-23 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and process for producing same
KR20140081599A (en) * 2012-12-21 2014-07-01 주식회사 포스코 Hot rolled steel sheet having low deviation of mechanical property and thickness and excellent coating detachment resistance and method for manufacturing the same
US20170137911A1 (en) * 2014-03-25 2017-05-18 Thyssenkrupp Steel Europe Ag Method for producing a high-strength flat steel product
WO2017115748A1 (en) * 2015-12-28 2017-07-06 Jfeスチール株式会社 High-strength steel sheet, high-strength galvanized steel sheet, and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163719A (en) 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability
SE430902B (en) 1979-05-09 1983-12-19 Svenskt Stal Ab SET TO HEAT TREAT A STALBAND WITH 0.05 - 0.20% CARBON CONTENT AND LOW CONTENTS
KR101245701B1 (en) 2010-11-15 2013-04-01 주식회사 포스코 METHOD FOR MANUFACTURING TENSILE STRENGTH 590MPa CLASS HOT ROLLED DP STEEL WITH EXCELLENT WORKABILITY AND VARIATION OF MECHANICAL PROPERTY
KR101299803B1 (en) * 2010-12-28 2013-08-23 주식회사 포스코 Method for manufacturing low-alloy high-strength cold rolled thin steel sheet with excellent weldability
RU2581330C2 (en) * 2012-01-13 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-stamp steel and its production
KR101504404B1 (en) * 2012-12-21 2015-03-19 주식회사 포스코 Hot rolled with excellent hole expansion and variation of mechanical properties and method for manufacturing the same
EP3456855B1 (en) * 2013-04-02 2020-12-09 Nippon Steel Corporation Cold-rolled steel sheet
JP6146358B2 (en) 2014-03-28 2017-06-14 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP6400516B2 (en) * 2014-04-09 2018-10-03 Jfeスチール株式会社 High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP6459611B2 (en) * 2015-02-23 2019-01-30 新日鐵住金株式会社 Precipitation-strengthened composite cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063955A (en) * 1998-08-12 2000-02-29 Nkk Corp Production of thin dual-phase hot rolled steel strip
KR20130140205A (en) * 2011-05-25 2013-12-23 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and process for producing same
KR20140081599A (en) * 2012-12-21 2014-07-01 주식회사 포스코 Hot rolled steel sheet having low deviation of mechanical property and thickness and excellent coating detachment resistance and method for manufacturing the same
US20170137911A1 (en) * 2014-03-25 2017-05-18 Thyssenkrupp Steel Europe Ag Method for producing a high-strength flat steel product
WO2017115748A1 (en) * 2015-12-28 2017-07-06 Jfeスチール株式会社 High-strength steel sheet, high-strength galvanized steel sheet, and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086084A (en) * 2021-11-04 2022-02-25 湖南华菱涟钢特种新材料有限公司 Hot-rolled dual-phase steel and preparation method thereof
CN114086073A (en) * 2021-11-19 2022-02-25 安徽工业大学 Production method of hot-rolled high-strength structural steel

Also Published As

Publication number Publication date
CN110869526A (en) 2020-03-06
KR101949027B1 (en) 2019-02-18
KR20190006145A (en) 2019-01-17
CN110869526B (en) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2018117552A1 (en) Ultra-high strength hot-rolled steel sheet having excellent bending processability and method for manufacturing same
WO2016093598A1 (en) Ultrahigh strength hot galvanizing steel plate with excellent surface quality and coating adherence, and manufacturing method therefor
WO2017111525A1 (en) Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same
WO2018117543A1 (en) Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof
WO2018030790A1 (en) High-strength hot rolled steel sheet having low inhomogeneity and excellent surface quality, and manufacturing method therefor
WO2016105089A1 (en) Heat treated steel, ultra-high strength molded product with excellent durability, method for manufacturing same
WO2018117544A1 (en) Tempered martensitic steel having low yield ratio and excellent uniform elongation, and manufacturing method therefor
WO2019231023A1 (en) Al-fe-alloy plated steel sheet for hot forming, having excellent twb welding characteristics, hot forming member, and manufacturing methods therefor
WO2019009675A1 (en) Advanced-high strength hot-rolled steel sheet having reduced material deviation and enhanced surface quality and method for manufacturing same
WO2018117545A1 (en) Steel material for pressure vessels which has excellent resistance to hydrogen induced cracking and manufacturing method thereof
WO2018056792A1 (en) Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same
WO2019132342A1 (en) Hot-rolled steel sheet having excellent impact resistance, steel pipe, member, and manufacturing methods therefor
WO2019009677A1 (en) Advanced-high strength hot-rolled steel sheet and method for manufacturing same
WO2021054672A1 (en) High-strength ultra-thick steel plate having superb impact toughness at low-temperatures, and method for manufacturing same
WO2020111702A1 (en) High-strength steel with excellent durability and method for manufacturing same
WO2024043608A1 (en) Plated steel sheet for hot press forming having excellent impact resistance, hot press formed part, and manufacturing methods thereof
WO2019132400A1 (en) High-strength cold-rolled steel sheet with low variation in mechanical property and excellent stretch flangeability and recovery, and manufacturing method therefor
WO2019124746A1 (en) Hot-rolled steel sheet having excellent expandability and method for manufacturing same
WO2019132408A1 (en) Ultra-thin hot rolled steel sheet having excellent isotropy and manufacturing method thereof
WO2022086050A1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
WO2018117539A1 (en) High-strength hot-rolled steel plate having excellent weldability and ductility and method for manufacturing same
WO2019124766A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
WO2018117575A1 (en) High-strength hot-rolled steel sheet having low deviation of material properties and excellent surface quality, and method for manufacturing same
WO2022131626A1 (en) High strength steel sheet having excellent workability, and method for manufacturing same
WO2020071654A1 (en) Ultra high strength hot rolled steel sheet having excellent surface qualities and low mechanical properties deviation and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828087

Country of ref document: EP

Kind code of ref document: A1