WO2019009342A1 - Sound-damping system - Google Patents

Sound-damping system Download PDF

Info

Publication number
WO2019009342A1
WO2019009342A1 PCT/JP2018/025410 JP2018025410W WO2019009342A1 WO 2019009342 A1 WO2019009342 A1 WO 2019009342A1 JP 2018025410 W JP2018025410 W JP 2018025410W WO 2019009342 A1 WO2019009342 A1 WO 2019009342A1
Authority
WO
WIPO (PCT)
Prior art keywords
silencer
sound
sleeve
opening
noise reduction
Prior art date
Application number
PCT/JP2018/025410
Other languages
French (fr)
Japanese (ja)
Inventor
美博 菅原
昇吾 山添
真也 白田
暁彦 大津
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018012674A external-priority patent/JP6377868B1/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019009342A1 publication Critical patent/WO2019009342A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to a noise cancellation system.
  • a tubular member such as a ventilation port or a duct for air conditioning, which is provided on a wall separating the room from the room, which penetrates the room from the room, the noise from the room can be suppressed from being transmitted to the room.
  • a sound absorbing material such as urethane or polyethylene
  • the absorptivity of low frequency sound of 800 Hz or less becomes extremely low, so it is necessary to increase the volume in order to increase the absorptivity. Since it is necessary to ensure air permeability of the mouth, air conditioning duct and the like, there is a limit to the size of the sound absorbing material, and there is a problem that it is difficult to achieve both high air permeability and soundproof performance.
  • the resonance sound of the tubular member becomes a problem.
  • the lowest frequency resonance sound is a problem.
  • the resonance noise is 800 Hz or less
  • the amount of the sound absorbing material is significantly increased for soundproofing by the sound absorbing material. Therefore, it is generally difficult to obtain sufficient soundproofing performance even at the expense of ventilation.
  • a polyethylene soundproof sleeve (SK-BO75 made by Shin-Kyowa Co., Ltd.), which is a soundproof product of sound absorbing material type inserted into the inside of a housing ventilation sleeve, has an aperture ratio of 36% and significantly ventilation. In spite of reducing the amount, 80% or more of the resonance sound is transmitted.
  • a resonance type silencer that silences a sound of a specific frequency is used.
  • a ventilation sleeve for ventilating both spaces is provided in a penetrating state in a partition part that divides the first space and the second space, and a resonance type silencer for muffling sound passing through the ventilation sleeve
  • a vent structure is described which is formed on the outer periphery of the venting sleeve, at a position between the facing plate and the decorative board provided in a state of being separated from the surface.
  • a resonance type noise reduction mechanism a side branch type silencer and a Helmholtz resonator are described.
  • Patent Document 2 discloses a muffling tubular body installed and used in a sleeve tube of a natural ventilation port, in which at least one end is closed and an opening is provided in the vicinity of the other end, one end A muffling tubular body is described, having a length from the part to the center of the opening that is approximately half the length of the entire length of the sleeve and inside which the porous material is arranged.
  • the thickness of the outer wall in a house, an apartment, etc. is about 200 to 400 mm, and the sound insulation performance in the frequency band of the first resonance frequency (400 to 700 Hz) generated in the sleeve tube provided on this outer wall It is described that the decrease of H occurs (see FIG. 15).
  • Patent No. 4020163 Japanese Patent Laid-Open No. 2007-169959
  • the resonance type silencer selectively mutes sound of a specific frequency (frequency band). If the length, shape, etc. of the tubular member differ, the resonant frequency of the tubular member also changes. Therefore, there is a problem that the design is required according to the tubular member, and the versatility is low.
  • the silencer of the resonance type mutes the sound of a specific frequency. Therefore, there is a problem that the resonance sound of other frequencies can not be silenced because the resonance noise to be silenced is only one frequency, and the frequency band where the resonance type silencer silences is narrow. Also, although it is effective to arrange the resonance type silencer in the open space, when arranged at the same resonance frequency inside the resonator such as the tubular member, the resonance of the tubular member interacts with the resonance of the silencer. It will As a result, since the original resonance transmitted sound by the tubular member is separated into two frequencies to generate a new resonance transmitted sound, there is a problem that the effect as the silencer is small.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, to achieve both high air permeability and soundproofing performance, to be able to silence a plurality of resonances, and to be designed in accordance with the tubular member It is an object of the present invention to provide a highly versatile silencing system that does not require
  • a ventilating sleeve installed through the wall is a noise reduction system in which a noise reducing device is provided to reduce the noise passing through the ventilating sleeve
  • the muffling apparatus is for muffling sound having a frequency including the frequency of the first resonance generated in the ventilation sleeve
  • the muffling apparatus has a cavity and an opening communicating the cavity with the outside, and one of the walls
  • one or more silencers disposed on the end face side of the sound absorber, and a sound absorbing material disposed at a position covering at least a part of the hollow portion of the silencer or at least a part of the openings of the silencers;
  • the opening of the silencer is disposed toward the central axis of the ventilation sleeve, and the depth L d of the cavity in the sound wave traveling direction in the silencer is the width L of the opening in the axial direction of the ventilation sleeve.
  • a silencer system that is larger than o and includes a silencer
  • the wavelength of the sound wave at the resonance frequency of the first resonance of the aeration sleeve in the stem is ⁇
  • the depth L d of the cavity satisfies 0.011 ⁇ ⁇ ⁇ L d ⁇ 0.25 ⁇ ⁇
  • a noise reduction system in which a noise reduction device for reducing noise passing through the ventilation sleeve is installed on a ventilation sleeve installed through the wall,
  • the silencer is for silencing the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve,
  • the silencer is A cavity and an opening communicating between the cavity and the outside, and one or more silencers disposed on one end face side of the wall;
  • a sound absorbing material disposed at a position covering at least a part of the cavity of the silencer or at least a part of the opening of the silencer;
  • the opening of the silencer is arranged facing the central axis of the ventilation sleeve,
  • the depth L d of the cavity in the direction of travel of the sound wave in the silencer is greater than the width L o of the opening in the axial direction of the venting sleeve,
  • the cavity depth L d satisfies 0.011 ⁇ ⁇ ⁇ L d ⁇ 0.25
  • the silencer does not resonate with the sound of the frequency of the first resonance generated in the tubular member, and does not mute the sound of the frequency of the first resonance by the resonance of the silencer alone but muffles it by the conversion mechanism Muffler system.
  • a muffling system in which a muffling apparatus for muffling the sound passing through the ventilation sleeve is provided on a ventilation sleeve installed through the wall, The muffling apparatus muffles the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve,
  • the silencer is A cavity and an opening communicating between the cavity and the outside, and one or more silencers disposed on one end face side of the wall; A sound absorbing material disposed at a position covering at least a part of the cavity of the silencer or at least a part of the opening of the silencer;
  • the opening of the silencer is arranged facing the central axis of the ventilation sleeve, The area of the opening of the silencer S 1, when the
  • the silencer does not resonate with the sound of the frequency of the first resonance generated in the tubular member, and does not mute the sound of the frequency of the first resonance by the resonance of the silencer alone but muffles it by the conversion mechanism Muffler system.
  • the frequency of the first resonance generated in the ventilation sleeve is F 0
  • the resonance frequency of the silencer is F 1
  • the width L w of the hollow portion in the direction orthogonal to the depth direction of the hollow portion satisfies 0.001 ⁇ ⁇ ⁇ L w ⁇ 0.061 ⁇ ⁇ .
  • the noise reduction system according to any one of 1) to [3].
  • the flow resistance ⁇ 1 of the sound absorbing material satisfies (1.25 ⁇ log (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 5.6 [1] to [4]
  • the muffling system according to any of the above.
  • the flow resistance ⁇ 1 of the sound absorbing material satisfies (1.32 ⁇ log (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 5.2 [1] to [5]
  • the muffling system according to any of the above.
  • the flow resistance ⁇ 1 of the sound absorbing material satisfies (1.39 ⁇ log (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 4.7 [1] to [6]
  • the muffling system according to any of the above. [8] It has a decorative board provided parallel to the wall, The noise reduction system according to any one of [1] to [7], wherein the noise reduction device is disposed between the decorative plate and the wall.
  • the silencer is in the axial direction of the venting sleeve, on one side of the axially extending hollow portion of the ventilating sleeve and the hollow portion parallel to the axial direction of the ventilating sleeve. And an opening located on one end side of the The silencer system according to any one of [1] to [8], wherein the length of the cavity in the axial direction of the ventilation sleeve is the depth L d of the cavity. [10] The silencer system according to any one of [1] to [9], wherein the silencer has a plurality of silencers.
  • the silencer has a tubular insert connected within the venting sleeve, The insertion portion is disposed with the central axis of the insertion portion aligned with the central axis of the ventilation sleeve,
  • the silencer system according to any one of [1] to [13], wherein the silencer is connected to one end face of the insertion portion.
  • the noise reduction system according to any one of [1] to [14], wherein the area S 1 of the opening in the circumferential surface about the central axis of the ventilation sleeve is smaller than the area S 0 of the cavity.
  • [16] have two or more silencers, The silencer system according to any one of [1] to [15], wherein the openings of the respective silencers are arranged in rotational symmetry with respect to the central axis of the insertion portion. [17] The noise reduction system according to any one of [1] to [16], which is installed at the indoor end of the ventilation sleeve. [18] In the cross section perpendicular to the axial direction of the ventilation sleeve, the effective outer diameter D 0 of the ventilation sleeve and the effective outer diameter D 1 of the muffler, D 1 ⁇ D 0 + 2 ⁇ a (0.045 ⁇ ⁇ + 5mm) The muffling system according to any one of [1] to [17].
  • the silencer In the axial direction of the ventilation sleeve, the silencer is disposed between the wall and the decorative plate disposed apart from the wall by being partially inserted through the through holes formed in the decorative plate Yes, The noise reduction system according to any one of [1] to [25], having a boundary cover that covers the boundary between the decorative plate and the silencer when viewed in the axial direction of the ventilation sleeve.
  • the silencer In the axial direction of the venting sleeve, the silencer is arranged at one end of the venting sleeve, Furthermore, the noise reduction system according to any one of [1] to [26], further comprising a soundproofing member disposed in the ventilation sleeve.
  • the silencer is arranged at one end of the venting sleeve, Further, the noise reduction system according to any one of [1] to [27], further comprising a soundproofing member disposed at the other end of the ventilation sleeve.
  • the width L w of the cavity of the silencer is 5.5 mm ⁇ L w ⁇ 300 mm
  • the depth L d of the cavity of the silencer is 25.3 mm ⁇ L d ⁇ 175 mm
  • the noise reduction system according to any one of [1] to [30] wherein a plurality of sound absorbing materials are disposed in the hollow portion.
  • the present invention it is possible to achieve both high air permeability and soundproofing performance, and it is also possible to silence a plurality of resonances, and to provide a highly versatile silencing system that does not require a design matched to the ventilation sleeve. Can be provided.
  • FIG. 30 is a cross-sectional view taken along the line CC of FIG. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of a silencer.
  • FIG. 73 is a front view of FIG.
  • FIG. 100 is a cross-sectional view taken along line DD of FIG. 100. It is sectional drawing which shows notionally another example of the silencing system of this invention.
  • FIG. 102 is a cross-sectional view taken along the line EE of FIG. 102. It is sectional drawing which shows notionally another example of a silencer. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which shows notionally another example of the silencing system of this invention. It is sectional drawing which represents typically the model of the muffling system used for simulation. It is a graph showing the relation between flow resistance, opening width / cylinder length, and penetration loss.
  • FIG. 113 is a cross-sectional view taken along the line DD of FIG. It is a graph showing the relation between frequency and transmitted sound pressure intensity. It is a typical side view for explaining composition of a comparative example. It is a graph showing the relation between frequency and transmitted sound pressure intensity.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the terms “orthogonal” and “parallel” include the range of allowable errors in the technical field to which the present invention belongs. For example, “orthogonal” and “parallel” mean within ⁇ 10 ° of strictly orthogonal or parallel, etc., and the error with respect to strictly orthogonal or parallel is 5 ° or less Is preferably, and more preferably 3 ° or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the noise reduction system of the present invention.
  • the silencer system 10z has a configuration in which the silencer 21 is disposed on the outer peripheral surface (outer peripheral surface) of the cylindrical tubular member 12 provided through the wall 16 separating the two spaces.
  • the tubular member 12 is, for example, a ventilation sleeve such as a ventilation port and an air conditioning duct.
  • the silencer 21 mutes the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve.
  • the silencer 21 has a substantially rectangular parallelepiped shape extending in the radial direction of the tubular member 12 and has a substantially rectangular parallelepiped hollow portion 30 inside. At the end face of the hollow portion 30 on the side of the tubular member 12, an opening 32 communicating the hollow portion 30 with the outside is formed.
  • the opening 32 of the silencer 21 is connected to a circumferential opening 12 a formed on the circumferential surface of the tubular member 12. By connecting the opening 32 to the circumferential opening 12a, the opening 32 is connected to the sound field space of the first resonance generated in the tubular member 12 in the noise reduction system 10a.
  • the tubular member 12 is not limited to the ventilating port and the air conditioning duct, but may be a general duct used for various devices.
  • the depth of the cavity 30 in the direction of travel of the sound wave in the cavity 30 of the silencer 21 is L d, and the axial direction of the tubular member 12 (hereinafter also referred to simply as the axial direction).
  • the width of the opening 32 of the silencer 21 is L o
  • the depth L d of the cavity 30 is larger than the width L o of the opening 32.
  • the traveling direction of the sound wave in the hollow portion 30 can be determined by simulation. In the example shown in FIG. 1, since the hollow portion 30 extends in the radial direction, the traveling direction of the sound wave in the hollow portion 30 is the radial direction (vertical direction in the drawing).
  • the depth L d of the cavity 30 is the length from the opening 32 in the radial direction to the upper end of the cavity 30.
  • the depth L d of the cavity 30 is an average value of the depth at each position.
  • the width L o of the opening 32 is an average value of the widths at each position.
  • the depth L d of the hollow portion 30 of the silencer 21 is 0.011 ⁇ ⁇ ⁇ L d ⁇ It satisfies 0.25 ⁇ ⁇ . That is, the depth of the cavity portion 30 is L d, smaller than lambda / 4, the muffler 21 does not silenced by resonance.
  • the resonance type silencer selectively mutes sound of a specific frequency (frequency band). Therefore, the design according to the resonant frequency of a tubular member is needed, and there existed a problem that versatility was low. Also, although the resonance of the tubular member occurs at a plurality of frequencies, the silencer of the resonance type mutes the sound of a specific frequency.
  • the resonance noise to be silenced is only one frequency, and since the frequency band where the resonance type silencer silences is narrow, resonance noises of other frequencies can not be silenced.
  • the resonance type silencer in the open space, when arranged at the same resonance frequency inside the resonator such as the tubular member, the resonance of the tubular member interacts with the resonance of the silencer. It will As a result, since the original resonance transmitted sound by the tubular member is separated into two frequencies to generate a new resonance transmitted sound, there is a problem that the effect as the silencer is small.
  • the present invention has the cavity 30 and the opening 32, and the depth L d of the cavity 30 in the sound wave traveling direction in the silencer is the width of the opening in the axial direction of the tubular member.
  • the depth L d of the cavity satisfies 0.011 ⁇ ⁇ ⁇ L d ⁇ 0.25 ⁇ ⁇ .
  • the silencer 21 is arranged to be connected to the sound field space of the first resonance of the tubular member 12.
  • the silencer 21 converts the sound energy into heat energy by the viscosity of the fluid in the vicinity of the wall surface of the silencer 21 and unevenness (surface roughness) of the wall surface or a sound absorbing material 24 disposed in the silencer 21 described later. Convert and mute.
  • the viscosity of the fluid in the vicinity of the wall surface and the unevenness (surface roughness) of the wall surface or the sound absorbing material 24 disposed in the silencer 21 is the conversion mechanism in the present invention.
  • the width L o of the opening 32 of the silencer 21 is smaller than the depth L d of the hollow portion 30, sound pressure is maintained when the sound wave in the tubular member 12 flows into the silencer 21.
  • the moving speed of gas (air) molecules is increased.
  • the conversion efficiency from sound energy to heat energy by the conversion mechanism depends on the sound pressure and the moving velocity of gas molecules. Therefore, by increasing the moving speed of the gas molecules while maintaining the sound pressure, the conversion efficiency from the sound energy to the heat energy by the conversion mechanism becomes high. Since the principle of this silencing does not use the resonance of the silencer, high soundproofing performance is obtained even if the depth L d of the cavity 30 is smaller than 1 ⁇ 4 of the wavelength ⁇ at the resonance frequency of the first resonance of the tubular member 12 It can be expressed. Therefore, high soundproof performance can be obtained while downsizing the silencer 21 and maintaining the air permeability of the tubular member 12.
  • the resonance of the silencer by the silencer 21 is not used, the wavelength dependency of the sound wave is small, and even when the length and shape of the tubular member 12 are different, the soundproof performance can be exhibited, There is no need to design according to 12 and the versatility is high.
  • the principle of muffling by the muffler 21 does not use resonance of the muffler, it is not muffling sound of only a specific frequency as determined by the structure of the muffling, and muffling a plurality of resonance sounds in a wide frequency band Can.
  • the resonance type silencer is disposed in the tubular member 12
  • the simulation used the acoustic module of finite element method calculation software COMSOL ver 5.3 (COMSOL company).
  • the diameter of the ventilation sleeve (tubular member) was 100 mm
  • the thickness of the wall was 100 mm
  • the thickness of the decorative plate was 10 mm
  • the distance between the wall and the decorative plate was 140 mm. That is, the total thickness of the wall and the decorative plate was 250 mm.
  • a sound wave is made to enter from the hemispherical surface of one space partitioned by walls, and a unit volume of the sound wave reaches the hemispherical surface of the other space.
  • the amplitude was calculated.
  • the hemispherical surface is a hemispherical surface with a radius of 500 mm centered on the central position of the opening surface of the ventilation sleeve.
  • the sound wave to be incident has an amplitude of 1 per unit volume.
  • a lid of a register (diameter 102 mm) was disposed at a position 32 mm from the end face of the ventilation sleeve on the sound wave detection surface side.
  • FIG. 111 shows the simulation result as a graph of the relationship between frequency and transmitted sound pressure intensity. From FIG. 111, it can be seen that the frequency of the first resonance of the ventilation sleeve 12 when the silencer is not arranged (in the case of a straight pipe) is about 515 Hz.
  • an air column resonance type silencer having a resonance frequency of about 515 Hz was designed.
  • FIG. 112 and FIG. 113 a model in which an air column resonance type silencer is connected to the outer peripheral portion of an acoustic tube having a length of 1000 mm and a diameter of 100 mm is created
  • the acoustic characteristics were evaluated.
  • a plane wave was incident from one end face of the acoustic tube, and the amplitude per unit volume of the sound wave reaching the other end face was determined.
  • the sound wave to be incident has an amplitude of 1 per unit volume.
  • a value obtained by squaring a value obtained by dividing the integral value of the sound pressure amplitude on the detection surface by the integral value of the sound pressure amplitude on the incident surface was taken as the transmitted sound pressure intensity.
  • the air column resonance type silencer was in the form of a rectangular parallelepiped with a cross-sectional size of 45 mm ⁇ 45 mm, and the length was variously changed, and the relationship between the frequency and transmitted sound pressure intensity was calculated to determine the resonance frequency. As a result, as shown as Calculation Example 1 in FIG. 114, it was found that the resonance frequency was about 515 Hz at a length of 150 mm.
  • a silencer having this air column resonance type silencer is modeled to create a model connected to a ventilation sleeve, and in the same manner as described above, in one space partitioned by a wall Sound waves were made incident from the hemispherical surface, and the amplitude per unit volume of the sound waves reaching the hemispherical surface of the other space was determined.
  • a cross-sectional view at the position of the air column resonance silencer of FIG. 115 is the same as that of FIG. As shown in FIGS.
  • the air column resonance resonance type silencer has two air column resonance tubes with 45 mm ⁇ 45 mm prisms and 150 mm in length (depth), A tubular silencer of the same diameter (100 mm) as the ventilation sleeve was arranged at the end of the ventilation sleeve.
  • the axial length of the ventilation sleeve was 130 mm, and the axial length of the tubular portion of the silencer was 120 mm.
  • the axial position of the air column resonance tube was 5 mm from the end face on the aeration sleeve side.
  • the simulation result is shown in FIG. 111 as a graph of the relationship between the frequency and the transmitted sound pressure intensity (Comparative Example 8). Also, FIG.
  • 116 shows the result of the experiment as a graph of the relationship between frequency and transmitted sound pressure intensity.
  • a silencer with the above-described shape and dimensions is manufactured using a 5 mm thick acrylic plate, and the relationship between the frequency and the transmitted sound pressure intensity is measured in the same manner as in the example using the simple small soundproof room did.
  • the silencer 21 and the internal cavity part 30 set it as substantially rectangular solid shape, it is not limited to this, It can be set as various shapes, such as cylindrical shape.
  • the shape of the opening 32 is also not limited, and can be various shapes such as a rectangular shape, a polygonal shape, a circular shape, and an elliptical shape.
  • the first frequency generated in the tubular member 12 at the resonant frequency F 1 of the silencer 21 Since the transmission sound pressure intensity of one resonance is 25% or less of the peak value, the interaction between the first resonance and the resonance of the silencer in the tubular member 12 is reduced.
  • the resonance frequency F 1 of the silencer 21 preferably satisfies 1.17 ⁇ F 0 ⁇ F 1 , more preferably 1.22 ⁇ F 0 ⁇ F 1 and 1.34 ⁇ F 0 ⁇ It is further preferable to satisfy F 1 .
  • the transmitted sound pressure strength of the first resonance occurring within tubular member 12 at the resonant frequencies F 1 of the muffler 21 is 20% or less with respect to the peak value, 15% or less, of 10% or less.
  • the hollow portion 30 of the silencer 21 extends in the radial direction, and the traveling direction of the sound wave in the hollow portion 30 is the radial direction.
  • the traveling direction of the sound wave in the hollow portion 30 may be the axial direction.
  • the silencer 21 as shown in FIG. 1 is also referred to as a vertical cylindrical silencer.
  • FIG. 2 is a schematic sectional view showing an example of a preferred embodiment of the noise reduction system of the present invention.
  • FIG. 3 is a figure for demonstrating area S 0 of the hollow part of the silencer of a silencer system, and area S 1 of an opening part.
  • FIG. 4 is a diagram for explaining the depth L d and the width L w of the hollow portion of the silencer.
  • illustration of the wall 16 is omitted. Also in the subsequent drawings, the illustration of the wall 16 may be omitted.
  • the silencer system 10 a has a configuration in which the silencer 22 is disposed on the outer peripheral surface (outer peripheral surface) of the cylindrical tubular member 12 provided through the wall 16 separating the two spaces.
  • the tubular member 12 is, for example, a ventilation sleeve such as a ventilation port and an air conditioning duct.
  • the silencer 22 extends in the axial direction in a cross section parallel to the axial direction, has a substantially rectangular parallelepiped shape curved along the outer peripheral surface of the tubular member 12, and has a substantially rectangular hollow portion axially extending in the inner direction. It has 30.
  • an opening 32 communicating the hollow portion 30 with the outside is provided on one end side in the axial direction of the surface on the tubular member 12 side of the silencer 22. That is, the silencer 22 has an L-shaped space.
  • the opening 32 is connected to a circumferential opening 12 a formed on the circumferential surface of the tubular member 12. By connecting the opening 32 to the circumferential opening 12a, the opening 32 is connected to the sound field space of the first resonance generated in the tubular member 12 in the noise reduction system 10a.
  • the traveling direction of the sound wave in the hollow portion 30 is the axial direction (left and right direction in the drawing). Therefore, as shown in FIG. 4, the depth L d of the cavity 30 is the length from the central position of the opening 32 in the axial direction to the end face on the far side of the cavity 30.
  • the silencer 22 is disposed in the viscosity of the fluid in the vicinity of the wall surface of the silencer 22 and the unevenness (surface roughness) of the wall surface or in the silencer 22 described later. Sound energy is converted into heat energy by the sound absorbing material 24 or the like (conversion mechanism) to perform muffling.
  • the silencer 22 is shaped to have an L-shaped space, as in the case of the configuration of FIG. 1, when the sound wave in the tubular member 12 flows into the silencer 22, the sound pressure Since the transfer speed of gas (air) molecules can be increased while maintaining the pressure, the transfer speed of gas molecules can be increased while maintaining the sound pressure, so that the conversion efficiency from sound energy to heat energy by the conversion mechanism is Get higher. Therefore, even if the depth L d of the cavity 30 is smaller than 1 ⁇ 4 of the wavelength ⁇ at the resonance frequency of the first resonance of the tubular member 12, high soundproofing performance can be exhibited. Therefore, high soundproof performance can be obtained while downsizing the silencer 22 and maintaining the air permeability of the tubular member 12.
  • the silencer 22 as shown in FIG. 2 is also referred to as an L-shaped silencer.
  • the effective outer diameter of the silencer 22 that is, the outer diameter of the silencer system can be further reduced, and high soundproof performance is maintained. Higher breathability can be obtained.
  • the effective outer diameter will be described in detail later.
  • FIG. 5 is a simulation of the distribution of sound pressure in the first resonance mode of the tubular member 12 provided through the wall 16 separating the two spaces.
  • the sound field space of the first resonance of the tubular member 12 is a space within the tubular member 12 and within the open end correction distance.
  • the antinodes of the standing waves of the sound field protrude outside the tubular member 12 by the distance of the open end correction.
  • the open end correction distance in the case of the cylindrical tubular member 12 is given by approximately 1.2 ⁇ the tube diameter.
  • the silencer 22 may be disposed at a position where the opening 32 is connected to the first resonance sound field space of the tubular member 12. Therefore, the opening 32 of the silencer 22 may be disposed outside the open end face of the tubular member 12 as in the noise reduction system 10b shown in FIG. Alternatively, the silencer 22 may be disposed inside the tubular member 12 as in the noise reduction system 10 c shown in FIG. 7. In the noise reduction system 10 b shown in FIG. 6 and the noise reduction system 10 c shown in FIG. 7, the silencer 22 is disposed such that the opening 32 faces the central axis of the tubular member 12.
  • the central axis of the tubular member 12 is an axis passing through the center of gravity in the cross section of the tubular member 12.
  • the position of the opening 32 of the silencer 22 in the axial direction is not limited. Depending on the position of the opening 32, it is possible to control the frequency band to mute more preferably.
  • the opening 32 of the silencer 22 is located at the position where the sound pressure of the sound wave of the first resonance frequency is high, ie By disposing, the sound pressure and the moving speed of gas molecules can be increased, and higher soundproofing performance can be expressed. This point will be described in more detail in the examples.
  • the area of the cavity portion 30 of the muffler 22 and S 0 the area of the opening 32 and S 1, the area S 1 of the opening 32
  • the area of the cavity 30 S Preferably it is less than zero .
  • each area S 1 of the area S 0 and the opening 32 of the cavity 30 is the area in the circumferential surface of the central axis of the tubular member 12 passing through the hollow portion 30 or the opening 32 and the shaft.
  • the area S 0 of the cavity 30 is an average value of the areas at the respective positions.
  • the area S 1 of the opening 32 is the area in which the opening is minimized.
  • the area S 1 of the openings 32 is preferably as the area S 1 of the openings 32 is small in terms of the moving speed of the gas molecules, the area S 1 of the openings 32 is too small waves low soundproof performance since less likely to flow into the cavity 30 turn into.
  • the area S 1 of the opening 32 is preferably 0.1% ⁇ S 1 / S 0 ⁇ 40% of the area S 0 of the cavity 30, 0.3% ⁇ S 1 / S 0 ⁇ 35% Is more preferably 0.5% ⁇ S 1 / S 0 ⁇ 30%.
  • the depth L d of the hollow portion 30 of the silencer 22 satisfies 0.011 ⁇ ⁇ ⁇ L d ⁇ 0.25 ⁇ ⁇ , and 0.016 ⁇ ⁇ ⁇ L d. It is preferable to satisfy ⁇ 0.25 ⁇ ⁇ , and it is more preferable to satisfy 0.021 ⁇ ⁇ ⁇ L d ⁇ 0.25 ⁇ ⁇ . Further, in the cross section parallel to the axial direction, the width L w (see FIG.
  • the width of the hollow portion 30 is the length in the left-right direction in the drawing, and matches the width L w of the opening 32.
  • FIGS. 8 to 10 show the results of simulation in the case of using the vertical cylindrical silencer as shown in FIG. 1, and FIG. 11 shows the case of using an L-shaped silencer as shown in FIG. Simulation results of
  • FIG. 8 shows (the depth L d of the cavity 30 / the wavelength ⁇ of the sound wave to be muffled), (the width L w of the cavity 30 / the wavelength ⁇ of the sound wave to be muffled), and the average sound in the cavity 30 It is a graph showing the relation with pressure P.
  • FIG. 9 shows (the depth L d of the cavity 30 / the wavelength ⁇ of the sound wave to be silenced), (the width L w of the cavity 30 / the wavelength ⁇ of the sound wave to be silenced), and gas molecules in the cavity 30 Is a graph showing the relationship between the average particle velocity v and.
  • FIG. 9 shows (the depth L d of the cavity 30 / the wavelength ⁇ of the sound wave to be silenced), (the width L w of the cavity 30 / the wavelength ⁇ of the sound wave to be silenced), and gas molecules in the cavity 30 Is a graph showing the relationship between the average particle velocity v and.
  • FIGS. 9 to 11 shows (the depth L d of the cavity 30 / the wavelength ⁇ of the sound wave to be silenced), (the width L w of the cavity 30 / the wavelength ⁇ of the sound wave to be silenced), and the average particle velocity v of gas molecules And it is a graph showing the relation with the log value of the multiplication value (
  • ) is a value proportional to the absorption per volume of the cavity 30.
  • the log in FIGS. 9 to 11 is a common logarithm.
  • the particle velocity v and the sound pressure P are changed variously for the depth L d of the cavity 30 and the width L w of the cavity 30 using the acoustic module of the finite element method calculation software COMSOL ver 5.3 (COMSOL) I asked for.
  • the tubular member had a length of 300 mm and a diameter of 100 mm, and the hollow portion 30 of the silencer 22 was annularly installed on the outer periphery of the tubular member 12.
  • the openings 32 were arranged in the shape of a slit in the circumferential direction of the tubular member.
  • the width of the opening 32 is the same as the width of the cavity 30.
  • the opening 32 is located at the center of the tubular member 12 in the axial direction.
  • the lowest resonant frequency of the tubular member 12 was 460 Hz.
  • the frequency of the sound wave to be silenced was 460 Hz.
  • the sound absorbing material 24 having a flow resistance of 13000 [Pa ⁇ s / m 2 ] is disposed in the entire area of the hollow portion 30.
  • the sound wave was made to enter from the hemispherical surface of one space partitioned by the wall, and the amplitude per unit volume of the sound wave reaching the hemispherical surface of the other space was determined.
  • the hemispherical surface is a hemispherical surface with a radius of 500 mm centered on the central position of the opening surface of the tubular member.
  • the sound wave to be incident has an amplitude of 1 per unit volume.
  • FIGS. 8 to 10 it can be seen that there is a preferred range between the depth L d of the cavity 30 and the width L w of the cavity 30.
  • the sound pressure is higher as the width L w and the depth L d of the cavity 30 are smaller.
  • the particle velocity is higher as the width L w of the cavity 30 is smaller and the depth L d is in a certain range.
  • ) which is proportional to the absorption, becomes high as long as the width L w and the depth L d of the cavity 30 are present.
  • FIG. 11 shows (Depth L d of cavity 30 / Wavelength ⁇ of sound wave to be silenced) of the L-shaped silencer as shown in FIG. It is a graph showing the relation between L w / wavelength ⁇ of sound wave to be silenced and the log value of the average particle velocity v of gas molecules and the average sound pressure P multiplied by (
  • the tubular member had a length of 300 mm and a diameter of 100 mm
  • the openings 32 were arranged in the shape of a slit in the circumferential direction of the tubular member.
  • the width of the opening 32 was 10 mm.
  • the opening 32 is located at the center of the tubular member 12 in the axial direction. Further, in the hollow portion 30, the sound absorbing material 24 having a flow resistance of 13000 [Pa ⁇ s / m 2 ] is disposed.
  • the ratio S 1 / S d of the area S 1 of the opening 32 to the surface area S d of the inner wall of the hollow portion 30 of the silencer 22 is 0 ⁇ S 1 / S d ⁇ 40%.
  • the ratio of the area of the surface on which the sound wave is incident to the surface area of the sound absorbing material 24 or the like conversion mechanism is reduced to correspond to the sound waves flowing into the sound absorbing material 24 etc. converting mechanism while maintaining the high sound pressure P.
  • the moving speed of gas molecules can be increased to enhance the soundproofing performance.
  • the area S 1 (ratio S 1 / S d ) of the opening 32 is preferably as small as possible from the viewpoint of increasing the moving speed of gas molecules, but if the area S 1 of the opening 32 is too small, sound waves flow into the cavity 30 Soundproof performance is lowered because it becomes difficult to do.
  • the area S 1 of the opening 32 with respect to the surface area S d of the inner wall of the cavity 30 is preferably 0.1% ⁇ S 1 / S d ⁇ 40%, and 0.3% ⁇ S 1 / S d ⁇ 35% is more preferable, and 0.5% ⁇ S 1 / S d ⁇ 30% is more preferable.
  • the surface area S d of the inner wall of the hollow portion 30 is measured with a resolution of 1 mm. That is, in the case of having a microstructure such as unevenness less than 1 mm, this may be averaged to obtain the surface area S d .
  • the tubular member had a length of 300 mm and a diameter of 100 mm
  • the hollow portion 30 of the silencer 22 was annularly installed on the outer periphery of the tubular member 12, and the axial direction was the depth direction.
  • the openings 32 were arranged in the shape of a slit in the circumferential direction of the tubular member.
  • the depth L d of the hollow portion 30 was 80 mm
  • the width L w was 10 mm.
  • the opening 32 is located at the center of the tubular member 12 in the axial direction.
  • the sound absorbing material 24 having a flow resistance of 13000 [Pa ⁇ s / m 2 ] is disposed.
  • the area ratio S 1 / S d is changed to 5.3% to 54.7%, and the transmitted sound pressure is calculated respectively. did.
  • the area ratio 5.3% corresponds to 1 cm
  • 17.9% corresponds to 3 cm
  • 25.3% corresponds to 4 cm
  • 33.8% corresponds to 5 cm
  • 54.7% It corresponds to 7 cm.
  • the transmission sound pressure normalized the peak (transmission sound pressure of 1st resonance frequency) of the transmission sound pressure in case the silencer was not installed as one. Since the first resonance frequency in the tubular member when the silencer is not installed is 460 Hz, the transmitted sound pressure at 460 Hz is the peak sound pressure. The results are shown in FIG. 13 and FIG.
  • FIG. 13 is a graph showing the relationship between the frequency and the transmitted sound pressure
  • FIG. 14 is a graph showing the relationship between the ratio of the aperture area and the peak of the transmitted sound pressure.
  • FIGS. 13 and 14 it can be seen that, even though the volume of the sound absorbing material is the same, the smaller the area ratio S 1 / S d of the opening, the smaller the transmitted sound pressure at the resonance frequency.
  • the resonant frequency at the time of installing a silencer shifts to a low frequency side compared with the case without a silencer because the volume in which a sound wave can exist increased.
  • the conversion mechanism for converting sound energy into heat energy is disposed in the viscosity of the fluid in the vicinity of the wall surface of the silencer and the unevenness (surface roughness) of the wall surface of the silencer or in the silencer. It is preferable to use a sound absorbing material.
  • the sound absorbing material 24 may be disposed in at least a part of the hollow portion 30 of the silencer 22 as in the noise reduction system 10 d shown in FIG. 15. Alternatively, as in the noise reduction system 10 e shown in FIG. 16, the sound absorbing material 24 may be disposed so as to cover at least a part of the opening 32 of the silencer 22.
  • the sound absorbing material 24 has a flow resistance per unit thickness ⁇ 1 [Pa ⁇ s / m 2 ] of (1.25 ⁇ log (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 5
  • Preferably satisfies (1.32-log (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 5.2, more preferably (1.39-log). It is further preferable to satisfy (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 4.7.
  • the unit of L d is [mm]
  • log is a common logarithm.
  • the ratio of the length of the cavity 30 (hereinafter also referred to as a cylinder length) in the depth direction of the cavity 30 to the width of the opening (opening width / tube length) is K rate (%)
  • sound absorption The flow resistance ⁇ 1 [Pa ⁇ s / m 2 ] per unit length of the material 24 is (K rate +165) /62.5 ⁇ log ⁇ 1 ⁇ (K rate +319.)
  • K rate +165 /62.5 ⁇ log ⁇ 1 ⁇ (K rate +319.
  • 0 ⁇ K rate ⁇ 50%. 6) /76.9 is preferable, and it is preferable to satisfy 3.45 ⁇ log ⁇ 1 ⁇ (K rate +484) /111.1 when 50% ⁇ K rate .
  • FIG. 107 is a cross-sectional view schematically showing a model of the noise reduction system used for the simulation.
  • the thickness of the wall 16 was 212.5 mm, and the diameter of the tubular member 12 was 100 mm.
  • the silencer 22 was disposed at a distance of 100 mm from the wall on the incident side (left side in FIG. 107).
  • the silencer 22 was disposed in a tubular shape on the outer periphery of the tubular member 12, and the axial direction was in the depth direction.
  • the length (cylinder length) of the hollow portion 30 of the silencer 22 was 42 mm.
  • the width was 37 mm.
  • the opening 32 was arranged in the shape of a slit in the circumferential direction of the tubular member 12.
  • the opening 32 is formed on the incident side (left side in FIG. 107) in the axial direction.
  • the sound absorbing material 24 was disposed in the entire area of the hollow portion 30 of the silencer 22.
  • a gullet (cover member) is disposed at the opening of the tubular member 12 on the incident side of the sound wave
  • a register air volume adjustment member
  • FIG. 108 is a graph showing the relationship between the flow resistance, the opening width / tube length, and the normalized transmission loss.
  • the normalized transmission loss is a value normalized with a value at which the transmission loss is maximum as 1.
  • the area inside the dotted line in FIG. 108 is an area where the normalized transmission loss is about 0.8 or more.
  • this region is expressed by a formula, when 0 ⁇ K rate ⁇ 50% mentioned above, (K rate +165) /62.5 ⁇ log ⁇ 1 ⁇ (K rate +319.6) /76.9, 50% ⁇ K When rate , 3.45 ⁇ log ⁇ 1 ⁇ (K rate +484) /111.1.
  • the sound absorbing material 24 is not particularly limited, and a conventionally known sound absorbing material can be appropriately used.
  • the thickness of the sound absorbing material 24 is not limited as long as it can be disposed in the cavity 30 or in the vicinity of the opening. From the viewpoint of sound absorption performance and the like, the thickness of the sound absorbing material 24 is preferably 0.01 mm to 500 mm, and more preferably 0.1 mm to 100 mm.
  • the shape of the sound absorbing material be formed in conformity with the shape of the hollow portion.
  • FIG. 17 Although it was set as the structure which has one silencer 22 in the example shown in FIG. 2, it is not limited to this, It is good also as a structure which has two or more silencers 22.
  • FIG. 17 For example, as in the noise reduction system 10 f shown in FIG. 17, two silencers 22 are disposed on the outer peripheral surface of the tubular member 12 and connected to the peripheral surface opening 12 a formed on the peripheral surface of the tubular member 12. It may be Alternatively, two silencers 22 may be disposed inside the tubular member 12 as in a silencer system 10g shown in FIG.
  • the two or more silencers 22 are preferably disposed in rotational symmetry with respect to the central axis of the tubular member 12.
  • three silencers 22 may be provided, and the three silencers 22 may be arranged on the outer circumferential surface of the tubular member 12 at equal intervals in the circumferential direction to be rotationally symmetric.
  • six silencers 22 may be provided, and the six silencers 22 may be arranged at equal intervals on the outer peripheral surface of the tubular member 12 to be rotationally symmetrical.
  • the number of silencers 22 is not limited to these, for example, a configuration in which two silencers 22 are disposed in rotational symmetry may be employed, or a configuration in which four silencers 22 are disposed in rotational symmetry It may be
  • silencer 22 when the silencer 22 is disposed inside the tubular member 12, it is preferable that two or more silencers 22 be disposed in rotational symmetry. For example, as shown in FIG. 21, even if four silencers 22 are arranged at equal intervals in the circumferential direction on the inside of the tubular member 12 (inner circumferential surface (inner circumferential surface)), they have rotational symmetry. Good.
  • the plurality of silencers 22 may be connected.
  • eight silencers 22 may be connected in the circumferential direction.
  • the silencers 22 are disposed in the tubular member 12, in the case where the plurality of silencers 22 are arranged in the circumferential direction on the inner peripheral surface of the tubular member 12, the plurality of silencers are arranged.
  • the vessels 22 may be connected.
  • eight silencers 22 may be connected in the circumferential direction.
  • the silencer 22 has a substantially cubic shape along the outer peripheral surface of the tubular member 12.
  • the present invention is not limited thereto, and various types of three-dimensional shapes having hollow portions may be used.
  • the silencer 22 may be annular along the entire circumference of the outer circumferential surface of the tubular member 12 in the circumferential direction.
  • the opening 32 is formed in a slit shape along the circumferential direction of the inner peripheral surface of the tubular member 12.
  • the silencer 22 when the silencer 22 is disposed in the tubular member 12, as shown in FIG. 25, the silencer 22 is annular along the entire circumference of the inner circumferential surface of the tubular member 12 in the circumferential direction. May be
  • the outer diameter of the silencer 22 in the circumferential direction is assumed to cover the entire periphery of the outer peripheral surface of the tubular member 12 ( Assuming that the effective outer diameter is D 1 and the outer diameter (effective outer diameter) of the tubular member 12 is D 0 (see FIG. 24), it is preferable to satisfy D 1 ⁇ D 0 + 2 ⁇ (0.045 ⁇ ⁇ + 5 mm) .
  • the unit of D 1 , D 0 and ⁇ in the formula is mm. Thereby, high soundproof performance can be expressed, suppressing the enlargement of a silencer system.
  • an effective outside diameter is a circle equivalent diameter, and when a cross section is not circular, the diameter of the same circle as the cross-sectional area was made into the effective outside diameter.
  • the inner diameter of the silencer 22 is assumed to cover the entire circumference of the inner circumferential surface of the tubular member 12 in the circumferential direction.
  • D 2 and the inner diameter of the tubular member 12 is D 0 (see FIG. 18)
  • the plurality of silencers 22 are arranged in the circumferential direction of the tubular member 12.
  • the present invention is not limited to this. It may be arranged in the axial direction.
  • the openings 32 of the plurality of silencers 22 may be disposed at at least two or more positions in the axial direction of the tubular member 12.
  • the noise reduction system 10h shown in FIG. 26 includes a silencer 22a connected to the circumferential opening 12a of the tubular member 12 at a substantially central portion of the tubular member 12 in the axial direction, and one end of the tubular member 12 And a silencer 22b connected to the circumferential opening 12a in the vicinity.
  • two silencers are disposed in rotational symmetry in the circumferential direction respectively.
  • two or more silencers may be arranged in the circumferential direction and in the axial direction, respectively.
  • the present invention is not limited to this, and three or more silencers may be arranged in the axial direction.
  • the construction of arranging the plurality of silencer in the axial direction is preferably a length L d of the cavity for each position of the opening to position different muffler.
  • a silencer 22b connected to the circumferential opening 12a in the vicinity.
  • the depth L d of the hollow portion 30a of the central portion of the muffler 22a, the depth L d of the hollow portion 30b of the end portion of the muffler 22b are different from each other.
  • the noise reduction system 10j shown in FIG. 28 has a silencer 22a connected to the circumferential surface opening 12a of the tubular member 12 at a substantially central portion of the tubular member 12 in an axial direction, And a silencer 22b connected to the circumferential opening 12a in the vicinity.
  • the sound absorbing material 24 a is disposed in the hollow portion 30 a of the silencer 22 a on the central portion side
  • the sound absorbing material 24 b is disposed in the hollow portion 30 b of the silencer 22 b on the end side.
  • the sound absorbing characteristics of the sound absorbing material 24a and the sound absorbing characteristics of the sound absorbing material 24b are different from each other.
  • the wavelength that can be favorably damped changes depending on the arrangement position of the silencer (opening) in the axial direction. Therefore, by arranging a plurality of silencers in the axial direction, sounds in different wavelength ranges can be muffled and muffled in a wider band. In addition, it is possible to more preferably mute by adjusting the depth L d of the cavity and the sound absorption characteristics of the sound absorber according to the wavelength that can be preferably muffled for each position of the opening in the axial direction. .
  • the hollow portion 30 of the silencer 21 is configured to have a depth L d in the radial direction from the opening, and in the example shown in FIG.
  • the depth L d is provided in the axial direction from the above, the present invention is not limited to this, and the depth 32 may be provided in the circumferential direction from the opening 32.
  • FIG. 29 is a cross-sectional view schematically showing another example of the noise reduction system of the present invention
  • FIG. 30 is a cross-sectional view taken along the line CC in FIG.
  • the silencer system shown in FIGS. 29 and 30 has two silencers 23 arranged along the outer peripheral surface of the tubular member 12.
  • the cavity 30 of the silencer 23 extends from the opening 32 along the circumferential direction of the tubular member 12. That is, the silencer 23 has a depth in the circumferential direction from the opening 32. With such a configuration, the axial length of the silencer can be shortened.
  • FIG. 30 Although it was set as the structure which has two silencers 23 in the example shown in FIG. 30, it is not limited to this, You may have three or more silencers 23. FIG. For example, as shown in an example shown in FIG. 31, five silencers 23 may be provided.
  • the depth of the hollow part 30 of the silencer 22 was set as the structure extended in one direction, it is not limited to this.
  • the hollow portion 30 may have a substantially C shape in which the depth direction is folded.
  • the sound wave that has entered the hollow portion 30 shown in FIG. 32 proceeds from the opening 32 in the right direction in the drawing, and then turns back and proceeds in the left direction in the drawing.
  • the depth L d of the cavity 30, since it is the length along the traveling direction of the sound wave, the depth L d of the cavity 30 shown in FIG. 32 is a length along the folded shape.
  • FIG. 33 shows a schematic cross-sectional view of another example of the noise reduction system of the present invention.
  • the muffling system 10k shown in FIG. 33 has a configuration in which a muffling device 14 for muffling the sound passing through the tubular member 12 is installed on one end face side of the tubular member 12.
  • the silencer 14 has an insertion portion 26 and a silencer 22.
  • the insertion portion 26 is a cylindrical member whose both ends are open, and the silencer 22 is connected to one end face. Further, the outer diameter of the insertion portion 26 is smaller than the inner diameter of the tubular member 12 and can be inserted into the tubular member 12.
  • the silencer 22 has the same configuration as the above-described L-shaped silencer 22 except that the silencer 22 is disposed on the end face of the insertion portion 26. Further, the silencer 22 is disposed along the circumferential surface of the insertion portion 26 so as not to block the inner diameter of the insertion portion 26.
  • the silencer 22 is disposed such that the opening 32 thereof faces the central axis of the insertion portion 26 (the central axis of the tubular member 12).
  • the central axis of the insertion portion 26 is an axis passing through the center of gravity in the cross section of the insertion portion 26.
  • the silencer 14 is inserted and installed in the tubular member 12 from the end face side where the silencer 22 of the insertion portion 26 is not disposed. Since the effective outer diameter of the silencer 22 is larger than the inner diameter of the tubular member 12, the insertion portion 26 is inserted to a position where the silencer 22 contacts the end face of the tubular member 12. Thus, the silencer 22 is disposed in the vicinity of the open end face of the tubular member 12. That is, the opening 32 of the silencer 22 is disposed in the space within the opening end correction distance of the tubular member 12. Thus, the opening 32 of the silencer 22 is connected to the sound field space of the first resonance of the tubular member 12.
  • the silencer having the silencer and the insertion portion into the tubular member and installing it, the installation can be easily performed on the existing ventilating port, the air conditioning duct, etc. without performing the large-scale construction and the like. It is possible to Therefore, replacement when the silencer is deteriorated or damaged is easy. Moreover, when using for the ventilation sleeve etc. of a house, it is not necessary to change the through-hole diameter of a concrete wall, and construction is simple. In addition, it is easy to retrofit at the time of renovation.
  • the wall of a house such as an apartment is configured to have, for example, a concrete wall, a gypsum board, a heat insulating material, a decorative plate, and a wallpaper, etc., and a ventilation sleeve is provided through them.
  • the wall 16 in the present invention corresponds to a concrete wall, and the muffler 22 portion of the muffling device 14 is outside the concrete wall. And between the concrete wall and the decorative board (see FIG. 70).
  • the present invention is not limited thereto.
  • the noise reduction device 14 may be configured to be attached to the wall 16 with an adhesive or the like without having the insertion portion.
  • the tubular member 12 may be inserted to install the silencer 14.
  • the insert 26 is disposed between the tubular member 12 and the wall 16.
  • the inner diameter of the insertion portion 26 of the noise reduction device 14 may be larger than the outer diameter of the tubular member 12, and the insertion portion 26 may be disposed in the wall 16. .
  • FIGS. 67 to 69 it is possible to suppress the decrease in the aperture ratio due to the insertion of the insertion portion 26 into the tubular member 12, and the air permeability of the tubular member 12 can be improved.
  • the insertion portion 26 When the insertion portion 26 is arranged in the wall 16 as shown in FIGS. 68 and 69, the insertion portion 26 is arranged on the wall 16 in accordance with the size and shape of the insertion portion 26. It is sufficient to form a groove for Alternatively, when the wall 16 is manufactured, the muffling device 14 (and the tubular member 12) may be installed in advance, and concrete may be poured into the wall 16.
  • the silencer 14 is configured to have the L-shaped silencer 22.
  • the present invention is not limited to this, and may be configured to have the vertical cylindrical silencer 21.
  • the silencer 23 may have a depth in the circumferential direction.
  • the sound absorbing material 24 be disposed in the hollow portion 30 or in the vicinity of the opening 32.
  • the silencer 14 has a plurality of silencers 22.
  • a plurality of silencers 22 may be arranged at equal intervals in the circumferential direction to be rotationally symmetrical.
  • a plurality of silencers 22 are provided in the axial direction, and the openings 32 of the plurality of silencers 22 are disposed at at least two or more axial positions It is also good.
  • the silencer shown in FIG. 35 has the silencer 22a and the silencer 22b in the axial direction from the insertion portion 26 side.
  • the depth L d of the cavity 30 a of the silencer 22 a is different from the depth L d of the cavity 30 b of the silencer 22 b.
  • the silencer shown in FIG. 36 has the silencer 22a and the silencer 22b in the axial direction from the insertion portion 26 side.
  • the sound absorbing material 24a is disposed in the hollow portion 30a of the silencer 22a
  • the sound absorbing material 24b is disposed in the hollow portion 30b of the silencer 22b.
  • the sound absorbing characteristics of the sound absorbing material 24a and the sound absorbing characteristics of the sound absorbing material 24b are different from each other.
  • the silencer shown in FIG. 104 has a silencer 22a and a silencer 22b in the axial direction from the insertion portion 26 side.
  • Three sound absorbing materials 24c, 24d and 24e are disposed in the cavity 30a and the cavity 30b of the silencer 22a, respectively.
  • the sound absorbing materials 24c to 24e are stacked in the depth direction of the hollow portion.
  • the sound absorbing material can be easily filled from the opening into the cavity at the time of manufacture, and the sound absorbing material can be easily replaced at the time of maintenance. Further, it is more preferable that the sound absorbing material molded in accordance with the shape of the hollow portion be divided into a plurality of parts.
  • the plurality of sound absorbing members 24c to 24e disposed in the same hollow portion may be the same type of sound absorbing members, or at least one is a different type of sound absorbing member, that is, sound absorbing performance (flow resistance, material, structure, etc.)
  • the sound absorbing material may be different.
  • a silencer may be constituted so that a silencer can be separated.
  • the silencers separable, it becomes easy to manufacture the silencers in which the size, number, etc. of the silencers are changed.
  • installation and replacement of the sound absorbing material in the hollow portion is facilitated.
  • the distance between the concrete wall and the decorative panel varies, and even the same apartment may differ depending on the location or may differ depending on the construction company.
  • the silencer is designed to be thin enough to be applied to all distances, the soundproofing performance will be lowered. Therefore, when installing the silencer between the concrete wall and the decorative plate, it is possible to reduce the cost by installing a plurality of silencers separated according to the distance between the concrete wall and the decorative plate as appropriate Soundproofing performance can be maximized.
  • the silencer 14 is preferably installed on the tubular member 12 so as to be removable. Thereby, replacement
  • the silencer 14 may be installed on either the end face on the indoor side of the tubular member 12 or the end face on the outdoor side, it is preferable to be installed on the end face on the indoor side.
  • the noise reduction system may have at least one of a cover member installed on any one end surface of the tubular member and an air volume adjustment member installed on the other end.
  • the cover member is a conventionally known louver, gully, etc. installed in a ventilating port, an air conditioning duct, etc.
  • the air flow rate adjustment member is a conventionally known register or the like.
  • the cover member and the air flow rate adjusting member may be installed on the end face of the tubular member on the side where the muffling device is installed, or may be installed on the end face of the side where the muffling device is not installed. Further, for example, as shown in FIG.
  • the air volume adjusting member 20 when the air volume adjusting member 20 is installed on the side of the silencer 14, the air volume adjusting member 20 is installed so as to cover all the silencer 14 when viewed from the axial direction. Is preferred. The same applies to the case where the cover member is installed on the side of the silencer 14.
  • a concrete wall and a decorative plate are installed separately from each other, and a heat insulating material or the like is disposed between the concrete wall and the decorative plate.
  • the silencer 14 is preferably installed in the space between the concrete wall and the decorative board.
  • the silencer 14 may be configured such that the end face on the decorative plate 40 side is disposed closer to the wall 16 than the surface on the wall 12 side of the decorative plate 40.
  • the silencer 14 may be configured such that the end face on the decorative plate 40 side is flush with the surface on the opposite side to the wall 12 of the decorative plate 40.
  • the through holes formed in the decorative plate 40 may be substantially the same as the outer diameter of the silencer 14, and the silencer 14 may be inserted into the through holes of the decorative plate 40.
  • the silencer 14 has a configuration in which the end face on the decorative plate 40 side is flush with the surface on the opposite side of the wall 12 of the decorative plate 40, but the invention is not limited thereto.
  • the part of the muffling device 14 may be configured to exist on the plane on which the decorative plate 40 is located. The configuration in which the silencer 14 is inserted into the through hole of the decorative plate 40 facilitates installation, replacement and the like of the silencer.
  • the silencer 22 of the silencer 14 As the size of the silencer 22 of the silencer 14 is larger, the muffling performance becomes higher.
  • FIG. 71 in the case where the silencer 14 has a configuration in which the end face on the decorative plate 40 side is disposed flush with the surface on the opposite side to the wall 12 of the decorative plate 40, the silencer 22 is If the air flow rate adjusting member 20 such as a register is installed on the side of the decorative plate 40, the through hole (the boundary between the silencer 14 and the decorative plate 40) formed in the decorative plate 40 is visually recognized There is a risk of Therefore, as shown in FIG. 72, it is preferable to place the boundary cover 42 between the air flow rate adjusting member 20 and the decorative plate 40 and the muffling device 14. Thereby, when viewed from the indoor side (air volume adjustment member 20 side), as shown in FIG. 73, the through hole of the decorative plate 40 is hidden by the boundary cover 42, so that the design can be enhanced.
  • the silencer 14 and the boundary cover 42 are separate members, the silencer 14 and the boundary cover 42 may be integrally formed. That is, the silencer 14 may be provided with a fringe.
  • the inner diameter of the silencer 22 may be larger than the inner diameter of the insertion portion 26, ie, larger than the inner diameter of the tubular member 12.
  • a large air flow adjusting member 20 for a tubular member having a diameter larger than the diameter of the tubular member 12 can be used.
  • the through hole of the decorative plate 40 is hidden by the air flow rate adjusting member 20, so that the design can be enhanced.
  • the noise reduction device 14 and the air volume adjustment member 20 may be integrated.
  • the air flow rate adjusting member 20 such as a commercially available register has an insertion portion, and the insertion portion is inserted into the silencer 14 and installed.
  • the insertion portion of a commercially available register has a length of about 5 cm to secure rigidity and sealing at the time of connection, which may limit the design of the silencer 14.
  • FIG. 75 integrating the muffling apparatus 14 and the air volume adjusting member 20 is preferable in that the design freedom of the muffling apparatus 14 is increased and the construction is simplified.
  • the first resonance occurring in the tubular member is the first resonance of the tubular member in the sound reduction system including the cover member, the air flow rate adjustment member and the noise reduction device. . Therefore, the length L d of the hollow portion of the silencer is shorter than 1 ⁇ 4 of the wavelength ⁇ of the sound wave at the resonance frequency of the first resonance of the tubular member in the muffling system including the cover member, the air volume adjusting member and the muffling device.
  • the silencer 14 is arranged such that the central axis of the silencer 14 coincides with the central axis of the tubular member 12. That is, the silencer 14 is the center of the tubular member 12. Although it is formed in the shape of rotational symmetry with respect to the axis, it is not limited to this. As in the noise reduction system shown in FIG. 105 and the noise reduction system shown in FIG. 106, the silencer 14 is disposed such that the central axis of the silencer 14 is offset from the central axis of the tubular member 12 in the direction perpendicular to the central axis. It may be done.
  • a configuration in which the central axis of the silencer 14 coincides with the central axis of the tubular member 12 is preferable in terms of air permeability.
  • the central axis of the muffling device 14 and the central axis of the tubular member 12 deviate from each other, reflection of sound increases, which is preferable in that the soundproofing performance is improved. In particular, it is effective in a high frequency region where the linearity is high.
  • the thickness of the wall for housing that is, the total thickness of the concrete wall and the decorative plate including the space between the concrete wall and the decorative plate (hereinafter also referred to as the total thickness of the wall and the decorative plate) is , About 175 mm to 400 mm. Therefore, the length of the ventilating sleeve (annular member) used for residential use is 175 mm to 400 mm.
  • the first resonance frequency of the resonance generated by the ventilation sleeve having a length in this range is about 355 Hz to 710 Hz.
  • the length of the ventilation sleeve is 175 mm to 400 mm.
  • the width L w of the cavity is 5.5 mm or more from the viewpoint of obtaining sufficient soundproofing performance.
  • it is 15 mm or more, more preferably 25 mm or more.
  • the wall for a house has a total thickness (total thickness of concrete wall and decorative plate) of at most 400 mm, and the concrete wall is at least 100 mm, so the width L w of the cavity is the concrete wall of the house It is preferable that it is 300 mm or less from a viewpoint which can be arrange
  • the depth L of the cavity is sufficient in terms of obtaining sufficient soundproofing performance d is preferably 25.3 mm or more, more preferably 27.8 mm or more, and still more preferably 30.3 mm or more.
  • the silencer is disposed radially between the pillars of the house. The maximum distance between the housing pillars is about 450 mm, and the ventilation sleeve is at least about 100 mm.
  • opening 32 may be covered or opening 32 may be narrowed. That is, it is preferable that the sound absorbing material be disposed at a position near the opening 32 in the cavity 30. Further, it is preferable to dispose the sound absorbing material at a position away from the end face of the hollow portion 30 on the side far from the opening 32 in the depth direction.
  • FIG. 91 shows a schematic diagram of a simulation model.
  • the tubular member had a length of 200 mm and a diameter of 100 mm.
  • the silencer 22 was installed in a tubular shape on the outer periphery of the tubular member 12. The distance between the end face of the sound wave incident side of the tubular member 12 and the silencer 22 in the axial direction was 100 mm.
  • the opening 32 of the silencer 22 was arranged in a slit shape in the circumferential direction of the tubular member. The width of the opening 32 was 15 mm.
  • the axial length of the hollow portion 30 was 60 mm, and the width in the direction perpendicular to the axial direction was 33 mm.
  • the cavity 30 is divided into 9 parts, and the flow resistance is 13000 [Pa ⁇ s / m 2] in each of the 9 divided areas
  • the simulation was performed on the assumption that the sound absorbing material 24 is disposed.
  • p1 is the area closest to the opening 32
  • p2 and p3 are areas farther from the opening 32 than p1 in the radial direction.
  • p4 and p7 are regions farther from the opening 32 than p1 in the axial direction.
  • p5 and p8 are regions farther from the opening 32 than p2 in the axial direction.
  • p6 and p9 are regions farther from the opening 32 than p3 in the axial direction.
  • FIG. 92 shows a graph showing the relationship between the transmission sound pressure intensity and the frequency when the sound absorbing material is arranged in each of the regions p1, p2, p3, p5 and p9.
  • the transmission sound pressure intensity was standardized with the peak of the transmission sound pressure (transmission sound pressure at the first resonance frequency) when the silencer was not installed as 1. Since the first resonance frequency in the tubular member when the silencer is not installed is 630 Hz, the transmitted sound pressure at 630 Hz is the peak sound pressure.
  • FIG. 93 shows a graph showing the transmission loss of the 500 Hz band when the sound absorbing material is disposed in each of the regions p1 to p9. The transmission loss in the 500 Hz band is obtained by averaging the transmission loss at a frequency of 354 Hz to 707 Hz.
  • the configuration in which the sound absorbing material is disposed in the region of p1 closest to the opening 32 that is, the configuration that covers the opening 32, has the lowest transmitted sound pressure intensity and a transmission loss of the 500 Hz band. High and the soundproofing performance is high.
  • the configuration in which the sound absorbing material is disposed in the region of p2 and p4 close to the opening 32 has a low transmitted sound pressure intensity and high transmission loss in the 500 Hz band and high soundproof performance compared to the other regions other than p1. .
  • FIG. 94 when viewed in a cross section parallel to the axial direction, the inside of the hollow portion 30 is axially divided into three, and the flow resistance is 13000 [in each of three divided regions
  • the simulation was performed assuming that the sound absorbing material 24 of Pa ⁇ s / m 2 ] is disposed.
  • pz1 is the area closest to the opening 32
  • pz2 and pz3 are areas farther from the opening 32 than pz1 in the axial direction.
  • FIG. 95 shows a graph showing the transmission loss of the 500 Hz band when a sound absorbing material is arranged in each of the regions pz1 to pz3.
  • FIG. 96 when viewed in a cross section parallel to the axial direction, the inside of the hollow portion 30 is divided into three in the radial direction, and the flow resistance is 13000 [Pa Simulation was performed assuming that the sound absorbing material 24 of s / m 2 ] is disposed.
  • Ph1 is the area closest to the opening 32
  • ph2 and ph3 are areas farther from the opening 32 than ph1 in the radial direction.
  • FIG. 97 shows a graph showing the transmission loss of the 500 Hz band when the sound absorbing material is disposed in each of the ph1 to ph3.
  • the silencer 22 may have a second opening 38 communicating with the cavity 30 at a position not connected to the sound field space of the first resonance generated in the tubular member 12.
  • FIG. 98 is a cross sectional view conceptually showing another example of the silencing system of the present invention.
  • the second hollow portion 38 is provided on the surface of the wall surface of the hollow portion 30 of the silencer 22 facing the surface having the opening 32.
  • the acoustic impedance in the cavity 30 is lowered, Sound waves can easily enter the cavity 30.
  • sound energy is easily converted into heat energy in the hollow portion 30, and soundproof performance can be further improved.
  • the silencer can be miniaturized.
  • the formation position of the second opening 38 is not limited as long as it is a position not connected to the sound field space of the first resonance generated in the tubular member 12. Also, the size of the second opening 38 is not limited, but is preferably large.
  • the second opening of the muffling system shown in FIG. 98 may be covered with the film-like member 46.
  • the film-like member 46 is a film-like member that easily passes sound waves and does not pass water, and may be a thin resin film such as Saran Wrap (registered trademark), a non-woven fabric treated with water repellant, or the like. Thereby, it is possible to prevent water and moisture from entering while reducing the acoustic impedance in the hollow portion 30.
  • Saran Wrap registered trademark
  • a non-woven fabric treated with water repellant or the like.
  • FIG. 100 is a schematic cross-sectional view of another example of the noise reduction system of the present invention.
  • FIG. 101 is a cross-sectional view taken along the line DD in FIG.
  • the penetration preventing plate 34 is a plate-like member which is provided in the radial direction of the tubular member 12 below the vertical direction in the tubular member 12.
  • the aeration sleeve tubular member installed on the wall of the house leads to the outside, rainwater may pass through the outer girari, the outer hood, etc. and intrude into the aeration sleeve during strong wind such as a typhoon.
  • the silencer having the hollow portion is connected to the ventilation sleeve, there is a possibility that the rainwater which has entered the ventilation sleeve may infiltrate into the hollow portion and be accumulated.
  • the intrusion prevention plate 34 in the tubular member 12, the rainwater which has entered the tubular member 12 from the outside enters the hollow portion 30 of the silencer 22 You can prevent
  • the height in the vertical direction of the intrusion prevention plate 34 is preferably 5 mm or more and 40 mm or less.
  • FIG. 102 is a schematic cross-sectional view of another example of the noise reduction system of the present invention.
  • FIG. 103 is a cross-sectional view taken along the line EE of FIG. As shown in FIG. 102 and FIG. 103, by configuring the region below the opening 32 of the silencer 22 in the vertical direction with the lid 36, the rainwater that has entered the tubular member 12 from the outside is a silencer It can be prevented from entering the hollow portion 30 of 22.
  • the partition member 54 may be replaceable by using a member forming the surface on the opening 32 side of the silencer 22 as a separate member (partition member 54). Since the size of the opening 32 can be easily changed by making the partition member 54 replaceable, the resonance frequency of the silencer 22 can be set appropriately. Moreover, the sound absorbing material 24 installed in the hollow portion 30 can be easily replaced.
  • Examples of materials for forming the silencer 22 and the silencer 14 include metal materials, resin materials, reinforced plastic materials, carbon fibers, and the like.
  • metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and these alloys can be mentioned, for example.
  • the resin material for example, acrylic resin, methyl polymethacrylate, polycarbonate, polyamideid, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, Resin materials such as polyimide and triacetyl cellulose can be mentioned.
  • resin material for example, acrylic resin, methyl polymethacrylate, polycarbonate, polyamideid, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, Resin materials such as polyimide and triacetyl cellulose can be mentioned.
  • CFRP Carbon Fiber Reinforced Plastics
  • GFRP Glass Fiber Reinforced Plastics
  • the silencer 22 and the silencer 14 are preferably made of a material having higher heat resistance than the flame retardant material, from the viewpoint of being usable for an exhaust port or the like.
  • the heat resistance can be defined, for example, as a time satisfying the items of Article 108-2 of the Building Standard Act Enforcement Order. If the time required to satisfy Article 108-2 of the Building Standard Act Enforcement Order is 5 minutes or more and less than 10 minutes, it is a flame retardant material, and if it is 10 minutes or more and less than 20 minutes, it is a semicombustible material; The above cases are noncombustible materials.
  • heat resistance is often defined in each field. Therefore, the silencer 22 and the silencer 14 may be made of a material having heat resistance equal to or higher than the flame retardancy that is defined in the field according to the field using the silencer system.
  • the openings 32 of the silencers 22 are covered with a windproof film 44 that transmits sound waves and shields air (wind).
  • a windproof film 44 that transmits sound waves and shields air (wind).
  • the windproof films 44 transmit sound waves, so that the muffling effect by the silencers 22 can be obtained, and Since the windproof film 44 shields the air, the flow of air into the hollow portion 30 can be suppressed to reduce the pressure loss.
  • the windproof film 44 may be a non-air-permeable film or a low air-permeable film.
  • the material of the non-ventilated windproof film 44 is acrylic resin such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate, polyamideid, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene Resin materials such as sulfide, polysulfone, polybutylene terephthalate, polyimide, triacetyl cellulose and the like can be used.
  • the material of the low air-permeable windproof film 44 is a porous film made of the above resin, porous metal foil (porous aluminum foil etc.), non-woven fabric (resin-bonded non-woven fabric, thermal-bonded non-woven fabric, spun-bonded non-woven fabric, spunlace non-woven fabric (Nanofiber non-woven fabric), woven fabric, paper, etc. can be used.
  • a porous film, porous metal foil, a nonwoven fabric, and a woven fabric are used, the sound absorption effect can be acquired by the through-hole part which they have. That is, they also function as a conversion mechanism that converts sound energy into heat energy.
  • the thickness of the windproof film 44 is preferably 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 300 ⁇ m, and still more preferably 5 ⁇ m to 100 ⁇ m.
  • the silencer 14 according to the present invention is disposed at one end of the tubular member 12, and the insertion silencer 50 is disposed inside the tubular member 12. It is also good.
  • the muffling device 14 of the present invention is disposed at one end of the tubular member 12, and the outdoor soundproof hood 52 is disposed at the other end of the tubular member 12. It may be configured as Alternatively, the silencer 14 of the present invention is disposed at one end of the tubular member 12, and the insertion type silencer 50 is disposed inside the tubular member 12 at the other end of the tubular member 12.
  • the outdoor soundproof hood 52 may be disposed. Thus, high soundproofing performance can be obtained in a wider band by combining with other soundproofing members.
  • interpolation silencer 50 Various known interpolation silencers can be used as the interpolation silencer 50.
  • Product made by Unix: Silencer (UPS100SA etc.), product made by Kentoh Co., Ltd .: Silent sleeve P (HMS-K etc.) etc. can be used.
  • Various known soundproof sleeves can be used as the outdoor soundproof hood 52.
  • a soundproofing hood (SSFW-A10M or the like) manufactured by Unix Co., Ltd.
  • a soundproofing hood (BON-TS or the like) manufactured by Silfer Co., Ltd., or the like can be used.
  • the tubular member 12 is not limited to a straight tubular one, and may have a bent structure.
  • the air (flow of air) and the sound waves are also reflected to the upstream side at the bending portion, so that neither the wind nor the sound waves pass.
  • the angled change of the wall may be made gentle by making curved parts to be curved or the like, and a flow straightening plate may be provided at the bent parts to change air flow direction to ensure air permeability. Conceivable.
  • the bent portion is formed into a curved surface or a straightening vane is provided to the bent portion, although the air permeability is improved, the sound wave transmission rate is also increased.
  • an acoustic transmission wall 60 which transmits a sound wave while preventing wind from passing therethrough is disposed at the bent portion of the tubular member 12.
  • the tubular member 12 has a bent portion that bends approximately 90 °.
  • the sound transmitting wall 60 is disposed at the bend of the tubular member 12 with its surface inclined by about 45 ° with respect to the longitudinal direction of the tubular member 12 on the incident side and the longitudinal direction of the tubular member 12 on the outgoing side.
  • the upper end in the drawing is the incident side, and the right end is the emission side.
  • the sound transmission wall 60 transmits the sound wave
  • the sound wave incident from the upstream side transmits the sound transmission wall 60 at the bending portion and is reflected upstream by the wall of the tubular member 12. That is, the characteristics of the original tubular member 12 are maintained.
  • the sound transmission wall 60 does not pass the wind
  • the wind incident from the upstream side is bent in the traveling direction by the sound transmission wall 60 at the bent portion and flows downstream. As described above, by disposing the sound transmission wall 60 at the bent portion, it is possible to improve the air permeability while maintaining the low sound transmittance.
  • a non-woven fabric with low density and a membrane with low thickness and density can be used.
  • a non-woven fabric having a low density Yodogawa Paper Mill Co., Ltd .: stainless fiber sheet (Tomy Filec SS), ordinary tissue paper and the like can be mentioned.
  • a film with a small thickness and density various commercially available lap films, silicone rubber films, metal foils and the like can be mentioned.
  • Example 1 Next, as Example 1, as shown in FIG. 42, simulation was performed about the structure which has arrange
  • FIG. The silencer 22 is an L-shaped silencer, and has an annular shape along the entire circumference of the outer circumferential surface of the tubular member 12 in the circumferential direction, and the opening 32 is formed in a slit shape along the circumferential direction Shape (see FIG. 24). Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
  • the depth L d of the cavity 30 is 60 mm, the width L w is 10 mm, the width of the axial opening 32 is 10 mm, the thickness of the tubular member 12 is 3 mm, and the area S 1 of the opening 32 and the cavity
  • the ratio S 1 / S d to the surface area S d of the inner wall of 30 was 7.4%, and the central position of the opening 32 in the axial direction was 150 mm from the end face on the sound source side.
  • the sound absorbing material 24 is to be filled in the entire area of the hollow portion 30.
  • the flow resistance of the sound absorbing material 24 was 13000 [Pa ⁇ s / m 2 ].
  • the sound absorbing material 24 is assumed to be filled in the entire area of the hollow portion 30 and the flow resistance of the sound absorbing material 24 is simulated as 13000 [Pa ⁇ s / m 2 ] unless otherwise specified. .
  • the results are shown in FIG. FIG. 43 also shows the result in the case where the depth L d is 0 mm as a reference example, that is, in the case where the silencer 22 is not disposed.
  • the transmission sound pressure is a value normalized with the transmission sound pressure of the first resonance frequency as 1. As shown in FIG.
  • the transmission sound pressure is selectively lowered in the vicinity of the first resonance frequency and the third resonance frequency, and in these frequency bands, It can be seen that the soundproofing performance is high. This is because the sound absorption effect in the noise reduction system of the present invention becomes higher as the sound pressure inside the tubular member becomes higher due to the resonance phenomenon of the tubular member.
  • Comparative Example 1 Next, as Comparative Example 1, as shown in FIG. 44, a simulation was performed on a configuration in which the silencer 122 is disposed on the outer peripheral surface of the tubular member 12.
  • the depth L d of the hollow portion 130 is 10 mm
  • the width L w is 60 mm
  • the area ratio S 1 / S d is 76.3%. It is the same configuration as the configuration.
  • This configuration is an example in which the sound absorption effect is different because the area of the opening is different although the volume of the cavity is the same as that of the first embodiment.
  • the results are shown in FIG. FIG.
  • the transmission sound pressure is low in a wide frequency band, particularly in a high frequency band of 800 Hz or more.
  • the transmitted sound pressure of the resonance sound is not selectively lowered, and the soundproofing performance on the low frequency side near the first resonance frequency is not sufficient.
  • FIG. 46 shows the result of simulation in which the depth L d of the hollow portion 30 was variously changed in the first embodiment.
  • the width of the opening 32 was 10 mm.
  • FIG. 47 shows the result of simulation in which the width of the opening was variously changed in the comparative example 1 described above.
  • FIG. 48 shows the result of simulation in which the depth L d of the cavity 30 was variously changed in the same manner as in Example 1 except that the vertical cylindrical silencer was used.
  • the width L w (the width of the opening 32) of the hollow portion 30 was 10 mm.
  • the sound absorbing material was changed in accordance with the size of the hollow portion. Also, the central position of the opening was fixed at the center of the tubular member. Further, in FIGS.
  • the value of ⁇ / 4 for each frequency is also indicated by a thick line for comparison. It can be seen from FIG. 46 that the muffling effect differs depending on the depth L d of the hollow portion, and a high muffling effect can be obtained even on the low frequency side. Since the opening is disposed at the center, the first resonance sound and the third resonance sound, which have high sound pressure at the center, are rapidly absorbed. Also, the required length is shorter than ⁇ / 4, and its specificity is clear. Similarly, in the case of the vertical cylinder type, it is understood from FIG. 48 that the muffling effect is different depending on the depth L d of the hollow portion, and a high muffling effect can be obtained even on the low frequency side.
  • the opening is disposed at the center, the first resonance sound and the third resonance sound, which have high sound pressure at the center, are rapidly absorbed. Also, the required length is shorter than ⁇ / 4, and its specificity is clear. On the other hand, it can be seen from FIG. 47 that in the configuration in which a sound absorbing material is simply disposed, a length of about ⁇ / 4 is required for sound absorption of resonance sound, and in this case, soundproof performance on the low frequency side is enhanced. I understand that it is difficult.
  • Example 1 the transmission loss at the first resonance frequency when the depth of the cavity is variously changed, and for the comparison example 1, the width at the first resonance frequency when the width of the opening is variously changed.
  • the transmission loss was calculated. The higher the transmission loss, the higher the performance.
  • the results are shown in FIG. Note that 1 ⁇ 4 of the wavelength ⁇ of the first resonance frequency is about 170 mm.
  • the transmission loss peaks at a depth shorter than ⁇ / 4.
  • Comparative Example 1 the transmission loss increases as the width of the opening increases. This is a surface area in contact with the sound wave of the sound absorbing material, and a property dependent on volume. Such characteristics are obtained when the sound absorbing material is used in a general use method of increasing the surface area in contact with sound waves.
  • Example 2 Next, the result of having performed simulation about the position of the opening part 32 of the silencer 22 is demonstrated.
  • the position of the opening 32 of the silencer 22 was variously changed in the axial direction of the tubular member to calculate the transmitted sound pressure.
  • FIG. 50 the case where the center of the opening 32 is at the axial center position of the tubular member is taken as a reference (position 0 mm).
  • the second embodiment is the same as the first embodiment except for the position of the opening 32.
  • the configuration in which the opening 32 is disposed at the center is referred to as Example 2, and as shown in FIG.
  • FIG. 51 the configuration (position 140 mm) in which the opening 32 is disposed in the vicinity of one end face Do.
  • a graph showing the relationship between the position of the opening, the frequency, and the transmitted sound pressure is shown in FIG. 52, and the graph showing the relationship between the frequency and the transmitted sound pressure in Examples 2 and 3 is shown in FIG.
  • FIG. 53 the case where a silencer is not arrange
  • the opening 32 of the silencer 22 by arranging the opening 32 of the silencer 22 at a position close to the axial center, the sound pressure at the axial center such as the first resonance frequency and the third resonance frequency is obtained. It can be seen that sound waves of a frequency at which is increased can be muted more suitably.
  • changing the arrangement position of the opening 32 changes the muffling effect on each resonance frequency. For example, by arranging the opening 32 at a position of 90 mm from the center, it can be seen that the muffling effect on the second resonance frequency at which the sound pressure becomes high at this position can be further enhanced.
  • the mode of noise cancellation can be controlled by the position of the opening 32 of the noise suppressor 22.
  • results of simulation of the flow resistance of the sound absorbing material 24 disposed in the hollow portion 30 of the silencer 22 will be described.
  • the depth L d of the cavity is 80 mm
  • the width L w of the cavity is 10 mm
  • the width L o of the opening is 10 mm
  • the area ratio S 1 / S d is 5.5%
  • the position of the opening in the axial direction is the center It is.
  • the flow resistance has an optimum range. This is because when the flow resistance becomes too large, the passage of the inside of the sound absorbing material 24 is difficult, and the conversion efficiency from the sound energy to the heat energy by the sound absorbing material 24 becomes low.
  • FIGS. 55 and 56 are graph showing the relationship between the flow resistance of the sound absorbing material 24 and the peak value of the transmitted sound pressure when the depth L d of the cavity 30 is 10 mm (1 cm) to 140 mm (14 cm).
  • FIG. 56 is a graph showing the peak value of the transmitted sound pressure with respect to the depth L d of the cavity 30 and the flow resistance of the sound absorbing material 24. As shown in FIGS. 55 and 56, it can be seen that the flow resistance of the sound absorbing material 24 has a suitable range depending on the depth L d of the cavity 30.
  • the range of flow resistance in which the effect of selectively absorbing the resonance sound of the present invention appears is (1.25 ⁇ log (0.1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 5.6 is preferable, and (1.32-log ((0.1 x L d ))) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 5.2 is more preferable, (1.39-log ((0 More preferably, 1 ⁇ L d )) / 0.24 ⁇ log ( ⁇ 1 ) ⁇ 4.7.
  • the unit of L d is [mm]
  • log is a common logarithm.
  • Example 4 Next, the result of simulation will be described for the case where a plurality of silencers 22 are arranged in the axial direction.
  • the configuration of the muffling system is as shown in FIG. 27: a silencer 22a having an opening 32a at the central position (position 150 mm from the end face) in the axial direction in the axial direction; And a silencer 22b having an opening 32b.
  • the thickness of the wall was 300 mm, and the diameter of the tubular member was 100 mm.
  • the silencer 22a and the silencer 22b are L-shaped silencers, and have an annular shape along the entire circumference of the outer peripheral surface of the tubular member 12 in the circumferential direction, and a slit in which the opening 32 extends along the peripheral direction In the shape of a circle.
  • the depth L d of the hollow portion 30 a of the silencer 22 a is 80 mm
  • the width L w is 10 mm
  • the width L o of the opening 32 a is 10 mm
  • the area ratio S 1 / S d is 5.5%.
  • the depth L d of the hollow portion 30 b of the silencer 22 b is 50 mm, the width L w is 10 mm, the width L o of the opening 32 b is 10 mm, and the area ratio S 1 / S d is 8.9%.
  • the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22a and the silencer 22b.
  • the flow resistance of the sound absorbing material 24 was 13000 [Pa ⁇ s / m 2 ].
  • the relationship between the frequency and the transmitted sound pressure was calculated using such a model of the noise reduction system.
  • the results are shown in FIG. FIG. 57 also shows the results of Example 1 as a reference example in the case where there is no silencer and in a configuration having one silencer in the axial direction.
  • Example 1 of the configuration having one silencer the transmission sound pressure at the first resonance frequency and the third resonance frequency can be reduced, but the transmission sound at the second resonance frequency and the fourth resonance frequency The pressure is relatively high.
  • the sound pressure of the second resonance in addition to the silencer 22a disposed at the position (center) where the sound pressure of the first resonance is high, the sound pressure of the second resonance is disposed at a position (25 mm from the end face) Since the silencer 22 b is provided, the transmitted sound pressure of the second resonance can also be lowered. Therefore, the soundproof effect can be obtained in a wider band. Further, at the position where the silencer 22b is disposed, the sound pressure of the third resonance and the fourth resonance is also not zero, so that the soundproof effect can be obtained also for these resonance frequencies.
  • U00F2 is surrounded by a wall member disposed acrylic plate W 1 having a thickness of 5mm on both sides of the total thickness 205 mm). Also, the five surfaces of the sound-absorbing urethane foam W 3, the inner surface of the three faces are disposed on the left and right surfaces, corrugated acoustical polyurethane foam W 4 (maximum thickness 35 mm, Fuji rubber industry Co., Ltd. U00F6) a Placed. The size of the soundproof room was 400 mm ⁇ 500 mm ⁇ 500 mm.
  • a ventilation sleeve (tubular member) 12 made of vinyl chloride having an inner diameter of 10 cm was installed through the wall member.
  • a lateral glaring (SG-CB manufactured by Unix Co., Ltd.) is attached to the end face of the soundproof room of the aeration sleeve 12 as a cover member 18 and a register (made by Unix Co., Ltd. KRP- BWF) attached.
  • a measurement microphone MP for acoustic wave detection (TYPE 4152N manufactured by Accor Corporation) was disposed at a position 50 cm away from the register 20 outside the soundproofing room.
  • the register 20 was closed, white noise was generated from the two speakers SP, and the sound pressure was measured for 10 seconds at a sampling rate of 25000 Hz with the measurement microphone MP.
  • Fourier transform was performed on the measured sound pressure data to calculate a frequency spectrum. Data after Fourier transform were averaged at 10 Hz intervals. This data is used as background data.
  • the register 20 is fully opened, the sound pressure is measured in the same manner as described above, the data of the sound pressure is subjected to Fourier transform, the frequency spectrum is calculated, and the difference with the background data is calculated as reference data .
  • Example 5 As Example 5, as shown in FIG. 59, the silencer 22 is installed in the ventilation sleeve 12, the register 20 is fully opened, and the sound pressure is measured in the same manner as described above. Fourier transform was performed to calculate a frequency spectrum, and the difference with background data was obtained to obtain data of transmitted sound pressure. The results are shown in FIG.
  • the silencer 22 according to the fifth embodiment has an annular shape along the entire circumference of the outer peripheral surface of the tubular member 12 in the circumferential direction, and the opening 32 is formed in a slit shape along the circumferential direction. (See FIG. 24). Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
  • the depth L d of the cavity 30 is 80 mm, the width L w is 14 mm, the width of the axial opening 32 is 15 mm, the area ratio S 1 / S d is 8.3%, and the opening 32 in the axial direction
  • the center position of was at a position of 113 mm from the end face on the sound source side.
  • rock wool made by Mitsuroko Co., Ltd.
  • the flow resistance of the sound absorbing material 24 is 40,000 [Pa ⁇ s / m 2 ], and the entire area of the hollow portion 30 is filled.
  • Comparative Example 2 As Comparative Example 2, the transmitted sound pressure was determined in the same manner as in Example 4 except that a soundproof sleeve made of polyethylene (SK-BO 75, manufactured by Shin-Kyowa Co., Ltd.) was disposed in the ventilation sleeve 12 instead of the silencer 22. . The results are shown in FIG.
  • Comparative Example 3 As Comparative Example 3, the transmitted sound pressure is the same as in Example 4 except that a silent sleeve P (HMS100K manufactured by Kentomo Co., Ltd.), which is a resonance type silencer, is disposed in the ventilation sleeve 12 instead of the silencer 22. I asked for. The results are shown in FIG.
  • Example of the present invention can significantly reduce the transmitted sound pressure of the first resonance frequency on the low frequency side as compared with the Comparative Example.
  • Example 6 As Example 6, the thickness of the sound absorbing urethane foam W 2 on which the ventilation sleeve 12 is installed was set to 265 mm, and the transmission sound pressure was determined in the same manner as in Example 5 except that the length of the ventilation sleeve 12 was changed. The results are shown in FIG.
  • Comparative Example 4 The transmitted sound pressure was determined in the same manner as in Example 6 except that a silent sleeve P (HMS 100K manufactured by Kentomo Co., Ltd.), which is a resonance type silencer, was disposed in the ventilation sleeve 12 instead of the silencer 22. The results are shown in FIG.
  • the same silencer 22 as the fifth embodiment is used even if the length of the ventilating sleeve is changed, that is, for ventilating sleeves having different first resonance frequencies. It can be seen that high soundproofing performance can be obtained by using On the other hand, it can be understood from the comparison between FIG. 62 and FIG. 64 that, in the resonance type silencer, when the first resonance frequency of the aeration sleeve is different, the soundproofing performance is lowered and the versatility is low.
  • Example 7 In the seventh embodiment, the silencer 22a and the silencer 22b are arranged in the axial direction on the ventilation sleeve 12, the register 20 is fully opened, and the sound pressure is measured in the same manner as described above. Fourier transform was performed to calculate a frequency spectrum, and the difference with background data was obtained to obtain data of transmitted sound pressure. The results are shown in FIGS. 65 and 66.
  • FIG. 66 shows the average value of transmission loss determined for each frequency band (octave band frequency).
  • the octave band frequency of 500 Hz is the average of transmission loss at 354 Hz and less than 707 Hz
  • that of 1000 Hz is the average of transmission loss at 707 Hz and less than 1414 Hz.
  • the average value of the transmission loss at a frequency of 1414 Hz or more and less than 2829 Hz is obtained.
  • 65 and 66 also show the result of the fifth embodiment.
  • the silencer 22a and the silencer 22b of Example 7 are annular along the entire circumference of the outer circumferential surface of the tubular member 12 in the circumferential direction, and the opening 32 is formed in a slit shape along the circumferential direction.
  • the shape is as shown in FIG.
  • the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
  • the depth L d of the cavity 30a of the silencer 22a is 40 mm
  • the width L w is 14 mm
  • the width L o of the axial opening 32 a is 14 mm
  • the area ratio S 1 / S d is 15.7%
  • the central position of the opening 32a in the axial direction was 113 mm from the end face on the sound source side.
  • the depth L d of the cavity 30b of the silencer 22b is 60 mm, the width L w is 14 mm, the width L o of the axial opening 32 b is 15 mm, and the area ratio S 1 / S d is 11.4%,
  • the central position of the opening 32b in the axial direction was 156 mm from the end face on the sound source side.
  • rock wool made by Mitsuroko Co., Ltd.
  • the flow resistance of the sound absorbing material 24 is 40,000 [Pa ⁇ s / m 2 ], and the entire area of the hollow portion 30 is filled.
  • Example 8 Next, the result of having evaluated the soundproofing performance by producing a sound deadening system combined with a commercially available soundproofing member will be described.
  • a simple small-sized soundproof room as shown in FIG. 79 was used.
  • the simple soundproof room shown in FIG. 79 has five sides surrounded by the sound absorbing urethane foam W 3 (thickness 100 mm, U00F2 manufactured by Fuji Rubber Sangyo Co., Ltd.) and the acrylic plate W 1 with a thickness of 5 mm disposed outside thereof.
  • Wall member (wall 16 of the present invention) made of aluminum plate W 5 (thickness 3 mm), glass wool W 6 (32501121 density 32 kg / m 3 non-formaldehyde) and acrylic plate W 1 from the soundproof room side Blockade).
  • the total thickness of the wall members was 100 mm.
  • an acrylic plate W 1 (corresponding to the decorative plate of the present invention) is disposed in parallel to the wall member at a distance of 110 mm from the wall member.
  • corrugated acoustical polyurethane foam W 4 (maximum thickness 35 mm, Fuji rubber industry Co., Ltd. U00F6) is It is arranged.
  • the size of the soundproof room was 800 mm ⁇ 800 mm ⁇ 900 mm.
  • a ventilation sleeve (tubular member) 12 made of vinyl chloride having an inner diameter of 100 mm and a length of 100 mm was installed through the wall member.
  • the decorative plate (acrylic plate W 1 ) was provided with an opening of 100 mm at the same position as the ventilation sleeve when viewed from the axial direction of the ventilation sleeve.
  • acrylic plate W 1 and the aluminum plate W 5 is supported by fixing the ends in an aluminum frame Fr of 30mm square.
  • a lateral glaring (SG-CB manufactured by Unix Co., Ltd.) is attached to the end face of the soundproof room of the aeration sleeve 12 as a cover member 18 and a register (made by Unix Co., Ltd. KRP- BWF) attached.
  • a measurement microphone MP for acoustic wave detection (TYPE 4152N manufactured by Accor Corporation) was disposed at a position 50 cm away from the register 20 outside the soundproofing room.
  • the register 20 is fully opened, the sound pressure is measured in the same manner as described above, the data of the sound pressure is subjected to Fourier transform, the frequency spectrum is calculated, and the difference with the background data is calculated as reference data .
  • the sound insulation material for reference and the resistor 20 are removed, and the silencer 14 is installed on the outer end face of the aeration sleeve 12 (between the wall member and the decorative plate). It was attached to the end face of the decorative board side of.
  • the silencer 14 has an L-shaped silencer 22 connected to the insertion portion 26 with an outer diameter of 100 mm and an inner diameter of 94 mm and one end face of the insertion portion 26.
  • Two silencers 22 are arranged in the axial direction.
  • Each of the silencers 22 has an annular shape along the circumferential surface of the insertion portion 26, and the opening 32 is shaped like a slit along the circumferential direction (see FIG. 24). Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
  • the depth L d of the hollow portion 30 of the silencer 22a is 41 mm, the width L w is 16 mm, the width of the opening 32 in the axial direction is 12 mm, and the area ratio S 1 / S d is 11.6%.
  • the depth L d of the hollow portion 30b of the silencer 22b is 60 mm, the width L w is 15 mm, the width of the axial opening 32 b is 12.5 mm, and the area ratio S 1 / S d is 8.6%.
  • Thinsulate manufactured by 3M
  • the flow resistance of the sound absorbing material 24 is 27000 [Pa ⁇ s / m 2 ], and the entire area of the hollow portion 30 is filled.
  • the sound pressure is measured in the same manner as described above, the sound pressure data is subjected to Fourier transform to calculate the frequency spectrum, and the difference with the background data is determined to be the transmitted sound pressure data .
  • the results are shown in FIG.
  • the opening ratio of the silencer 14 is 88% of the inner diameter of the ventilation sleeve 12.
  • Comparative Example 5 As Comparative Example 5, the same procedure as in Example 8 was carried out except that a soundproof sleeve made of polyethylene (SK-BO 100, manufactured by Shin-Kyowa Co., Ltd.) was disposed in the ventilation sleeve 12 as an insertion type silencer instead of the silencer 14. Sound pressure was determined. The results are shown in FIG. Also, the opening ratio of the soundproof sleeve is 35.7% with respect to the inner diameter of the aeration sleeve 12.
  • SK-BO 100 manufactured by Shin-Kyowa Co., Ltd.
  • Example 9 In Example 9, the transmitted sound pressure was determined in the same manner as in Example 8 except that a polyethylene soundproof sleeve (SK-BO 100, manufactured by Shin-Kyowa Co., Ltd.) was disposed in the ventilation sleeve 12. The results are shown in FIG. Moreover, in FIG. 83, the result of having calculated
  • the octave band frequency of 500 Hz is the average of transmission loss at frequencies of 354 Hz to 707 Hz, and that of 1000 Hz is the average of transmission loss at frequencies of 707 Hz to less than 1414 Hz. is there.
  • Example 8 in which the silencer 14 is disposed can obtain high soundproofing performance in a low frequency range (about 500 Hz) as compared with Comparative Example 5. Furthermore, it can be seen that by combining the soundproof sleeve from Example 9, in addition to the low frequency band, the soundproofing performance in the frequency band around 1000 Hz can also be enhanced.
  • Comparative Example 6 As Comparative Example 6, the transmission sound pressure was changed in the same manner as in Example 8 except that a soundproof hood (SSFW-A10M manufactured by Unix Co., Ltd.) was disposed at the end of the aeration sleeve 12 in the soundproof room side I asked. The results are shown in FIG. In addition, the opening ratio of the soundproof hood is 50.2% with respect to the inner diameter of the aeration sleeve 12.
  • Example 10 the transmitted sound pressure was determined in the same manner as in Example 8 except that a soundproof hood (SSFW-A10M manufactured by Unix Co., Ltd.) was disposed at the end of the aeration sleeve 12 on the soundproof room side. The results are shown in FIG. Moreover, in FIG. 86, the result of having calculated
  • Example 8 in which the silencer 14 is disposed is able to obtain the same soundproofing performance in the low frequency range (about 500 Hz) although the aperture ratio is high compared to Comparative Example 7. I understand that. Furthermore, it can be seen that by combining the soundproof hood from Example 10, in addition to the low frequency band, the soundproofing performance in the frequency band around 1000 Hz can also be enhanced.
  • Example 11 As Example 11, further, a soundproof sleeve made of polyethylene (SK-BO 100, manufactured by Shin-Kyowa Co., Ltd.) is disposed in the aeration sleeve 12, and a soundproof hood (SSFW-A10M, manufactured by Unix, Inc.)
  • the transmitted sound pressure was determined in the same manner as in Example 8 except that it was arranged at the end of the. The results are shown in FIG.
  • FIG. 88 the result of having calculated

Abstract

Provided is a highly versatile sound-damping system with which it is possible to combine high ventilation performance and sound-proofing performance, and with which it is possible to dampen a plurality of resonant sounds, and which does not require design to be made to correspond to a ventilation sleeve. The sound-damping system has a sound-damping device provided to a ventilation sleeve, and the sound-damping device damps sound having the first resonant frequency of the ventilation sleeve. The sound-damping device is equipped with: a sound damper having a cavity portion and an opening portion, and is positioned one end side surface of a wall; and a sound-absorbing material positioned at a position inside the cavity portion or covering the opening portion. The opening portion of the sound damper is positioned facing the central axis side of the ventilation sleeve, and the depth Ld of the cavity portion in the direction of propagation of sound waves within the sound damper is greater than the width Lo of the opening portion in the width direction of the ventilation sleeve. If the wavelength of the sound waves having the first resonant frequency of the ventilation sleeve is defined as λ, the depth Ld of the cavity portion satisfies the condition 0.011×λ<Ld<0.25×λ.

Description

消音システムSilence system
 本発明は、消音システムに関する。 The present invention relates to a noise cancellation system.
 換気口、空調用ダクトなど、室内と室外とを隔てる壁に設けられた、室内と室外とを貫通する管状部材において、室外からの騒音が室内に伝わるのを抑制するため、あるいは室内からの騒音が外部に伝わるのを抑制するために、管状部材内にウレタン、ポリエチレン等の吸音材を設置することが行なわれている。
 しかしながら、ウレタンおよびポリエチレン等の吸音材を用いる場合には、800Hz以下の低周波音の吸収率が極端に低くなるため、吸収率を大きくするためには体積を大きくするが必要であるが、換気口、空調用ダクトなどの通気性を確保する必要があるため、吸音材の大きさには限度があり、高い通気性と防音性能とを両立することが難しいという問題があった。
In a tubular member such as a ventilation port or a duct for air conditioning, which is provided on a wall separating the room from the room, which penetrates the room from the room, the noise from the room can be suppressed from being transmitted to the room. In order to suppress the transmission of the sound to the outside, a sound absorbing material such as urethane or polyethylene is installed in the tubular member.
However, in the case of using a sound absorbing material such as urethane and polyethylene, the absorptivity of low frequency sound of 800 Hz or less becomes extremely low, so it is necessary to increase the volume in order to increase the absorptivity. Since it is necessary to ensure air permeability of the mouth, air conditioning duct and the like, there is a limit to the size of the sound absorbing material, and there is a problem that it is difficult to achieve both high air permeability and soundproof performance.
 ここで、換気口および空調用ダクト等の管状部材における騒音として、管状部材の共鳴音が問題となる。特に、最低周波数の共鳴音が問題となる。この共鳴音が800Hz以下の場合には、吸音材で防音するためには、吸音材の量が著しく増加してしまう。そのため、通気を犠牲にしたとしても、一般的に十分な防音性能を出すことは難しい。市販品を例にあげると、住宅用換気スリーブの内部に挿入する吸音材タイプの防音製品であるポリエチレン製防音スリーブ(株式会社新協和製 SK-BO75)では、開口率が36%となり大幅に通気量を低下させるにもかかわらず、8割以上の共鳴音が透過してしまう。
 このような管状部材の共鳴音を消音するために、特定の周波数の音を消音する共鳴型の消音器が用いられる。
Here, as the noise in the tubular member such as the vent and the air conditioning duct, the resonance sound of the tubular member becomes a problem. In particular, the lowest frequency resonance sound is a problem. When the resonance noise is 800 Hz or less, the amount of the sound absorbing material is significantly increased for soundproofing by the sound absorbing material. Therefore, it is generally difficult to obtain sufficient soundproofing performance even at the expense of ventilation. Taking a commercial product as an example, a polyethylene soundproof sleeve (SK-BO75 made by Shin-Kyowa Co., Ltd.), which is a soundproof product of sound absorbing material type inserted into the inside of a housing ventilation sleeve, has an aperture ratio of 36% and significantly ventilation. In spite of reducing the amount, 80% or more of the resonance sound is transmitted.
In order to silence the resonance of such a tubular member, a resonance type silencer that silences a sound of a specific frequency is used.
 例えば、特許文献1には、第1空間と第2空間とを仕切る仕切部に、両空間相互の通気を図る通気スリーブが貫通状態に設けられ、通気スリーブの通過音に対する消音を図る共鳴型消音機構が通気スリーブに設けられている通気孔構造であって、共鳴型消音機構は、通気スリーブの筒軸芯方向における仕切部の外の位置で、且つ、仕切部と、仕切部に沿ってその表面から離間する状態に設けられた化粧板との間の位置で、通気スリーブの外周部に形成してある通気孔構造が記載されている。また、共鳴型消音機構として、サイドブランチ型消音器、ヘルムホルツ共鳴器が記載されている。 For example, in Patent Document 1, a ventilation sleeve for ventilating both spaces is provided in a penetrating state in a partition part that divides the first space and the second space, and a resonance type silencer for muffling sound passing through the ventilation sleeve A vent structure in which the mechanism is provided in the venting sleeve, wherein the resonance type sound deadening mechanism is located at a position outside the divider in the axial direction of the vent sleeve and along the divider and the divider. A vent structure is described which is formed on the outer periphery of the venting sleeve, at a position between the facing plate and the decorative board provided in a state of being separated from the surface. Further, as a resonance type noise reduction mechanism, a side branch type silencer and a Helmholtz resonator are described.
 また、特許文献2には、自然換気口のスリーブ管内に設置して用いる消音用管状体であって、少なくとも一方の端部を閉止し、他方の端部付近に開口部を設け、一方の端部から開口部の中心までの長さがスリーブ管の全長の略半分の長さを有し、内部には多孔質材を配置する消音用管状体が記載されている。
 また、特許文献2には、住宅、マンション等における外壁の厚さは、200~400mm程度であり、この外壁に設けられるスリーブ管に生じる第一共鳴周波数(400~700Hz)の周波数帯において遮音性能の低下が生じることが記載されている(図15参照)。
Further, Patent Document 2 discloses a muffling tubular body installed and used in a sleeve tube of a natural ventilation port, in which at least one end is closed and an opening is provided in the vicinity of the other end, one end A muffling tubular body is described, having a length from the part to the center of the opening that is approximately half the length of the entire length of the sleeve and inside which the porous material is arranged.
Further, in Patent Document 2, the thickness of the outer wall in a house, an apartment, etc. is about 200 to 400 mm, and the sound insulation performance in the frequency band of the first resonance frequency (400 to 700 Hz) generated in the sleeve tube provided on this outer wall It is described that the decrease of H occurs (see FIG. 15).
特許第4820163号公報(特開2007-169959号公報)Patent No. 4020163 (Japanese Patent Laid-Open No. 2007-169959) 特開2016-95070号公報JP, 2016-95070, A
 しかしながら、本発明者らの検討によれば、共鳴型の消音器を用いて、管状部材の最低共鳴周波数の音を消音する場合には、少なくとも共鳴周波数の波長の1/4の長さが必要となり、消音器のサイズが大型化してしまう。そのため、高い通気性と防音性能とを両立することが難しいという問題があった。
 また、共鳴型の消音器は、特定の周波数(周波数帯域)の音を選択的に消音するものである。管状部材の長さおよび形状等が異なると、管状部材の共鳴周波数も変わる。そのため、管状部材に合わせた設計が必要となり、汎用性が低いという問題があった。
However, according to the study of the present inventors, in order to mute the sound of the lowest resonance frequency of the tubular member by using a resonance type silencer, a length of at least 1/4 of the wavelength of the resonance frequency is required. As a result, the size of the silencer increases. Therefore, there is a problem that it is difficult to simultaneously achieve high air permeability and soundproofing performance.
In addition, the resonance type silencer selectively mutes sound of a specific frequency (frequency band). If the length, shape, etc. of the tubular member differ, the resonant frequency of the tubular member also changes. Therefore, there is a problem that the design is required according to the tubular member, and the versatility is low.
 また、管状部材の共鳴は複数の周波数で発生するが、共鳴型の消音器は特定の周波数の音を消音する。そのため、消音対象となる共鳴音は1つの周波数のみとなり、共鳴型の消音器が消音する周波数帯域は狭いので、他の周波数の共鳴音は消音できないという問題があった。
 また、共鳴型の消音器は解放空間に配置すると効果的であるが、管状部材のような共鳴体の内部に同じ共鳴周波数で配置した場合、管状部材の共鳴と消音器の共鳴が相互作用してしまう。これにより、管状部材による元の共鳴透過音を二つの周波数に分離させて、新たな共鳴透過音を発生させてしまうため、消音器としての効果が小さいという問題があった。
Also, although the resonance of the tubular member occurs at a plurality of frequencies, the silencer of the resonance type mutes the sound of a specific frequency. Therefore, there is a problem that the resonance sound of other frequencies can not be silenced because the resonance noise to be silenced is only one frequency, and the frequency band where the resonance type silencer silences is narrow.
Also, although it is effective to arrange the resonance type silencer in the open space, when arranged at the same resonance frequency inside the resonator such as the tubular member, the resonance of the tubular member interacts with the resonance of the silencer. It will As a result, since the original resonance transmitted sound by the tubular member is separated into two frequencies to generate a new resonance transmitted sound, there is a problem that the effect as the silencer is small.
 本発明の課題は、上記従来技術の問題点を解消し、高い通気性と防音性能を両立することができ、また、複数の共鳴音を消音することができ、また、管状部材に合わせた設計が不要で汎用性の高い消音システムを提供することを課題とする。 The object of the present invention is to solve the above-mentioned problems of the prior art, to achieve both high air permeability and soundproofing performance, to be able to silence a plurality of resonances, and to be designed in accordance with the tubular member It is an object of the present invention to provide a highly versatile silencing system that does not require
 本発明者らは、上記目的を達成すべく鋭意検討した結果、壁を貫通して設置された通気スリーブに、通気スリーブを通過する音を消音する消音装置が設置された消音システムであって、消音装置は、通気スリーブ内に生じる第一共鳴の周波数を含む周波数の音を消音するものであり、消音装置は、空洞部および空洞部と外部とを連通する開口部を有し、壁の一方の端面側に配置される1以上の消音器と、消音器の空洞部内の少なくとも一部に、または、消音器の開口部の少なくとも一部を覆う位置に配置される吸音材と、を備え、消音器の開口部は、通気スリーブの中心軸側を向いて配置されており、消音器内の音波の進行方向における空洞部の深さLdは、通気スリーブの軸方向における開口部の幅Loよりも大きく、消音装置を含む消音システムにおける通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、空洞部の深さLdは、0.011×λ<Ld<0.25×λを満たすことにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, a ventilating sleeve installed through the wall is a noise reduction system in which a noise reducing device is provided to reduce the noise passing through the ventilating sleeve, The muffling apparatus is for muffling sound having a frequency including the frequency of the first resonance generated in the ventilation sleeve, and the muffling apparatus has a cavity and an opening communicating the cavity with the outside, and one of the walls And one or more silencers disposed on the end face side of the sound absorber, and a sound absorbing material disposed at a position covering at least a part of the hollow portion of the silencer or at least a part of the openings of the silencers; The opening of the silencer is disposed toward the central axis of the ventilation sleeve, and the depth L d of the cavity in the sound wave traveling direction in the silencer is the width L of the opening in the axial direction of the ventilation sleeve. a silencer system that is larger than o and includes a silencer Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the aeration sleeve in the stem is λ, the depth L d of the cavity satisfies 0.011 × λ <L d <0.25 × λ, the above problem The present invention has been completed.
That is, it discovered that the said objective could be achieved by the following structures.
 [1] 壁を貫通して設置された通気スリーブに、通気スリーブを通過する音を消音する消音装置が設置された消音システムであって、
 消音器は、通気スリーブ内に生じる第一共鳴の周波数を含む周波数の音を消音するものであり、
 消音装置は、
 空洞部および空洞部と外部とを連通する開口部を有し、壁の一方の端面側に配置される1以上の消音器と、
 消音器の空洞部内の少なくとも一部に、または、消音器の開口部の少なくとも一部を覆う位置に配置される吸音材と、を備え、
 消音器の開口部は、通気スリーブの中心軸側を向いて配置されており、
 消音器内の音波の進行方向における空洞部の深さLdは、通気スリーブの軸方向における開口部の幅Loよりも大きく、
 消音装置を含む消音システムにおける通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、空洞部の深さLdは、0.011×λ<Ld<0.25×λを満たし、
 消音器は、管状部材内に生じる第一共鳴の周波数の音に対して共鳴せず、第一共鳴の周波数の音を前記消音器単体の共鳴によって消音するものではなく、変換機構によって消音するものである消音システム。
 [2] 壁を貫通して設置された通気スリーブに、通気スリーブを通過する音を消音する消音装置が設置された消音システムであって、
 消音装置は、通気スリーブ内に生じる第一共鳴の周波数を含む周波数の音を消音するものであり、
 消音装置は、
 空洞部および空洞部と外部とを連通する開口部を有し、壁の一方の端面側に配置される1以上の消音器と、
 消音器の空洞部内の少なくとも一部に、または、消音器の開口部の少なくとも一部を覆う位置に配置される吸音材と、を備え、
 消音器の開口部は、通気スリーブの中心軸側を向いて配置されており、
 消音器の開口部の面積をS1、空洞部の内壁の表面積をSdとすると、面積Sdに対する面積S1の割合S1/Sdは、0<S1/Sd<40%を満たし、
 消音装置を含む消音システムにおける通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、消音器内の音波の進行方向における空洞部の深さLdは、0.011×λ<Ld<0.25×λを満たし、
 消音器は、管状部材内に生じる第一共鳴の周波数の音に対して共鳴せず、第一共鳴の周波数の音を前記消音器単体の共鳴によって消音するものではなく、変換機構によって消音するものである消音システム。
 [3] 通気スリーブ内に生じる第一共鳴の周波数をF0とし、消音器の共鳴周波数をF1とすると、1.15×F0<F1を満たす[1]または[2]に記載の消音システム。
 [4] 通気スリーブの軸方向に平行な断面において、空洞部の深さ方向に直交する方向の空洞部の幅Lwは、0.001×λ<Lw<0.061×λを満たす[1]~[3]のいずれかに記載の消音システム。
 [5] 吸音材の流れ抵抗σ1は、(1.25-log(0.1×Ld))/0.24<log(σ1)<5.6を満たす[1]~[4]のいずれかに記載の消音システム。
 [6] 吸音材の流れ抵抗σ1は、(1.32-log(0.1×Ld))/0.24<log(σ1)<5.2を満たす[1]~[5]のいずれかに記載の消音システム。
 [7] 吸音材の流れ抵抗σ1は、(1.39-log(0.1×Ld))/0.24<log(σ1)<4.7を満たす[1]~[6]のいずれかに記載の消音システム。
 [8] 壁に平行に設けられた化粧板を有し、
 消音装置は、化粧板と壁との間に配置される[1]~[7]のいずれかに記載の消音システム。
 [9] 通気スリーブの軸方向に平行な断面において、消音器は、通気スリーブの軸方向に延在する空洞部と、通気スリーブの軸方向に平行な空洞部の一面の、通気スリーブの軸方向の一方の端部側に位置する開口部とを有し、
 通気スリーブの軸方向における空洞部の長さが、空洞部の深さLdである[1]~[8]のいずれかに記載の消音システム。
 [10] 消音装置は、複数の消音器を有する[1]~[9]のいずれかに記載の消音システム。
 [11] 複数の消音器の開口部は、挿入部の軸方向の少なくとも2箇所以上の位置に配置されている[10]に記載の消音システム。
 [12] 開口部の位置ごとに、消音器の空洞部の深さLdが異なる[11]に記載の消音システム。
 [13] 開口部の位置ごとに、消音器の空洞部内に音響特性の異なる吸音材が配置されている[11]または[12]に記載の消音システム。
 [14] 消音装置は、通気スリーブ内に接続される筒状の挿入部を有し、
 挿入部は、挿入部の中心軸を通気スリーブの中心軸に一致させて配置されており、
 消音器が、挿入部の一方の端面に接続されている[1]~[13]のいずれかに記載の消音システム。
 [15] 通気スリーブの中心軸を軸とする円周面における、開口部の面積S1は空洞部の面積S0よりも小さい[1]~[14]のいずれかに記載の消音システム。
 [16] 2以上の消音器を有し、
 各消音器の開口部は、挿入部の中心軸に対して回転対称に配置されている[1]~[15]のいずれかに記載の消音システム。
 [17] 通気スリーブの室内側の端部に設置されている[1]~[16]のいずれかに記載の消音システム。
 [18] 通気スリーブの軸方向に垂直な断面において、通気スリーブの実効外径D0と、消音器の実効外径D1とは、D1<D0+2×(0.045×λ+5mm)を満たす[1]~[17]のいずれか一項に記載の消音システム。
 [19] 消音装置が通気スリーブに着脱が可能である[1]~[18]のいずれかに記載の消音システム。
 [20] 消音装置の消音器が分離可能である[1]~[19]のいずれかに記載の消音システム。
 [21] 消音装置が難燃材料より耐熱性の高い材料からなる[1]~[20]のいずれかに記載の消音システム。
 [22] 消音器の開口部は、挿入部の内周面の周方向に沿ってスリット状に形成されている[1]~[21]のいずれかに記載の消音システム。
 [23] 消音装置の通気スリーブとは反対側に設置されるカバー部材、または、風量調整部材を有し、
 通気スリーブの軸方向から見た際に、カバー部材、または、風量調整部材が消音装置を覆っている[1]~[22]のいずれかに記載の消音システム。
 [24] 通気スリーブのいずれか一方の端部に設置されるカバー部材と、
 通気スリーブの他方の端部に設置される風量調整部材と、を有し、
 消音装置、カバー部材および風量調整部材を含む消音システムにおける通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、空洞部の深さLdはλ/4よりも短い[1]~[23]のいずれかに記載の消音システム。
 [25] 壁に平行に設けられた化粧板を有し、
 壁と化粧板との間の空間を含む、壁と化粧板との合計厚みが、175mm~400mmである[1]~[24]のいずれかに記載の消音システム。
 [26] 通気スリーブの軸方向において、消音器は、壁と、壁から離間して配置される化粧板との間に、一部が化粧板に形成された貫通孔に挿通されて配置されており、
 通気スリーブの軸方向から見た際に、化粧板と消音器との境界を覆う境界カバーを有する[1]~[25]のいずれかに記載の消音システム。
 [27] 通気スリーブの軸方向において、消音器は、通気スリーブの一方の端部に配置され、
 さらに、通気スリーブ内に配置される防音部材を有する[1]~[26]のいずれかに記載の消音システム。
 [28] 通気スリーブの軸方向において、消音器は、通気スリーブの一方の端部に配置され、
 さらに、通気スリーブの他方の端部に配置される防音部材を有する[1]~[27]のいずれかに記載の消音システム。
 [29] 消音器の空洞部の幅Lwは、
  5.5mm≦Lw≦300mm
を満たす[1]~[28]のいずれかに記載の消音システム。
 [30] 消音器の空洞部の深さLdは、
  25.3mm≦Ld≦175mm
を満たす[1]~[29]のいずれかに記載の消音システム。
 [31] 空洞部内に複数の吸音材が配置されている[1]~[30]のいずれかに記載の消音システム。
[1] A noise reduction system in which a noise reduction device for reducing noise passing through the ventilation sleeve is installed on a ventilation sleeve installed through the wall,
The silencer is for silencing the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve,
The silencer is
A cavity and an opening communicating between the cavity and the outside, and one or more silencers disposed on one end face side of the wall;
A sound absorbing material disposed at a position covering at least a part of the cavity of the silencer or at least a part of the opening of the silencer;
The opening of the silencer is arranged facing the central axis of the ventilation sleeve,
The depth L d of the cavity in the direction of travel of the sound wave in the silencer is greater than the width L o of the opening in the axial direction of the venting sleeve,
The cavity depth L d satisfies 0.011 × λ <L d <0.25 × λ, where λ is the wavelength of the sound wave at the resonance frequency of the first resonance of the ventilation sleeve in the silencer system including the silencer. ,
The silencer does not resonate with the sound of the frequency of the first resonance generated in the tubular member, and does not mute the sound of the frequency of the first resonance by the resonance of the silencer alone but muffles it by the conversion mechanism Muffler system.
[2] A muffling system in which a muffling apparatus for muffling the sound passing through the ventilation sleeve is provided on a ventilation sleeve installed through the wall,
The muffling apparatus muffles the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve,
The silencer is
A cavity and an opening communicating between the cavity and the outside, and one or more silencers disposed on one end face side of the wall;
A sound absorbing material disposed at a position covering at least a part of the cavity of the silencer or at least a part of the opening of the silencer;
The opening of the silencer is arranged facing the central axis of the ventilation sleeve,
The area of the opening of the silencer S 1, when the surface area of the inner wall of the cavity and S d, the ratio S 1 / S d of the area S 1 to the area S d is 0 <a S 1 / S d <40% Meet
Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the aeration sleeve in the muffling system including the muffling device is λ, the depth L d of the cavity in the traveling direction of the sound wave in the silencer is 0.011 × λ <L. satisfy d <0.25 × λ,
The silencer does not resonate with the sound of the frequency of the first resonance generated in the tubular member, and does not mute the sound of the frequency of the first resonance by the resonance of the silencer alone but muffles it by the conversion mechanism Muffler system.
[3] Assuming that the frequency of the first resonance generated in the ventilation sleeve is F 0 and the resonance frequency of the silencer is F 1 , it is preferable to satisfy 1.15 × F 0 <F 1 according to [1] or [2] Silence system.
[4] In a cross section parallel to the axial direction of the ventilation sleeve, the width L w of the hollow portion in the direction orthogonal to the depth direction of the hollow portion satisfies 0.001 × λ <L w <0.061 × λ. The noise reduction system according to any one of 1) to [3].
[5] The flow resistance σ 1 of the sound absorbing material satisfies (1.25−log (0.1 × L d )) / 0.24 <log (σ 1 ) <5.6 [1] to [4] The muffling system according to any of the above.
[6] The flow resistance σ 1 of the sound absorbing material satisfies (1.32−log (0.1 × L d )) / 0.24 <log (σ 1 ) <5.2 [1] to [5] The muffling system according to any of the above.
[7] The flow resistance σ 1 of the sound absorbing material satisfies (1.39−log (0.1 × L d )) / 0.24 <log (σ 1 ) <4.7 [1] to [6] The muffling system according to any of the above.
[8] It has a decorative board provided parallel to the wall,
The noise reduction system according to any one of [1] to [7], wherein the noise reduction device is disposed between the decorative plate and the wall.
[9] In a cross section parallel to the axial direction of the venting sleeve, the silencer is in the axial direction of the venting sleeve, on one side of the axially extending hollow portion of the ventilating sleeve and the hollow portion parallel to the axial direction of the ventilating sleeve. And an opening located on one end side of the
The silencer system according to any one of [1] to [8], wherein the length of the cavity in the axial direction of the ventilation sleeve is the depth L d of the cavity.
[10] The silencer system according to any one of [1] to [9], wherein the silencer has a plurality of silencers.
[11] The silencer system according to [10], wherein the openings of the plurality of silencers are arranged at at least two or more positions in the axial direction of the insertion portion.
[12] The noise reduction system according to [11], wherein the depth L d of the cavity portion of the silencer is different for each position of the opening.
[13] The noise reduction system according to [11] or [12], wherein sound absorbing materials having different acoustic characteristics are disposed in the hollow portion of the silencer at each position of the opening.
[14] The silencer has a tubular insert connected within the venting sleeve,
The insertion portion is disposed with the central axis of the insertion portion aligned with the central axis of the ventilation sleeve,
The silencer system according to any one of [1] to [13], wherein the silencer is connected to one end face of the insertion portion.
[15] The noise reduction system according to any one of [1] to [14], wherein the area S 1 of the opening in the circumferential surface about the central axis of the ventilation sleeve is smaller than the area S 0 of the cavity.
[16] have two or more silencers,
The silencer system according to any one of [1] to [15], wherein the openings of the respective silencers are arranged in rotational symmetry with respect to the central axis of the insertion portion.
[17] The noise reduction system according to any one of [1] to [16], which is installed at the indoor end of the ventilation sleeve.
[18] In the cross section perpendicular to the axial direction of the ventilation sleeve, the effective outer diameter D 0 of the ventilation sleeve and the effective outer diameter D 1 of the muffler, D 1 <D 0 + 2 × a (0.045 × λ + 5mm) The muffling system according to any one of [1] to [17].
[19] The noise reduction system according to any one of [1] to [18], wherein the noise reduction device can be attached to and removed from the ventilation sleeve.
[20] The noise reduction system according to any one of [1] to [19], wherein a silencer of the noise reduction device is separable.
[21] The noise reduction system according to any one of [1] to [20], wherein the noise reduction device is made of a material having higher heat resistance than the flame retardant material.
[22] The silencer system according to any one of [1] to [21], wherein the opening of the silencer is formed in a slit along the circumferential direction of the inner peripheral surface of the insertion portion.
[23] It has a cover member installed on the opposite side to the ventilation sleeve of the silencer, or an air volume adjustment member,
The silencer system according to any one of [1] to [22], wherein the cover member or the air volume adjusting member covers the silencer when viewed from the axial direction of the ventilation sleeve.
[24] a cover member installed at one end of the ventilation sleeve;
An air volume adjustment member installed at the other end of the ventilation sleeve;
Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the ventilation sleeve in the silencer system including the silencer, the cover member and the air volume adjusting member is λ, the depth L d of the cavity is shorter than λ / 4 [1] The muffling system according to any one of [23].
[25] Have a decorative plate provided parallel to the wall,
The muffling system according to any one of [1] to [24], wherein the total thickness of the wall and the decorative plate, including the space between the wall and the decorative plate, is 175 mm to 400 mm.
[26] In the axial direction of the ventilation sleeve, the silencer is disposed between the wall and the decorative plate disposed apart from the wall by being partially inserted through the through holes formed in the decorative plate Yes,
The noise reduction system according to any one of [1] to [25], having a boundary cover that covers the boundary between the decorative plate and the silencer when viewed in the axial direction of the ventilation sleeve.
[27] In the axial direction of the venting sleeve, the silencer is arranged at one end of the venting sleeve,
Furthermore, the noise reduction system according to any one of [1] to [26], further comprising a soundproofing member disposed in the ventilation sleeve.
[28] In the axial direction of the venting sleeve, the silencer is arranged at one end of the venting sleeve,
Further, the noise reduction system according to any one of [1] to [27], further comprising a soundproofing member disposed at the other end of the ventilation sleeve.
[29] The width L w of the cavity of the silencer is
5.5 mm ≦ L w ≦ 300 mm
The noise reduction system according to any one of [1] to [28].
[30] The depth L d of the cavity of the silencer is
25.3 mm ≦ L d ≦ 175 mm
The noise reduction system according to any one of [1] to [29].
[31] The noise reduction system according to any one of [1] to [30], wherein a plurality of sound absorbing materials are disposed in the hollow portion.
 本発明によれば、高い通気性と防音性能を両立することができ、また、複数の共鳴音を消音することができ、また、通気スリーブに合わせた設計が不要で汎用性の高い消音システムを提供することができる。 According to the present invention, it is possible to achieve both high air permeability and soundproofing performance, and it is also possible to silence a plurality of resonances, and to provide a highly versatile silencing system that does not require a design matched to the ventilation sleeve. Can be provided.
本発明の消音システムの一例を概念的に示す断面図である。It is a sectional view showing an example of a muffling system of the present invention notionally. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 消音器の開口部の面積および空洞部の面積を説明するための図である。It is a figure for demonstrating the area of the opening part of a silencer, and the area of a hollow part. 消音器の空洞部の深さおよび幅を説明するための図である。It is a figure for demonstrating the depth and width of the hollow part of a silencer. 管状部材の音場空間を説明するための図である。It is a figure for demonstrating the sound field space of a tubular member. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 空洞部の深さと幅と平均音圧との関係を表すグラフである。It is a graph showing the relationship between the depth of a hollow part, width, and average sound pressure. 空洞部の深さと幅と平均粒子速度との関係を表すグラフである。It is a graph showing the relationship between the depth of a hollow part, width, and average particle velocity. 空洞部の深さと幅とv×Pとの関係を表すグラフである。It is a graph showing the relationship between the depth of a hollow part, width, and vxP. 空洞部の深さと幅とv×Pとの関係を表すグラフである。It is a graph showing the relationship between the depth of a hollow part, width, and vxP. シミュレーションの方法を説明するための図である。It is a figure for demonstrating the method of simulation. 周波数と透過音圧との関係を表すグラフである。It is a graph showing the relation between frequency and transmitted sound pressure. 開口面積の割合と透過音圧のピークとの関係を表すグラフである。It is a graph showing the relationship between the ratio of opening area, and the peak of transmitted sound pressure. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 図29のC-C線断面図である。FIG. 30 is a cross-sectional view taken along the line CC of FIG. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 消音装置の他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of a silencer. 消音装置の他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of a silencer. 消音装置の他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of a silencer. 消音装置の他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of a silencer. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. シミュレーションに用いた実施例の消音システムのモデルを模式的に表す断面図である。It is sectional drawing which represents typically the model of the muffling system of the Example used for simulation. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. シミュレーションに用いた比較例の消音システムのモデルを模式的に表す断面図である。It is sectional drawing which represents typically the model of the muffling system of the comparative example used for simulation. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数と深さとの関係を表すグラフである。It is a graph showing the relation between transmitted sound pressure, frequency, and depth. 透過音圧と周波数と深さとの関係を表すグラフである。It is a graph showing the relation between transmitted sound pressure, frequency, and depth. 透過音圧と周波数と深さとの関係を表すグラフである。It is a graph showing the relation between transmitted sound pressure, frequency, and depth. 透過損失と距離との関係を表すグラフである。It is a graph showing the relation between penetration loss and distance. シミュレーションに用いた実施例の消音システムの他のモデルを模式的に表す断面図である。It is sectional drawing which represents typically the other model of the muffling system of the Example used for simulation. シミュレーションに用いた実施例の消音システムの他のモデルを模式的に表す断面図である。It is sectional drawing which represents typically the other model of the muffling system of the Example used for simulation. 透過音圧と周波数と位置との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure, a frequency, and a position. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数と流れ抵抗との関係を表すグラフである。It is a graph showing the relation between transmitted sound pressure, frequency and flow resistance. 流れ抵抗と透過音圧のピーク値との関係を表すグラフである。It is a graph showing the relationship between flow resistance and the peak value of transmitted sound pressure. 深さと流れ抵抗と透過音圧のピーク値との関係を表すグラフである。It is a graph showing the relation between depth, flow resistance, and the peak value of transmitted sound pressure. 周波数と透過音圧との関係を表すグラフである。It is a graph showing the relation between frequency and transmitted sound pressure. リファレンスの測定方法を説明するための図である。It is a figure for demonstrating the measuring method of a reference. 実施例における透過音圧の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the transmitted sound pressure in an Example. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 周波数と透過損失との関係を表すグラフである。It is a graph showing the relation between frequency and transmission loss. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 図72を風量調整部材側から見た正面図である。FIG. 73 is a front view of FIG. 72 as viewed from the air amount adjustment member side. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 実施例における透過音圧の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the transmitted sound pressure in an Example. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過損失とオクターブバンドとの関係を表すグラフである。It is a graph showing the relation between the transmission loss and the octave band. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過損失とオクターブバンドとの関係を表すグラフである。It is a graph showing the relation between the transmission loss and the octave band. 透過音圧と周波数との関係を表すグラフである。It is a graph showing the relationship between a transmitted sound pressure and a frequency. 透過損失とオクターブバンドとの関係を表すグラフである。It is a graph showing the relation between the transmission loss and the octave band. 音響透過壁を配置した管状部材の折れ曲がり部を模式的に示す断面図である。It is sectional drawing which shows typically the bending part of the tubular member which has arrange | positioned the sound transmission wall. 音響透過壁を配置した管状部材の折れ曲がり部を模式的に示す断面図である。It is sectional drawing which shows typically the bending part of the tubular member which has arrange | positioned the sound transmission wall. シミュレーションモデルを説明するための模式図である。It is a schematic diagram for demonstrating a simulation model. 透過音圧強度と周波数との関係を表すグラフである。It is a graph showing the relation between transmitted sound pressure intensity and frequency. 500Hzバンドの透過損失を表すグラフである。It is a graph showing the transmission loss of a 500 Hz band. シミュレーションモデルを説明するための模式図である。It is a schematic diagram for demonstrating a simulation model. 500Hzバンドの透過損失を表すグラフである。It is a graph showing the transmission loss of a 500 Hz band. シミュレーションモデルを説明するための模式図である。It is a schematic diagram for demonstrating a simulation model. 500Hzバンドの透過損失を表すグラフである。It is a graph showing the transmission loss of a 500 Hz band. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 図100のD-D線断面図である。FIG. 100 is a cross-sectional view taken along line DD of FIG. 100. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 図102のE-E線断面図である。FIG. 102 is a cross-sectional view taken along the line EE of FIG. 102. 消音装置の他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of a silencer. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. シミュレーションに用いた消音システムのモデルを模式的に表す断面図である。It is sectional drawing which represents typically the model of the muffling system used for simulation. 流れ抵抗と開口幅/筒長と透過損失との関係を表すグラフである。It is a graph showing the relation between flow resistance, opening width / cylinder length, and penetration loss. 本発明の消音システムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the silencing system of this invention. シミュレーションの方法を説明するための図である。It is a figure for demonstrating the method of simulation. 周波数と透過音圧強度との関係を表すグラフである。It is a graph showing the relation between frequency and transmitted sound pressure intensity. 比較例の計算モデルの評価方法を説明するための概念図である。It is a conceptual diagram for demonstrating the evaluation method of the calculation model of a comparative example. 図112のD-D線断面図である。FIG. 113 is a cross-sectional view taken along the line DD of FIG. 周波数と透過音圧強度との関係を表すグラフである。It is a graph showing the relation between frequency and transmitted sound pressure intensity. 比較例の構成を説明するための模式的な側面図である。It is a typical side view for explaining composition of a comparative example. 周波数と透過音圧強度との関係を表すグラフである。It is a graph showing the relation between frequency and transmitted sound pressure intensity.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「直交」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「直交」および「平行」とは、厳密な直交あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な直交あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
Hereinafter, the present invention will be described in detail.
Although the description of the configuration requirements described below is made based on the representative embodiments of the present invention, the present invention is not limited to such embodiments.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
Moreover, in the present specification, the terms "orthogonal" and "parallel" include the range of allowable errors in the technical field to which the present invention belongs. For example, “orthogonal” and “parallel” mean within ± 10 ° of strictly orthogonal or parallel, etc., and the error with respect to strictly orthogonal or parallel is 5 ° or less Is preferably, and more preferably 3 ° or less.
As used herein, "identical" and "identical" are intended to include error ranges generally accepted in the art. Further, in the present specification, the terms “all”, “all” or “entire” etc. include 100% as well as an error range generally accepted in the technical field, for example, 99% or more, The case of 95% or more, or 90% or more is included.
[消音システム]
 本発明の消音システムの構成について、図面を用いて説明する。
 本発明の消音システムは、通気スリーブの第一共鳴の周波数の音に対して共鳴しない消音器を、通気スリーブの近傍に配置して、通気スリーブ内に生じる第一共鳴の周波数の音を消音するものである。
 図1は、本発明の消音システムの好適な実施態様の一例を示す模式的な断面図である。
[Mute system]
The configuration of the noise reduction system of the present invention will be described using the drawings.
The muffling system of the present invention places a silencer, which does not resonate with the sound of the first resonance frequency of the ventilation sleeve, in the vicinity of the ventilation sleeve to muffle the sound of the first resonance frequency generated in the ventilation sleeve. It is a thing.
FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the noise reduction system of the present invention.
 図1に示すように、消音システム10zは、2つの空間を隔てる壁16を貫通して設けられる、円筒状の管状部材12の外側の周面(外周面)に消音器21が配置された構成を有する。
 管状部材12は、例えば、換気口および空調用ダクト等の通気スリーブである。
 消音器21は、通気スリーブ内に生じる第一共鳴の周波数を含む周波数の音を消音するものである。
 消音器21は、管状部材12の半径方向に延在する略直方体形状で、内部に略直方体形状の空洞部30を有する。空洞部30の管状部材12側の端面には、空洞部30と外部とを連通する開口部32が形成されている。
 消音器21の開口部32は、管状部材12の周面に形成された周面開口部12aと接続されている。開口部32が周面開口部12aに接続することによって、消音システム10aにおける管状部材12内に生じる第一共鳴の音場空間に開口部32が接続している。
As shown in FIG. 1, the silencer system 10z has a configuration in which the silencer 21 is disposed on the outer peripheral surface (outer peripheral surface) of the cylindrical tubular member 12 provided through the wall 16 separating the two spaces. Have.
The tubular member 12 is, for example, a ventilation sleeve such as a ventilation port and an air conditioning duct.
The silencer 21 mutes the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve.
The silencer 21 has a substantially rectangular parallelepiped shape extending in the radial direction of the tubular member 12 and has a substantially rectangular parallelepiped hollow portion 30 inside. At the end face of the hollow portion 30 on the side of the tubular member 12, an opening 32 communicating the hollow portion 30 with the outside is formed.
The opening 32 of the silencer 21 is connected to a circumferential opening 12 a formed on the circumferential surface of the tubular member 12. By connecting the opening 32 to the circumferential opening 12a, the opening 32 is connected to the sound field space of the first resonance generated in the tubular member 12 in the noise reduction system 10a.
 なお、管状部材12は、換気口および空調用ダクト等に限定はされず、各種機器に用いられる一般的なダクトであってもよい。 The tubular member 12 is not limited to the ventilating port and the air conditioning duct, but may be a general duct used for various devices.
 また、図1に示すように、消音器21の空洞部30内の音波の進行方向における空洞部30の深さをLdとし、管状部材12の軸方向(以下、単に軸方向ともいう)における消音器21の開口部32の幅をLoとすると、空洞部30の深さLdは、開口部32の幅Loよりも大きい。
 ここで、空洞部30内の音波の進行方向は、シミュレーションにより求めることができる。図1に示す例においは、空洞部30は半径方向に延在しているため、空洞部30内の音波の進行方向は半径方向(図中上下方向)である。従って、空洞部30の深さLdは、半径方向における開口部32から空洞部30上端までの長さである。なお、位置によって空洞部30の深さが異なる場合には、空洞部30の深さLdは、各位置での深さの平均値である。
 また、位置によって開口部32の幅が異なる場合には、開口部32の幅Loは、各位置での幅の平均値である。
Further, as shown in FIG. 1, the depth of the cavity 30 in the direction of travel of the sound wave in the cavity 30 of the silencer 21 is L d, and the axial direction of the tubular member 12 (hereinafter also referred to simply as the axial direction). Assuming that the width of the opening 32 of the silencer 21 is L o , the depth L d of the cavity 30 is larger than the width L o of the opening 32.
Here, the traveling direction of the sound wave in the hollow portion 30 can be determined by simulation. In the example shown in FIG. 1, since the hollow portion 30 extends in the radial direction, the traveling direction of the sound wave in the hollow portion 30 is the radial direction (vertical direction in the drawing). Therefore, the depth L d of the cavity 30 is the length from the opening 32 in the radial direction to the upper end of the cavity 30. When the depth of the cavity 30 differs depending on the position, the depth L d of the cavity 30 is an average value of the depth at each position.
When the width of the opening 32 differs depending on the position, the width L o of the opening 32 is an average value of the widths at each position.
 また、消音システム内における管状部材12内に生じる第一共鳴の共鳴周波数における音波の波長をλとすると、消音器21の空洞部30の深さLdは、0.011×λ<Ld<0.25×λを満たす。すなわち、空洞部30の深さはLdは、λ/4よりも小さく、消音器21は、共鳴によって消音するものではない。 Further, assuming that the wavelength of the sound wave at the resonance frequency of the first resonance generated in the tubular member 12 in the noise reduction system is λ, the depth L d of the hollow portion 30 of the silencer 21 is 0.011 × λ <L d < It satisfies 0.25 × λ. That is, the depth of the cavity portion 30 is L d, smaller than lambda / 4, the muffler 21 does not silenced by resonance.
 前述のとおり、共鳴型の消音器を用いて管状部材の最低共鳴周波数の音を消音する場合には、少なくとも共鳴周波数の波長λの1/4の長さが必要となり、消音器のサイズが大型化してしまう。そのため、高い通気性と防音性能とを両立することが難しいという問題があった。
 また、共鳴型の消音器は、特定の周波数(周波数帯域)の音を選択的に消音するものである。そのため、管状部材の共鳴周波数に合わせた設計が必要となり、汎用性が低いという問題があった。
 また、管状部材の共鳴は複数の周波数で発生するが、共鳴型の消音器は特定の周波数の音を消音する。そのため、消音対象となる共鳴音は1つの周波数のみとなり、また、共鳴型の消音器が消音する周波数帯域は狭いので、他の周波数の共鳴音は消音できないという問題があった。
 また、共鳴型の消音器は解放空間に配置すると効果的であるが、管状部材のような共鳴体の内部に同じ共鳴周波数で配置した場合、管状部材の共鳴と消音器の共鳴が相互作用してしまう。これにより、管状部材による元の共鳴透過音を二つの周波数に分離させて、新たな共鳴透過音を発生させてしまうため、消音器としての効果が小さいという問題があった。
As described above, in the case of using the resonance type silencer to mute the sound of the lowest resonance frequency of the tubular member, at least a quarter length of the wavelength λ of the resonance frequency is required, and the size of the silencer is large. It will Therefore, there is a problem that it is difficult to simultaneously achieve high air permeability and soundproofing performance.
In addition, the resonance type silencer selectively mutes sound of a specific frequency (frequency band). Therefore, the design according to the resonant frequency of a tubular member is needed, and there existed a problem that versatility was low.
Also, although the resonance of the tubular member occurs at a plurality of frequencies, the silencer of the resonance type mutes the sound of a specific frequency. Therefore, there is a problem that the resonance noise to be silenced is only one frequency, and since the frequency band where the resonance type silencer silences is narrow, resonance noises of other frequencies can not be silenced.
Also, although it is effective to arrange the resonance type silencer in the open space, when arranged at the same resonance frequency inside the resonator such as the tubular member, the resonance of the tubular member interacts with the resonance of the silencer. It will As a result, since the original resonance transmitted sound by the tubular member is separated into two frequencies to generate a new resonance transmitted sound, there is a problem that the effect as the silencer is small.
 これに対して、本発明は、空洞部30と開口部32とを有し、消音器内の音波の進行方向における空洞部30の深さLdが、管状部材の軸方向における開口部の幅Loよりも大きく、管状部材12の第一共鳴の共鳴周波数における音波の波長をλとすると、空洞部の深さLdが、0.011×λ<Ld<0.25×λを満たす消音器21を、管状部材12の第一共鳴の音場空間に接続して配置する構成とする。
 消音器21は、消音器21の壁面近傍における流体の粘性、および、壁面の凹凸(表面粗さ)、あるいは、後述する消音器21内に配置された吸音材24等によって音エネルギーを熱エネルギーに変換して消音を行う。この壁面近傍における流体の粘性、および、壁面の凹凸(表面粗さ)、あるいは、消音器21内に配置された吸音材24は、本発明における変換機構である。
On the other hand, the present invention has the cavity 30 and the opening 32, and the depth L d of the cavity 30 in the sound wave traveling direction in the silencer is the width of the opening in the axial direction of the tubular member. Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the tubular member 12 is λ larger than L o , the depth L d of the cavity satisfies 0.011 × λ <L d <0.25 × λ. The silencer 21 is arranged to be connected to the sound field space of the first resonance of the tubular member 12.
The silencer 21 converts the sound energy into heat energy by the viscosity of the fluid in the vicinity of the wall surface of the silencer 21 and unevenness (surface roughness) of the wall surface or a sound absorbing material 24 disposed in the silencer 21 described later. Convert and mute. The viscosity of the fluid in the vicinity of the wall surface and the unevenness (surface roughness) of the wall surface or the sound absorbing material 24 disposed in the silencer 21 is the conversion mechanism in the present invention.
 ここで、消音器21の開口部32の幅Loが空洞部30の深さLdよりも小さいことによって、管状部材12内の音波が消音器21内に流入する際に、音圧を保ったまま気体(空気)分子の移動速度が速くなる。変換機構による音エネルギーから熱エネルギーへの変換効率は、音圧および気体分子の移動速度に依存する。そのため、音圧を保ったまま気体分子の移動速度が速くなることによって、変換機構による音エネルギーから熱エネルギーへの変換効率が高くなる。
 この消音の原理は消音器の共鳴を用いないので、空洞部30の深さLdが管状部材12の第一共鳴の共鳴周波数における波長λの1/4よりも小さくても、高い防音性能を発現することができる。従って、消音器21を小型化して管状部材12の通気性を維持しつつ、高い防音性能を得ることができる。
Here, since the width L o of the opening 32 of the silencer 21 is smaller than the depth L d of the hollow portion 30, sound pressure is maintained when the sound wave in the tubular member 12 flows into the silencer 21. The moving speed of gas (air) molecules is increased. The conversion efficiency from sound energy to heat energy by the conversion mechanism depends on the sound pressure and the moving velocity of gas molecules. Therefore, by increasing the moving speed of the gas molecules while maintaining the sound pressure, the conversion efficiency from the sound energy to the heat energy by the conversion mechanism becomes high.
Since the principle of this silencing does not use the resonance of the silencer, high soundproofing performance is obtained even if the depth L d of the cavity 30 is smaller than 1⁄4 of the wavelength λ at the resonance frequency of the first resonance of the tubular member 12 It can be expressed. Therefore, high soundproof performance can be obtained while downsizing the silencer 21 and maintaining the air permeability of the tubular member 12.
 また、消音器21による消音の消音器の共鳴を用いないので、音波の波長依存性が小さく、管状部材12の長さおよび形状等が異なる場合でも、防音性能を発現することができ、管状部材12に合わせた設計が不要であり汎用性が高い。
 また、消音器21による消音の原理は消音器の共鳴を用いないので、消音器の構造で決まるような特定の周波数のみの音を消音せず、広い周波数帯域における複数の共鳴音を消音することができる。
 また、消音器21による消音の原理は消音器の共鳴を用いないので、管状部材の共鳴との相互作用が発生せず、管状部材による元の共鳴透過音を二つの周波数に分離させることもなく、十分な消音効果が得られる。
Further, since the resonance of the silencer by the silencer 21 is not used, the wavelength dependency of the sound wave is small, and even when the length and shape of the tubular member 12 are different, the soundproof performance can be exhibited, There is no need to design according to 12 and the versatility is high.
In addition, since the principle of muffling by the muffler 21 does not use resonance of the muffler, it is not muffling sound of only a specific frequency as determined by the structure of the muffling, and muffling a plurality of resonance sounds in a wide frequency band Can.
Moreover, since the principle of muffling by the muffler 21 does not use the resonance of the muffler, interaction with the resonance of the tubular member does not occur, and the original resonant transmitted sound by the tubular member is not separated into two frequencies. Sufficient silencing effect can be obtained.
 ここで、共鳴型の消音器を管状部材12内に配置した場合について、シミュレーションを用いて説明する。
 シミュレーションは、有限要素法計算ソフトCOMSOL ver5.3(COMSOL社)の音響モジュールを用いた。
 図110に示すように、シミュレーションにおいて通気スリーブ(管状部材)の直径は100mmとし、壁の厚みは100mmとし、化粧板の厚みは10mmとし、壁と化粧板との間の距離は140mmとした。すなわち、壁と化粧板との合計厚みは、250mmとした。
Here, the case where the resonance type silencer is disposed in the tubular member 12 will be described using simulation.
The simulation used the acoustic module of finite element method calculation software COMSOL ver 5.3 (COMSOL company).
As shown in FIG. 110, in the simulation, the diameter of the ventilation sleeve (tubular member) was 100 mm, the thickness of the wall was 100 mm, the thickness of the decorative plate was 10 mm, and the distance between the wall and the decorative plate was 140 mm. That is, the total thickness of the wall and the decorative plate was 250 mm.
 このようなシミュレーションモデルを用いて、図110に示すように、壁で仕切られた一方の空間の半球状の面から音波を入射させ、他方の空間の半球状の面に到達する音波の単位体積あたりの振幅を求めた。半球状の面は、通気スリーブの開口面の中心位置を中心とした半径500mmの半球状の面である。入射させる音波は単位体積あたりの振幅を1とした。
 また、音波検出面側の通気スリーブの端面から32mmの位置には、レジスター(直径102mm)の蓋が配置されるものとしてモデル化した。
Using such a simulation model, as shown in FIG. 110, a sound wave is made to enter from the hemispherical surface of one space partitioned by walls, and a unit volume of the sound wave reaches the hemispherical surface of the other space. The amplitude was calculated. The hemispherical surface is a hemispherical surface with a radius of 500 mm centered on the central position of the opening surface of the ventilation sleeve. The sound wave to be incident has an amplitude of 1 per unit volume.
Further, it was modeled that a lid of a register (diameter 102 mm) was disposed at a position 32 mm from the end face of the ventilation sleeve on the sound wave detection surface side.
 まず、リファレンスとして、消音器を配置しない場合(以下、ストレート管の場合ともいう)について計算を行なった。
 図111に、シミュレーションの結果を、周波数と透過音圧強度との関係のグラフとして示す。
 図111から、消音器を配置しない場合(ストレート管の場合)の通気スリーブ12の第一共鳴の周波数は、515Hz程度であることがわかる。
First, calculation was performed for the case where the silencer was not disposed as a reference (hereinafter also referred to as a straight pipe).
FIG. 111 shows the simulation result as a graph of the relationship between frequency and transmitted sound pressure intensity.
From FIG. 111, it can be seen that the frequency of the first resonance of the ventilation sleeve 12 when the silencer is not arranged (in the case of a straight pipe) is about 515 Hz.
 次に、共鳴周波数が515Hz程度となる気柱共鳴型の消音器を設計した。
 図112および図113に示すように、長さ1000mm、直径100mmの音響管の外周部に気柱共鳴型の消音器が接続されたモデルを作成して、気柱共鳴型消音器の基本的な音響特性を評価した。音響管の一方の端面から平面波を入射させ他方の端面に到達する音波の単位体積あたりの振幅を求めた。入射させる音波は単位体積あたりの振幅を1とした。検出面上における音圧振幅の積分値を、入射面上における音圧振幅の積分値で割った値を2乗したものを、透過音圧強度とした。
Next, an air column resonance type silencer having a resonance frequency of about 515 Hz was designed.
As shown in FIG. 112 and FIG. 113, a model in which an air column resonance type silencer is connected to the outer peripheral portion of an acoustic tube having a length of 1000 mm and a diameter of 100 mm is created The acoustic characteristics were evaluated. A plane wave was incident from one end face of the acoustic tube, and the amplitude per unit volume of the sound wave reaching the other end face was determined. The sound wave to be incident has an amplitude of 1 per unit volume. A value obtained by squaring a value obtained by dividing the integral value of the sound pressure amplitude on the detection surface by the integral value of the sound pressure amplitude on the incident surface was taken as the transmitted sound pressure intensity.
 気柱共鳴型消音器の長手方向の一方の面が開口して音響管に接続されている。また、音響管の軸方向における、気柱共鳴型消音器の位置は略中央位置とした。
 気柱共鳴型消音器は、断面の大きさが45mm×45mmの直方体形状とし、長さを種々変更して、周波数と透過音圧強度との関係を計算して共鳴周波数を求めた。その結果、図114に計算例1として示すように、長さ150mmで共鳴周波数が515Hz程度となることがわかった。
One longitudinal surface of the air column resonance silencer is open and connected to the acoustic pipe. In addition, the position of the air column resonance silencer in the axial direction of the acoustic tube is approximately at the center position.
The air column resonance type silencer was in the form of a rectangular parallelepiped with a cross-sectional size of 45 mm × 45 mm, and the length was variously changed, and the relationship between the frequency and transmitted sound pressure intensity was calculated to determine the resonance frequency. As a result, as shown as Calculation Example 1 in FIG. 114, it was found that the resonance frequency was about 515 Hz at a length of 150 mm.
 次に、図115に示すように、この気柱共鳴型消音器を有する消音器をモデル化して、通気スリーブに接続したモデルを作成し、上記と同様に、壁で仕切られた一方の空間の半球状の面から音波を入射させ、他方の空間の半球状の面に到達する音波の単位体積あたりの振幅を求めた。図115の気柱共鳴型消音器の位置での断面図は図113と同様である。
 図113および図115に示すように、気柱共鳴共鳴型の消音器のモデルは、45mm×45mmの角柱状で長さ(深さ)が150mmの気柱共鳴管を側面に2つ有し、通気スリーブと同じ直径(100mm)の管状の消音器を通気スリーブの端部に配置する構成とした。通気スリーブの軸方向の長さは130mm、消音器の管状部の軸方向の長さは120mmとした。気柱共鳴管の軸方向の位置は通気スリーブ側の端面から5mmの位置とした。
 図111に、シミュレーションの結果を、周波数と透過音圧強度との関係のグラフとして示す(比較例8)。また、図116に、実験の結果を、周波数と透過音圧強度との関係のグラフとして示す。
 実験は、上述した形状及び寸法の消音器を厚み5mmアクリル板を用いて作製し、後述する簡易小型防音室を用いて、実施例と同様の方法で周波数と透過音圧強度との関係を測定した。
Next, as shown in FIG. 115, a silencer having this air column resonance type silencer is modeled to create a model connected to a ventilation sleeve, and in the same manner as described above, in one space partitioned by a wall Sound waves were made incident from the hemispherical surface, and the amplitude per unit volume of the sound waves reaching the hemispherical surface of the other space was determined. A cross-sectional view at the position of the air column resonance silencer of FIG. 115 is the same as that of FIG.
As shown in FIGS. 113 and 115, the air column resonance resonance type silencer has two air column resonance tubes with 45 mm × 45 mm prisms and 150 mm in length (depth), A tubular silencer of the same diameter (100 mm) as the ventilation sleeve was arranged at the end of the ventilation sleeve. The axial length of the ventilation sleeve was 130 mm, and the axial length of the tubular portion of the silencer was 120 mm. The axial position of the air column resonance tube was 5 mm from the end face on the aeration sleeve side.
The simulation result is shown in FIG. 111 as a graph of the relationship between the frequency and the transmitted sound pressure intensity (Comparative Example 8). Also, FIG. 116 shows the result of the experiment as a graph of the relationship between frequency and transmitted sound pressure intensity.
In the experiment, a silencer with the above-described shape and dimensions is manufactured using a 5 mm thick acrylic plate, and the relationship between the frequency and the transmitted sound pressure intensity is measured in the same manner as in the example using the simple small soundproof room did.
 図111および図116に比較例8として示すように、共鳴型の消音器を通気スリーブに配置した場合には、共鳴型の消音器を配置しない場合の通気スリーブの第一共鳴周波数の両側に、透過音圧強度のピークが生じていることがわかる。すなわち、共鳴型の消音器を配置しない場合の第一共鳴周波数よりも低い周波数と、高い周波数との2つの周波数にピークが生じている。これは、共鳴を生じる通気スリーブの音場空間内に、共鳴型の消音器を配置することで、強い相互作用が働いて結合モードと反結合モードとの2つのモードに分離する現象によるものである。
 その結果、通気スリーブの第一共鳴周波数の音は消音できるものの、新たに2つのピークが存在する。
 このように、通気スリーブに対する消音器として、共鳴型の消音器を用いる場合には、別の新たな透過音圧強度のピークを生成してしまうため十分に消音することはできない。
As shown as Comparative Example 8 in FIGS. 111 and 116, when the resonance type silencer is disposed on the ventilation sleeve, both sides of the first resonance frequency of the ventilation sleeve when the resonance type silencer is not disposed, It can be seen that there is a peak of transmitted sound pressure intensity. That is, peaks occur at two frequencies: a frequency lower than the first resonance frequency and a high frequency when the resonance type silencer is not disposed. This is because the resonance type silencer is placed in the sound field space of the ventilation sleeve which causes resonance, and a strong interaction acts to separate it into two modes of the coupled mode and the anticoupled mode. is there.
As a result, although the sound of the first resonance frequency of the aeration sleeve can be silenced, two new peaks exist.
As described above, when a resonance type silencer is used as the silencer for the aeration sleeve, another new peak of transmitted sound pressure intensity is generated, so that sufficient silencing can not be performed.
 なお、図1に示す例においては、消音器21および内部の空洞部30は略直方体形状としたがこれに限定はされず円筒形状等の種々の形状とすることができる。また、開口部32の形状も限定はなく、矩形状、多角形状、円形状、楕円形状等の種々の形状とすることができる。 In addition, in the example shown in FIG. 1, although the silencer 21 and the internal cavity part 30 set it as substantially rectangular solid shape, it is not limited to this, It can be set as various shapes, such as cylindrical shape. Further, the shape of the opening 32 is also not limited, and can be various shapes such as a rectangular shape, a polygonal shape, a circular shape, and an elliptical shape.
 また、管状部材12内に生じる第一共鳴の周波数をF0とし、消音器21の共鳴周波数をF1とすると、1.15×F0<F1を満たすことが好ましい。管状部材12内に生じる第一共鳴の周波数F0と、消音器21の共鳴周波数F1との関係を上記範囲とすることで、消音器21の共鳴周波数F1において管状部材12内に生じる第一共鳴の透過音圧強度がピーク値に対して25%以下となるため、管状部材12内に生じる第一共鳴と消音器の共鳴との相互作用が小さくなる。
 消音器21の共鳴周波数F1において管状部材12内に生じる第一共鳴の透過音圧強度をより小さくして相互作用をより小さくできる観点から、管状部材12内に生じる第一共鳴の周波数F0と、消音器21の共鳴周波数F1は、1.17×F0<F1を満たすことが好ましく、1.22×F0<F1を満たすことがより好ましく、1.34×F0<F1を満たすことがさらに好ましい。上記条件を満たすことで、消音器21の共鳴周波数F1において管状部材12内に生じる第一共鳴の透過音圧強度がピーク値に対して20%以下、15%以下、10%以下となる。
Moreover, the frequency of the first resonance occurring within tubular member 12 and F 0, the resonance frequency of the silencer 21 and F 1, preferably satisfies 1.15 × F 0 <F 1. By setting the relationship between the frequency F 0 of the first resonance generated in the tubular member 12 and the resonant frequency F 1 of the silencer 21 in the above range, the first frequency generated in the tubular member 12 at the resonant frequency F 1 of the silencer 21 Since the transmission sound pressure intensity of one resonance is 25% or less of the peak value, the interaction between the first resonance and the resonance of the silencer in the tubular member 12 is reduced.
The frequency F 0 of the first resonance generated in the tubular member 12 from the viewpoint that the transmitted sound pressure intensity of the first resonance generated in the tubular member 12 can be made smaller at the resonance frequency F 1 of the silencer 21 to make the interaction smaller. And the resonance frequency F 1 of the silencer 21 preferably satisfies 1.17 × F 0 <F 1 , more preferably 1.22 × F 0 <F 1 and 1.34 × F 0 < It is further preferable to satisfy F 1 . By satisfying the above condition, the transmitted sound pressure strength of the first resonance occurring within tubular member 12 at the resonant frequencies F 1 of the muffler 21 is 20% or less with respect to the peak value, 15% or less, of 10% or less.
 また、図1に示す例では、消音器21の空洞部30が半径方向に延在するものとして、空洞部30内における音波の進行方向が半径方向となるものとしたがこれに限定はされない。例えば、図2に示すように、空洞部30が軸方向に延在するものとして、空洞部30内における音波の進行方向が軸方向となるようにしてもよい。なお、以下の説明において、図1に示すような消音器21を垂直筒型の消音器ともいう。
 図2は、本発明の消音システムの好適な実施態様の一例を示す模式的な断面図である。また、図3は、消音システムの消音器の空洞部の面積S0と開口部の面積S1とを説明するための図である。図4は、消音器の空洞部の深さLdと幅Lwとを説明するための図である。なお、図3及び図4においては、壁16の図示を省略している。以降の図においても、壁16の図示を省略する場合がある。
In the example shown in FIG. 1, the hollow portion 30 of the silencer 21 extends in the radial direction, and the traveling direction of the sound wave in the hollow portion 30 is the radial direction. For example, as shown in FIG. 2, as the hollow portion 30 extends in the axial direction, the traveling direction of the sound wave in the hollow portion 30 may be the axial direction. In the following description, the silencer 21 as shown in FIG. 1 is also referred to as a vertical cylindrical silencer.
FIG. 2 is a schematic sectional view showing an example of a preferred embodiment of the noise reduction system of the present invention. Moreover, FIG. 3 is a figure for demonstrating area S 0 of the hollow part of the silencer of a silencer system, and area S 1 of an opening part. FIG. 4 is a diagram for explaining the depth L d and the width L w of the hollow portion of the silencer. In FIG. 3 and FIG. 4, illustration of the wall 16 is omitted. Also in the subsequent drawings, the illustration of the wall 16 may be omitted.
 図2に示すように、消音システム10aは、2つの空間を隔てる壁16を貫通して設けられる、円筒状の管状部材12の外側の周面(外周面)に消音器22が配置された構成を有する。
 管状部材12は例えば、換気口および空調用ダクト等の通気スリーブである。
 消音器22は、軸方向に平行な断面において、軸方向に延在し、管状部材12の外周面に沿って湾曲した略直方体形状で、内部に軸方向に延在する略直方体形状の空洞部30を有する。また、消音器22の管状部材12側の面の、軸方向の一方の端部側には、空洞部30と外部とを連通する開口部32を有する。すなわち、消音器22は、L字型の空間を有する。この開口部32は、管状部材12の周面に形成された周面開口部12aと接続されている。開口部32が周面開口部12aに接続することによって、消音システム10aにおける管状部材12内に生じる第一共鳴の音場空間に開口部32が接続している。
As shown in FIG. 2, the silencer system 10 a has a configuration in which the silencer 22 is disposed on the outer peripheral surface (outer peripheral surface) of the cylindrical tubular member 12 provided through the wall 16 separating the two spaces. Have.
The tubular member 12 is, for example, a ventilation sleeve such as a ventilation port and an air conditioning duct.
The silencer 22 extends in the axial direction in a cross section parallel to the axial direction, has a substantially rectangular parallelepiped shape curved along the outer peripheral surface of the tubular member 12, and has a substantially rectangular hollow portion axially extending in the inner direction. It has 30. In addition, an opening 32 communicating the hollow portion 30 with the outside is provided on one end side in the axial direction of the surface on the tubular member 12 side of the silencer 22. That is, the silencer 22 has an L-shaped space. The opening 32 is connected to a circumferential opening 12 a formed on the circumferential surface of the tubular member 12. By connecting the opening 32 to the circumferential opening 12a, the opening 32 is connected to the sound field space of the first resonance generated in the tubular member 12 in the noise reduction system 10a.
 ここで、図2に示す例においては、空洞部30は軸方向に延在しているため、空洞部30内における音波の進行方向は軸方向(図中左右方向)である。従って、図4に示すとおり、空洞部30の深さLdは、軸方向における開口部32の中心位置から空洞部30の遠い側の端面までの長さである。 Here, in the example shown in FIG. 2, since the hollow portion 30 extends in the axial direction, the traveling direction of the sound wave in the hollow portion 30 is the axial direction (left and right direction in the drawing). Therefore, as shown in FIG. 4, the depth L d of the cavity 30 is the length from the central position of the opening 32 in the axial direction to the end face on the far side of the cavity 30.
 図1に示す消音器21と同様に、消音器22は、消音器22の壁面近傍における流体の粘性、および、壁面の凹凸(表面粗さ)、あるいは、後述する消音器22内に配置された吸音材24等(変換機構)によって音エネルギーを熱エネルギーに変換して消音を行う。 Similar to the silencer 21 shown in FIG. 1, the silencer 22 is disposed in the viscosity of the fluid in the vicinity of the wall surface of the silencer 22 and the unevenness (surface roughness) of the wall surface or in the silencer 22 described later. Sound energy is converted into heat energy by the sound absorbing material 24 or the like (conversion mechanism) to perform muffling.
 このように、消音器22をL字型の空間を有する形状とした場合でも、図1の構成の場合と同様に、管状部材12内の音波が消音器22内に流入する際に、音圧を保ったまま気体(空気)分子の移動速度を速くすることができるため、音圧を保ったまま気体分子の移動速度が速くなることによって、変換機構による音エネルギーから熱エネルギーへの変換効率が高くなる。そのため、空洞部30の深さLdが管状部材12の第一共鳴の共鳴周波数における波長λの1/4よりも小さくても、高い防音性能を発現することができる。従って、消音器22を小型化して管状部材12の通気性を維持しつつ、高い防音性能を得ることができる。なお、以下の説明において、図2に示すような消音器22をL字型の消音器ともいう。 Thus, even when the silencer 22 is shaped to have an L-shaped space, as in the case of the configuration of FIG. 1, when the sound wave in the tubular member 12 flows into the silencer 22, the sound pressure Since the transfer speed of gas (air) molecules can be increased while maintaining the pressure, the transfer speed of gas molecules can be increased while maintaining the sound pressure, so that the conversion efficiency from sound energy to heat energy by the conversion mechanism is Get higher. Therefore, even if the depth L d of the cavity 30 is smaller than 1⁄4 of the wavelength λ at the resonance frequency of the first resonance of the tubular member 12, high soundproofing performance can be exhibited. Therefore, high soundproof performance can be obtained while downsizing the silencer 22 and maintaining the air permeability of the tubular member 12. In the following description, the silencer 22 as shown in FIG. 2 is also referred to as an L-shaped silencer.
 また、消音器22をL字型の空間を有する形状とすることで、消音器22の実効外径、すなわち、消音システムの外径をより小さくすることができ、高い防音性能を維持しつつ、より高い通気性を得ることができる。実効外径については後に詳述する。 Further, by forming the silencer 22 in a shape having an L-shaped space, the effective outer diameter of the silencer 22, that is, the outer diameter of the silencer system can be further reduced, and high soundproof performance is maintained. Higher breathability can be obtained. The effective outer diameter will be described in detail later.
 ここで、消音システム10a内における管状部材12の第一共鳴の音場空間について図5を用いて説明する。
 図5は、2つの空間を隔てる壁16を貫通して設けられる管状部材12の第一共鳴モードにおける音圧の分布をシミュレーションによって求めたものである。図5からわかるように、管状部材12の第一共鳴の音場空間は、管状部材12内、および、開口端補正距離内の空間である。周知のとおり、開口端補正の距離だけ音場の定在波の腹が管状部材12の外側にはみ出している。なお、円筒形の管状部材12の場合の開口端補正距離は、大凡1.2×管直径で与えられる。
Here, the sound field space of the first resonance of the tubular member 12 in the noise reduction system 10a will be described with reference to FIG.
FIG. 5 is a simulation of the distribution of sound pressure in the first resonance mode of the tubular member 12 provided through the wall 16 separating the two spaces. As can be seen from FIG. 5, the sound field space of the first resonance of the tubular member 12 is a space within the tubular member 12 and within the open end correction distance. As known, the antinodes of the standing waves of the sound field protrude outside the tubular member 12 by the distance of the open end correction. The open end correction distance in the case of the cylindrical tubular member 12 is given by approximately 1.2 × the tube diameter.
 消音器22は開口部32が、この管状部材12の第一共鳴の音場空間に接続される位置に配置されていればよい。従って、図6に示す消音システム10bのように、消音器22の開口部32が管状部材12の開口端面の外側に配置されていてもよい。あるいは、図7に示す消音システム10cのように、消音器22が管状部材12の内部に配置されていてもよい。
 なお、図6に示す消音システム10bおよび図7に示す消音システム10cにおいて、消音器22は開口部32が管状部材12の中心軸側を向くように配置されている。なお、管状部材12の中心軸とは、管状部材12の断面における重心を通る軸である。
The silencer 22 may be disposed at a position where the opening 32 is connected to the first resonance sound field space of the tubular member 12. Therefore, the opening 32 of the silencer 22 may be disposed outside the open end face of the tubular member 12 as in the noise reduction system 10b shown in FIG. Alternatively, the silencer 22 may be disposed inside the tubular member 12 as in the noise reduction system 10 c shown in FIG. 7.
In the noise reduction system 10 b shown in FIG. 6 and the noise reduction system 10 c shown in FIG. 7, the silencer 22 is disposed such that the opening 32 faces the central axis of the tubular member 12. The central axis of the tubular member 12 is an axis passing through the center of gravity in the cross section of the tubular member 12.
 ここで、軸方向における消音器22の開口部32の位置には限定はない。開口部32の位置によって、より好適に消音する周波数帯を制御することが可能である。
 例えば、管状部材12の第一共鳴周波数の音波を消音する場合には、第一共鳴周波数の音波の音圧が高くなる位置、すなわち、軸方向における管状部材の中央に消音器22の開口部32を配置することで、音圧および気体分子の移動速度を高くすることができ、より高い防音性能を発現することができる。
 この点については、実施例においてより詳細に説明する。
Here, the position of the opening 32 of the silencer 22 in the axial direction is not limited. Depending on the position of the opening 32, it is possible to control the frequency band to mute more preferably.
For example, when the sound wave of the first resonance frequency of the tubular member 12 is to be silenced, the opening 32 of the silencer 22 is located at the position where the sound pressure of the sound wave of the first resonance frequency is high, ie By disposing, the sound pressure and the moving speed of gas molecules can be increased, and higher soundproofing performance can be expressed.
This point will be described in more detail in the examples.
 ここで、図3に示すように、消音器22の空洞部30の面積をS0とし、開口部32の面積をS1とすると、開口部32の面積S1は、空洞部30の面積S0よりも小さいのが好ましい。開口部32の面積S1を、空洞部30の面積S0よりも小さくすることで、管状部材12内の音波が消音器22内に流入する際に、音圧を保ったまま気体(空気)分子の移動速度を速くすることができるため、変換機構による音エネルギーから熱エネルギーへの変換効率をより高くすることができる。
 ここで、空洞部30の面積S0および開口部32の面積S1はそれぞれ、空洞部30または開口部32を通る管状部材12の中心軸を軸とする円周面における面積である。
 なお、管状部材12の半径方向の位置によって空洞部30の面積が異なる場合には、空洞部30の面積S0は、各位置での面積の平均値である。
 また、開口部32の面積S1は、開口が最小となる面積である。
Here, as shown in FIG. 3, and the area of the cavity portion 30 of the muffler 22 and S 0, the area of the opening 32 and S 1, the area S 1 of the opening 32, the area of the cavity 30 S Preferably it is less than zero . By making the area S 1 of the opening 32 smaller than the area S 0 of the hollow portion 30, when the sound wave in the tubular member 12 flows into the silencer 22, the gas (air) is maintained while maintaining the sound pressure. Since the moving speed of the molecule can be increased, the conversion efficiency from sound energy to heat energy by the conversion mechanism can be further increased.
Here, each area S 1 of the area S 0 and the opening 32 of the cavity 30 is the area in the circumferential surface of the central axis of the tubular member 12 passing through the hollow portion 30 or the opening 32 and the shaft.
When the area of the cavity 30 differs depending on the radial position of the tubular member 12, the area S 0 of the cavity 30 is an average value of the areas at the respective positions.
The area S 1 of the opening 32 is the area in which the opening is minimized.
 気体分子の移動速度を速くする観点では開口部32の面積S1が小さいほど好ましいが、開口部32の面積S1が小さすぎると音波が空洞部30内に流入しにくくなるため防音性能が低くなってしまう。以上の観点から、開口部32の面積S1は空洞部30の面積S0の0.1%<S1/S0<40%が好ましく、0.3%<S1/S0<35%がより好ましく、0.5%<S1/S0<30%がより好ましい。 Is preferably as the area S 1 of the openings 32 is small in terms of the moving speed of the gas molecules, the area S 1 of the openings 32 is too small waves low soundproof performance since less likely to flow into the cavity 30 turn into. From the above viewpoints, the area S 1 of the opening 32 is preferably 0.1% <S 1 / S 0 <40% of the area S 0 of the cavity 30, 0.3% <S 1 / S 0 <35% Is more preferably 0.5% <S 1 / S 0 <30%.
 また、防音性能および通気性の観点から、消音器22の空洞部30の深さLdは、0.011×λ<Ld<0.25×λを満たし、0.016×λ<Ld<0.25×λを満たすのが好ましく、0.021×λ<Ld<0.25×λを満たすのがより好ましい。
 また、軸方向に平行な断面において、空洞部30の深さ方向に直交する方向の空洞部30の幅Lw(図4参照)は、0.001×λ<L<0.061×λを満たすのが好ましく、0.001×λ<L<0.051×λを満たすのが好ましく、0.001×λ<Lw<0.041×λを満たすのがより好ましい。なお、図1においては、空洞部30の幅は、図中左右方向の長さであり、開口部32の幅Lと一致している。
Further, from the viewpoint of soundproof performance and air permeability, the depth L d of the hollow portion 30 of the silencer 22 satisfies 0.011 × λ <L d <0.25 × λ, and 0.016 × λ <L d. It is preferable to satisfy <0.25 × λ, and it is more preferable to satisfy 0.021 × λ <L d <0.25 × λ.
Further, in the cross section parallel to the axial direction, the width L w (see FIG. 4) of the hollow portion 30 in the direction orthogonal to the depth direction of the hollow portion 30 is 0.001 × λ <L w Is preferably satisfied, 0.001 × λ <L w <0.051 × λ is preferable, and 0.001 × λ <L w <0.041 × λ is more preferable. Note that, in FIG. 1, the width of the hollow portion 30 is the length in the left-right direction in the drawing, and matches the width L w of the opening 32.
 この点について図8~図10および図11を用いて説明する。図8~図10は、図1に示すような垂直筒型の消音器を用いた場合のシミュレーションの結果であり、図11は、図2に示すようなL字型の消音器を用いた場合のシミュレーションの結果である。 This point will be described with reference to FIGS. 8 to 10 and 11. FIGS. 8 to 10 show the results of simulation in the case of using the vertical cylindrical silencer as shown in FIG. 1, and FIG. 11 shows the case of using an L-shaped silencer as shown in FIG. Simulation results of
 図8は、(空洞部30の深さLd/消音対象の音波の波長λ)と、(空洞部30の幅Lw/消音対象の音波の波長λ)と、空洞部30内の平均音圧Pとの関係を表すグラフである。図9は、(空洞部30の深さLd/消音対象の音波の波長λ)と、(空洞部30の幅Lw/消音対象の音波の波長λ)と、空洞部30内の気体分子の平均粒子速度vとの関係を表すグラフである。図10は、(空洞部30の深さLd/消音対象の音波の波長λ)と、(空洞部30の幅Lw/消音対象の音波の波長λ)と、気体分子の平均粒子速度vおよび平均音圧Pの乗算値(|v|×|P|)のlog値との関係を表すグラフである。(|v|×|P|)は、空洞部30の体積当たりの吸収に比例する値である。
 なお、図9~図11におけるlogは、常用対数である。
FIG. 8 shows (the depth L d of the cavity 30 / the wavelength λ of the sound wave to be muffled), (the width L w of the cavity 30 / the wavelength λ of the sound wave to be muffled), and the average sound in the cavity 30 It is a graph showing the relation with pressure P. FIG. 9 shows (the depth L d of the cavity 30 / the wavelength λ of the sound wave to be silenced), (the width L w of the cavity 30 / the wavelength λ of the sound wave to be silenced), and gas molecules in the cavity 30 Is a graph showing the relationship between the average particle velocity v and. FIG. 10 shows (the depth L d of the cavity 30 / the wavelength λ of the sound wave to be silenced), (the width L w of the cavity 30 / the wavelength λ of the sound wave to be silenced), and the average particle velocity v of gas molecules And it is a graph showing the relation with the log value of the multiplication value (| v | x | P |) of average sound pressure P. (| V | × | P |) is a value proportional to the absorption per volume of the cavity 30.
The log in FIGS. 9 to 11 is a common logarithm.
 粒子速度vおよび音圧Pは、有限要素法計算ソフトCOMSOL ver5.3(COMSOL社)の音響モジュールを用いて、空洞部30の深さLdと空洞部30の幅Lwとを種々変更して求めた。シミュレーションにおいて管状部材の長さは300mm、直径は100mmとし、消音器22の空洞部30は、管状部材12の外周に環状に設置した。開口部32は管状部材の周面方向にスリット状に配置した。開口部32の幅は空洞部30の幅と同じである。開口部32は軸方向において管状部材12の中央に配置した。管状部材12の最低共鳴周波数は460Hzであった。消音対象の音波の周波数は460Hzとした。また、空洞部30内全域には流れ抵抗13000[Pa・s/m2]の吸音材24が配置されるものとした。 The particle velocity v and the sound pressure P are changed variously for the depth L d of the cavity 30 and the width L w of the cavity 30 using the acoustic module of the finite element method calculation software COMSOL ver 5.3 (COMSOL) I asked for. In the simulation, the tubular member had a length of 300 mm and a diameter of 100 mm, and the hollow portion 30 of the silencer 22 was annularly installed on the outer periphery of the tubular member 12. The openings 32 were arranged in the shape of a slit in the circumferential direction of the tubular member. The width of the opening 32 is the same as the width of the cavity 30. The opening 32 is located at the center of the tubular member 12 in the axial direction. The lowest resonant frequency of the tubular member 12 was 460 Hz. The frequency of the sound wave to be silenced was 460 Hz. Further, the sound absorbing material 24 having a flow resistance of 13000 [Pa · s / m 2 ] is disposed in the entire area of the hollow portion 30.
 図12に示すように、壁で仕切られた一方の空間の半球状の面から音波を入射させ、他方の空間の半球状の面に到達する音波の単位体積あたりの振幅を求めた。半球状の面は、管状部材の開口面の中心位置を中心とした半径500mmの半球状の面である。入射させる音波は単位体積あたりの振幅を1とした。 As shown in FIG. 12, the sound wave was made to enter from the hemispherical surface of one space partitioned by the wall, and the amplitude per unit volume of the sound wave reaching the hemispherical surface of the other space was determined. The hemispherical surface is a hemispherical surface with a radius of 500 mm centered on the central position of the opening surface of the tubular member. The sound wave to be incident has an amplitude of 1 per unit volume.
 図8~図10に示すように、空洞部30の深さLdと空洞部30の幅Lwとには好適な範囲があることがわかる。図8から、音圧は、空洞部30の幅Lwおよび深さLdが小さいほど、高くなることがわかる。図9から、粒子速度は、空洞部30の幅Lwは小さいほど、深さLdはある範囲で、高くなることがわかる。図10から、吸収に比例する(|v|×|P|)の値は、空洞部30の幅Lwと深さLdがある範囲で、高くなることがわかる。 As shown in FIGS. 8 to 10, it can be seen that there is a preferred range between the depth L d of the cavity 30 and the width L w of the cavity 30. It can be seen from FIG. 8 that the sound pressure is higher as the width L w and the depth L d of the cavity 30 are smaller. It can be seen from FIG. 9 that the particle velocity is higher as the width L w of the cavity 30 is smaller and the depth L d is in a certain range. From FIG. 10, it can be seen that the value of (| v | × | P |), which is proportional to the absorption, becomes high as long as the width L w and the depth L d of the cavity 30 are present.
 同様に、図11は、図2に示すようなL字型の消音器を用いた場合の(空洞部30の深さLd/消音対象の音波の波長λ)と、(空洞部30の幅Lw/消音対象の音波の波長λ)と、気体分子の平均粒子速度vおよび平均音圧Pの乗算値(|v|×|P|)のlog値との関係を表すグラフである。
 シミュレーションにおいて管状部材の長さは300mm、直径は100mmとし、消音器22の空洞部30は、管状部材12の外周に環状に設置し、軸方向が深さ方向とした。開口部32は管状部材の周面方向にスリット状に配置した。開口部32の幅は10mmとした。開口部32は軸方向において管状部材12の中央に配置した。また、空洞部30内には流れ抵抗13000[Pa・s/m2]の吸音材24が配置されるものとした。
Similarly, FIG. 11 shows (Depth L d of cavity 30 / Wavelength λ of sound wave to be silenced) of the L-shaped silencer as shown in FIG. It is a graph showing the relation between L w / wavelength λ of sound wave to be silenced and the log value of the average particle velocity v of gas molecules and the average sound pressure P multiplied by (| v | × | P |).
In the simulation, the tubular member had a length of 300 mm and a diameter of 100 mm, and the hollow portion 30 of the silencer 22 was annularly installed on the outer periphery of the tubular member 12, and the axial direction was the depth direction. The openings 32 were arranged in the shape of a slit in the circumferential direction of the tubular member. The width of the opening 32 was 10 mm. The opening 32 is located at the center of the tubular member 12 in the axial direction. Further, in the hollow portion 30, the sound absorbing material 24 having a flow resistance of 13000 [Pa · s / m 2 ] is disposed.
 図11から、L字型の消音器の場合も、吸収に比例する(|v|×|P|)の値は、空洞部30の幅Lwと深さLdがある範囲で、高くなることがわかる。また、好適範囲は垂直筒型の消音器と同様であることがわかる。 From FIG. 11, also in the L-shaped silencer, the value of (| v | × | P |), which is proportional to absorption, increases in the range where the width L w and the depth L d of the cavity 30 are present I understand that. Moreover, it turns out that a suitable range is the same as that of the vertical cylinder type silencer.
 また、本発明の消音システムは、消音器22の空洞部30の内壁の表面積Sdに対する開口部32の面積S1の比率S1/Sdを0<S1/Sd<40%とすることで、吸音材24等変換機構の表面積に対して音波が入射する面の面積の割合を小さくして、高い音圧Pを保ったまま吸音材24等の変換機構に流入する音波に対応する気体分子の移動速度を速くして防音性能を高めることができる。
 気体分子の移動速度を速くする観点では開口部32の面積S1(比率S1/Sd)は小さいほど好ましいが、開口部32の面積S1が小さすぎると音波が空洞部30内に流入しにくくなるため防音性能が低くなってしまう。以上の観点から、空洞部30の内壁の表面積Sdに対する開口部32の面積S1は0.1%<S1/Sd<40%が好ましく、0.3%<S1/Sd<35%がより好ましく、0.5%<S1/Sd<30%がより好ましい。
 なお、空洞部30の内壁の表面積Sdは、分解能を1mmとして測定する。すなわち、1mm未満の凹凸等の微細構造を有する場合には、これを平均化して表面積Sdを求めればよい。
Further, in the noise reduction system of the present invention, the ratio S 1 / S d of the area S 1 of the opening 32 to the surface area S d of the inner wall of the hollow portion 30 of the silencer 22 is 0 <S 1 / S d <40%. Thus, the ratio of the area of the surface on which the sound wave is incident to the surface area of the sound absorbing material 24 or the like conversion mechanism is reduced to correspond to the sound waves flowing into the sound absorbing material 24 etc. converting mechanism while maintaining the high sound pressure P. The moving speed of gas molecules can be increased to enhance the soundproofing performance.
The area S 1 (ratio S 1 / S d ) of the opening 32 is preferably as small as possible from the viewpoint of increasing the moving speed of gas molecules, but if the area S 1 of the opening 32 is too small, sound waves flow into the cavity 30 Soundproof performance is lowered because it becomes difficult to do. From the above viewpoint, the area S 1 of the opening 32 with respect to the surface area S d of the inner wall of the cavity 30 is preferably 0.1% <S 1 / S d <40%, and 0.3% <S 1 / S d < 35% is more preferable, and 0.5% <S 1 / S d <30% is more preferable.
The surface area S d of the inner wall of the hollow portion 30 is measured with a resolution of 1 mm. That is, in the case of having a microstructure such as unevenness less than 1 mm, this may be averaged to obtain the surface area S d .
 この点について、図11の場合と同様に、図2に示すようなL字型の消音器を用いてシミュレーションを行なった。
 シミュレーションにおいて管状部材の長さは300mm、直径は100mmとし、消音器22の空洞部30は、管状部材12の外周に環状に設置し、軸方向が深さ方向とした。開口部32は管状部材の周面方向にスリット状に配置した。空洞部30の深さLdは80mm、幅Lwは10mmとした。開口部32は軸方向において管状部材12の中央に配置した。また、空洞部30内には流れ抵抗13000[Pa・s/m2]の吸音材24が配置されるものとした。
 開口部の幅Loを10mm(1cm)~70mm(7cm)に変更することで、面積比率S1/Sdを5.3%~54.7%に変更して、それぞれ透過音圧を算出した。図13中面積割合5.3%が1cmに対応し、17.9%が3cmに対応し、25.3%が4cmに対応し、33.8%が5cmに対応し、54.7%が7cmに対応する。なお、透過音圧は、消音器を設置しなかった場合の透過音圧のピーク(第一共鳴周波数の透過音圧)を1として規格化した。消音器を設置しない場合の管状部材内の第一共鳴周波数は460Hzであるので、460Hzにおける透過音圧がピーク音圧である。
 結果を図13および図14に示す。
About this point, it simulated similarly to the case of FIG. 11 using the L-shaped silencer as shown in FIG.
In the simulation, the tubular member had a length of 300 mm and a diameter of 100 mm, and the hollow portion 30 of the silencer 22 was annularly installed on the outer periphery of the tubular member 12, and the axial direction was the depth direction. The openings 32 were arranged in the shape of a slit in the circumferential direction of the tubular member. The depth L d of the hollow portion 30 was 80 mm, and the width L w was 10 mm. The opening 32 is located at the center of the tubular member 12 in the axial direction. Further, in the hollow portion 30, the sound absorbing material 24 having a flow resistance of 13000 [Pa · s / m 2 ] is disposed.
By changing the width Lo of the opening to 10 mm (1 cm) to 70 mm (7 cm), the area ratio S 1 / S d is changed to 5.3% to 54.7%, and the transmitted sound pressure is calculated respectively. did. In FIG. 13, the area ratio 5.3% corresponds to 1 cm, 17.9% corresponds to 3 cm, 25.3% corresponds to 4 cm, 33.8% corresponds to 5 cm, 54.7% It corresponds to 7 cm. In addition, the transmission sound pressure normalized the peak (transmission sound pressure of 1st resonance frequency) of the transmission sound pressure in case the silencer was not installed as one. Since the first resonance frequency in the tubular member when the silencer is not installed is 460 Hz, the transmitted sound pressure at 460 Hz is the peak sound pressure.
The results are shown in FIG. 13 and FIG.
 図13は、周波数と透過音圧との関係を表すグラフであり、図14は、開口面積の割合と透過音圧のピークとの関係を表すグラフである。
 図13および図14からわかるように、吸音材の体積は同じであるにも関わらず、開口部の面積比率S1/Sdが小さいほど、共鳴周波数の透過音圧は小さくなることがわかる。なお、消音器無しの場合に対して、消音器を設置した場合の共鳴周波数が低周波側にシフトしているのは音波が存在できる体積が増えたためである。
FIG. 13 is a graph showing the relationship between the frequency and the transmitted sound pressure, and FIG. 14 is a graph showing the relationship between the ratio of the aperture area and the peak of the transmitted sound pressure.
As can be seen from FIGS. 13 and 14, it can be seen that, even though the volume of the sound absorbing material is the same, the smaller the area ratio S 1 / S d of the opening, the smaller the transmitted sound pressure at the resonance frequency. In addition, the resonant frequency at the time of installing a silencer shifts to a low frequency side compared with the case without a silencer because the volume in which a sound wave can exist increased.
 また、音エネルギーを熱エネルギーに変換する変換機構は、前述のとおり、消音器の壁面近傍における流体の粘性、および、消音器の壁面の凹凸(表面粗さ)、あるいは、消音器内に配置された吸音材等であり、吸音材を用いることが好ましい。
 図15に示す消音システム10dのように、吸音材24は消音器22の空洞部30内の少なくとも一部に配置される構成とすればよい。あるいは、図16に示す消音システム10eのように、吸音材24は消音器22の開口部32の少なくとも一部を覆うように配置される構成としてもよい。
Further, as described above, the conversion mechanism for converting sound energy into heat energy is disposed in the viscosity of the fluid in the vicinity of the wall surface of the silencer and the unevenness (surface roughness) of the wall surface of the silencer or in the silencer. It is preferable to use a sound absorbing material.
The sound absorbing material 24 may be disposed in at least a part of the hollow portion 30 of the silencer 22 as in the noise reduction system 10 d shown in FIG. 15. Alternatively, as in the noise reduction system 10 e shown in FIG. 16, the sound absorbing material 24 may be disposed so as to cover at least a part of the opening 32 of the silencer 22.
 吸音材24は、単位厚さ当たりの流れ抵抗σ1[Pa・s/m2]が(1.25-log(0.1×Ld))/0.24<log(σ1)<5.6を満たすことが好ましく、(1.32-log(0.1×Ld))/0.24<log(σ1)<5.2を満たすことがより好ましく、(1.39-log(0.1×Ld))/0.24<log(σ1)<4.7を満たすことがさらに好ましい。なお、上記式において、Ldの単位は[mm]であり、logは常用対数である。吸音材の流れ抵抗は、1cm厚の吸音材の垂直入射吸音率を測定し、Mikiモデル(J. Acoust. Soc. Jpn., 11(1) pp.19-24 (1990))でフィッティングすることで評価した。または「ISO 9053」に従って評価してもよい。 The sound absorbing material 24 has a flow resistance per unit thickness σ 1 [Pa · s / m 2 ] of (1.25−log (0.1 × L d )) / 0.24 <log (σ 1 ) <5 Preferably satisfies (1.32-log (0.1 × L d )) / 0.24 <log (σ 1 ) <5.2, more preferably (1.39-log). It is further preferable to satisfy (0.1 × L d )) / 0.24 <log (σ 1 ) <4.7. In the above equation, the unit of L d is [mm], and log is a common logarithm. To measure the flow resistance of a sound absorbing material, measure the normal incidence sound absorption coefficient of a 1 cm thick sound absorbing material, and fit it with the Miki model (J. Acoust. Soc. Jpn., 11 (1) pp. 19-24 (1990)). It evaluated by. Or it may be evaluated according to "ISO 9053".
 また、空洞部30の深さ方向における空洞部30の長さ(以下、筒長ともいう)と、開口部の幅との比(開口幅/筒長)をKrate(%)とすると、吸音材24の単位長さ当たりの流れ抵抗σ1[Pa・s/m2]は、0<Krate≦50%のとき、(Krate+165)/62.5<logσ1<(Krate+319.6)/76.9を満たすのが好ましく、50%<Krateのとき、3.45<logσ1<(Krate+484)/111.1を満たすのが好ましい。また、0<Krate≦50%のとき、(Krate+175)/62.5<logσ1<(Krate+315.3)/76.9を満たすのがより好ましく、50%<Krateのとき、3.6<logσ1<(Krate+478)/111.1を満たすのがより好ましい。また、0<Krate≦50%のとき、(Krate+182)/62.5<logσ1<(Krate+311.3)/76.9を満たすのがさらに好ましく、50%<Krateのとき、3.72<logσ1<(Krate+472)/111.1を満たすのがさらに好ましい。なお、上記式において、logは常用対数である。 Further, assuming that the ratio of the length of the cavity 30 (hereinafter also referred to as a cylinder length) in the depth direction of the cavity 30 to the width of the opening (opening width / tube length) is K rate (%), sound absorption The flow resistance σ 1 [Pa · s / m 2 ] per unit length of the material 24 is (K rate +165) /62.5 <log σ 1 <(K rate +319.) When 0 <K rate ≦ 50%. 6) /76.9 is preferable, and it is preferable to satisfy 3.45 <log σ 1 <(K rate +484) /111.1 when 50% <K rate . Further, it is more preferable to satisfy (K rate +175) /62.5 <log σ 1 <(K rate +315.3) /76.9 when 0 <K rate ≦ 50%, and when 50% <K rate It is more preferable to satisfy 3.6 <log σ 1 <(K rate +478) /111.1. Further, it is more preferable to satisfy (K rate +182) /62.5 <log σ 1 <(K rate +311.3) /76.9 when 0 <K rate ≦ 50%, and when 50% <K rate More preferably, 3.72 <log σ 1 <(K rate +472) / 11 1 1 is satisfied. In the above equation, log is a common logarithm.
 筒長と開口幅との比Krateと、吸音材24の単位長さ当たりの流れ抵抗σ1[Pa・s/m2]との関係についてシミュレーションを行なった結果を説明する。
 図107は、シミュレーションに用いた消音システムのモデルを模式的に表す断面図である。
 図107に示すように、壁16の厚みは212.5mmとし、管状部材12の直径は100mmとした。消音器22は、入射側(図107中左側)の壁から100mm離間する位置に配置した。消音器22は、管状部材12の外周に管状に配置し、軸方向が深さ方向とした。消音器22の空洞部30の長さ(筒長)は42mmとした。幅は37mmとした。開口部32は管状部材12の周面方向にスリット状に配置した。開口部32は、軸方向において、入射側(図107中左側)に形成されるものとした。消音器22の空洞部30の全域に吸音材24を配置した。
 また、管状部材12の、音波の入射側の開口部にはガラリ(カバー部材)が配置され、音波の出射側の開口部にはレジスター(風量調整部材)が配置される構成とした。
 ガラリ、および、レジスターは、市販のものを参考にモデル化した。
The simulation results of the relationship between the ratio K rate of the cylinder length to the opening width and the flow resistance σ 1 [Pa · s / m 2 ] per unit length of the sound absorbing material 24 will be described.
FIG. 107 is a cross-sectional view schematically showing a model of the noise reduction system used for the simulation.
As shown in FIG. 107, the thickness of the wall 16 was 212.5 mm, and the diameter of the tubular member 12 was 100 mm. The silencer 22 was disposed at a distance of 100 mm from the wall on the incident side (left side in FIG. 107). The silencer 22 was disposed in a tubular shape on the outer periphery of the tubular member 12, and the axial direction was in the depth direction. The length (cylinder length) of the hollow portion 30 of the silencer 22 was 42 mm. The width was 37 mm. The opening 32 was arranged in the shape of a slit in the circumferential direction of the tubular member 12. The opening 32 is formed on the incident side (left side in FIG. 107) in the axial direction. The sound absorbing material 24 was disposed in the entire area of the hollow portion 30 of the silencer 22.
Further, a gullet (cover member) is disposed at the opening of the tubular member 12 on the incident side of the sound wave, and a register (air volume adjustment member) is disposed at the opening on the emission side of the sound wave.
Galari and resistors were modeled with reference to commercially available products.
 また、吸音材24の流れ抵抗σ1と開口部の幅とを種々変更して、管状部材を透過する音波についてシミュレーションを行なった。シミュレーションによって、管状部材を透過して一方の空間(図107中左側)から他方の空間(図107中右側)に伝搬する音波の音圧から透過損失を算出した。
 結果を図108に示す。図108は、流れ抵抗と開口幅/筒長と規格化透過損失との関係を表すグラフである。なお、規格化透過損失は、透過損失が最大となる値を1として規格化した値である。
In addition, the flow resistance σ 1 of the sound absorbing material 24 and the width of the opening were variously changed, and a simulation was performed on the sound waves transmitted through the tubular member. The transmission loss was calculated from the sound pressure of the sound wave transmitted through the tubular member and propagating from one space (left side in FIG. 107) to the other space (right side in FIG. 107) by simulation.
The results are shown in FIG. FIG. 108 is a graph showing the relationship between the flow resistance, the opening width / tube length, and the normalized transmission loss. The normalized transmission loss is a value normalized with a value at which the transmission loss is maximum as 1.
 図108から、流れ抵抗は、開口幅/筒長に応じて最適な範囲があることがわかる。図108において点線の内側の領域は規格化透過損失が約0.8以上となる領域である。この領域を式で表すと、上述した、0<Krate≦50%のとき、(Krate+165)/62.5<logσ1<(Krate+319.6)/76.9、50%<Krateのとき、3.45<logσ1<(Krate+484)/111.1、となる。 From FIG. 108, it can be seen that the flow resistance has an optimum range depending on the opening width / tube length. The area inside the dotted line in FIG. 108 is an area where the normalized transmission loss is about 0.8 or more. When this region is expressed by a formula, when 0 <K rate ≦ 50% mentioned above, (K rate +165) /62.5 <log σ 1 <(K rate +319.6) /76.9, 50% <K When rate , 3.45 <log σ 1 <(K rate +484) /111.1.
 吸音材24としては、特に限定はなく、従来公知の吸音材が適宜利用可能である。例えば、発泡ウレタン、軟質ウレタンフォーム、木材、セラミックス粒子焼結材、フェノールフォーム等の発泡材料および微小な空気を含む材料;グラスウール、ロックウール、マイクロファイバー(3M社製シンサレートなど)、フロアマット、絨毯、メルトブローン不織布、金属不織布、ポリエステル不織布、金属ウール、フェルト、インシュレーションボードおよびガラス不織布等のファイバーおよび不織布類材料;木毛セメント板;シリカナノファイバーなどのナノファイバー系材料;石膏ボード;種々の公知の吸音材が利用可能である。 The sound absorbing material 24 is not particularly limited, and a conventionally known sound absorbing material can be appropriately used. For example, foamed urethane, flexible urethane foam, wood, sintered material of ceramic particles, foamed material such as phenol foam, and material containing minute air; glass wool, rock wool, micro fiber (such as 3M manufactured Thinsulate), floor mat, carpet Fibers and non-wovens materials such as meltblown non-woven fabric, metal non-woven fabric, polyester non-woven fabric, metal wool, felt, insulation board and glass non-woven fabric; Wood cement board; Nanofiber-based material such as silica nanofibers; Sound absorbing material is available.
 吸音材24の厚みは空洞部30内あるいは開口部近傍に配置可能であれば限定はない。吸音性能等の観点から、吸音材24の厚みは0.01mm~500mmが好ましく、0.1mm~100mmがより好ましい。 The thickness of the sound absorbing material 24 is not limited as long as it can be disposed in the cavity 30 or in the vicinity of the opening. From the viewpoint of sound absorption performance and the like, the thickness of the sound absorbing material 24 is preferably 0.01 mm to 500 mm, and more preferably 0.1 mm to 100 mm.
 また、消音器の空洞部に吸音材を配置する構成とする場合には、吸音材の形状を空洞部の形状に合わせて成型されたものとするのが好ましい。吸音材の形状を空洞部の形状に合わせて成型されたものとすることで、吸音材を空洞部内に均一に充填するのが容易になり、コストダウンでき、メンテナンスを簡易化することが可能となる。 When the sound absorbing material is disposed in the hollow portion of the silencer, it is preferable that the shape of the sound absorbing material be formed in conformity with the shape of the hollow portion. By making the shape of the sound absorbing material conform to the shape of the hollow portion, it becomes easy to uniformly fill the sound absorbing material in the hollow portion, cost can be reduced, and maintenance can be simplified. Become.
 また、図2に示す例では、1つの消音器22を有する構成としたが、これに限定はされず、2以上の消音器22を有する構成としてもよい。例えば、図17に示す消音システム10fのように、2つの消音器22を管状部材12の外周面に配置して、管状部材12の周面に形成された周面開口部12aに接続された構成としてもよい。あるいは、図18に示す消音システム10gのように、2つの消音器22を管状部材12の内部に配置する構成としてもよい。 Moreover, although it was set as the structure which has one silencer 22 in the example shown in FIG. 2, it is not limited to this, It is good also as a structure which has two or more silencers 22. FIG. For example, as in the noise reduction system 10 f shown in FIG. 17, two silencers 22 are disposed on the outer peripheral surface of the tubular member 12 and connected to the peripheral surface opening 12 a formed on the peripheral surface of the tubular member 12. It may be Alternatively, two silencers 22 may be disposed inside the tubular member 12 as in a silencer system 10g shown in FIG.
 2以上の消音器22を有する場合には、2以上の消音器22は管状部材12の中心軸に対して回転対称に配置されていることが好ましい。
 例えば、図19に示すように、3つの消音器22を有し、3つの消音器22が管状部材12の外周面に、周面方向に等間隔に配置されて回転対称となる構成としてもよい。あるいは、図20に示すように、6つの消音器22を有し、6つの消音器22が管状部材12の外周面に等間隔に配置されて回転対称となる構成としてもよい。なお、消音器22の数はこれらに限定はされず、例えば、2つの消音器22が回転対称に配置される構成であってもよいし、4つの消音器22が回転対称に配置される構成であってもよい。
When two or more silencers 22 are provided, the two or more silencers 22 are preferably disposed in rotational symmetry with respect to the central axis of the tubular member 12.
For example, as shown in FIG. 19, three silencers 22 may be provided, and the three silencers 22 may be arranged on the outer circumferential surface of the tubular member 12 at equal intervals in the circumferential direction to be rotationally symmetric. . Alternatively, as shown in FIG. 20, six silencers 22 may be provided, and the six silencers 22 may be arranged at equal intervals on the outer peripheral surface of the tubular member 12 to be rotationally symmetrical. In addition, the number of silencers 22 is not limited to these, for example, a configuration in which two silencers 22 are disposed in rotational symmetry may be employed, or a configuration in which four silencers 22 are disposed in rotational symmetry It may be
 消音器22が管状部材12の内部に配置される場合も同様に、2以上の消音器22が回転対称に配置されるのが好ましい。
 例えば、図21に示すように、4つの消音器22が管状部材12の内部(内側の周面(内周面))に、周面方向に等間隔に配置されて回転対称となる構成としてもよい。
Also when the silencer 22 is disposed inside the tubular member 12, it is preferable that two or more silencers 22 be disposed in rotational symmetry.
For example, as shown in FIG. 21, even if four silencers 22 are arranged at equal intervals in the circumferential direction on the inside of the tubular member 12 (inner circumferential surface (inner circumferential surface)), they have rotational symmetry. Good.
 また、複数の消音器22を管状部材12の外周面に、周面方向に配列して配置する構成の場合には、複数の消音器22を連結してもよい。例えば、図22に示す例のように、8つの消音器22を周面方向に連結した構成としてもよい。 Further, in the case of the configuration in which the plurality of silencers 22 are arranged in the circumferential direction on the outer peripheral surface of the tubular member 12, the plurality of silencers 22 may be connected. For example, as shown in FIG. 22, eight silencers 22 may be connected in the circumferential direction.
 消音器22が管状部材12内に配置される場合も同様に、複数の消音器22を管状部材12の内周面に、周面方向に配列して配置する構成の場合には、複数の消音器22を連結してもよい。例えば、図23に示す例のように、8つの消音器22を周面方向に連結した構成としてもよい。 Similarly, when the silencers 22 are disposed in the tubular member 12, in the case where the plurality of silencers 22 are arranged in the circumferential direction on the inner peripheral surface of the tubular member 12, the plurality of silencers are arranged. The vessels 22 may be connected. For example, as shown in FIG. 23, eight silencers 22 may be connected in the circumferential direction.
 また、図1に示す例では、消音器22は管状部材12の外周面に沿った略立方体形状としたが、これに限定はされず、空洞部を有する各種の立体形状であればよい。あるいは、図24に示すように、消音器22は、周面方向において管状部材12の外周面の全周に沿った円環状であってもよい。この場合、開口部32は、管状部材12の内周面の周面方向に沿ったスリット状に形成される。 Further, in the example shown in FIG. 1, the silencer 22 has a substantially cubic shape along the outer peripheral surface of the tubular member 12. However, the present invention is not limited thereto, and various types of three-dimensional shapes having hollow portions may be used. Alternatively, as shown in FIG. 24, the silencer 22 may be annular along the entire circumference of the outer circumferential surface of the tubular member 12 in the circumferential direction. In this case, the opening 32 is formed in a slit shape along the circumferential direction of the inner peripheral surface of the tubular member 12.
 消音器22が管状部材12内に配置される場合も同様に、図25に示すように、消音器22は、周面方向において管状部材12の内周面の全周に沿った円環状であってもよい。 Similarly, when the silencer 22 is disposed in the tubular member 12, as shown in FIG. 25, the silencer 22 is annular along the entire circumference of the inner circumferential surface of the tubular member 12 in the circumferential direction. May be
 また、消音器22が管状部材12の外周面に配置される場合において、消音器22が周面方向において管状部材12の外周面の全周を覆うと想定した場合の消音器22の外径(実効外径)をD1とし、管状部材12の外径(実効外径)をD0とすると(図24参照)、D1<D0+2×(0.045×λ+5mm)を満たすのが好ましい。なお、式中のD1、D0およびλの単位はmmである。
 これにより、消音システムの大型化を抑制しつつ、高い防音性能を発現することができる。
 なお、実効外径は、円相当直径であり、断面が円形ではない場合、その断面積と同じ円の直径を実効外径とした。
When the silencer 22 is disposed on the outer peripheral surface of the tubular member 12, the outer diameter of the silencer 22 in the circumferential direction is assumed to cover the entire periphery of the outer peripheral surface of the tubular member 12 ( Assuming that the effective outer diameter is D 1 and the outer diameter (effective outer diameter) of the tubular member 12 is D 0 (see FIG. 24), it is preferable to satisfy D 1 <D 0 + 2 × (0.045 × λ + 5 mm) . The unit of D 1 , D 0 and λ in the formula is mm.
Thereby, high soundproof performance can be expressed, suppressing the enlargement of a silencer system.
In addition, an effective outside diameter is a circle equivalent diameter, and when a cross section is not circular, the diameter of the same circle as the cross-sectional area was made into the effective outside diameter.
 また、消音器22が管状部材12の内周面に配置される場合において、消音器22が周面方向において管状部材12の内周面の全周を覆うと想定した場合の消音器22の内径をD2とし、管状部材12の内径をD0とすると(図18参照)、0.75×D0<D2を満たすのが好ましい。
 これにより、消音システムの大型化を抑制して通気性を確保しつつ、高い防音性能を発現することができる。
When the silencer 22 is disposed on the inner circumferential surface of the tubular member 12, the inner diameter of the silencer 22 is assumed to cover the entire circumference of the inner circumferential surface of the tubular member 12 in the circumferential direction. Where D 2 and the inner diameter of the tubular member 12 is D 0 (see FIG. 18), it is preferable to satisfy 0.75 × D 0 <D 2 .
As a result, it is possible to exhibit high soundproofing performance while suppressing the upsizing of the noise reduction system to secure air permeability.
 また、図17~図23に示す例では、複数の消音器22を管状部材12の周面方向に配列した構成としたが、これに限定はされず、複数の消音器22を管状部材12の軸方向に配列した構成としてもよい。言い換えると、管状部材12の軸方向の少なくとも2箇所以上の位置に、複数の消音器22の開口部32が配置される構成としてもよい。 In the examples shown in FIGS. 17 to 23, the plurality of silencers 22 are arranged in the circumferential direction of the tubular member 12. However, the present invention is not limited to this. It may be arranged in the axial direction. In other words, the openings 32 of the plurality of silencers 22 may be disposed at at least two or more positions in the axial direction of the tubular member 12.
 例えば、図26に示す消音システム10hは、軸方向において、管状部材12の略中央部で、管状部材12の周面開口部12aに接続される消音器22aと、管状部材12の一方の端部近傍で周面開口部12aに接続される消音器22bとを有する。 For example, the noise reduction system 10h shown in FIG. 26 includes a silencer 22a connected to the circumferential opening 12a of the tubular member 12 at a substantially central portion of the tubular member 12 in the axial direction, and one end of the tubular member 12 And a silencer 22b connected to the circumferential opening 12a in the vicinity.
 また、図26に示す例では、周面方向にもそれぞれ2つの消音器を回転対称に配置している。このように、周面方向および軸方向のそれぞれで、2つ以上の消音器を配置してもよい。 Further, in the example shown in FIG. 26, two silencers are disposed in rotational symmetry in the circumferential direction respectively. Thus, two or more silencers may be arranged in the circumferential direction and in the axial direction, respectively.
 なお、図26に示す例では、軸方向に2つの消音器を配置する構成としたが、これに限定はされず、軸方向に3つ以上の消音器を配置する構成としてもよい。 In the example shown in FIG. 26, although two silencers are arranged in the axial direction, the present invention is not limited to this, and three or more silencers may be arranged in the axial direction.
 また、複数の消音器を軸方向に配置する構成とする場合には、開口部の位置ごとに空洞部の長さLdが異なる消音器を配置することが好ましい。
 例えば、図27に示す消音システム10iは、軸方向において、管状部材12の略中央部で、管状部材12の周面開口部12aに接続される消音器22aと、管状部材12の一方の端部近傍で周面開口部12aに接続される消音器22bとを有する。中央部側の消音器22aの空洞部30aの深さLdは、端部側の消音器22bの空洞部30bの深さLdが互いに異なる。
Further, in the case of the construction of arranging the plurality of silencer in the axial direction is preferably a length L d of the cavity for each position of the opening to position different muffler.
For example, in the noise reduction system 10i shown in FIG. And a silencer 22b connected to the circumferential opening 12a in the vicinity. The depth L d of the hollow portion 30a of the central portion of the muffler 22a, the depth L d of the hollow portion 30b of the end portion of the muffler 22b are different from each other.
 また、複数の消音器を軸方向に配置する構成とする場合には、開口部の位置ごとに空洞部内に音響特性の異なる吸音材を配置することが好ましい。
 例えば、図28に示す消音システム10jは、軸方向において、管状部材12の略中央部で、管状部材12の周面開口部12aに接続される消音器22aと、管状部材12の一方の端部近傍で周面開口部12aに接続される消音器22bとを有する。中央部側の消音器22aの空洞部30aには吸音材24aが配置されており、端部側の消音器22bの空洞部30bには吸音材24bが配置されている。吸音材24aの吸音特性と吸音材24bの吸音特性とは互いに異なる。
When a plurality of silencers are arranged in the axial direction, it is preferable to arrange sound absorbing materials having different acoustic characteristics in the hollow portion for each position of the opening.
For example, the noise reduction system 10j shown in FIG. 28 has a silencer 22a connected to the circumferential surface opening 12a of the tubular member 12 at a substantially central portion of the tubular member 12 in an axial direction, And a silencer 22b connected to the circumferential opening 12a in the vicinity. The sound absorbing material 24 a is disposed in the hollow portion 30 a of the silencer 22 a on the central portion side, and the sound absorbing material 24 b is disposed in the hollow portion 30 b of the silencer 22 b on the end side. The sound absorbing characteristics of the sound absorbing material 24a and the sound absorbing characteristics of the sound absorbing material 24b are different from each other.
 後に詳述するが、本発明の消音システムにおいては、軸方向における消音器(開口部)の配置位置に応じて、好適に消音可能な波長が変化する。従って、軸方向に複数の消音器を配置することで異なる波長域の音を消音することができ、より広帯域に消音することができる。また、軸方向における開口部の位置ごとに好適に消音可能な波長に合わせて、空洞部の深さLd、および、吸音体の吸音特性を調整することによって、より好適に消音することができる。 As will be described in detail later, in the noise reduction system according to the present invention, the wavelength that can be favorably damped changes depending on the arrangement position of the silencer (opening) in the axial direction. Therefore, by arranging a plurality of silencers in the axial direction, sounds in different wavelength ranges can be muffled and muffled in a wider band. In addition, it is possible to more preferably mute by adjusting the depth L d of the cavity and the sound absorption characteristics of the sound absorber according to the wavelength that can be preferably muffled for each position of the opening in the axial direction. .
 また、図1に示す例では、消音器21の空洞部30は開口部から半径方向に深さLdを有する構成とし、図2に示す例では、消音器22の空洞部30は開口部32から軸方向に深さLdを有する構成としたが、これに限定はされず、開口部32から周面方向に深さを有する構成としてもよい。 Further, in the example shown in FIG. 1, the hollow portion 30 of the silencer 21 is configured to have a depth L d in the radial direction from the opening, and in the example shown in FIG. Although the depth L d is provided in the axial direction from the above, the present invention is not limited to this, and the depth 32 may be provided in the circumferential direction from the opening 32.
 図29は、本発明の消音システムの他の一例を模式的に表す断面図であり、図30は、図29のC-C線断面図である。
 図29および図30に示す消音システムは、2つの消音器23が管状部材12の外周面に沿って配置されている。消音器23の空洞部30は、開口部32から管状部材12の周面方向に沿って延在している。すなわち、消音器23は開口部32から周面方向に深さを有する。
 このような構成とすることで、消音器の軸方向の長さを短くすることができる。
FIG. 29 is a cross-sectional view schematically showing another example of the noise reduction system of the present invention, and FIG. 30 is a cross-sectional view taken along the line CC in FIG.
The silencer system shown in FIGS. 29 and 30 has two silencers 23 arranged along the outer peripheral surface of the tubular member 12. The cavity 30 of the silencer 23 extends from the opening 32 along the circumferential direction of the tubular member 12. That is, the silencer 23 has a depth in the circumferential direction from the opening 32.
With such a configuration, the axial length of the silencer can be shortened.
 なお、図30に示す例では、2つの消音器23を有する構成としたが、これに限定はされず、3以上の消音器23を有していてもよい。例えば、図31に示す例のように、5つの消音器23を有する構成としてもよい。 In addition, although it was set as the structure which has two silencers 23 in the example shown in FIG. 30, it is not limited to this, You may have three or more silencers 23. FIG. For example, as shown in an example shown in FIG. 31, five silencers 23 may be provided.
 また、図2に示す例では、消音器22の空洞部30の深さは一方向に伸びる構成としたが、これに限定はされない。例えば、図32に示すように、空洞部30の形状を深さ方向が折り返した略C形状としてもよい。図32に示す空洞部30内に侵入した音波は、開口部32から図中右方向に進んだ後、折り返して図中左方向に進む。空洞部30の深さLdは、音波の進行方向に沿った長さであるので、図32に示す空洞部30の深さLdは、折り返した形状に沿った長さである。 Moreover, in the example shown in FIG. 2, although the depth of the hollow part 30 of the silencer 22 was set as the structure extended in one direction, it is not limited to this. For example, as shown in FIG. 32, the hollow portion 30 may have a substantially C shape in which the depth direction is folded. The sound wave that has entered the hollow portion 30 shown in FIG. 32 proceeds from the opening 32 in the right direction in the drawing, and then turns back and proceeds in the left direction in the drawing. The depth L d of the cavity 30, since it is the length along the traveling direction of the sound wave, the depth L d of the cavity 30 shown in FIG. 32 is a length along the folded shape.
 ここで、本発明の消音システムは、消音器および挿入部を有する消音装置の一部を、管状部材(通気スリーブ)に挿入して配置する構成としてもよい。
 図33に本発明の消音システムの他の一例の模式的な断面図を示す。
 図33に示す消音システム10kは、管状部材12の一方の端面側に、管状部材12を通過する音を消音する消音装置14が設置された構成を有する。
Here, the noise reduction system of the present invention may be configured such that a portion of the noise reduction device having the noise reduction device and the insertion portion is inserted and disposed in the tubular member (vent sleeve).
FIG. 33 shows a schematic cross-sectional view of another example of the noise reduction system of the present invention.
The muffling system 10k shown in FIG. 33 has a configuration in which a muffling device 14 for muffling the sound passing through the tubular member 12 is installed on one end face side of the tubular member 12.
 消音装置14は、挿入部26と消音器22とを有する。挿入部26は、両端が開放された筒状の部材で、一方の端面に消音器22が接続されている。また、挿入部26の外径は、管状部材12の内径より小さく、管状部材12内に挿入可能である。
 消音器22は、挿入部26の端面に配置される以外は、上述のL字型の消音器22と同様の構成を有する。また、消音器22は、挿入部26の内径を塞がないように、挿入部26の周面に沿って配置されている。また、消音器22はその開口部32が挿入部26の中心軸(管状部材12の中心軸)を向くように配置されている。
 なお、挿入部26の中心軸とは、挿入部26の断面における重心を通る軸である。
The silencer 14 has an insertion portion 26 and a silencer 22. The insertion portion 26 is a cylindrical member whose both ends are open, and the silencer 22 is connected to one end face. Further, the outer diameter of the insertion portion 26 is smaller than the inner diameter of the tubular member 12 and can be inserted into the tubular member 12.
The silencer 22 has the same configuration as the above-described L-shaped silencer 22 except that the silencer 22 is disposed on the end face of the insertion portion 26. Further, the silencer 22 is disposed along the circumferential surface of the insertion portion 26 so as not to block the inner diameter of the insertion portion 26. Further, the silencer 22 is disposed such that the opening 32 thereof faces the central axis of the insertion portion 26 (the central axis of the tubular member 12).
The central axis of the insertion portion 26 is an axis passing through the center of gravity in the cross section of the insertion portion 26.
 消音装置14は、挿入部26の消音器22が配置されていない端面側から管状部材12内に挿入されて設置されている。消音器22の実効外径は管状部材12の内径よりも大きいため、挿入部26は、消音器22が管状部材12の端面に接する位置まで挿入される。これにより、消音器22は管状部材12の開口端面近傍に配置される。すなわち、消音器22の開口部32は、管状部材12の開口端補正距離内の空間に配置される。従って、消音器22の開口部32は、管状部材12の第一共鳴の音場空間に接続される。 The silencer 14 is inserted and installed in the tubular member 12 from the end face side where the silencer 22 of the insertion portion 26 is not disposed. Since the effective outer diameter of the silencer 22 is larger than the inner diameter of the tubular member 12, the insertion portion 26 is inserted to a position where the silencer 22 contacts the end face of the tubular member 12. Thus, the silencer 22 is disposed in the vicinity of the open end face of the tubular member 12. That is, the opening 32 of the silencer 22 is disposed in the space within the opening end correction distance of the tubular member 12. Thus, the opening 32 of the silencer 22 is connected to the sound field space of the first resonance of the tubular member 12.
 このように、消音器および挿入部を有する消音装置を管状部材内に挿入して設置する構成とすることで、既存の換気口および空調ダクト等に大規模な工事等を行うことなく簡易に設置することが可能となる。従って、消音器が劣化あるいは破損した時の交換が簡易である。また、住宅の換気スリーブなどに使用する場合は、コンクリート壁の貫通穴径を変える必要がなく施工が簡易である。また、リノベーション時に後付けで設置することが簡易である。 As described above, by installing the silencer having the silencer and the insertion portion into the tubular member and installing it, the installation can be easily performed on the existing ventilating port, the air conditioning duct, etc. without performing the large-scale construction and the like. It is possible to Therefore, replacement when the silencer is deteriorated or damaged is easy. Moreover, when using for the ventilation sleeve etc. of a house, it is not necessary to change the through-hole diameter of a concrete wall, and construction is simple. In addition, it is easy to retrofit at the time of renovation.
 また、マンションのような住宅の壁は、例えば、コンクリート壁、石膏ボード、断熱材、化粧板、および、壁紙等を有して構成されており、これらを貫通して換気スリーブが設けられている。このような壁の換気スリーブに、図33に示すような消音装置14を設置する場合には、本発明における壁16はコンクリート壁に相当し、消音装置14の消音器22部分はコンクリート壁の外側に設置されて、コンクリート壁と化粧板の間に設置されるのが好ましい(図70参照)。 In addition, the wall of a house such as an apartment is configured to have, for example, a concrete wall, a gypsum board, a heat insulating material, a decorative plate, and a wallpaper, etc., and a ventilation sleeve is provided through them. . When the muffling device 14 as shown in FIG. 33 is installed in such a wall ventilation sleeve, the wall 16 in the present invention corresponds to a concrete wall, and the muffler 22 portion of the muffling device 14 is outside the concrete wall. And between the concrete wall and the decorative board (see FIG. 70).
 なお、図33に示す例では、消音装置14の挿入部26を管状部材12内に挿入して、消音装置14を管状部材12の開口部に配置する構成としたが、これに限定はされない。
例えば、図67に示す消音システム10nのように、消音装置14が挿入部を有さず、壁16に接着剤等で貼り付ける構成としてもよい。
 あるいは、図68に示す消音システム10pのように、消音装置14の挿入部26の内径を壁16に配置された管状部材12の外径と略同じ径として、消音装置14の挿入部26内に管状部材12を挿入して、消音装置14を設置する構成としてもよい。挿入部26は、管状部材12と壁16との間に配置される。
 あるいは、図69に示す消音システム10qのように、消音装置14の挿入部26の内径を管状部材12の外径よりも大きくして、挿入部26が壁16内に配置される構成としてもよい。
 図67~図69に示すような構成にすることにより、挿入部26を管状部材12に挿入することによる開口率の低下を抑制でき、管状部材12の通気性を向上できる。
In the example shown in FIG. 33, although the insertion portion 26 of the silencer 14 is inserted into the tubular member 12 and the silencer 14 is disposed at the opening of the tubular member 12, the present invention is not limited thereto.
For example, as in the noise reduction system 10 n shown in FIG. 67, the noise reduction device 14 may be configured to be attached to the wall 16 with an adhesive or the like without having the insertion portion.
Alternatively, inside the insertion portion 26 of the silencer 14 with the inside diameter of the insertion portion 26 of the silencer 14 substantially the same as the outside diameter of the tubular member 12 disposed on the wall 16 as in the silencer system 10p shown in FIG. The tubular member 12 may be inserted to install the silencer 14. The insert 26 is disposed between the tubular member 12 and the wall 16.
Alternatively, as in the noise reduction system 10 q shown in FIG. 69, the inner diameter of the insertion portion 26 of the noise reduction device 14 may be larger than the outer diameter of the tubular member 12, and the insertion portion 26 may be disposed in the wall 16. .
With the configuration as shown in FIGS. 67 to 69, it is possible to suppress the decrease in the aperture ratio due to the insertion of the insertion portion 26 into the tubular member 12, and the air permeability of the tubular member 12 can be improved.
 なお、図68および図69に示すように、挿入部26を壁16内に配置する構成とする場合には、挿入部26の大きさおよび形状に合わせて、壁16に挿入部26を配置するための溝を形成すればよい。あるいは、壁16を作製する際に、あらかじめ消音装置14(および管状部材12)を設置しておき、コンクリートを流し込んで壁16を作製してもよい。 When the insertion portion 26 is arranged in the wall 16 as shown in FIGS. 68 and 69, the insertion portion 26 is arranged on the wall 16 in accordance with the size and shape of the insertion portion 26. It is sufficient to form a groove for Alternatively, when the wall 16 is manufactured, the muffling device 14 (and the tubular member 12) may be installed in advance, and concrete may be poured into the wall 16.
 なお、図33に示す例では、消音装置14はL字型の消音器22を有する構成としたが、これに限定はされず、垂直筒型の消音器21を有する構成であってもよいし、あるいは、周面方向に深さを有する消音器23を有する構成としてもよい。 In the example shown in FIG. 33, the silencer 14 is configured to have the L-shaped silencer 22. However, the present invention is not limited to this, and may be configured to have the vertical cylindrical silencer 21. Alternatively, the silencer 23 may have a depth in the circumferential direction.
 なお、図33に示すような消音システム10kの消音装置14においても、空洞部30内、あるいは、開口部32近傍に吸音材24を配置する構成とするのが好ましい。 Also in the noise reduction device 14 of the noise reduction system 10k as shown in FIG. 33, it is preferable that the sound absorbing material 24 be disposed in the hollow portion 30 or in the vicinity of the opening 32.
 また、消音装置14は、複数の消音器22を有するのが好ましい。
 複数の消音器22を有する場合には、周面方向に等間隔に配置されて回転対称となる構成としてもよい。
 あるいは、図34に示す消音システム10lのように軸方向に複数の消音器22を有し、軸方向の少なくとも2箇所以上の位置に、複数の消音器22の開口部32が配置される構成としてもよい。
Moreover, it is preferable that the silencer 14 has a plurality of silencers 22.
When a plurality of silencers 22 are provided, they may be arranged at equal intervals in the circumferential direction to be rotationally symmetrical.
Alternatively, as in the noise reduction system 10l shown in FIG. 34, a plurality of silencers 22 are provided in the axial direction, and the openings 32 of the plurality of silencers 22 are disposed at at least two or more axial positions It is also good.
 また、複数の消音器を軸方向に配置する構成とする場合には、開口部の位置ごとに空洞部の深さLdが異なる消音器を配置することが好ましい。
 例えば、図35に示す消音装置は、軸方向に挿入部26側から消音器22aと消音器22bとを有する。消音器22aの空洞部30aの深さLdは、消音器22bの空洞部30bの深さLdが互いに異なる。
Further, in the case of the construction of arranging the plurality of silencer in the axial direction is preferably the depth L d of the cavity for each position of the opening to position different muffler.
For example, the silencer shown in FIG. 35 has the silencer 22a and the silencer 22b in the axial direction from the insertion portion 26 side. The depth L d of the cavity 30 a of the silencer 22 a is different from the depth L d of the cavity 30 b of the silencer 22 b.
 また、複数の消音器を軸方向に配置する構成とする場合には、開口部の位置ごとに空洞部内に音響特性の異なる吸音材を配置することが好ましい。
 例えば、図36に示す消音装置は、軸方向に挿入部26側から消音器22aと消音器22bとを有する。消音器22aの空洞部30aには吸音材24aが配置されており、消音器22bの空洞部30bには吸音材24bが配置されている。吸音材24aの吸音特性と吸音材24bの吸音特性とは互いに異なる。
When a plurality of silencers are arranged in the axial direction, it is preferable to arrange sound absorbing materials having different acoustic characteristics in the hollow portion for each position of the opening.
For example, the silencer shown in FIG. 36 has the silencer 22a and the silencer 22b in the axial direction from the insertion portion 26 side. The sound absorbing material 24a is disposed in the hollow portion 30a of the silencer 22a, and the sound absorbing material 24b is disposed in the hollow portion 30b of the silencer 22b. The sound absorbing characteristics of the sound absorbing material 24a and the sound absorbing characteristics of the sound absorbing material 24b are different from each other.
 また、消音器の空洞部に吸音材を配置する構成とする場合には、1つの空洞部に複数の吸音材を配置する構成としてもよい。
 図104に示す消音装置は、軸方向に挿入部26側から消音器22aと消音器22bとを有する。消音器22aの空洞部30aおよび空洞部30b内にはそれぞれ3つの吸音材24c、24dおよび24eが配置されている。各空洞部内において、吸音材24c~24eは、空洞部の深さ方向に積層されている。
 空洞部内に複数の吸音材を配置する構成とすることで、製造の際に、吸音材を開口部から空洞部内に充填しやすくなり、また、メンテナンスの際に、吸音材を交換しやすくなる。
 また、空洞部の形状に合わせて成型された吸音材が複数に分割されているのがより好ましい。
Moreover, when it is set as the structure which arrange | positions a sound absorbing material in the hollow part of a silencer, it is good also as a structure which arrange | positions several sound absorbing materials in one hollow part.
The silencer shown in FIG. 104 has a silencer 22a and a silencer 22b in the axial direction from the insertion portion 26 side. Three sound absorbing materials 24c, 24d and 24e are disposed in the cavity 30a and the cavity 30b of the silencer 22a, respectively. In each hollow portion, the sound absorbing materials 24c to 24e are stacked in the depth direction of the hollow portion.
By arranging a plurality of sound absorbing materials in the cavity, the sound absorbing material can be easily filled from the opening into the cavity at the time of manufacture, and the sound absorbing material can be easily replaced at the time of maintenance.
Further, it is more preferable that the sound absorbing material molded in accordance with the shape of the hollow portion be divided into a plurality of parts.
 同じ空洞部内に配置される複数の吸音材24c~24eは、同じ種類の吸音材であってもよいし、少なくとも1つが異なる種類の吸音材、すなわち、吸音性能(流れ抵抗、材質、構造等)の異なる吸音材であってもよい。
 空洞部内に異なる種類の吸音材を複数配置することで、消音器による消音を、消音器(空洞部)の形状、および、吸音対象の音等に適した吸音性能に制御することが容易となる。
The plurality of sound absorbing members 24c to 24e disposed in the same hollow portion may be the same type of sound absorbing members, or at least one is a different type of sound absorbing member, that is, sound absorbing performance (flow resistance, material, structure, etc.) The sound absorbing material may be different.
By arranging a plurality of different types of sound absorbing materials in the hollow portion, it becomes easy to control the muffling by the muffler to the sound absorbing performance suitable for the shape of the muffler (hollow portion) and the sound etc. of the sound absorbing object. .
 また、例えば、図37および図38に示すように、消音装置は、消音器を分離可能に構成されていてもよい。消音器を分離可能とすることで、消音器の大きさおよび数等を変えた消音器の作製が容易となる。また、空洞部内への吸音材の設置および交換が容易となる。
 例えば、コンクリート壁と化粧板との間の距離はさまざまで、同じマンションであっても場所によって異なったり、施工会社によって異なったりする。コンクリート壁と化粧板との間の距離に応じて、そのつど消音装置を設計して作製するとコストがかかる。また全ての距離に適用できるよう消音装置を薄く設計すると、防音性能が低くなってしまう。そこで、消音装置をコンクリート壁と化粧板との間に設置する場合に、コンクリート壁と化粧板との間の距離に応じて分離された複数の消音器を適宜組み合わせて設置することで、低コストで防音性能を最大化することができる。
For example, as shown in Drawing 37 and Drawing 38, a silencer may be constituted so that a silencer can be separated. By making the silencers separable, it becomes easy to manufacture the silencers in which the size, number, etc. of the silencers are changed. In addition, installation and replacement of the sound absorbing material in the hollow portion is facilitated.
For example, the distance between the concrete wall and the decorative panel varies, and even the same apartment may differ depending on the location or may differ depending on the construction company. Depending on the distance between the concrete wall and the veneer, it is costly to design and manufacture the silencer each time. Also, if the silencer is designed to be thin enough to be applied to all distances, the soundproofing performance will be lowered. Therefore, when installing the silencer between the concrete wall and the decorative plate, it is possible to reduce the cost by installing a plurality of silencers separated according to the distance between the concrete wall and the decorative plate as appropriate Soundproofing performance can be maximized.
 また、図39に示すように、消音装置14は、管状部材12に着脱可能に設置されるのが好ましい。これにより、消音装置14の交換、あるいはリフォーム等を簡単に行うことができる。
 また、消音装置14は、管状部材12の室内側の端面、および、室外側の端面のどちらに設置してもよいが、室内側の端面に設置されるのが好ましい。
Further, as shown in FIG. 39, the silencer 14 is preferably installed on the tubular member 12 so as to be removable. Thereby, replacement | exchange of the muffling apparatus 14, or reform etc. can be performed easily.
Moreover, although the silencer 14 may be installed on either the end face on the indoor side of the tubular member 12 or the end face on the outdoor side, it is preferable to be installed on the end face on the indoor side.
 また、消音システムは、管状部材のいずれか一方の端面に設置されるカバー部材および他方の端部に設置される風量調整部材の少なくとも一方を有していてもよい。カバー部材は、換気口および空調用ダクト等に設置される従来公知の、ルーバ、ガラリ等である。また、風量調整部材は、従来公知のレジスター等である。
 また、カバー部材および風量調整部材は、管状部材の消音装置が設置された側の端面に設置されてもよいし、消音装置が設置されていない側の端面に設置されてもよい。
 また、例えば、図40に示すように、風量調整部材20が消音装置14側に設置される場合には、軸方向から見た際に、風量調整部材20が消音装置14を全て覆うように設置されるのが好ましい。カバー部材が消音装置14側に設置される場合も同様である。
In addition, the noise reduction system may have at least one of a cover member installed on any one end surface of the tubular member and an air volume adjustment member installed on the other end. The cover member is a conventionally known louver, gully, etc. installed in a ventilating port, an air conditioning duct, etc. Further, the air flow rate adjustment member is a conventionally known register or the like.
Further, the cover member and the air flow rate adjusting member may be installed on the end face of the tubular member on the side where the muffling device is installed, or may be installed on the end face of the side where the muffling device is not installed.
Further, for example, as shown in FIG. 40, when the air volume adjusting member 20 is installed on the side of the silencer 14, the air volume adjusting member 20 is installed so as to cover all the silencer 14 when viewed from the axial direction. Is preferred. The same applies to the case where the cover member is installed on the side of the silencer 14.
 ここで、マンション等の一般的な住宅においては、コンクリート壁と化粧板とが離間して設置されており、コンクリート壁と化粧板との間に、断熱材等が配置されている。消音装置14は、コンクリート壁と化粧板との間の空間に設置するのが好ましい。その際、図70に示すように、消音装置14は化粧板40側の端面が、化粧板40の壁12側の面よりも壁16側に配置される構成としてもよい。あるいは、図71に示すように、消音装置14は化粧板40側の端面が、化粧板40の壁12とは反対側の面と面一に配置される構成としてもよい。すなわち、化粧板40に形成される貫通孔を消音装置14の外径と略同じにして、化粧板40の貫通孔に消音装置14を挿通させる構成としてもよい。なお、図71に示す例では、消音装置14は化粧板40側の端面と、化粧板40の壁12とは反対側の面とが面一となる構成としたが、これに限定はされず、消音装置14の一部が、化粧版40がある平面上に存在する構成であってもよい。
 化粧板40の貫通孔に消音装置14を挿通させる構成とすることで、消音装置の設置、交換等が容易になる。
Here, in a general house such as a condominium, a concrete wall and a decorative plate are installed separately from each other, and a heat insulating material or the like is disposed between the concrete wall and the decorative plate. The silencer 14 is preferably installed in the space between the concrete wall and the decorative board. At that time, as shown in FIG. 70, the silencer 14 may be configured such that the end face on the decorative plate 40 side is disposed closer to the wall 16 than the surface on the wall 12 side of the decorative plate 40. Alternatively, as shown in FIG. 71, the silencer 14 may be configured such that the end face on the decorative plate 40 side is flush with the surface on the opposite side to the wall 12 of the decorative plate 40. That is, the through holes formed in the decorative plate 40 may be substantially the same as the outer diameter of the silencer 14, and the silencer 14 may be inserted into the through holes of the decorative plate 40. In the example shown in FIG. 71, the silencer 14 has a configuration in which the end face on the decorative plate 40 side is flush with the surface on the opposite side of the wall 12 of the decorative plate 40, but the invention is not limited thereto. The part of the muffling device 14 may be configured to exist on the plane on which the decorative plate 40 is located.
The configuration in which the silencer 14 is inserted into the through hole of the decorative plate 40 facilitates installation, replacement and the like of the silencer.
 消音装置14の消音器22は、サイズが大きいほど消音性能が高くなる。
 ここで、図71に示すように、消音装置14は化粧板40側の端面が、化粧板40の壁12とは反対側の面と面一に配置される構成の場合には、消音器22のサイズが大きいと、化粧板40側にレジスターのような風量調整部材20を設置しても、室内から化粧板40に形成した貫通孔(消音装置14と化粧板40との境界)が視認されてしまうおそれがある。従って、図72に示すように、風量調整部材20と化粧板40および消音装置14との間に、境界カバー42を設置するのが好ましい。これにより、室内側(風量調整部材20側)から見た際に、図73に示すように、化粧板40の貫通孔が境界カバー42によって隠れるので、意匠性を高めることができる。
As the size of the silencer 22 of the silencer 14 is larger, the muffling performance becomes higher.
Here, as shown in FIG. 71, in the case where the silencer 14 has a configuration in which the end face on the decorative plate 40 side is disposed flush with the surface on the opposite side to the wall 12 of the decorative plate 40, the silencer 22 is If the air flow rate adjusting member 20 such as a register is installed on the side of the decorative plate 40, the through hole (the boundary between the silencer 14 and the decorative plate 40) formed in the decorative plate 40 is visually recognized There is a risk of Therefore, as shown in FIG. 72, it is preferable to place the boundary cover 42 between the air flow rate adjusting member 20 and the decorative plate 40 and the muffling device 14. Thereby, when viewed from the indoor side (air volume adjustment member 20 side), as shown in FIG. 73, the through hole of the decorative plate 40 is hidden by the boundary cover 42, so that the design can be enhanced.
 なお、図72に示す例では、消音装置14と境界カバー42とを別部材としたが、消音装置14と境界カバー42を一体的に形成してもよい。すなわち、消音装置14にフリンジを設けてもよい。 In the example shown in FIG. 72, although the silencer 14 and the boundary cover 42 are separate members, the silencer 14 and the boundary cover 42 may be integrally formed. That is, the silencer 14 may be provided with a fringe.
 また、図70等に示す例においては、消音装置14の内径は、管状部材12と略同じ径で一様としたが、これに限定はされない。図74に示す消音システム10rのように、消音器22部分の内径を挿入部26の内径よりも大きく、すなわち、管状部材12の内径よりも大きくしてもよい。
 消音器22部分の内径を管状部材12の内径よりも大きくすることで、管状部材12の径よりも大きい径の管状部材用の、大きな風量調整部材20を用いることができる。大きな風量調整部材20を用いることで、化粧板40の貫通孔が風量調整部材20によって隠れるので、意匠性を高めることができる。
Moreover, in the example shown in FIG. 70 etc., although the internal diameter of the muffling device 14 was made uniform with substantially the same diameter as the tubular member 12, limitation is not carried out to this. As in the noise reduction system 10r shown in FIG. 74, the inner diameter of the silencer 22 may be larger than the inner diameter of the insertion portion 26, ie, larger than the inner diameter of the tubular member 12.
By making the inner diameter of the silencer 22 part larger than the inner diameter of the tubular member 12, a large air flow adjusting member 20 for a tubular member having a diameter larger than the diameter of the tubular member 12 can be used. By using the large air flow rate adjusting member 20, the through hole of the decorative plate 40 is hidden by the air flow rate adjusting member 20, so that the design can be enhanced.
 また、図75に示す消音システム10sのように、消音装置14と風量調整部材20とを一体化してもよい。
 図71等に示すように、市販のレジスター等の風量調整部材20は、差込部を有し、差込部を消音装置14に差し込んで設置される。しかしながら、市販のレジスターの差し込み部は、接続時の剛性および密閉性確保のため、長さが5cm程度あり、消音装置14の設計が制限されるおそれがある。これに対して、図75のように、消音装置14と風量調整部材20とを一体化することで、消音装置14の設計自由度が高くなり、また、施工も簡易化される点で好ましい。
Further, as in the noise reduction system 10s shown in FIG. 75, the noise reduction device 14 and the air volume adjustment member 20 may be integrated.
As shown in FIG. 71 etc., the air flow rate adjusting member 20 such as a commercially available register has an insertion portion, and the insertion portion is inserted into the silencer 14 and installed. However, the insertion portion of a commercially available register has a length of about 5 cm to secure rigidity and sealing at the time of connection, which may limit the design of the silencer 14. On the other hand, as shown in FIG. 75, integrating the muffling apparatus 14 and the air volume adjusting member 20 is preferable in that the design freedom of the muffling apparatus 14 is increased and the construction is simplified.
 なお、消音システムが、カバー部材および風量調整部材を有する場合には、管状部材内に生じる第一共鳴は、カバー部材、風量調整部材および消音装置を含む消音システムにおける管状部材の第一共鳴である。従って、消音器の空洞部の長さLdは、カバー部材、風量調整部材および消音装置を含む消音システムにおける管状部材の第一共鳴の共鳴周波数における音波の波長λの1/4よりも短い。 In the case where the noise reduction system has the cover member and the air flow rate adjustment member, the first resonance occurring in the tubular member is the first resonance of the tubular member in the sound reduction system including the cover member, the air flow rate adjustment member and the noise reduction device. . Therefore, the length L d of the hollow portion of the silencer is shorter than 1⁄4 of the wavelength λ of the sound wave at the resonance frequency of the first resonance of the tubular member in the muffling system including the cover member, the air volume adjusting member and the muffling device.
 また、図70等に示す例では、消音装置14は、消音装置14の中心軸が管状部材12の中心軸に一致するように配置されている、すなわち、消音装置14は、管状部材12の中心軸に対して回転対称の形状に形成されているがこれに限定はされない。
 図105に示す消音システム、および、図106に示す消音システムのように、消音装置14は、消音装置14の中心軸が、中心軸に垂直な方向に管状部材12の中心軸とずれるように配置されていてもよい。
 消音装置14の中心軸と管状部材12の中心軸とが一致する構成は通気性の点で好ましい。一方、消音装置14の中心軸と管状部材12の中心軸とがずれている場合は、音の反射が増えるため防音性能が向上する点で好ましい。特に直進性の高い高周波領域で効果がある。
Further, in the example shown in FIG. 70 and the like, the silencer 14 is arranged such that the central axis of the silencer 14 coincides with the central axis of the tubular member 12. That is, the silencer 14 is the center of the tubular member 12. Although it is formed in the shape of rotational symmetry with respect to the axis, it is not limited to this.
As in the noise reduction system shown in FIG. 105 and the noise reduction system shown in FIG. 106, the silencer 14 is disposed such that the central axis of the silencer 14 is offset from the central axis of the tubular member 12 in the direction perpendicular to the central axis. It may be done.
A configuration in which the central axis of the silencer 14 coincides with the central axis of the tubular member 12 is preferable in terms of air permeability. On the other hand, when the central axis of the muffling device 14 and the central axis of the tubular member 12 deviate from each other, reflection of sound increases, which is preferable in that the soundproofing performance is improved. In particular, it is effective in a high frequency region where the linearity is high.
 ここで、住宅用の壁の厚みは、すなわち、コンクリート壁と化粧板との間の空間を含む、コンクリート壁と化粧板との合計厚み(以下、壁と化粧板との合計厚みともいう)は、175mm~400mm程度である。従って、住宅用に用いられる通気スリーブ(環状部材)の長さは175mm~400mmである。この範囲の長さの通気スリーブで生じる共鳴の第一共鳴周波数は、355Hz~710Hz程度である。 Here, the thickness of the wall for housing, that is, the total thickness of the concrete wall and the decorative plate including the space between the concrete wall and the decorative plate (hereinafter also referred to as the total thickness of the wall and the decorative plate) is , About 175 mm to 400 mm. Therefore, the length of the ventilating sleeve (annular member) used for residential use is 175 mm to 400 mm. The first resonance frequency of the resonance generated by the ventilation sleeve having a length in this range is about 355 Hz to 710 Hz.
 なお、住宅用の壁に用いられる通気スリーブの防音を考えた場合、コンクリート壁と化粧板との合計厚み、すなわち、通気スリーブの長さは175mm~400mmであるので、通気スリーブの第一共鳴の波長が最も短い場合(通気スリーブの長さが175mmのとき、λ=497mm)を考えると、十分な防音性能が得られる観点から、空洞部の幅Lwは、5.5mm以上であるのが好ましく、15mm以上であるのがより好ましく、25mm以上であるのがさらに好ましい。
 一方、住宅用の壁は、全体の厚み(コンクリート壁と化粧板との合計厚み)は最大で400mmであり、コンクリート壁が少なくとも100mmであるため、空洞部の幅Lwは、住宅のコンクリート壁と化粧板との間の空間に配置可能な観点から、300mm以下であるのが好ましく、さらに汎用性の観点から200mm以下であるのがより好ましく、150mm以下であるのがさらに好ましい。
In addition, when considering the sound insulation of the ventilation sleeve used for the wall for housing, the total thickness of the concrete wall and the decorative plate, that is, the length of the ventilation sleeve is 175 mm to 400 mm. Given that the wavelength is the shortest (when the length of the aeration sleeve is 175 mm, λ = 497 mm), the width L w of the cavity is 5.5 mm or more from the viewpoint of obtaining sufficient soundproofing performance. Preferably, it is 15 mm or more, more preferably 25 mm or more.
On the other hand, the wall for a house has a total thickness (total thickness of concrete wall and decorative plate) of at most 400 mm, and the concrete wall is at least 100 mm, so the width L w of the cavity is the concrete wall of the house It is preferable that it is 300 mm or less from a viewpoint which can be arrange | positioned to the space between and a decorative board, Furthermore, it is more preferable from a viewpoint of versatility that it is 200 mm or less, More preferably, it is 150 mm or less.
 同様に、通気スリーブの第一共鳴の波長が最も短い場合(通気スリーブの長さが175mmのとき、λ=497mm)を考えると、十分な防音性能が得られる観点から、空洞部の深さLdは、25.3mm以上であるのが好ましく、27.8mm以上であるのがより好ましく、30.3mm以上であるのがさらに好ましい。
 一方、消音器は径方向において住宅の柱と柱の間に配置される。住宅の柱と柱の間は最大で450mm程度であり、通気スリーブは少なくとも100mm程度である。従って、空洞部の深さLdは、住宅の柱と柱の間の空間に配置可能な観点から、175mm以下(=(450mm-100mm)/2)であるのが好ましく、130mm以下であるのがより好ましく、100mm以下であるのがさらに好ましい。
Similarly, considering the case where the first resonance wavelength of the ventilation sleeve is the shortest (when the length of the ventilation sleeve is 175 mm, λ = 497 mm), the depth L of the cavity is sufficient in terms of obtaining sufficient soundproofing performance d is preferably 25.3 mm or more, more preferably 27.8 mm or more, and still more preferably 30.3 mm or more.
On the other hand, the silencer is disposed radially between the pillars of the house. The maximum distance between the housing pillars is about 450 mm, and the ventilation sleeve is at least about 100 mm. Therefore, the depth L d of the hollow portion is preferably 175 mm or less (= (450 mm-100 mm) / 2) and 130 mm or less from the viewpoint of being able to be disposed in the space between the pillars of the house Is more preferable, and 100 mm or less is more preferable.
 また、消音器22の空洞部30内の一部に吸音材を有する構成とする場合には、開口部32を覆うように、あるいは、開口部32を狭くするように配置するのが好ましい。すなわち、吸音材は空洞部30内の開口部32に近い位置に配置されるのが好ましい。また、空洞部30の、深さ方向における開口部32から遠い側の端面から離れた位置に吸音材を配置するのが好ましい。 Moreover, when it is set as the structure which has a sound absorbing material in a part in hollow part 30 of silencer 22, it is preferable to arrange so that opening 32 may be covered or opening 32 may be narrowed. That is, it is preferable that the sound absorbing material be disposed at a position near the opening 32 in the cavity 30. Further, it is preferable to dispose the sound absorbing material at a position away from the end face of the hollow portion 30 on the side far from the opening 32 in the depth direction.
 空洞部30内における吸音材の位置の違いによる防音性能の差を以下のシミュレーションによって検討した。
 図91に、シミュレーションモデルの模式図を示す。
 図91に示すように、シミュレーションにおいて管状部材の長さは200mm、直径は100mmとした。消音器22は、管状部材12の外周に管状に設置した。軸方向において管状部材12の音波の入射側の端面と消音器22との間の距離は100mmとした。消音器22の開口部32は管状部材の周面方向にスリット状に配置した。開口部32の幅は15mmとした。空洞部30の軸方向の長さは60mm、軸方向に垂直な方向の幅は33mmとした。
 図91に示すように、軸方向に平行なある断面で見た際に、空洞部30内を9分割し、9分割した領域p1~p9の各領域に流れ抵抗13000[Pa・s/m2]の吸音材24が配置されるものとして、シミュレーションを行った。p1が開口部32に最も近い領域であり、p2およびp3は、半径方向においてp1よりも開口部32から遠い領域である。また、p4およびp7は、軸方向においてp1よりも開口部32から遠い領域である。p5およびp8は、軸方向においてp2よりも開口部32から遠い領域である。p6およびp9は、軸方向においてp3よりも開口部32から遠い領域である。
The difference in the soundproofing performance due to the difference in the position of the sound absorbing material in the hollow portion 30 was examined by the following simulation.
FIG. 91 shows a schematic diagram of a simulation model.
As shown in FIG. 91, in the simulation, the tubular member had a length of 200 mm and a diameter of 100 mm. The silencer 22 was installed in a tubular shape on the outer periphery of the tubular member 12. The distance between the end face of the sound wave incident side of the tubular member 12 and the silencer 22 in the axial direction was 100 mm. The opening 32 of the silencer 22 was arranged in a slit shape in the circumferential direction of the tubular member. The width of the opening 32 was 15 mm. The axial length of the hollow portion 30 was 60 mm, and the width in the direction perpendicular to the axial direction was 33 mm.
As shown in FIG. 91, when viewed in a cross section parallel to the axial direction, the cavity 30 is divided into 9 parts, and the flow resistance is 13000 [Pa · s / m 2] in each of the 9 divided areas The simulation was performed on the assumption that the sound absorbing material 24 is disposed. p1 is the area closest to the opening 32, and p2 and p3 are areas farther from the opening 32 than p1 in the radial direction. Also, p4 and p7 are regions farther from the opening 32 than p1 in the axial direction. p5 and p8 are regions farther from the opening 32 than p2 in the axial direction. p6 and p9 are regions farther from the opening 32 than p3 in the axial direction.
 図92に、p1、p2、p3、p5、および、p9のそれぞれの領域に吸音材を配置した場合の透過音圧強度と周波数との関係を表すグラフを示す。透過音圧強度は、消音器を設置しなかった場合の透過音圧のピーク(第一共鳴周波数の透過音圧)を1として規格化した。消音器を設置しない場合の管状部材内の第一共鳴周波数は630Hzであるので、630Hzにおける透過音圧がピーク音圧である。
 また、図93には、p1~p9の各領域に吸音材を配置した場合の、500Hzバンドの透過損失を表すグラフを示す。500Hzバンドの透過損失は、354Hz以上707Hz以下の周波数での透過損失の平均値を求めたものである。
FIG. 92 shows a graph showing the relationship between the transmission sound pressure intensity and the frequency when the sound absorbing material is arranged in each of the regions p1, p2, p3, p5 and p9. The transmission sound pressure intensity was standardized with the peak of the transmission sound pressure (transmission sound pressure at the first resonance frequency) when the silencer was not installed as 1. Since the first resonance frequency in the tubular member when the silencer is not installed is 630 Hz, the transmitted sound pressure at 630 Hz is the peak sound pressure.
Further, FIG. 93 shows a graph showing the transmission loss of the 500 Hz band when the sound absorbing material is disposed in each of the regions p1 to p9. The transmission loss in the 500 Hz band is obtained by averaging the transmission loss at a frequency of 354 Hz to 707 Hz.
 図92および図93に示すように、開口部32に最も近いp1の領域に吸音材を配置する構成、すなわち、開口部32を覆う構成が、最も透過音圧強度が低く、500Hzバンドの透過損失が高く、防音性能が高いことがわかる。また、開口部32に近いp2およびp4の領域に吸音材を配置する構成が、p1以外の他の領域に比べて透過音圧強度が低く500Hzバンドの透過損失が高く防音性能が高いことがわかる。 As shown in FIGS. 92 and 93, the configuration in which the sound absorbing material is disposed in the region of p1 closest to the opening 32, that is, the configuration that covers the opening 32, has the lowest transmitted sound pressure intensity and a transmission loss of the 500 Hz band. High and the soundproofing performance is high. In addition, it is understood that the configuration in which the sound absorbing material is disposed in the region of p2 and p4 close to the opening 32 has a low transmitted sound pressure intensity and high transmission loss in the 500 Hz band and high soundproof performance compared to the other regions other than p1. .
 次に、図94に示すように、軸方向に平行なある断面で見た際に、空洞部30内を軸方向に3分割し、3分割した領域pz1~pz3の各領域に流れ抵抗13000[Pa・s/m2]の吸音材24が配置されるものとして、シミュレーションを行った。pz1が開口部32に最も近い領域であり、pz2およびpz3は、軸方向においてpz1よりも開口部32から遠い領域である。
 図95には、pz1~pz3の各領域に吸音材を配置した場合の、500Hzバンドの透過損失を表すグラフを示す。
Next, as shown in FIG. 94, when viewed in a cross section parallel to the axial direction, the inside of the hollow portion 30 is axially divided into three, and the flow resistance is 13000 [in each of three divided regions The simulation was performed assuming that the sound absorbing material 24 of Pa · s / m 2 ] is disposed. pz1 is the area closest to the opening 32, and pz2 and pz3 are areas farther from the opening 32 than pz1 in the axial direction.
FIG. 95 shows a graph showing the transmission loss of the 500 Hz band when a sound absorbing material is arranged in each of the regions pz1 to pz3.
 また、図96に示すように、軸方向に平行なある断面で見た際に、空洞部30内を半径方向に3分割し、3分割した領域ph1~ph3の各領域に流れ抵抗13000[Pa・s/m2]の吸音材24が配置されるものとして、シミュレーションを行った。ph1が開口部32に最も近い領域であり、ph2およびph3は、半径方向においてph1よりも開口部32から遠い領域である。
 図97には、ph1~ph3の各領域に吸音材を配置した場合の、500Hzバンドの透過損失を表すグラフを示す。
Further, as shown in FIG. 96, when viewed in a cross section parallel to the axial direction, the inside of the hollow portion 30 is divided into three in the radial direction, and the flow resistance is 13000 [Pa Simulation was performed assuming that the sound absorbing material 24 of s / m 2 ] is disposed. Ph1 is the area closest to the opening 32, and ph2 and ph3 are areas farther from the opening 32 than ph1 in the radial direction.
FIG. 97 shows a graph showing the transmission loss of the 500 Hz band when the sound absorbing material is disposed in each of the ph1 to ph3.
 図95および図97に示すように、吸音材を配置する領域が開口部32に近いほど、500Hzバンドの透過損失が高くなり、防音性能が高くなることがわかる。 As shown in FIGS. 95 and 97, it can be seen that the transmission loss of the 500 Hz band increases and the soundproofing performance increases as the area where the sound absorbing material is disposed is closer to the opening 32.
 また、消音器22は、管状部材12内に生じる第一共鳴の音場空間に接続しない位置に、空洞部30と連通する第2開口部38を有していてもよい。 In addition, the silencer 22 may have a second opening 38 communicating with the cavity 30 at a position not connected to the sound field space of the first resonance generated in the tubular member 12.
 図98は本発明の消音システムの他の一例を概念的に示す断面図である。
 図98に示す消音システムにおいては、消音器22の空洞部30を構成する壁面の、開口部32を有する面と対面する面に第2空洞部38を有する。管状部材12内に生じる第一共鳴の音場空間に接続しない位置に、空洞部30と連通する第2開口部38を有する構成とすることで、空洞部30内の音響インピーダンスが低くなるため、音波が空洞部30内に浸入しやすくなる。これによって、空洞部30内で音エネルギーが熱エネルギーに変換されやすくなり、防音性能をより向上できる。また、空洞部30の体積を大きくすることなく空洞部30内の音響インピーダンスを低くすることができるので、消音器を小型化することができる。
FIG. 98 is a cross sectional view conceptually showing another example of the silencing system of the present invention.
In the noise reduction system shown in FIG. 98, the second hollow portion 38 is provided on the surface of the wall surface of the hollow portion 30 of the silencer 22 facing the surface having the opening 32. By providing the second opening 38 communicating with the cavity 30 at a position not connected to the sound field space of the first resonance generated in the tubular member 12, the acoustic impedance in the cavity 30 is lowered, Sound waves can easily enter the cavity 30. As a result, sound energy is easily converted into heat energy in the hollow portion 30, and soundproof performance can be further improved. Moreover, since the acoustic impedance in the cavity 30 can be lowered without increasing the volume of the cavity 30, the silencer can be miniaturized.
 第2開口部38の形成位置は、管状部材12内に生じる第一共鳴の音場空間に接続しない位置であれば限定はない。また、第2開口部38の大きさも限定はないが大きいのが好ましい。 The formation position of the second opening 38 is not limited as long as it is a position not connected to the sound field space of the first resonance generated in the tubular member 12. Also, the size of the second opening 38 is not limited, but is preferably large.
 ここで、管状部材12内に生じる第一共鳴の音場空間に接続しない位置に第2開口部38を形成した構成の場合には、水や湿気が壁内に侵入したり、壁から空洞部内に水や湿気が入り込んだりするおそれがある。そこで、図99に示す例のように、図98に示す消音システムの第2開口部を膜状部材46で覆う構成としてもよい。膜状部材46は、音波を通しやすく水を通さない膜状の部材で、サランラップ(登録商標)等の薄い樹脂フィルム、撥水処理した不織布等を用いることができる。これによって、空洞部30内の音響インピーダンスを低くしつつ、水や湿気が入り込むのを防止することができる。膜状部材46の材料としては、後述する防風用フィルム44の材料と同様の材料を用いることができる。 Here, in the case where the second opening 38 is formed at a position not connected to the sound field space of the first resonance generated in the tubular member 12, water or moisture intrudes into the wall, or the cavity is formed from the wall Water and moisture may get into the Therefore, as in the example shown in FIG. 99, the second opening of the muffling system shown in FIG. 98 may be covered with the film-like member 46. The film-like member 46 is a film-like member that easily passes sound waves and does not pass water, and may be a thin resin film such as Saran Wrap (registered trademark), a non-woven fabric treated with water repellant, or the like. Thereby, it is possible to prevent water and moisture from entering while reducing the acoustic impedance in the hollow portion 30. As a material of the film-like member 46, the same material as the material of the windproof film 44 described later can be used.
 また、図100および図101に示す例のように、管状部材12内に浸入防止板34を有する構成としてもよい。
 図100は、本発明の消音システムの他の一例の模式的断面図である。また、図101は、図100のD-D線断面図である。
 図100および図101に示すように、浸入防止板34は、管状部材12内の鉛直方向の下方に、管状部材12の径方向に立設している板状の部材である。
Further, as in the example shown in FIG. 100 and FIG. 101, the penetration prevention plate 34 may be provided in the tubular member 12.
FIG. 100 is a schematic cross-sectional view of another example of the noise reduction system of the present invention. FIG. 101 is a cross-sectional view taken along the line DD in FIG.
As shown in FIGS. 100 and 101, the penetration preventing plate 34 is a plate-like member which is provided in the radial direction of the tubular member 12 below the vertical direction in the tubular member 12.
 住宅の壁に設置される通気スリーブ(管状部材)は、屋外に通じているため、台風などの強風時には雨水が外部ガラリや外部フード等を通過して通気スリーブ内に浸入する場合がある。本発明の消音システムでは、空洞部を有する消音器が通気スリーブに接続されているため、通気スリーブ内に浸入した雨水が空洞部に浸入して溜まってしまうおそれがある。 Since the aeration sleeve (tubular member) installed on the wall of the house leads to the outside, rainwater may pass through the outer girari, the outer hood, etc. and intrude into the aeration sleeve during strong wind such as a typhoon. In the noise reduction system of the present invention, since the silencer having the hollow portion is connected to the ventilation sleeve, there is a possibility that the rainwater which has entered the ventilation sleeve may infiltrate into the hollow portion and be accumulated.
 これに対して、図100および図101に示すように、管状部材12内に浸入防止板34を設けることで、外部から管状部材12内に浸入した雨水が消音器22の空洞部30に浸入するのを防止できる。
 浸入防止板34の鉛直方向の高さは、5mm以上40mm以下が好ましい。
On the other hand, as shown in FIGS. 100 and 101, by providing the intrusion prevention plate 34 in the tubular member 12, the rainwater which has entered the tubular member 12 from the outside enters the hollow portion 30 of the silencer 22 You can prevent
The height in the vertical direction of the intrusion prevention plate 34 is preferably 5 mm or more and 40 mm or less.
 また、雨水が消音器22の空洞部30に浸入するのを防止する構成として、図102および図103に示すように、消音器22の開口部32の鉛直方向の下側の領域を蓋部36で塞ぐ構成としてもよい。
 図102は、本発明の消音システムの他の一例の模式的断面図である。また、図103は、図102のE-E線断面図である。
 図102および図103に示すように、消音器22の開口部32の鉛直方向の下側の領域を蓋部36で塞ぐ構成とすることによって、外部から管状部材12内に浸入した雨水が消音器22の空洞部30に浸入するのを防止できる。
Further, as a configuration for preventing rainwater from entering the hollow portion 30 of the silencer 22, as shown in FIG. 102 and FIG. 103, the region on the lower side in the vertical direction of the opening 32 of the silencer 22 is covered. It may be configured to be closed.
FIG. 102 is a schematic cross-sectional view of another example of the noise reduction system of the present invention. FIG. 103 is a cross-sectional view taken along the line EE of FIG.
As shown in FIG. 102 and FIG. 103, by configuring the region below the opening 32 of the silencer 22 in the vertical direction with the lid 36, the rainwater that has entered the tubular member 12 from the outside is a silencer It can be prevented from entering the hollow portion 30 of 22.
 また、図109に示すように、消音器22の開口部32側の面を形成する部材を別部材(仕切り部材54)として、仕切り部材54を交換可能とする構成としてもよい。仕切り部材54を交換可能とすることで、開口部32の大きさを容易に変更することができるため、消音器22の共鳴周波数を適宜設定することができる。また、空洞部30内に設置された吸音材24を容易に交換することができる。 Further, as shown in FIG. 109, the partition member 54 may be replaceable by using a member forming the surface on the opening 32 side of the silencer 22 as a separate member (partition member 54). Since the size of the opening 32 can be easily changed by making the partition member 54 replaceable, the resonance frequency of the silencer 22 can be set appropriately. Moreover, the sound absorbing material 24 installed in the hollow portion 30 can be easily replaced.
 消音器22および消音装置14の形成材料としては、金属材料、樹脂材料、強化プラスチック材料、および、カーボンファイバ等を挙げることができる。金属材料としては、例えば、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、および、これらの合金等の金属材料を挙げることができる。また、樹脂材料としては、例えば、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、および、トリアセチルセルロース等の樹脂材料を挙げることができる。また、強化プラスチック材料としては、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、および、ガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)を挙げることができる。
 ここで、消音器22および消音装置14は、排気口等に利用可能な点から、難燃材料より耐熱性の高い材料からなることが好ましい。耐熱性は、例えば、建築基準法施行令の第百八条の二各号を満たす時間で定義することができる。建築基準法施行令の第百八条の二各号を満たす時間が5分間以上10分間未満の場合が難燃材料であり、10分間以上20分間未満の場合が準不燃材料であり、20分間以上の場合が不燃材料である。ただし耐熱性は各分野ごとで定義されることが多い。そのため、消音システムを利用する分野に合わせて、消音器22および消音装置14を、その分野で定義される難燃性相当以上の耐熱性を有する材料からなるものとすればよい。
Examples of materials for forming the silencer 22 and the silencer 14 include metal materials, resin materials, reinforced plastic materials, carbon fibers, and the like. As a metal material, metal materials, such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and these alloys can be mentioned, for example. Moreover, as the resin material, for example, acrylic resin, methyl polymethacrylate, polycarbonate, polyamideid, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, Resin materials such as polyimide and triacetyl cellulose can be mentioned. Moreover, as a reinforced plastic material, carbon fiber reinforced plastics (CFRP: Carbon Fiber Reinforced Plastics) and glass fiber reinforced plastics (GFRP: Glass Fiber Reinforced Plastics) can be mentioned.
Here, the silencer 22 and the silencer 14 are preferably made of a material having higher heat resistance than the flame retardant material, from the viewpoint of being usable for an exhaust port or the like. The heat resistance can be defined, for example, as a time satisfying the items of Article 108-2 of the Building Standard Act Enforcement Order. If the time required to satisfy Article 108-2 of the Building Standard Act Enforcement Order is 5 minutes or more and less than 10 minutes, it is a flame retardant material, and if it is 10 minutes or more and less than 20 minutes, it is a semicombustible material; The above cases are noncombustible materials. However, heat resistance is often defined in each field. Therefore, the silencer 22 and the silencer 14 may be made of a material having heat resistance equal to or higher than the flame retardancy that is defined in the field according to the field using the silencer system.
 また、図76に示す消音システム10tのように、各消音器22の開口部32が、音波は透過し、空気(風)は遮蔽する防風用フィルム44によって覆われているのが好ましい。
 消音器22の空洞部30内に空気が流入可能な構成の場合には、直管の場合に比べて、消音システム全体としての圧力損失が大きくなる。そのため、通気量が少なくなってしまうおそれがある。これに対して、各消音器22の開口部32を防風用フィルム44で覆う構成とすることで、防風用フィルム44が音波を透過するため、消音器22による消音の効果は得られ、かつ、防風用フィルム44が空気を遮蔽するため、空洞部30内に空気が流入するのを抑制して圧力損失を低減することができる。
Further, as in the noise reduction system 10t shown in FIG. 76, it is preferable that the openings 32 of the silencers 22 are covered with a windproof film 44 that transmits sound waves and shields air (wind).
In the case of a configuration in which air can flow into the hollow portion 30 of the silencer 22, the pressure loss as a whole of the silencer system is larger than in the case of a straight pipe. Therefore, the amount of ventilation may be reduced. On the other hand, by covering the openings 32 of the respective silencers 22 with the windproof films 44, the windproof films 44 transmit sound waves, so that the muffling effect by the silencers 22 can be obtained, and Since the windproof film 44 shields the air, the flow of air into the hollow portion 30 can be suppressed to reduce the pressure loss.
 防風用フィルム44は、非通気のフィルムであってもよく、通気性の低いフィルムであってもよい。
 非通気の防風用フィルム44の材料としては、ポリメタクリル酸メチル(PMMA)などのアクリル樹脂、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、が利用可能である。
 低通気性の防風用フィルム44の材料としては、上記樹脂からなる多孔質フィルム、多孔質金属箔(多孔質アルミニウム箔等)、不織布(レジンボンド不織布、サーマルボンド不織布、スパンボンド不織布、スパンレース不織布、ナノファイバー不織布)、織布、紙等が利用可能である。
 なお、多孔質フィルム、多孔質金属箔、不織布、織布を用いた場合には、それらが有する貫通孔部によって吸音効果を得ることができる。すなわち、これらは音エネルギーを熱エネルギーに変換する変換機構としても機能する。
 防風用フィルム44の厚みは、材質にもよるが、1μm~500μmが好ましく、3μm~300μmがより好ましく、5μm~100μmがより好ましい。
The windproof film 44 may be a non-air-permeable film or a low air-permeable film.
The material of the non-ventilated windproof film 44 is acrylic resin such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate, polyamideid, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene Resin materials such as sulfide, polysulfone, polybutylene terephthalate, polyimide, triacetyl cellulose and the like can be used.
The material of the low air-permeable windproof film 44 is a porous film made of the above resin, porous metal foil (porous aluminum foil etc.), non-woven fabric (resin-bonded non-woven fabric, thermal-bonded non-woven fabric, spun-bonded non-woven fabric, spunlace non-woven fabric (Nanofiber non-woven fabric), woven fabric, paper, etc. can be used.
In addition, when a porous film, porous metal foil, a nonwoven fabric, and a woven fabric are used, the sound absorption effect can be acquired by the through-hole part which they have. That is, they also function as a conversion mechanism that converts sound energy into heat energy.
Although depending on the material, the thickness of the windproof film 44 is preferably 1 μm to 500 μm, more preferably 3 μm to 300 μm, and still more preferably 5 μm to 100 μm.
 また、本発明の消音システムにおいて、他の市販の防音部材を有していてもよい。
 例えば、図77に示すように、管状部材12の一方の端部には、本発明における消音装置14が配置され、管状部材12の内部には、内挿型消音器50が配置される構成としてもよい。
 また、図78に示すように、管状部材12の一方の端部には、本発明における消音装置14が配置され、管状部材12の他方の端部には、野外設置型の防音フード52が配置される構成としてもよい。
 あるいは、管状部材12の一方の端部には、本発明における消音装置14が配置され、管状部材12の内部には、内挿型消音器50が配置され、管状部材12の他方の端部には、野外設置型の防音フード52が配置される構成としてもよい。
 このように、他の防音部材と組み合わせることで、より広い帯域で高い防音性能を得られる。
Moreover, you may have another commercially available soundproof member in the noise reduction system of this invention.
For example, as shown in FIG. 77, the silencer 14 according to the present invention is disposed at one end of the tubular member 12, and the insertion silencer 50 is disposed inside the tubular member 12. It is also good.
Further, as shown in FIG. 78, the muffling device 14 of the present invention is disposed at one end of the tubular member 12, and the outdoor soundproof hood 52 is disposed at the other end of the tubular member 12. It may be configured as
Alternatively, the silencer 14 of the present invention is disposed at one end of the tubular member 12, and the insertion type silencer 50 is disposed inside the tubular member 12 at the other end of the tubular member 12. Alternatively, the outdoor soundproof hood 52 may be disposed.
Thus, high soundproofing performance can be obtained in a wider band by combining with other soundproofing members.
 内挿型消音器50としては、種々の公知の内挿型消音器が利用可能である。例えば、株式会社新協和製:防音スリーブ(SK-BO100等)、大建プラスチックス株式会社製:防音スリーブ(100NS2等)、西邦工業株式会社製 自然換気用サイレンサー(SEIHO NPJ100等)、株式会社ユニックス製:サイレンサー(UPS100SA等)、株式会社建友製:サイレントスリーブP(HMS-K等)等を用いることができる。
 野外設置型の防音フード52としては、種々の公知の防音スリーブが利用可能である。例えば、株式会社ユニックス製:防音フード(SSFW-A10M等)、株式会社シルファー製:防音型フード(BON-TS等)等を用いることができる。
Various known interpolation silencers can be used as the interpolation silencer 50. For example, Shin Kyowa Co., Ltd .: Soundproof sleeve (SK-BO100, etc.), Daiken Plastics Co., Ltd .: Soundproof sleeve (100NS2, etc.), Saiho Kogyo Co., Ltd., Natural ventilation silencer (SEIHO NPJ100, etc.), Ltd. Product made by Unix: Silencer (UPS100SA etc.), product made by Kentoh Co., Ltd .: Silent sleeve P (HMS-K etc.) etc. can be used.
Various known soundproof sleeves can be used as the outdoor soundproof hood 52. For example, a soundproofing hood (SSFW-A10M or the like) manufactured by Unix Co., Ltd., a soundproofing hood (BON-TS or the like) manufactured by Silfer Co., Ltd., or the like can be used.
 ここで、管状部材12は、直管状のものに限定はされず、折れ曲がり構造を有するものであってもよい。管状部材12が折れ曲がり構造を有する場合には、折れ曲がり部において、風(空気の流れ)も音波も上流側に反射されるため、風も音波も通過しにくくなる。通気性を確保するために、折れ曲がり部を曲面にするなどして壁の角度変化を緩やかにしたり、折れ曲がり部に整流板を設けるなどして風の進行方向を変えて通気性を確保することが考えられる。
 しかしながら、折れ曲がり部を曲面にしたり、折れ曲がり部に整流板を設けた場合には、通気性が向上するものの、音波の透過率も高くなってしまう。
Here, the tubular member 12 is not limited to a straight tubular one, and may have a bent structure. In the case where the tubular member 12 has a bending structure, the air (flow of air) and the sound waves are also reflected to the upstream side at the bending portion, so that neither the wind nor the sound waves pass. In order to secure air permeability, the angled change of the wall may be made gentle by making curved parts to be curved or the like, and a flow straightening plate may be provided at the bent parts to change air flow direction to ensure air permeability. Conceivable.
However, when the bent portion is formed into a curved surface or a straightening vane is provided to the bent portion, although the air permeability is improved, the sound wave transmission rate is also increased.
 そこで、図89に示すように、風は通さず(通しにくく)、音波を透過する音響透過壁60を、管状部材12の折れ曲がり部に配置する。図89において、管状部材12は、略90°に曲がる折れ曲がり部を有している。音響透過壁60は、管状部材12の折れ曲がり部に、入射側の管状部材12の長手方向および出射側の管状部材12の長手方向それぞれに対して表面を約45°傾けて配置されている。なお、図89および図90において、図中上端部側が入射側で右側端部側が出射側である。 Therefore, as shown in FIG. 89, an acoustic transmission wall 60 which transmits a sound wave while preventing wind from passing therethrough is disposed at the bent portion of the tubular member 12. In FIG. 89, the tubular member 12 has a bent portion that bends approximately 90 °. The sound transmitting wall 60 is disposed at the bend of the tubular member 12 with its surface inclined by about 45 ° with respect to the longitudinal direction of the tubular member 12 on the incident side and the longitudinal direction of the tubular member 12 on the outgoing side. In FIGS. 89 and 90, the upper end in the drawing is the incident side, and the right end is the emission side.
 図89に示すように、音響透過壁60は音波を透過するので、上流側から入射した音波は、折れ曲がり部で音響透過壁60を透過し、管状部材12の壁で上流側に反射される。すなわち、元の管状部材12の特性が維持される。一方、図90に示すように、音響透過壁60は風は通さないので、上流側から入射した風は、折れ曲がり部で音響透過壁60によって、進行方向が曲げられて下流側に流れる。このように、折れ曲がり部に音響透過壁60を配置することで、音の透過率は低く維持しつつ、通気性を向上することができる。 As shown in FIG. 89, since the sound transmission wall 60 transmits the sound wave, the sound wave incident from the upstream side transmits the sound transmission wall 60 at the bending portion and is reflected upstream by the wall of the tubular member 12. That is, the characteristics of the original tubular member 12 are maintained. On the other hand, as shown in FIG. 90, since the sound transmission wall 60 does not pass the wind, the wind incident from the upstream side is bent in the traveling direction by the sound transmission wall 60 at the bent portion and flows downstream. As described above, by disposing the sound transmission wall 60 at the bent portion, it is possible to improve the air permeability while maintaining the low sound transmittance.
 音響透過壁60としては、密度の小さい不織布、および、厚みと密度の小さい膜を用いることができる。
 密度の小さい不織布としては、株式会社巴川製紙所:ステンレス繊維シート(トミーファイレックSS)、通常のティッシュペーパーなどが挙げられる。厚みと密度の小さい膜としては、市販の各種ラップフィルム、シリコーンゴムフィルム、金属箔などが挙げられる。
As the sound transmission wall 60, a non-woven fabric with low density and a membrane with low thickness and density can be used.
As a non-woven fabric having a low density, Yodogawa Paper Mill Co., Ltd .: stainless fiber sheet (Tomy Filec SS), ordinary tissue paper and the like can be mentioned. As a film with a small thickness and density, various commercially available lap films, silicone rubber films, metal foils and the like can be mentioned.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the following examples.
[シミュレーション]
 まず、本発明の消音システムについてシミュレーションを行なった結果を説明する。
 シミュレーションは、有限要素法計算ソフトCOMSOL ver5.3(COMSOL社)の音響モジュールを用いて行なった。
[simulation]
First, the simulation results of the noise reduction system of the present invention will be described.
The simulation was performed using an acoustic module of finite element method calculation software COMSOL ver 5.3 (COMSOL).
 [参考例]
 まず、消音器を設置しない場合の管状部材を透過する音波についてシミュレーションを行なった。壁の厚みは300mmとし、管状部材の直径は100mmとした。シミュレーションによって、管状部材を透過して一方の空間から他方の空間に伝搬する音波の音圧(透過音圧)と周波数との関係を算出した。結果を図41に示す。
 図41に示すように、消音器を設置しない場合には、管状部材に生じる共鳴の共鳴周波数で透過音圧が高くなっている。第一共鳴周波数は460Hz、第二共鳴周波数は950Hz、第三共鳴周波数は1470Hz、第四共鳴周波数は2000Hzである。
[Reference example]
First, a simulation was performed on the sound waves transmitted through the tubular member when the silencer is not installed. The thickness of the wall was 300 mm, and the diameter of the tubular member was 100 mm. By simulation, the relationship between the sound pressure (transmitted sound pressure) and the frequency of the sound wave transmitted through the tubular member and propagating from one space to the other space was calculated. The results are shown in FIG.
As shown in FIG. 41, when the silencer is not installed, the transmission sound pressure is high at the resonance frequency of the resonance generated in the tubular member. The first resonant frequency is 460 Hz, the second resonant frequency is 950 Hz, the third resonant frequency is 1470 Hz, and the fourth resonant frequency is 2000 Hz.
 [実施例1]
 次に、実施例1として、図42に示すように、管状部材12の外周面に消音器22を配置した構成についてシミュレーションを行なった。
 消音器22は、L字型の消音器であり、周面方向において管状部材12の外周面の全周に沿った円環状であり、開口部32が周面方向に沿ったスリット状に形成された形状である(図24参照)。また、消音器22の空洞部30内には吸音材24が配置される構成とした。
 空洞部30の深さLdは60mm、幅Lwは10mmとし、軸方向の開口部32の幅は10mmとし、管状部材12の肉厚は3mmとし、開口部32の面積S1と空洞部30の内壁の表面積Sdとの割合S1/Sdは7.4%とし、軸方向における開口部32の中心位置は、音源側の端面から150mmの位置とした。
 また、吸音材24は、空洞部30の全域に充填されるものとした。吸音材24の流れ抵抗は13000[Pa・s/m2]とした。以下の実施例においても特に記載がない場合は、吸音材24は空洞部30の全域に充填されるものとし、吸音材24の流れ抵抗は13000[Pa・s/m2]としてシミュレーションを行った。
 結果を図43に示す。なお、図43には参考例として深さLdが0mmの場合、すなわち、消音器22を配置しない場合の結果も示した。なお、透過音圧は、第一次共鳴周波数の透過音圧)を1として規格化した値である。
 図43に示すように、実施例1は、参考例と比較して、特に、第一共鳴周波数および第三共鳴周波数近傍において透過音圧が選択的に低くなっており、これらの周波数帯での防音性能が高いことがわかる。これは本発明の消音システムにおける吸音の効果が、管状部材の共鳴現象によって管状部材内部の音圧が高くなればなるほど高くなるためである。
Example 1
Next, as Example 1, as shown in FIG. 42, simulation was performed about the structure which has arrange | positioned the silencer 22 in the outer peripheral surface of the tubular member 12. FIG.
The silencer 22 is an L-shaped silencer, and has an annular shape along the entire circumference of the outer circumferential surface of the tubular member 12 in the circumferential direction, and the opening 32 is formed in a slit shape along the circumferential direction Shape (see FIG. 24). Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
The depth L d of the cavity 30 is 60 mm, the width L w is 10 mm, the width of the axial opening 32 is 10 mm, the thickness of the tubular member 12 is 3 mm, and the area S 1 of the opening 32 and the cavity The ratio S 1 / S d to the surface area S d of the inner wall of 30 was 7.4%, and the central position of the opening 32 in the axial direction was 150 mm from the end face on the sound source side.
In addition, the sound absorbing material 24 is to be filled in the entire area of the hollow portion 30. The flow resistance of the sound absorbing material 24 was 13000 [Pa · s / m 2 ]. Also in the following examples, the sound absorbing material 24 is assumed to be filled in the entire area of the hollow portion 30 and the flow resistance of the sound absorbing material 24 is simulated as 13000 [Pa · s / m 2 ] unless otherwise specified. .
The results are shown in FIG. FIG. 43 also shows the result in the case where the depth L d is 0 mm as a reference example, that is, in the case where the silencer 22 is not disposed. Note that the transmission sound pressure is a value normalized with the transmission sound pressure of the first resonance frequency as 1.
As shown in FIG. 43, compared with the reference example, particularly in Example 1, the transmission sound pressure is selectively lowered in the vicinity of the first resonance frequency and the third resonance frequency, and in these frequency bands, It can be seen that the soundproofing performance is high. This is because the sound absorption effect in the noise reduction system of the present invention becomes higher as the sound pressure inside the tubular member becomes higher due to the resonance phenomenon of the tubular member.
 [比較例1]
 次に、比較例1として、図44に示すように、管状部材12の外周面に消音器122を配置した構成についてシミュレーションを行なった。消音器122は空洞部130の深さLdは10mm、幅Lwは60mm、開口部の幅は60mm、面積割合S1/Sdは76.3%とし、それ以外は、実施例1の構成と同様の構成である。この構成は、空洞の体積は実施例1と同じであるにもかかわらず、開口部の面積が異なるため、吸音効果が異なる例である。
 結果を図45に示す。なお、図45には参考例として開口部の幅が0mmの場合、すなわち、消音器122を配置しない場合の結果も示した。
 図45に示すように、比較例1は、参考例と比較すると、広い周波数帯域で、特に800Hz以上の高周波帯域で透過音圧が低くなっている。しかしながら、実施例1と比較すると、共鳴音の透過音圧を選択的に低くすることはなく、第一共振周波数近傍の低周波側での防音性能が十分でないことがわかる。
Comparative Example 1
Next, as Comparative Example 1, as shown in FIG. 44, a simulation was performed on a configuration in which the silencer 122 is disposed on the outer peripheral surface of the tubular member 12. In the silencer 122, the depth L d of the hollow portion 130 is 10 mm, the width L w is 60 mm, the width of the opening 60 mm, and the area ratio S 1 / S d is 76.3%. It is the same configuration as the configuration. This configuration is an example in which the sound absorption effect is different because the area of the opening is different although the volume of the cavity is the same as that of the first embodiment.
The results are shown in FIG. FIG. 45 also shows the result in the case where the width of the opening is 0 mm, that is, in the case where the silencer 122 is not disposed, as a reference example.
As shown in FIG. 45, in Comparative Example 1, compared to the reference example, the transmission sound pressure is low in a wide frequency band, particularly in a high frequency band of 800 Hz or more. However, compared to Example 1, it can be seen that the transmitted sound pressure of the resonance sound is not selectively lowered, and the soundproofing performance on the low frequency side near the first resonance frequency is not sufficient.
 次に、上記実施例1において、空洞部30の深さLdを種々変更してシミュレーションを行なった結果を図46に示す。なお、開口部32の幅は10mmとした。
 同様に、上記比較例1において、開口部の幅を種々変更してシミュレーションを行なった結果を図47に示す。
 さらに、図48には、垂直筒型の消音器を用いた以外は実施例1と同様にして、空洞部30の深さLdを種々変更してシミュレーションを行なった結果を示す。空洞部30の幅Lw(開口部32の幅)は10mmとした。
 なお、吸音材は、空洞部の大きさに合わせて変更した。また、開口部の中心位置は、管状部材の中央で固定した。また、図46~図48では、比較のため各周波数に対するλ/4の値も太線で記した。
 図46から空洞部の深さLdによって消音の効果が異なっており、低周波側でも高い消音効果を得られることがわかる。開口部が中央に配置されているため、中央部に音圧が高い第一共鳴音と第三共鳴音が急激に吸音されている。また、必要とする長さはλ/4よりも短く、その特異性が明確である。また、図48から垂直筒型の場合も同様に、空洞部の深さLdによって消音の効果が異なっており、低周波側でも高い消音効果を得られることがわかる。開口部が中央に配置されているため、中央部に音圧が高い第一共鳴音と第三共鳴音が急激に吸音されている。また、必要とする長さはλ/4よりも短く、その特異性が明確である。
 一方、図47から、単に吸音材を配置する構成では、共鳴音の吸音にはλ/4程度の長さが必要であることがわかり、この場合、低周波側での防音性能を高めることが難しいことがわかる。
Next, FIG. 46 shows the result of simulation in which the depth L d of the hollow portion 30 was variously changed in the first embodiment. The width of the opening 32 was 10 mm.
Similarly, FIG. 47 shows the result of simulation in which the width of the opening was variously changed in the comparative example 1 described above.
Furthermore, FIG. 48 shows the result of simulation in which the depth L d of the cavity 30 was variously changed in the same manner as in Example 1 except that the vertical cylindrical silencer was used. The width L w (the width of the opening 32) of the hollow portion 30 was 10 mm.
The sound absorbing material was changed in accordance with the size of the hollow portion. Also, the central position of the opening was fixed at the center of the tubular member. Further, in FIGS. 46 to 48, the value of λ / 4 for each frequency is also indicated by a thick line for comparison.
It can be seen from FIG. 46 that the muffling effect differs depending on the depth L d of the hollow portion, and a high muffling effect can be obtained even on the low frequency side. Since the opening is disposed at the center, the first resonance sound and the third resonance sound, which have high sound pressure at the center, are rapidly absorbed. Also, the required length is shorter than λ / 4, and its specificity is clear. Similarly, in the case of the vertical cylinder type, it is understood from FIG. 48 that the muffling effect is different depending on the depth L d of the hollow portion, and a high muffling effect can be obtained even on the low frequency side. Since the opening is disposed at the center, the first resonance sound and the third resonance sound, which have high sound pressure at the center, are rapidly absorbed. Also, the required length is shorter than λ / 4, and its specificity is clear.
On the other hand, it can be seen from FIG. 47 that in the configuration in which a sound absorbing material is simply disposed, a length of about λ / 4 is required for sound absorption of resonance sound, and in this case, soundproof performance on the low frequency side is enhanced. I understand that it is difficult.
 また、上記実施例1について、空洞部の深さを種々変更した場合の第一共鳴周波数における透過損失、および、上記比較例1について、開口部の幅を種々変更した場合の第一共鳴周波数における透過損失を算出した。透過損失が高いほど性能が高いことを表す。
 結果を図49に示す。なお、第一共鳴周波数の波長λの1/4は約170mmである。
 図49からわかるように、本発明の実施例1では、λ/4よりも短い深さにおいて、透過損失がピークとなる。一方、比較例1では開口部の幅が長くなるほど透過損失が高くなる。これは、吸音材の音波に接する表面積、および体積に依存した特性である。音波に接する表面積を大きくするという一般的な使用方法で吸音材を使用した場合、このような特性になる。
In addition, in Example 1, the transmission loss at the first resonance frequency when the depth of the cavity is variously changed, and for the comparison example 1, the width at the first resonance frequency when the width of the opening is variously changed. The transmission loss was calculated. The higher the transmission loss, the higher the performance.
The results are shown in FIG. Note that 1⁄4 of the wavelength λ of the first resonance frequency is about 170 mm.
As can be seen from FIG. 49, in Example 1 of the present invention, the transmission loss peaks at a depth shorter than λ / 4. On the other hand, in Comparative Example 1, the transmission loss increases as the width of the opening increases. This is a surface area in contact with the sound wave of the sound absorbing material, and a property dependent on volume. Such characteristics are obtained when the sound absorbing material is used in a general use method of increasing the surface area in contact with sound waves.
 [実施例2および3]
 次に、消音器22の開口部32の位置についてシミュレーションを行なった結果について説明する。
 図50及び図51に示すように、消音器22の開口部32の位置を管状部材の軸方向に種々変更して、透過音圧を算出した。図50のように、開口部32の中心が管状部材の軸方向中心位置にある場合を基準(位置0mm)とした。開口部32の位置以外は実施例1と同様である。図50に示すように、開口部32を中央に配置した構成を実施例2とし、図51に示すように、開口部32を一方の端面近傍に配置した構成(位置140mm)を実施例3とする。
 開口部の位置と周波数と透過音圧との関係を表すグラフを図52に示し、実施例2および3の周波数と透過音圧との関係を表すグラフを図53に示す。また、図53には、消音器を配置しない場合を参考例として示す。
[Examples 2 and 3]
Next, the result of having performed simulation about the position of the opening part 32 of the silencer 22 is demonstrated.
As shown in FIGS. 50 and 51, the position of the opening 32 of the silencer 22 was variously changed in the axial direction of the tubular member to calculate the transmitted sound pressure. As shown in FIG. 50, the case where the center of the opening 32 is at the axial center position of the tubular member is taken as a reference (position 0 mm). The second embodiment is the same as the first embodiment except for the position of the opening 32. As shown in FIG. 50, the configuration in which the opening 32 is disposed at the center is referred to as Example 2, and as shown in FIG. 51, the configuration (position 140 mm) in which the opening 32 is disposed in the vicinity of one end face Do.
A graph showing the relationship between the position of the opening, the frequency, and the transmitted sound pressure is shown in FIG. 52, and the graph showing the relationship between the frequency and the transmitted sound pressure in Examples 2 and 3 is shown in FIG. Moreover, in FIG. 53, the case where a silencer is not arrange | positioned is shown as a reference example.
 図52および図53に示すように、消音器22の開口部32を軸方向の中央に近い位置に配置することで、第一共振周波数および第三共振周波数等の、軸方向の中央で音圧が高くなる周波数の音波をより好適に消音することができることがわかる。また、開口部32の配置位置を変えることで、各共振周波数に対する消音の効果が変わることがわかる。例えば、開口部32を中央から90mmの位置に配置することで、この位置で音圧が高くなる第二共振周波数に対しての消音効果をより高くすることができることがわかる。
 このように、消音器22の開口部32の位置によって消音するモードを制御することができる。
As shown in FIGS. 52 and 53, by arranging the opening 32 of the silencer 22 at a position close to the axial center, the sound pressure at the axial center such as the first resonance frequency and the third resonance frequency is obtained. It can be seen that sound waves of a frequency at which is increased can be muted more suitably. In addition, it can be seen that changing the arrangement position of the opening 32 changes the muffling effect on each resonance frequency. For example, by arranging the opening 32 at a position of 90 mm from the center, it can be seen that the muffling effect on the second resonance frequency at which the sound pressure becomes high at this position can be further enhanced.
Thus, the mode of noise cancellation can be controlled by the position of the opening 32 of the noise suppressor 22.
 次に、消音器22の空洞部30内に配置される吸音材24の流れ抵抗についてシミュレーションを行なった結果について説明する。
 実施例1のモデルにおいて、吸音材24の流れ抵抗を種々変更してシミュレーションを行なった結果を図54に示す。空洞部の深さLdは80mm、空洞部の幅Lwは10mm、開口部の幅Loは10mm、面積割合S1/Sdは5.5%、軸方向における開口部の位置は中央である。
 図54から流れ抵抗には最適な範囲があることがわかる。これは、流れ抵抗が大きくなりすぎると吸音材24内を通過しにくくなり、吸音材24による音エネルギーから熱エネルギーへの変換効率が低くなってしまうためである。
Next, results of simulation of the flow resistance of the sound absorbing material 24 disposed in the hollow portion 30 of the silencer 22 will be described.
In the model of the first embodiment, the flow resistance of the sound absorbing material 24 was changed variously and simulation results are shown in FIG. The depth L d of the cavity is 80 mm, the width L w of the cavity is 10 mm, the width L o of the opening is 10 mm, the area ratio S 1 / S d is 5.5%, the position of the opening in the axial direction is the center It is.
It can be seen from FIG. 54 that the flow resistance has an optimum range. This is because when the flow resistance becomes too large, the passage of the inside of the sound absorbing material 24 is difficult, and the conversion efficiency from the sound energy to the heat energy by the sound absorbing material 24 becomes low.
 また、以上のシミュレーション結果に基づいて、空洞部30の深さLdと吸音材の流れ抵抗との組み合わせに対して、透過音圧を測定した結果を図55および図56に示す。図55は、空洞部30の深さLdが10mm(1cm)~140mm(14cm)それぞれの場合の、吸音材24の流れ抵抗と透過音圧のピーク値との関係を表すグラフである。図56は、空洞部30の深さLdと吸音材24の流れ抵抗に対する透過音圧のピーク値を表すグラフである。
 図55および図56に示すように、吸音材24の流れ抵抗は、空洞部30の深さLdに応じて好適な範囲があることがわかる。この結果から、本発明の共鳴音を選択的に吸音する効果が表れる流れ抵抗の範囲は、(1.25-log(0.1×Ld))/0.24<log(σ1)<5.6が好ましく、(1.32-log((0.1×Ld)))/0.24<log(σ1)<5.2がより好ましく、(1.39-log((0.1×Ld)))/0.24<log(σ1)<4.7がさらに好ましい。なお、上記式において、Ldの単位は[mm]であり、logは常用対数である。
Further, based on the above simulation results, the combination of the flow resistance of the cavity 30 depth L d and sound absorbing material, the results of the transmitted sound pressure was measured is shown in FIGS. 55 and 56. FIG. 55 is a graph showing the relationship between the flow resistance of the sound absorbing material 24 and the peak value of the transmitted sound pressure when the depth L d of the cavity 30 is 10 mm (1 cm) to 140 mm (14 cm). FIG. 56 is a graph showing the peak value of the transmitted sound pressure with respect to the depth L d of the cavity 30 and the flow resistance of the sound absorbing material 24.
As shown in FIGS. 55 and 56, it can be seen that the flow resistance of the sound absorbing material 24 has a suitable range depending on the depth L d of the cavity 30. From this result, the range of flow resistance in which the effect of selectively absorbing the resonance sound of the present invention appears is (1.25−log (0.1 × L d )) / 0.24 <log (σ 1 ) < 5.6 is preferable, and (1.32-log ((0.1 x L d ))) / 0.24 <log (σ 1 ) <5.2 is more preferable, (1.39-log ((0 More preferably, 1 × L d )) / 0.24 <log (σ 1 ) <4.7. In the above equation, the unit of L d is [mm], and log is a common logarithm.
 [実施例4]
 次に、軸方向に消音器22を複数配置した場合について、シミュレーションを行なった結果について説明する。
 消音システムの構成は、図27に示すような、軸方向に管状部材12の中央位置(端面から150mmの位置)に開口部32aを有する消音器22aと、端部近傍(端面から25mmの位置)に開口部32bを有する消音器22bとを有する構成とした。
 壁の厚みは300mmとし、管状部材の直径は100mmとした。
 消音器22aおよび消音器22bは、L字型の消音器であり、周面方向において管状部材12の外周面の全周に沿った円環状であり、開口部32が周面方向に沿ったスリット状に形成された形状とした。消音器22aの空洞部30aの深さLdは80mm、幅Lwは10mm、開口部32aの幅Loは10mm、面積割合S1/Sdは5.5%とした。消音器22bの空洞部30bの深さLdは50mm、幅Lwは10mm、開口部32bの幅Loは10mm、面積割合S1/Sdは8.9%とした。
 また、消音器22aおよび消音器22bの空洞部30内には吸音材24が配置される構成とした。吸音材24の流れ抵抗は13000[Pa・s/m2]とした。
 このような消音システムのモデルを用いて周波数と透過音圧との関係を算出した。結果を図57に示す。なお、図57には、参考例として消音器が無い場合と、軸方向に消音器を1つ有する構成として実施例1の結果も示した。
Example 4
Next, the result of simulation will be described for the case where a plurality of silencers 22 are arranged in the axial direction.
The configuration of the muffling system is as shown in FIG. 27: a silencer 22a having an opening 32a at the central position (position 150 mm from the end face) in the axial direction in the axial direction; And a silencer 22b having an opening 32b.
The thickness of the wall was 300 mm, and the diameter of the tubular member was 100 mm.
The silencer 22a and the silencer 22b are L-shaped silencers, and have an annular shape along the entire circumference of the outer peripheral surface of the tubular member 12 in the circumferential direction, and a slit in which the opening 32 extends along the peripheral direction In the shape of a circle. The depth L d of the hollow portion 30 a of the silencer 22 a is 80 mm, the width L w is 10 mm, the width L o of the opening 32 a is 10 mm, and the area ratio S 1 / S d is 5.5%. The depth L d of the hollow portion 30 b of the silencer 22 b is 50 mm, the width L w is 10 mm, the width L o of the opening 32 b is 10 mm, and the area ratio S 1 / S d is 8.9%.
Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22a and the silencer 22b. The flow resistance of the sound absorbing material 24 was 13000 [Pa · s / m 2 ].
The relationship between the frequency and the transmitted sound pressure was calculated using such a model of the noise reduction system. The results are shown in FIG. FIG. 57 also shows the results of Example 1 as a reference example in the case where there is no silencer and in a configuration having one silencer in the axial direction.
 図57に示すように、1つの消音器を有する構成の実施例1では第一共鳴周波数および第三共鳴周波数の透過音圧は低減できるが、第二共鳴周波数および第四共鳴周波数での透過音圧は比較的高い。これに対して、実施例4では、第一共鳴の音圧が高い位置(中央)に配置した消音器22aに加えて、第二共鳴の音圧が高い位置(端面から25mmの位置)に配置した消音器22bを有するので、第二共鳴の透過音圧も低くすることができる。従って、より広帯域に防音効果が得られる。また、消音器22bを配置した位置では、第三共鳴および第四共鳴の音圧も0ではないためこれらの共鳴周波数に対しても防音効果が得られる。 As shown in FIG. 57, in Example 1 of the configuration having one silencer, the transmission sound pressure at the first resonance frequency and the third resonance frequency can be reduced, but the transmission sound at the second resonance frequency and the fourth resonance frequency The pressure is relatively high. On the other hand, in the fourth embodiment, in addition to the silencer 22a disposed at the position (center) where the sound pressure of the first resonance is high, the sound pressure of the second resonance is disposed at a position (25 mm from the end face) Since the silencer 22 b is provided, the transmitted sound pressure of the second resonance can also be lowered. Therefore, the soundproof effect can be obtained in a wider band. Further, at the position where the silencer 22b is disposed, the sound pressure of the third resonance and the fourth resonance is also not zero, so that the soundproof effect can be obtained also for these resonance frequencies.
[実測結果]
 次に、消音システムを作製して防音性能を評価した結果について説明する。
 まず、リファレンスとして、図58に示すような簡易小型防音室を用いて、消音器を配置しない場合の透過音圧の測定を行なった。
 図58に示す簡易小型防音室は、5面を吸音ウレタンフォームW3(厚み100mm、富士ゴム産業株式会社製 U00F2)で囲まれ、残りの1面を、吸音ウレタンフォームW2(吸音ウレタンフォームW3(富士ゴム産業株式会社製 U00F2)を2枚、合計厚み205mm)の両面に厚み5mmのアクリル板W1を配置した壁部材で囲まれている。また、5面の吸音ウレタンフォームW3のうち、左右面に配置される3面の内側の面には、波型の吸音ウレタンフォームW4(最大厚み35mm、富士ゴム産業株式会社製 U00F6)を配置した。防音室内の大きさは、400mm×500mm×500mmとした。
 吸音ウレタンフォームW2と2枚のアクリル板W1とを有する壁部材には、壁部材を貫通して、内径10cmの塩化ビニル製の通気スリーブ(管状部材)12を設置した。
 通気スリーブ12の防音室内の端面にはカバー部材18として横ガラリ(株式会社ユニックス製 SG-CB)を取り付け、通気スリーブ12の外側の端面には風量調整部材20としてレジスター(株式会社ユニックス製 KRP-BWF)を取り付けた。
[Measurement result]
Next, the result of having produced a noise reduction system and evaluated soundproof performance is explained.
First, using a simple small-sized soundproof room as shown in FIG. 58 as a reference, transmission sound pressure was measured in the case where no silencer was disposed.
In the simple small-sized soundproof room shown in FIG. 58, five sides are surrounded by sound absorbing urethane foam W 3 (thickness 100 mm, U00F2 manufactured by Fuji Rubber Sangyo Co., Ltd.), and the remaining one side is sound absorbing urethane foam W 2 (sound absorbing urethane foam W 3 two sheets (Fuji rubber industry Co. U00F2), is surrounded by a wall member disposed acrylic plate W 1 having a thickness of 5mm on both sides of the total thickness 205 mm). Also, the five surfaces of the sound-absorbing urethane foam W 3, the inner surface of the three faces are disposed on the left and right surfaces, corrugated acoustical polyurethane foam W 4 (maximum thickness 35 mm, Fuji rubber industry Co., Ltd. U00F6) a Placed. The size of the soundproof room was 400 mm × 500 mm × 500 mm.
On the wall member having the sound absorbing urethane foam W 2 and the two acrylic plates W 1 , a ventilation sleeve (tubular member) 12 made of vinyl chloride having an inner diameter of 10 cm was installed through the wall member.
A lateral glaring (SG-CB manufactured by Unix Co., Ltd.) is attached to the end face of the soundproof room of the aeration sleeve 12 as a cover member 18 and a register (made by Unix Co., Ltd. KRP- BWF) attached.
 防音室内には、ホワイトノイズを発生させるスピーカーSP(FOSTEX社製 かんすぴセットKANSPI-8)を2つ配置した。また、防音室外のレジスター20から50cm離間した位置には、音波検出用の測定用マイクロフォンMP(株式会社アコー製 TYPE4152N)を配置した。 In the soundproof room, two speakers SP (KOSPI set KANSPI-8 manufactured by FOSTEX Co., Ltd.) for generating white noise were arranged. In addition, a measurement microphone MP for acoustic wave detection (TYPE 4152N manufactured by Accor Corporation) was disposed at a position 50 cm away from the register 20 outside the soundproofing room.
 まず、レジスター20を閉じて、2つのスピーカーSPからホワイトノイズを発生させて、測定用マイクロフォンMPで、サンプリングレート25000Hzで10秒間、音圧を測定した。測定した音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出した。フーリエ変換後のデータは10Hz間隔で平均化した。このデータをバックグラウンドデータとする。 First, the register 20 was closed, white noise was generated from the two speakers SP, and the sound pressure was measured for 10 seconds at a sampling rate of 25000 Hz with the measurement microphone MP. Fourier transform was performed on the measured sound pressure data to calculate a frequency spectrum. Data after Fourier transform were averaged at 10 Hz intervals. This data is used as background data.
 次に、レジスター20を全開にして上記と同様に音圧を測定して、音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出し、バックグラウンドデータとの差分を求めてリファレンスデータとした。 Next, the register 20 is fully opened, the sound pressure is measured in the same manner as described above, the data of the sound pressure is subjected to Fourier transform, the frequency spectrum is calculated, and the difference with the background data is calculated as reference data .
 [実施例5]
 実施例5として、図59に示すように、通気スリーブ12内に、消音器22を設置して、レジスター20を全開にして上記と同様に音圧を測定して、音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出し、バックグラウンドデータとの差分を求めて透過音圧のデータとした。
 結果を図60に示す。
 なお、実施例5の消音器22は、周面方向において管状部材12の外周面の全周に沿った円環状であり、開口部32が周面方向に沿ったスリット状に形成された形状である(図24参照)。また、消音器22の空洞部30内には吸音材24が配置される構成とした。
 空洞部30の深さLdは80mm、幅Lwは14mmとし、軸方向の開口部32の幅は15mmとし、面積割合S1/Sdは8.3%とし、軸方向における開口部32の中心位置は、音源側の端面から113mmの位置とした。また、吸音材24は、豆炭あんか交換用ロックウール(ミツウロコ社製)を用いた。この吸音材24の流れ抵抗は40000[Pa・s/m2]で、空洞部30の全域に充填されるものとした。
[Example 5]
As Example 5, as shown in FIG. 59, the silencer 22 is installed in the ventilation sleeve 12, the register 20 is fully opened, and the sound pressure is measured in the same manner as described above. Fourier transform was performed to calculate a frequency spectrum, and the difference with background data was obtained to obtain data of transmitted sound pressure.
The results are shown in FIG.
The silencer 22 according to the fifth embodiment has an annular shape along the entire circumference of the outer peripheral surface of the tubular member 12 in the circumferential direction, and the opening 32 is formed in a slit shape along the circumferential direction. (See FIG. 24). Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
The depth L d of the cavity 30 is 80 mm, the width L w is 14 mm, the width of the axial opening 32 is 15 mm, the area ratio S 1 / S d is 8.3%, and the opening 32 in the axial direction The center position of was at a position of 113 mm from the end face on the sound source side. Further, as the sound absorbing material 24, rock wool (made by Mitsuroko Co., Ltd.) was used. The flow resistance of the sound absorbing material 24 is 40,000 [Pa · s / m 2 ], and the entire area of the hollow portion 30 is filled.
 [比較例2]
 比較例2として、消音器22に代えて、ポリエチレン製の防音スリーブ(株式会社新協和製 SK-BO75)を通気スリーブ12内に配置した以外は実施例4と同様にして透過音圧を求めた。
 結果を図61に示す。
Comparative Example 2
As Comparative Example 2, the transmitted sound pressure was determined in the same manner as in Example 4 except that a soundproof sleeve made of polyethylene (SK-BO 75, manufactured by Shin-Kyowa Co., Ltd.) was disposed in the ventilation sleeve 12 instead of the silencer 22. .
The results are shown in FIG.
 [比較例3]
 比較例3として、消音器22に代えて、共鳴型の消音器であるサイレントスリーブP(株式会社建友製 HMS100K)を通気スリーブ12内に配置した以外は実施例4と同様にして透過音圧を求めた。
 結果を図62に示す。
Comparative Example 3
As Comparative Example 3, the transmitted sound pressure is the same as in Example 4 except that a silent sleeve P (HMS100K manufactured by Kentomo Co., Ltd.), which is a resonance type silencer, is disposed in the ventilation sleeve 12 instead of the silencer 22. I asked for.
The results are shown in FIG.
 実施例5と比較例2および3との対比から、本発明の実施例は、比較例に比べて、低周波側の第一共振周波数の透過音圧を大幅に低減することができることがわかる。 From the comparison between Example 5 and Comparative Examples 2 and 3, it is understood that the Example of the present invention can significantly reduce the transmitted sound pressure of the first resonance frequency on the low frequency side as compared with the Comparative Example.
 [実施例6]
 実施例6として、通気スリーブ12が設置される吸音ウレタンフォームW2の厚みを265mmとし、通気スリーブ12の長さを変更した以外は、実施例5と同様にして透過音圧を求めた。
 結果を図63に示す。
[Example 6]
As Example 6, the thickness of the sound absorbing urethane foam W 2 on which the ventilation sleeve 12 is installed was set to 265 mm, and the transmission sound pressure was determined in the same manner as in Example 5 except that the length of the ventilation sleeve 12 was changed.
The results are shown in FIG.
 [比較例4]
 消音器22に代えて、共鳴型の消音器であるサイレントスリーブP(株式会社建友製 HMS100K)を通気スリーブ12内に配置した以外は実施例6と同様にして透過音圧を求めた。
 結果を図64に示す。
Comparative Example 4
The transmitted sound pressure was determined in the same manner as in Example 6 except that a silent sleeve P (HMS 100K manufactured by Kentomo Co., Ltd.), which is a resonance type silencer, was disposed in the ventilation sleeve 12 instead of the silencer 22.
The results are shown in FIG.
 図60と図63との対比から、本発明の実施例では、通気スリーブの長さが変わっても、すなわち、第一共鳴周波数の異なる通気スリーブに対しても、実施例5と同じ消音器22を用いて高い防音性能を得られ、汎用性が高いことがわかる。
 一方、図62と図64との対比から、共鳴型の消音器では、通気スリーブの第一共鳴周波数が異なると、防音性能が低下してしまい、汎用性が低いことがわかる。
From the comparison between FIG. 60 and FIG. 63, in the embodiment of the present invention, the same silencer 22 as the fifth embodiment is used even if the length of the ventilating sleeve is changed, that is, for ventilating sleeves having different first resonance frequencies. It can be seen that high soundproofing performance can be obtained by using
On the other hand, it can be understood from the comparison between FIG. 62 and FIG. 64 that, in the resonance type silencer, when the first resonance frequency of the aeration sleeve is different, the soundproofing performance is lowered and the versatility is low.
 [実施例7]
 実施例7として、通気スリーブ12に、消音器22aおよび消音器22bを軸方向に並べて設置して、レジスター20を全開にして上記と同様に音圧を測定して、音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出し、バックグラウンドデータとの差分を求めて透過音圧のデータとした。
 結果を図65および図66に示す。図66は、周波数帯域(オクターブバンド周波数)ごとに透過損失の平均値を求めたものである。オクターブバンド周波数が500Hzのものは354Hz以上707Hz未満未満の周波数での透過損失の平均値を求めたものであり、1000Hzのものは707Hz以上1414Hz未満の周波数での透過損失の平均値を求めたものであり、2000Hzのものは1414Hz以上2829Hz未満の周波数での透過損失の平均値を求めたものである。また、図65および図66には実施例5の結果も示している。
[Example 7]
In the seventh embodiment, the silencer 22a and the silencer 22b are arranged in the axial direction on the ventilation sleeve 12, the register 20 is fully opened, and the sound pressure is measured in the same manner as described above. Fourier transform was performed to calculate a frequency spectrum, and the difference with background data was obtained to obtain data of transmitted sound pressure.
The results are shown in FIGS. 65 and 66. FIG. 66 shows the average value of transmission loss determined for each frequency band (octave band frequency). The octave band frequency of 500 Hz is the average of transmission loss at 354 Hz and less than 707 Hz, and that of 1000 Hz is the average of transmission loss at 707 Hz and less than 1414 Hz. In the case of 2000 Hz, the average value of the transmission loss at a frequency of 1414 Hz or more and less than 2829 Hz is obtained. 65 and 66 also show the result of the fifth embodiment.
 なお、実施例7の消音器22aおよび消音器22bは、周面方向において管状部材12の外周面の全周に沿った円環状であり、開口部32が周面方向に沿ったスリット状に形成された形状である(図24参照)。また、消音器22の空洞部30内には吸音材24が配置される構成とした。
 消音器22aの空洞部30aの深さLdは40mm、幅Lwは14mmとし、軸方向の開口部32aの幅Loは14mmとし、面積割合S1/Sdは15.7%とし、軸方向における開口部32aの中心位置は、音源側の端面から113mmの位置とした。消音器22bの空洞部30bの深さLdは60mm、幅Lwは14mmとし、軸方向の開口部32bの幅Loは15mmとし、面積割合S1/Sdは11.4%とし、軸方向における開口部32bの中心位置は、音源側の端面から156mmの位置とした。
 また、吸音材24は、豆炭あんか 交換用ロックウール(ミツウロコ社製)を用いた。この吸音材24の流れ抵抗は40000[Pa・s/m2]で、空洞部30の全域に充填されるものとした。
The silencer 22a and the silencer 22b of Example 7 are annular along the entire circumference of the outer circumferential surface of the tubular member 12 in the circumferential direction, and the opening 32 is formed in a slit shape along the circumferential direction. The shape is as shown in FIG. Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
The depth L d of the cavity 30a of the silencer 22a is 40 mm, the width L w is 14 mm, the width L o of the axial opening 32 a is 14 mm, and the area ratio S 1 / S d is 15.7%, The central position of the opening 32a in the axial direction was 113 mm from the end face on the sound source side. The depth L d of the cavity 30b of the silencer 22b is 60 mm, the width L w is 14 mm, the width L o of the axial opening 32 b is 15 mm, and the area ratio S 1 / S d is 11.4%, The central position of the opening 32b in the axial direction was 156 mm from the end face on the sound source side.
Further, as the sound absorbing material 24, rock wool (made by Mitsuroko Co., Ltd.) for replacement with charcoal was used. The flow resistance of the sound absorbing material 24 is 40,000 [Pa · s / m 2 ], and the entire area of the hollow portion 30 is filled.
 図65および図66から、軸方向に2つの消音器を配置することで、より広帯域で高い防音効果が得られることがわかる。 From FIG. 65 and FIG. 66, it can be understood that arranging two silencers in the axial direction can provide a wider band and high soundproofing effect.
 [実施例8]
 次に、市販の防音部材と組み合わせた消音システムを作製して防音性能を評価した結果について説明する。
 性能評価には、図79に示すような簡易小型防音室を用いた。
[Example 8]
Next, the result of having evaluated the soundproofing performance by producing a sound deadening system combined with a commercially available soundproofing member will be described.
For the performance evaluation, a simple small-sized soundproof room as shown in FIG. 79 was used.
 図79に示す簡易防音室は、5面を吸音ウレタンフォームW3(厚み100mm、富士ゴム産業株式会社製 U00F2)およびその外側に配置される厚み5mmのアクリル板W1で囲まれ、残りの1面を、防音室内側からアルミニウム板W5(厚み3mm)、グラスウールW6(正城通商株式会社製 32501211 密度32kg/m3 ノンホルムアルデヒド)およびアクリル板W1からなる壁部材(本発明の壁16に相当)で閉塞されている。壁部材の合計厚みは100mmとした。さらに、壁部材から110mm離間して、壁部材に平行にアクリル板W1(本発明の化粧板に相当)が配置されている。
 また、5面の吸音ウレタンフォームW3のうち、左右面に配置される3面の内側の面には、波型の吸音ウレタンフォームW4(最大厚み35mm、富士ゴム産業株式会社製 U00F6)が配置されている。防音室内の大きさは、800mm×800mm×900mmとした。
 アルミニウム板W5、グラスウールW6およびアクリル板W1からなる壁部材には、壁部材を貫通して、内径100mm、長さ100mmの塩化ビニル製の通気スリーブ(管状部材)12を設置した。また、化粧板(アクリル板W1)には、通気スリーブの軸方向から見た際に、通気スリーブと同じ位置に100mmの開口を設けた。
 なお、アクリル板W1およびアルミニウム板W5は端部を30mm角のアルミニウム製のフレームFrに固定して支持した。
The simple soundproof room shown in FIG. 79 has five sides surrounded by the sound absorbing urethane foam W 3 (thickness 100 mm, U00F2 manufactured by Fuji Rubber Sangyo Co., Ltd.) and the acrylic plate W 1 with a thickness of 5 mm disposed outside thereof. Wall member (wall 16 of the present invention) made of aluminum plate W 5 (thickness 3 mm), glass wool W 6 (32501121 density 32 kg / m 3 non-formaldehyde) and acrylic plate W 1 from the soundproof room side Blockade). The total thickness of the wall members was 100 mm. Further, an acrylic plate W 1 (corresponding to the decorative plate of the present invention) is disposed in parallel to the wall member at a distance of 110 mm from the wall member.
Also, among the sound-absorbing urethane foam W 3 of five surfaces, the inner surface of the three faces are disposed on the left and right surfaces, corrugated acoustical polyurethane foam W 4 (maximum thickness 35 mm, Fuji rubber industry Co., Ltd. U00F6) is It is arranged. The size of the soundproof room was 800 mm × 800 mm × 900 mm.
On a wall member made of aluminum plate W 5 , glass wool W 6 and acrylic plate W 1 , a ventilation sleeve (tubular member) 12 made of vinyl chloride having an inner diameter of 100 mm and a length of 100 mm was installed through the wall member. The decorative plate (acrylic plate W 1 ) was provided with an opening of 100 mm at the same position as the ventilation sleeve when viewed from the axial direction of the ventilation sleeve.
Incidentally, acrylic plate W 1 and the aluminum plate W 5 is supported by fixing the ends in an aluminum frame Fr of 30mm square.
 通気スリーブ12の防音室内の端面にはカバー部材18として横ガラリ(株式会社ユニックス製 SG-CB)を取り付け、通気スリーブ12の外側の端面には風量調整部材20としてレジスター(株式会社ユニックス製 KRP-BWF)を取り付けた。 A lateral glaring (SG-CB manufactured by Unix Co., Ltd.) is attached to the end face of the soundproof room of the aeration sleeve 12 as a cover member 18 and a register (made by Unix Co., Ltd. KRP- BWF) attached.
 防音室内には、ピンクノイズを発生させるスピーカーSP(FOSTEX社製 かんすぴセットKANSPI-8)を2つ配置した。また、防音室外のレジスター20から50cm離間した位置には、音波検出用の測定用マイクロフォンMP(株式会社アコー製 TYPE4152N)を配置した。 In the soundproof room, two speakers SP (KOSPI set KANSPI-8 manufactured by FOSTEX Co., Ltd.) generating pink noise were arranged. In addition, a measurement microphone MP for acoustic wave detection (TYPE 4152N manufactured by Accor Corporation) was disposed at a position 50 cm away from the register 20 outside the soundproofing room.
 まず、通気スリーブ12内に、リファレンス用遮音材として、その内径と同サイズ(100mm径)の円形のアクリル板(厚み5mm)を10枚重ねて配置した。これにより、この通気スリーブ12を通過する音をほぼ完全に遮蔽した。この状態で2つのスピーカーSPからノイズを発生させて、測定用マイクロフォンMPで、サンプリングレート25000Hzで10秒間、音圧を測定した。測定した音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出した。フーリエ変換後のデータは10Hz間隔で平均化した。このデータをバックグラウンドデータとする。 First, ten circular acrylic plates (5 mm in thickness) having the same size (100 mm in diameter) as the inner diameter of the air-permeable sleeve 12 were disposed as a sound insulation material for reference. Thereby, the noise passing through the ventilation sleeve 12 was almost completely shielded. In this state, noise was generated from the two speakers SP, and the sound pressure was measured for 10 seconds at a sampling rate of 25000 Hz with the measurement microphone MP. Fourier transform was performed on the measured sound pressure data to calculate a frequency spectrum. Data after Fourier transform were averaged at 10 Hz intervals. This data is used as background data.
 次に、レジスター20を全開にして上記と同様に音圧を測定して、音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出し、バックグラウンドデータとの差分を求めてリファレンスデータとした。 Next, the register 20 is fully opened, the sound pressure is measured in the same manner as described above, the data of the sound pressure is subjected to Fourier transform, the frequency spectrum is calculated, and the difference with the background data is calculated as reference data .
 次に、実施例8として、リファレンス用遮音材およびレジスター20を取り除き、通気スリーブ12の外側の端面に(壁部材と化粧板との間に)消音装置14を設置し、レジスター20を消音装置14の化粧板側の端面に取り付けた。 Next, as the eighth embodiment, the sound insulation material for reference and the resistor 20 are removed, and the silencer 14 is installed on the outer end face of the aeration sleeve 12 (between the wall member and the decorative plate). It was attached to the end face of the decorative board side of.
 なお、消音装置14は、外径100mm、内径94mmの挿入部26と挿入部26の一方の端面に接続されるL字型の消音器22を有する。消音器22は軸方向に2つ配列されている。各消音器22は挿入部26の周面に沿った円環状であり、開口部32が周面方向に沿ったスリット状に形成された形状である(図24参照)。また、消音器22の空洞部30内には吸音材24が配置される構成とした。
 消音器22aの空洞部30の深さLdは41mm、幅Lwは16mmとし、軸方向の開口部32の幅は12mmとし、面積割合S1/Sdは11.6%とした。消音器22bの空洞部30bの深さLdは60mm、幅Lwは15mmとし、軸方向の開口部32bの幅は12.5mmとし、面積割合S1/Sdは8.6%とした。また、吸音材24は、シンサレート(3M社製)を用いた。この吸音材24の流れ抵抗は27000[Pa・s/m2]で、空洞部30の全域に充填されるものとした。
The silencer 14 has an L-shaped silencer 22 connected to the insertion portion 26 with an outer diameter of 100 mm and an inner diameter of 94 mm and one end face of the insertion portion 26. Two silencers 22 are arranged in the axial direction. Each of the silencers 22 has an annular shape along the circumferential surface of the insertion portion 26, and the opening 32 is shaped like a slit along the circumferential direction (see FIG. 24). Further, the sound absorbing material 24 is disposed in the hollow portion 30 of the silencer 22.
The depth L d of the hollow portion 30 of the silencer 22a is 41 mm, the width L w is 16 mm, the width of the opening 32 in the axial direction is 12 mm, and the area ratio S 1 / S d is 11.6%. The depth L d of the hollow portion 30b of the silencer 22b is 60 mm, the width L w is 15 mm, the width of the axial opening 32 b is 12.5 mm, and the area ratio S 1 / S d is 8.6%. . Further, as the sound absorbing material 24, Thinsulate (manufactured by 3M) was used. The flow resistance of the sound absorbing material 24 is 27000 [Pa · s / m 2 ], and the entire area of the hollow portion 30 is filled.
 レジスター20を全開にして上記と同様に音圧を測定して、音圧のデータに対してフーリエ変換を行い周波数スペクトルを算出し、バックグラウンドデータとの差分を求めて透過音圧のデータとした。
 結果を図80に示す。
 また、この消音装置14の開口率は、通気スリーブ12の内径に対して88%である。
With the register 20 fully open, the sound pressure is measured in the same manner as described above, the sound pressure data is subjected to Fourier transform to calculate the frequency spectrum, and the difference with the background data is determined to be the transmitted sound pressure data .
The results are shown in FIG.
The opening ratio of the silencer 14 is 88% of the inner diameter of the ventilation sleeve 12.
 [比較例5]
 比較例5として、消音装置14に代えて、内挿型消音器として、ポリエチレン製の防音スリーブ(株式会社新協和製 SK-BO100)を通気スリーブ12内に配置した以外は実施例8と同様にして透過音圧を求めた。
 結果を図81に示す。
 また、この防音スリーブの開口率は、通気スリーブ12の内径に対して35.7%である。
Comparative Example 5
As Comparative Example 5, the same procedure as in Example 8 was carried out except that a soundproof sleeve made of polyethylene (SK-BO 100, manufactured by Shin-Kyowa Co., Ltd.) was disposed in the ventilation sleeve 12 as an insertion type silencer instead of the silencer 14. Sound pressure was determined.
The results are shown in FIG.
Also, the opening ratio of the soundproof sleeve is 35.7% with respect to the inner diameter of the aeration sleeve 12.
 [実施例9]
 実施例9として、さらに、ポリエチレン製の防音スリーブ(株式会社新協和製 SK-BO100)を通気スリーブ12内に配置した以外は実施例8と同様にして透過音圧を求めた。
 結果を図82に示す。
 また、図83には、実施例8、9および比較例5の周波数帯域(オクターブバンド周波数)ごとに透過損失の平均値を求めた結果を示す。オクターブバンド周波数が500Hzのものは354Hz以上707Hz未満の周波数での透過損失の平均値を求めたものであり、1000Hzのものは707Hz以上1414Hz未満の周波数での透過損失の平均値を求めたものである。
[Example 9]
In Example 9, the transmitted sound pressure was determined in the same manner as in Example 8 except that a polyethylene soundproof sleeve (SK-BO 100, manufactured by Shin-Kyowa Co., Ltd.) was disposed in the ventilation sleeve 12.
The results are shown in FIG.
Moreover, in FIG. 83, the result of having calculated | required the average value of the transmission loss for every frequency band (octave band frequency) of Example 8, 9 and the comparative example 5 is shown. The octave band frequency of 500 Hz is the average of transmission loss at frequencies of 354 Hz to 707 Hz, and that of 1000 Hz is the average of transmission loss at frequencies of 707 Hz to less than 1414 Hz. is there.
 図80~図83から、消音装置14を配置する実施例8は比較例5に比べて、低周波域(500Hz前後)で高い防音性能を得られることがわかる。さらに、実施例9から防音スリーブを組み合わせることで、低周波域に加えて、1000Hz前後の周波数域での防音性能も高くできることがわかる。 From FIGS. 80 to 83, it can be seen that Example 8 in which the silencer 14 is disposed can obtain high soundproofing performance in a low frequency range (about 500 Hz) as compared with Comparative Example 5. Furthermore, it can be seen that by combining the soundproof sleeve from Example 9, in addition to the low frequency band, the soundproofing performance in the frequency band around 1000 Hz can also be enhanced.
 [比較例6]
 比較例6として、消音装置14に代えて、防音フード(株式会社ユニックス製 SSFW-A10M)を通気スリーブ12の防音室内側の端部に配置した以外は実施例8と同様にして透過音圧を求めた。
 結果を図84に示す。
 また、この防音フードの開口率は、通気スリーブ12の内径に対して50.2%である。
Comparative Example 6
As Comparative Example 6, the transmission sound pressure was changed in the same manner as in Example 8 except that a soundproof hood (SSFW-A10M manufactured by Unix Co., Ltd.) was disposed at the end of the aeration sleeve 12 in the soundproof room side I asked.
The results are shown in FIG.
In addition, the opening ratio of the soundproof hood is 50.2% with respect to the inner diameter of the aeration sleeve 12.
 [実施例10]
 実施例10として、さらに、防音フード(株式会社ユニックス製 SSFW-A10M)を通気スリーブ12の防音室内側の端部に配置した以外は実施例8と同様にして透過音圧を求めた。
 結果を図85に示す。
 また、図86には、実施例8、10および比較例6の周波数帯域(オクターブバンド周波数)ごとに透過損失の平均値を求めた結果を示す。
[Example 10]
In Example 10, the transmitted sound pressure was determined in the same manner as in Example 8 except that a soundproof hood (SSFW-A10M manufactured by Unix Co., Ltd.) was disposed at the end of the aeration sleeve 12 on the soundproof room side.
The results are shown in FIG.
Moreover, in FIG. 86, the result of having calculated | required the average value of the transmission loss for every frequency band (octave band frequency) of Example 8, 10 and the comparative example 6 is shown.
 図80、84~図86から、消音装置14を配置する実施例8は比較例7に比べて、開口率は高いにも関わらず、低周波域(500Hz前後)で同等の防音性能が得られることがわかる。さらに、実施例10から防音フードを組み合わせることで、低周波域に加えて、1000Hz前後の周波数域での防音性能も高くできることがわかる。
 [実施例11]
 実施例11として、さらに、ポリエチレン製の防音スリーブ(株式会社新協和製 SK-BO100)を通気スリーブ12内に配置し、防音フード(株式会社ユニックス製 SSFW-A10M)を通気スリーブ12の防音室内側の端部に配置した以外は実施例8と同様にして透過音圧を求めた。
 結果を図87に示す。
 また、図88には、実施例8、11、比較例5、6の周波数帯域(オクターブバンド周波数)ごとに透過損失の平均値を求めた結果を示す。
From FIGS. 80 and 84 to 86, Example 8 in which the silencer 14 is disposed is able to obtain the same soundproofing performance in the low frequency range (about 500 Hz) although the aperture ratio is high compared to Comparative Example 7. I understand that. Furthermore, it can be seen that by combining the soundproof hood from Example 10, in addition to the low frequency band, the soundproofing performance in the frequency band around 1000 Hz can also be enhanced.
[Example 11]
As Example 11, further, a soundproof sleeve made of polyethylene (SK-BO 100, manufactured by Shin-Kyowa Co., Ltd.) is disposed in the aeration sleeve 12, and a soundproof hood (SSFW-A10M, manufactured by Unix, Inc.) The transmitted sound pressure was determined in the same manner as in Example 8 except that it was arranged at the end of the.
The results are shown in FIG.
Moreover, in FIG. 88, the result of having calculated | required the average value of the transmission loss for every frequency band (an octave band frequency) of Example 8, 11 and Comparative Example 5, 6 is shown.
 図87~図88から、防音スリーブおよび防音フードを組み合わせることで、低周波域に加えて、1000Hz前後の周波数域での防音性能も高くできることがわかる。
 以上の結果より本発明の効果は明らかである。
From FIGS. 87 to 88, it can be understood that the soundproof performance in the frequency range around 1000 Hz can be enhanced in addition to the low frequency range by combining the soundproof sleeve and the soundproof hood.
The effect of the present invention is clear from the above results.
 10a~10t 消音システム
 12 管状部材
 14 消音装置
 16 壁
 18 カバー部材
 20 風量調整部材
 21、22、22a、22b、23 消音器
 24、24a~24e 吸音材
 26 挿入部
 30、30a、30b 空洞部
 32、32a、32b 開口部
 34 浸入防止板
 36 蓋部
 38 第2開口部
 40 化粧板
 42 境界カバー
 44 非通気フィルム
 46 膜状部材
 50 内挿型消音器
 52 防音フード
 54 仕切り部材
 60 音響透過壁
10a to 10t Silencer system 12 Tubular member 14 Silencer 16 Wall 18 Cover member 20 Air volume adjustment member 21, 22, 22a, 22b, 23 Silencer 24, 24a to 24e Sound absorbing material 26 Insertion part 30, 30a, 30b Hollow part 32, 32a, 32b Opening 34 Intrusion prevention plate 36 Cover 38 Second opening 40 Decorative plate 42 Boundary cover 44 Non-pervious film 46 Membrane member 50 Interpolated silencer 52 Soundproof hood 54 Partition member 60 Sound transmission wall

Claims (31)

  1.  壁を貫通して設置された通気スリーブに、前記通気スリーブを通過する音を消音する消音装置が設置された消音システムであって、
     前記消音装置は、前記通気スリーブ内に生じる第一共鳴の周波数を含む周波数の音を消音するものであり、
     前記消音装置は、
     空洞部および前記空洞部と外部とを連通する開口部を有し、前記壁の一方の端面側に配置される1以上の消音器と、
     前記消音器の前記空洞部内の少なくとも一部に、または、前記消音器の前記開口部の少なくとも一部を覆う位置に配置される吸音材と、を備え、
     前記消音器の前記開口部は、前記通気スリーブの中心軸側を向いて配置されており、
     前記消音器内の音波の進行方向における前記空洞部の深さLdは、通気スリーブの軸方向における前記開口部の幅Loよりも大きく、
     前記消音装置を含む前記消音システムにおける前記通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、前記空洞部の深さLdは、0.011×λ<Ld<0.25×λを満たし、
     前記消音器は、前記通気スリーブ内に生じる第一共鳴の周波数の音に対して共鳴せず、第一共鳴の周波数の音を前記消音器単体の共鳴によって消音するものではなく、前記吸音材によって消音するものである消音システム。
    A muffling system in which a muffling apparatus for muffling the sound passing through the aeration sleeve is provided on an aeration sleeve installed through a wall.
    The muffling apparatus muffles the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve,
    The silencer is
    A cavity and an opening communicating the cavity with the outside, and one or more silencers disposed on one end face side of the wall;
    A sound absorbing material disposed at a position covering at least a part of the hollow portion of the silencer or at least a part of the opening of the silencer;
    The opening of the silencer is disposed facing the central axis side of the ventilation sleeve,
    The depth L d of the cavity in the sound wave traveling direction in the silencer is greater than the width L o of the opening in the axial direction of the venting sleeve,
    Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the ventilation sleeve in the sound reduction system including the sound reduction device is λ, the depth L d of the cavity is 0.011 × λ <L d <0.25 Satisfy × λ,
    The silencer does not resonate with the sound of the first resonance frequency generated in the ventilation sleeve, and does not mute the sound of the first resonance frequency by the resonance of the silencer alone, but by the sound absorbing material Silence system that is to mute.
  2.  壁を貫通して設置された通気スリーブに、前記通気スリーブを通過する音を消音する消音装置が設置された消音システムであって、
     前記消音装置は、前記通気スリーブ内に生じる第一共鳴の周波数を含む周波数の音を消音するものであり、
     前記消音装置は、
     空洞部および前記空洞部と外部とを連通する開口部を有し、前記壁の一方の端面側に配置される1以上の消音器と、
     前記消音器の前記空洞部内の少なくとも一部に、または、前記消音器の前記開口部の少なくとも一部を覆う位置に配置される吸音材と、を備え、
     前記消音器の前記開口部は、前記通気スリーブの中心軸側を向いて配置されており、
     前記消音器の開口部の面積をS1、前記空洞部の内壁の表面積をSdとすると、面積Sdに対する面積S1の割合S1/Sdは、0<S1/Sd<40%を満たし、
     前記消音装置を含む前記消音システムにおける前記通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、前記消音器内の音波の進行方向における前記空洞部の深さLdは、0.011×λ<Ld<0.25×λを満たし、
     前記消音器は、前記通気スリーブ内に生じる第一共鳴の周波数の音に対して共鳴せず、第一共鳴の周波数の音を前記消音器単体の共鳴によって消音するものではなく、前記吸音材によって消音するものである消音システム。
    A muffling system in which a muffling apparatus for muffling the sound passing through the aeration sleeve is provided on an aeration sleeve installed through a wall.
    The muffling apparatus muffles the sound of the frequency including the frequency of the first resonance generated in the ventilation sleeve,
    The silencer is
    A cavity and an opening communicating the cavity with the outside, and one or more silencers disposed on one end face side of the wall;
    A sound absorbing material disposed at a position covering at least a part of the hollow portion of the silencer or at least a part of the opening of the silencer;
    The opening of the silencer is disposed facing the central axis side of the ventilation sleeve,
    S 1 The area of the opening of the muffler, when the surface area of the inner wall of the cavity and S d, the ratio S 1 / S d of the area S 1 to the area S d, 0 <S 1 / S d <40 %The filling,
    Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the ventilation sleeve in the sound reduction system including the sound reduction apparatus is λ, the depth L d of the cavity in the sound wave traveling direction in the sound silencer is 0. Satisfy 011 × λ <L d <0.25 × λ,
    The silencer does not resonate with the sound of the first resonance frequency generated in the ventilation sleeve, and does not mute the sound of the first resonance frequency by the resonance of the silencer alone, but by the sound absorbing material Silence system that is to mute.
  3.  前記通気スリーブ内に生じる第一共鳴の周波数をF0とし、前記消音器の共鳴周波数をF1とすると、1.15×F0<F1を満たす請求項1または2に記載の消音システム。 The noise reduction system according to claim 1 or 2, wherein when the frequency of the first resonance generated in the ventilation sleeve is F 0 and the resonance frequency of the silencer is F 1 , 1.15 × F 0 <F 1 is satisfied.
  4.  前記通気スリーブの軸方向に平行な断面において、前記空洞部の深さ方向に直交する方向の前記空洞部の幅Lwは、0.001×λ<Lw<0.061×λを満たす請求項1~3のいずれか一項に記載の消音システム。 In a cross section parallel to the axial direction of the ventilation sleeve, the width L w of the hollow portion in the direction orthogonal to the depth direction of the hollow portion satisfies 0.001 × λ <L w <0.061 × λ The noise reduction system according to any one of Items 1 to 3.
  5.  前記吸音材の流れ抵抗σ1は、(1.25-log(0.1×Ld))/0.24<log(σ1)<5.6を満たす請求項1~4のいずれか一項に記載の消音システム。 The flow resistance σ 1 of the sound absorbing material satisfies (1.25−log (0.1 × L d )) / 0.24 <log (σ 1 ) <5.6. The muffling system according to the paragraph.
  6.  前記吸音材の流れ抵抗σ1は、(1.32-log(0.1×Ld))/0.24<log(σ1)<5.2を満たす請求項1~5のいずれか一項に記載の消音システム。 The flow resistance σ 1 of the sound absorbing material satisfies (1.32−log (0.1 × L d )) / 0.24 <log (σ 1 ) <5.2. The muffling system according to the paragraph.
  7.  前記吸音材の流れ抵抗σ1は、(1.39-log(0.1×Ld))/0.24<log(σ1)<4.7を満たす請求項1~6のいずれか一項に記載の消音システム。 The flow resistance σ 1 of the sound absorbing material satisfies (1.39−log (0.1 × L d )) / 0.24 <log (σ 1 ) <4.7. The muffling system according to the paragraph.
  8.  前記壁に平行に設けられた化粧板を有し、
     前記消音装置は、前記化粧板と前記壁との間に配置される請求項1~7のいずれか一項に記載の消音システム。
    Having a decorative board provided parallel to the wall,
    The noise reduction system according to any one of claims 1 to 7, wherein the noise reduction device is disposed between the decorative plate and the wall.
  9.  前記通気スリーブの軸方向に平行な断面において、前記消音器は、前記通気スリーブの軸方向に延在する前記空洞部と、前記通気スリーブの軸方向に平行な前記空洞部の一面の、前記通気スリーブの軸方向の一方の端部側に位置する前記開口部とを有し、
     前記通気スリーブの軸方向における前記空洞部の長さが、前記空洞部の深さLdである請求項1~8のいずれか一項に記載の消音システム。
    In a cross section parallel to the axial direction of the ventilation sleeve, the silencer comprises the ventilation of the cavity extending in the axial direction of the ventilation sleeve and one surface of the cavity parallel to the axial direction of the ventilation sleeve. And an opening located at one axial end of the sleeve;
    Said length of said cavity in the axial direction of the ventilation sleeve, silencing system as claimed in any one of claims 1 to 8, the depth L d of the cavity.
  10.  前記消音装置は、複数の前記消音器を有する請求項1~9のいずれか一項に記載の消音システム。 The noise reduction system according to any one of claims 1 to 9, wherein the noise reduction device has a plurality of the noise reduction devices.
  11.  複数の前記消音器の前記開口部は、前記通気スリーブの軸方向の少なくとも2箇所以上の位置に配置されている請求項10に記載の消音システム。 The silencer system according to claim 10, wherein the openings of the plurality of silencers are disposed at at least two or more axial positions of the ventilation sleeve.
  12.  前記開口部の位置ごとに、前記消音器の前記空洞部の深さLdが異なる請求項11に記載の消音システム。 For each position of the opening, silencer system according to claim 11, the depth L d of the hollow portion is different of the muffler.
  13.  前記開口部の位置ごとに、前記消音器の前記空洞部内に音響特性の異なる吸音材が配置されている請求項11または12に記載の消音システム。 The noise reduction system according to claim 11 or 12, wherein sound absorbing materials having different acoustic characteristics are disposed in the hollow portion of the silencer at each position of the opening.
  14.  前記消音装置は、前記通気スリーブ内に接続される筒状の挿入部を有し、
     前記挿入部は、前記挿入部の中心軸を前記通気スリーブの中心軸に一致させて配置されており、
     前記消音器が、前記挿入部の一方の端面に接続されている請求項1~13のいずれか一項に記載の消音システム。
    The muffling apparatus has a cylindrical insertion part connected in the ventilation sleeve,
    The insertion portion is disposed with the central axis of the insertion portion aligned with the central axis of the ventilation sleeve,
    The muffling system according to any one of claims 1 to 13, wherein the muffler is connected to one end face of the insertion portion.
  15.  前記通気スリーブの中心軸を軸とする円周面における、前記開口部の面積S1は前記空洞部の面積S0よりも小さい請求項1~14のいずれか一項に記載の消音システム。 Silencer system according to any one of the vent in the circumferential surface of the central axis and the axis of the sleeve, the opening area S 1 is the hollow portion of the area S small claim 1 than 0-14.
  16.  2以上の前記消音器を有し、
     各前記消音器の前記開口部は、前記通気スリーブの中心軸に対して回転対称に配置されている請求項1~15のいずれか一項に記載の消音システム。
    With two or more of the silencers,
    The noise reduction system according to any one of claims 1 to 15, wherein the opening of each of the silencers is disposed in rotational symmetry with respect to a central axis of the ventilation sleeve.
  17.  前記通気スリーブの室内側の端部に設置されている請求項1~16のいずれか一項に記載の消音システム。 The noise reduction system according to any one of claims 1 to 16, which is installed at the indoor end of the ventilation sleeve.
  18.  前記通気スリーブの軸方向に垂直な断面において、前記通気スリーブの実効外径D0と、前記消音器の実効外径D1とは、D1<D0+2×(0.045×λ+5mm)を満たす請求項1~17のいずれか一項に記載の消音システム。 In a cross section perpendicular to the axial direction of the ventilation sleeve, and said vent effective outer diameter D 0 of the sleeve, the A muffler effective outer diameter D 1 of the, D 1 <D 0 + 2 × a (0.045 × λ + 5mm) A noise reduction system according to any one of the preceding claims, wherein:
  19.  前記消音装置が前記通気スリーブに着脱が可能である請求項1~18のいずれか一項に記載の消音システム。 19. A muffling system according to any of the preceding claims, wherein the muffling device is removable from the venting sleeve.
  20.  前記消音装置の前記消音器が分離可能である請求項1~19のいずれか一項に記載の消音システム。 A system according to any of the preceding claims, wherein the silencer of the silencer is separable.
  21.  前記消音装置が難燃材料より耐熱性の高い材料からなる請求項1~20のいずれか一項に記載の消音システム。 The noise reduction system according to any one of claims 1 to 20, wherein the noise reduction device is made of a material having higher heat resistance than the flame retardant material.
  22.  前記消音器の前記開口部は、前記通気スリーブの内周面の周方向に沿ってスリット状に形成されている請求項1~21のいずれか一項に記載の消音システム。 The noise reduction system according to any one of claims 1 to 21, wherein the opening of the silencer is formed in a slit shape along the circumferential direction of the inner peripheral surface of the ventilation sleeve.
  23.  前記消音装置の前記通気スリーブとは反対側に設置されるカバー部材、または、風量調整部材を有し、
     前記通気スリーブの軸方向から見た際に、前記カバー部材、または、前記風量調整部材が前記消音装置を覆っている請求項1~22のいずれか一項に記載の消音システム。
    It has a cover member or an air volume adjustment member installed on the opposite side to the ventilation sleeve of the silencer.
    The noise reduction system according to any one of claims 1 to 22, wherein the cover member or the air volume adjustment member covers the noise reduction device when viewed in the axial direction of the ventilation sleeve.
  24.  前記通気スリーブのいずれか一方の端部に設置されるカバー部材と、
     前記通気スリーブの他方の端部に設置される風量調整部材と、を有し、
     前記消音装置、前記カバー部材および前記風量調整部材を含む消音システムにおける前記通気スリーブの第一共鳴の共鳴周波数における音波の波長をλとすると、前記空洞部の深さLdはλ/4よりも短い請求項1~23のいずれか一項に記載の消音システム。
    A cover member installed at one end of the ventilation sleeve;
    An air volume adjustment member installed at the other end of the ventilation sleeve;
    Assuming that the wavelength of the sound wave at the resonance frequency of the first resonance of the ventilation sleeve in the silencer system including the silencer, the cover member, and the air volume adjusting member is λ, the depth L d of the cavity is more than λ / 4 A system according to any one of the preceding claims, wherein the system is short.
  25.  前記壁に平行に設けられた化粧板を有し、
     前記壁と前記化粧板との間の空間を含む、前記壁と前記化粧板との合計厚みが、175mm~400mmである請求項1~24のいずれか一項に記載の消音システム。
    Having a decorative board provided parallel to the wall,
    The noise reduction system according to any one of claims 1 to 24, wherein a total thickness of the wall and the decorative plate, including a space between the wall and the decorative plate, is 175 mm to 400 mm.
  26.  前記通気スリーブの軸方向において、前記消音器は、前記壁と、前記壁から離間して配置される化粧板との間に、一部が前記化粧板に形成された貫通孔に挿通されて配置されており、
     前記通気スリーブの軸方向から見た際に、前記化粧板と前記消音器との境界を覆う境界カバーを有する請求項1~25のいずれか一項に記載の消音システム。
    In the axial direction of the ventilating sleeve, the silencer is disposed by being inserted through a through hole formed in the decorative plate between the wall and the decorative plate disposed apart from the wall. Has been
    The noise reduction system according to any one of claims 1 to 25, further comprising a boundary cover covering a boundary between the decorative plate and the silencer when viewed in the axial direction of the ventilation sleeve.
  27.  前記通気スリーブの軸方向において、前記消音器は、前記通気スリーブの一方の端部に配置され、
     さらに、前記通気スリーブ内に配置される防音部材を有する請求項1~26のいずれか一項に記載の消音システム。
    In the axial direction of the venting sleeve, the silencer is arranged at one end of the venting sleeve,
    The noise reduction system according to any one of claims 1 to 26, further comprising a soundproofing member disposed within the ventilation sleeve.
  28.  前記通気スリーブの軸方向において、前記消音器は、前記通気スリーブの一方の端部に配置され、
     さらに、前記通気スリーブの他方の端部に配置される防音部材を有する請求項1~27のいずれか一項に記載の消音システム。
    In the axial direction of the venting sleeve, the silencer is arranged at one end of the venting sleeve,
    A noise suppressor system according to any of the preceding claims, further comprising a soundproofing member arranged at the other end of the ventilating sleeve.
  29.  前記消音器の前記空洞部の幅Lwは、
      5.5mm≦Lw≦300mm
    を満たす請求項1~28のいずれか一項に記載の消音システム。
    The width L w of the hollow portion of the silencer is
    5.5 mm ≦ L w ≦ 300 mm
    A noise reduction system according to any one of the preceding claims, wherein
  30.  前記消音器の前記空洞部の深さLdは、
      25.3mm≦Ld≦175mm
    を満たす請求項1~29のいずれか一項に記載の消音システム。
    The depth L d of the hollow portion of the silencer is
    25.3 mm ≦ L d ≦ 175 mm
    The noise reduction system according to any one of claims 1 to 29, wherein
  31.  前記空洞部内に複数の前記吸音材が配置されている請求項1~30のいずれか一項に記載の消音システム。
     
    The noise reduction system according to any one of claims 1 to 30, wherein a plurality of the sound absorbing materials are disposed in the hollow portion.
PCT/JP2018/025410 2017-07-05 2018-07-04 Sound-damping system WO2019009342A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-131816 2017-07-05
JP2017131816 2017-07-05
JP2017181002 2017-09-21
JP2017-181002 2017-09-21
JP2018-012977 2018-01-29
JP2018-012674 2018-01-29
JP2018012674A JP6377868B1 (en) 2017-07-05 2018-01-29 Silencer system
JP2018012977 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019009342A1 true WO2019009342A1 (en) 2019-01-10

Family

ID=64951000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025410 WO2019009342A1 (en) 2017-07-05 2018-07-04 Sound-damping system

Country Status (2)

Country Link
JP (1) JP6672390B2 (en)
WO (1) WO2019009342A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651150A4 (en) * 2017-07-05 2020-07-22 FUJIFILM Corporation Sound-damping system
CN113907632A (en) * 2021-11-08 2022-01-11 深圳市小题大作科技有限公司 Foot dryer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022168533A1 (en) 2021-02-03 2022-08-11

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144986A (en) * 1995-11-27 1997-06-03 Nissan Motor Co Ltd Noise absorbing duct structure
JP2007047560A (en) * 2005-08-11 2007-02-22 Nec Viewtechnology Ltd Muffler for electronic equipment, projection display device with same muffler, and silencing method for suppressing composite noise of electronic equipment
JP2017116837A (en) * 2015-12-25 2017-06-29 富士ゼロックス株式会社 Noise suppressor and image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115032B2 (en) * 1999-03-05 2008-07-09 株式会社大気社 Silencer
JP3693521B2 (en) * 1999-04-21 2005-09-07 松下エコシステムズ株式会社 Silent air inlet
JP3664675B2 (en) * 2001-10-24 2005-06-29 株式会社長谷工コーポレーション Silent ventilation
US20060240763A1 (en) * 2003-04-23 2006-10-26 Fumiharu Takeda Ventilator
JP2007322043A (en) * 2006-05-31 2007-12-13 Matsushita Electric Ind Co Ltd Sound absorpbing pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144986A (en) * 1995-11-27 1997-06-03 Nissan Motor Co Ltd Noise absorbing duct structure
JP2007047560A (en) * 2005-08-11 2007-02-22 Nec Viewtechnology Ltd Muffler for electronic equipment, projection display device with same muffler, and silencing method for suppressing composite noise of electronic equipment
JP2017116837A (en) * 2015-12-25 2017-06-29 富士ゼロックス株式会社 Noise suppressor and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651150A4 (en) * 2017-07-05 2020-07-22 FUJIFILM Corporation Sound-damping system
US11493232B2 (en) 2017-07-05 2022-11-08 Fujifilm Corporation Silencing system
CN113907632A (en) * 2021-11-08 2022-01-11 深圳市小题大作科技有限公司 Foot dryer
CN113907632B (en) * 2021-11-08 2023-07-28 深圳市小题大作科技有限公司 Foot drier

Also Published As

Publication number Publication date
JP2019133122A (en) 2019-08-08
JP6672390B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2019009338A1 (en) Sound-damping system
JP6496870B2 (en) Silencer system
JP7248686B2 (en) sound deadening system
US11841163B2 (en) Silencing system
WO2019009342A1 (en) Sound-damping system
JP6496446B2 (en) Silencer system
JP6491787B1 (en) Soundproof system
JP6491788B1 (en) Soundproof system
JP2019056516A (en) Noise suppression system
JP6691521B2 (en) Muffling system
JP6836975B2 (en) Silencer system
JP6851404B2 (en) Silent ventilation structure
JP6673885B2 (en) Silencer system
JP7411084B2 (en) Silencer
JP6247732B2 (en) Silencer and silencer using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827428

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827428

Country of ref document: EP

Kind code of ref document: A1