WO2019009624A1 - 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치 - Google Patents

무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치 Download PDF

Info

Publication number
WO2019009624A1
WO2019009624A1 PCT/KR2018/007593 KR2018007593W WO2019009624A1 WO 2019009624 A1 WO2019009624 A1 WO 2019009624A1 KR 2018007593 W KR2018007593 W KR 2018007593W WO 2019009624 A1 WO2019009624 A1 WO 2019009624A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital moving
moving map
information
unmanned aerial
aerial vehicle
Prior art date
Application number
PCT/KR2018/007593
Other languages
English (en)
French (fr)
Inventor
박무영
Original Assignee
그리드스페이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그리드스페이스 filed Critical 그리드스페이스
Publication of WO2019009624A1 publication Critical patent/WO2019009624A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a map information service providing method, and more particularly, to a method and apparatus for providing a digital moving map service for safe navigation of an unmanned aerial vehicle.
  • the Ground Control System is an essential ground handling equipment for unmanned aerial vehicles and controls the unmanned aerial vehicles on the ground.
  • the essential components of the unmanned aerial vehicle operation system include a map for confirming the position of the unmanned aerial vehicle, a screen for displaying satellite images, a head-up display for displaying the attitude, altitude and speed of the unmanned aerial vehicle A HUD screen, a screen for displaying camera images transmitted from an unmanned aerial vehicle, and a status screen for displaying the status of an unmanned aerial vehicle.
  • a mission screen for setting a mission and a warning screen for providing various conflict information .
  • unmanned aerial vehicles including low altitude unmanned aerial vehicles require collision avoidance systems for safe operation.
  • This anti-collision system has two main ways of preventing collision. For example, there are a method of avoiding collision by directly detecting other unmanned air vehicles or ground obstacles by using a sensor mounted on an unmanned aerial vehicle such as a radar, a radar, an ultrasonic sensor, an infrared sensor, and a video camera,
  • the system is equipped with digital elevation model (DEM) topographical altitude information such as Digital Terrain Model (DTM), Digital Terrain Data (DTD) and Digital Terrain Elevation Data (DTED) of Sight (LOS).
  • DTM Digital Terrain Model
  • DTD Digital Terrain Data
  • DTED Digital Terrain Elevation Data
  • the digital elevation model is a numerical model that represents the bare earth part of the real world, excluding buildings, trees, and manmade structures.
  • the Digital Surface Model (DSM) That is, a numerical model expressing terrain, trees, and artificial structures.
  • the numerical elevation model is widely used in urban planning, site selection, civil engineering, and environmental fields to support national geographic information system construction project and national land development by expressing irregular terrain relief in three - dimensional coordinate form.
  • numerical elevation models and numerical surface models are collectively referred to as terrain elevation information.
  • Numerical elevation models are suitable for unmanned aerial vehicles operating at altitudes of more than a few hundred meters.
  • numerical surface models include elevations such as trees and buildings, Suitable for unmanned aerial vehicles.
  • such a numerical surface model is not easy to use in the private sector because the amount of the data is large and the construction cost is high.
  • low altitude unmanned aerial vehicles are limited to flight by visibility flight, altitude restriction, night flight prohibition, and restricted flight area, but they are gradually going to be in the form of long distance flight of non-visibility area and collective flight of many unmanned aerial vehicles . Therefore, it is essential to develop a wide range of precision maps, satellite photographs, and high - precision obstacle information - based operating environment that can be safely operated by unmanned aerial vehicles at night or at night.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method and system for collecting information such as map data, satellite photographs, terrain altitude information such as DSM or DEM, Provided is a method and apparatus for providing a digital moving map service for safe navigation of an unmanned aerial vehicle that can be installed in a server and provide information to users connected to the server to enable safe operation of the unmanned aerial vehicle at low cost It has its purpose.
  • an apparatus for providing a digital moving map service for safe navigation of an unmanned aerial vehicle comprising: A request analyzer for converting the area information of the mission area into an index list of the internal partition management system according to the index; The number of cells in the mission area is retrieved from the index list converted by the request analysis unit, and the number of cells is segmented by level, and the vector data map, obstacle information, and the prohibition / A digital moving map database management unit for extracting a digital moving map corresponding to the number of the searched cells from a database unit storing a digital moving map including photograph and topographic altitude information; A request processing unit for converting the digital moving map extracted by the digital moving map database management unit into a format suitable for the unmanned aerial vehicle operation system; And a digital moving map providing unit for transmitting the digital moving map converted by the request processing unit to the unmanned aerial vehicle terrestrial operating system.
  • the digital moving map database management unit searches for cells that span the mission area based on information on the number of cells and the size of each cell in each level.
  • the digital moving map database management unit searches the same number of cells at all levels, taking into consideration the different cell sizes for each level.
  • the request processing unit converts the image data into GeoTiff format and converts the vector data into one of Shp, dbf, shx, and klm.
  • the digital moving map provider transmits the map, the obstacle information, and the prohibited / restricted area information as vector data, and the satellite photograph and the terrain height information as image data.
  • the digital moving map providing unit may check the transmission speed on the Internet of the unmanned air vehicle ground handling system, and if the transmission speed is low, the digital moving map providing unit may transmit the image data first And then transmits the vector data.
  • the digital moving map provider extracts geographic information of each cell region from the image data, stores the geographic information as a vector object, stores pixel values of a cell region indicated by each pixel as attributes, And combines the image data with the vector data and transmits the merged image data.
  • the digital moving map providing unit inserts a plane according to the altitude to provide terrain altitude information.
  • a method of providing a digital moving map service for safe navigation of an unmanned aerial vehicle comprising the steps of: receiving a digital moving map for a mission area of a flight ground operating system, Converting the information into an index list of an internal partition management system; Searches the index list for the number of cells that span the mission area, and includes spatial information, such as vector data map, obstacle information, and prohibited / restricted area information, satellite image and terrain altitude information Extracting a digital moving map corresponding to the number of the searched cells from a database unit storing a digital moving map; Converting the extracted digital moving map into a format suitable for the unmanned aerial vehicle operation system; And transmitting the converted digital moving map to the unmanned aerial vehicle terrestrial operating system.
  • the cells located on the mission area are searched based on the information on the number of cells and the size of cells in each level.
  • the same number of cells are searched at all levels in consideration of different cell sizes for each level.
  • the terrain height information is provided by inserting a plane according to the altitude.
  • a space division type digital moving map based on various spatial information data such as map, satellite photograph, terrain height information, obstacle information, and prohibition / , It is possible to improve the flight control efficiency of the unmanned aerial vehicle and further improve the safe operation of the unmanned aerial vehicle.
  • FIG. 1 is a view for explaining a flight path setting method using a Bezier curve according to an embodiment of the present invention
  • FIG. 2 is a view showing a generation point of a Bezier curve according to? T, FIG.
  • FIG. 3 is a view showing various types of Bezier curves according to positions of control points
  • FIG. 4 is a block diagram illustrating a schematic configuration of a wireless communication network-based automatic unmanned aerial vehicle operation system according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a schematic configuration of an unmanned aerial vehicle terrestrial operation system according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of a flight path management server according to an embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a method of setting a flight path of a unmanned aerial vehicle through real-time interpolation of a Bezier curve according to an embodiment of the present invention
  • FIG. 8 is a diagram illustrating a data connection structure of a whole path set according to an embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a method of searching for a flight path in a full path set according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing a schematic configuration inside a digital moving map generating apparatus according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a method of space-partitioning various pieces of spatial information data of the digital moving map generating apparatus according to the embodiment of the present invention
  • FIG. 12 is a block diagram showing a schematic configuration inside a digital moving map service providing apparatus according to an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a cell search method over a mission area of a digital moving map service providing apparatus according to an embodiment of the present invention
  • FIG. 14 is a diagram showing an example screen of the terrain height information provided by the conventional map information service providing apparatus
  • FIG. 15 is a diagram illustrating an example screen of the terrain height information provided by the digital moving map service providing apparatus according to the embodiment of the present invention.
  • 16 is a signal flow diagram illustrating a method for operating an automatic unmanned aerial vehicle based on a wireless communication network according to an embodiment of the present invention
  • 17 is a flowchart illustrating a method of providing a flight path of an unmanned air vehicle according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a digital moving map generating method according to an embodiment of the present invention.
  • 19 is a flowchart illustrating a method of providing a digital moving map service according to an embodiment of the present invention.
  • first, second, etc. used in this specification can be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • Database part 1300 Digital moving map service providing device
  • Request processing unit 1340 Digital moving map provider
  • a curve that can move smoothly as well as a straight line is required.
  • a straight line it is possible to set a flight path of a long section by only a starting point and an end point, but in the case of a curve, a smooth flight path can be created only by a large number of points.
  • you set the curve of the curve using many points you have to set a lot of route points.
  • a flight path is set using a Bezier curve.
  • FIG. 1 is a view for explaining a flight path setting method using a Bezier curve according to an embodiment of the present invention.
  • A, B and C denote starting points, control points and end points, respectively, and P denotes a point on a curve.
  • P can be obtained by inputting a t value between 0 and 1 in the following equation (1).
  • A, B, and C represent start points, control points, and end points, respectively, and P (t) represents a point on a curve.
  • Fig. 2 (a) when? T is 0.5, the curve is not smooth because there is only one generation point and a curve is formed by two straight lines. As shown in Fig. 2 (b), when? T is 0.25, there are three generation points and a smoother curve than that of Fig. 2 (a) can be obtained. As shown in Fig. 2 (c), when? T is 0.1, the generation point is 9, and a much smoother curve than that of Fig. 2 (b) can be obtained.
  • FIG. 3 is a view showing various types of Bezier curves according to positions of control points.
  • the Bezier curve is a straight line.
  • the Bezier curves become more and more curved as the control point B gradually departs from the straight line connecting the start point A and the end point B.
  • FIG. 4 is a block diagram illustrating a schematic configuration of a wireless communication network-based automated unmanned aerial vehicle operation system according to an exemplary embodiment of the present invention. Referring to FIG. 4
  • a wireless communication network-based automatic unmanned aerial vehicle operation and management system includes an unmanned air vehicle 100, an unmanned aerial vehicle operation system 200, and a traffic control system 300 .
  • the unmanned air vehicle 100, the unmanned aerial vehicle operation system 200, and the traffic control system 300 may be connected through a wireless communication network such as 3G, LTE, and LTE-A.
  • the unmanned air vehicle 100 includes a wireless communication modem and a wireless LAN (WLAN) modem.
  • the wireless communication modem and the WLAN modem exchange data through an external memory or Inter-Processor Communication (IPC) Can be performed.
  • the wireless communication modem may be an LTE modem as an example.
  • the WLAN modem can support various forms such as WiFi, M-Wimax, and Bluetooth.
  • the unmanned aerial vehicle 100 can fly unmanned along a predetermined flight path according to the ground control information of the unmanned air vehicle ground handling system 200 described below, State, flight state, and the like to the unmanned aerial vehicle operation system 200 via the traffic control system 300.
  • the flight state is defined as a rotational state and a translational state.
  • Rotational motion states are Yaw, Pitch, and Roll
  • translational motion states are longitude, latitude, altitude, and velocity.
  • 'roll', 'pitch', and 'yaw' are called Euler angles, and three axes x, y, z of the plane are co-ordinate with certain coordinates, for example, NED coordinates N, E, Represents the angle rotated about the axis.
  • NED coordinates N, E Represents the angle rotated about the axis.
  • the unmanned aerial vehicle (100) can determine route entry and exit, distance between unmanned aerial vehicles, and intersection alternation through mutual communication with other unmanned air vehicles.
  • the unmanned aerial vehicle operation system 200 may include a wireless communication modem and a WLAN modem in the same manner as the unmanned air vehicle 100. Accordingly, the unmanned aerial vehicle operation system 200 controls the flight of the unmanned air vehicle 100 through the WLAN modem capable of short-range communication for emergency and operational management, and also controls the flight of the unmanned air vehicle 100 through the wireless communication modem. .
  • the unmanned air vehicle ground handling system 200 controls the flight of the unmanned air vehicle 100 through a wireless communication modem.
  • the unmanned air vehicle ground handling system 200 transmits flight plan information including a flight ID, a flight time, a departure point, and a via point to the traffic control system 300 through a wireless communication network, And receives ground control information including a flight ID, a flight path, and a flight control command from the traffic control system 300 via the traffic control system 300, And controls the flight of the unmanned aerial vehicle 100.
  • the flight control command is a signal indicating the start and end of the flight, and may include control information such as the speed and altitude of the unmanned air vehicle 100.
  • the unmanned aerial vehicle operation system 200 can receive flight information from the unmanned aerial vehicle 100.
  • the unmanned aerial vehicle operation system 200 can dynamically modify the flight path during the flight of the unmanned air vehicle 100. The detailed configuration of the unmanned aerial vehicle terrestrial operational system 200 according to the embodiment of the present invention will be described with reference to FIG.
  • the traffic control system 300 searches for the flight path in consideration of the prohibited area, the obstacle, the flight time, and the traffic volume in the entire route according to the request of the flight path of the unmanned aerial vehicle operation system 200, To the unmanned aerial vehicle operation system (200).
  • the traffic control system 300 receives the terrestrial control information from the unmanned aerial vehicle terrestrial operating system 200 and transmits the received terrestrial control information to the unmanned air vehicle 100 through the wireless communication network.
  • the traffic control system 300 receives the flight information from the unmanned air vehicle 100 and transmits the received flight information to the unmanned aerial vehicle operation system 200 through the wireless communication network.
  • the traffic control system 300 can provide collision information and a avoidance path based on a digital moving map (DMM) for an area where a flight path is not set.
  • DDM digital moving map
  • the traffic control system 300 includes the unmanned aerial vehicle management database 310, the flight path management server 320, and the flight information relay and monitoring server 330 in order to perform the above- .
  • the unmanned aerial vehicle management database 310 includes ID information, authentication information, and class information.
  • the ID information includes a plurality of flight IDs.
  • the authentication information indicates performance information on the unmanned aerial vehicle corresponding to each flight ID.
  • the rating information represents a hardware classification of unmanned aerial vehicles such as small, medium, and large, and may be included in the authentication information.
  • the unmanned aerial vehicle management database 310 compares the flight vehicle ID included in the flight plan information with the ID information stored in the unmanned aerial vehicle management database 310 according to the authentication request of the flight path management server 320 described later, When the flight object ID is registered, the authentication of the unmanned air vehicle 100 is performed by referring to the authentication information and the grade information corresponding to the flight object ID.
  • the flight path management server 320 includes a wireless communication modem for transmitting / receiving data to / from the unmanned aerial vehicle operation system 200 through a wireless communication network.
  • the flight path management server 320 requests authentication of the unmanned air vehicle 100 with the unmanned aerial vehicle management database 310,
  • the navigation system searches for the flight path in consideration of the no-fly zone, the obstacle, the flight time, and the traffic volume in the entire route, To the terrestrial operating system (200).
  • the flight information relay and monitoring server 330 includes a wireless communication modem for transmitting and receiving data to and from the unmanned aerial vehicle 200 and the unmanned air vehicle 100 via a wireless communication network as the flight path management server 320.
  • the flight information relay and monitoring server 330 receives the terrestrial control information from the unmanned aerial vehicle terrestrial operating system 200 through the wireless communication network and transmits the received terrestrial control information to the unmanned air vehicle 100.
  • the flight information relay and monitoring server 330 receives the flight information from the unmanned air vehicle 100 and transmits the received flight information to the unmanned aerial vehicle operation system 200 through the wireless communication network.
  • FIG. 5 is a block diagram showing a schematic configuration of an unmanned aerial vehicle terrestrial operation system according to an embodiment of the present invention.
  • the unmanned land surface navigation system 200 includes an input unit 210, a display unit 220, a controller 230, a wireless communication modem 240, and a WLAN modem 250. [ And the like.
  • the input unit 210 may be formed of any one of or a combination of input means such as a physical keyboard, a joystick, a wheel key, and a touch pad. Particularly, when the touch pad has a mutual layer structure with the display unit 220, it can be called a touch screen.
  • the input unit 210 receives an input operation from a user, and generates input data for controlling the operation of the UAV 100. That is, the input unit 210 receives the flight control information including the flight ID, the flight time, the departure point, and the way point from the user, and the ground control information including the flight ID, the flight path, have.
  • the display unit 220 may be any one of DLP (Digital Light Processing), LCD (Liquid Crystal Display), PDP (Plasma Display Penal), CRT (Cathode Ray Tube) and LED (Light Emitting Diode).
  • the display unit 220 may display a plurality of menus for planning and controlling the flight of the unmanned air vehicle 100, a flight path including a plurality of flight path points, and a flight status of the unmanned air vehicle.
  • the control unit 230 controls the overall operation of the unmanned aerial vehicle terrestrial operation system 200.
  • the control unit 230 includes a flight planning unit 232, a flight control unit 234, and a flight state monitoring unit 236.
  • the control unit 230 transmits a signal to the unmanned air vehicle 100 and the traffic control system 300 through the wireless communication modem 240 or the WLAN modem 250 and transmits the signals from the unmanned air vehicle 100 and the traffic control system 300 Receives and decodes various information, and displays the decoded information on the display unit 220.
  • the flight plan unit 232 transmits the flight plan information including the flight ID, the flight time, the departure point, and the way point to the traffic control system 300 through the wireless communication modem 240, , And receives the flight path from the traffic control system 300.
  • the flight control unit 234 transmits the ground control information including the airplane ID, the flight path, and the flight control command to the unmanned airplane 100 via the traffic control system 300 to control the flight of the unmanned airplane 100 do.
  • the flight status monitoring unit 236 receives flight information from the unmanned air vehicle 100 via the flight information relaying and monitoring server 330 via the wireless communication modem 240 and displays the received flight information on the display unit 220 .
  • the wireless communication modem 240 may be a modem capable of accessing wireless communication networks such as 3G, LTE, and LTE-A to transmit / receive data to / from the traffic control system 300 as described above.
  • the WLAN modem 250 can support various forms of WiFi, M-Wimax, and Bluetooth for emergency and operational management of the UAV 100.
  • FIG. 6 is a block diagram showing a schematic configuration of a flight path management server according to an embodiment of the present invention.
  • the flight path management server 320 includes a flight path generation unit 322, a flight path storage unit 324, a flight path search unit 326, (328).
  • the flight path management server 320 may further include a plurality of functional units for respectively managing the prohibited area, the obstacle, and the traffic volume.
  • the flight path management server 320 according to the present invention corresponds to a digital moving map generating apparatus described later, and a detailed configuration of the digital moving map generating apparatus will be described with reference to FIG.
  • the flight path generating unit 322 generates a digital moving map as a flight path in the form of a layer map using maps, satellite data, and obstacles, and stores the generated digital moving map in the flight path storing unit 324.
  • the flight path generating unit 322 generates a flight path, i.e., a node line by connecting at least two nodes using a Bezier curve, and generates a full path set composed of a plurality of nodes or a plurality of node lines And stores the generated whole set of routes in the flight path storage unit 324.
  • the obstacle can be implemented as a digital surface model (DSM).
  • the flight path generation unit 322 may also close the flight path stored in the flight path storage unit 324.
  • the flight path storage unit 324 may add the flight path generated by the flight path creation unit 322 to the entire route or delete a specific flight path from the entire route at the request of the flight path creation unit 322 .
  • the flight path searching unit 326 searches the entire route stored in the flight path storing unit 326 according to the request for the flight path of the unmanned air vehicle ground handling system 200, That is, considering the node attribute of each node including the speed limit that can pass through the node, the current traffic volume of the node, and the availability (prohibited zone) of the node, And transmits the searched flight route to the unmanned aerial vehicle operation system 200 through the flight route provision unit 328.
  • the flight path providing unit 328 receives the request for the flight path of the unmanned air vehicle 100 from the unmanned air vehicle surface operation system 200 as described above and receives the flight of the unmanned air vehicle 100 searched by the flight path searching unit 326 Route to the unmanned aerial vehicle operation system 200 through the wireless communication network.
  • the flight path provisioning unit 328 may include a modem capable of accessing a wireless communication network such as 3G, LTE, and LTE-A.
  • FIG. 7 is a view for explaining a method of setting a flight path of a unmanned aerial vehicle through real-time interpolation of a Bezier curve according to an embodiment of the present invention.
  • A represents a start point of the first section
  • B represents a control point of the first section
  • C represents an end point of the first section and a starting point of the second section
  • D represents the control point of the second section
  • E represents the end point of the second section.
  • the position of the third path point P3, which is the first point outside the search boundary 700 when the UAV 100 passes through the first section, is obtained through Equation (1) And sets the position as a flying target point of the unmanned aerial vehicle (100).
  • the position of the fourth path point P4 which is the next point, 1, and sets the position as the flying target point of the unmanned air vehicle 100.
  • C, D, and E are used in Equation (1), and t is initialized to zero.
  • the UAV 100 can fly smoothly as the UAV 100 travels over the section and the increment of t becomes smaller.
  • FIG. 8 is a diagram illustrating a data connection structure of a whole path set according to an embodiment of the present invention.
  • the unmanned air vehicle 100 In order for the unmanned air vehicle 100 to automatically fly, it must have flight path points, which are retrieved from the entire path set. In order to search these flight path points quickly and effectively, a data link structure 800 that combines the entire path points as shown in FIG. 8 is required.
  • each path is a node 810.
  • One line formed by each of the nodes 810 becomes a node line 820.
  • the node line can be configured.
  • the node 810 and the node line 820 are gathered to form a complete path set, which is referred to as a linked list 830.
  • the node has address information of the node to which the node is branched, and a link is created between the nodes, which is described in the branch node information described later.
  • Each node 810 has its own node number, a spline control point, a node point, a previous node address, a next node address, The number of the branch node, the branch node address necessary for branching to another node, the node line address of the node line to which the node belongs, and the node attribute including the attribute of the node Information, and the like.
  • the node attribute indicates the characteristics of each node as described above.
  • the node attribute may include a limit speed that can pass through the node, a current traffic volume of the node, whether or not the node can be used, And may include various other attributes as well.
  • Each node line 820 has its own node line number (Node Line Number), previous node line information (Next Node Line Address), next node line information (Next Node Line Address) A Node Node property information, a number of nodes belonging to the node, a start node address, and an end node address.
  • FIG. 9 is a diagram for explaining a method of searching for a flight path in a full path set according to an embodiment of the present invention.
  • S denotes a start node of a node line
  • E denotes an end node of a node line
  • 0th node (0), first node (1), ..., eleventh node (11) Represents a node list of the node line.
  • the dotted line represents a link between nodes.
  • the first node 1 is set as the flying target point from the 0th node (0) as the starting node. Since the link exists in the first node 1, the second node 2 is set as the next flight target point in consideration of the node attributes of the second node 2 and the second-first node 2-1 do. At this time, since the traffic volume of the second node 2 is smaller than that of the second-first node 2-1, the second node 2 is set as the next target.
  • the third node 3 is set as the next flight target point, and then the fourth node 4 is set as the next flight target point. Since the link exists also in the fourth node 4, the fifth node 5 is set as the next flight target point in consideration of the node attributes of the fifth node 5 and the fifth-first node 5-1 do. At this time, since the traffic volume of the fifth node 5 is less than that of the fifth-first node 5-1, the fifth node 5 is set as the next target.
  • the sixth node 6 is set as the next flight destination, and then the seventh node 7 is set as the next flight destination. Since the link exists also in the seventh node 7, the eighth node 8 is set as the next flying destination point in consideration of the node attributes of the eighth node 8 and the eighth node 8-1 do. At this time, since the traffic volume of the eighth node 8 is smaller than that of the eighth node 8-1, the eighth node 8 is set as the next target.
  • the ninth node 9 is set as the next flight destination
  • the tenth node 10 is set as the next flight destination
  • the eleventh node 11 is set as the end node.
  • FIG. 10 is a block diagram showing a schematic structure inside a digital moving map generating apparatus according to an embodiment of the present invention.
  • a digital moving map generating apparatus 1000 may include a digital map encoding unit 1100, a database unit 1200, and a digital moving map service providing apparatus 130.
  • the digital moving map service providing apparatus 130 is not included in the digital moving map generating apparatus 1000, but may be provided as a separate apparatus.
  • the digital map encoding unit 1100 functions to create and manage various databases optimized for use in the unmanned aerial vehicle operation system 200. To this end, the digital map encoding unit 1100 may convert various types of external data into a digital moving map.
  • the digital map encoding unit 1100 receives map information such as vector data, obstacle information, and flight prohibited / restricted area information and image data, such as satellite images and terrain height information, from the outside, Terrain altitude information, obstacle information, and flight prohibited / restricted area information are segmented into levels and converted into digital moving maps through pre-stored libraries.
  • the pre-stored library is a GDAL library
  • the digital map encoding unit 1100 can read and write image data such as bmp, jpg, tiff, and img through this library, and can store image data such as shp, dbf, shx, You can read and write vector data.
  • the digital map encoding unit 1100 divides the space by 1/2 every time the level is incremented from level 0 by one level. At this time, the digital map encoding unit 1100 stores raster data, that is, an image corresponding to each cell in the case of image data, as a file, and stores a coordinate value, a resolution, Attribute information of each image can be stored. In addition, the digital map encoding unit 1100 can construct the same image resolution for each cell or construct differently for each level.
  • the number of cells at level 0 is N 0 * N 0
  • the resolution of one cell is M 0 * M 0 .
  • the pixel size is L 0 m
  • the area size of one cell becomes L 0 * M 0 .
  • the number of cells is N 1 * N 1
  • the resolution of one cell is M 1 * M 1 .
  • the area size of one cell becomes L 1 * M 1 .
  • the number of cells at level n is N n * N n
  • the video resolution of one cell is M n * M n .
  • a cell size of one area is the L * n M n.
  • the N-level resolution is set to 1 m
  • the resolution of the image is 256 * 256
  • the size of the cell should be 256 m * 256 m.
  • the digital map encoding unit 1100 processes only the cells in the specific area including the obstacle information , You can apply changes to all levels. Therefore, the digital moving map generating apparatus 1000 according to the present invention can shorten the processing time for updating the obstacle information.
  • the digital map encoding unit 1100 stores the obstacle information for each version and sets the data version to be used in the setting of the digital moving map for the mission area by the unmanned aerial vehicle operation system 200, Can be transmitted to the unmanned aerial vehicle operation system (200).
  • the digital map encoding unit 1100 may store the obstacle information in a new version or overwrite the existing version according to the setting.
  • the digital map encoding unit 1100 may analyze the satellite photograph, the terrain height information, and the obstacle information, and recognize the transmission tower as the obstacle information. In addition, the digital map encoding unit 1100 analyzes a satellite image having a resolution of 50 cm, recognizes the insulator of each transmission tower, determines that a transmission line passes between the insulators of two adjacent transmission towers, .
  • the digital map encoding unit 1100 extracts geographical information for each cell region from the image data, stores the extracted geographical information as a vector object, stores pixel values of the cell region indicated by each pixel as attributes ,
  • the image data may be merged into the vector data by integrating the vector and the attribute.
  • the database unit 1200 stores the digital moving map converted by the digital map encoding unit 1100 by type, altitude, and area. To this end, the database unit 1200 may be configured with a plurality of databases such as a terrain database, a raster database, a vector database, and an obstacle database.
  • the digital moving map service providing apparatus 1300 is a device for providing a digital moving map for the mission area by type, altitude, and area in the database unit 1200 in response to a digital moving map request for the mission area of the unmanned aerial vehicle And transmits the retrieved digital moving map to the unmanned aerial vehicle operation system 200.
  • the detailed configuration of the digital moving map service providing apparatus 1300 will be described below.
  • FIG. 12 is a block diagram illustrating a schematic configuration of an apparatus for providing a digital moving map service according to an embodiment of the present invention.
  • an apparatus 1300 for providing a digital moving map service includes a request analyzing unit 1310, a digital moving map database managing unit 1320, a request processing unit 1330, and a digital moving map providing unit 1340 ).
  • the request analysis unit 1310 converts the area information of the mission area into the index list of the internal partition management system according to the request of the digital moving map for the mission area of the unmanned air vehicle surface operation system 200.
  • the area information on the mission area is divided by level, and the request analyzer 1310 according to the present invention calculates the area information on the mission area as (0, 0) (0, 1), (0, 2), (0, 3), (1, 0) (3, 0), (3, 1), (3, 2), (3, 3)
  • the indexing method at level 2 or higher can be sufficiently understood at the level of a person skilled in the art by the above description alone, and a description thereof will be omitted.
  • the request analysis unit 1310 according to the present invention converts the area information on the mission area into the index list through the above method.
  • the digital moving map database management unit 1320 searches the index list converted by the request analysis unit 1310 for the number of cells that span the mission area and outputs the digital moving map corresponding to the number of the cells retrieved from the database unit 1200 . 13, since the number of cells and the size of cells are different for each level, the digital moving map database management unit 1320 stores information on the number of cells and cell size of each level, Search for cells that span. That is, it is preferable that the digital moving map database management unit 1320 searches for the same number of cells at all levels considering the different cell sizes for each level.
  • the request processing unit 1330 converts the digital moving map extracted by the digital moving map database management unit 1320 into a format suitable for the unmanned aerial vehicle terrestrial operating system 200. For example, the request processing unit 1330 converts the image data into the GeoTiff format, and converts the vector data into one of Shp, dbf, shx, and klm.
  • the digital moving map providing unit 1340 transmits the digital moving map converted by the request processing unit 1330 to the unmanned airplane ground operating system 200. At this time, the digital moving map provider 1340 transmits the map, the obstacle information, and the prohibited / restricted area information as vector data, and transmits the satellite photograph and the terrain height information as image data. In addition, the digital moving map provider 1340 may synthesize and compress vector data to image data and transmit the same.
  • the digital moving map providing unit 1340 checks the transmission speed on the Internet of the unmanned land surface navigation system 200. If the transmission speed is low, the digital moving map providing unit 1340 first transmits the image data, Vector data can be transmitted. That is, when the transmission of the vector data is delayed, the digital moving map providing unit 1340 images the image data into a background map that is hardly changed in the digital moving map, and then transmits the vector data. .
  • the digital moving map providing unit 1340 can transmit the image data before the vector data arrives, thereby providing the user with the basic background image data with a faster response time and providing the vector data to the upper specific layer have.
  • the conventional map information service providing apparatus provided terrain altitude information of 2D form simply.
  • the digital moving map providing unit 1340 inserts the plane according to the altitude to provide the terrain elevation information, as shown in FIG. That is, the digital moving map provider 1340 can provide the terrain height information in 3D form.
  • 16 is a signal flow diagram illustrating a method for operating an automatic unmanned aerial vehicle based on a wireless communication network according to an embodiment of the present invention.
  • the unmanned aerial vehicle operation system 200, the traffic control system 300, and the unmanned air vehicle 100 are connected to each other through a wireless communication network.
  • the unmanned aerial vehicle (LAN) system 200 transmits flight plan information including a flight ID, a flight time, a departure point, and a via point to a traffic control system 300 through a wireless communication network, (Step S612).
  • the flight path management server 320 requests authentication of the unmanned air vehicle 100 by requesting the unmanned aerial vehicle management database 310 in response to a flight path request of the unmanned air vehicle ground handling system 200 in operation S614.
  • the unmanned aerial vehicle management database 310 determines whether the unmanned air vehicle 100 is an unmanned aerial vehicle (S616). Specifically, the unmanned aerial vehicle management database 310 includes ID information, authentication information, and class information, and compares the flight ID included in the flight plan information with the ID information stored in the unmanned aerial vehicle management database 310, ID of the airplane ID is registered, and when the airplane ID is registered, the authentication of the unmanned airplane 100 is performed by referring to the authentication information and rating information corresponding to the airplane ID.
  • S616 unmanned aerial vehicle
  • the unmanned aerial vehicle management database 310 completes the authentication of the unmanned air vehicle 100 if the unmanned air vehicle 100 is an authorized unmanned air vehicle (step S618).
  • the flight path management server 320 searches for the flight path in consideration of the no-fly zone, the obstacle, the flight time, (S620), and transmits the searched flight path to the unmanned aerial vehicle operation system 200 through the wireless communication network (S622).
  • the unmanned aerial vehicle operation system 200 receives the flight path from the flight path management server 320 and transmits the ground control information including the airplane ID, the flight path, and the flight control command to the flight information relay / To the monitoring server 330 (S624).
  • the flight information relay and monitoring server 330 transmits the ground control information received from the unmanned air vehicle ground handling system 200 to the unmanned air vehicle 100 through the wireless communication network in step S626.
  • the unmanned aerial vehicle 100 includes an aircraft ID, a flight path receiving status, a flight control command receiving status, and a flight status, while flying unattended along a predetermined flight path according to the ground control information of the unmanned aerial vehicle To the flight information relaying and monitoring server 330 through the wireless communication network (S628).
  • the flight information relay and monitoring server 330 transmits the flight information received from the unmanned air vehicle 100 to the unmanned aerial vehicle operation system 200 through the wireless communication network in operation S630.
  • 17 is a flowchart illustrating a method of providing a flight path of an unmanned aerial vehicle according to an embodiment of the present invention.
  • a method for providing a flight path of an unmanned aerial vehicle includes generating a node line by connecting at least two nodes using a Bezier curve, (S100), a step of generating a path set (S100), considering the node attributes of each node including the limit speed at which the node can pass, the current traffic volume of the node, (S200), and providing the searched flight path to the unmanned aerial vehicle (S300).
  • step S100 of generating the entire path set may include the following steps, for example, steps S710 to S740.
  • a first node which is a start node, is connected to a second node, which is an end node, using Bezier curve (S710).
  • the second node is designated as the start node, and the second node is connected to the third node, which is the end node, by using the Bezier curve (S720).
  • the branch node information of the second node is inquired to determine whether or not a child node exists (S730). If there is a child node, a link is connected to the fourth node, which is a child node, And a third node line is created by connecting a fourth node, which is a start node, and a fifth node, which is an end node, using a Bezier curve (S740).
  • the third node and the fourth node are limited to the last node of the entire path set for convenience of explanation, but the present invention is not limited to this.
  • the fifth node which is the next node of the third node exists, And the fourth node line can be generated by connecting the third node and the fifth node.
  • the child node it is determined whether there is a child node by inquiring branch node information of the third node. After generating a link connected to the sixth child node, if there is a child node, Nodes may be connected to generate a fifth node line.
  • steps S710 to S740 may be repeatedly performed to generate a plurality of nodes or a set of entire paths composed of a plurality of node lines.
  • node attributes of the third node and the fourth node are compared (S750). For example, it is possible to compare the traffic volume of the third node and the fourth node, to compare the speed limit of the third node and the fourth node, or to determine whether the node is available, that is, the prohibited zone. It is possible for the administrator to set any number of priority speeds, traffic volumes, and forbidden zones to be prioritized, in which case the speed limit, traffic volume, and prohibited zones can be considered in combination.
  • the step S750 corresponds to the step S200 described above.
  • the flight path of the UAV 100 is set to the third node (S752).
  • the traffic volume of the fourth node is smaller than the traffic volume of the third node or the limiting speed of the fourth node accommodates the maximum speed at which the unmanned vehicle can pass according to the comparison result of step S750, If the node is a forbidden zone, the fourth node sets a flight path of the UAV 100 (S760).
  • the steps S752 and S760 correspond to the step S300 described above.
  • FIG. 18 is a flowchart illustrating a digital moving map generating method according to an embodiment of the present invention.
  • the digital moving map generating apparatus 100 receives vector map data, obstacle information, and prohibition / restriction area information, satellite image and terrain height information, which are image data, from the outside (S810).
  • the digital moving map generating apparatus 100 divides the received map, the satellite photograph, the terrain altitude information, the obstacle information, and the prohibited / restricted area information into a digital moving map by level division through a pre-stored library (S820) .
  • the pre-stored library is a GDAL library
  • the digital moving map generating apparatus 100 can read and write image data such as bmp, jpg, tiff, and img through the library, and stores shp, dbf, shx, You can read and write the vector data of.
  • step S820 the digital moving map generating apparatus 100 divides the space by 1/2 every time the level increases from level 0 by one level.
  • the digital moving map generating apparatus 100 stores an image corresponding to each cell as a file, and stores attribute information of each image including coordinate values, resolution, and pixel size information .
  • the digital moving map generating apparatus 100 can construct the same image resolution of each cell or construct differently for each level.
  • step S820 the digital moving map generating apparatus 100 analyzes the satellite photograph, the terrain height information, and the obstacle information, and recognizes and stores the transmission tower as the obstacle information.
  • the digital moving map generating apparatus 100 analyzes a satellite image having a resolution of 50 cm, recognizes the insulator of each transmission tower, judges that a transmission line passes between the insulators of adjacent transmission towers, and transmits the transmission line as obstacle information Can be recognized and stored.
  • the digital moving map generating apparatus 100 stores the digital moving map (S830). At this time, the digital moving map generating apparatus 100 can store the digital moving map by type, altitude, and area.
  • the digital moving generation apparatus 100 determines whether there is an update request for the obstacle information from the unmanned air vehicle surface operation system 200 in operation S840. If there is an update request for the obstacle information from the unmanned air vehicle surface operation system 200, After processing only cells in a specific area including the obstacle information, the obstacle information of the previously stored digital moving map is updated by applying the changed contents to all levels (S850).
  • 19 is a flowchart illustrating a method of providing a digital moving map service according to an embodiment of the present invention.
  • the digital moving map service providing apparatus 1300 provides area information on the mission area to an index list of the internal division management system in response to a digital moving map request for the mission area of the unmanned aerial vehicle ground operating system 200 (S910). For example, in the level 0, the digital moving map service providing apparatus 1300 indexes the area information for the mission area to (0,0), (0,1), (1,0), (1,1) (0, 0), (0,1), (0,2), (0,3), ..., (3,0), (3,1), (3,2) (3, 3) to convert the area information of the mission area into an index list.
  • the digital moving map service providing apparatus 1300 searches the index list for the number of cells that span the mission area (S920). At this time, since the number of cells and the size of cells are different at each level, the digital moving map service provider apparatus 1300 searches for cells that span the mission area based on the information on the number of cells and the size of cells for each level do. That is, the digital moving map service provider 1300 preferably searches for the same number of cells at all levels in consideration of different cell sizes for each level.
  • the digital moving map service providing apparatus 1300 extracts a digital moving map corresponding to the number of the searched cells from the database unit 1200 (S930).
  • the digital moving map service providing apparatus 1300 converts the extracted digital moving map into a format suitable for the unmanned aerial vehicle operation system 200 (S940). For example, the digital moving map service provision apparatus 1300 converts the image data into the GeoTiff format and converts the vector data into one of Shp, dbf, shx, and klm.
  • the digital moving map service providing apparatus 1300 transmits the converted digital moving map to the unmanned aerial vehicle terrestrial operating system 200 (S950). At this time, the digital moving map service providing apparatus 1300 transmits the map, the obstacle information, and the prohibited / restricted area information as vector data, and transmits the satellite photograph and the terrain height information as image data. In addition, the digital moving map service providing apparatus 1300 may synthesize vector data to image data, compress the vector data, and transmit the compressed image data.
  • step S950 when providing the image data and the vector data in parallel, the digital moving map service providing apparatus 1300 confirms the transmission speed on the Internet of the unmanned air vehicle terrestrial operation system 200, and if the transmission speed is low, After transmitting first, vector data can be transmitted. In addition, the digital moving map service providing apparatus 1300 can provide the terrain height information by inserting the plane according to the altitude.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers, and microprocessors.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, and microprocessors.
  • the method according to embodiments of the present invention may be implemented in the form of a module, a procedure or a function for performing the functions or operations described above.
  • the software code can be stored in a memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

본 발명은 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치에 관한 것으로서, 지도, 위성사진,지형 고도정보, 장애물 정보, 및 비행금지/제한구역 정보 등의 다양한 공간정보 데이터를 기반으로 하는 공간 분할형 디지털 무빙 맵을 무인비행체의 비행을 제어하는 무인비행체 지상운용 시스템으로 제공함으로써, 무인비행체의 비행 제어 효율을 높일 수 있고, 나아가 무인비행체의 안전 운항을 도모할 수 있다.

Description

무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치
본 발명은 지도 정보 서비스 제공 방법에 관한 것으로, 더욱 상세하게는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치에 관한 것이다.
무인비행체 지상운용 시스템(Ground Control System; GCS)은 무인비행체를 운용하기 위한 필수 지상장비로서 지상에서 무인비행체를 통제하는 역할을 수행한다. 무인비행체 지상운용 시스템의 필수 구성요소로는, 무인비행체의 위치를 확인할 수 있는 지도, 위성사진을 표시하는 화면, 무인비행체의 비행자세, 고도, 및 속도를 표시하는 헤드업디스플레이(Head-Up Display; HUD) 화면, 무인비행체에서 전송하는 카메라 영상을 표시하는 화면, 및 무인비행체의 상태를 표시하는 상태화면 등이 있고, 추가적으로, 임무를 설정할 수 있는 임무화면 및 각종 충돌정보를 제공하는 경고화면 등이 있다.
군용 무인비행체 지상운용 시스템은 일반적으로 비행 조종사와 임무장비 조종사가 한팀이 되어 무인비행체를 운용하지만, 민간에서 사용되는 25 kg 이하의 저고도용 무인비행체는 보통 1인이 운용하는 경우가 대부분이다. 따라서, 저고도용 무인비행체를 포함한 무인비행체들은 안전 운항을 위해서 충돌방지 시스템을 필요로 한다.
*5이 충돌방지 시스템이 충돌을 방지하는 방법에는 크게 두 가지 방법이 있다. 예를 들면, 라이다, 레이더, 초음파 센서, 적외선 센서, 및 영상 카메라 등과 같이 무인비행체에 탑재되는 센서를 이용하여 다른 무인비행체나 지상장애물을 직접 감지하여 충돌을 회피하는 방법과, 무인비행체 지상운용 시스템이 DTM(Digital Terrain Model), DTD(Digital Terrain Data), 및 DTED(Digital Terrain Elevation Data)와 같은 수치 표고 모델(Digital Elevation Model; DEM)의 지형 고도정보를 탑재하여 비행경로 상의 가시거리(Line of Sight; LOS)를 분석함으로써 충돌을 방지하는 방법이 있다.
최근에는 센서를 이용한 무인비행체의 충돌방지 시스템이 활발히 개발되고 있다. 군에서는 수치 표고 모델과 같은 지형 고도정보를 이용한 충돌방지 시스템을 이용하여 고해상도의 지형정보를 사용하고 있지만, 민간에서는 고해상도의 자료를 획득하는 데 어려움이 있을 뿐만 아니라 비용 등의 이유로 주로 저해상도의 지형정보를 사용하고 있다.
이를 위한, 수치 표고 모델은 실세계의 지형정보 중 건물, 수목, 및 인공 구조물 등을 제외한 지형(Bare Earth) 부분을 표현하는 수치 모형이고, 수치 표면 모델(Digital Surface Model; DSM)은 실세계의 모든 정보, 즉, 지형, 수목, 및 인공 구조물 등을 표현한 수치 모형이다. 특히, 수치 표고 모델은 불규칙한 지형기복을 3차원 좌표 형태로 표현함으로써, 국가지리 정보체계 구축사업 지원과 국토개발을 위한 도시계획, 입지선정, 토목, 및 환경 분야 등에 널리 활용되고 있다.
이러한 수치 표고 모델과 수치 표면 모델을 통합하여 지형 고도정보라고 하는데, 수치 표고 모델은 주로 수백 미터 이상의 고도에서 운용되는 무인비행체에 적합한 반면, 수치 표면 모델은 나무 및 건물 등의 고도를 포함하여 저고도에서 운용되는 무인비행체에 적합하다. 그러나, 이러한 수치 표면 모델은 그 데이터의 양이 방대하고, 그 구축 비용도 비싸기 때문에 민간에서 사용하기 쉽지 않다.
현재 저고도 무인비행체는 가시권 비행, 고도제한, 야간비행 금지, 및 비행제한구역 등에 의해 비행에 제한이 있지만, 점차 비가시권의 원거리 비행, 다수의 무인비행체들의 집단 비행 등의 형태로 나가려는 추세에 있다. 이에 따라, 무인비행체들이 비가시권이나 야간에도 안전하게 운용될 수 있는 광역의 정밀지도 및 위성사진과 고정밀도의 장애물 정보 기반의 운영 환경 개발이 필수적이다.
그러나, 고정밀도 지도 및 위성사진과, DSM과 같은 장애물 정보 등을 전국 단위로 구축하기 위해서는 비용이 많이 들고, 데이터의 용량이 방대하며, 최신의 데이터를 항상 업데이트해주어야 하기 때문에, 향후 수많은 지상 통제소 또는 휴대용 지상통제장치마다 전국 단위의 지도 및 위성사진과, 장애물 정보를 모두 구축하여 사용하기는 어렵다.
따라서, 서버 기반으로 이러한 데이터를 구축하고, 무인비행체를 운용하는 기관이나 기업, 또는 개인들이 서버에 접속하여 원하는 지역의 지도 및 위성사진, 장애물 정보, 및 비행제한구역 등의 정보를 제공 받아 사용할 수 있는 시스템이 절실히 요구되고 있다.
본 명세서는 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 지도 데이터, 위성사진, DSM 또는 DEM 등의 지형 고도정보, 특정 건물과 고압선 등의 장애물 정보, 및 비행금지/제한구역 정보 등을 일괄적으로 서버에 구축하고, 서버에 접속한 사용자들에게 해당 정보들을 제공함으로써, 저비용으로 무인비행체의 안전 운항을 도모할 수 있는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치를 제공하는 데 그 목적이 있다.
이와 같은 목적을 달성하기 위한, 본 명세서의 일실시예에 따르면, 본 명세서에 따른 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치는, 무인비행체 지상운용 시스템의 임무지역에 대한 디지털 무빙 맵 요청에 따라 상기 임무지역에 대한 영역 정보를 내부 분할관리체계의 인덱스 리스트로 변환하는 요청 분석부; 상기 요청 분석부에 의해 변환된 인덱스 리스트에서 상기 임무지역에 걸쳐 있는 셀들의 번호를 검색하고, 레벨별로 공간 분할되고, 벡터 데이터인 지도, 장애물 정보, 및 비행금지/제한구역 정보와 이미지 데이터인 위성사진 및 지형 고도정보를 포함하는 디지털 무빙 맵을 저장하는 데이터베이스부로부터 상기 검색된 셀들의 번호에 대응되는 디지털 무빙 맵을 추출하는 디지털 무빙 맵 데이터베이스 관리부; 상기 디지털 무빙 맵 데이터베이스 관리부에 의해 추출된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템에 적합한 포맷으로 변환하는 요청 처리부; 및 상기 요청 처리부에 의해 변환된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템으로 전송하는 디지털 무빙 맵 제공부를 포함한다.
바람직하게는, 상기 디지털 무빙 맵 데이터베이스 관리부는 각 레벨별 셀의 개수와 셀의 크기에 대한 정보를 바탕으로 상기 임무지역에 걸쳐 있는 셀들을 검색하는 것을 특징으로 한다.
바람직하게는, 상기 디지털 무빙 맵 데이터베이스 관리부는 레벨별로 셀의 크기가 다른 것을 고려하여 모든 레벨에서 동일한 개수의 셀을 검색하는 것을 특징으로 한다.
바람직하게는, 상기 요청 처리부는 상기 이미지 데이터를 GeoTiff 포맷으로 변환하고, 상기 벡터 데이터를 Shp, dbf, shx, 및 klm 중 어느 하나의 포맷으로 변환하는 것을 특징으로 한다.
바람직하게는, 상기 디지털 무빙 맵 제공부는 지도, 장애물 정보, 및 비행금지/제한구역 정보는 벡터 데이터로 전송하고, 위성사진 및 지형 고도정보는 이미지 데이터로 전송하는 것을 특징으로 한다.
바람직하게는, 상기 디지털 무빙 맵 제공부는 상기 이미지 데이터와 상기 벡터 데이터를 병행하여 제공할 경우, 상기 무인비행체 지상운용 시스템의 인터넷 상의 전송속도를 확인하여 그 전송속도가 느리면 상기 이미지 데이터를 먼저 전송한 후, 상기 벡터 데이터를 전송하는 것을 특징으로 한다.
바람직하게는, 상기 디지털 무빙 맵 제공부는 상기 이미지 데이터로부터 각각의 셀 영역에 대한 지리정보를 추출하여 벡터 객체로서 저장하고, 각 화소가 나타내는 셀 영역의 화소값을 속성으로 저장한 후, 벡터와 속성을 통합하여 상기 이미지 데이터를 상기 벡터 데이터에 병합하여 전송하는 것을 특징으로 한다.
바람직하게는, 상기 디지털 무빙 맵 제공부는 고도에 따라 플레인을 삽입하여 지형 고도정보를 제공하는 것을 특징으로 한다.
본 명세서의 다른 실시예에 따르면, 본 명세서에 따른 무인무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법은, 비행체 지상운용 시스템의 임무지역에 대한 디지털 무빙 맵 요청에 따라 상기 임무지역에 대한 영역 정보를 내부 분할관리체계의 인덱스 리스트로 변환하는 단계; 상기 인덱스 리스트에서 상기 임무지역에 걸쳐 있는 셀들의 번호를 검색하고, 레벨별로 공간 분할되고, 벡터 데이터인 지도, 장애물 정보, 및 비행금지/제한구역 정보와 이미지 데이터인 위성사진 및 지형 고도정보를 포함하는 디지털 무빙 맵을 저장하는 데이터베이스부로부터 상기 검색된 셀들의 번호에 대응되는 디지털 무빙 맵을 추출하는 단계; 추출된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템에 적합한 포맷으로 변환하는 단계; 및 변환된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템으로 전송하는 단계를 포함한다.
바람직하게는, 상기 디지털 무빙 맵을 추출하는 단계에서, 각 레벨별 셀의 개수와 셀의 크기에 대한 정보를 바탕으로 상기 임무지역에 걸쳐 있는 셀들을 검색하는 것을 특징으로 한다.
바람직하게는, 상기 디지털 무빙 맵을 추출하는 단계에서, 레벨별로 셀의 크기가 다른 것을 고려하여 모든 레벨에서 동일한 개수의 셀을 검색하는 것을 특징으로 한다.
바람직하게는, 상기 변환된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템으로 전송하는 단계에서, 고도에 따라 플레인을 삽입하여 지형 고도정보를 제공하는 것을 특징으로 한다.
이상에서 설명한 바와 같이 본 명세서에 의하면, 지도, 위성사진, 지형 고도정보, 장애물 정보, 및 비행금지/제한구역 정보 등의 다양한 공간정보 데이터를 기반으로 하는 공간 분할형 디지털 무빙 맵을 무인비행체의 비행을 제어하는 무인비행체 지상운용 시스템으로 제공함으로써, 무인비행체의 비행 제어 효율을 높일 수 있고, 나아가 무인비행체의 안전 운항을 도모할 수 있다.
도 1은 본 발명의 실시예에 따른 베지에 곡선을 이용한 비행경로 설정 방법을 설명하기 위한 도면,
도 2는 △t에 따른 베지에 곡선의 생성점을 보여주는 도면,
도 3은 조절점의 위치에 따른 다양한 형태의 베지에 곡선을 보여주는 도면,
도 4는 본 발명의 실시예에 따른 무선통신망 기반의 무인비행체 자동운항 운영 시스템의 개략적인 구성을 나타낸 블럭 구성도,
도 5는 본 발명의 실시예에 따른 무인비행체 지상운용 시스템의 개략적인 구성을 나타낸 블럭 구성도,
도 6은 본 발명의 실시예에 따른 비행경로 관리 서버의 개략적인 구성을 나타낸 블럭 구성도,
도 7은 본 발명의 실시예에 따른 베지에 곡선의 실시간 보간을 통한 무인비행체의 비행경로 설정 방법을 설명하기 위한 도면,
도 8은 본 발명의 실시예에 따른 전체 경로 집합의 자료연결 구조를 나타낸 도면,
도 9는 본 발명의 실시예에 따른 전체 경로 집합에서 비행경로를 검색하는 방법을 설명하기 위한 도면,
도 10은 본 발명의 실시예에 따른 디지털 무빙 맵 생성 장치 내부의 개략적인 구성을 나타낸 블럭 구성도,
도 11은 본 발명의 실시예에 따른 디지털 무빙 맵 생성 장치의 다양한 공간정보 데이터를 공간 분할하는 방법을 설명하기 위한 도면,
도 12는 본 발명의 실시예에 따른 디지털 무빙 맵 서비스 제공 장치 내부의 개략적인 구성을 나타낸 블럭 구성도,
도 13은 본 발명의 실시예에 따른 디지털 무빙 맵 서비스 제공 장치의 임무지역에 걸쳐 있는 셀 검색 방법을 설명하기 위한 도면,
도 14는 종래의 지도 정보 서비스 제공 장치에서 제공되는 지형 고도정보의 예시화면,
도 15는 본 발명의 실시예에 따른 디지털 무빙 맵 서비스 제공 장치에서 제공되는 지형 고도정보의 예시화면,
도 16은 본 발명의 실시예에 따른 무선통신망 기반의 무인비행체 자동운항 운영 방법을 나타낸 신호 흐름도,
도 17은 본 발명의 실시예에 따른 무인비행체의 비행경로 제공 방법을 나타낸 흐름도,
도 18은 본 발명의 실시예에 따른 디지털 무빙 맵 생성 방법을 나타낸 흐름도, 및
도 19는 본 발명의 실시예에 따른 디지털 무빙 맵 서비스 제공 방법을 나타낸 흐름도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
[부호의 설명]
1000: 디지털 무빙 맵 생성 장치 1100: 디지털 맵 인코딩부
1200: 데이터베이스부 1300: 디지털 무빙 맵 서비스 제공 장치
1310: 요청 분석부 1320: 디지털 무빙 맵 데이터베이스 관리부
1330: 요청 처리부 1340: 디지털 무빙 맵 제공부
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다.
무인비행체의 비행경로로서는, 직선뿐만 아니라 부드럽게 이동할 수 있는 곡선이 필요하다. 직선의 경우에는 시작점과 끝점만으로도 긴 구간의 비행경로 설정이 가능하지만, 곡선의 경우에는 많은 점들이 있어야만 부드러운 비행경로가 만들어질 수 있다. 하지만, 많은 점들을 이용하여 곡선의 비행경로를 설정한다면, 많은 경로점들을 설정해줘야 하기 때문에, 경로 검색시에도 계산량이 많아지게 된다.
이와 같은 문제점을 해결하기 위해, 본 발명의 실시예에서는 베지에 곡선(Bezier Curve)을 이용하여 비행경로를 설정한다.
도 1은 본 발명의 실시예에 따른 베지에 곡선을 이용한 비행경로 설정 방법을 설명하기 위한 도면이다.
도 1을 참조하면, A, B, C는 각각 시작점, 조절점, 및 끝점을 나타내고, P는 곡선상의 점을 나타낸다. P는 다음의 수학식 1에 0 ~ 1 사이의 t 값을 입력하여 구할 수 있다.
[수학식 1]
Figure PCTKR2018007593-appb-I000001
여기서, A, B, C는 각각 시작점, 조절점, 및 끝점을 나타내고, P(t)는 곡선상의 점을 나타낸다.
도 2는 △t에 따른 베지에 곡선의 생성점을 보여주는 도면이다.
도 2의 (a)에 도시된 바와 같이, △t가 0.5인 경우, 생성점이 한 개이고, 두 개의 직선으로 곡선이 만들어지기 때문에 곡선이 부드럽지 못하다. 도 2의 (b)에 도시된 바와 같이, △t가 0.25인 경우, 생성점이 3개이고, 도 2의 (a)보다 부드러운 곡선을 얻을 수 있다. 도 2의 (c)에 도시된 바와 같이, △t가 0.1인 경우, 생성점이 9개이고, 도 2의 (b)보다 훨씬 부드러운 곡선을 얻을 수 있다.
이처럼, △t가 작아질수록 많은 점들이 곡선의 비행경로를 이루고, 부드러운 비행경로를 만들 수 있다.
도 3은 조절점의 위치에 따른 다양한 형태의 베지에 곡선을 보여주는 도면이다.
도 3의 (a)에 도시된 바와 같이, 조절점(B)이 시작점(A)와 끝점(B)을 연결한 직선에 위치하는 경우, 베지에 곡선은 직선이다.
도 3의 (b)에 도시된 바와 같이, 조절점(B)이 시작점(A)와 끝점(B)을 연결한 직선에서 약간 멀어지는 경우, 베지에 곡선은 약간 곡선을 이루게 된다.
도 3의 (c)에 도시된 바와 같이, 조절점(B)이 도 3의 (b)의 조절점(b)보다 시작점(A)와 끝점(B)을 연결한 직선에서 더 멀어지는 경우, 베지에 곡선은 도 3의 (b)의 베지에 곡선보다 더 곡선을 이루게 된다.
도 3의 (d)에 도시된 바와 같이, 조절점(B)이 도 3의 (c)의 조절점(b)보다 시작점(A)와 끝점(B)을 연결한 직선에서 좀 더 멀어지는 경우, 베지에 곡선은 도 3의 (c)의 베지에 곡선보다 좀 더 곡선을 이루게 된다.
이처럼, 조절점(B)이 시작점(A)와 끝점(B)을 연결한 직선에서 점점 멀어짐에 따라 베지에 곡선은 점점 더 굽어지게 된다.
도 4는 본 발명의 실시예에 따른 무선통신망 기반의 무인비행체 자동운항 운영 시스템의 개략적인 구성을 나타낸 블럭 구성도이다.
도 4를 참조하면, 본 발명의 실시예에 따른 무선통신망 기반의 무인비행체 자동운항 운영 시스템은 무인비행체(100), 무인비행체 지상운용 시스템(200), 및 교통관제 시스템(300) 등을 포함한다. 여기서, 무인비행체(100), 무인비행체 지상운용 시스템(200), 및 교통관제 시스템(300)은 3G, LTE, 및 LTE-A 등의 무선통신망을 통해 연결될 수 있다.
무인비행체(100)는 무선통신 모뎀과 WLAN(Wireless LAN) 모뎀을 포함하고, 무선통신 모뎀과 WLAN 모뎀은 외부 메모리(External memory) 혹은 프로세서 간 통신(Inter-Processor Communication; IPC)을 통해 데이터 교환을 수행할 수 있다. 여기서, 무선통신 모뎀은 일 예로서 LTE 모뎀이 될 수 있다. 또한, WLAN 모뎀은 WiFi, M-Wimax, 및 블루투스(Bluetooth) 등의 다양한 형태를 지원할 수 있다.
한편, 본 발명에 따른 무인비행체(100)는 후술하는 무인비행체 지상운용 시스템(200)의 지상제어정보에 따라 정해진 비행경로를 따라 무인으로 비행하면서, 비행체 ID, 비행경로 수신 상태, 비행제어명령 수신 상태, 및 비행상태 등을 포함하는 비행정보를 교통관제 시스템(300)을 경유하여 무인비행체 지상운용 시스템(200)으로 전송할 수 있다. 여기서, 비행상태는, 회전운동상태(Rotational States)와 병진운동상태(Translational States)로 정의된다. 회전운동상태는 '요(Yaw)', '피치 (Pitch)', '롤 (Roll)'을 의미하며, 병진운동상태는 경도, 위도, 고도, 속도를 의미한다.
여기서, '롤', '피치', 및 '요'는 오일러 (Euler) 각도라 부르며, 비행기 기체좌표 x,y,z 세 축이 어떤 특정 좌표, 예를 들어, NED 좌표 N, E, D 세 축에 대하여 회전된 각도를 나타낸다. 비행기 전면이 기체좌표의 z축을 기준으로 좌우로 회전할 경우, 기체좌표의 x축은 NED 좌표의 N축에 대하여 각도 차이가 생기게 되며, 이 각도를 "요"(Ψ)라고 한다. 비행기의 전면이 오른쪽으로 향한 y축을 기준으로 상하로 회전을 할 경우, 기체좌표의 z축은 NED 좌표의 D축에 대하여 각도 차이가 생기게 되며, 이 각도를 "피치"(θ)라고 한다. 비행기의 동체가 전면을 향한 x축을 기준으로 좌우로 기울게 될 경우, 기체좌표의 y축은 NED 좌표의 E축에 대하여 각도가 생기게 되며, 이 각도를 "롤"(Φ)이라 한다.
또한, 무인비행체(100)는 타 무인비행체와의 상호 통신을 통해 경로진출입, 무인비행체 간 거리, 및 교차로 교행을 판단할 수 있다.
무인비행체 지상운용 시스템(200)은 무인비행체(100)와 마찬가지로 무선통신 모뎀과 WLAN 모뎀을 포함할 수 있다. 따라서, 무인비행체 지상운용 시스템(200)은 비상 및 운영 관리를 위해서 근거리 통신이 가능한 WLAN 모뎀을 통해 무인비행체(100)의 비행을 제어하고, 또한, 무선통신 모뎀을 통해 무인비행체(100)의 비행을 제어한다.
이하에서는, 무인비행체 지상운용 시스템(200)이 무선통신 모뎀을 통해 무인비행체(100)의 비행을 제어하는 것을 기준으로 설명하기로 한다.
무인비행체 지상운용 시스템(200)은 무선통신망을 통해 비행체 ID, 비행시간, 출도착점, 및 경유점 등을 포함하는 비행계획 정보를 교통관제 시스템(300)으로 전송하여 무인비행체(100)의 비행경로를 요청하고, 교통관제 시스템(300)으로부터 비행경로를 수신한 후, 비행체 ID, 비행경로, 및 비행제어명령 등을 포함하는 지상제어정보를 교통관제 시스템(300)을 경유하여 무인비행체(100)로 전송하여 무인비행체(100)의 비행을 제어한다. 여기서, 비행제어명령은 비행의 시작 및 종료를 나타내는 신호로서, 무인비행체(100)의 속도 및 고도 등의 제어정보를 포함할 수도 있다.
또한, 무인비행체 지상운용 시스템(200)은 무인비행체(100)로부터 비행정보를 수신할 수 있다. 이와 더불어, 무인비행체 지상운용 시스템(200)은 무인비행체(100)의 비행 중에도 비행경로를 동적으로 수정할 수 있음은 물론이다. 이와 같은 본 발명의 실시예에 따른 무인비행체 지상운용 시스템(200)의 자세한 구성에 대해서는 도 5에서 설명하기로 한다.
교통관제 시스템(300)은 무인비행체 지상운용 시스템(200)의 비행경로 요청에 따라 전체 항로에서 비행금지 구역, 장애물, 비행시간, 및 교통량을 고려하여 비행경로를 검색하고, 검색된 비행경로를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전송한다. 교통관제 시스템(300)은 무인비행체 지상운용 시스템(200)으로부터 지상제어정보를 수신하고, 수신한 지상제어정보를 무선통신망을 통해 무인비행체(100)로 전달한다. 교통관제 시스템(300)은 무인비행체(100)로부터 비행정보를 수신하고, 수신한 비행정보를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전달한다.
또한, 교통관제 시스템(300)은 비행경로가 설정되어 있지 않은 지역에 대해서는 디지털 무빙 맵(Digital Moving Map; DMM) 기반의 충돌정보 및 회피경로를 제공할 수 있다.
한편, 본 발명에 따른 교통관제 시스템(300)은 전술한 동작을 수행하기 위해, 무인비행체 관리 데이터베이스(310), 비행경로 관리 서버(320), 및 비행정보 중계 및 모니터링 서버(330)를 포함할 수 있다.
무인비행체 관리 데이터베이스(310)는 ID 정보, 인증 정보, 및 등급 정보 등을 포함한다. ID 정보는 다수의 비행체 ID를 포함한다. 인증 정보는 각각의 비행체 ID에 대응되는 무인비행체에 대한 성능 정보를 나타낸다. 등급 정보는 소형, 중형, 및 대형 등과 같은 무인비행체의 하드웨어적인 분류를 나타내고, 인증 정보에 포함될 수 있다.
무인비행체 관리 데이터베이스(310)는 후술한 비행경로 관리 서버(320)의 인증 요청에 따라 비행계획 정보에 포함된 비행체 ID와 무인비행체 관리 데이터베이스(310)에 저장된 ID 정보를 비교하여 비행체 ID가 등록되어 있는지 여부를 판단하고, 비행체 ID가 등록되어 있는 경우, 비행체 ID에 대응되는 인증 정보 및 등급 정보를 참조하여 무인비행체(100)에 대한 인증을 수행한다.
비행경로 관리 서버(320)는 무선통신망을 통해 무인비행체 지상운용 시스템(200)과 데이터를 송수신하기 위해 무선통신 모뎀을 포함한다. 비행경로 관리 서버(320)는 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로부터 비행계획 정보를 수신하면, 무인비행체 관리 데이터베이스(310)로 무인비행체(100)의 인증을 요청하고, 무인비행체 관리 데이터베이스(310)에 의해 무인비행체(100)의 인증이 완료된 경우, 전체 항로에서 비행금지 구역, 장애물, 비행시간, 및 교통량을 고려하여 비행경로를 검색하며, 검색된 비행경로를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전송한다. 이와 같은 본 발명의 실시예에 따른 비행경로 관리 서버(320)의 자세한 구성에 대해서는 도 6에서 설명하기로 한다.
비행정보 중계 및 모니터링 서버(330)는 비행경로 관리 서버(320)와 마찬가지로 무선통신망을 통해 무인비행체 지상운용 시스템(200) 및 무인비행체(100)와 데이터를 송수신하기 위해 무선통신 모뎀을 포함한다. 비행정보 중계 및 모니터링 서버(330)는 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로부터 지상제어정보를 수신하고, 수신한 지상제어정보를 무인비행체(100)로 전달한다. 그리고, 비행정보 중계 및 모니터링 서버(330)는 무인비행체(100)로부터 비행정보를 수신하고, 수신한 비행정보를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전달한다.
도 5는 본 발명의 실시예에 따른 무인비행체 지상운용 시스템의 개략적인 구성을 나타낸 블럭 구성도이다.
도 5를 참조하면, 본 발명의 실시예에 따른 무인비행체 지상운용 시스템(200)은 입력부(210), 표시부(220), 제어부(230), 무선통신 모뎀(240), 및 WLAN 모뎀(250) 등을 포함한다.
입력부(210)는 물리적 키보드(Key Board), 조이스틱(Joystick), 휠 키(Wheel Key), 및 터치 패드(Touch Pad) 등과 같은 입력 수단들 중 어느 하나 또는 이들의 조합으로 형성될 수 있다. 특히, 터치 패드가 표시부(220)와 상호 레이어 구조를 이룰 경우, 이를 터치 스크린이라 부를 수 있다. 입력부(210)는 사용자로부터 입력 동작을 받아들여, 무인비행체(100)의 동작 제어를 위한 입력 데이터를 발생시킨다. 즉, 입력부(210)는 사용자로부터 비행체 ID, 비행시간, 출도착점, 및 경유점 등을 포함하는 비행계획 정보와 비행체 ID, 비행경로, 및 비행제어명령 등을 포함하는 지상제어정보를 입력받을 수 있다.
표시부(220)는 DLP(Digital Light Processing), LCD(Liquid Crystal Display), PDP(Plasma Display Penal), CRT(Cathode Ray Tube) 및 LED(Light Emitting Diode) 방식 중 어느 하나일 수 있다. 표시부(220)는 무인비행체(100)의 비행을 계획하고 제어하기 위한 다수의 메뉴, 다수의 비행경로점을 포함하는 비행경로, 및 무인비행체의 비행 상태 등을 표시할 수 있다.
제어부(230)는 무인비행체 지상운용 시스템(200)의 전반적인 동작을 제어한다. 이를 위해, 제어부(230)는 비행 계획부(232), 비행 제어부(234), 및 비행상태 감시부(236)를 포함한다. 제어부(230)는 무선통신 모뎀(240) 또는 WLAN 모뎀(250)을 통해 무인비행체(100) 및 교통관제 시스템(300)으로 신호를 전송하고, 무인비행체(100) 및 교통관제 시스템(300)으로부터 각종 정보를 수신하여 디코딩하고, 디코딩된 정보를 표시부(220)에 나타낸다.
즉, 비행 계획부(232)는 무선통신 모뎀(240)을 통해 비행체 ID, 비행시간, 출도착점, 및 경유점 등을 포함하는 비행계획 정보를 교통관제 시스템(300)으로 전송하여 무인비행체(100)의 비행경로를 요청하고, 교통관제 시스템(300)으로부터 비행경로를 수신한다. 비행 제어부(234)는 비행체 ID, 비행경로, 및 비행제어명령 등을 포함하는 지상제어정보를 교통관제 시스템(300)을 경유하여 무인비행체(100)로 전송하여 무인비행체(100)의 비행을 제어한다. 비행상태 감시부(236)는 무선통신 모뎀(240)을 통해 비행정보 중계 및 모니터링 서버(330)를 경유하여 무인비행체(100)로부터 비행정보를 수신하고, 수신한 비행정보를 표시부(220)를 통해 표시한다.
무선통신 모뎀(240)은 전술한 바와 같이 교통관제 시스템(300)과 데이터를 송수신하기 위해, 3G, LTE, 및 LTE-A 등의 무선통신망에 접속할 수 있는 모뎀이 될 수 있다.
WLAN 모뎀(250)은 무인비행체(100)의 비상 및 운영 관리를 위해서 WiFi, M-Wimax, 블루투스(Bluetooth) 등의 다양한 형태를 지원할 수 있다.
도 6은 본 발명의 실시예에 따른 비행경로 관리 서버의 개략적인 구성을 나타낸 블럭 구성도이다.
도 6을 참조하면, 본 발명의 실시예에 따른 비행경로 관리 서버(320)는 비행경로 생성부(322), 비행경로 저장부(324), 비행경로 검색부(326), 및 비행경로 제공부(328)를 포함한다. 이외에도, 비행경로 관리 서버(320)는 비행금지 구역, 장애물, 및 교통량을 각각 관리하는 다수의 기능부를 더 포함할 수도 있다. 또한, 본 발명에 따른 비행경로 관리 서버(320)는 후술하는 디지털 무빙 맵 생성 장치에 상응하며, 디지털 무빙 맵 생성 장치의 자세한 구성에 대해서는 도 10에서 설명하기로 한다.
비행경로 생성부(322)는 지도, 위성 데이터, 및 장애물을 이용하여 레이어 맵 형태로 비행경로로서, 디지털 무빙 맵을 생성하여 비행경로 저장부(324)에 저장한다. 이때, 비행경로 생성부(322)는 베지에 곡선을 이용하여 적어도 두 개의 노드를 연결하여 비행경로, 즉, 노드라인을 생성하고, 복수의 노드 또는 복수의 노드라인으로 구성되는 전체 경로 집합을 생성하며, 생성된 전체 경로 집합을 비행경로 저장부(324)에 저장한다. 여기서, 장애물은 수치 표면 모델(Digital Surface Model; DSM)로 구현될 수 있다. 또한, 비행경로 생성부(322)는 비행경로 저장부(324)에 저장된 비행경로를 폐쇄할 수도 있다. 이에, 비행경로 저장부(324)는 비행경로 생성부(322)에서 생성된 비행경로를 전체 항로에 추가하거나, 비행경로 생성부(322)의 요청에 따라 전체 항로에서 특정 비행경로를 삭제할 수 있다.
비행경로 검색부(326)는 무인비행체 지상운용 시스템(200)의 비행경로 요청에 따라 비행경로 저장부(326)에 저장된 전체 항로에서 비행 제한속도, 비행금지 구역, 장애물, 비행시간, 및 교통망, 즉, 노드를 통과할 수 있는 제한속도, 노드의 현재 교통량, 및 노드의 이용 가능 여부(금지구역) 등을 포함하는 각 노드의 노드 속성을 고려하여 비행경로 저장부(324)에 저장된 전체 경로 집합에서 비행경로를 검색하고, 검색된 비행경로를 비행경로 제공부(328)를 통해 무인비행체 지상운용 시스템(200)으로 전송한다.
비행경로 제공부(328)는 전술한 바와 같이 무인비행체 지상운용 시스템(200)으로부터 무인비행체(100)의 비행경로를 요청받고, 비행경로 검색부(326)에 의해 검색된 무인비행체(100)의 비행경로를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전송한다. 이를 위해, 비행경로 제공부(328)는 3G, LTE, 및 LTE-A 등의 무선통신망에 접속할 수 있는 모뎀을 포함할 수 있다.
도 7은 본 발명의 실시예에 따른 베지에 곡선의 실시간 보간을 통한 무인비행체의 비행경로 설정 방법을 설명하기 위한 도면이다.
도 7을 참조하면, A는 제1 구간의 시작점을 나타내고, B는 제1 구간의 조절점을 나타내며, C는 제1 구간의 끝점이면서 제2 구간의 시작점이 된다. 또한, D는 제2 구간의 조절점을 나타내고, E는 제2 구간의 끝점을 나타낸다.
도 7의 (a)를 참조하면, 무인비행체(100)가 제1 구간을 지날 때 탐색 경계구(700) 바깥의 첫번째 지점인 제3 경로점(P3)의 위치를 수학식 1을 통해 구하고, 그 위치를 무인비행체(100)의 비행목표점으로 설정한다. 이때, 제3 경로점(P3)은 수학식 1에서 t=0.6인 지점이다.
도 7의 (b)를 참조하면, 제3 경로점(P3)이 무인비행체(100)의 탐색 경계구(700) 안에 들어오면, 그 다음 지점인 제4 경로점(P4)의 위치를 수학식 1을 통해 구하고, 그 위치를 무인비행체(100)의 비행목표점으로 설정한다. 이때, 제4 경로점(P4)은 수학식 1에서 t=0.8인 지점이다.
도 7의 (c)를 참조하면, 제4 경로점(P4)이 무인비행체(100)의 탐색 경계구(700) 안에 들어오면, 그 다음 지점은 t=0인 지점이면서 그 다음 구간의 시작점인 C가 된다. 이때, 수학식 1은 C, D, E를 사용하고, t는 0으로 초기화된다.
이와 같은 방식으로, 본 발명의 실시예에 따른 무인비행체(100)는 구간을 비행하게 되고, t의 증분을 더 작게 할수록 무인비행체(100)는 부드럽게 이동할 수 있다.
도 8은 본 발명의 실시예에 따른 전체 경로 집합의 자료연결 구조를 나타낸 도면이다.
무인비행체(100)가 자동으로 비행하기 위해서는 비행경로점들을 가지고 있어야 하는데, 이러한 비행경로점들은 전체 경로 집합에서 검색된다. 이러한 비행경로점들을 빠르고 효과적으로 검색하기 위해서는 도 8과 같은 전체 경로점들을 유기적으로 결합한 자료연결 구조(800)가 요구된다.
도 8을 참조하면, 각 경로는 노드(810)가 된다. 각 노드들(810)이 연결되어 이루는 하나의 선은 노드라인(820)이 된다. 이때, 최소한 두 개의 노드만 있으면 노드라인이 구성될 수 있다. 또한, 노드(810)와 노드라인(820)들이 모여 전체 경로 집합이 되는데, 이를 링크드리스트(LinkedList)(830)라 한다.
자료연결 구조(800)에서는, 노드들(810) 간에 링크드리스트될 수 있고, 또한 노드라인들(820) 간에도 링크드리스트될 수 있음은 물론이다. 또한, 한 노드에서 다른 노드로 분기될 때 모노드가 분기되는 자노드의 주소 정보를 가지고 있고, 이를 통해 노드 간에 링크가 생기며, 이는 후술하는 분기노드 정보에 기재된다.
각각의 노드(810)는 자신의 노드번호(Node Number), 스플라인 조절점 위치(Spline Control Point), 노드 위치(Node Points), 이전 노드 정보(Previous Node Address), 다음 노드 정보(Next Node Address), 분기노드 수(Number of Branch Node), 다른 노드로 분기하는 데 필요한 분기노드 정보(Branch Node Address), 자신이 속해 있는 노드라인의 정보(Node Line Address), 및 노드의 속성을 담고 있는 노드 속성 정보 등을 포함할 수 있다. 노드 속성은 앞에서 전술한 바와 같이, 각 노드의 특징을 나타내는 것으로서, 예를 들어, 노드를 통과할 수 있는 제한속도, 노드의 현재 교통량, 노드를 이용 가능할 수 있는지 여부, 및 무인비행체가 노드를 통과할 때 전송되는 메시지 등을 포함할 수 있고, 그 밖에 다양한 속성을 포함할 수 있다.
각각의 노드라인(820)은 자신의 노드라인 번호(Node Line Number), 이전 노드라인 정보(Previous Node Line Address), 다음 노드라인 정보(Next Node Line Address), 노드라인의 속성을 담고 있는 노드라인 속성(Node Line Property) 정보, 자신에게 속해 있는 노드의 수(Number of Node), 시작 노드 정보(Start Node Address), 및 끝 노드 정보(End Node Address) 등을 포함할 수 있다.
도 9는 본 발명의 실시예에 따른 전체 경로 집합에서 비행경로를 검색하는 방법을 설명하기 위한 도면이다.
도 9를 참조하면, S는 노드라인의 시작 노드를 나타내고, E는 노드라인의 끝 노드를 나타내며, 제0 노드(0), 제1 노드(1), ..., 제11 노드(11)는 노드라인의 노드목록을 나타낸다. 또한, 점선은 노드 간의 링크를 나타낸다.
이하에서는, 노드 속성으로서 교통량을 예로 들어, 본 발명의 실시예에 따른 전체 경로 집합에서 비행경로를 검색하는 방법을 설명하기로 한다.
우선, 시작 노드인 제0 노드(0)로부터 제1 노드(1)를 비행목표점으로 설정한다. 그리고, 제1 노드(1)에 링크가 존재하기 때문에, 제2 노드(2)와 제2-1 노드(2-1)의 노드 속성을 고려하여 제2 노드(2)를 다음 비행목표점으로 설정한다. 이때, 제2 노드(2)의 교통량이 제2-1 노드(2-1)의 교통량보다 적기 때문에 제2 노드(2)를 다음 비행목표점으로 설정하였다.
이후, 제3 노드(3)를 다음 비행목표점으로 설정하고, 이어서 제4 노드(4)를 다음 비행목표점으로 설정한다. 그리고, 제4 노드(4)에도 링크가 존재하기 때문에, 제5 노드(5)와 제5-1 노드(5-1)의 노드 속성을 고려하여 제5 노드(5)를 다음 비행목표점으로 설정한다. 이때, 제5 노드(5)의 교통량이 제5-1 노드(5-1)의 교통량보다 적기 때문에 제5 노드(5)를 다음 비행목표점으로 설정하였다.
이후, 제6 노드(6)를 다음 비행목표점으로 설정하고, 이어서, 제7 노드(7)를 다음 비행목표점으로 설정한다. 그리고, 제7 노드(7)에도 링크가 존재하기 때문에, 제8 노드(8)와 제8-1 노드(8-1)의 노드 속성을 고려하여 제8 노드(8)를 다음 비행목표점으로 설정한다. 이때, 제8 노드(8)의 교통량이 제8-1 노드(8-1)의 교통량보다 적기 때문에 제8 노드(8)를 다음 비행목표점으로 설정하였다.
이후, 제9 노드(9)를 다음 비행목표점으로 설정하고, 이어서 제10 노드(10)를 다음 비행목표점으로 설정하며, 이어서 제11 노드(11)를 끝 노드로 설정한다.
도 10은 본 발명의 실시예에 따른 디지털 무빙 맵 생성 장치 내부의 개략적인 구성을 나타낸 블럭 구성도이다.
도 10을 참조하면, 본 발명에 따른 디지털 무빙 맵 생성 장치(1000)는 디지털 맵 인코딩부(1100), 데이터베이스부(1200), 및 디지털 무빙 맵 서비스 제공 장치(130)를 포함할 수 있다. 여기서, 디지털 무빙 맵 서비스 제공 장치(130)는 디지털 무빙 맵 생성 장치(1000)의 내부에 포함되지 않고, 별도의 장치로 마련될 수 있다.
디지털 맵 인코딩부(1100)는 다양한 전자지도를 무인비행체 지상운용 시스템(200)에서 사용하기 용이하도록 최적화된 데이터베이스를 생성 및 관리하는 기능을 수행한다. 이를 위해, 디지털 맵 인코딩부(1100)는 다양한 종류의 외부 데이터를 디지털 무빙 맵으로 변환할 수 있다.
구체적으로는, 디지털 맵 인코딩부(1100)는 외부로부터 벡터 데이터인 지도, 장애물 정보, 및 비행금지/제한구역 정보와 이미지 데이터인 위성사진 및 지형 고도정보를 수신하고, 수신한 지도, 위성사진, 지형 고도정보, 장애물 정보, 및 비행금지/제한구역 정보를 기저장된 라이브러리를 통해 레벨별로 공간 분할하여 디지털 무빙 맵으로 변환한다. 여기서, 기저장된 라이브러리는 GDAL 라이브러리로서, 디지털 맵 인코딩부(1100)는 이 라이브러리를 통해 bmp, jpg, tiff, 및 img 등의 이미지 데이터를 읽고 쓸 수 있고, shp, dbf, shx, 및 klm 등의 백터 데이터를 읽고 쓸 수 있다.
디지털 맵 인코딩부(1100)는, 도 11에 도시된 바와 같이, 레벨 0부터 레벨이 한 단계씩 증가할 때마다 공간을 1/2씩 분할한다. 이때, 디지털 맵 인코딩부(1100)는 라스터(Raster) 데이터, 즉, 이미지 데이터의 경우 각 셀에 해당하는 이미지를 파일로 저장하고, 이와 함께 좌표 값, 해상도, 및 픽셀의 크기 정보가 포함하는 각각의 이미지의 속성정보를 저장할 수 있다. 또한, 디지털 맵 인코딩부(1100)는 레벨별로 각 셀의 영상 해상도를 모두 동일하게 구축하거나 다르게 구축할 수 있다.
도 11을 참조하면, 레벨 0에서 셀의 개수는 N0 * N0 개이고, 셀 1개의 영상 해상도는 M0 * M0이다. 이때, 픽셀 사이즈가 L0 m이면, 셀 1개의 영역크기는 L0 * M0이 된다.
레벨 1에서 셀의 개수는 N1 * N1 개이고, 셀 1개의 영상 해상도는 M1 * M1이다. 이때, 픽셀 사이즈가 L1 m이면, 셀 1개의 영역크기는 L1 * M1이 된다.
또, 레벨 n에서 셀의 개수는 Nn * Nn이고, 셀 1개의 영상 해상도는 Mn * Mn이다. 이때, 픽셀 사이즈가 Ln m이면, 셀 1개의 영역크기는 Ln * Mn이 된다.
예를 들면, N 레벨의 해상도를 1 m로 구축할 경우, 영상의 해상도가 256 * 256이면, 셀의 크기는 256 m * 256 m가 되어야 한다.
또한, 디지털 맵 인코딩부(1100)는 무인비행체의 비행을 제어하는 무인비행체 지상운용 시스템(200)으로부터 장애물 정보의 갱신 요청이 있는 경우, 장애물 정보를 포함하는 특정 영역에 걸쳐 있는 셀만을 처리한 후, 모든 레벨에 변경된 내용을 적용할 수 있다. 따라서, 본 발명에 따른 디지털 무빙 맵 생성 장치(1000)는 장애물 정보를 갱신하기 위한 처리시간을 단축할 수 있다.
디지털 맵 인코딩부(1100)는 장애물 정보를 버전별로 저장하고, 무인비행체 지상운용 시스템(200)이 임무지역에 대한 디지털 무빙 맵 요청시 설정에서 사용할 데이터 버전을 설정함에 따라 해당 버전의 디지털 무빙 맵을 무인비행체 지상운용 시스템(200)으로 전송할 수 있다. 여기서, 디지털 맵 인코딩부(1100)는 장애물 정보를 설정에 따라 새로운 버전에 저장하거나 기존 버전에 덮어쓸 수 있음은 물론이다.
또한, 디지털 맵 인코딩부(1100)는 위성사진, 지형 고도정보, 및 장애물 정보를 분석하여 송전탑을 장애물 정보로 인식할 수 있다. 이에 더해, 디지털 맵 인코딩부(1100)는 50 cm의 해상도를 갖는 위성사진을 분석하여 각 송전탑의 애자를 인식하고, 인접한 두 송전탑의 애자들 사이에 송전선이 지나가는 것으로 판단하며, 상기 송전선을 장애물 정보로 인식할 수도 있다.
추가로, 본 발명에 따른 디지털 맵 인코딩부(1100)는 이미지 데이터로부터 각각의 셀 영역에 대한 지리정보를 추출하여 벡터 객체로서 저장하고, 각 화소가 나타내는 셀 영역의 화소값을 속성으로 저장한 후, 벡터와 속성을 통합하여 이미지 데이터를 벡터 데이터에 병합할 수도 있다.
데이터베이스부(1200)는 디지털 맵 인코딩부(1100)에 의해 변환된 디지털 무빙 맵을 종류별, 고도별, 및 영역별로 저장한다. 이를 위해, 데이터베이스부(1200)는 지형 데이터베이스, 라스터 데이터베이스, 벡터 데이터베이스, 및 장애물 데이터베이스 등과 같은 복수의 데이터베이스로 구성될 수 있다.
디지털 무빙 맵 서비스 제공 장치(1300)는 무인비행체 지상운용 시스템(200)의 임무지역에 대한 디지털 무빙 맵 요청에 따라 데이터베이스부(1200)에서 종류별, 고도별, 및 영역별로 임무지역에 대한 디지털 무빙 맵을 검색하고, 검색된 디지털 무빙 맵을 무인비행체 지상운용 시스템(200)으로 전송한다. 디지털 무빙 맵 서비스 제공 장치(1300)의 자세한 구성에 대해서는 이하에서 설명하기로 한다.
도 12는 본 발명의 실시예에 따른 디지털 무빙 맵 서비스 제공 장치 내부의 개략적인 구성을 나타낸 블럭 구성도이다.
도 12를 참조하면, 본 발명에 따른 디지털 무빙 맵 서비스 제공 장치(1300)는 요청 분석부(1310), 디지털 무빙 맵 데이터베이스 관리부(1320), 요청 처리부(1330), 및 디지털 무빙 맵 제공부(1340)를 포함할 수 있다.
요청 분석부(1310)는 무인비행체 지상운용 시스템(200)의 임무지역에 대한 디지털 무빙 맵 요청에 따라 임무지역에 대한 영역 정보를 내부 분할관리체계의 인덱스 리스트로 변환한다.
즉, 도 11에 도시된 바와 같이, 임무지역에 대한 영역 정보는 레벨별로 공간 분할되는데, 본 발명에 따른 요청 분석부(1310)는 레벨 0에서는 임무지역에 대한 영역 정보를 (0, 0), (0, 1), (1, 0), (1, 1)로 인덱싱하고, 레벨 1에서는 (0, 0), (0, 1), (0, 2), (0, 3), ..., (3, 0), (3, 1), (3, 2), (3, 3)으로 인덱싱한다. 레벨 2 이상에서의 인덱싱 방법은 전술한 기재만으로도 당업자 수준에서 충분히 이해 가능하므로 그에 대한 설명은 생략하기로 한다. 본 발명에 따른 요청 분석부(1310)는 위와 같은 방법을 통해 임무지역에 대한 영역 정보를 인덱스 리스트로 변환한다.
디지털 무빙 맵 데이터베이스 관리부(1320)는 요청 분석부(1310)에 의해 변환된 인덱스 리스트에서 임무지역에 걸쳐 있는 셀들의 번호를 검색하고, 데이터베이스부(1200)로부터 검색된 셀들의 번호에 대응되는 디지털 무빙 맵을 추출한다. 도 13에 도시된 바와 같이, 각 레벨별로 셀의 개수와 셀의 크기가 다르기 때문에, 디지털 무빙 맵 데이터베이스 관리부(1320)는 각 레벨별 셀의 개수와 셀의 크기에 대한 정보를 바탕으로 임무지역에 걸쳐 있는 셀들을 검색한다. 즉, 디지털 무빙 맵 데이터베이스 관리부(1320)는 레벨별로 셀의 크기가 다른 것을 고려하여 모든 레벨에서 동일한 개수의 셀을 검색하는 것이 바람직하다.
요청 처리부(1330)는 디지털 무빙 맵 데이터베이스 관리부(1320)에 의해 추출된 디지털 무빙 맵을 무인비행체 지상운용 시스템(200)에 적합한 포맷으로 변환한다. 예를 들면, 요청 처리부(1330)는 이미지 데이터를 GeoTiff 포맷으로 변환하고, 벡터 데이터를 Shp, dbf, shx, 및 klm 중 어느 하나의 포맷으로 변환한다.
디지털 무빙 맵 제공부(1340)는 요청 처리부(1330)에 의해 변환된 디지털 무빙 맵을 무인비행체 지상운용 시스템(200)으로 전송한다. 이때, 디지털 무빙 맵 제공부(1340)는 지도, 장애물 정보, 및 비행금지/제한구역 정보는 벡터 데이터로 전송하고, 위성사진 및 지형 고도정보는 이미지 데이터로 전송한다. 또한, 디지털 무빙 맵 제공부(1340)는 벡터 데이터를 이미지 데이터에 합성 및 압축하여 전송할 수 있다.
디지털 무빙 맵 제공부(1340)는 이미지 데이터와 벡터 데이터를 병행하여 제공할 경우, 무인비행체 지상운용 시스템(200)의 인터넷 상의 전송속도를 확인하여 그 전송속도가 느리면 이미지 데이터를 먼저 전송한 후, 벡터 데이터를 전송할 수 있다. 즉, 디지털 무빙 맵 제공부(1340)는 벡터 데이터의 전송이 늦어지는 경우 이미지 데이터를 디지털 무빙 맵에서 거의 변경되지 않는 배경 지도로 이미지화한 후 벡터 데이터를 전송함으로써 빠른 속도로 디지털 무빙 맵을 사용자에게 제공할 수 있다.
다시 말해, 디지털 무빙 맵 제공부(1340)는 벡터 데이터가 도착하기 전에 이미지 데이터를 전송함으로써, 사용자에게 더욱 빠른 응답 시간으로 기본 배경을 이미지 데이터로 제공하고, 상위 특정 레이어에 벡터 데이터를 제공할 수 있다.
한편, 종래의 지도 정보 서비스 제공 장치는 도 14에 도시된 바와 같이, 단순히 2D 형태의 지형 고도정보를 제공하였다. 그러나, 본 발명에 따른 디지털 무빙 맵 제공부(1340)는 도 15에 도시된 바와 같이, 고도에 따라 플레인을 삽입하여 지형 고도정보를 제공한다. 즉, 디지털 무빙 맵 제공부(1340)는 3D 형태의 지형 고도정보를 제공할 수 있다.
도 16은 본 발명의 실시예에 따른 무선통신망 기반의 무인비행체 자동운항 운영 방법을 나타낸 신호 흐름도이다.
우선, 설명에 앞서, 도면에는 도시되지 않았지만, 본 발명의 실시예에 따른 무인비행체 지상운용 시스템(200), 교통관제 시스템(300), 및 무인비행체(100)는 무선통신망을 통해 서로 연결된다.
도 16을 참조하면, 무인비행체 지상운용 시스템(200)은 무선통신망을 통해 비행체 ID, 비행시간, 출도착점, 및 경유점 등을 포함하는 비행계획 정보를 교통관제 시스템(300)으로 전송하여 무인비행체(100)의 비행경로를 요청한다(S612).
비행경로 관리 서버(320)는 무인비행체 지상운용 시스템(200)의 비행경로 요청에 따라 무인비행체 관리 데이터베이스(310)로 무인비행체(100)의 인증을 요청한다(S614).
무인비행체 관리 데이터베이스(310)는 무인비행체(100)가 허가된 무인비행체인지 여부를 판단한다(S616). 구체적으로는, 무인비행체 관리 데이터베이스(310)는 ID 정보, 인증 정보, 및 등급 정보 등을 포함하는데, 비행계획 정보에 포함된 비행체 ID와 무인비행체 관리 데이터베이스(310)에 저장된 ID 정보를 비교하여 비행체 ID가 등록되어 있는지 여부를 판단하고, 비행체 ID가 등록되어 있는 경우, 비행체 ID에 대응되는 인증 정보 및 등급 정보를 참조하여 무인비행체(100)에 대한 인증을 수행한다.
무인비행체 관리 데이터베이스(310)는 단계 S616의 판단 결과에 따라, 무인비행체(100)가 허가된 무인비행체인 경우, 무인비행체(100)의 인증을 완료한다(S618).
비행경로 관리 서버(320)는 무인비행체 관리 데이터베이스(310)에 의해 무인비행체(100)의 인증이 완료된 경우, 전체 항로에서 비행금지 구역, 장애물, 비행시간, 및 교통량을 고려하여 비행경로를 검색하고(S620), 검색된 비행경로를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전송한다(S622).
무인비행체 지상운용 시스템(200)은 비행경로 관리 서버(320)로부터 비행경로를 수신함에 따라, 비행체 ID, 비행경로, 및 비행제어명령 등을 포함하는 지상제어정보를 무선통신망을 통하여 비행정보 중계 및 모니터링 서버(330)로 전송한다(S624).
비행정보 중계 및 모니터링 서버(330)는 무인비행체 지상운용 시스템(200)으로부터 수신한 지상제어정보를 무선통신망을 통해 무인비행체(100)로 전달한다(S626).
무인비행체(100)는 무인비행체 지상운용 시스템(200)의 지상제어정보에 따라 정해진 비행경로를 따라 무인으로 비행하면서, 비행체 ID, 비행경로 수신 상태, 비행제어명령 수신 상태, 및 비행상태 등을 포함하는 비행정보를 무선통신망을 통해 비행정보 중계 및 모니터링 서버(330)로 전송한다(S628).
비행정보 중계 및 모니터링 서버(330)는 무인비행체(100)로부터 수신한 비행정보를 무선통신망을 통해 무인비행체 지상운용 시스템(200)으로 전달한다(S630).
도 17은 본 발명의 실시예에 따른 무인비행체의 비행경로 제공 방법을 나타낸 흐름도이다.
도 17을 참조하면, 본 발명에 따른 무인비행체의 비행경로 제공 방법은 크게 베지에 곡선을 이용하여 적어도 두 개의 노드를 연결하여 노드라인을 생성하고, 복수의 노드 또는 복수의 노드라인으로 구성되는 전체 경로 집합을 생성하는 단계(S100), 노드를 통과할 수 있는 제한속도, 노드의 현재 교통량, 및 노드의 이용 가능 여부 등을 포함하는 각 노드의 노드 속성을 고려하여 전체 경로 집합에서 무인비행체(100)의 비행경로를 검색하는 단계(S200), 및 검색된 비행경로를 무인비행체로 제공하는 단계(S300)를 포함한다.
우선, 전체 경로 집합을 생성하는 단계(S100)는 다음의 단계, 예를 들면, 단계 S710 내지 S740을 포함할 수 있다.
베지에 곡선을 이용하여 시작 노드인 제1 노드와 끝 노드인 제2 노드를 연결하여 제1 노드라인을 생성한다(S710).
제2 노드를 시작 노드로 지정하고, 베지에 곡선을 이용하여 제2 노드와 끝 노드인 제3 노드를 연결하여 제2 노드라인을 생성한다(S720).
제2 노드의 분기노드 정보를 조회하여 자노드가 존재하는지 여부를 판단하고(S730), 자노드가 존재하는 경우, 자노드인 제4 노드와 연결되는 링크를 생성하여 제4 노드를 시작 노드로 지정하고, 베지에 곡선을 이용하여 시작 노드인 제4 노드와 끝 노드인 제5 노드를 연결하여 제3 노드라인을 생성한다(S740).
비록, 본 발명의 실시예에서는 설명의 편의상 제3 노드 및 제4 노드를 전체 경로 집합의 최종 노드로 한정하고 있지만 이에 한정되는 것은 아니며, 제3 노드의 다음 노드인 제5 노드가 존재하고, 제3 노드와 제5 노드를 연결하여 제4 노드라인을 생성할 수 있다. 또한, 제3 노드의 분기노드 정보를 조회하여 자노드가 존재하는지 여부를 판단하고, 자노드가 존재하는 경우, 자노드인 제6 노드와 연결되는 링크를 생성한 후, 제3 노드와 제6 노드를 연결하여 제5 노드라인을 생성할 수 있다. 이처럼, 본 발명의 실시예에서는 단계 S710 내지 S740을 반복적으로 수행하여 복수의 노드 또는 복수의 노드라인으로 구성되는 전체 경로 집합을 생성할 수 있다.
이어서, 제3 노드와 제4 노드의 노드 속성을 비교한다(S750). 예를 들면, 제3 노드와 제4 노드의 교통량을 비교하거나, 제3 노드와 제4 노드의 제한속도를 비교하거나, 노드의 이용 가능 여부, 즉, 금지구역인지 여부를 판단할 수 있다. 제한속도, 교통량, 및 금지구역 중 어느 것을 우선시할지 여부는 관리자가 얼마든지 설정할 수 있고, 이때 제한속도, 교통량, 및 금지구역을 복합적으로 고려할 수 있다. 이와 같은 단계 S750은 전술한 단계 S200에 해당된다.
단계 S750의 비교 결과에 따라, 제3 노드의 교통량이 제4 노드의 교통량보다 적은 경우, 또는 제3 노드의 제한속도가 무인비행체가 통과할 수 있는 최대속도를 수용하는 경우, 또는 제4 노드가 금지구역인 경우, 제3 노드로 무인비행체(100)의 비행경로를 설정한다(S752). 또한, 단계 S750의 비교 결과에 따라, 제4 노드의 교통량이 제3 노드의 교통량보다 적은 경우, 또는 제4 노드의 제한속도가 무인비행체가 통과할 수 있는 최대속도를 수용하는 경우, 또는 제3 노드가 금지구역인 경우, 제4 노드로 무인비행체(100)의 비행경로를 설정한다(S760). 이와 같은 단계 S752 및 단계 S760은 전술한 단계 S300에 해당된다.
도 18은 본 발명의 실시예에 따른 디지털 무빙 맵 생성 방법을 나타낸 흐름도이다.
도 18을 참조하면, 디지털 무빙 맵 생성 장치(100)는 외부로부터 벡터 데이터인 지도, 장애물 정보, 및 비행금지/제한구역 정보와 이미지 데이터인 위성사진 및 지형 고도정보를 수신한다(S810).
디지털 무빙 맵 생성 장치(100)는 수신한 지도, 위성사진, 지형 고도정보, 장애물 정보, 및 비행금지/제한구역 정보를 기저장된 라이브러리를 통해 레벨별로 공간 분할하여 디지털 무빙 맵으로 변환한다(S820). 여기서, 기저장된 라이브러리는 GDAL 라이브러리로서, 디지털 무빙 맵 생성 장치(100)는 이 라이브러리를 통해 bmp, jpg, tiff, 및 img 등의 이미지 데이터를 읽고 쓸 수 있고, shp, dbf, shx, 및 klm 등의 백터 데이터를 읽고 쓸 수 있다.
구체적으로는, 단계 S820에서, 디지털 무빙 맵 생성 장치(100)는 레벨 0부터 레벨이 한 단계씩 증가할 때마다 공간을 1/2씩 분할한다. 이때, 디지털 무빙 맵 생성 장치(100)는 이미지 데이터의 경우 각 셀에 해당하는 이미지를 파일로 저장하고, 이와 함께 좌표 값, 해상도, 및 픽셀의 크기 정보를 포함하는 각각의 이미지의 속성정보를 저장할 수 있다. 또한, 디지털 무빙 맵 생성 장치(100)는 레벨별로 각 셀의 영상 해상도를 모두 동일하게 구축하거나 다르게 구축할 수 있다.
단계 S820에서, 디지털 무빙 맵 생성 장치(100)는 위성사진, 지형 고도정보, 및 장애물 정보를 분석하여 송전탑을 장애물 정보로 인식하여 저장할 수 있다. 또한, 디지털 무빙 맵 생성 장치(100)는 50 cm의 해상도를 갖는 위성사진을 분석하여 각 송전탑의 애자를 인식하고, 인접한 두 송전탑의 애자들 사이에 송전선이 지나가는 것으로 판단하며, 송전선을 장애물 정보로 인식하여 저장할 수 있다.
이어서, 디지털 무빙 맵 생성 장치(100)는 디지털 무빙 맵을 저장한다(S830). 이때, 디지털 무빙 맵 생성 장치(100)는 디지털 무빙 맵을 종류별, 고도별, 및 영역별로 저장할 수 있다.
디지털 무빙 생성 장치(100)는 무인비행체 지상운용 시스템(200)으로부터 장애물 정보의 갱신 요청이 있는지 여부를 판단하고(S840), 무인비행체 지상운용 시스템(200)으로부터 장애물 정보의 갱신 요청이 있는 경우, 장애물 정보를 포함하는 특정 영역에 걸쳐 있는 셀만을 처리한 후, 모든 레벨에 변경된 내용을 적용하여 기저장된 디지털 무빙 맵의 장애물 정보를 갱신한다(S850).
도 19는 본 발명의 실시예에 따른 디지털 무빙 맵 서비스 제공 방법을 나타낸 흐름도이다.
도 19를 참조하면, 디지털 무빙 맵 서비스 제공 장치(1300)는 무인비행체 지상운용 시스템(200)의 임무지역에 대한 디지털 무빙 맵 요청에 따라 임무지역에 대한 영역 정보를 내부 분할관리체계의 인덱스 리스트로 변환한다(S910). 예를 들면, 디지털 무빙 맵 서비스 제공 장치(1300)는 레벨 0에서는 임무지역에 대한 영역 정보를 (0, 0), (0, 1), (1, 0), (1, 1)로 인덱싱하고, 레벨 1에서는 (0, 0), (0, 1), (0, 2), (0, 3), ..., (3, 0), (3, 1), (3, 2), (3, 3)으로 인덱싱하는 방식으로 임무지역에 대한 영역 정보를 인덱스 리스트로 변환한다.
디지털 무빙 맵 서비스 제공 장치(1300)는 인덱스 리스트에서 임무지역에 걸쳐 있는 셀들의 번호를 검색한다(S920). 이때, 각 레벨로 셀의 개수와 셀의 크기가 다르기 때문에, 디지털 무빙 맵 서비스 제공 장치(1300)는 각 레벨별 셀의 개수와 셀의 크기에 대한 정보를 바탕으로 임무지역에 걸쳐 있는 셀들을 검색한다. 즉, 디지털 무빙 맵 서비스 제공 장치(1300)는 레벨별로 셀의 크기가 다른 것을 고려하여 모든 레벨에서 동일한 개수의 셀을 검색하는 것이 바람직하다.
디지털 무빙 맵 서비스 제공 장치(1300)는 데이터베이스부(1200)로부터 검색된 셀들의 번호에 대응되는 디지털 무빙 맵을 추출한다(S930).
디지털 무빙 맵 서비스 제공 장치(1300)는 추출된 디지털 무빙 맵을 무인비행체 지상운용 시스템(200)에 적합한 포맷으로 변환한다(S940). 예를 들면, 디지털 무빙 맵 서비스 제공 장치(1300))는 이미지 데이터를 GeoTiff 포맷으로 변환하고, 벡터 데이터를 Shp, dbf, shx, 및 klm 중 어느 하나의 포맷으로 변환한다.
디지털 무빙 맵 서비스 제공 장치(1300)는 변환된 디지털 무빙 맵을 무인비행체 지상운용 시스템(200)으로 전송한다(S950). 이때, 디지털 무빙 맵 서비스 제공 장치(1300)는 지도, 장애물 정보, 및 비행금지/제한구역 정보는 벡터 데이터로 전송하고, 위성사진 및 지형 고도정보는 이미지 데이터로 전송한다. 또한, 디지털 무빙 맵 서비스 제공 장치(1300)는 벡터 데이터를 이미지 데이터에 합성하고 압축하여 전송할 수 있다.
단계 S950에서, 디지털 무빙 맵 서비스 제공 장치(1300)는 이미지 데이터와 벡터 데이터를 병행하여 제공할 경우, 무인비행체 지상운용 시스템(200)의 인터넷 상의 전송속도를 확인하여 그 전송속도가 느리면 이미지 데이터를 먼저 전송한 후, 벡터 데이터를 전송할 수 있다. 또한, 디지털 무빙 맵 서비스 제공 장치(1300)는 고도에 따라 플레인을 삽입하여 지형 고도정보를 제공할 수 있다.
전술한 방법은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(Firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로컨트롤러 및 마이크로프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
저비용으로 무인비행체의 안전 운항을 도모할 수 있는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치를 제공할 수 있다.

Claims (12)

  1. 무인비행체 지상운용 시스템의 임무지역에 대한 디지털 무빙 맵 요청에 따라 상기 임무지역에 대한 영역 정보를 내부 분할관리체계의 인덱스 리스트로 변환하는 요청 분석부;
    상기 요청 분석부에 의해 변환된 인덱스 리스트에서 상기 임무지역에 걸쳐 있는 셀들의 번호를 검색하고, 레벨별로 공간 분할되고, 벡터 데이터인 지도, 장애물 정보, 및 비행금지/제한구역 정보와 이미지 데이터인 위성사진 및 지형 고도정보를 포함하는 디지털 무빙 맵을 저장하는 데이터베이스부로부터 상기 검색된 셀들의 번호에 대응되는 디지털 무빙 맵을 추출하는 디지털 무빙 맵 데이터베이스 관리부;
    상기 디지털 무빙 맵 데이터베이스 관리부에 의해 추출된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템에 적합한 포맷으로 변환하는 요청 처리부; 및
    상기 요청 처리부에 의해 변환된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템으로 전송하는 디지털 무빙 맵 제공부;
    를 포함하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  2. 제1항에 있어서,
    상기 디지털 무빙 맵 데이터베이스 관리부는 각 레벨별 셀의 개수와 셀의 크기에 대한 정보를 바탕으로 상기 임무지역에 걸쳐 있는 셀들을 검색하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  3. 제2항에 있어서,
    상기 디지털 무빙 맵 데이터베이스 관리부는 레벨별로 셀의 크기가 다른 것을 고려하여 모든 레벨에서 동일한 개수의 셀을 검색하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  4. 제1항에 있어서,
    상기 요청 처리부는 상기 이미지 데이터를 GeoTiff 포맷으로 변환하고, 상기 벡터 데이터를 Shp, dbf, shx, 및 klm 중 어느 하나의 포맷으로 변환하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  5. 제1항에 있어서,
    상기 디지털 무빙 맵 제공부는 지도, 장애물 정보, 및 비행금지/제한구역 정보는 벡터 데이터로 전송하고, 위성사진 및 지형 고도정보는 이미지 데이터로 전송하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  6. 제5항에 있어서,
    상기 디지털 무빙 맵 제공부는 상기 이미지 데이터와 상기 벡터 데이터를 병행하여 제공할 경우, 상기 무인비행체 지상운용 시스템의 인터넷 상의 전송속도를 확인하여 그 전송속도가 느리면 상기 이미지 데이터를 먼저 전송한 후, 상기 벡터 데이터를 전송하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  7. 제1항에 있어서,
    상기 디지털 무빙 맵 제공부는 상기 이미지 데이터로부터 각각의 셀 영역에 대한 지리정보를 추출하여 벡터 객체로서 저장하고, 각 화소가 나타내는 셀 영역의 화소값을 속성으로 저장한 후, 벡터와 속성을 통합하여 상기 이미지 데이터를 상기 벡터 데이터에 병합하여 전송하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  8. 제1항에 있어서,
    상기 디지털 무빙 맵 제공부는 고도에 따라 플레인을 삽입하여 지형 고도정보를 제공하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 장치.
  9. 디지털 무빙 맵 서비스 제공 장치의 디지털 무빙 맵 서비스 제공 방법에 있어서,
    무인비행체 지상운용 시스템의 임무지역에 대한 디지털 무빙 맵 요청에 따라 상기 임무지역에 대한 영역 정보를 내부 분할관리체계의 인덱스 리스트로 변환하는 단계;
    상기 인덱스 리스트에서 상기 임무지역에 걸쳐 있는 셀들의 번호를 검색하고, 레벨별로 공간 분할되고, 벡터 데이터인 지도, 장애물 정보, 및 비행금지/제한구역 정보와 이미지 데이터인 위성사진 및 지형 고도정보를 포함하는 디지털 무빙 맵을 저장하는 데이터베이스부로부터 상기 검색된 셀들의 번호에 대응되는 디지털 무빙 맵을 추출하는 단계;
    추출된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템에 적합한 포맷으로 변환하는 단계; 및
    변환된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템으로 전송하는 단계;
    를 포함하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법.
  10. 제9항에 있어서, 상기 디지털 무빙 맵을 추출하는 단계에서,
    각 레벨별 셀의 개수와 셀의 크기에 대한 정보를 바탕으로 상기 임무지역에 걸쳐 있는 셀들을 검색하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법.
  11. 제10항에 있어서, 상기 디지털 무빙 맵을 추출하는 단계에서,
    레벨별로 셀의 크기가 다른 것을 고려하여 모든 레벨에서 동일한 개수의 셀을 검색하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법.
  12. 제9항에 있어서, 상기 변환된 디지털 무빙 맵을 상기 무인비행체 지상운용 시스템으로 전송하는 단계에서,
    고도에 따라 플레인을 삽입하여 지형 고도정보를 제공하는 것을 특징으로 하는 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법.
PCT/KR2018/007593 2017-07-05 2018-07-04 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치 WO2019009624A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0085438 2017-07-05
KR1020170085438A KR102012361B1 (ko) 2017-07-05 2017-07-05 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2019009624A1 true WO2019009624A1 (ko) 2019-01-10

Family

ID=64950169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007593 WO2019009624A1 (ko) 2017-07-05 2018-07-04 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치

Country Status (2)

Country Link
KR (1) KR102012361B1 (ko)
WO (1) WO2019009624A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111127590A (zh) * 2019-12-26 2020-05-08 新奥数能科技有限公司 一种二阶贝塞尔曲线绘制方法及装置
CN111982096A (zh) * 2019-05-23 2020-11-24 广州极飞科技有限公司 一种作业路径生成方法、装置及无人飞行器
CN112799424A (zh) * 2019-11-14 2021-05-14 格里兹帕斯 提供障碍物信息的方法、地图服务器及自动飞行操作系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158878B2 (en) * 2004-03-23 2007-01-02 Google Inc. Digital mapping system
KR101307201B1 (ko) * 2011-05-11 2013-09-11 주식회사 네비웍스 동기화된 2d/3d 지도 제공 방법 및 이를 이용하는 시스템
KR20150088747A (ko) * 2014-01-23 2015-08-03 (주)휴맥스 홀딩스 Lte 복수 기지국의 우선순위 데이터 전송 시스템 및 방법
US9508263B1 (en) * 2015-10-20 2016-11-29 Skycatch, Inc. Generating a mission plan for capturing aerial images with an unmanned aerial vehicle
KR20160144269A (ko) * 2015-06-08 2016-12-16 삼성전자주식회사 전자 장치 및 전자 장치에서의 전자 지도 표시 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158878B2 (en) * 2004-03-23 2007-01-02 Google Inc. Digital mapping system
KR101307201B1 (ko) * 2011-05-11 2013-09-11 주식회사 네비웍스 동기화된 2d/3d 지도 제공 방법 및 이를 이용하는 시스템
KR20150088747A (ko) * 2014-01-23 2015-08-03 (주)휴맥스 홀딩스 Lte 복수 기지국의 우선순위 데이터 전송 시스템 및 방법
KR20160144269A (ko) * 2015-06-08 2016-12-16 삼성전자주식회사 전자 장치 및 전자 장치에서의 전자 지도 표시 방법
US9508263B1 (en) * 2015-10-20 2016-11-29 Skycatch, Inc. Generating a mission plan for capturing aerial images with an unmanned aerial vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982096A (zh) * 2019-05-23 2020-11-24 广州极飞科技有限公司 一种作业路径生成方法、装置及无人飞行器
CN111982096B (zh) * 2019-05-23 2022-09-13 广州极飞科技股份有限公司 一种作业路径生成方法、装置及无人飞行器
CN112799424A (zh) * 2019-11-14 2021-05-14 格里兹帕斯 提供障碍物信息的方法、地图服务器及自动飞行操作系统
CN111127590A (zh) * 2019-12-26 2020-05-08 新奥数能科技有限公司 一种二阶贝塞尔曲线绘制方法及装置
CN111127590B (zh) * 2019-12-26 2023-06-20 新奥数能科技有限公司 一种二阶贝塞尔曲线绘制方法及装置

Also Published As

Publication number Publication date
KR20190004983A (ko) 2019-01-15
KR102012361B1 (ko) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2018043820A1 (ko) 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체
WO2019093532A1 (ko) 스트레오 카메라 드론을 활용한 무기준점 3차원 위치좌표 취득 방법 및 시스템
US11709491B2 (en) Dynamically adjusting UAV flight operations based on radio frequency signal data
WO2019009624A1 (ko) 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치
EP3756055A1 (en) Method of determining position of vehicle and vehicle using the same
CN105556408A (zh) 一种飞行器的飞行控制方法及相关装置
CN104376744A (zh) 用于提供指示所需到达时间的显示的显示系统和方法
WO2018164377A1 (ko) 지도 데이터를 생성하는 전자 장치 및 그 동작 방법
WO2018043821A1 (ko) 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체
CN113741490A (zh) 一种巡检方法、装置、飞行器及存储介质
WO2020171561A1 (en) Electronic apparatus and controlling method thereof
CN111413708A (zh) 基于激光雷达的无人机自主识别着陆选址方法
CN113238576A (zh) 用于无人机的定位方法以及相关装置
CN112540625A (zh) 无人机自主自动电网杆塔巡检系统
TW202107421A (zh) 用於操縱地形偵測和迴避的系統和方法
WO2020138760A1 (ko) 전자 장치 및 그의 제어 방법
WO2022131584A1 (ko) 항공기용 제어장치 및 그것의 제어방법
WO2020189909A2 (ko) 3d-vr 멀티센서 시스템 기반의 도로 시설물 관리 솔루션을 구현하는 시스템 및 그 방법
Williams et al. Obstacle avoidance during aerial inspection of power lines
KR102058510B1 (ko) 무인비행체의 안전 운영을 위한 장애물 정보를 제공하는 방법 및 이를 위한 지도 서버, 그리고 이를 포함하는 무선통신망 기반의 무인비행체 자동운항 운영 시스템
CN109163718A (zh) 一种面向建筑群的无人机自主导航方法
WO2022211335A1 (ko) 포인트 클라우드를 이용한 무인 이동체용 코리도 및 경로의 표시 방법
CN112799424A (zh) 提供障碍物信息的方法、地图服务器及自动飞行操作系统
WO2021085691A1 (ko) 차량용 내비게이션의 영상 제공 방법
CN111912408A (zh) 由具有导航设备的飞行器执行的方法和飞行器的导航装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828885

Country of ref document: EP

Kind code of ref document: A1