WO2019009505A1 - Silicon quantum dot-based explosive additive detection sensor for identification of explosive substance, and preparation method for silicon quantum dots - Google Patents

Silicon quantum dot-based explosive additive detection sensor for identification of explosive substance, and preparation method for silicon quantum dots Download PDF

Info

Publication number
WO2019009505A1
WO2019009505A1 PCT/KR2018/003843 KR2018003843W WO2019009505A1 WO 2019009505 A1 WO2019009505 A1 WO 2019009505A1 KR 2018003843 W KR2018003843 W KR 2018003843W WO 2019009505 A1 WO2019009505 A1 WO 2019009505A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon quantum
quantum dots
dmnb
explosive
blue
Prior art date
Application number
PCT/KR2018/003843
Other languages
French (fr)
Korean (ko)
Inventor
유해욱
손흥래
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Publication of WO2019009505A1 publication Critical patent/WO2019009505A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/227Explosives, e.g. combustive properties thereof

Definitions

  • the present invention relates to a explosive additive detection sensor and a method for manufacturing silicon quantum dots based on silicon quantum dots.
  • Explosives containing nitramines such as RDX (trimethylene trinitroamine) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), are commonly used in conventional trinitrotoluene (TNT) And dinitrotoluene (DNT), but the thermal and mechanical sensitivities are relatively high, so they can not be 100% charged to the shell.
  • TNT trinitrotoluene
  • DNT dinitrotoluene
  • PBX plastic bonded explosives
  • Vapor pressure makes detection of explosives very difficult.
  • DMNB 2,3-dimethyl-2,3-dinitrobutane
  • DMNB a type of explosive additive for identifying explosives
  • the DMNB has a relatively high vapor pressure of approximately 2.7 ppm (2.07 ⁇ 10 -3 Torr, 25 ° C.), which has a low reduction potential (-1.7 V vs. SCE) do.
  • MMOF microporous metal-organic material
  • QDS II-VI quantum dots
  • silicon QDs are highly desirable in many biological sensing applications because of their non-toxicity and abundant elements on Earth, but unlike the well-developed top-down synthesis of Group II-VI QDs, .
  • Another object of the present invention is to provide a method for producing size-selective silicon quantum dots, which exhibit fluorescence extinction ability sensitive to DMNB, an explosive additive for explosive identification of explosives containing nitroamine.
  • the explosive substance detection sensor detects DMNB (2,3-dimethyl-2,3-dinitrobutane), which is an explosive additive for explosive identification of an explosive containing nitroamine,
  • DMNB 2,3-dimethyl-2,3-dinitrobutane
  • the fluorescence quenching and the fluorescence lifetime behavior of silicon quantum dots reacting quantitatively according to the concentration change of DMNB in the electron transfer from the silicon quantum dots to the DMNB, DMNB is detected.
  • the blue luminescent or green luminescent silicon quantum dots may be prepared by mixing magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride in DMF (N-dimethyformamide) For 48 or 72 hours at a predetermined temperature in an inert gas atmosphere.
  • Mg 2 Si magnesium suicide
  • DMF N-dimethyformamide
  • the silicon quantum dot has an energy level higher than the lowest level non occupied molecular orbital (LUMO) energy level of DMNB.
  • LUMO non occupied molecular orbital
  • the silicon quantum dots have an average nanoparticle size of 2 to 3 nm.
  • the silicon quantum dot is characterized by having a Stern-Bolmer constant (K SV ) calculated from the following Stern-Bolmer equation of 20,000 or more.
  • K SV Stern-Bolmer constant
  • I the fluorescence intensity in the absence of a quencher
  • I f the fluorescence intensity in the presence of minerals
  • [Q] is the concentration of the minerals.
  • the quenching of the silicon quantum dots has a quantitative proportional relationship in which the photoluminescence intensity increases with increasing concentration of DMNB.
  • the fluorescence lifetime of the silicon quantum dots may exhibit an average fluorescence lifetime regardless of the concentration of DMNB.
  • DMNB is detected by observing the change in photoluminescence (PL) intensity after adding the explosive identification explosive additive (DMNB) to the solution of the silicon quantum dots according to the concentration.
  • a method of manufacturing a silicon quantum dot comprising mixing magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride in DMF (N-dimethyformamide) solution at the same ratio; And a step of subjecting the added mixture to a reflux reaction under an inert gas atmosphere and at a predetermined temperature for 48 or 72 hours to prepare a blue light emitting silicon quantum dot or a green light emitting silicon quantum dot.
  • Mg 2 Si magnesium suicide
  • DMF N-dimethyformamide
  • the silicon quantum dots have an average nanoparticle size of 2 to 3 nm and an energy level higher than the lowest level non-occupied molecular orbital (LUMO) energy level of the DMNB.
  • LUMO lowest level non-occupied molecular orbital
  • the silicon quantum dot is characterized by having a Stern-Bolmer constant (K SV ) calculated from the following Stern-Bolmer equation of 20,000 or more.
  • K SV Stern-Bolmer constant
  • I the fluorescence intensity in the absence of a quencher
  • I f the fluorescence intensity in the presence of minerals
  • [Q] is the concentration of the minerals.
  • the blue luminescent silicon quantum dots are prepared by refluxing the mixture for 48 hours under an argon atmosphere and a 150 ° C temperature condition, and the green luminescent silicon quantum dots are prepared by mixing the mixture in an argon atmosphere and a temperature In a refluxing reaction for 72 hours.
  • the present invention provides a size-selective silicon quantum dot having a narrow size distribution of blue luminescence or green luminescence (average nanoparticle size of 2 to 3 nm), and further comprising an explosive containing nitroamine from the silicon quantum dots Of DMNB as a explosive additive for explosive identification of explosives containing conventional nitroamines by confirming the sensitive action of fluorescence quenching capability by electron transfer to DMNB as an explosive additive for identifying explosives. It is possible to implement an explosive detection sensor based on one silicon quantum dot.
  • 1 is a graph showing a blue and green luminescent silicon quantum dot solution and a UV absorption spectrum and an emission spectrum thereof according to the present invention.
  • FIGS. 2A and 2B are graphs showing an average particle distribution using a nanoparticle analyzer (DLS) for a blue and green luminescent silicon quantum dot according to the present invention.
  • DLS nanoparticle analyzer
  • FIG 3 is a view showing a result of surface imaging using a transmission electron microscope (TEM) for single crystal silicon quantum dots according to the present invention.
  • TEM transmission electron microscope
  • FIG. 4 is a graph showing changes in photoluminescence intensity of DMNB concentration for blue and green luminescent silicon quantum dot solutions according to the present invention.
  • FIG. 5 is a graph showing a Stern-Volmer plot showing fluorescence quenching relationships for DMNB concentration for blue and green luminescent silicon quantum dot solutions according to the present invention.
  • FIG. 6 is a graph showing fluorescence intensities of DMNB concentration for blue-emitting silicon quantum dots according to the present invention.
  • FIGS. 7A and 7B are graphs showing the results of comparison between the photoluminescence intensity change (a) of the conventional blue and green luminescent CdSe quantum dots by DMNB concentration and the fluorescence lifetime of the blue silicon quantum dots according to the present invention (b) .
  • FIG. 8 is an illustration showing a qualitative energy band gap for a DMNB reaction between a blue luminescent silicon quantum dot and a conventional blue luminescent CdSe quantum dot according to the present invention.
  • the inventors of the present invention have developed a nanoparticle-sized silicon quantum dot having various wavelength-dependent energy depending on its size, and have found that it is possible to produce nitramines (DMNB) by detecting the delicate behavior of fluorescent light extinction due to the electron transfer to the explosive additive (DMNB) for explosive identification of explosives.
  • DMNB nitramines
  • the present invention provides a explosive-detection explosive additive detection sensor based on a silicon quantum dot sensitive to fluorescence quenching ability by electron transfer from an silicon explosion containing nitroamine to a DMNB explosive identification additive.
  • FIG. 1 shows a blue and green luminescent silicon quantum dot solution and its UV (ultraviolet) absorption spectrum and luminescence spectrum according to the present invention
  • FIGS. 2A and 2B show the blue and green luminescent silicon quantum dots Average particle size distribution.
  • the maximum absorption wavelength (? Max) of the blue and green luminescent silicon quantum dot solutions according to the present invention indicates 460 nm and 520 nm, respectively.
  • the "quantum dot solution” refers to a state in which quantum dots are dispersed or dissolved in a liquid phase such as water or an organic solvent.
  • the average particle size distribution for the silicon quantum dots is analyzed using dynamic light scattering (DLS)
  • green luminescence (? Max 520 nm)
  • the average nanoparticle size of the silicon quantum dots is 3 nm (FIG. 2B).
  • the results for this average nanoparticle size are also confirmed on the surface imaging results using the transmission electron microscope (TEM) shown in FIG. 3 (a), through the HRTEM image of the silicon quantum dots, the silicon quantum dots of the present invention can identify an average nanoparticle size of 2 nm to 3 nm, and FIGS. 3 (b) and 3 ) Is an enlarged image according to the fast Fourier transformation of the Si ⁇ 111> plane, and it is possible to confirm a SAED pattern of a pseudo-hexagonal structure.
  • TEM transmission electron microscope
  • the fluorescence extinction coefficient per DMNB concentration is quantified, and the blue and green
  • the Stern-Bolmer constant (K SV ) of each of the luminescent silicon quantum dots is 20,000 or more, more preferably the blue luminescent silicon quantum dots are 25,900 and the green luminescent silicon quantum dots are 21,300.
  • I the fluorescence intensity in the absence of a quencher
  • I f the fluorescence intensity in the presence of minerals
  • [Q] is the concentration of the minerals.
  • FIG. 5 is a graph showing a Stern-Volmer plot showing fluorescence quenching relations for DMNB concentration for a blue and green luminescent silicon quantum dot solution in the present invention.
  • both of the blue and green luminescent silicon quantum dots have a linear correlation.
  • the blue and green luminescent silicon quantum dots according to the present invention have fluorescence quenching efficiencies of about 400 to 13,000 times higher than DMNB detection materials for DMNB concentration.
  • FIG. 6 is a graph showing the fluorescence lifetime of the blue luminescent silicon quantum dots according to the concentration of DMNB according to the present invention.
  • the small box in the figure represents the fluorescence lifetime of the silicon quantum dots by DMNB concentration.
  • the blue luminescent silicon quantum dots exhibit a constant life expectancy regardless of the concentration of DMNB by the DMNB concentration.
  • the DMNB detector is quenched through static quenching.
  • FIG. 7A shows quenching changes of fluorescence according to DMNB concentration for CdSe quantum dots of conventional blue and green luminescent properties
  • FIG. 7B shows a comparison of fluorescence lifetimes of blue silicon quantum dots according to the present invention. From the results of FIG. 7A, it is not possible to detect DMNB substance as an explosive-identifying explosive additive for nitrocellulose-containing explosives by the CdSe quantum dots, as fluorescence extinction change was not observed according to the concentration change of DMNB conventionally.
  • conventional CdSe quantum dots have no ability to detect fluorescence quenching for DMNB as a explosive-identifying explosive additive
  • the silicon quantum dots of the present invention are sensitive to fluorescence quenching changes, i.e., sensitive quenching And is particularly useful as an explosive additive detection sensor for explosive identification which has an extremely short lifetime of the quantum dots and is excellent in instantaneous sensing.
  • FIG. 8 shows the qualitative energy band gap for the DMNB reaction between the blue luminescent silicon quantum dots according to the present invention and the conventional blue luminescent CdSe quantum dots.
  • the detection efficiency of the quantum dots is due to the electron transfer between the quantum dots and the analyte DMNB, and the lowest energy level of the lowest unoccupied molecular orbital (LUMO) of the DMNB placed at a relatively high level is CdSe And impedes electron acceptance from the quantum dots. That is, a quantum dot having a conduction band higher than the LUMO energy level of the highly placed DMNB is required. Since the blue and green luminescent silicon quantum dots according to the present invention have energy levels higher than the LUMO energy level of DMNB, ) Exhibit a sensitive fluorescence quenching behavior.
  • LUMO lowest unoccupied molecular orbital
  • the ethylenediamine dihydrochloride component is used as a reducing agent and a surfactant when trioctylphosphorine oxide component is used to determine the growth and size distribution of quantum dots in a conventional CdSe quantum dot synthesis process.
  • ethylenediamine which is a residual impurity in the synthesis process or the purification process, interferes with the fluorescence quenching ability in the method of producing the size-selective silicon quantum dot of the present invention
  • ethylenediamine is added to the synthesized silicon quantum dot solution
  • the intensity change of the photoluminescence no change was observed, and it was confirmed that the ethylenediamine was not disturbed by the fluorescence scavenging ability of the present invention.
  • Example 1 Silicon quantum dot production of blue luminescent material
  • Si QDs H-terminal silicon quantum dots
  • 0.3 g (4 mmol) of Mg 2 Si was added to a solution of the same amount of ethylenediamine dihydrochloride dissolved in 40 ml of DMF, Lt; / RTI > The solution color changed into a violet suspension.
  • the mixture of the suspension was subjected to reflux reaction in an argon atmosphere and a temperature condition of 150 ° C for 2 days to synthesize a blue luminescent silicon quantum dot.
  • the green luminescent silicon quantum dots were synthesized in the same manner as in Example 1 except that the reflux reaction was carried out for 3 days [ ⁇ (Si-H) 2150 cm -1 , ⁇ (Si-H ) 914 cm -1 , ⁇ (Si-Si) 611 cm -1 ; Quantum yield 5.6%].
  • CdSe cadmium selenide
  • the physical properties of the silicon quantum dots prepared in Example 1 and the silicon quantum dots prepared in Example 2 can be analyzed using FTIR spectra (Nicolet 5700). As a result, the synthesis was confirmed by confirming the ⁇ (Si-H) 2150 cm -1 , ⁇ (Si-H) 914 cm -1 and ⁇ (Si-Si) 611 cm -1 functional groups for the silicon quantum dots .
  • the photoluminescence of the silicon quantum dot prepared in Example 1 of the present invention and the silicon quantum dot prepared in Example 2 in a wavelength range of 400 to 1100 nm is measured.
  • the silicon quantum dots produced according to the present invention exhibit different optical transition energies depending on their sizes. Specifically, the respective emission wavelengths are observed at 490 nm, 500 nm, 525 nm, 560 nm, 585 nm, and 600 nm, depending on the nanoparticle size of each silicon quantum dot (not shown).
  • the average particle distribution was measured for the silicon quantum dots prepared in Example 1 of the present invention and the silicon quantum dots prepared in Example 2 using dynamic light scattering (DLS). At this time, the maximum laser power was set at 709 Mw and the scattering angle was set at 165.5 °.
  • the average nanoparticle size of the blue light-emitting silicon quantum dots produced in Example 1 was 2 nm, and the average luminescent silicon quantum dot average nanoparticles prepared in Example 2 It can be confirmed that the size is 3 nm.
  • FIG. 3 (a) is a HRTEM image of a silicon quantum dot
  • FIGS. 3 (b) and 3 (c) are enlarged images according to fast Fourier transformation with respect to a ⁇ 111> plane of Si. From the HRTEM image results, it was confirmed that the average nanoparticle size of the silicon quantum dots prepared in Example 1 and the silicon quantum dots prepared in Example 2 was 2 to 3 nm, and pseudohexagonal crystals were formed on the ⁇ 111> The SAED pattern of the structure was confirmed.
  • the analytical material was DMNB (2,3-dimethyl-2,3-dinitrobutane), an explosive indicator material containing nitroamine, and a commercially available product (Sigma-Aldrich) was used.
  • DMNB was added to a toluene solution containing silicon quantum dots of blue and green luminescent properties at a concentration of 1.11 ⁇ 10 -6 M, 2.18 ⁇ 10 -6 M, 3.21 ⁇ 10 -6 M, and 4.20 ⁇ 10 -6 M, 5.16 x 10 < -6 > M concentration and the fluorescence spectrum was measured.
  • FIG. 4 shows changes in photoluminescence intensity (PL intensity) of a silicon quantum dot solution depending on the concentration of DMNB, and a quantitative proportional relationship in which the photoluminescence intensity increases with increasing DMNB concentration was confirmed.
  • FIG. 5 shows such a quantitative proportional relationship expressed by a Stern-Volmer plot, in which all of the toluene solutions containing blue and green luminescent silicon quantum dots showed a linear correlation, and the respective Stern-Bolmer constants (K SV ) were 25,900 and 21,300, respectively.
  • the quenching efficiency is higher than that of the green luminescent silicon quantum dots. This result is expected because the band gap of the blue luminescent silicon quantum dots is wider.
  • the Stern-Bolmer constant (K SV ) of each substance group used for detecting DMNB is 2.1 and 20 And 40, respectively. Therefore, when the Stern-Bolmer constant value is compared, the Stern-Bolmer constant (K SV ) value of the blue and green luminescent silicon quantum dots of the present invention is higher than the conventional value, and the detection efficiency can be remarkably high in DMNB sensing.
  • Fluorescence lifetimes of the silicon quantum dots prepared in Example 1 of the present invention and the silicon quantum dots prepared in Example 2 were measured using time-resolved fluorescence spectroscopy (MicroTime-200, Picoquant, Germany; KBSI Daegu Center).
  • the present invention has been made in view of the above-described embodiments and experiments, and it is an object of the present invention to provide a substance for detecting DMNB (2,3-dimethyl-2,3-dinitrobutane), an explosive additive for explosive identification of an explosive containing nitroamines, It is possible to provide a explosive additive detection sensor for explosive identification based on a size-selective silicon quantum dot which exhibits a detection efficiency superior to a microporous metal-organic substance (MMOF), (salophen) zinc complex, fluorescent amplification polymer (AFPs) and CdSe quantum dots .
  • MMOF microporous metal-organic substance
  • AFPs fluorescent amplification polymer
  • CdSe quantum dots CdSe quantum dots
  • the explosive additive detection sensor for explosive identification based on the silicon quantum dot according to the present invention has excellent fluorescence quenching ability and quantitative response according to the concentration of DMNB due to smooth electron transfer from the silicon quantum dot to DMNB by light induction, Detector principle (detection principle or concept).
  • the method of producing a silicon quantum dot of the present invention can provide a novel blue luminescent and green luminescent size-selective silicon quantum dots sensitive to explosive identification explosive additive detection of nitroamine-containing explosives.
  • the present invention provides a size-selective silicon quantum dot having a narrow size distribution of blue luminescence or green luminescence (average nanoparticle size of 2-3 nm), and further provides an explosive containing nitroamine from the silicon quantum dots Of DMNB as a explosive additive for explosive identification of explosives containing conventional nitroamines by confirming the sensitive action of fluorescence quenching capability by electron transfer to DMNB as an explosive additive for identifying explosives. It is possible to implement an explosive detection sensor based on one silicon quantum dot.
  • the present invention can provide a novel method for producing blue quantum dots of blue luminescence and green luminescence, which is useful for detecting explosives containing nitroamine.
  • the silicon quantum dots according to the embodiments of the present invention exhibit quantitative behavior of sensitive fluorescence extinction by DMNB concentration, and particularly useful as an explosive detection sensor having excellent instantaneous detection due to extremely short life span of quantum dots.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Luminescent Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a silicon quantum dot-based explosive additive detection sensor for identification of an explosive substance, and a preparation method for silicon quantum dots. The present invention is characterized in that an explosive substance detection sensor of detecting 2,3-dimethyl-2,3-dinitrobutane (DMNB), which is an explosive additive for identification of an explosive substance containing a nitroamine, detects DMNB by checking the behaviors of fluorescent extinction and fluorescent lifetime of silicon quantum dots, which quantitatively respond according to the concentration change of DMNB as an index substance of the explosive substance at the time of electron transfer from the silicon quantum dots to DMNB by photo-induction.

Description

실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서 및 실리콘 양자점 제조방법Explosive additive detection sensors based on silicon quantum dots and methods for manufacturing silicon quantum dots
본 발명은 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서 및 실리콘 양자점 제조방법에 관한 것이다. The present invention relates to a explosive additive detection sensor and a method for manufacturing silicon quantum dots based on silicon quantum dots.
폭발성 높은 화학물질의 검출은 국가안전을 위한 군사적 용도, 군수품 교정분야 및 환경적 안정성 분야에 주요한 주제이다. Detection of highly explosive chemicals is a major theme in the military use for national security, munitions correction and environmental stability.
일반적으로 RDX(트리메틸렌트리니트로아민) 및 HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)와 같이 니트로아민(nitramines)을 함유하는 폭발물은 통상의 TNT(trinitrotoluene) 및 DNT(dinitrotoluene)와 같은 니트로 방향족 화학물질보다 성능이 월등히 우수하지만 열적, 기계적 감도가 상대적으로 매우 높아 이를 포탄에 100% 충전할 수 없다. 이러한 문제를 해결하기 위하여 폴리머가 결합제로 사용된 PBX(plastic bonded explosives)가 개발되었으나, 이 경우 충전 가능한 고체결정의 함량이 90%를 넘지 못하므로 그만큼 성능이 저하되고, 특히, 상기 PBX는 극히 낮은 증기압 때문에 폭발물 검출이 매우 어렵다. Explosives containing nitramines, such as RDX (trimethylene trinitroamine) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), are commonly used in conventional trinitrotoluene (TNT) And dinitrotoluene (DNT), but the thermal and mechanical sensitivities are relatively high, so they can not be 100% charged to the shell. In order to solve this problem, PBX (plastic bonded explosives) using a polymer as a binder has been developed. However, in this case, since the content of the solid crystals that can be charged does not exceed 90%, the performance is lowered. Particularly, Vapor pressure makes detection of explosives very difficult.
이에 국제협약에 의하여 대부분의 폭발물(군용 폭약 포함)에는 고폭발성 물질을 쉽게 검출하기 위하여 DMNB(2,3-dimethyl-2,3-dinitrobutane) 0.5∼1.0%를 폭발물 식별용 폭약 첨가제(taggant)로 첨가하도록 규정하고 있다. 이느 군견이 쉽게 탐지할 수 있고, 더 나아가 테러리스트들이 사용할 경우 내부 유출 여부에 대한 신속한 추적이 가능하도록 하기 위함이다. Therefore, in order to easily detect high explosive substances in most explosives (including military explosives), 0.5-1.0% of 2,3-dimethyl-2,3-dinitrobutane (DMNB) is used as an explosive identification taggant . This is to make it easier for dogs to detect, and for terrorists to use, to allow rapid tracking of internal spills.
그런데 고폭발물에 함유된 화학 물질에 대한 다양한 검출 방법이 광범위하게 연구됨에도 불구하고, 정작 폭발물 식별용 폭약 첨가제의 일종인 DMNB의 검출에 대한 보고는 드물다. 상기 DMNB는 대략 2.7 ppm (2.07×10-3 Torr, 25℃)의 상대적으로 높은 증기압을 가지는데, 이는 낮은 환원 전위값(-1.7V vs. SCE)을 가지고 있어 센싱 물질과의 약한 결합을 갖게 된다. However, although various detection methods for chemicals contained in high explosives have been extensively studied, reports on the detection of DMNB, a type of explosive additive for identifying explosives, are rare. The DMNB has a relatively high vapor pressure of approximately 2.7 ppm (2.07 × 10 -3 Torr, 25 ° C.), which has a low reduction potential (-1.7 V vs. SCE) do.
또한, 통상의 폭발물 검출시스템은 시간소모가 많고, 큰 공간이 필요하며, 고가의 비용이 소요되어 다소 제한적이다. 이에 따라 필요할 때마다 적용할 수 있도록 소형이면서 작동이 용이한 검출 방법 또는 장치가 꾸준히 요구되어왔다. In addition, the conventional explosive detection system is time-consuming, requires a large space, is expensive, and is somewhat limited. Accordingly, there has been a constant demand for a small and easy-to-detect detection method or apparatus that can be applied whenever necessary.
그의 일환으로, 종래 DMNB 감지에 관한 보고로서, 도너-억셉터(donor-acceptor) 전자이동 메커니즘에 의한 형광체 기반의 형광 소광법이 대안으로 제안되는데, 미다공성 금속-유기물질(MMOF)[A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong and J. Li, Angew. Chem. Int. Ed. Engl., 2009, 48, 2334-2338, S. Pramanik, C. Zheng, X. Zhang, T. J. Emge and J. Li, J. Am. Chem. Soc., 2011, 133, 4153-4155], (salophen)아연착체[M. E. Germain, T. R. Vargo, P. G. Khalifah and M. J. Knapp, Inorg. Chem., 2007, 46, 4422-4429], 형광 증폭 중합체(AFPs)[ S. W. Thomas III, J. P. Amara, R. E. Bjork and T. M. Swager, Chem. Commun., 2005, 36, 4572-4574] 등이 있다. As part of this, as a report on conventional DMNB sensing, a fluorescent-based fluorescence quenching method by a donor-acceptor electron transport mechanism is proposed as an alternative, in which a microporous metal-organic material (MMOF) [A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong and J. Li, Angew. Chem. Int. Ed. Engl., 2009, 48, 2334-2338, S. Pramanik, C. Zheng, X. Zhang, T. J. Emge and J. Li, J. Am. Chem. Soc., 2011, 133, 4153-4155], (salophen) zinc complex [M. E. Germain, T. R. Vargo, P. G. Khalifah and M. J. Knapp, Inorg. Chem., 2007, 46, 4422-4429], fluorescent amplification polymers (AFPs) [S. W. Thomas III, J. P. Amara, R. E. Bjork and T. M. Swager, Chem. Commun., 2005, 36, 4572-4574].
또 다른 방향으로, 지난 수십년 동안 II-VI 양자점(QDS)에 대한 활발한 연구는 상대적으로 단분산된 양자점의 대규모 제조[J. E. B. Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem., 1994, 98, 4109-4117], 양자점 어레이[C. P. Collier, Science, 1997, 277, 1978-1981.], 발광 다이오드[V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature, 1994, 370, 354-357]와 형광체 프로브[W. C. W. Chan and S. Nie, Science, 1998, 281, 2016-2018]의 개발을 이끌었다.In another direction, a vigorous study of II-VI quantum dots (QDS) over the last several decades has shown that large-scale production of relatively monodispersed quantum dots [J. E. B. Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem., 1994, 98, 4109-4117], quantum dot arrays [C. P. Collier, Science, 1997, 277, 1978-1981.], Light emitting diodes [V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature, 1994, 370, 354-357] and fluorescent probe [W. C. W. Chan and S. Nie, Science, 1998, 281, 2016-2018.
그러나 실리콘 양자점(QDs)은 비독성과 지구상의 풍부한 원소로 이루어져 많은 생물학적 감지 응용에서 매우 바람직하지만, 그룹 II-VI 양자점의 잘 개발된 상향식 합성법과 달리, 합성방법의 한계 때문에 상향식 합성 방법의 적극적인 연구가 이루어지지 않고 있다.However, silicon QDs (QDs) are highly desirable in many biological sensing applications because of their non-toxicity and abundant elements on Earth, but unlike the well-developed top-down synthesis of Group II-VI QDs, .
본 발명의 목적은 크기-선택적 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서를 제공하는데 있다. It is an object of the present invention to provide a explosive additive detection sensor for explosive identification based on size-selective silicon quantum dots.
본 발명의 다른 목적은 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB에 민감한 형광 소광능을 보이는 크기-선택적 실리콘 양자점의 제조방법을 제공하는데 있다. Another object of the present invention is to provide a method for producing size-selective silicon quantum dots, which exhibit fluorescence extinction ability sensitive to DMNB, an explosive additive for explosive identification of explosives containing nitroamine.
상기와 같은 목적을 달성하기 위하여 본 발명의 실시예에 따른 폭발물 감지센서는, 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB(2,3-dimethyl-2,3-dinitrobutane)를 검출하는 폭발물 검출 센서에 있어서, 광유도에 의해 실리콘 양자점으로부터 폭발물의 지표물질인 DMNB로의 전자이동(electron transfer) 시 DMNB의 농도변화에 따라 정량적으로 반응하는 실리콘 양자점의 형광성 소광 및 형광수명의 거동을 확인하여 DMNB를 검출하는 것을 특징으로 한다. In order to accomplish the above object, the explosive substance detection sensor according to an embodiment of the present invention detects DMNB (2,3-dimethyl-2,3-dinitrobutane), which is an explosive additive for explosive identification of an explosive containing nitroamine, In the explosive detection sensor, the fluorescence quenching and the fluorescence lifetime behavior of silicon quantum dots reacting quantitatively according to the concentration change of DMNB in the electron transfer from the silicon quantum dots to the DMNB, DMNB is detected.
본 발명의 실시예에 따라 상기 실리콘 양자점은 청색 발광성(λmax=460nm)의 실리콘 양자점 또는 녹색 발광성(λmax=520nm)의 실리콘 양자점을 포함한다. According to embodiments of the present invention, the silicon quantum dots include silicon quantum dots of blue luminescence (? Max = 460 nm) or silicon quantum dots of green luminescence (? Max = 520 nm).
본 발명의 실시예에 따라 상기 청색 발광성 또는 녹색 발광성의 실리콘 양자점은, 마그네슘 실리사이드(Mg2Si)와 에틸렌디아민 디하이드로클로라이드를 동일 비율로 DMF(N-dimethlyformamide)용액에 혼합한 후 (b) 혼합물을 비활성가스 분위기하에서 소정 온도로 48 또는 72시간 동안 환류 반응시켜 제조될 수 있다. According to an embodiment of the present invention, the blue luminescent or green luminescent silicon quantum dots may be prepared by mixing magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride in DMF (N-dimethyformamide) For 48 or 72 hours at a predetermined temperature in an inert gas atmosphere.
본 발명의 실시예에 따라 상기 실리콘 양자점은 DMNB의 최저준위 비점유 분자궤도(LUMO) 에너지 레벨보다 높은 에너지 레벨을 갖는다. According to an embodiment of the present invention, the silicon quantum dot has an energy level higher than the lowest level non occupied molecular orbital (LUMO) energy level of DMNB.
본 발명의 실시예에 따라 상기 실리콘 양자점은 평균 나노입자크기가 2 내지 3nm인 것을 특징으로 한다. According to an embodiment of the present invention, the silicon quantum dots have an average nanoparticle size of 2 to 3 nm.
본 발명의 실시예에 따라 상기 실리콘 양자점은 하기의 스턴-볼머 방정식으로부터 산출된 스턴-볼머 상수(KSV)가 20,000 이상인 것을 특징으로 한다.According to an embodiment of the present invention, the silicon quantum dot is characterized by having a Stern-Bolmer constant (K SV ) calculated from the following Stern-Bolmer equation of 20,000 or more.
Figure PCTKR2018003843-appb-I000001
Figure PCTKR2018003843-appb-I000001
여기서,
Figure PCTKR2018003843-appb-I000002
는 소광물질(quencher) 부재시 형광 세기이고, If는 소광물질 존재시 형광 세기이고, [Q]는 소광물질의 농도이다.
here,
Figure PCTKR2018003843-appb-I000002
Is the fluorescence intensity in the absence of a quencher, I f is the fluorescence intensity in the presence of minerals, and [Q] is the concentration of the minerals.
본 발명의 실시예에 따라 상기 실리콘 양자점의 형광성 소광은 DMNB의 농도증가에 따라 광발광 세기가 증가하는 정량적 비례관계를 갖는다. According to the embodiment of the present invention, the quenching of the silicon quantum dots has a quantitative proportional relationship in which the photoluminescence intensity increases with increasing concentration of DMNB.
본 발명의 실시예에 따라 상기 상기 실리콘 양자점의 형광수명은 DMNB 농도에 관계없이 평균 형광수명을 나타낼 수 있다.According to an embodiment of the present invention, the fluorescence lifetime of the silicon quantum dots may exhibit an average fluorescence lifetime regardless of the concentration of DMNB.
본 발명의 실시예에 따라 상기 실리콘 양자점의 용액에 폭발물 식별용 폭약 첨가제(DMNB)를 농도별로 첨가한 후 광발광성(PL) 세기 변화를 관찰하여 DMNB를 검출하는 것을 특징으로 한다. According to an embodiment of the present invention, DMNB is detected by observing the change in photoluminescence (PL) intensity after adding the explosive identification explosive additive (DMNB) to the solution of the silicon quantum dots according to the concentration.
상기와 같은 목적을 달성하기 위하여 본 발명의 실시예에 따른 실리콘 양자점 제조방법은, 마그네슘 실리사이드(Mg2Si)과 에틸렌디아민 디하이드로클로라이드를 동일 비율로 DMF(N-dimethlyformamide)용액에 혼합하는 단계; 및 상기 첨가된 혼합물을 비활성가스 분위기 및 소정 온도에서 48 또는 72시간 동안 환류 반응시켜 청색 발광성의 실리콘 양자점 또는 녹색 발광성의 실리콘 양자점을 제조하는 단계;를 포함할 수 있다. According to an aspect of the present invention, there is provided a method of manufacturing a silicon quantum dot comprising mixing magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride in DMF (N-dimethyformamide) solution at the same ratio; And a step of subjecting the added mixture to a reflux reaction under an inert gas atmosphere and at a predetermined temperature for 48 or 72 hours to prepare a blue light emitting silicon quantum dot or a green light emitting silicon quantum dot.
본 발명의 실시예에 따라 상기 실리콘 양자점은 청색 발광성(λmax=460nm)의 실리콘 양자점 또는 녹색 발광성(λmax=520nm)의 실리콘 양자점을 포함할 수 있다.According to embodiments of the present invention, the silicon quantum dots may include silicon quantum dots of blue luminescence (? Max = 460 nm) or silicon quantum dots of green luminescence (? Max = 520 nm).
본 발명의 실시예에 따라 상기 실리콘 양자점은 평균 나노입자크기가 2 내지 3nm이며, 상기 DMNB의 최저준위 비점유 분자궤도(LUMO) 에너지 레벨보다 높은 에너지 레벨을 갖는 것을 특징으로 한다. According to an embodiment of the present invention, the silicon quantum dots have an average nanoparticle size of 2 to 3 nm and an energy level higher than the lowest level non-occupied molecular orbital (LUMO) energy level of the DMNB.
본 발명의 실시예에 따라 상기 실리콘 양자점은 하기의 스턴-볼머 방정식으로부터 산출된 스턴-볼머 상수(KSV)가 20,000 이상인 것을 특징으로 한다.According to an embodiment of the present invention, the silicon quantum dot is characterized by having a Stern-Bolmer constant (K SV ) calculated from the following Stern-Bolmer equation of 20,000 or more.
Figure PCTKR2018003843-appb-I000003
Figure PCTKR2018003843-appb-I000003
여기서,
Figure PCTKR2018003843-appb-I000004
는 소광물질(quencher) 부재시 형광 세기이고, If는 소광물질 존재시 형광 세기이고, [Q]는 소광물질의 농도이다.
here,
Figure PCTKR2018003843-appb-I000004
Is the fluorescence intensity in the absence of a quencher, I f is the fluorescence intensity in the presence of minerals, and [Q] is the concentration of the minerals.
본 발명의 실시예에 따라 상기 청색 발광성의 실리콘 양자점은 상기 혼합물을 아르곤 분위기와 150℃ 온도 조건에서 48시간동안 환류 반응시켜 제조되고, 상기 녹색 발광성의 실리콘 양자점은 혼합물을 아르곤 분위기와 150℃ 온도 조건에서 72시간동안 환류 반응시켜 제조되는 것을 특징으로 한다. According to an embodiment of the present invention, the blue luminescent silicon quantum dots are prepared by refluxing the mixture for 48 hours under an argon atmosphere and a 150 ° C temperature condition, and the green luminescent silicon quantum dots are prepared by mixing the mixture in an argon atmosphere and a temperature In a refluxing reaction for 72 hours.
상술한 실시예에 따라 본 발명은 청색 발광성 또는 녹색 발광성의 좁은 크기 분포도(2 내지 3nm의 평균나노입자크기)를 갖는 크기-선택적 실리콘 양자점을 제공하고, 나아가 상기 실리콘 양자점으로부터 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB로의 전자이동에 의해 형광 소광능이 민감한 거동을 확인함으로써, 종래 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB 검출을 위한 물질 또는 CdSe 양자점보다 우수한 검출효율을 구현한 실리콘 양자점에 기반한 폭발물 검출센서를 구현할 수 있는 효과가 있다.According to the above-mentioned embodiments, the present invention provides a size-selective silicon quantum dot having a narrow size distribution of blue luminescence or green luminescence (average nanoparticle size of 2 to 3 nm), and further comprising an explosive containing nitroamine from the silicon quantum dots Of DMNB as a explosive additive for explosive identification of explosives containing conventional nitroamines by confirming the sensitive action of fluorescence quenching capability by electron transfer to DMNB as an explosive additive for identifying explosives. It is possible to implement an explosive detection sensor based on one silicon quantum dot.
도 1은 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점 용액과 그의 UV흡수스펙트럼과 발광스펙트럼을 나타낸 그래프.1 is a graph showing a blue and green luminescent silicon quantum dot solution and a UV absorption spectrum and an emission spectrum thereof according to the present invention.
도 2a 및 도 2b는 본 발명에 따른 청색 및 녹색) 발광성의 실리콘 양자점에 대한 나노입자분석기(DLS)를 이용한 평균입자 분포도를 나타낸 그래프.FIGS. 2A and 2B are graphs showing an average particle distribution using a nanoparticle analyzer (DLS) for a blue and green luminescent silicon quantum dot according to the present invention.
도 3은 본 발명에 따른 단결정 실리콘 양자점에 대한 투과전자현미경(TEM)을 이용한 표면 영상결과를 나타낸 예시도.3 is a view showing a result of surface imaging using a transmission electron microscope (TEM) for single crystal silicon quantum dots according to the present invention.
도 4는 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점 용액에 대한 DMNB 농도별 광발광 세기변화를 나타낸 그래프.FIG. 4 is a graph showing changes in photoluminescence intensity of DMNB concentration for blue and green luminescent silicon quantum dot solutions according to the present invention. FIG.
도 5 는 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점 용액에 대한 DMNB 농도별 형광 소광관계를 나타낸 스턴-볼머 플롯을 나타낸 그래프.FIG. 5 is a graph showing a Stern-Volmer plot showing fluorescence quenching relationships for DMNB concentration for blue and green luminescent silicon quantum dot solutions according to the present invention.
도 6은 본 발명에 따른 청색 발광성의 실리콘 양자점에 대한 DMNB 농도별 형광 세기를 도시한 그래프.FIG. 6 is a graph showing fluorescence intensities of DMNB concentration for blue-emitting silicon quantum dots according to the present invention. FIG.
도 7a 및 도 7b는 종래의 청색 및 녹색 발광성의 CdSe 양자점에 대한 DMNB농도별 광발광 세기 변화(a) 및 본 발명에 따른 청색 실리콘 양자점과의 형광수명을 비교한 결과(b)를 도시한 그래프.FIGS. 7A and 7B are graphs showing the results of comparison between the photoluminescence intensity change (a) of the conventional blue and green luminescent CdSe quantum dots by DMNB concentration and the fluorescence lifetime of the blue silicon quantum dots according to the present invention (b) .
도 8은 본 발명에 따른 청색 발광성의 실리콘 양자점과 종래의 청색 발광성의 CdSe 양자점과의 DMNB 반응에 대한 정성적 에너지 밴드갭을 도시한 예시도.8 is an illustration showing a qualitative energy band gap for a DMNB reaction between a blue luminescent silicon quantum dot and a conventional blue luminescent CdSe quantum dot according to the present invention.
이하 첨부된 도면들을 참조하여 본 발명의 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서 및 실리콘 양자점 제조방법을 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an explosive-based explosive additive detection sensor and a method of manufacturing a silicon quantum dot according to the present invention will be described with reference to the accompanying drawings.
본 발명의 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the specification and claims of the present invention should not be construed to be limited to ordinary or dictionary meanings and the inventor should appropriately define the concept of the term to describe its invention in the best way It should be construed in the meaning and concept consistent with the technical idea of the present invention.
따라서, 본 발명의 명세서에 기재된 실시예와 도면 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments and the drawings described in the specification of the present invention are merely the most preferred embodiments of the present invention, and are not intended to represent all of the technical ideas of the present invention. Therefore, It should be understood that there may be variations.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Whenever a component is referred to as " including " an element herein, it is to be understood that it may include other elements, unless the context otherwise requires.
본 발명의 발명자들은 종래 문제점을 개선하고자, 크기에 따라 다양한 형광 파장별 에너지를 구현한 나노입자크기의 실리콘 양자점을 제조하고, 그 중에서 청색 발광성 또는 녹색 발광성의 실리콘 양자점으로부터 니트로아민(nitramines)을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제(DMNB)로의 전자이동(electron transfer)으로 인해 형광 소광능이 민감한 거동을 확인함으로써 실리콘 양자점에 기반하여 폭발물 식별용 폭약 첨가제를 검출하는 방안을 제안한다. The inventors of the present invention have developed a nanoparticle-sized silicon quantum dot having various wavelength-dependent energy depending on its size, and have found that it is possible to produce nitramines (DMNB) by detecting the delicate behavior of fluorescent light extinction due to the electron transfer to the explosive additive (DMNB) for explosive identification of explosives.
즉, 본 발명은 실리콘 양자점으로부터 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB로의 전자이동에 의해 형광 소광능이 민감한 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서를 제공한다. That is, the present invention provides a explosive-detection explosive additive detection sensor based on a silicon quantum dot sensitive to fluorescence quenching ability by electron transfer from an silicon explosion containing nitroamine to a DMNB explosive identification additive.
도 1은 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점 용액과 그의 UV(자외선)흡수 스펙트럼과 발광 스펙트럼을 도시한 것이고, 도 2a 및 도 2b는 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점에 대한 평균 입자 분포도이다.FIG. 1 shows a blue and green luminescent silicon quantum dot solution and its UV (ultraviolet) absorption spectrum and luminescence spectrum according to the present invention, and FIGS. 2A and 2B show the blue and green luminescent silicon quantum dots Average particle size distribution.
도 1을 참조하면, 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점 용액의 최대 흡수파장(λmax)은 각각 460nm 및 520nm을 나타낸다. 여기서 상기 "양자점 용액"은 양자점이 물이나 유기 용매와 같은 액상에 분산 또는 용해된 상태를 나타낸다. Referring to FIG. 1, the maximum absorption wavelength (? Max) of the blue and green luminescent silicon quantum dot solutions according to the present invention indicates 460 nm and 520 nm, respectively. Here, the "quantum dot solution" refers to a state in which quantum dots are dispersed or dissolved in a liquid phase such as water or an organic solvent.
또한, 상기 실리콘 양자점에 대한 평균 입자분포를 나노입자 분석기(DLS : dynamic light scattering)를 이용하여 분석하면, 청색 발광성(λmax=460nm)의 실리콘 양자점의 경우 평균 나노입자크기는 2nm이고(도 2a), 녹색 발광성(λmax=520nm)의 경우 실리콘 양자점의 평균 나노입자크기는 3nm인 것을 확인할 수 있다(도 2b). In addition, when the average particle size distribution for the silicon quantum dots is analyzed using dynamic light scattering (DLS), the average size of the nanoparticles is 2 nm in the case of the blue luminescence (λ max = 460 nm) ) And green luminescence (? Max = 520 nm), the average nanoparticle size of the silicon quantum dots is 3 nm (FIG. 2B).
이러한 평균 나노입자크기에 대한 결과는 도 3에 도시된 투과전자현미경(TEM)을 이용한 표면영상 결과에서도 확인된다. 즉, 도 3의 (a)에 도시된 바와같이, 실리콘 양자점의 HRTEM이미지를 통해, 본 발명의 실리콘 양자점은 2nm 내지 3nm의 평균 나노입자크기를 확인할 수 있으며, 도 3의 (b) 및 (c)는 Si의 <111>면에 대한 고속 푸리에 변화에 따른 확대 이미지로서, 유사육방결정(pseudo-hexagonal) 구조의 SAED 패턴을 확인할 수 있다. The results for this average nanoparticle size are also confirmed on the surface imaging results using the transmission electron microscope (TEM) shown in FIG. 3 (a), through the HRTEM image of the silicon quantum dots, the silicon quantum dots of the present invention can identify an average nanoparticle size of 2 nm to 3 nm, and FIGS. 3 (b) and 3 ) Is an enlarged image according to the fast Fourier transformation of the Si <111> plane, and it is possible to confirm a SAED pattern of a pseudo-hexagonal structure.
이와 같은 청색 발광성(λmax=460nm) 및 녹색 발광성(λmax=520nm)의 실리콘 양자점 용액에 폭발물 식별용 폭약 첨가제(DMNB)를 농도별로 첨가한 후 광발광성(PL : photoluminescence) 세기(intensity) 변화를 관찰한 결과, DMNB 농도에 따라 정량적으로 반응하는 상관관계를 확인할 수 있다. The explosive identification explosive additive (DMNB) was added to the silicon quantum dots solution of blue luminescence (λ max = 460 nm) and green luminescence (λ max = 520 nm) , It can be confirmed that the reaction is quantitatively dependent on the concentration of DMNB.
도 4는 본 발명에서 청색 발광성(λmax=460nm) 및 녹색 발광성(λmax=520nm)의 실리콘 양자점 용액에 대하여, DMNB를 농도 1.11×10-6M, 2.18×10-6M, 3.21×10-6M, 4.20×10-6M 및 5.16×10-6M별로 첨가한 후 관찰한 광발광성(PL)의 세기 변화를 나타낸다. 이러한 정량적 상관관계는 하기 수학식 1의 스턴-볼머((Stern-Volmer) 방정식로부터 산출된 스턴-볼머 상수(KSV)에 의해 결정된다. 이때, DMNB 농도별 형광 소광능이 정량화되며, 청색 및 녹색 발광성의 실리콘 양자점 각각의 스턴-볼머 상수 (KSV)는 20,000이상이며, 더욱 바람직하게는 청색 발광성의 실리콘 양자점은 25,900이고, 녹색 발광성의 실리콘 양자점은 21,300을 나타낸다.4 is a blue luminescent (λ max = 460nm) and green luminescent (λ max = 520nm) to silicon quantum dot solution, the concentration DMNB 1.11 × 10 -6 M, 2.18 × 10 -6 M, 3.21 × 10 according to the present invention -6 M, 4.20 × 10 -6 M and 5.16 × 10 -6 M, respectively. This quantitative correlation is determined by the Stern-Volmer constant (K SV ) calculated from the Stern-Volmer equation of Equation 1. At this time, the fluorescence extinction coefficient per DMNB concentration is quantified, and the blue and green The Stern-Bolmer constant (K SV ) of each of the luminescent silicon quantum dots is 20,000 or more, more preferably the blue luminescent silicon quantum dots are 25,900 and the green luminescent silicon quantum dots are 21,300.
[수학식 1][Equation 1]
Figure PCTKR2018003843-appb-I000005
Figure PCTKR2018003843-appb-I000005
여기서,
Figure PCTKR2018003843-appb-I000006
는 소광물질(quencher) 부재시 형광 세기이고, If는 소광물질 존재시 형광 세기이고, [Q]는 소광물질의 농도이다.
here,
Figure PCTKR2018003843-appb-I000006
Is the fluorescence intensity in the absence of a quencher, I f is the fluorescence intensity in the presence of minerals, and [Q] is the concentration of the minerals.
도 5 는 본 발명에서 청색 및 녹색 발광성의 실리콘 양자점 용액에 대한 DMNB 농도별 형광 소광관계를 나타낸 스턴-볼머 플롯을 도시한 그래프이다.FIG. 5 is a graph showing a Stern-Volmer plot showing fluorescence quenching relations for DMNB concentration for a blue and green luminescent silicon quantum dot solution in the present invention.
도 5에 도시된 바와같이, 청색 및 녹색 발광성의 실리콘 양자점 용액 모두 직선상의 상관관계를 보이는데, 청색 발광성(λmax=460nm)의 실리콘 양자점의 경우, 더 넓은 에너지 밴드갭으로 인하여 녹색 발광성(λmax=520nm)의 실리콘 양자점보다 더 높은 형광 소광능을 보이고 있다. As shown in FIG. 5, both of the blue and green luminescent silicon quantum dots have a linear correlation. In the case of the blue luminescence (λ max = 460 nm) silicon quantum dots, the green luminescence (λ max = 520 nm) than that of silicon quantum dots.
반면에, 종래 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB 검출을 위한 물질인 (salophen)아연착체, 트리페닐아민 중앙에 티오펜이 도입된 덴드리머 및 카바졸 덴드리머의 스턴-볼머 상수(KSV)값이 각각 2.1, 20 및 40이다. 이러한 결과를 대비하면, 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점의 스턴-볼머 상수(KSV)값은 현저히 높아 높은 검출 효율을 구현할 수 있다. On the other hand, it has been found that a salophene zinc complex, a dendrimer into which thiophene is introduced at the center of triphenylamine, and a Stern-Bolmer constant of a carbazole dendrimer (hereinafter referred to as &quot; K SV ) values are 2.1, 20 and 40, respectively. In contrast to these results, the Stern-Bolmer constant (K SV ) value of the blue and green luminescent silicon quantum dots according to the present invention is remarkably high, and high detection efficiency can be realized.
본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점은 DMNB 농도별 형광 소광효율이 기존에 개발된 DMNB 검출 소재에 비해 대략 400배에서 13,000배 높다.The blue and green luminescent silicon quantum dots according to the present invention have fluorescence quenching efficiencies of about 400 to 13,000 times higher than DMNB detection materials for DMNB concentration.
도 6은 본 발명에 따른 청색 발광성의 실리콘 양자점에 대한 DMNB 농도별 형광 수명을 도시한 그래프이다. 도면 내의 작은 박스는 DMNB 농도별 실리콘 양자점의 형광수명을 나타낸다. 6 is a graph showing the fluorescence lifetime of the blue luminescent silicon quantum dots according to the concentration of DMNB according to the present invention. The small box in the figure represents the fluorescence lifetime of the silicon quantum dots by DMNB concentration.
도 6을 참조하면, 청색 발광성의 실리콘 양자점은 DMNB 농도별 형광수명이 DMNB 농도에 무관하게 일정한 평균수명을 보임으로써, DMNB 감지기전이 정적 소광법(static quenching)을 통해 소광하는 것을 얻었다.Referring to FIG. 6, the blue luminescent silicon quantum dots exhibit a constant life expectancy regardless of the concentration of DMNB by the DMNB concentration. Thus, the DMNB detector is quenched through static quenching.
도 7a는 종래 청색 및 녹색 발광성의 CdSe 양자점에 대한 DMNB농도별 형광의 소광변화를 나타내고, 도 7b는 본 발명에 따른 청색 실리콘 양자점의 형광수명을 비교한 결과를 나타낸다. 도 7a의 결과로부터, 종래에는 DMNB의 농도변화에 따라 형광의 소광변화는 관찰되지 않았으므로, CdSe 양자점에 의해 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB 물질을 감지할 수 없다. FIG. 7A shows quenching changes of fluorescence according to DMNB concentration for CdSe quantum dots of conventional blue and green luminescent properties, and FIG. 7B shows a comparison of fluorescence lifetimes of blue silicon quantum dots according to the present invention. From the results of FIG. 7A, it is not possible to detect DMNB substance as an explosive-identifying explosive additive for nitrocellulose-containing explosives by the CdSe quantum dots, as fluorescence extinction change was not observed according to the concentration change of DMNB conventionally.
도 7b에서는 동일한 최대흡수파장(λmax=460nm)을 가지는 종래의 청색 발광성의 CdSe 양자점과 본 발명에 따른 청색 발광성의 실리콘 양자점에 대하여, 여기상태의 형광수명 결과를 통하여 각 양자점의 수명을 측정한 결과, 각각 36.81 및 3.76ns로 관찰된다. 따라서, 종래의 CdSe 양자점은 폭발물 식별용 폭약 첨가제인 DMNB에 대한 형광 소광에 대한 감지능이 없는 반면, 본 발명의 실리콘 양자점은 DMNB의 농도변화에 따라 민감하게 형광의 소광변화 즉, 민감한 형광소광의 정량적 거동을 보이고, 특히, 양자점의 수명이 극히 짧아서 순간적 감지가 우수한 폭발물 식별용 폭약 첨가제 검출센서로서 유용하다. In Fig. 7B, the lifetime of each quantum dot was measured through the fluorescence lifetime result of the excitation state with respect to the conventional blue light-emitting CdSe quantum dots having the same maximum absorption wavelength (? Max = 460 nm) and the blue luminescent silicon quantum dots according to the present invention The results are observed as 36.81 and 3.76 ns, respectively. Thus, while conventional CdSe quantum dots have no ability to detect fluorescence quenching for DMNB as a explosive-identifying explosive additive, the silicon quantum dots of the present invention are sensitive to fluorescence quenching changes, i.e., sensitive quenching And is particularly useful as an explosive additive detection sensor for explosive identification which has an extremely short lifetime of the quantum dots and is excellent in instantaneous sensing.
도 8은 본 발명에 따른 청색 발광성의 실리콘 양자점과 종래 청색 발광성의 CdSe 양자점과의 DMNB 반응에 대한 정성적 에너지 밴드갭을 도시한 것이다. FIG. 8 shows the qualitative energy band gap for the DMNB reaction between the blue luminescent silicon quantum dots according to the present invention and the conventional blue luminescent CdSe quantum dots.
도 8에서 양자점의 검출 효율은 양자점과 분석물질인 DMNB와의 전자이동에 기인하는 것으로, 상대적으로 높게 놓인 DMNB의 최저준위 비점유 분자궤도(LUMO : Lowest Unoccupied Molecular Orbital) 에너지 레벨은 낮은 에너지를 가지는 CdSe 양자점으로부터 전자수용을 방해한다. 즉, 높게 놓인 DMNB의 LUMO 에너지 레벨보다 높은 전도대를 가지는 양자점이 요구되는데, 본 발명에 따른 청색 및 녹색 발광성의 실리콘 양자점은 DMNB의 LUMO 에너지 레벨보다 높은 에너지 레벨을 가지므로, 원활한 전자이동(electron transfer)에 의해 형광 소광능이 민감한 거동을 보인다. In FIG. 8, the detection efficiency of the quantum dots is due to the electron transfer between the quantum dots and the analyte DMNB, and the lowest energy level of the lowest unoccupied molecular orbital (LUMO) of the DMNB placed at a relatively high level is CdSe And impedes electron acceptance from the quantum dots. That is, a quantum dot having a conduction band higher than the LUMO energy level of the highly placed DMNB is required. Since the blue and green luminescent silicon quantum dots according to the present invention have energy levels higher than the LUMO energy level of DMNB, ) Exhibit a sensitive fluorescence quenching behavior.
나아가, 본 발명은 마그네슘 실리사이드(Mg2Si) 및 에틸렌디아민 디하이드로클로라이드를 동일한 비율로 첨가하고 비활성가스 분위기하에서 48 또는 72시간 동안 환류조건으로 반응하여, 청색 발광성(λmax=460nm) 또는 녹색 발광성(λmax=520nm)을 구현한 실리콘 양자점의 제조방법을 제공한다. Further, the present invention is characterized in that magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride are added in the same proportions and reacted under reflux conditions for 48 or 72 hours under an inert gas atmosphere to obtain blue luminescence (? Max = 460 nm) (? max = 520 nm).
상기에서 에틸렌디아민 디하이드로클로라이드 성분은 종래의 CdSe 양자점 합성공정에서 양자점의 성장과 크기 분포를 결정하는 트리옥틸포스포린옥사이드 성분을 사용할 때 환원 및 계면활성제로서 사용된 물질이다. The ethylenediamine dihydrochloride component is used as a reducing agent and a surfactant when trioctylphosphorine oxide component is used to determine the growth and size distribution of quantum dots in a conventional CdSe quantum dot synthesis process.
이에, 본 발명의 크기-선택적 실리콘 양자점의 제조방법에서 합성공정 또는 정제공정에서 잔류하는 불순물인 에틸렌디아민이 형광 소광능을 방해하는지 여부를 확인하기 위하여, 합성된 실리콘 양자점 용액에 에틸렌디아민을 첨가하여 광발광성의 세기변화를 관찰한 결과, 전혀 변화가 없음으로써 에틸렌디아민이 본 발명의 형광 소거능에 방해되지 않는 결과를 확인할 수 있었다.In order to confirm whether the ethylenediamine, which is a residual impurity in the synthesis process or the purification process, interferes with the fluorescence quenching ability in the method of producing the size-selective silicon quantum dot of the present invention, ethylenediamine is added to the synthesized silicon quantum dot solution As a result of observing the intensity change of the photoluminescence, no change was observed, and it was confirmed that the ethylenediamine was not disturbed by the fluorescence scavenging ability of the present invention.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail with reference to Examples.
이하의 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.The following examples are intended to further illustrate the present invention, and the scope of the present invention is not limited to these examples.
<실시예 1> 청색 발광성의 실리콘 양자점 제조 Example 1: Silicon quantum dot production of blue luminescent material
THF(Tetrahydrofuran) 40㎖에 용해된 에틸렌디아민 5g(83mmol) 용액에, HCl (83 mmol)을 천천히 첨가하고 얼음물 배스 하에서 빠르게 교반하여 생성된 흰색 고체를 여과한 후 감압 건조하여 에틸렌디아민 디하이드로클로라이드를 수득한다. HCl (83 mmol) was slowly added to a solution of 5 g (83 mmol) of ethylenediamine in 40 ml of THF (Tetrahydrofuran) and stirred rapidly in an ice bath. The resulting white solid was filtered and dried under reduced pressure to give ethylenediamine dihydrochloride .
H-말단의 실리콘 양자점(Si QDs)을 얻기 위하여, Mg2Si 0.3g(4 mmol)을 상기의 에틸렌디아민 디하이드로클로라이드 동량을 DMF 40㎖에 용해시킨 용액에 첨가하고 아르곤 분위기로 유지된 슈랭크 플라스크에서 상온 수행하였다. 이후 용액 색상이 보라색의 현탁액으로 변하는데, 상기 현탁액의 혼합물을 아르곤 분위기와 150℃ 온도 조건에서 2일동안 환류 반응하여 청색 발광성의 실리콘 양자점을 합성하였다. To obtain the H-terminal silicon quantum dots (Si QDs), 0.3 g (4 mmol) of Mg 2 Si was added to a solution of the same amount of ethylenediamine dihydrochloride dissolved in 40 ml of DMF, Lt; / RTI &gt; The solution color changed into a violet suspension. The mixture of the suspension was subjected to reflux reaction in an argon atmosphere and a temperature condition of 150 ° C for 2 days to synthesize a blue luminescent silicon quantum dot.
상기 반응이후, 헥산 15㎖를 첨가하여 반응혼합물을 얻고 24시간 동안 교반하고 72시간동안 방치하였다. 이후 실리콘양자점을 함유한 헥산층을 따르고 원심분리한다[υ(Si-H) 2150 cm-1,υ(Si-H) 914 cm-1,υ(Si-Si) 611 cm-1; 양자수율 5.8%].After the reaction, 15 ml of hexane was added to obtain a reaction mixture, which was stirred for 24 hours and left for 72 hours. Subsequently, a hexane layer containing silicon quantum dots is centrifuged (υ (Si-H) 2150 cm -1 , υ (Si-H) 914 cm -1 , υ (Si-Si) 611 cm -1 ; Quantum yield 5.8%].
<실시예 2> 녹색 발광성의 실리콘 양자점 제조 &Lt; Example 2 > Production of green luminescent silicon quantum dot
녹색 발광성의 실리콘 양자점 제조는 3일 동안 환류 반응하는 것을 제외하면 상기 실시예 1과 동일하게 수행하여 녹색 발광성의 실리콘 양자점을 합성한다[υ(Si-H) 2150 cm-1, υ(Si-H) 914 cm-1, υ(Si-Si) 611 cm-1; 양자수율 5.6%]. The green luminescent silicon quantum dots were synthesized in the same manner as in Example 1 except that the reflux reaction was carried out for 3 days [υ (Si-H) 2150 cm -1 , υ (Si-H ) 914 cm -1 , υ (Si-Si) 611 cm -1 ; Quantum yield 5.6%].
<비교예 1> 카드뮴 셀레나이드(CdSe) 양자점 제조 Comparative Example 1 Production of cadmium selenide (CdSe) quantum dot
드 멜로 도네가(De Mello Donega) 연구진에 의해 발표된 방법에 따라 카드뮴 셀레나이드(cadmium selenide, CdSe)를 합성한다[C. De Mello Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B, 2003, 107, 489-496]. 이에, 청색(λmax=460nm) 및 녹색 (λmax= 525nm)의 CdSe 양자점을 얻었다. Synthesizes cadmium selenide (CdSe) according to the method published by De Mello Donega et al. [C. De Mello Donega, SG Hickey, SF Wuister, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B, 2003, 107, 489-496]. Thus, CdSe quantum dots of blue (? Max = 460 nm) and green (? Max = 525 nm) were obtained.
<실험예 1> 분광학적 측정Experimental Example 1: Spectroscopic measurement
1. 광 흡수 및 발광 스펙트럼 측정실험1. Experiment to measure light absorption and luminescence spectrum
UV-vis 분광기(Shimadzu UV-2401)와 형광분석기 (Perkin-Elmer LS 55)를 이용하여, 상기 실시예 1에서 제조된 실리콘 양자점과 실시예 2에서 제조된 실리콘 양자점을 함유한 용액에 대하여, 광흡수 및 발광 스펙트럼 측정을 측정한다. Using a UV-vis spectrometer (Shimadzu UV-2401) and a fluorescence analyzer (Perkin-Elmer LS 55), the solution containing the silicon quantum dots prepared in Example 1 and the silicon quantum dots prepared in Example 2 Absorption and emission spectral measurements are measured.
상기 두가지 실리콘 양자점 용액의 UV-vis 흡수스펙트럼과 발광스펙트럼 측정 결과는 도 1에 도시되어 있다. 도 1의 박스에는 실시예 1 및 실시예 2에서 제조된 각 실리콘 양자점 용액의 색상을 육안으로 확인할 수 있으며, 구체적으로는 분광학적 실험결과에 의해, 실시예 1로부터 청색 발광(λmax=460nm)의 실리콘 양자점과 실시예 2로부터 녹색 발광(λmax=520nm)의 실리콘 양자점을 확인할 수 있다. The UV-vis absorption spectra and luminescence spectrum measurement results of the two silicon quantum dot solutions are shown in FIG. In the box of Fig. 1, the hue of each silicon quantum dot solution prepared in Example 1 and Example 2 can be visually confirmed. Specifically, from the results of spectroscopic experiments, blue light emission (? Max = 460 nm) And the silicon quantum dots of green light emission (? Max = 520 nm) can be identified from Example 2.
2. FTIR 측정실험2. FTIR measurement experiment
FTIR 스펙트라(Nicolet 5700)를 이용하여 상기 실시예 1에서 제조된 실리콘 양자점 및 실시예 2에서 제조된 실리콘 양자점에 대하여 물성을 분석할 수 있다. 그 결과, 상기 실리콘 양자점에 대하여, υ(Si-H) 2150 cm-1, υ(Si-H) 914 cm-1, υ(Si-Si) 611 cm-1 관능기를 확인함으로써 합성에 대한 분석을 수행한다. The physical properties of the silicon quantum dots prepared in Example 1 and the silicon quantum dots prepared in Example 2 can be analyzed using FTIR spectra (Nicolet 5700). As a result, the synthesis was confirmed by confirming the υ (Si-H) 2150 cm -1 , υ (Si-H) 914 cm -1 and υ (Si-Si) 611 cm -1 functional groups for the silicon quantum dots .
3. 광발광성(photoluminescence) 측정3. Photoluminescence measurement
본 발명의 실시예 1에서 제조된 실리콘 양자점과 실시예 2에서 제조된 실리콘 양자점에 대하여, 400 내지 1100nm의 파장 범위에서의 광발광성을 측정한다. The photoluminescence of the silicon quantum dot prepared in Example 1 of the present invention and the silicon quantum dot prepared in Example 2 in a wavelength range of 400 to 1100 nm is measured.
그 결과, 본 발명에 따라 제조된 실리콘 양자점은 그 크기별 여기에 따라 다른 광학 전이 에너지를 나타내는 것을 확인할 수 있다. 구체적으로는, 각 실리콘 양자점의 나노입자크기에 따라, 각각의 발광파장이 490nm, 500nm, 525nm, 560nm, 585nm 및 600nm에서 관찰된다(미도시). As a result, it can be confirmed that the silicon quantum dots produced according to the present invention exhibit different optical transition energies depending on their sizes. Specifically, the respective emission wavelengths are observed at 490 nm, 500 nm, 525 nm, 560 nm, 585 nm, and 600 nm, depending on the nanoparticle size of each silicon quantum dot (not shown).
<실험예 2> 평균입자분포도 측정<Experimental Example 2> Measurement of Average Particle Size Distribution
본 발명의 실시예 1에서 제조된 실리콘 양자점과 실시예 2에서 제조된 실리콘 양자점에 대하여, 나노입자분석기(dynamic light scattering, DLS)를 이용하여 평균입자분포도를 측정하였다. 이때, 최대 레이저출력은 709 Mw, 산란각도는 165.5°로 설정되었다. 실험 결과, 도 2a 및 도 2b에 도시된 평균입자분포도에서, 실시예 1에서 제조된 청색 발광성 실리콘 양자점의 평균 나노입자크기는 2nm이고, 실시예 2에서 제조된 녹색 발광성의 실리콘 양자점의 평균 나노입자크기가 3nm임을 확인할 수 있다. The average particle distribution was measured for the silicon quantum dots prepared in Example 1 of the present invention and the silicon quantum dots prepared in Example 2 using dynamic light scattering (DLS). At this time, the maximum laser power was set at 709 Mw and the scattering angle was set at 165.5 °. As a result of the experiment, in the mean particle distribution diagram shown in Figs. 2A and 2B, the average nanoparticle size of the blue light-emitting silicon quantum dots produced in Example 1 was 2 nm, and the average luminescent silicon quantum dot average nanoparticles prepared in Example 2 It can be confirmed that the size is 3 nm.
<실험예 3> 표면특성 측정<Experimental Example 3> Measurement of surface characteristics
본 발명의 실시예 1에서 제조된 실리콘 양자점 및 실시예 2에서 제조된 실리콘 양자점에 대하여, 투과전자현미경(TEM, Philips TECNAI F20 microscope)을 이용하여 표면을 관찰하였다. 관찰 결과는 도 3에 도시되어 있다. 이때, 도 3의 (a)는 실리콘 양자점의 HRTEM이미지 결과이고, (b) 및 (c)는 Si의 <111>면에 대한 고속 푸리에 변화에 따른 확대 이미지이다. 상기 HRTEM이미지 결과로부터, 실시예 1에서 제조된 실리콘 양자점과 실시예 2에서 제조된 실리콘 양자점 모두 2 내지 3nm의 평균나노입자크기를 확인하였으며, Si의 <111>면에 대하여 유사육방결정 (pseudohexagonal) 구조의 SAED 패턴을 확인하였다. The silicon quantum dots prepared in Example 1 of the present invention and the silicon quantum dots prepared in Example 2 were observed with a transmission electron microscope (TEM, Philips TECNAI F20 microscope). The observation result is shown in Fig. 3 (a) is a HRTEM image of a silicon quantum dot, and FIGS. 3 (b) and 3 (c) are enlarged images according to fast Fourier transformation with respect to a <111> plane of Si. From the HRTEM image results, it was confirmed that the average nanoparticle size of the silicon quantum dots prepared in Example 1 and the silicon quantum dots prepared in Example 2 was 2 to 3 nm, and pseudohexagonal crystals were formed on the <111> The SAED pattern of the structure was confirmed.
<실험예 4> 형광성 소광(Fluorescence Quenching) 실험Experimental Example 4 Fluorescence Quenching Experiment
본 발명의 실시예 1에서 제조된 청색 발광(λmax = 460nm)의 실리콘 양자점과 녹색 발광(λmax = 520nm)의 실리콘 양자점의 분석물질에 대한 광발광성 소광능을 평가한다. 이때, 분석물질은 니트로아민을 함유하는 폭발물 지표물질인 DMNB (2,3-dimethyl-2,3-dinitrobutane)이며, 상용제품(시그마-알드리치사)을 사용하였다. The photoluminescence extinguishing ability of the silicon quantum dots of blue emission (? Max = 460 nm) and silicon quantum dots of green emission (? Max = 520 nm) prepared in Example 1 of the present invention is evaluated. At this time, the analytical material was DMNB (2,3-dimethyl-2,3-dinitrobutane), an explosive indicator material containing nitroamine, and a commercially available product (Sigma-Aldrich) was used.
구체적으로는, 상기의 청색 및 녹색 발광성의 실리콘 양자점을 함유한 톨루엔 용액에, DMNB을 1.11×10-6M, 2.18×10-6M, 3.21×10-6M, 4.20×10-6M 및 5.16×10-6M 농도별로 첨가하고 형광 스펙트럼을 측정하였다. Specifically, DMNB was added to a toluene solution containing silicon quantum dots of blue and green luminescent properties at a concentration of 1.11 × 10 -6 M, 2.18 × 10 -6 M, 3.21 × 10 -6 M, and 4.20 × 10 -6 M, 5.16 x 10 &lt; -6 &gt; M concentration and the fluorescence spectrum was measured.
도 4는 DMNB 농도에 따른 실리콘 양자점 용액의 광발광 세기(PL intensity)변화를 도시한 것으로서, DMNB 농도증가에 따라 광발광 세기가 증가하는 정량적 비례관계인을 확인하였다. FIG. 4 shows changes in photoluminescence intensity (PL intensity) of a silicon quantum dot solution depending on the concentration of DMNB, and a quantitative proportional relationship in which the photoluminescence intensity increases with increasing DMNB concentration was confirmed.
도 5는 이러한 정량적 비례관계를 스턴-볼머(Stern-Volmer) 플롯으로 표기한 것으로서, 청색 및 녹색 발광성의 실리콘 양자점을 함유한 톨루엔 용액 모두 직선상의 상관관계를 보였고, 각각의 스턴-볼머 상수(KSV)는 25,900 및 21,300이었다. FIG. 5 shows such a quantitative proportional relationship expressed by a Stern-Volmer plot, in which all of the toluene solutions containing blue and green luminescent silicon quantum dots showed a linear correlation, and the respective Stern-Bolmer constants (K SV ) were 25,900 and 21,300, respectively.
또한, 청색 발광성의 실리콘 양자점의 경우, 녹색 발광성의 실리콘 양자점보다 더 높은 소광 효율을 보이는데, 이러한 결과는 청색 발광성의 실리콘 양자점의 밴드갭이 더 넓기 때문으로 예상된다. Further, in the case of the blue luminescent silicon quantum dots, the quenching efficiency is higher than that of the green luminescent silicon quantum dots. This result is expected because the band gap of the blue luminescent silicon quantum dots is wider.
한편 종래에 DMNB를 감지하기 위하여 사용된 물질군으로 (salophen)아연착체, 트리페닐아민 중앙에 티오펜이 도입된 덴드리머 및 카바졸 덴드리머의 경우 각각의 스턴-볼머 상수(KSV)는 2.1, 20 및 40이다. 따라서 스턴-볼머 상수값을 비교하면 본 발명의 청색 및 녹색 발광성의 실리콘양자점의 스턴-볼머 상수(KSV)값은 종래보다 높은 값으로서 DMNB 감지에 현저히 높은 검출효율을 구현할 수 있게 된다. Meanwhile, in the case of a salophene zinc complex, a dendrimer and a carbazole dendrimer in which thiophene is introduced at the center of triphenylamine, the Stern-Bolmer constant (K SV ) of each substance group used for detecting DMNB is 2.1 and 20 And 40, respectively. Therefore, when the Stern-Bolmer constant value is compared, the Stern-Bolmer constant (K SV ) value of the blue and green luminescent silicon quantum dots of the present invention is higher than the conventional value, and the detection efficiency can be remarkably high in DMNB sensing.
<실험예 5> 형광수명 측정<Experimental Example 5> Fluorescence lifetime measurement
본 발명의 실시예 1에서 제조된 실리콘 양자점 및 실시예 2에서 제조된 실리콘 양자점에 대하여, 시간분해능의 형광분광기(MicroTime-200, Picoquant, Germany; KBSI Daegu Center)을 이용하여 형광수명을 측정하였다. Fluorescence lifetimes of the silicon quantum dots prepared in Example 1 of the present invention and the silicon quantum dots prepared in Example 2 were measured using time-resolved fluorescence spectroscopy (MicroTime-200, Picoquant, Germany; KBSI Daegu Center).
측정 결과는 도 6에 도시된 바와같이 DMNB 농도별 첨가에도 불구하고, 청색 발광성의 실리콘 양자점의 형광수명은 일정한 평균수명을 갖는 것으로 확인된다. 이에, 실리콘 양자점의 평균 형광수명은 DMNB 첨가에 의해 변함없이 유지된다. As a result, it was confirmed that the fluorescence lifetime of the blue luminescent silicon quantum dots has a constant average lifetime despite the addition of DMNB concentration as shown in Fig. Thus, the average fluorescence lifetime of silicon quantum dots is maintained unchanged by addition of DMNB.
상기와 같은 실시예와 실험을 통해 본 발명은 종래 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB(2,3-dimethyl-2,3-dinitrobutane)를 검출하기 위한 물질 또는 기존에 보고된 미다공성 금속-유기물질(MMOF), (salophen)아연착체, 형광 증폭 중합체(AFPs)와 CdSe양자점보다 우수한 검출효율을 나타내는 크기-선택적 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서를 제공할 수 있다. 즉, 본 발명에 따른 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서는, 실리콘 양자점에서 DMNB로 광 유도에 의한 원활한 전자이동에 의해 DMNB 농도에 따라 정량적으로 반응하는 우수한 형광 소광능과 형광수명을 통한 검출기전(검출 원리 또는 개념)을 제공할 수 있다. The present invention has been made in view of the above-described embodiments and experiments, and it is an object of the present invention to provide a substance for detecting DMNB (2,3-dimethyl-2,3-dinitrobutane), an explosive additive for explosive identification of an explosive containing nitroamines, It is possible to provide a explosive additive detection sensor for explosive identification based on a size-selective silicon quantum dot which exhibits a detection efficiency superior to a microporous metal-organic substance (MMOF), (salophen) zinc complex, fluorescent amplification polymer (AFPs) and CdSe quantum dots . That is, the explosive additive detection sensor for explosive identification based on the silicon quantum dot according to the present invention has excellent fluorescence quenching ability and quantitative response according to the concentration of DMNB due to smooth electron transfer from the silicon quantum dot to DMNB by light induction, Detector principle (detection principle or concept).
또한, 본 발명의 실리콘 양자점의 제조방법은 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제 검출에 민감한 신규한 청색 발광성 및 녹색 발광성의 크기-선택적 실리콘 양자점을 제공할 수 있다. In addition, the method of producing a silicon quantum dot of the present invention can provide a novel blue luminescent and green luminescent size-selective silicon quantum dots sensitive to explosive identification explosive additive detection of nitroamine-containing explosives.
상기에서 살펴본 바와 같이, 본 발명은 청색 발광성 또는 녹색 발광성의 좁은 크기 분포도(2 내지 3nm의 평균나노입자크기)를 갖는 크기-선택적 실리콘 양자점을 제공하고, 나아가 상기 실리콘 양자점으로부터 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB로의 전자이동에 의해 형광 소광능이 민감한 거동을 확인함으로써, 종래 니트로아민을 함유하는 폭발물의 폭발물 식별용 폭약 첨가제인 DMNB 검출을 위한 물질 또는 CdSe 양자점보다 우수한 검출효율을 구현한 실리콘 양자점에 기반한 폭발물 검출센서를 구현할 수 있는 효과가 있다.As described above, the present invention provides a size-selective silicon quantum dot having a narrow size distribution of blue luminescence or green luminescence (average nanoparticle size of 2-3 nm), and further provides an explosive containing nitroamine from the silicon quantum dots Of DMNB as a explosive additive for explosive identification of explosives containing conventional nitroamines by confirming the sensitive action of fluorescence quenching capability by electron transfer to DMNB as an explosive additive for identifying explosives. It is possible to implement an explosive detection sensor based on one silicon quantum dot.
또한, 본 발명은 니트로아민을 함유하는 폭발물검출에 유용한 신규한 청색 발광성 및 녹색 발광성의 실리콘 양자점의 제조방법을 제공할 수 있다. Further, the present invention can provide a novel method for producing blue quantum dots of blue luminescence and green luminescence, which is useful for detecting explosives containing nitroamine.
따라서, 본 발명의 실시예에 따른 실리콘 양자점은 DMNB농도별로 민감한 형광소광의 정량적 거동을 보이고, 특히, 양자점의 수명이 극히 짧아 순간적 감지가 우수한 폭발물검출센서로서 유용하다. Therefore, the silicon quantum dots according to the embodiments of the present invention exhibit quantitative behavior of sensitive fluorescence extinction by DMNB concentration, and particularly useful as an explosive detection sensor having excellent instantaneous detection due to extremely short life span of quantum dots.
상기와 같이 설명된 본 발명에 따른 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서 및 실리콘 양자점 제조방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 상술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다.The explosive additive detection sensor and the silicon quantum dot manufacturing method for explosives identification based on the silicon quantum dots according to the present invention described above are not limited to the configuration and method of the embodiments described above, It will be understood that the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are to be considered in all respects only as illustrative and not restrictive.

Claims (13)

  1. 니트로아민을 함유하는 폭발물로부터 폭발물 식별용 폭약 첨가제인 DMNB (2,3-dimethyl-2,3-dinitrobutane)를 검출하는 폭발물 감지센서에 있어서,1. An explosive detection sensor for detecting an explosive additive for DMNB (2,3-dimethyl-2,3-dinitrobutane) from an explosive containing nitroamine,
    광 유도에 의해 실리콘 양자점과 니트로아민을 함유하는 폭발물의 지표물질인 DMNB간 전자 이동이 발생할 때 상기 DMNB의 농도변화에 따라 정량적으로 반응하는 상기 실리콘 양자점의 형광성 소광 및 소광수명의 거동을 확인하여 DMNB를 검출하는 것을 특징으로 하는 폭발물 감지센서.The fluorescence quenching and quenching lifetime behavior of the silicon quantum dots reacting quantitatively according to the concentration change of DMNB when the electron transfer between DMNB, an indicator substance of explosives containing silicon quantum dots and nitroamine, Wherein the sensor detects the explosive.
  2. 제1항에 있어서, 상기 실리콘 양자점은The method of claim 1, wherein the silicon quantum dots
    청색 발광성 또는 녹색 발광성의 실리콘 양자점을 포함하며,Blue luminescent or green luminescent silicon quantum dots,
    상기 청색 발광성 또는 녹색 발광성의 실리콘 양자점은The blue luminescent or green luminescent silicon quantum dots include
    (a) 마그네슘 실리사이드(Mg2Si)와 에틸렌디아민 디하이드로클로라이드를 동일 비율로 DMF(N-dimethlyformamide)용액에 혼합한 후 (a) Magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride are mixed in DMF (N-dimethlyformamide) solution at the same ratio
    (b) 혼합물을 비활성가스 분위기하에서 소정 온도로 48 또는 72시간 동안 환류 반응시켜 제조하는 것을 특징으로 하는 폭발물 감지센서.(b) refluxing the mixture for 48 or 72 hours at a predetermined temperature in an inert gas atmosphere.
  3. 제1항에 있어서, 상기 실리콘 양자점은 The method of claim 1, wherein the silicon quantum dots
    DMNB의 최저준위 비점유 분자궤도(LUMO) 에너지 레벨보다 높은 에너지 레벨을 갖는 것을 특징으로 하는 폭발물 감지센서. (LUMO) energy level of the DMNB, wherein the energy level is higher than the lowest level non-occupied molecular orbital (LUMO) energy level of the DMNB.
  4. 제1항에 있어서, 상기 실리콘 양자점은The method of claim 1, wherein the silicon quantum dots
    평균 나노입자크기가 2 내지 3nm인 것을 특징으로 하는 폭발물 감지센서.Wherein the average nanoparticle size is 2 to 3 nm.
  5. 제1항에 있어서, 상기 실리콘 양자점은The method of claim 1, wherein the silicon quantum dots
    하기의 스턴-볼머 방정식으로부터 산출된 스턴-볼머 상수(KSV)가 20,000 이상인 것을 특징으로 하는 폭발물 감지센.Wherein the Stern-Bolmer constant (K SV ) calculated from the following Stern-Kolmer equation is 20,000 or more.
    Figure PCTKR2018003843-appb-I000007
    Figure PCTKR2018003843-appb-I000007
    여기서,
    Figure PCTKR2018003843-appb-I000008
    는 소광 물질(quencher) 부재시 형광 세기이고, If는 소광 물질 존재시 형광 세기이고, [Q]는 소광 물질의 농도이다.
    here,
    Figure PCTKR2018003843-appb-I000008
    Is the fluorescence intensity in the absence of a quencher, I f is the fluorescence intensity in the presence of a quencher, and [Q] is the concentration of the quencher.
  6. 제1항에 있어서, 상기 실리콘 양자점의 형광성 소광은The method of claim 1, wherein the quenching of the silicon quantum dot
    DMNB의 농도증가에 따라 광발광 세기가 증가하는 정량적 비례관계를 갖는 것을 특징으로 하는 폭발물 감지센서.Wherein the photoluminescence intensity is increased in proportion to the concentration of DMNB.
  7. 제1항에 있어서, 상기 실리콘 양자점의 형광수명은The method of claim 1, wherein the fluorescent lifetime of the silicon quantum dot is
    DMNB 농도에 관계없이 평균 형광수명을 나타내는 것을 특징으로 하는 폭발물 감지센서. Wherein the indicator indicates an average fluorescence lifetime regardless of the concentration of DMNB.
  8. 제1항에 있어서, 상기 실리콘 양자점의 용액에 DMNB를 농도별로 첨가한 후 광발광성 세기 변화를 관찰하여 DMNB를 검출하는 것을 특징으로 하는 폭발물 감지센서.The explosive detection sensor according to claim 1, wherein the DMNB is detected by observing the photoluminescence intensity change after adding DMNB to the solution of the silicon quantum dots.
  9. 마그네슘 실리사이드(Mg2Si)와 에틸렌디아민 디하이드로클로라이드를 동일 비율로 DMF(N-dimethlyformamide) 용액에 혼합하는 단계; 및Mixing magnesium suicide (Mg 2 Si) and ethylenediamine dihydrochloride in DMF (N-dimethyformamide) solution in the same ratio; And
    혼합물을 비활성가스 분위기하에서 소정 온도로 소정 시간동안 환류 반응시켜 청색 발광성의 실리콘 양자점 또는 녹색 발광성의 실리콘 양자점을 제조하는 단계;를 포함하는 것을 특징으로 하는 실리콘 양자점 제조방법. And subjecting the mixture to a reflux reaction for a predetermined time at a predetermined temperature in an inert gas atmosphere to produce a blue light emitting silicon quantum dot or a green light emitting silicon quantum dot.
  10. 제9항에 있어서, 상기 실리콘 양자점은10. The method of claim 9, wherein the silicon quantum dots
    청색 발광성 또는 녹색 발광성의 실리콘 양자점을 포함하는 것을 특징으로 하는 실리콘 양자점 제조방법.Wherein the silicon quantum dot comprises blue quantum dots of blue luminescence or green luminescence.
  11. 제9항에 있어서, 상기 실리콘 양자점은 10. The method of claim 9, wherein the silicon quantum dots
    평균 나노입자크기가 2 내지 3nm이며, 상기 DMNB의 최저준위 비점유 분자궤도(LUMO) 에너지 레벨보다 높은 에너지 레벨을 갖는 것을 특징으로 하는 실리콘 양자점 제조방법. An average nanoparticle size of 2 to 3 nm and an energy level higher than the lowest level non occupied molecular orbital (LUMO) energy level of DMNB.
  12. 제9항에 있어서, 상기 실리콘 양자점은10. The method of claim 9, wherein the silicon quantum dots
    하기의 스턴-볼머 방정식으로부터 산출된 스턴-볼머 상수(KSV)가 20,000 이상인 것을 특징으로 하는 실리콘 양자점 제조방법.Wherein the stern-Bolmer constant (K SV ) calculated from the following Stern-Kolmer equation is 20,000 or more.
    Figure PCTKR2018003843-appb-I000009
    Figure PCTKR2018003843-appb-I000009
    여기서,
    Figure PCTKR2018003843-appb-I000010
    는 소광 물질(quencher) 부재시 형광 세기이고, If는 소광 물질 존재시 형광 세기이고, [Q]는 소광물질의 농도이다.
    here,
    Figure PCTKR2018003843-appb-I000010
    Is the fluorescence intensity in the absence of a quencher, I f is the fluorescence intensity in the presence of quencher, and [Q] is the concentration of the minerals.
  13. 제9항에 있어서, 상기 청색 발광성의 실리콘 양자점은The method of claim 9, wherein the blue luminescent silicon quantum dots include
    혼합물을 아르곤 분위기와 150℃ 온도 조건에서 48시간동안 환류 반응시켜 제조되고, 상기 녹색 발광성의 실리콘 양자점은 혼합물을 아르곤 분위기와 150℃ 온도 조건에서 72시간동안 환류 반응시켜 제조되는 것을 특징으로 하는 실리콘 양자점 제조방법.Wherein the green luminescent silicon quantum dots are prepared by subjecting the mixture to a reflux reaction for 72 hours under an argon atmosphere and a temperature condition of 150 ° C. Gt;
PCT/KR2018/003843 2017-07-04 2018-04-02 Silicon quantum dot-based explosive additive detection sensor for identification of explosive substance, and preparation method for silicon quantum dots WO2019009505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170085064A KR20190004607A (en) 2017-07-04 2017-07-04 Silicon quantum dots-baesd explosive taggant detection sensors and manufacturing method of size-selective silicon quantum dots
KR10-2017-0085064 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019009505A1 true WO2019009505A1 (en) 2019-01-10

Family

ID=64951098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003843 WO2019009505A1 (en) 2017-07-04 2018-04-02 Silicon quantum dot-based explosive additive detection sensor for identification of explosive substance, and preparation method for silicon quantum dots

Country Status (2)

Country Link
KR (1) KR20190004607A (en)
WO (1) WO2019009505A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856101A (en) * 2019-03-27 2019-06-07 青岛大学 A kind of preparation method for the nano hybrid that can be used as ratio fluorescent and ratio electrochemical sensing simultaneously
CN114702954A (en) * 2021-12-23 2022-07-05 郑州中科生物医学工程技术研究院 Preparation method of fluorine-doped silicon quantum dots and application of fluorine-doped silicon quantum dots in detection of neo-carmine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131148B1 (en) 2019-01-30 2020-07-07 성산테크놀로지 주식회사 Remote detection system for mapping position of nitro compounds using biosensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130125195A (en) * 2012-05-08 2013-11-18 포항공과대학교 산학협력단 Synthesis of surface molecules for the stable detection of nitroaromatic explosives using nanoparticles
KR20130134082A (en) * 2012-05-30 2013-12-10 포항공과대학교 산학협력단 A sensor for detection of explosives and a manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130125195A (en) * 2012-05-08 2013-11-18 포항공과대학교 산학협력단 Synthesis of surface molecules for the stable detection of nitroaromatic explosives using nanoparticles
KR20130134082A (en) * 2012-05-30 2013-12-10 포항공과대학교 산학협력단 A sensor for detection of explosives and a manufacturing method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHO, BO MIN, NANOSENSOR RESEARCH BASED ON POROUS SILICON PHOTONIC CRYSTALS AND SILICON QUANTUM DOTS, 24 February 2017 (2017-02-24), pages 70 - 78 *
KIM ET AL.: "Silicon Quantum Dot Sensors for an Explosive Taggant, 2,3-dimethyl-2,3-dinitrobutane (DMNB", CHEMICAL COMMUNICATIONS, vol. 52, no. 53, 7 July 2016 (2016-07-07), pages 8207 - 8210, XP055564508, Retrieved from the Internet <URL:DOI:10.1039/C6CC01341D> *
KIM, JIN SOO: "Sensory Materials for DMNB", JOURNAL OF THE CHOSUN NATURAL SCIENCE, vol. 9, no. 2, 25 June 2016 (2016-06-25), pages 81, 82, Retrieved from the Internet <URL:https://www.earticle.net/Article/A278537> *
SCHNEE ET AL.: "Quantum Dot Material for the Detection of Explosive-related Chemicals", DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XVII, vol. 8357, 10 May 2012 (2012-05-10), XP055564492, Retrieved from the Internet <URL:https://doi.org/10.1117/12.921403> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856101A (en) * 2019-03-27 2019-06-07 青岛大学 A kind of preparation method for the nano hybrid that can be used as ratio fluorescent and ratio electrochemical sensing simultaneously
WO2020191798A1 (en) * 2019-03-27 2020-10-01 青岛大学 Preparation method for nano-hybrid capable of being used for ratio fluorescent sensing and ratio electrochemical sensing simultaneously
US11073517B1 (en) 2019-03-27 2021-07-27 Qingdao University Method for preparing nanohybrid used for ratiometric fluorescence and ratiometric electrochemical sensing simultaneously
CN114702954A (en) * 2021-12-23 2022-07-05 郑州中科生物医学工程技术研究院 Preparation method of fluorine-doped silicon quantum dots and application of fluorine-doped silicon quantum dots in detection of neo-carmine
CN114702954B (en) * 2021-12-23 2023-09-05 郑州中科生物医学工程技术研究院 Preparation method of fluorine-doped silicon quantum dot and application of fluorine-doped silicon quantum dot in detection of new carmine

Also Published As

Publication number Publication date
KR20190004607A (en) 2019-01-14

Similar Documents

Publication Publication Date Title
WO2019009505A1 (en) Silicon quantum dot-based explosive additive detection sensor for identification of explosive substance, and preparation method for silicon quantum dots
Zhang et al. Clusterization-triggered emission: Uncommon luminescence from common materials
Zhou et al. Aggregation-induced emission (AIE)-active polymers for explosive detection
Shen et al. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection
Wei et al. Fluorescent organic–inorganic hybrid polyphosphazene microspheres for the trace detection of nitroaromatic explosives
Lin et al. Aggregation-induced emission enhancement characteristics of naphthalimide derivatives and their applications in cell imaging
Sha et al. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (II) ions
Sugimoto et al. All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range
CN111518553B (en) Preparation method and application of water-phase room-temperature phosphorescent carbon dot material
Ravindra et al. New design of highly sensitive AIE based fluorescent imidazole derivatives: Probing of sweat pores and anti-counterfeiting applications
US20190027693A1 (en) Light emitting compounds
Wu et al. Triphenylamine-based luminogens and fluorescent polyimides: effects of functional groups and substituents on photophysical behaviors
US20100069550A1 (en) Nanoparticle assemblies and methods for their preparation
Xiang et al. POSS-based organic–inorganic hybrid nanomaterials: Aggregation-enhanced emission, and highly sensitive and selective detection of nitroaromatic explosives in aqueous media
Su et al. Exploring feasibility of multicolored CdTe quantum dots for in vitro and in vivo fluorescent imaging
Sun et al. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg 2+
Sanchez-Benitez et al. Optical study of SrAl1. 7B0. 3O4: Eu, R (R= Nd, Dy) pigments with long-lasting phosphorescence for industrial uses
Zhu et al. Promoting the transfer of phosphorescence from the solid state to aqueous phase and establishing the universal real-time detection based on the smartphone imaging
Saikia et al. Aqueous synthesis of highly stable CdTe/ZnS Core/Shell quantum dots for bioimaging
Shimizu et al. Metal‐Free Organic Luminophores that Exhibit Dual Fluorescence and Phosphorescence Emission at Room Temperature
Kose et al. Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates
Kim et al. Silicon quantum dot sensors for an explosive taggant, 2, 3-dimethyl-2, 3-dinitrobutane (DMNB)
Wu et al. Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives
Singhal et al. Origin of solvent and excitation dependent emission in newly synthesized amphiphilic carbon dots
Xue et al. Tuning Electronic Structures of Carbazole‐Cyanostyrene Molecules to Achieve Dual‐State Emission for Trace Water Analysis, Picric Acid Sensing, and Reversible Mechanofluorochromism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828452

Country of ref document: EP

Kind code of ref document: A1