WO2019009247A1 - Heat-insulating container - Google Patents

Heat-insulating container Download PDF

Info

Publication number
WO2019009247A1
WO2019009247A1 PCT/JP2018/025072 JP2018025072W WO2019009247A1 WO 2019009247 A1 WO2019009247 A1 WO 2019009247A1 JP 2018025072 W JP2018025072 W JP 2018025072W WO 2019009247 A1 WO2019009247 A1 WO 2019009247A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulation
heat
container
panel
vacuum
Prior art date
Application number
PCT/JP2018/025072
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 三谷
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2019009247A1 publication Critical patent/WO2019009247A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation

Definitions

  • the present disclosure relates to a thermally insulated container.
  • the vacuum heat insulating material has a core material and an exterior material, and while the core material is disposed inside the bag constituted by the exterior material, the vacuum material is maintained in a vacuum state where the pressure is lower than atmospheric pressure. . Since the heat convection inside the bag is suppressed, the vacuum heat insulating material can exhibit good heat insulation. Since the vacuum heat insulating material has a higher heat insulating property per unit thickness than a general foam heat insulating material, the thickness of the heat insulating material can be reduced while securing desired heat insulating property. Therefore, it becomes possible to achieve space saving and weight reduction of a heat insulation container, for example by using a vacuum heat insulating material for a heat insulation container.
  • Patent Documents 1 to 3 disclose a heat insulating container using a vacuum heat insulating material, in which the assembled state and the disassembled state can be changed.
  • An object of the present disclosure is to provide a thermally insulated container which is good in thermal insulation during use and can be miniaturized when not in use.
  • the heat insulation container is capable of changing an assembled state and a disassembled state, and is a heat insulation container using a vacuum heat insulating material, wherein the heat insulation container includes a top heat insulation panel, a bottom heat insulation panel, and a right heat insulation panel.
  • a plurality of side thermal insulation panels having a rear thermal insulation panel, a left thermal insulation panel, and a front thermal insulation panel, the assembled state being surrounded by the top thermal insulation panel, the bottom thermal insulation panel, and the plurality of side thermal insulation panels
  • the heat insulation space is formed, and the decomposition state is a state where the heat insulation space is not formed, and at least four of the top surface heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels.
  • Insulating panels are provided with a vacuum insulating member including the above-described vacuum insulating material, and in the above-mentioned assembled state, the number of ventilation times is 0.1 times / hr or less.
  • the heat insulation container is capable of changing an assembled state and a disassembled state, and is a heat insulation container using a vacuum heat insulating material, wherein the heat insulation container includes a top heat insulation panel, a bottom heat insulation panel, and a right heat insulation panel.
  • a plurality of side thermal insulation panels having a rear thermal insulation panel, a left thermal insulation panel, and a front thermal insulation panel, the assembled state being surrounded by the top thermal insulation panel, the bottom thermal insulation panel, and the plurality of side thermal insulation panels
  • the heat insulation space is formed, and the decomposition state is a state where the heat insulation space is not formed, and at least four of the top surface heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels.
  • Insulating panels of the present invention have a vacuum insulating member including the above-mentioned vacuum insulating material, and in the above-mentioned assembled state, the number of ventilations is the cold storage time in the common logarithm of the number of ventilations Rate of change is less than or equal to the value to be -1, provides thermal insulation vessel.
  • the heat insulation container of the present disclosure has the effect of being excellent in heat insulation during use and capable of being miniaturized when not in use.
  • FIG. 2 is a schematic perspective view illustrating the disassembled heat insulation container of the present disclosure. It is a schematic perspective view which illustrates the heat insulation container of this indication.
  • FIG. 1 is a schematic perspective view illustrating the heat insulation container of the present disclosure.
  • the heat insulation container 100 shown in FIG. 1 includes a top surface heat insulation panel 160, a bottom heat insulation panel 170, a plurality of side heat insulation panels 110, and a pallet 500 having claw holes 501.
  • the plurality of side thermal insulation panels 110 are a right thermal insulation panel 120, a left thermal insulation panel 130, a rear thermal insulation panel 140, and a front thermal insulation panel 150.
  • the top thermal insulation panel 160, the bottom thermal insulation panel 170, and the plurality of side thermal insulation panels 110 are vacuum thermal insulation panels having a vacuum thermal insulation member including a vacuum thermal insulation material.
  • the right heat insulation panel 120 and the left heat insulation panel 130 each include a vertical frame 310 and a horizontal frame 320.
  • the vertical frame 310 and the horizontal frame 320 constitute the entire frame.
  • the rear heat insulation panel 140 and the front heat insulation panel 150 are similarly provided with a vertical frame 310 and a horizontal frame 320.
  • FIG. 1 shows a partially opened state.
  • the heat insulation container 100 is in the assembled state of a square pillar structure by closing the front heat insulation panel 150 and the top heat insulation panel 160, and the top heat insulation panel 160, the bottom heat insulation panel 170, and a plurality of side heat insulation panels. It is possible to form the heat insulation space enclosed by 110 inside the container.
  • the heat insulation container 100 shown in FIG. 1 has a ventilation frequency equal to or less than a specific value.
  • the six heat insulation panels of the top heat insulation panel 160, the bottom heat insulation panel 170, the right heat insulation panel 120, the left heat insulation panel 130, the back heat insulation panel 140, and the front heat insulation panel 150 It is a vacuum insulation panel which has a vacuum insulation member containing heat insulation.
  • all of the heat insulation panels may not be vacuum heat insulation panels.
  • at least four of the plurality of side thermal insulation panels may be vacuum thermal insulation panels.
  • the bottom heat insulation panel may not include the vacuum heat insulation material in order to prevent the vacuum heat insulation material from being damaged by the weight of the load, in which case, for example, the top heat insulation panel, the right heat insulation
  • the five thermal insulation panels, the panel, the left thermal insulation panel, the rear thermal insulation panel, and the front thermal insulation panel may be vacuum thermal insulation panels.
  • the heat insulating panel having an openable and closable structure may not include the vacuum heat insulating material.
  • a bottom heat insulating panel and a right heat insulating panel are the vacuum thermal insulation panels
  • the top thermal insulation panel and the front thermal insulation panel are the thermal insulation panels that have an openable and closable structure and do not contain the vacuum thermal insulation material.
  • the assembled state and the disassembled state can be changed, a vacuum heat insulating material is used, and the number of ventilation times is equal to or less than a specific value. It can be an insulated container that can sometimes be miniaturized. Details will be described below.
  • FIG. 2 is a schematic view for explaining the joint portion between the two side heat insulation panels, for example, a view of the joint portion between the back heat insulation panel 140 and the right side heat insulation panel 120 from the top heat insulation panel 160 side in FIG. Equivalent to.
  • Two side heat insulation panels 110X and 110Y shown in FIG. 2 respectively have a heat insulation member 110A, an adhesive layer 334, and a protection member 110B in this order. Furthermore, each heat insulating member 110A has a vacuum heat insulating material as the first heat insulating material 331 and, for example, a foamed heat insulating material as the second heat insulating material 332. Further, the two side heat insulating panels 110X and 110Y are joined by the respective protective members 110B being fitted to the vertical frame 310, and the respective heat insulating members 110A are in contact in the region X.
  • the vacuum heat insulating material used as the first heat insulating material 331 has a heat insulating property per unit thickness that is about 5 times to about 10 times higher than that of a general foam heat insulating material, so the thickness of the heat insulating material is significantly reduced. Also, it has the property that the desired heat insulation can be obtained. However, when the thickness of the heat insulating material is significantly reduced, the contact area between the end face of the side heat insulation panel 110X and the main surface of the side heat insulation panel 110Y is also significantly reduced in the region X of FIG. The air tightness of the
  • the vacuum heat insulating material used as the first heat insulating material 331 has a property that the processability is low because it is necessary to keep the inside in a vacuum state in which the pressure is lower than the atmospheric pressure. Also, for example, in the case of a foamed heat insulating material, even when a part of the foamed heat insulating material is broken, the decrease in the heat insulating property is limited to the broken part, but in the vacuum heat insulating material, a part of the vacuum heat insulating material is If it breaks, the heat insulation of the whole vacuum heat insulating material will fall. Thus, the vacuum heat insulating material has the property that the performance deterioration at the time of breakage is large.
  • the second heat insulating material (foamed heat insulating material) 332 may be used together with the first heat insulating material (vacuum heat insulating material) 331.
  • the above-described technical concept of air tightness management can change the assembled state and the disassembled state, and is closely related to the problems unique to the heat insulating container using a vacuum heat insulating material. For example, in the case of a heat insulating container which does not need to be disassembled, since it is not necessary to form a decomposable joint in the first place, even when a vacuum heat insulating material is used, the problem of air tightness due to decomposition does not occur.
  • the ventilation frequency of the heat insulation container of the present disclosure is preferably 0.1 times / hr or less in the assembled state.
  • the ventilation frequency is 0.1 times / hr or less, the influence of the heat transfer through the gap between the heat insulation panels on the cooling time is the effect of the heat transfer through the heat insulation panels on the heat insulation time This is because the cooling time is stable, which is sufficiently smaller than that of the conventional art.
  • the fact that the ventilation frequency is 0.1 times / hr or less suppresses the decrease in the heat insulation of the heat insulation container due to the decrease in air tightness due to the ability to change the assembly state and the disassembly state. It is important to fully demonstrate the heat insulation performance of the heat insulation container using the heat insulation material.
  • the ventilation frequency is determined as follows.
  • the ventilation frequency (times / hr) of the heat insulation container is the ventilation volume per hour (also referred to as air supply, m) 3 / hr) is measured, and it calculates
  • carbon dioxide gas is released into the heat insulation container using a gas cylinder or vaporized dry ice, the carbon dioxide gas concentration is measured, and the formula (1) (Seidel's formula) described in 3.1 of the above JIS standard. It asks by).
  • the carbon dioxide gas concentration is measured using the infrared gas analyzer method described in 2.1 (5) of the above JIS standard, and the measurement points are 3 to 5 points different in height in the heat insulation container, and Let the average value be the carbon dioxide concentration. Further, based on the description in the above-mentioned JIS Standard 2.2, the atmosphere in the heat insulation container is agitated using a small fan so that the concentration distribution becomes uniform at the time of the first measurement of carbon dioxide gas concentration. “Concentration distribution is uniform” means that the carbon dioxide concentration at each measurement point is within ⁇ 10% of the average value, and the atmosphere in the heat insulation container is agitated so as to obtain this state.
  • the carbon dioxide gas concentration at the time of the first measurement is adjusted to be 5000 ppm or more and 10000 ppm or less.
  • the measurement of the ventilation volume is performed with no temperature difference between the inside and the outside of the heat insulation container and in a windless state.
  • the ventilation frequency of the heat insulation container of the present disclosure is preferably equal to or less than a value at which the rate of change of cold storage time in the common logarithm of the ventilation frequency is -1 in the assembled state.
  • the ventilation frequency is less than or equal to a value at which the change rate of the cooling time in the common logarithm of the ventilation frequency is -1 or less, the heat insulating performance of the heat insulating panel can be sufficiently exhibited.
  • it is important that the ventilation frequency is less than or equal to a value at which the change rate of the cooling time in the common logarithm of the ventilation frequency is -1, in order to fully demonstrate the heat insulation performance of the heat insulation container using the vacuum heat insulating material.
  • the change rate of the cooling time in the common logarithm of the ventilation frequency is determined as follows.
  • the cold storage time is 8 ° C. or less in an atmosphere of 35 ° C. outside temperature with a sample (2 L PET water containing 2 ° C. water corresponding to 10% of the inner volume of the thermal insulation container) housed inside the heat insulation container. It is evaluated by the time that can be kept at (Holding time).
  • the heat insulation container is allowed to stand in an atmosphere at a temperature of 35 ° C., and the temperature inside and outside the heat insulation container is set to 35 ° C.
  • a PET container containing water at 2 ° C. corresponding to 10% of the internal volume of the heat insulation container is prepared.
  • a commercially available 2 L PET container is used as a PET container.
  • the sample is then placed in the center of the bottom insulation panel of the insulation vessel.
  • a hole is made in the cap portion of the PET container, and a thermocouple or a resistance temperature sensor of about half the height of the PET container is introduced from the hole. This measures the temperature of the central portion of the PET container.
  • seal the heat insulation container In addition, a cold storage agent is not used.
  • the cooling time can be determined.
  • the ventilation frequency can be experimentally adjusted by adjusting the degree of opening and closing to an intentional non-normal state. Even when the heat insulation panel having an openable / closable structure is not used, for example, the degree of bonding of the heat insulation panels is intentionally non-regular by, for example, sandwiching a hollow pipe inside the heat insulation panels By adjusting to the condition, the ventilation frequency can be adjusted experimentally. Therefore, the relationship between the ventilation frequency and the cooling time can be obtained by obtaining the cooling time each time for a plurality of experimentally adjusted ventilation frequencies.
  • a plurality of ventilation frequency for example, in the range of 0.01 frequency / hr or more and 1 time / hr or less and generally without bias on the common logarithmic axis, and the measurement points of the plurality of ventilation frequency are For example, it may be five or more, and may be ten or more.
  • the rate of change of the cooling time in the common logarithm of the ventilation frequency is determined. For example, a semilogarithmic graph is created in which the ventilation frequency is plotted on the logarithmic axis of the horizontal axis, and the cold storage time is plotted on the normal axis of the vertical axis, and the slope of the semilogarithmic graph is determined.
  • the ventilation frequency of the heat insulation container of the present disclosure is preferably 0.02 times / hr or more.
  • a ventilation frequency of 0.02 times / hr or more it is possible to make the joint between the heat insulation panels easy to join or remove, or to make it possible to open and close the heat insulation panels. It is.
  • the insulation container of the present disclosure has a top insulation panel, a bottom insulation panel, and a plurality of side insulation panels. Furthermore, the top heat insulation panel, the bottom heat insulation panel, and at least four heat insulation panels of the plurality of side heat insulation panels are vacuum heat insulation panels having a vacuum heat insulating member including a vacuum heat insulating material. By increasing the number of vacuum insulation panels, the insulation performance of the insulation container is improved. By reducing the number of vacuum insulation panels, it is possible to reduce the risk that the vacuum insulation material breaks and the insulation performance of the insulation container falls sharply.
  • thermal insulation panels other than a vacuum thermal insulation panel the thermal insulation panel which has a thermal insulation member which does not contain a vacuum thermal insulation but contains at least one of a porous thermal insulation and a fiber thermal insulation is mentioned, for example.
  • a porous heat insulating material and a fiber heat insulating material are heat insulating materials which have many space
  • the heat transmission coefficient of heat insulation panels other than the vacuum heat insulation panel can be, for example, 3 W / m 2 K or less, and may be 2 W / m 2 K or less.
  • a vacuum heat insulation panel is a heat insulation panel which has a vacuum heat insulation member containing a vacuum heat insulating material.
  • the vacuum heat insulating member may be a member having only a vacuum heat insulating material as a heat insulating material, or may be a member having a vacuum heat insulating material and another heat insulating material.
  • the vacuum heat insulating material may be referred to as a first heat insulating material, and a heat insulating material other than the vacuum heat insulating material may be referred to as a second heat insulating material.
  • FIG. 3 is a schematic cross-sectional view illustrating a vacuum heat insulating material in the present disclosure.
  • the 1st heat insulating material 331 which is a vacuum heat insulating material has the core material 331a and the exterior material 331b which has gas-barrier property.
  • the inside of the exterior material 331 b is in a reduced pressure state.
  • FIG.3 (b) is another example of a vacuum heat insulating material.
  • a void is formed at both ends inside the first heat insulating material 331 which is a vacuum heat insulating material in FIG. 3 (a)
  • no void is formed in FIG. 3 (b).
  • the air gap may or may not be formed due to the difference in the method of manufacturing the first heat insulating material 331.
  • a powder, a porous body, a fiber body etc. can be used, for example.
  • the above powder may be inorganic powder or organic powder, and specifically, dry silica, wet silica, aggregated silica powder, conductive powder, calcium carbonate powder, perlite , Clay, talc and the like.
  • a porous body a urethane foam, a styrene foam, a phenol foam etc. are mentioned, for example.
  • the fiber body may be an inorganic fiber or an organic fiber, and examples of the inorganic fiber include glass fibers such as glass wool and glass fibers, alumina fibers, silica alumina fibers, silica fibers, ceramic fibers, rock wool and the like.
  • the exterior material is a member that covers the outer periphery of the core material, and examples thereof include a flexible sheet having a thermal adhesion layer and a gas barrier layer in this order from the core material side.
  • the gas barrier layer include a metal foil and a vapor deposition sheet having a vapor deposition layer on one side of a resin sheet.
  • metal foil aluminum is mentioned, for example.
  • a vapor deposition layer aluminum, an aluminum oxide, a silicon oxide is mentioned, for example.
  • a well-known resin sheet can be used as a resin sheet.
  • Oxygen permeability of the outer package for example 0.5cc ⁇ m -2 ⁇ day -1 may be less, may be not more than 0.1cc ⁇ m -2 ⁇ day -1. Further, the water vapor permeability of the outer package, for example 0.2cc ⁇ m -2 ⁇ day -1 may be less, may be not more than 0.1cc ⁇ m -2 ⁇ day -1.
  • the internal vacuum degree of the vacuum heat insulating material may be, for example, 5 Pa or less.
  • the initial thermal conductivity of the vacuum heat insulating material is, for example, 15 mW ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less in a 25 ° C. environment, and may be 10 mW ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less, 5 mW ⁇ m ⁇ 1 -It may be K -1 or less.
  • the vacuum heat insulating member in the present disclosure may be a member having only a vacuum heat insulating material (first heat insulating material) as a heat insulating material, a vacuum heat insulating material (first heat insulating material), and the like. It may be a member having a heat insulating material (second heat insulating material). As described above, the vacuum heat insulating material (first heat insulating material) is greatly deteriorated in performance at the time of breakage, but when used together with other heat insulating materials (second heat insulating material), the vacuum heat insulating material (first heat insulating material) It is possible to suppress the decrease in heat insulation of the heat insulation panel at the time of breakage.
  • FIG. 4 is a schematic cross-sectional view illustrating a vacuum insulation member in the present disclosure.
  • the vacuum heat insulating member 350A has a first heat insulating material 331, which is a vacuum heat insulating material, and a second heat insulating material 332 located on one principal surface side of the first heat insulating material 331. It may be done.
  • the first heat insulating material 331 can be set in a mold, and then the first heat insulating material 331 and the second heat insulating material 332 can be integrally formed by injection molding.
  • an adhesive layer may be provided between the first heat insulating material 331 and the second heat insulating material 332 to bond the two.
  • porous heat insulating materials such as a foamed heat insulating material, and a fiber heat insulating material are mentioned.
  • porous heat insulating material and the fiber heat insulating material for example, foamed polyethylene, foamed polypropylene, foamed polystyrene, foamed polyurethane, foamed plastic based heat insulating material such as foamed polyphenol, glass wool, glass fiber, rock wool, cellulose fiber, insulation board etc.
  • the vacuum heat insulation member 350A shown to Fig.4 (a) does not have the 2nd heat insulation material 332 in the end surface of the 1st heat insulation material 331, as shown in FIG.4 (b), the vacuum heat insulation member 350A is A second heat insulating material 332 may be provided to cover both end surfaces of the first heat insulating material 331. Although not shown, only one end face of the first heat insulating material 331 may be covered with the second heat insulating material 332. In addition, a part of the end face of the first heat insulating material 331 may be covered with the second heat insulating material 332, and the whole end face of the first heat insulating material 331 may be covered with the second heat insulating material 332 .
  • the vacuum heat insulating member 350A shown in FIG. 4 (a) has the second heat insulating material 332 only on one main surface side of the first heat insulating material 331, but the second heat insulating material A heat insulating material 332 may be provided. Furthermore, as shown in FIG. 4C, the vacuum heat insulating member 350A may have a second heat insulating material 332 so as to cover the entire circumference of the first heat insulating material 331.
  • the vacuum heat insulating member in the present disclosure may have a heat shield sheet so as to cover the entire circumference of the first heat insulating material.
  • the vacuum heat insulating member 350A may have a heat shielding sheet 333 so as to cover the entire circumference of the first heat insulating material 331 and the second heat insulating material 332. In this case, a part of the periphery of the first heat insulating material 331 is covered with the heat shield sheet 333 via the second heat insulating material 332.
  • surface of a resin sheet is mentioned, for example.
  • the kind of metal foil and the kind of vapor deposition sheet it is the same as that of the content mentioned above.
  • FIG. 5 is a schematic cross-sectional view illustrating a vacuum insulation panel in the present disclosure.
  • the vacuum heat insulation panel 350 may have a vacuum heat insulation member 350A, an adhesive layer 334, and a protection member 350B in this order.
  • the vacuum heat insulation panel 350 shown in FIG. 5A has the second heat insulation member 332 on one main surface side of the first heat insulation material 331, and the protection member 350B on the other main surface side of the first heat insulation material 331. Have.
  • FIG. 5A has the second heat insulation member 332 on one main surface side of the first heat insulation material 331, and the protection member 350B on the other main surface side of the first heat insulation material 331.
  • the vacuum heat insulation panel 350 may have a protection member 350B so as to cover the entire circumference of the vacuum heat insulation member 350A.
  • the vacuum heat insulation panel may have the above-mentioned heat shield sheet so as to cover, for example, the entire circumference of the protection member 350B shown in FIG. 5 (b).
  • organic polymer members such as plywood, a foaming material, a resin board, an embossed resin sheet, paperboard, a ceramic member etc. are mentioned, for example. It is also possible to use, for example, plastic cardboard or cured wood as a lightweight, relatively rigid material. Or you may use the same thing as the 2nd heat insulating material mentioned above.
  • the vacuum insulating panel in the present disclosure preferably has a low heat transmission coefficient, and can be, for example, 0.5 W / m 2 K or less.
  • the heat transmission coefficient is a value representing the ease of heat transfer in the heat insulation panel, and the smaller the value, the higher the heat insulation.
  • the heat transmission coefficient (U value) is expressed as follows.
  • Heat transmission coefficient (W / m 2 K) 1 / heat resistance value (m 2 K / W) (1)
  • Thermal resistance (m 2 K / W) thickness (m) / thermal conductivity (W / mK) (2)
  • the measuring method of the heat transmission coefficient in a heat insulation panel is demonstrated.
  • the heat resistance value of the heat insulation panel itself may be determined (first measurement method).
  • a heat insulation panel for test having the same layer configuration as the heat insulation panel to be measured, and a plane perpendicular to the thickness direction having a size of 30 cm ⁇ 30 cm or more is manufactured.
  • the resistance value may be determined (second measurement method).
  • the thermal conductivity of each member constituting the heat insulation panel to be measured may be measured, and the thermal resistance value of the total of each member may be determined from the thickness of each member and the thermal conductivity (third measurement Method).
  • the thermal resistance value and the thermal conductivity are determined in accordance with JIS A1412-1,2,2.
  • the temperature of the measurement environment is 20 ° C. or more and 25 ° C. or less.
  • adopt the 1st measuring method which is a direct measuring method first, and to employ
  • regions with which heat transmission coefficients differ it is preferable to use the average heat transmission coefficient which considered the ratio which an area
  • the third measurement method is illustrated.
  • the vacuum insulation panel has a first insulation (vacuum insulation) and a second insulation (EPP: expanded polypropylene).
  • the thermal conductivity of the first heat insulating material is 0.003 (W / mK) and the thickness is 0.006 m
  • the thermal conductivity of the second heat insulating material (EPP) is 0.04 (W / mK) and the thickness is 0.02 m
  • the average of the heat transmission coefficient of each vacuum heat insulation panel can be, for example, 0.5 W / m 2 K or less.
  • the heat transmission coefficient of all the vacuum insulation panels can also be made into 0.5 W / m ⁇ 2 > K or less, for example.
  • the vacuum insulation panel may have a means to improve the insulation of the insulation panel.
  • the 1st heat insulation material 331 which is a vacuum heat insulation material is formed by one so that the whole area of a vacuum heat insulation member may be extended in the width direction.
  • one first heat insulation material 331 which is a vacuum heat insulation material is formed.
  • the width of the vacuum heat insulating member is W 1 and the width of the first heat insulating material 331 is W 2
  • the value of W 2 / W 1 is, for example, 90% or more. Is preferred.
  • the value of W 1 is preferably, for example, 600mm or more.
  • vacuum heat insulation member 350A when vacuum heat insulation member 350A has a plurality of 1st heat insulation materials 331 in the cross direction, vacuum heat insulation member 350A is a plurality of 1st heat insulation materials in plane view.
  • the auxiliary heat insulating material 337 may be provided at a position corresponding to the gap portion ⁇ of 331.
  • the heat insulating property of the vacuum heat insulating panel can be improved.
  • FIG. 6C when the vacuum heat insulating member 350A has a plurality of first heat insulating materials 331 in the width direction, the vacuum heat insulating member 350A has a plurality of first heat insulators in plan view.
  • Another first heat insulating material 331 may be provided at a position corresponding to the gap portion ⁇ of the material 331. Since the other first heat insulating material 331 is located in the gap portion ⁇ , the heat insulating property of the vacuum heat insulating panel can be improved.
  • Airtightness improvement means In the heat insulation container of this indication, it is preferable that the ventilation frequency in an assembly state is below predetermined value.
  • the means for reducing the number of times of ventilation of the heat insulation container (means for improving the airtightness of the heat insulation container) is not particularly limited as long as the desired number of times of ventilation can be obtained, and any means can be adopted.
  • the airtightness improving means is, for example, a means to improve the airtightness of the joint portion between two vacuum heat insulation panels.
  • one of the vacuum insulation panel V 1 is, so as to cover the end surface of the first insulation material 331 has a second heat insulating material 332
  • the other the vacuum insulation panel V 2 has a second heat insulating material 332 so as to cover the main surface of the first insulation material 331, in the assembled state, first located at the end face of the first insulation material 331 in the vacuum insulation panel V 1 a secondary heat insulating material 332, it is preferable that the second insulation material 332 located on the main surface of the first insulation material 331 in the vacuum insulation panel V 2 are in contact.
  • the airtightness in the region X is improved by bringing the second heat insulating materials 332 into contact with each other.
  • the two 2nd heat insulating materials to contact may be a heat insulating material of the same material, and may be a heat insulating material of a different material.
  • one of the vacuum insulation panel V 1 is, the end face of the first insulation material 331 (via a second heat insulating material 332) to cover in a thermal barrier sheet 333, the other vacuum insulation panel V 2, the main surface of the first insulation material 331 (via a second heat insulating material 332) has a heat shield sheet 333 so as to cover such, the assembly in the state, the heat insulating sheet 333 positioned on the end surface of the first insulation material 331 in the vacuum insulation panel V 1, and the heat insulating sheet 333 contacts located on the main surface of the first insulation material 331 in the vacuum insulation panel V 2 Is preferred.
  • FIG. 7 (b) in the two vacuum insulation panels to be joined.
  • the airtightness in the region X is improved.
  • the two heat shield sheets in contact with each other may be sheets of the same material or sheets of different materials. Further, although not shown, the heat shield sheet 333 and the second heat insulating material 332 may be in contact with each other in the region X.
  • the heat insulating member includes a first surface fastener portion 335a, a second surface fastener portion 335b which can be coupled to the first surface fastener portion 335a, and a first surface.
  • a surface fastener member having a flexible member 335c connected to the fastener portion 335a in the two vacuum insulation panels to be joined, a part of the flexible member 335c has an outer surface (insulation of the vacuum insulation panel V 1 the space is secured at the opposite surface of) the second fastener portion 335b may be located on the opposite surface of) the outer surface (heat-insulating space of the vacuum insulation panel V 2.
  • the outer surface of the vacuum insulation panel V 2 since the first surface fastener part 335a and the second surface fastener part 335b is capable of binding, thereby improving the airtightness in the region X.
  • one of the vacuum insulation panel V 1 is, the end face of the first insulation material 331 has a first magnet 336a, the other vacuum insulation panel V 2 has a second magnet 336b having different magnetic poles and the first magnet 336a on the end face of the first insulation material 331, in the assembled state, the first magnet 336a and the second magnet 336b Is preferably attracted by magnetic force.
  • the magnetic seal improves the tightness in the region X.
  • the heat insulation container of the present disclosure can be changed between the assembly state and the disassembly state.
  • the assembled state is a state in which a heat insulating space surrounded by the top surface heat insulating panel, the bottom surface heat insulating panel, and the plurality of side heat insulating panels is formed
  • the disassembled state is a state in which a heat insulating space is not formed.
  • the heat insulation container of the present disclosure can be changed from the assembled state to the disassembled state and from the disassembled state to the assembled state.
  • the disassembly state includes a state in which at least one heat insulation panel is separated (separate state), and a state in which two or more heat insulation panels are folded while being coupled via some member (folded state).
  • the thermally insulated containers of the present disclosure can be stored or transported in a separated and stacked or collapsed state and smaller.
  • the vacuum heat insulating material has good thermal insulation even if the thickness is thin
  • the heat insulating container in a disassembled state can be further miniaturized by using the vacuum heat insulating material.
  • the weight of the heat insulating panel can be reduced, and the internal volume of the heat insulating container in an assembled state can be increased.
  • the miniaturization index is defined as (V A -V B ) / V A.
  • the outer volume V A is a volume calculated from the outer shape of the heat insulation container in the assembled state
  • the inner volume V B is a volume calculated from the inner shape (heat insulation space) of the heat insulation container in the assembled state. It is the largest possible volume.
  • (V A -V B ) in the miniaturization index corresponds to the outer volume of the heat insulation container in an ideal disassembly state (a state where heat insulation panels are stacked so that the internal volume is 0).
  • the value of (V A ⁇ V B ) / V A may be, for example, 1/3 or less or 1/4 or less.
  • the value of (V A -V B ) / V A is 1/3, the external volume of one heat insulation container in the assembled state is equal to the external volume of three heat insulation containers in the disassembled state. Therefore, for example, it becomes possible to store or transport three heat insulation containers in a disassembled state on the pallet on which one heat insulation container in the assembled state is mounted. From the viewpoint of miniaturization, it is preferable that the value of (V A -V B ) / V A be as small as possible.
  • the thermal insulation container of the present disclosure has a thermal insulation space surrounded by a top thermal insulation panel, a bottom thermal insulation panel, and a plurality of side thermal insulation panels.
  • the volume of the heat insulation space usually corresponds to the internal volume of the heat insulation container.
  • the internal volume of the heat insulation container is preferably, for example, 0.2 m 3 or more. When the internal volume of the heat insulation container is 0.2 m 3 or more, miniaturization may be required when not in use.
  • the heat insulation container of the present disclosure is excellent in heat insulation during use and can be miniaturized when not in use, and thus has an advantage of being applicable to a large heat insulation container.
  • large thermal insulation containers have the advantage that more articles can be stored or transported.
  • the larger the internal volume of the heat insulation container the smaller the value of (V A ⁇ V B ) / V A in the case where the heat insulation panel thickness is the same. Therefore, the internal volume of the heat insulating container can be in the 0.3 m 3 or more, may also be 0.5 m 3 or more, and may be 0.8 m 3 or more.
  • the internal volume of the heat insulation container can be 8.0 m 3 or less so that assembly work and disassembly work can be easily performed.
  • the heat insulation container of the present disclosure may allow the top surface heat insulation panel, the bottom heat insulation panel, and at least one heat insulation panel of the plurality of side heat insulation panels to form an opening in an assembled state.
  • At least one of the heat insulation panels may be capable of forming an opening by the entire heat insulation panel, or may be capable of forming an opening by a portion of the heat insulation panel.
  • each of the front cross section panel 150 and the top surface heat insulation panel 160 of the heat insulation container 100 shown in FIG. 1 has two heat insulation panel parts, and one of the two heat insulation panel parts can be opened and closed by a hinge 101. It is.
  • at least one of the heat insulation panels may be a heat insulation panel having a plurality of heat insulation panel portions and capable of partially forming an opening.
  • Each of the two heat insulation panels of the front cross section panel 150 of the heat insulation container 100 shown in FIG. 1 and each of the two heat insulation panels of the top heat insulation panel 160 have vacuum heat insulation members including a vacuum heat insulation material. There is.
  • At least two heat insulation panels of the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels can form the opening. It is because the workability regarding the taking in and out of goods improves. Also, in the present disclosure, one continuous opening may be able to be formed by at least two heat insulation panels of the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels. Since a wide opening can be formed, the workability regarding the taking in and out of an article improves.
  • FIG. 1 is a schematic perspective view illustrating the heat insulation container of the present disclosure as described above.
  • FIG. 8 is a schematic perspective view illustrating the heat insulation container shown in FIG. 1 with the heat insulation panels removed.
  • FIG. 9 is a schematic perspective view illustrating a state (insulated container in a disassembled state) in which the heat insulation panels removed in FIG. 8 are stacked.
  • FIG. 10 is a schematic perspective view illustrating a state in which the heat insulation containers shown in FIG. 1 are stacked in two stages.
  • the heat insulation container 100 shown in FIG. 1 includes the top surface heat insulation panel 160, the bottom surface heat insulation panel 170, the plurality of side heat insulation panels 110, and the pallet 500 having the claw holes 501.
  • the heat insulation container 100 in the assembled state in which the heat insulation space 300 is formed is the right heat insulation panel 120, the left heat insulation panel 130, the back heat insulation panel 140, the front heat insulation panel 150, and the top heat insulation panel 160.
  • the front thermal insulation panel 150, the left thermal insulation panel 130, the rear thermal insulation panel 140 and the right thermal insulation panel 120 which are the side thermal insulation panels 110 respectively have protective members 150 B, 130 B, 140 B, 120 B, and a vacuum thermal insulation member 150 A. , 130A, 140A, 120A.
  • the top heat insulation panel 160 includes a protection member 160B and a vacuum heat insulation member 160A.
  • the bottom heat insulation panel 170 includes a vacuum heat insulation member 170A.
  • each of the vacuum insulation members comprises a vacuum insulation.
  • the right heat insulation panel 120, the left heat insulation panel 130, and the front heat insulation panel 150 are on the top heat insulation panel side which is the upper side of the heat insulation panel at the left and right ends of the heat insulation panel.
  • a vertical frame 310 extends continuously from the end of the frame to the end on the bottom heat insulation panel side which is the lower side of the heat insulation panel.
  • the rear heat insulating panel 140 is also the same. Since the thermal insulation panels joined in the assembled state are less likely to move due to the vertical frame 310, the airtightness is improved.
  • the vertical frame 310 plays a role as a pillar or a wall that supports the weight of the heat insulation panel and the load from the top surface side.
  • the vertical frame may be made of metal or nonmetal such as plastic or wood.
  • the load resistance of the heat insulation container can be further improved, and the airtightness can be hardly reduced.
  • the metal vertical frame does not contact the heat insulation space 300, and it is possible to suppress the decrease in the heat insulation of the heat insulation container.
  • the right thermal insulation panel 120, the left thermal insulation panel 130, and the front thermal insulation panel 150 are respectively provided at the upper and lower ends of the thermal insulation panel from the right side of the thermal insulation panel.
  • a transverse frame 320 is provided which extends continuously to the left end.
  • the front thermal insulation panel 150 also includes a transverse frame (not shown) extending continuously from the right end of the thermal insulation panel to the left end of the thermal insulation panel near the center of the thermal insulation panel.
  • the top heat insulation panel 160 has horizontal frames 320 continuously extending from one end of the heat insulation panel to the other end at the upper, lower, left, and right ends of the heat insulation panel, respectively. ing.
  • the horizontal frame may be made of metal or nonmetal such as plastic or wood.
  • the load resistance of the heat insulation container can be further improved, and the airtightness can be hardly reduced.
  • the metal horizontal frame does not contact the heat insulation space 300 by arranging the horizontal frame on the protective member, so that the heat insulation deterioration of the heat insulation container can be suppressed.
  • the bottom heat insulation panel 170 having the vacuum heat insulation member 170A is placed, and the left heat insulation panel 130 is placed thereon.
  • the rear heat insulating panel 140 is stacked on the lower side in the direction of the protective member 140B and the upper side of the rear heat insulating panel 140 in the direction of the vacuum heat insulating member 140A.
  • the right side heat insulation panel 120 is stacked on the lower side in the direction of the vacuum heat insulation member 120A and the upper side being the protection member 120B, and the front heat insulation panel 150 is formed on the lower side as the protection member 150B.
  • top surface heat insulation panel 160 is finally stacked so that the lower side is the vacuum heat insulation member 160A and the upper side is the protection member 160B.
  • the vacuum heat insulating material can be protected.
  • the heat insulation container 100 when the heat insulation container 100 includes the vertical frame 310, the weight of the side heat insulation panel or the top surface side received by the heat insulation container at the lower end of the two-tiered heat insulation container.
  • the load can be supported, and in the assembled state, the bonding of the heat insulating panels can be moved by its own weight or excessive weight to reduce the airtightness or damage of the vacuum heat insulating material.
  • storage and transportation may be performed in a state where the heat insulation container 100A of the same specification is stacked on the heat insulation container 100 at the upper side.
  • a horizontal frame may be provided in order to further improve the load resistance and make it difficult to reduce the air tightness.
  • the heat insulation container of the present disclosure may or may not include the pallet.
  • the pallet is preferably located on the side opposite to the heat insulation space of the bottom heat insulation panel of the heat insulation container. Insulated containers with pallets can be easily moved by forklifts and handlifts, etc., thus reducing the risk of accidentally damaging the vacuum insulation during moving operations.
  • the bottom insulation panel of the insulation container may be joined to the pallet and may be separable from the pallet.
  • FIG. 11 is a schematic perspective view illustrating the assembly process of the heat insulation container of the present disclosure.
  • FIG. 12 is a schematic perspective view illustrating a state in which the heat insulation container described in FIG.
  • the heat insulation container 100 in the disassembled state is, in order from the right side (+ Y side), the front heat insulation panel 150, the right heat insulation panel 120, the back heat insulation panel 140, the bottom heat insulation panel 170,
  • the top surface heat insulation panel 160 and the left surface heat insulation panel 130 are stacked, and the upper surface (+ Z of the stack of the right surface heat insulation panel 120, the back surface heat insulation panel 140, the bottom surface heat insulation panel 170, the top surface heat insulation panel 160, and the left surface heat insulation panel 130)
  • the exterior member 180 is disposed so as to surround the side surface), the bottom surface (the surface on the -Z side), the left and right side surfaces (the surfaces on the + Y and -Y sides), and the back surface (the surface on the -X side).
  • the upper surface, the bottom surface, and the back surface of the exterior member 180 are partially folded between the top heat insulation panel 160 and the left heat insulation panel 130.
  • the front heat insulation panel 150 is folded on the right side (+ Y side) of the right heat insulation panel 120 via the exterior member 180.
  • the left heat insulation panel 130 is moved to the left ( ⁇ Y side) (arrow A), and the top, bottom, and back of the folded exterior member 180 are developed.
  • the top surface heat insulation panel 160 is opened to the upper left side (arrow B), and is disposed along the top surface of the exterior member 180.
  • the bottom heat insulation panel 170 is opened to the lower left side (arrow C), and is arranged along the bottom of the exterior member 180.
  • the back heat insulation panel 140 stacked on the right heat insulation panel 120, with the back (-X side) edge as a fulcrum, the front (+ X side) edge is turned to the left back (arrow D) It arranges along the back of member 180.
  • the heat insulation container 100 shown in FIG. 11 is a vacuum heat insulation panel having a vacuum heat insulation member including a right heat insulation panel 120, a left heat insulation panel 130, a back heat insulation panel 140, a top heat insulation panel 160 and a bottom heat insulation panel 170. is there. Further, the heat insulation container 100 having a structure in which the front heat insulation panel 150 can be partially opened and closed is brought into an assembled state of a quadrangular prism structure by closing the front heat insulation panel 150 and the heat insulation surrounded by the heat insulation panel. It is possible to form a space inside the container. Further, in the heat insulation container 100 shown in FIG. 11, the ventilation frequency is equal to or less than a specific value in the assembled state.
  • the heat insulating container 100 described in FIG. 11 is disposed on the transfer cage 250, and the transfer cage 250 can freely transfer the heat insulating container 100 containing articles.
  • the transport car 250 shown in FIG. 12 includes a carriage portion 251 on which the heat insulation container 100 is placed, a fence portion 252 holding opposite side surfaces of the heat insulation container 100, and wheels 251a located at each corner of the carriage portion 251. Have.
  • the outer peripheral shape and each dimension of the heat insulation container of this indication are not specifically limited.
  • the heat insulation container of the present disclosure may have a size on the order of cm, or one or more of the sizes may be 1 m or more.
  • the vertical width and the horizontal width are respectively a quadrangle of 1000 mm or more and 1200 mm or less And 1319 mm or less quadrilateral of 916 mm or more and 1116 mm or less, vertical width of 1100 mm or more and 1300 mm or less quadrilateral of 900 mm or more and 1100 mm or less, vertical width of 1100 mm or more and 1300 mm or less and horizontal width of 700 mm or more and 900 mm
  • quadrilaterals may be mentioned: quadrilaterals each having a longitudinal width and a lateral width of 1065 mm or more and 1265 mm or less.
  • the height of the outer peripheral shape of the side heat insulation panel of the heat insulation container can be, for example, 300 mm or more, may be 500 mm or more, and may be 700 mm or more.
  • the outer peripheral shape of the side heat insulation panel of the heat insulation container for example, when the heat insulation container in the assembled state is viewed from the top surface side, a quadrilateral having a vertical width of 795 mm to 995 mm and a horizontal width of 644 mm to 844 mm It is also good.
  • transportation and storage can be made more efficient.
  • the heat insulation container of this indication is used for storage or transport of the articles
  • the heat insulation container of this indication was produced, and the ventilation frequency and the cold storage time were measured by the above-mentioned method.
  • the heat insulating container has a configuration shown in FIGS. 1 and 2, and has a rectangular parallelepiped shape with an inner dimension of one side of 1010 mm long ⁇ 1010 mm wide ⁇ 740 mm high.
  • each vacuum heat insulation panel of the heat insulation container a 6 mm thick vacuum heat insulating material (glass wool as a core material, thermal conductivity 0.003 W / m K) as a first heat insulating material, a 15 mm thick foamed heat insulating material (XPS as a second heat insulating material) : A 1 mm thick plastic sheet with an aluminum vapor deposition layer was used as a heat shielding sheet covering the entire circumference of an extruded foam urethane, a thermal conductivity of 0.036 W / mK), and the first heat insulating material and the second heat insulating material.
  • the heat insulation container a polyethylene sheet having a thickness of 1 mm was used as a protective member, and aluminum was used as a vertical frame and a horizontal frame.
  • the measured value of the ventilation frequency of the heat insulation container by the above-mentioned method is 0.034 times / hr
  • the measurement value of the cooling time of the water of 75.5 kg by the above-mentioned method is 13.6 hr
  • the heat insulation container is a good heat insulation It confirmed that it showed sex.
  • the present disclosure is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the technical idea described in the claims of the present disclosure has substantially the same configuration as that of the technical idea described in the claims of the present disclosure, and exhibits the same operation and effect as the present invention in any case. It is included in the technical scope of the disclosure.
  • the heat quantity q A [J / hr] per unit time flowing in through the heat insulation panel constituting the heat insulation container can be expressed by the following equation (2).
  • q A U x L x T x 3600 Formula (2)
  • U is the average of the heat transmission coefficient [W / m 2 K] of each heat insulation panel constituting the heat insulation container
  • L is the surface area of the inner side of the heat insulation container [m 2 ]
  • T is The temperature difference [K] between the inside and the outside of the heat insulation container.
  • the amount of heat q B [J / hr] per unit time flowing in through the gap between the heat insulation panels of the heat insulation container can be expressed by the following equation (3).
  • q B D x V x a x C x T
  • D is the number of times of ventilation [times / hr]
  • V is the internal volume of the insulation container [m 3 ]
  • a is an environmental coefficient
  • C is the heat capacity of air [J / m 3 K]
  • T is a temperature difference [K] between the inside and the outside of the heat insulation container.
  • the environmental coefficient is 5.34
  • the specific heat capacity of air is 1.0 J / gK
  • the density of air is 1.3 ⁇ 10 3 g / m 3 .
  • the environmental coefficient a is a multiplication factor for reflecting the influence of environmental factors such as the temperature difference between the outside and the inside of the heat insulation container and the wind speed outside the heat insulation container. This is because the movement of the air flowing in through the gaps between the heat insulation panels of the heat insulation container is influenced not only by the factors of the heat insulation container itself such as the size and shape of the heat insulation panels but also by environmental factors. .
  • the environmental factor a was determined by the following procedure. The thermal insulation container was placed in a sealed room without temperature control to measure the normal ventilation frequency of the thermal insulation container.
  • the insulation container in a state where the inside is kept at about 10 ° C with a cold storage material set at 35 ° C to 40 ° C (no humidity control), and install it in a ventilated environmental test room to set the environment of the insulation container.
  • the ventilation rate of the test was measured.
  • the environmental factor was determined by dividing the ventilation frequency of the environmental test of the heat insulation container by the normal ventilation frequency of the heat insulation container.
  • the heat insulation container set the cube (inner surface area L is 6 m ⁇ 2 >, internal volume V is 1 m ⁇ 3 >) of 1 mm of internal dimensions of one side which all surfaces were enclosed by the heat insulation panel.
  • the heat insulation panel is extruded foam polystyrene (XPS, thermal conductivity 0.036 W / mK, thickness 15 mm), vacuum heat insulating material (thermal conductivity 0.003 W / m K, thickness 5 mm), extruded foam polystyrene (XPS, heat conductive A three-layer structure with a rate of 0.036 W / mK and a thickness of 15 mm was set.
  • the heat transmission coefficient U of this heat insulating panel is 0.4 (W / m 2 K).
  • the cold storage time t [hr] is a time when the heat quantity Q [J] flowing from the outside of the heat insulation container into the inside reaches the latent heat quantity 2560 kJ of the cold storage material inside the heat insulation container.
  • the ventilation frequency is set almost without bias on the logarithmic axis in the range of 0.001 times / hr to 10 times / hr, the cooling time is calculated for each set number of ventilation times, and the approximate curve is calculated by the least squares method from the calculated value.
  • FIG. 13 shows the result of simulation in which the thickness of the vacuum heat insulating material is 5.0 mm.
  • the ventilation frequency is 0.1 times / hr
  • a cooling time close to the case where the ventilation frequency is 0.001 / hr (when the airtightness is extremely high) can be realized.
  • the ventilation frequency was more than 0.1 times / hr, the decrease in the cooling time was remarkable as the ventilation frequency increased.
  • the simulation conditions are the same except that the thickness of the vacuum heat insulating material is changed, and the thickness of each vacuum heat insulating material is 0.5 mm for a, 2.5 mm for b, 5.0 mm for c, and 7 for d
  • the results for .5 mm, e are 10.0 mm, and f is 12.5 mm.
  • Heat Q T which flows from the outside to the inside of the heat insulating container, the heat quantity Q B flowing through the gap, such as between the insulation panels to each other in the heat Q A and the heat insulating container which flows through the insulation panel constituting the heat insulating container It is a sum.
  • the effect of Q B gives the cold time Q A may be sufficiently smaller than the impact on the cold time.
  • the value of Q A is sufficiently small Q B than impact on cold time depends on the value of Q A, it may be relatively large A high value of Q A, a relatively smaller value of Q A It needs to be small.
  • the cold time is not stable. From the above simulation results, it can be seen that it is the heat insulation container having a ventilation frequency of not more than 0.1 times / hr that can sufficiently exhibit the performance of the heat insulation container using the vacuum heat insulating material. That is, the heat insulation container can be changed between the assembled state and the disassembled state, and in the heat insulation container using the vacuum heat insulating material, the air insulation frequency is 0.1 times / hr or less due to the airtightness. It has been confirmed that it is important to suppress the decrease in heat insulation of
  • the change rate of the cold storage time in the common logarithm of the ventilation frequency is determined from the slope of each curve in FIG. 13 and FIG. 14.
  • the thickness of the vacuum heat insulating material correlates with the heat transmission coefficient of the heat insulating panel, and if the heat conductivity of the vacuum heat insulating material is the same, the heat transmission coefficient of the heat insulating panel decreases as the thickness of the vacuum heat insulating material increases. .
  • the heat transmission coefficient of the heat insulation panel for obtaining a heat insulation container having a cold storage time of 7 hours or more is 0.5 W / m 2 K or less.
  • the outer volume VA of the heat insulation container is 1 m 3 (1000 L).
  • thermal insulation container 110 ... side thermal insulation panel 110A ... vacuum thermal insulation member 110B ... protection member 120 ; right thermal insulation panel 130 ... left thermal insulation panel 140 ... rear thermal insulation panel 150 ... frontal thermal insulation panel 160 ... top thermal insulation panel 170 ... bottom thermal insulation panel 310 ... Vertical frame 320 ... Horizontal frame 331 ... First heat insulating material 331 a ... Core material 331 b ... Exterior material 332 ... Second heat insulating material 333 ... Heat shielding sheet 334 ... Adhesive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

A heat-insulating container comprising a vacuum heat-insulating material and changeable between an assembled state and a disassembled state. The heat-insulating container has a top heat-insulating panel, a bottom heat-insulating panel, and multiple lateral heat-insulating panels comprising a rear heat-insulating panel, a left heat-insulating panel, and a front heat-insulating panel, wherein in the assembled state, the top heat-insulating panel, the bottom heat-insulating panel, and the multiple lateral heat-insulating panels surround and thus form a heat-insulated space, and in the disassembled state, the heat-insulated space is not formed. At least four heat-insulating panels among the top heat-insulating panel, the bottom heat-insulating panel, and the multiple lateral heat-insulating panels have a vacuum heat-insulating member including the vacuum heat-insulating material. In the assembled state, ventilation is performed 0.1 times per hour.

Description

断熱容器Heat insulation container
 本開示は、断熱容器に関する。 The present disclosure relates to a thermally insulated container.
 真空断熱材は、芯材および外装材を有しており、外装材により構成された袋の内部は、芯材が配置されているとともに、大気圧よりも圧力が低い真空状態に保持されている。袋の内部の熱対流が抑制されるため、真空断熱材は、良好な断熱性を発揮することができる。真空断熱材は、単位厚みあたりの断熱性が一般的な発泡断熱材よりも高いので、所望の断熱性を確保しつつ、断熱材の厚みを薄くすることができる。したがって、真空断熱材を断熱容器に用いることによって、例えば、断熱容器の省スペース化や軽量化を図ることが可能になる。 The vacuum heat insulating material has a core material and an exterior material, and while the core material is disposed inside the bag constituted by the exterior material, the vacuum material is maintained in a vacuum state where the pressure is lower than atmospheric pressure. . Since the heat convection inside the bag is suppressed, the vacuum heat insulating material can exhibit good heat insulation. Since the vacuum heat insulating material has a higher heat insulating property per unit thickness than a general foam heat insulating material, the thickness of the heat insulating material can be reduced while securing desired heat insulating property. Therefore, it becomes possible to achieve space saving and weight reduction of a heat insulation container, for example by using a vacuum heat insulating material for a heat insulation container.
 組立状態と分解状態とを変更可能な断熱容器は、使用しないときに組立状態の断熱容器を分解状態にすることによって、小型化を図ることが可能である。真空断熱材を用いた断熱容器であって、さらに、組立状態と分解状態とを変更可能な断熱容器が、例えば特許文献1~3に開示されている。 The heat insulation container which can change the assembly state and the disassembly state can be miniaturized by disassembling the insulation container in the assembled state when not in use. For example, Patent Documents 1 to 3 disclose a heat insulating container using a vacuum heat insulating material, in which the assembled state and the disassembled state can be changed.
特開2006-123914号公報JP, 2006-123914, A 特開2008-68871号公報JP 2008-68871 A 特開2015-199527号公報JP, 2015-199527, A
 本開示は、使用時の断熱性が良く、不使用時に小型化することができる断熱容器を提供することを主目的とする。 An object of the present disclosure is to provide a thermally insulated container which is good in thermal insulation during use and can be miniaturized when not in use.
 本開示においては、組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器であって、上記断熱容器は、天面断熱パネル、底面断熱パネル、ならびに右面断熱パネル、背面断熱パネル、左面断熱パネル、および正面断熱パネルを有する複数の側面断熱パネルを有し、上記組立状態は、上記天面断熱パネル、上記底面断熱パネル、および上記複数の側面断熱パネルに囲まれた断熱空間が形成されている状態であり、上記分解状態は、上記断熱空間が形成されていない状態であり、上記天面断熱パネル、上記底面断熱パネル、および上記複数の側面断熱パネルのうち少なくとも4つの断熱パネルは、上記真空断熱材を含む真空断熱部材を有し、上記組立状態において、換気回数が0.1回/hr以下である、断熱容器を提供する。 In the present disclosure, the heat insulation container is capable of changing an assembled state and a disassembled state, and is a heat insulation container using a vacuum heat insulating material, wherein the heat insulation container includes a top heat insulation panel, a bottom heat insulation panel, and a right heat insulation panel. A plurality of side thermal insulation panels having a rear thermal insulation panel, a left thermal insulation panel, and a front thermal insulation panel, the assembled state being surrounded by the top thermal insulation panel, the bottom thermal insulation panel, and the plurality of side thermal insulation panels The heat insulation space is formed, and the decomposition state is a state where the heat insulation space is not formed, and at least four of the top surface heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels. Insulating panels are provided with a vacuum insulating member including the above-described vacuum insulating material, and in the above-mentioned assembled state, the number of ventilation times is 0.1 times / hr or less. To.
 本開示においては、組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器であって、上記断熱容器は、天面断熱パネル、底面断熱パネル、ならびに右面断熱パネル、背面断熱パネル、左面断熱パネル、および正面断熱パネルを有する複数の側面断熱パネルを有し、上記組立状態は、上記天面断熱パネル、上記底面断熱パネル、および上記複数の側面断熱パネルに囲まれた断熱空間が形成されている状態であり、上記分解状態は、上記断熱空間が形成されていない状態であり、上記天面断熱パネル、上記底面断熱パネル、および上記複数の側面断熱パネルのうち少なくとも4つの断熱パネルは、上記真空断熱材を含む真空断熱部材を有し、上記組立状態において、換気回数が、上記換気回数の常用対数における保冷時間の変化率が-1となる値以下である、断熱容器を提供する。 In the present disclosure, the heat insulation container is capable of changing an assembled state and a disassembled state, and is a heat insulation container using a vacuum heat insulating material, wherein the heat insulation container includes a top heat insulation panel, a bottom heat insulation panel, and a right heat insulation panel. A plurality of side thermal insulation panels having a rear thermal insulation panel, a left thermal insulation panel, and a front thermal insulation panel, the assembled state being surrounded by the top thermal insulation panel, the bottom thermal insulation panel, and the plurality of side thermal insulation panels The heat insulation space is formed, and the decomposition state is a state where the heat insulation space is not formed, and at least four of the top surface heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels. Insulating panels of the present invention have a vacuum insulating member including the above-mentioned vacuum insulating material, and in the above-mentioned assembled state, the number of ventilations is the cold storage time in the common logarithm of the number of ventilations Rate of change is less than or equal to the value to be -1, provides thermal insulation vessel.
 本開示の断熱容器は、使用時の断熱性が良く、不使用時に小型化することができるという効果を奏する。 The heat insulation container of the present disclosure has the effect of being excellent in heat insulation during use and capable of being miniaturized when not in use.
本開示の断熱容器を例示する概略斜視図である。It is a schematic perspective view which illustrates the heat insulation container of this indication. 二つの側面断熱パネルの接合部分を説明する模式図である。It is a schematic diagram explaining the junctional part of two side heat insulation panels. 本開示における真空断熱材を例示する概略断面図である。It is a schematic sectional drawing which illustrates the vacuum heat insulating material in this indication. 本開示における真空断熱部材を例示する概略断面図である。It is a schematic sectional view which illustrates the vacuum insulation member in this indication. 本開示における真空断熱パネルを例示する概略断面図である。It is a schematic sectional view which illustrates the vacuum insulation panel in this indication. 本開示における真空断熱部材を例示する概略断面図である。It is a schematic sectional view which illustrates the vacuum insulation member in this indication. 二つの真空断熱パネルの接合部分を説明する模式図である。It is a schematic diagram explaining the junctional part of two vacuum heat insulation panels. 本開示の断熱容器を例示する概略斜視図である。It is a schematic perspective view which illustrates the heat insulation container of this indication. 本開示の分解状態の断熱容器を例示する概略斜視図である。FIG. 2 is a schematic perspective view illustrating the disassembled heat insulation container of the present disclosure. 本開示の断熱容器を例示する概略斜視図である。It is a schematic perspective view which illustrates the heat insulation container of this indication. 本開示の断熱容器を例示する概略斜視図である。It is a schematic perspective view which illustrates the heat insulation container of this indication. 本開示の断熱容器を例示する概略斜視図である。It is a schematic perspective view which illustrates the heat insulation container of this indication. シミュレーションによる保冷時間と換気回数との関係を示すグラフである。It is a graph which shows the relationship between the cooling time and the ventilation frequency by simulation. シミュレーションによる保冷時間と換気回数との関係を示すグラフである。It is a graph which shows the relationship between the cooling time and the ventilation frequency by simulation. シミュレーションによる換気回数の常用対数における保冷時間の変化率を示すグラフである。It is a graph which shows the change rate of the cooling time in the common logarithm of the ventilation frequency by simulation. シミュレーションによる換気回数の常用対数における保冷時間の変化率を示すグラフである。It is a graph which shows the change rate of the cooling time in the common logarithm of the ventilation frequency by simulation.
A.本開示の断熱容器
 以下、図面等を参照して、本開示の断熱容器について説明する。なお、以下に示す各図は、模式的に示したものである。そのため、各部の大きさ、形状は理解を容易にするために、適宜誇張している。また、各図において、部材の断面を示すハッチングを適宜省略する。本明細書中に記載する各部材の寸法等の数値および材料名は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用することができる。本明細書において、形状や幾何学的条件を特定する用語、例えば平行や直交、垂直等の用語については、厳密に意味するところに加え、実質的に同じ状態も含むものとする。
A. Insulating container of the present disclosure Hereinafter, the insulating container of the present disclosure will be described with reference to the drawings and the like. In addition, each figure shown below is shown typically. Therefore, the size and shape of each part are appropriately exaggerated to facilitate understanding. In each drawing, hatching indicating a cross section of a member is appropriately omitted. Numerical values and material names such as dimensions of each member described in the present specification are merely examples as an embodiment, and the present invention is not limited thereto, and can be appropriately selected and used. In the present specification, terms specifying shape and geometrical conditions, for example, terms such as parallel, orthogonal, and vertical, include, in addition to their strict meanings, substantially the same states.
 図1は、本開示の断熱容器を例示する概略斜視図である。図1に示す断熱容器100は、天面断熱パネル160、底面断熱パネル170、複数の側面断熱パネル110、および、爪孔501を有するパレット500を備える。複数の側面断熱パネル110は、右面断熱パネル120、左面断熱パネル130、背面断熱パネル140、および正面断熱パネル150である。天面断熱パネル160、底面断熱パネル170、および複数の側面断熱パネル110は、真空断熱材を含む真空断熱部材を有する真空断熱パネルである。また、右面断熱パネル120および左面断熱パネル130は、縦枠310および横枠320を備えている。縦枠310および横枠320により枠の全体が構成されている。図示しないが、背面断熱パネル140および正面断熱パネル150も同様に、縦枠310および横枠320を備えている。 FIG. 1 is a schematic perspective view illustrating the heat insulation container of the present disclosure. The heat insulation container 100 shown in FIG. 1 includes a top surface heat insulation panel 160, a bottom heat insulation panel 170, a plurality of side heat insulation panels 110, and a pallet 500 having claw holes 501. The plurality of side thermal insulation panels 110 are a right thermal insulation panel 120, a left thermal insulation panel 130, a rear thermal insulation panel 140, and a front thermal insulation panel 150. The top thermal insulation panel 160, the bottom thermal insulation panel 170, and the plurality of side thermal insulation panels 110 are vacuum thermal insulation panels having a vacuum thermal insulation member including a vacuum thermal insulation material. The right heat insulation panel 120 and the left heat insulation panel 130 each include a vertical frame 310 and a horizontal frame 320. The vertical frame 310 and the horizontal frame 320 constitute the entire frame. Although not shown, the rear heat insulation panel 140 and the front heat insulation panel 150 are similarly provided with a vertical frame 310 and a horizontal frame 320.
 また、正面断熱パネル150および天面断熱パネル160は、部分的に開閉可能な構造であり、図1では部分的に開いた状態を示している。断熱容器100は、正面断熱パネル150および天面断熱パネル160を閉じた状態にすることによって、四角柱構造の組立状態になり、天面断熱パネル160、底面断熱パネル170、および複数の側面断熱パネル110に囲まれた断熱空間をその容器内部に形成することが可能である。また、図1に示す断熱容器100は、組立状態において、換気回数が特定の値以下である。 Further, the front heat insulation panel 150 and the top heat insulation panel 160 have a structure that can be partially opened and closed, and FIG. 1 shows a partially opened state. The heat insulation container 100 is in the assembled state of a square pillar structure by closing the front heat insulation panel 150 and the top heat insulation panel 160, and the top heat insulation panel 160, the bottom heat insulation panel 170, and a plurality of side heat insulation panels. It is possible to form the heat insulation space enclosed by 110 inside the container. Moreover, in the assembled state, the heat insulation container 100 shown in FIG. 1 has a ventilation frequency equal to or less than a specific value.
 なお、図1に示す断熱容器100は、天面断熱パネル160、底面断熱パネル170、右面断熱パネル120、左面断熱パネル130、背面断熱パネル140、および正面断熱パネル150の6つの断熱パネルが、真空断熱材を含む真空断熱部材を有する真空断熱パネルである。しかし、本開示の断熱容器では、断熱容器の断熱性能と断熱容器の利便性との両立を図る観点より、断熱パネルの全てが真空断熱パネルでなくてもよく、天面断熱パネル、底面断熱パネルおよび複数の側面断熱パネルのうち少なくとも4つが真空断熱パネルであればよい。具体的には、荷物の重量により真空断熱材が破損する危険性を防ぐために、底面断熱パネルが真空断熱材を含まないようにしてもよく、その場合は、例えば、天面断熱パネル、右面断熱パネル、左面断熱パネル、背面断熱パネル、および正面断熱パネルの5つの断熱パネルが、真空断熱パネルであってもよい。また、開閉により真空断熱材が破損する危険性を防ぐために、開閉可能な構造を有する断熱パネルが真空断熱材を含まないようにしてもよく、その場合は、例えば、底面断熱パネル、右面断熱パネル、左面断熱パネル、および背面断熱パネルの4つの断熱パネルが、真空断熱パネルであり、天面断熱パネルおよび正面断熱パネルが、開閉可能な構造を有し、真空断熱材を含まない断熱パネルであってもよい。 In the heat insulation container 100 shown in FIG. 1, the six heat insulation panels of the top heat insulation panel 160, the bottom heat insulation panel 170, the right heat insulation panel 120, the left heat insulation panel 130, the back heat insulation panel 140, and the front heat insulation panel 150 It is a vacuum insulation panel which has a vacuum insulation member containing heat insulation. However, in the heat insulation container of the present disclosure, from the viewpoint of achieving both the heat insulation performance of the heat insulation container and the convenience of the heat insulation container, all of the heat insulation panels may not be vacuum heat insulation panels. And at least four of the plurality of side thermal insulation panels may be vacuum thermal insulation panels. Specifically, the bottom heat insulation panel may not include the vacuum heat insulation material in order to prevent the vacuum heat insulation material from being damaged by the weight of the load, in which case, for example, the top heat insulation panel, the right heat insulation The five thermal insulation panels, the panel, the left thermal insulation panel, the rear thermal insulation panel, and the front thermal insulation panel, may be vacuum thermal insulation panels. Moreover, in order to prevent the risk of breakage of the vacuum heat insulating material by opening and closing, the heat insulating panel having an openable and closable structure may not include the vacuum heat insulating material. In that case, for example, a bottom heat insulating panel and a right heat insulating panel , The left thermal insulation panel, and the rear thermal insulation panel are the vacuum thermal insulation panels, and the top thermal insulation panel and the front thermal insulation panel are the thermal insulation panels that have an openable and closable structure and do not contain the vacuum thermal insulation material. May be
 本開示によれば、組立状態と分解状態とを変更可能であり、真空断熱材を用いており、かつ、換気回数が特定の値以下であることから、使用時の断熱性が良く、不使用時に小型化することができる断熱容器とすることができる。以下で詳しく説明する。 According to the present disclosure, the assembled state and the disassembled state can be changed, a vacuum heat insulating material is used, and the number of ventilation times is equal to or less than a specific value. It can be an insulated container that can sometimes be miniaturized. Details will be described below.
 組立状態と分解状態とを変更可能な断熱容器の断熱材として真空断熱材を用いた場合、真空断熱材に特有の性質に起因して、断熱容器の気密性が低下しやすいという問題が生じる。この点について、図2を例示して説明する。図2は、二つの側面断熱パネルの接合部分を説明する模式図であり、例えば、図1における天面断熱パネル160側から、背面断熱パネル140および右面断熱パネル120の接合部分を見た図面に相当する。 When a vacuum heat insulating material is used as the heat insulating material of the heat insulating container capable of changing the assembled state and the disassembled state, there arises a problem that the airtightness of the heat insulating container tends to be reduced due to the property unique to the vacuum heat insulating material. This point will be described with reference to FIG. FIG. 2 is a schematic view for explaining the joint portion between the two side heat insulation panels, for example, a view of the joint portion between the back heat insulation panel 140 and the right side heat insulation panel 120 from the top heat insulation panel 160 side in FIG. Equivalent to.
 図2に示す二つの側面断熱パネル110X、110Yは、それぞれ、断熱部材110Aと、接着層334と、保護部材110Bとこの順を有する。さらに、各々の断熱部材110Aは、第一断熱材331として真空断熱材と、第二断熱材332として例えば発泡断熱材とを有する。また、二つの側面断熱パネル110X、110Yは、各々の保護部材110Bが縦枠310と嵌合することにより接合しており、各々の断熱部材110Aが、領域Xにおいて接触している。 Two side heat insulation panels 110X and 110Y shown in FIG. 2 respectively have a heat insulation member 110A, an adhesive layer 334, and a protection member 110B in this order. Furthermore, each heat insulating member 110A has a vacuum heat insulating material as the first heat insulating material 331 and, for example, a foamed heat insulating material as the second heat insulating material 332. Further, the two side heat insulating panels 110X and 110Y are joined by the respective protective members 110B being fitted to the vertical frame 310, and the respective heat insulating members 110A are in contact in the region X.
 第一断熱材331として用いる真空断熱材は、単位厚みあたりの断熱性が、一般的な発泡断熱材に比べて約5倍~約10倍も高いため、断熱材の厚みを大幅に薄くしても、所望の断熱性が得られるという性質がある。しかしながら、断熱材の厚みを大幅に薄くした場合、図2の領域Xにおいて、側面断熱パネル110Xの端面と、側面断熱パネル110Yの主面との接触面積も大幅に小さくなり、結果として、断熱容器の気密性が低下しやすくなる。 The vacuum heat insulating material used as the first heat insulating material 331 has a heat insulating property per unit thickness that is about 5 times to about 10 times higher than that of a general foam heat insulating material, so the thickness of the heat insulating material is significantly reduced. Also, it has the property that the desired heat insulation can be obtained. However, when the thickness of the heat insulating material is significantly reduced, the contact area between the end face of the side heat insulation panel 110X and the main surface of the side heat insulation panel 110Y is also significantly reduced in the region X of FIG. The air tightness of the
 また、第一断熱材331として用いる真空断熱材は、内部を大気圧よりも圧力が低い真空状態に保持する必要があるため、加工性が低いという性質がある。また、例えば発泡断熱材では、発泡断熱材の一部が破損した場合であっても、断熱性の低下は破損した一部に限定されるが、真空断熱材では、真空断熱材の一部が破損すると、その真空断熱材全体の断熱性が低下することになる。このように、真空断熱材は、破損時の性能劣化が大きいという性質がある。そのため、加工性向上および破損防止の観点から、図2に示すように、第一断熱材(真空断熱材)331とともに、第二断熱材(発泡断熱材)332を用いる場合がある。しかしながら、複数の断熱材を積層すると、図2の領域Xにおいて、第一断熱材(真空断熱材)331の端面と、第二断熱材(発泡断熱材)332の主面との接触面、および、第二断熱材(発泡断熱材)332の端面と、第二断熱材(発泡断熱材)332の主面との接触面という二つの接触面が生じ、結果として、断熱容器の気密性が低下しやすくなる。 Further, the vacuum heat insulating material used as the first heat insulating material 331 has a property that the processability is low because it is necessary to keep the inside in a vacuum state in which the pressure is lower than the atmospheric pressure. Also, for example, in the case of a foamed heat insulating material, even when a part of the foamed heat insulating material is broken, the decrease in the heat insulating property is limited to the broken part, but in the vacuum heat insulating material, a part of the vacuum heat insulating material is If it breaks, the heat insulation of the whole vacuum heat insulating material will fall. Thus, the vacuum heat insulating material has the property that the performance deterioration at the time of breakage is large. Therefore, from the viewpoint of processability improvement and damage prevention, as shown in FIG. 2, the second heat insulating material (foamed heat insulating material) 332 may be used together with the first heat insulating material (vacuum heat insulating material) 331. However, when a plurality of heat insulating materials are stacked, the contact surface between the end face of the first heat insulating material (vacuum heat insulating material) 331 and the main surface of the second heat insulating material (foamed heat insulating material) 332 in the region X of FIG. There are two contact surfaces, the contact surface between the end face of the second heat insulating material (foamed heat insulating material) 332 and the main surface of the second heat insulating material (foamed heat insulating material) 332. As a result, the airtightness of the heat insulating container decreases. It becomes easy to do.
 このように、組立状態と分解状態とを変更可能な断熱容器の断熱材として真空断熱材を用いた場合、真空断熱材に特有の性質(厚みが薄く、加工性が低く、破損時の性能劣化が大きい性質)に起因して、断熱容器の気密性が低下しやすくなる。そのため、組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器では、気密性の管理が重要になる。しかしながら、組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器において、断熱容器の気密性が、断熱容器全体の断熱性に対して、どの程度の影響を与えるかに関する知見は、従来知られていなかった。本開示においては、気密性(換気回数)と、保冷時間との関係を詳細に検討したところ、換気回数を所定の値以下に設定することで、気密性に起因する断熱容器の断熱性の低下を抑制することができることを見い出した。 As described above, when a vacuum heat insulating material is used as the heat insulating material of the heat insulating container capable of changing the assembled state and the disassembled state, properties peculiar to the vacuum heat insulating material (thin thickness, low workability, and performance deterioration at breakage) Because of the large nature of), the airtightness of the heat insulation container tends to be reduced. Therefore, it is possible to change the assembled state and the disassembled state, and in the case of the heat insulating container using a vacuum heat insulating material, the management of air tightness becomes important. However, in the insulation container which can change the assembly state and the disassembly state, and in the insulation container using a vacuum insulation material, to what extent does the airtightness of the insulation container affect the insulation of the whole insulation container? The knowledge about this was not known conventionally. In the present disclosure, when the relationship between air tightness (the number of ventilations) and the cooling time is examined in detail, by setting the number of ventilations to a predetermined value or less, the thermal insulation property of the heat insulation container decreases due to the airtightness. Was found to be able to suppress
 また、上述した気密性の管理という技術的思想は、組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器に特有の課題と密接に関連している。例えば、分解する必要がない断熱容器の場合、そもそも分解可能な接合部を形成する必要がないため、真空断熱材を用いた場合であっても、分解に起因する気密性の問題は生じない。一方、組立状態と分解状態とを変更可能な断熱容器であっても、真空断熱材を用いず、一般的な発泡断熱材を用いた断熱容器の場合、一般的な発泡断熱材は十分に厚く、真空断熱材に比べて加工性も高いため、断熱材に起因する気密性の問題は生じにくい。また、一般的な発泡断熱材を用いた断熱容器の場合、断熱材の性能が真空断熱材よりも低いので、断熱性を向上させるためには、断熱材の性能を向上させる方がより適切な場合も多い。しかし、真空断熱材を用いた断熱容器の場合、断熱材の性能は十分に優れているので、気密性を管理して断熱性を向上させることが重要である。このように、気密性の管理という技術的思想は、組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器に特有の課題と密接に関連している。
 以下、本開示の断熱容器について、さらに詳しく説明する。
Further, the above-described technical concept of air tightness management can change the assembled state and the disassembled state, and is closely related to the problems unique to the heat insulating container using a vacuum heat insulating material. For example, in the case of a heat insulating container which does not need to be disassembled, since it is not necessary to form a decomposable joint in the first place, even when a vacuum heat insulating material is used, the problem of air tightness due to decomposition does not occur. On the other hand, even in the case of a heat insulation container capable of changing the assembled state and the disassembly state, in the case of a heat insulation container using a general foam insulation without using a vacuum insulation, the general foam insulation is sufficiently thick Since the processability is higher than that of a vacuum heat insulating material, the problem of air tightness due to the heat insulating material hardly occurs. Moreover, in the case of a heat insulation container using a general foam heat insulating material, since the performance of the heat insulating material is lower than that of the vacuum heat insulating material, it is more appropriate to improve the heat insulating material performance to improve the heat insulation. There are many cases. However, in the case of a heat insulating container using a vacuum heat insulating material, since the performance of the heat insulating material is sufficiently excellent, it is important to control air tightness to improve the heat insulating property. Thus, the technical concept of airtightness management can change the assembly state and the disassembly state, and is closely related to the problems unique to the thermal insulation container using a vacuum insulation material.
Hereinafter, the heat insulation container of this indication is demonstrated in more detail.
1.換気回数
 本開示の断熱容器の換気回数は、組立状態において、0.1回/hr以下であることが好ましい。換気回数が0.1回/hr以下である場合、断熱パネルどうしの接合部等の隙間を通る熱の移動が保冷時間に与える影響は、断熱パネルを通る熱の移動が保冷時間に与える影響に比べて十分に少なく、保冷時間が安定するためである。言い換えると、換気回数が0.1回/hr以下であることが、組立状態と分解状態とを変更可能であることによる気密性の低下に起因する断熱容器の断熱性の低下を抑制し、真空断熱材を用いた断熱容器の断熱性能を十分に発揮するうえで重要である。換気回数は、以下のように求める。
1. The ventilation frequency of the heat insulation container of the present disclosure is preferably 0.1 times / hr or less in the assembled state. When the ventilation frequency is 0.1 times / hr or less, the influence of the heat transfer through the gap between the heat insulation panels on the cooling time is the effect of the heat transfer through the heat insulation panels on the heat insulation time This is because the cooling time is stable, which is sufficiently smaller than that of the conventional art. In other words, the fact that the ventilation frequency is 0.1 times / hr or less suppresses the decrease in the heat insulation of the heat insulation container due to the decrease in air tightness due to the ability to change the assembly state and the disassembly state. It is important to fully demonstrate the heat insulation performance of the heat insulation container using the heat insulation material. The ventilation frequency is determined as follows.
 すなわち、断熱容器の換気回数(回/hr)は、JIS A 1406:1974(屋内換気量測定方法(炭酸ガス法))に準拠して、1時間あたりの換気量(給気量ともいう、m/hr)を測定し、換気量Qを断熱容器の内容積で除することで求める。換気量は、断熱容器内に、ガスボンベまたは気化ドライアイスを使用して炭酸ガスを放出し、炭酸ガス濃度を測定し、上記JIS規格の3.1に記載された(1)式(Seidelの式)により求める。炭酸ガス濃度は、上記JIS規格の2.1(5)に記載された赤外線ガス分析計法を用い、測定点は断熱容器内において高さが異なる3点~5点とし、各測定点での平均値を炭酸ガス濃度とする。また、上記JIS規格の2.2に記載に基づき、最初の炭酸ガス濃度測定時に、濃度分布が均一となるように、小型の扇風機を用いて断熱容器内の雰囲気を撹拌する。「濃度分布が均一」とは、各測定点に炭酸ガス濃度が、平均値に対して±10%以内である状態をいい、この状態が得られるように、断熱容器内の雰囲気を撹拌する。また、最初の測定時における炭酸ガス濃度は、5000ppm以上10000ppm以下となるように調整する。さらに、換気量の測定は、断熱容器内外での温度差なし、かつ、無風状態で行う。なお、換気量の測定は、複数回(例えば5回以上10回以下)行い、平均値として求めることが好ましい。 That is, according to JIS A 1406: 1974 (indoor ventilation measurement method (carbon dioxide gas method)), the ventilation frequency (times / hr) of the heat insulation container is the ventilation volume per hour (also referred to as air supply, m) 3 / hr) is measured, and it calculates | requires by dividing the ventilation volume Q by the internal volume of the heat insulation container. For the ventilation volume, carbon dioxide gas is released into the heat insulation container using a gas cylinder or vaporized dry ice, the carbon dioxide gas concentration is measured, and the formula (1) (Seidel's formula) described in 3.1 of the above JIS standard. It asks by). The carbon dioxide gas concentration is measured using the infrared gas analyzer method described in 2.1 (5) of the above JIS standard, and the measurement points are 3 to 5 points different in height in the heat insulation container, and Let the average value be the carbon dioxide concentration. Further, based on the description in the above-mentioned JIS Standard 2.2, the atmosphere in the heat insulation container is agitated using a small fan so that the concentration distribution becomes uniform at the time of the first measurement of carbon dioxide gas concentration. “Concentration distribution is uniform” means that the carbon dioxide concentration at each measurement point is within ± 10% of the average value, and the atmosphere in the heat insulation container is agitated so as to obtain this state. Further, the carbon dioxide gas concentration at the time of the first measurement is adjusted to be 5000 ppm or more and 10000 ppm or less. Furthermore, the measurement of the ventilation volume is performed with no temperature difference between the inside and the outside of the heat insulation container and in a windless state. In addition, it is preferable to perform the measurement of the ventilation volume several times (for example, 5 times and 10 times or less), and to obtain | require as an average value.
 また、本開示の断熱容器の換気回数は、組立状態において、上記換気回数の常用対数における保冷時間の変化率が-1となる値以下であることが好ましい。換気回数が、換気回数の常用対数における保冷時間の変化率が-1となる値以下である場合、断熱パネルの断熱性能を十分に発揮させることができるためである。言い換えると、換気回数の常用対数における保冷時間の変化率が-1となる値以下の換気回数であることが、真空断熱材を用いた断熱容器の断熱性能を十分に発揮するうえで重要である。換気回数の常用対数における保冷時間の変化率については、以下のように求める。 Further, the ventilation frequency of the heat insulation container of the present disclosure is preferably equal to or less than a value at which the rate of change of cold storage time in the common logarithm of the ventilation frequency is -1 in the assembled state. When the ventilation frequency is less than or equal to a value at which the change rate of the cooling time in the common logarithm of the ventilation frequency is -1 or less, the heat insulating performance of the heat insulating panel can be sufficiently exhibited. In other words, it is important that the ventilation frequency is less than or equal to a value at which the change rate of the cooling time in the common logarithm of the ventilation frequency is -1, in order to fully demonstrate the heat insulation performance of the heat insulation container using the vacuum heat insulating material. . The change rate of the cooling time in the common logarithm of the ventilation frequency is determined as follows.
 すなわち、保冷時間は、断熱容器の内部に収納したサンプル(断熱容器の内容積の10%に相当する2℃の水を入れた2LのPET容器)を、外気温35℃の雰囲気で8℃以下に保つことが可能な時間(保冷時間)により評価する。まず、気温35℃の雰囲気に断熱容器を静置し、断熱容器の内外の温度を35℃にする。次に、収納するサンプルとして、断熱容器の内容積の10%に相当する2℃の水を入れたPET容器を準備する。なお、PET容器として、市販の2LのPET容器を用いる。次に、サンプルを断熱容器の底面断熱パネルの中央に配置する。PET容器のキャップ部分には穴が空けられ、その穴から、PET容器高さの半分程度の長さの熱電対または測温抵抗体が導入されている。これにより、PET容器の中央部分の温度を測定する。次に、断熱容器を密閉する。なお、保冷剤は使用しない。 That is, the cold storage time is 8 ° C. or less in an atmosphere of 35 ° C. outside temperature with a sample (2 L PET water containing 2 ° C. water corresponding to 10% of the inner volume of the thermal insulation container) housed inside the heat insulation container. It is evaluated by the time that can be kept at (Holding time). First, the heat insulation container is allowed to stand in an atmosphere at a temperature of 35 ° C., and the temperature inside and outside the heat insulation container is set to 35 ° C. Next, as a sample to be stored, a PET container containing water at 2 ° C. corresponding to 10% of the internal volume of the heat insulation container is prepared. In addition, a commercially available 2 L PET container is used as a PET container. The sample is then placed in the center of the bottom insulation panel of the insulation vessel. A hole is made in the cap portion of the PET container, and a thermocouple or a resistance temperature sensor of about half the height of the PET container is introduced from the hole. This measures the temperature of the central portion of the PET container. Next, seal the heat insulation container. In addition, a cold storage agent is not used.
 このようにして、保冷時間を求めることができる。一方、開閉可能な構造を有する断熱パネルを用いた場合には、開閉の程度を意図的な非正規状態に調整することによって、換気回数を実験的に調整可能である。開閉可能な構造を有する断熱パネルを用いていない場合であっても、例えば内部が空洞のパイプを断熱パネルどうしの接合部に挟む等の方法で断熱パネルどうしの接合の程度を意図的な非正規状態に調整することによって、換気回数を実験的に調整可能である。そこで、実験的に調整した複数の換気回数に対して、都度、保冷時間を求めることで、換気回数および保冷時間の関係が得られる。複数の換気回数の測定は、例えば、換気回数が0.01回/hr以上で1回/hr以下の範囲において常用対数軸で概ね偏りなく行うことが好ましく、複数の換気回数の測定点は、例えば5点以上であり、10点以上であってもよい。 In this way, the cooling time can be determined. On the other hand, when the heat insulation panel which has an openable and closable structure is used, the ventilation frequency can be experimentally adjusted by adjusting the degree of opening and closing to an intentional non-normal state. Even when the heat insulation panel having an openable / closable structure is not used, for example, the degree of bonding of the heat insulation panels is intentionally non-regular by, for example, sandwiching a hollow pipe inside the heat insulation panels By adjusting to the condition, the ventilation frequency can be adjusted experimentally. Therefore, the relationship between the ventilation frequency and the cooling time can be obtained by obtaining the cooling time each time for a plurality of experimentally adjusted ventilation frequencies. It is preferable to measure a plurality of ventilation frequency, for example, in the range of 0.01 frequency / hr or more and 1 time / hr or less and generally without bias on the common logarithmic axis, and the measurement points of the plurality of ventilation frequency are For example, it may be five or more, and may be ten or more.
 換気回数および保冷時間の関係が得られた後に、換気回数の常用対数における保冷時間の変化率を求める。例えば、換気回数が横軸の対数軸にプロットされ、保冷時間が縦軸の普通の軸にプロットされた片対数グラフを作成し、その片対数グラフにおける傾きを求める。 After the relationship between the ventilation frequency and the cooling time is obtained, the rate of change of the cooling time in the common logarithm of the ventilation frequency is determined. For example, a semilogarithmic graph is created in which the ventilation frequency is plotted on the logarithmic axis of the horizontal axis, and the cold storage time is plotted on the normal axis of the vertical axis, and the slope of the semilogarithmic graph is determined.
 一方、本開示の断熱容器の換気回数は、組立状態において、0.02回/hr以上であることが好ましい。0.02回/hr以上の換気回数を許容することによって、断熱パネルどうしの接合部を接合や取外がしやすい構造としたり、断熱パネルを開閉可能な構造としたりすることが容易になるためである。 On the other hand, in the assembled state, the ventilation frequency of the heat insulation container of the present disclosure is preferably 0.02 times / hr or more. By allowing a ventilation frequency of 0.02 times / hr or more, it is possible to make the joint between the heat insulation panels easy to join or remove, or to make it possible to open and close the heat insulation panels. It is.
2.断熱容器の構成
 本開示の断熱容器は、天面断熱パネル、底面断熱パネル、および複数の側面断熱パネルを有する。さらに、天面断熱パネル、底面断熱パネル、および複数の側面断熱パネルのうち少なくとも4つの断熱パネルは、真空断熱材を含む真空断熱部材を有する真空断熱パネルである。真空断熱パネルの数を増やすことによって、断熱容器の断熱性能が向上する。真空断熱パネルの数を減らすことによって、真空断熱材が破損して断熱容器の断熱性能が急激に低下する危険性を低減できる。
2. Insulation Container Configuration The insulation container of the present disclosure has a top insulation panel, a bottom insulation panel, and a plurality of side insulation panels. Furthermore, the top heat insulation panel, the bottom heat insulation panel, and at least four heat insulation panels of the plurality of side heat insulation panels are vacuum heat insulation panels having a vacuum heat insulating member including a vacuum heat insulating material. By increasing the number of vacuum insulation panels, the insulation performance of the insulation container is improved. By reducing the number of vacuum insulation panels, it is possible to reduce the risk that the vacuum insulation material breaks and the insulation performance of the insulation container falls sharply.
 なお、真空断熱パネル以外の断熱パネルとしては、例えば、真空断熱材を含まずに、多孔質断熱材および繊維断熱材の少なくとも一方を含む断熱部材を有する断熱パネルが挙げられる。なお、多孔質断熱材や繊維断熱材は、多孔質構造や繊維構造による多数の空隙を大気圧状態である内部に有する断熱材である。本開示の断熱容器では、真空断熱パネル以外の断熱パネルの熱貫流率は、例えば3W/mK以下とすることができ、2W/mK以下であってもよい。 In addition, as thermal insulation panels other than a vacuum thermal insulation panel, the thermal insulation panel which has a thermal insulation member which does not contain a vacuum thermal insulation but contains at least one of a porous thermal insulation and a fiber thermal insulation is mentioned, for example. In addition, a porous heat insulating material and a fiber heat insulating material are heat insulating materials which have many space | gaps by a porous structure or a fiber structure in the inside which is atmospheric pressure state. In the heat insulation container of the present disclosure, the heat transmission coefficient of heat insulation panels other than the vacuum heat insulation panel can be, for example, 3 W / m 2 K or less, and may be 2 W / m 2 K or less.
(1)真空断熱パネル
 真空断熱パネルは、真空断熱材を含む真空断熱部材を有する断熱パネルである。真空断熱部材は、断熱材として、真空断熱材のみを有する部材であってもよく、真空断熱材と、その他の断熱材とを有する部材であってもよい。本開示においては、真空断熱材を第一断熱材と称し、真空断熱材以外の断熱材を第二断熱材と称する場合がある。
(1) Vacuum heat insulation panel A vacuum heat insulation panel is a heat insulation panel which has a vacuum heat insulation member containing a vacuum heat insulating material. The vacuum heat insulating member may be a member having only a vacuum heat insulating material as a heat insulating material, or may be a member having a vacuum heat insulating material and another heat insulating material. In the present disclosure, the vacuum heat insulating material may be referred to as a first heat insulating material, and a heat insulating material other than the vacuum heat insulating material may be referred to as a second heat insulating material.
(i)真空断熱材
 本開示における真空断熱材は、芯材と、芯材を包む外装材とを有する。図3は、本開示における真空断熱材を例示する概略断面図である。図3(a)に示すように、真空断熱材である第一断熱材331は、芯材331aと、ガスバリア性を有する外装材331bとを有する。外装材331bの内部は減圧状態である。図3(b)は、真空断熱材の他の一例である。図3(a)では、真空断熱材である第一断熱材331の内部の両端に空隙が形成されているが、図3(b)では、空隙が形成されていない。空隙は、第一断熱材331の製造方法の違いにより形成されたり形成されなかったりする。
(I) Vacuum Heat Insulating Material The vacuum heat insulating material in the present disclosure has a core material and an exterior material that wraps the core material. FIG. 3 is a schematic cross-sectional view illustrating a vacuum heat insulating material in the present disclosure. As shown to Fig.3 (a), the 1st heat insulating material 331 which is a vacuum heat insulating material has the core material 331a and the exterior material 331b which has gas-barrier property. The inside of the exterior material 331 b is in a reduced pressure state. FIG.3 (b) is another example of a vacuum heat insulating material. Although a void is formed at both ends inside the first heat insulating material 331 which is a vacuum heat insulating material in FIG. 3 (a), no void is formed in FIG. 3 (b). The air gap may or may not be formed due to the difference in the method of manufacturing the first heat insulating material 331.
 芯材としては、例えば、粉体、多孔質体、繊維体等を用いることができる。上記粉体は、無機系粉体であってもよく、有機系粉体であってもよく、具体的には、乾式シリカ、湿式シリカ、凝集シリカ粉末、導電性粉体、炭酸カルシウム粉末、パーライト、クレー、タルク等が挙げられる。上記多孔質体としては、例えば、ウレタンフォーム、スチレンフォーム、フェノールフォーム等が挙げられる。上記繊維体としては、無機繊維でも有機繊維でもよく、無機繊維としては、例えば、グラスウール、グラスファイバー等のガラス繊維、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、セラミック繊維、ロックウール等が挙げられる。 As a core material, a powder, a porous body, a fiber body etc. can be used, for example. The above powder may be inorganic powder or organic powder, and specifically, dry silica, wet silica, aggregated silica powder, conductive powder, calcium carbonate powder, perlite , Clay, talc and the like. As said porous body, a urethane foam, a styrene foam, a phenol foam etc. are mentioned, for example. The fiber body may be an inorganic fiber or an organic fiber, and examples of the inorganic fiber include glass fibers such as glass wool and glass fibers, alumina fibers, silica alumina fibers, silica fibers, ceramic fibers, rock wool and the like.
 外装材は、芯材の外周を覆う部材であり、例えば、芯材側から熱溶着層、ガスバリア層をこの順に有する可撓性シートが挙げられる。ガスバリア層としては、金属箔、樹脂シートの片面に蒸着層を有する蒸着シート等が挙げられる。金属箔としては、例えばアルミニウムが挙げられる。蒸着層としては、例えば、アルミニウム、アルミニウム酸化物、ケイ素酸化物が挙げられる。樹脂シートとしては、公知の樹脂シートを用いることができる。 The exterior material is a member that covers the outer periphery of the core material, and examples thereof include a flexible sheet having a thermal adhesion layer and a gas barrier layer in this order from the core material side. Examples of the gas barrier layer include a metal foil and a vapor deposition sheet having a vapor deposition layer on one side of a resin sheet. As metal foil, aluminum is mentioned, for example. As a vapor deposition layer, aluminum, an aluminum oxide, a silicon oxide is mentioned, for example. A well-known resin sheet can be used as a resin sheet.
 外装材の酸素透過度は、例えば0.5cc・m-2・day-1以下であってもよく、0.1cc・m-2・day-1以下であってもよい。また、外装材の水蒸気透過度は、例えば0.2cc・m-2・day-1以下であってもよく、0.1cc・m-2・day-1以下であってもよい。真空断熱材の内部真空度は、例えば5Pa以下であってもよい。真空断熱材の初期熱伝導率は、例えば25℃環境下で15mW・m-1・K-1以下であり、10mW・m-1・K-1以下であってもよく、5mW・m-1・K-1以下であってもよい。 Oxygen permeability of the outer package, for example 0.5cc · m -2 · day -1 may be less, may be not more than 0.1cc · m -2 · day -1. Further, the water vapor permeability of the outer package, for example 0.2cc · m -2 · day -1 may be less, may be not more than 0.1cc · m -2 · day -1. The internal vacuum degree of the vacuum heat insulating material may be, for example, 5 Pa or less. The initial thermal conductivity of the vacuum heat insulating material is, for example, 15 mW · m −1 · K −1 or less in a 25 ° C. environment, and may be 10 mW · m −1 · K −1 or less, 5 mW · m −1 -It may be K -1 or less.
(ii)真空断熱部材
 本開示における真空断熱部材は、断熱材として、真空断熱材(第一断熱材)のみを有する部材であってもよく、真空断熱材(第一断熱材)と、その他の断熱材(第二断熱材)とを有する部材であってもよい。上述したように、真空断熱材(第一断熱材)は、破損時の性能劣化が大きいが、その他の断熱材(第二断熱材)とともに用いることで、真空断熱材(第一断熱材)の破損時の断熱パネルの断熱性の低下を抑制できる。
(Ii) Vacuum Heat Insulating Member The vacuum heat insulating member in the present disclosure may be a member having only a vacuum heat insulating material (first heat insulating material) as a heat insulating material, a vacuum heat insulating material (first heat insulating material), and the like. It may be a member having a heat insulating material (second heat insulating material). As described above, the vacuum heat insulating material (first heat insulating material) is greatly deteriorated in performance at the time of breakage, but when used together with other heat insulating materials (second heat insulating material), the vacuum heat insulating material (first heat insulating material) It is possible to suppress the decrease in heat insulation of the heat insulation panel at the time of breakage.
 図4は、本開示における真空断熱部材を例示する概略断面図である。図4(a)に示すように、真空断熱部材350Aは、真空断熱材である第一断熱材331と、第一断熱材331の一方の主面側に位置する第二断熱材332とを有していてもよい。例えば、第一断熱材331を金型にセットし、その後、射出成型で第一断熱材331および第二断熱材332を一体的に成形することができる。一方、図示しないが、第一断熱材331および第二断熱材332の間に、両者を接着する接着層を有していてもよい。 FIG. 4 is a schematic cross-sectional view illustrating a vacuum insulation member in the present disclosure. As shown in FIG. 4A, the vacuum heat insulating member 350A has a first heat insulating material 331, which is a vacuum heat insulating material, and a second heat insulating material 332 located on one principal surface side of the first heat insulating material 331. It may be done. For example, the first heat insulating material 331 can be set in a mold, and then the first heat insulating material 331 and the second heat insulating material 332 can be integrally formed by injection molding. On the other hand, although not shown, an adhesive layer may be provided between the first heat insulating material 331 and the second heat insulating material 332 to bond the two.
 第二断熱材としては、発泡断熱材等の多孔質断熱材や、繊維断熱材が挙げられる。多孔質断熱材や繊維断熱材としては、例えば、発泡ポリエチレン、発泡ポリプロピレン、発泡ポリスチレン、発泡ポリウレタン、発泡ポリフェノール等の発泡プラスチック系断熱材、グラスウール、グラスファイバー、ロックウール、セルロースファイバー、インシュレーションボード等の繊維系断熱材、羊毛、炭化コルク等の天然素材系断熱材等が挙げられる。 As a 2nd heat insulating material, porous heat insulating materials, such as a foamed heat insulating material, and a fiber heat insulating material are mentioned. As the porous heat insulating material and the fiber heat insulating material, for example, foamed polyethylene, foamed polypropylene, foamed polystyrene, foamed polyurethane, foamed plastic based heat insulating material such as foamed polyphenol, glass wool, glass fiber, rock wool, cellulose fiber, insulation board etc. Fiber-based thermal insulation materials, natural thermal insulation materials such as wool and carbonized cork, and the like.
 また、図4(a)に示す真空断熱部材350Aは、第一断熱材331の端面に第二断熱材332を有しないが、図4(b)に示すように、真空断熱部材350Aは、第一断熱材331の両端面を覆うように第二断熱材332を有していてもよい。なお、図示しないが、第一断熱材331の一方の端面のみが、第二断熱材332で覆われていてもよい。また、第一断熱材331の端面の一部が、第二断熱材332で覆われていてもよく、第一断熱材331の端面の全部が、第二断熱材332で覆われていてもよい。 Moreover, although the vacuum heat insulation member 350A shown to Fig.4 (a) does not have the 2nd heat insulation material 332 in the end surface of the 1st heat insulation material 331, as shown in FIG.4 (b), the vacuum heat insulation member 350A is A second heat insulating material 332 may be provided to cover both end surfaces of the first heat insulating material 331. Although not shown, only one end face of the first heat insulating material 331 may be covered with the second heat insulating material 332. In addition, a part of the end face of the first heat insulating material 331 may be covered with the second heat insulating material 332, and the whole end face of the first heat insulating material 331 may be covered with the second heat insulating material 332 .
 また、図4(a)に示す真空断熱部材350Aは、第一断熱材331の一方の主面側のみに第二断熱材332を有するが、第一断熱材331の両主面側に第二断熱材332を有していてもよい。さらに、図4(c)に示すように、真空断熱部材350Aは、第一断熱材331の全周を覆うように第二断熱材332を有していてもよい。 Further, the vacuum heat insulating member 350A shown in FIG. 4 (a) has the second heat insulating material 332 only on one main surface side of the first heat insulating material 331, but the second heat insulating material A heat insulating material 332 may be provided. Furthermore, as shown in FIG. 4C, the vacuum heat insulating member 350A may have a second heat insulating material 332 so as to cover the entire circumference of the first heat insulating material 331.
 さらに、本開示における真空断熱部材は、第一断熱材の全周を覆うように、遮熱シートを有していてもよい。例えば、図4(d)に示すように、真空断熱部材350Aは、第一断熱材331および第二断熱材332の全周を覆うように遮熱シート333を有していてもよい。この場合、第一断熱材331の周囲の一部は、第二断熱材332を介して、遮熱シート333で覆われている。 Furthermore, the vacuum heat insulating member in the present disclosure may have a heat shield sheet so as to cover the entire circumference of the first heat insulating material. For example, as shown in FIG. 4D, the vacuum heat insulating member 350A may have a heat shielding sheet 333 so as to cover the entire circumference of the first heat insulating material 331 and the second heat insulating material 332. In this case, a part of the periphery of the first heat insulating material 331 is covered with the heat shield sheet 333 via the second heat insulating material 332.
 遮熱シートとしては、例えば、金属箔を含む多層シート、樹脂シートの片面に蒸着層を有する蒸着シートが挙げられる。金属箔の種類および蒸着シートの種類については、上述した内容と同様である。遮熱シートを設けることで、断熱部材の断熱性はさらに向上する。さらに、後述するように、断熱容器の気密性の向上を図ることができる。 As a heat shielding sheet, the multilayer sheet containing metal foil, the vapor deposition sheet which has a vapor deposition layer in the single side | surface of a resin sheet is mentioned, for example. About the kind of metal foil and the kind of vapor deposition sheet, it is the same as that of the content mentioned above. By providing the heat shielding sheet, the heat insulating property of the heat insulating member is further improved. Furthermore, as described later, the airtightness of the heat insulation container can be improved.
(iii)保護部材
 本開示における真空断熱パネルは、上述した真空断熱部材を少なくとも有する断熱パネルであり、真空断熱部材を保護する保護部材をさらに有していてもよい。図5は、本開示における真空断熱パネルを例示する概略断面図である。図5(a)に示すように、真空断熱パネル350は、真空断熱部材350Aと、接着層334と、保護部材350Bとこの順を有していてもよい。図5(a)に示す真空断熱パネル350は、第一断熱材331の一方の主面側に第二断熱部材332を有し、第一断熱材331の他方の主面側に保護部材350Bを有する。一方、図5(b)に示すように、真空断熱パネル350は、真空断熱部材350Aの全周を覆うように保護部材350Bを有していてもよい。なお、図示しないが、真空断熱パネルは、例えば図5(b)に示す保護部材350Bの全周を覆うように、上述した遮熱シートを有していてもよい。
(Iii) Protective Member The vacuum thermal insulation panel in the present disclosure is a thermal insulation panel having at least the above-described vacuum thermal insulation member, and may further have a protective member for protecting the vacuum thermal insulation member. FIG. 5 is a schematic cross-sectional view illustrating a vacuum insulation panel in the present disclosure. As shown in FIG. 5A, the vacuum heat insulation panel 350 may have a vacuum heat insulation member 350A, an adhesive layer 334, and a protection member 350B in this order. The vacuum heat insulation panel 350 shown in FIG. 5A has the second heat insulation member 332 on one main surface side of the first heat insulation material 331, and the protection member 350B on the other main surface side of the first heat insulation material 331. Have. On the other hand, as shown in FIG. 5B, the vacuum heat insulation panel 350 may have a protection member 350B so as to cover the entire circumference of the vacuum heat insulation member 350A. Although not shown, the vacuum heat insulation panel may have the above-mentioned heat shield sheet so as to cover, for example, the entire circumference of the protection member 350B shown in FIG. 5 (b).
 保護部材としては、例えば、合板、発泡材、樹脂板、エンボス樹脂シート、板紙等の有機高分子部材、および、セラミック部材等が挙げられる。また、軽量で比較的剛性のある材料として、例えば、プラスチックダンボール、養生された木材を使用することもできる。あるいは、上述した第二断熱材と同じものを用いてもよい。 As a protection member, organic polymer members, such as plywood, a foaming material, a resin board, an embossed resin sheet, paperboard, a ceramic member etc. are mentioned, for example. It is also possible to use, for example, plastic cardboard or cured wood as a lightweight, relatively rigid material. Or you may use the same thing as the 2nd heat insulating material mentioned above.
(iv)真空断熱パネル
 本開示における真空断熱パネルは、熱貫流率が低いことが好ましく、例えば、0.5W/mK以下とすることができる。
(Iv) Vacuum Insulating Panel The vacuum insulating panel in the present disclosure preferably has a low heat transmission coefficient, and can be, for example, 0.5 W / m 2 K or less.
 熱貫流率とは、断熱パネルにおける熱の伝わりやすさを表す値であり、値が小さいほど断熱性が高いことを表している。熱貫流率(U値)は、以下のように表される。
 熱貫流率(W/mK)=1/熱抵抗値(mK/W) …(1)
 熱抵抗値(mK/W)=厚み(m)/熱伝導率(W/mK) …(2)
The heat transmission coefficient is a value representing the ease of heat transfer in the heat insulation panel, and the smaller the value, the higher the heat insulation. The heat transmission coefficient (U value) is expressed as follows.
Heat transmission coefficient (W / m 2 K) = 1 / heat resistance value (m 2 K / W) (1)
Thermal resistance (m 2 K / W) = thickness (m) / thermal conductivity (W / mK) (2)
 ここで、断熱パネルにおける熱貫流率の測定方法について説明する。例えば、断熱パネルそのものの熱抵抗値を求めてもよい(第一の測定方法)。また、例えば、測定対象である断熱パネルと同一の層構成を有し、厚み方向に対する垂直な面が30cm×30cm以上の大きさを有する試験用断熱パネルを作製し、その試験用断熱パネルの熱抵抗値を求めてもよい(第二の測定方法)。また、例えば、測定対象である断熱パネルを構成する各部材の熱伝導率を測定し、各部材の厚み、熱伝導率から各部材の総和の熱抵抗値を求めてもよい(第三の測定方法)。熱抵抗値および熱伝導率は、JIS A1412-1,2,3に準拠して求める。測定環境の温度は、20℃以上25℃以下とする。なお、熱貫流率の測定方法は、まずは直接的な測定方法である第一の測定方法を採用することが好ましく、第一の測定方法を採用が難しい場合には第二の測定方法を採用することが好ましく、第二の測定方法を採用が難しい場合には第三の測定方法を採用することが好ましい。なお、断熱パネルが、熱貫流率が異なる複数の領域を有する場合、領域が占める割合を考慮した平均的な熱貫流率を用いることが好ましい。 Here, the measuring method of the heat transmission coefficient in a heat insulation panel is demonstrated. For example, the heat resistance value of the heat insulation panel itself may be determined (first measurement method). In addition, for example, a heat insulation panel for test having the same layer configuration as the heat insulation panel to be measured, and a plane perpendicular to the thickness direction having a size of 30 cm × 30 cm or more is manufactured. The resistance value may be determined (second measurement method). Further, for example, the thermal conductivity of each member constituting the heat insulation panel to be measured may be measured, and the thermal resistance value of the total of each member may be determined from the thickness of each member and the thermal conductivity (third measurement Method). The thermal resistance value and the thermal conductivity are determined in accordance with JIS A1412-1,2,2. The temperature of the measurement environment is 20 ° C. or more and 25 ° C. or less. In addition, it is preferable to employ | adopt the 1st measuring method which is a direct measuring method first, and to employ | adopt the 2nd measuring method, when it is difficult to employ | adopt a 1st measuring method as a measuring method of a heat-transmittance In the case where it is difficult to adopt the second measurement method, it is preferable to adopt the third measurement method. In addition, when a heat insulation panel has several area | regions with which heat transmission coefficients differ, it is preferable to use the average heat transmission coefficient which considered the ratio which an area | region occupies.
 第三の測定方法を例示する。例えば、真空断熱パネルが、第一断熱材(真空断熱材)および第二断熱材(EPP:発泡ポリプロピレン)を有する場合を想定する。第一断熱材(真空断熱材)の熱伝導率が0.003(W/mK)であり、厚みが0.006mである場合、熱抵抗値は、式(2)から0.006/0.003=2(mK/W)となる。一方、第二断熱材(EPP)の熱伝導率が0.04(W/mK)であり、厚みが0.02mである場合、熱抵抗値は、式(2)から0.02/0.04=1/2(mK/W)となる。そのため、第一断熱材および第二断熱材を有する真空断熱パネルの熱貫流率は、式(1)から1/(2+1/2)=0.4(W/mK)となる。 The third measurement method is illustrated. For example, it is assumed that the vacuum insulation panel has a first insulation (vacuum insulation) and a second insulation (EPP: expanded polypropylene). When the thermal conductivity of the first heat insulating material (vacuum heat insulating material) is 0.003 (W / mK) and the thickness is 0.006 m, the heat resistance value is calculated from equation (2) according to 0.006 / 0. 003 = 2 becomes (m 2 K / W). On the other hand, when the thermal conductivity of the second heat insulating material (EPP) is 0.04 (W / mK) and the thickness is 0.02 m, the thermal resistance value is 0.02 / 0. It becomes 04 = 1/2 (m 2 K / W). Therefore, the heat transmission coefficient of the vacuum insulation panel having the first heat insulation material and the second heat insulation material is 1 / (2 + 1/2) = 0.4 (W / m 2 K) according to the equation (1).
 断熱容器が複数の真空断熱パネルを有する場合、各々の真空断熱パネルの熱貫流率の平均を、例えば、0.5W/mK以下とすることができる。また、全ての真空断熱パネルの熱貫流率を、例えば、0.5W/mK以下とすることもできる。 When the heat insulation container has a plurality of vacuum heat insulation panels, the average of the heat transmission coefficient of each vacuum heat insulation panel can be, for example, 0.5 W / m 2 K or less. Moreover, the heat transmission coefficient of all the vacuum insulation panels can also be made into 0.5 W / m < 2 > K or less, for example.
 真空断熱パネルは、断熱パネルの断熱性を向上させる手段を有していてもよい。例えば図6(a)に示すように、真空断熱材である第一断熱材331は、幅方向において真空断熱部材の全域にわたるように、1つで形成されていることが好ましい。例えば断熱容器が大型化すると、断熱パネルの一辺も大きくなるが、そのような場合であっても、真空断熱材である第一断熱材331が一つで形成されていることが好ましい。図6(a)に示すように、真空断熱部材の幅をWとし、第一断熱材331の幅をWとした場合、W/Wの値は、例えば90%以上であることが好ましい。また、Wの値は、例えば600mm以上であることが好ましい。 The vacuum insulation panel may have a means to improve the insulation of the insulation panel. For example, as shown to Fig.6 (a), it is preferable that the 1st heat insulation material 331 which is a vacuum heat insulation material is formed by one so that the whole area of a vacuum heat insulation member may be extended in the width direction. For example, when the heat insulation container is enlarged, one side of the heat insulation panel also becomes large, but even in such a case, it is preferable that one first heat insulation material 331 which is a vacuum heat insulation material is formed. As shown in FIG. 6A, when the width of the vacuum heat insulating member is W 1 and the width of the first heat insulating material 331 is W 2 , the value of W 2 / W 1 is, for example, 90% or more. Is preferred. The value of W 1 is preferably, for example, 600mm or more.
 また、例えば図6(b)に示すように、真空断熱部材350Aが、幅方向において、複数の第一断熱材331を有する場合、真空断熱部材350Aは、平面視上、複数の第一断熱材331の隙間部分αに該当する位置に補助断熱材337を有していてもよい。隙間部分αにおける真空断熱部材の厚みを厚くすることで、真空断熱パネルの断熱性を向上させることができる。同様に、例えば図6(c)に示すように、真空断熱部材350Aが、幅方向において、複数の第一断熱材331を有する場合、真空断熱部材350Aは、平面視上、複数の第一断熱材331の隙間部分αに該当する位置に、別の第一断熱材331を有していてもよい。隙間部分αに別の第一断熱材331が位置するため、真空断熱パネルの断熱性を向上させることができる。 For example, as shown in Drawing 6 (b), when vacuum heat insulation member 350A has a plurality of 1st heat insulation materials 331 in the cross direction, vacuum heat insulation member 350A is a plurality of 1st heat insulation materials in plane view. The auxiliary heat insulating material 337 may be provided at a position corresponding to the gap portion α of 331. By increasing the thickness of the vacuum heat insulating member in the gap portion α, the heat insulating property of the vacuum heat insulating panel can be improved. Similarly, for example, as shown in FIG. 6C, when the vacuum heat insulating member 350A has a plurality of first heat insulating materials 331 in the width direction, the vacuum heat insulating member 350A has a plurality of first heat insulators in plan view. Another first heat insulating material 331 may be provided at a position corresponding to the gap portion α of the material 331. Since the other first heat insulating material 331 is located in the gap portion α, the heat insulating property of the vacuum heat insulating panel can be improved.
(2)気密性向上手段
 本開示の断熱容器は、組立状態における換気回数が、所定の値以下であることが好ましい。断熱容器の換気回数を低減する手段(断熱容器の気密性を向上させる手段)は、目的とする換気回数が得られる手段であれば特に限定されず、任意の手段を採用できる。
(2) Airtightness improvement means In the heat insulation container of this indication, it is preferable that the ventilation frequency in an assembly state is below predetermined value. The means for reducing the number of times of ventilation of the heat insulation container (means for improving the airtightness of the heat insulation container) is not particularly limited as long as the desired number of times of ventilation can be obtained, and any means can be adopted.
 気密性向上手段の一例としては、例えば、二つの真空断熱パネルの接合部分の気密性を向上させる手段が挙げられる。例えば図7(a)に示すように、接合する二つの真空断熱パネルにおいて、一方の真空断熱パネルVが、第一断熱材331の端面を覆うように第二断熱材332を有し、他方の真空断熱パネルVが、第一断熱材331の主面を覆うように第二断熱材332を有し、組立状態において、真空断熱パネルVにおける第一断熱材331の端面に位置する第二断熱材332と、真空断熱パネルVにおける第一断熱材331の主面に位置する第二断熱材332とが接触していることが好ましい。図7(a)では、領域Xにおいて、第二断熱材332同士を接触させることで、領域Xにおける気密性が向上する。なお、接触する二つの第二断熱材は、同材料の断熱材であってもよく、異材料の断熱材であってもよい。 One example of the airtightness improving means is, for example, a means to improve the airtightness of the joint portion between two vacuum heat insulation panels. For example, as shown in FIG. 7 (a), in the two vacuum insulation panels to be joined, one of the vacuum insulation panel V 1 is, so as to cover the end surface of the first insulation material 331 has a second heat insulating material 332, the other the vacuum insulation panel V 2 has a second heat insulating material 332 so as to cover the main surface of the first insulation material 331, in the assembled state, first located at the end face of the first insulation material 331 in the vacuum insulation panel V 1 a secondary heat insulating material 332, it is preferable that the second insulation material 332 located on the main surface of the first insulation material 331 in the vacuum insulation panel V 2 are in contact. In FIG. 7A, in the region X, the airtightness in the region X is improved by bringing the second heat insulating materials 332 into contact with each other. In addition, the two 2nd heat insulating materials to contact may be a heat insulating material of the same material, and may be a heat insulating material of a different material.
 また、例えば図7(b)に示すように、接合する二つの真空断熱パネルにおいて、一方の真空断熱パネルVが、第一断熱材331の端面を(第二断熱材332を介して)覆うように遮熱シート333を有し、他方の真空断熱パネルVが、第一断熱材331の主面を(第二断熱材332を介して)覆うように遮熱シート333を有し、組立状態において、真空断熱パネルVにおける第一断熱材331の端面に位置する遮熱シート333と、真空断熱パネルVにおける第一断熱材331の主面に位置する遮熱シート333とが接触していることが好ましい。図7(b)では、領域Xにおいて、遮熱シート333同士を接触させることで、領域Xにおける気密性が向上する。なお、接触する二つの遮熱シートは、同材料のシートであってもよく、異材料のシートであってもよい。また、図示しないが、領域Xにおいて、遮熱シート333および第二断熱材332が接触していてもよい。 For example, as shown in FIG. 7 (b), in the two vacuum insulation panels to be joined, one of the vacuum insulation panel V 1 is, the end face of the first insulation material 331 (via a second heat insulating material 332) to cover in a thermal barrier sheet 333, the other vacuum insulation panel V 2, the main surface of the first insulation material 331 (via a second heat insulating material 332) has a heat shield sheet 333 so as to cover such, the assembly in the state, the heat insulating sheet 333 positioned on the end surface of the first insulation material 331 in the vacuum insulation panel V 1, and the heat insulating sheet 333 contacts located on the main surface of the first insulation material 331 in the vacuum insulation panel V 2 Is preferred. In FIG. 7 (b), in the region X, by bringing the heat shielding sheets 333 into contact with each other, the airtightness in the region X is improved. The two heat shield sheets in contact with each other may be sheets of the same material or sheets of different materials. Further, although not shown, the heat shield sheet 333 and the second heat insulating material 332 may be in contact with each other in the region X.
 また、例えば図7(c)に示すように、断熱部材が、第一の面ファスナ部335aと、第一の面ファスナ部335aと結合可能な第二の面ファスナ部335bと、第一の面ファスナ部335aに連結された可撓性部材335cとを有する面ファスナ部材を備え、接合する二つの真空断熱パネルにおいて、可撓性部材335cの一部は、真空断熱パネルVの外表面(断熱空間とは反対の表面)で固定され、第二の面ファスナ部335bは、真空断熱パネルVの外表面(断熱空間とは反対の表面)に位置していてもよい。図7(c)では、真空断熱パネルVの外表面において、第一の面ファスナ部335aおよび第二の面ファスナ部335bが結合可能であるため、領域Xにおける気密性が向上する。 For example, as shown in FIG. 7C, the heat insulating member includes a first surface fastener portion 335a, a second surface fastener portion 335b which can be coupled to the first surface fastener portion 335a, and a first surface. with a surface fastener member having a flexible member 335c connected to the fastener portion 335a, in the two vacuum insulation panels to be joined, a part of the flexible member 335c has an outer surface (insulation of the vacuum insulation panel V 1 the space is secured at the opposite surface of) the second fastener portion 335b may be located on the opposite surface of) the outer surface (heat-insulating space of the vacuum insulation panel V 2. In FIG. 7 (c), the the outer surface of the vacuum insulation panel V 2, since the first surface fastener part 335a and the second surface fastener part 335b is capable of binding, thereby improving the airtightness in the region X.
 また、例えば図7(d)に示すように、接合する二つの真空断熱パネルにおいて、一方の真空断熱パネルVが、第一断熱材331の端面に第一の磁石336aを有し、他方の真空断熱パネルVが、第一断熱材331の端面に第一の磁石336aとは異なる磁極を有する第二の磁石336bを有し、組立状態において、第一の磁石336aおよび第二の磁石336bが磁力により引き合うことが好ましい。図7(d)では、磁力により、領域Xにおける気密性が向上する。 For example, as shown in FIG. 7 (d), in the two vacuum insulation panels to be joined, one of the vacuum insulation panel V 1 is, the end face of the first insulation material 331 has a first magnet 336a, the other vacuum insulation panel V 2 has a second magnet 336b having different magnetic poles and the first magnet 336a on the end face of the first insulation material 331, in the assembled state, the first magnet 336a and the second magnet 336b Is preferably attracted by magnetic force. In FIG. 7D, the magnetic seal improves the tightness in the region X.
 また、後述するように、断熱容器に縦枠や横枠を配置することによって、二つの真空断熱パネルの接合部分の気密性を向上させることもできる。 Further, as described later, by arranging the vertical frame and the horizontal frame in the heat insulation container, it is possible to improve the airtightness of the joint portion of the two vacuum heat insulation panels.
3.組立状態および分解状態
 本開示の断熱容器は、組立状態と、分解状態とを変更可能である。組立状態とは、天面断熱パネル、底面断熱パネル、および複数の側面断熱パネルに囲まれた断熱空間が形成されている状態をいい、分解状態とは、断熱空間が形成されていない状態をいう。本開示の断熱容器は、組立状態から分解状態への変更、および、分解状態から組立状態への変更が可能である。分解状態には、少なくとも一つの断熱パネルが分離した状態(分離状態)、および、二以上の断熱パネルが何らかの部材を介して結合したまま折り畳まれた状態(折り畳み状態)が含まれる。
3. Assembling State and Disassembly State The heat insulation container of the present disclosure can be changed between the assembly state and the disassembly state. The assembled state is a state in which a heat insulating space surrounded by the top surface heat insulating panel, the bottom surface heat insulating panel, and the plurality of side heat insulating panels is formed, and the disassembled state is a state in which a heat insulating space is not formed. . The heat insulation container of the present disclosure can be changed from the assembled state to the disassembled state and from the disassembled state to the assembled state. The disassembly state includes a state in which at least one heat insulation panel is separated (separate state), and a state in which two or more heat insulation panels are folded while being coupled via some member (folded state).
 本開示の断熱容器は、分離して重ねるか、折り畳むことにより小さくした状態で、保管または輸送ができる。また、真空断熱材は厚みが薄くても断熱性が良好なので、真空断熱材を使用することによって、分解状態の断熱容器をより小型化できる。さらに、真空断熱材を使用することによって、断熱パネルを軽量化すること、および、組立状態の断熱容器の内容積を大きくすることができる。 The thermally insulated containers of the present disclosure can be stored or transported in a separated and stacked or collapsed state and smaller. In addition, since the vacuum heat insulating material has good thermal insulation even if the thickness is thin, the heat insulating container in a disassembled state can be further miniaturized by using the vacuum heat insulating material. Furthermore, by using a vacuum heat insulating material, the weight of the heat insulating panel can be reduced, and the internal volume of the heat insulating container in an assembled state can be increased.
 ここで、組立状態における断熱容器の外容積をVとし、内容積をVとした場合に、小型化指標=(V-V)/Vと定義する。外容積Vは、組立状態の断熱容器の外形から算出される容積であり、内容積Vは、組立状態の断熱容器の内形(断熱空間)から算出される容積であり、物品を収納可能な最大容積である。なお、小型化指標における(V-V)は、理想的な分解状態(内容積が0となるように断熱パネルを重ねた状態)における断熱容器の外容積に相当する。(V-V)の値を、組立状態の断熱容器の外容積Vで除することで、組立状態から分解状態へ変更した場合の小型化の指標となる。 Here, when the external volume of the heat insulation container in the assembled state is V A and the internal volume is V B , the miniaturization index is defined as (V A -V B ) / V A. The outer volume V A is a volume calculated from the outer shape of the heat insulation container in the assembled state, and the inner volume V B is a volume calculated from the inner shape (heat insulation space) of the heat insulation container in the assembled state. It is the largest possible volume. Note that (V A -V B ) in the miniaturization index corresponds to the outer volume of the heat insulation container in an ideal disassembly state (a state where heat insulation panels are stacked so that the internal volume is 0). By dividing the value of (V A -V B ) by the outer volume V A of the heat insulation container in the assembled state, it becomes an index of miniaturization in the case of changing from the assembled state to the disassembled state.
 (V-V)/Vの値は、例えば、1/3以下であってもよく、1/4以下であってもよい。(V-V)/Vの値が1/3である場合、組立状態の断熱容器1個の外容積と、分解状態の断熱容器3個の外容積とが同一になる。そのため、例えば、組立状態の断熱容器1個を載せていたパレットに、分解状態の断熱容器3個を載せた状態で保管または輸送が可能となる。小型化の観点では、(V-V)/Vの値は小さいほど好ましい。 The value of (V A −V B ) / V A may be, for example, 1/3 or less or 1/4 or less. When the value of (V A -V B ) / V A is 1/3, the external volume of one heat insulation container in the assembled state is equal to the external volume of three heat insulation containers in the disassembled state. Therefore, for example, it becomes possible to store or transport three heat insulation containers in a disassembled state on the pallet on which one heat insulation container in the assembled state is mounted. From the viewpoint of miniaturization, it is preferable that the value of (V A -V B ) / V A be as small as possible.
4.断熱容器
 本開示の断熱容器は、組立状態において、天面断熱パネル、底面断熱パネル、および複数の側面断熱パネルに囲まれた断熱空間を有する。断熱空間の容積は、通常、断熱容器の内容積と一致する。組立状態において、断熱容器の内容積は、例えば0.2m以上であることが好ましい。断熱容器の内容積が0.2m以上である場合、不使用時に小型化が求められる場合がある。
4. Thermal Insulation Container In the assembled state, the thermal insulation container of the present disclosure has a thermal insulation space surrounded by a top thermal insulation panel, a bottom thermal insulation panel, and a plurality of side thermal insulation panels. The volume of the heat insulation space usually corresponds to the internal volume of the heat insulation container. In the assembled state, the internal volume of the heat insulation container is preferably, for example, 0.2 m 3 or more. When the internal volume of the heat insulation container is 0.2 m 3 or more, miniaturization may be required when not in use.
 また、本開示の断熱容器は、使用時の断熱性が良く、不使用時に小型化できるため、大型の断熱容器にも適用可能であるという利点がある。さらに、大型の断熱容器は、より多くの物品を保管または輸送することが可能であるという利点がある。また、断熱容器の内容積が大きいほど、断熱パネル厚みが同一である場合における(V-V)/Vの値は小さくなるので、より小型化できるという利点がある。そのため、断熱容器の内容積は、0.3m以上にすることができ、0.5m以上であってもよく、0.8m以上であってもよい。なお、組立作業や分解作業がしやすいように、断熱容器の内容積は、8.0m以下にすることができる。 In addition, the heat insulation container of the present disclosure is excellent in heat insulation during use and can be miniaturized when not in use, and thus has an advantage of being applicable to a large heat insulation container. Furthermore, large thermal insulation containers have the advantage that more articles can be stored or transported. Further, the larger the internal volume of the heat insulation container, the smaller the value of (V A −V B ) / V A in the case where the heat insulation panel thickness is the same. Therefore, the internal volume of the heat insulating container can be in the 0.3 m 3 or more, may also be 0.5 m 3 or more, and may be 0.8 m 3 or more. In addition, the internal volume of the heat insulation container can be 8.0 m 3 or less so that assembly work and disassembly work can be easily performed.
 また、本開示の断熱容器は、組立状態において、天面断熱パネル、底面断熱パネルおよび複数の側面断熱パネルの少なくとも一つの断熱パネルが、開口部を形成可能にしてもよい。上記断熱パネルの少なくとも一つは、断熱パネル全体により開口部を形成可能であってもよく、断熱パネルの一部分により開口部を形成可能であってもよい。例えば、図1に示す断熱容器100の正面断面パネル150および天面断熱パネル160の各々は、二つの断熱パネル部を有し、二つの断熱パネル部の一方が、蝶番101により開閉可能な断熱パネルである。このように、上記断熱パネルの少なくとも一つは、複数の断熱パネル部を有し、部分的に開口部を形成可能な断熱パネルであってもよい。なお、図1に示す断熱容器100の正面断面パネル150の二つの断熱パネル部の各々および天面断熱パネル160の二つの断熱パネル部の各々は、真空断熱材を含む真空断熱部材を有している。 Also, the heat insulation container of the present disclosure may allow the top surface heat insulation panel, the bottom heat insulation panel, and at least one heat insulation panel of the plurality of side heat insulation panels to form an opening in an assembled state. At least one of the heat insulation panels may be capable of forming an opening by the entire heat insulation panel, or may be capable of forming an opening by a portion of the heat insulation panel. For example, each of the front cross section panel 150 and the top surface heat insulation panel 160 of the heat insulation container 100 shown in FIG. 1 has two heat insulation panel parts, and one of the two heat insulation panel parts can be opened and closed by a hinge 101. It is. Thus, at least one of the heat insulation panels may be a heat insulation panel having a plurality of heat insulation panel portions and capable of partially forming an opening. Each of the two heat insulation panels of the front cross section panel 150 of the heat insulation container 100 shown in FIG. 1 and each of the two heat insulation panels of the top heat insulation panel 160 have vacuum heat insulation members including a vacuum heat insulation material. There is.
 さらに、本開示においては、天面断熱パネル、底面断熱パネルおよび複数の側面断熱パネルの少なくとも二つの断熱パネルが、開口部を形成可能であることが好ましい。物品の出し入れに関する作業性が向上するためである。また、本開示においては、天面断熱パネル、底面断熱パネルおよび複数の側面断熱パネルの少なくとも二つの断熱パネルにより、連続した一つの開口部が形成可能であってもよい。広い開口部が形成可能であるため、物品の出し入れに関する作業性が向上する。 Furthermore, in the present disclosure, preferably, at least two heat insulation panels of the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels can form the opening. It is because the workability regarding the taking in and out of goods improves. Also, in the present disclosure, one continuous opening may be able to be formed by at least two heat insulation panels of the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels. Since a wide opening can be formed, the workability regarding the taking in and out of an article improves.
 断熱容器の一例について、図1、図8~図10を用いて説明する。図1は、上述したように、本開示の断熱容器を例示する概略斜視図である。図8は、図1に示す断熱容器の各断熱パネルを外している状態を例示する概略斜視図である。図9は、図8で外した断熱パネルを積層した状態(分解状態の断熱容器)を例示する概略斜視図である。図10は、図1に示す断熱容器を二段積みにした状態を例示する概略斜視図である。 An example of the heat insulating container will be described with reference to FIGS. 1 and 8 to 10. FIG. 1 is a schematic perspective view illustrating the heat insulation container of the present disclosure as described above. FIG. 8 is a schematic perspective view illustrating the heat insulation container shown in FIG. 1 with the heat insulation panels removed. FIG. 9 is a schematic perspective view illustrating a state (insulated container in a disassembled state) in which the heat insulation panels removed in FIG. 8 are stacked. FIG. 10 is a schematic perspective view illustrating a state in which the heat insulation containers shown in FIG. 1 are stacked in two stages.
 上述したように、図1に示す断熱容器100は、天面断熱パネル160、底面断熱パネル170、複数の側面断熱パネル110、および、爪孔501を有するパレット500を備える。一方、図8に示すように、断熱空間300が形成されている組立状態の断熱容器100は、右面断熱パネル120、左面断熱パネル130、背面断熱パネル140、正面断熱パネル150、天面断熱パネル160、底面断熱パネル170、およびパレット500をそれぞれ分離することによって、断熱空間300が形成されていない分解状態にすることが可能である。 As described above, the heat insulation container 100 shown in FIG. 1 includes the top surface heat insulation panel 160, the bottom surface heat insulation panel 170, the plurality of side heat insulation panels 110, and the pallet 500 having the claw holes 501. On the other hand, as shown in FIG. 8, the heat insulation container 100 in the assembled state in which the heat insulation space 300 is formed is the right heat insulation panel 120, the left heat insulation panel 130, the back heat insulation panel 140, the front heat insulation panel 150, and the top heat insulation panel 160. By separating the bottom heat insulation panel 170 and the pallet 500, respectively, it is possible to bring the heat insulation space 300 into a disassembled state in which the heat insulation space 300 is not formed.
 図8に示すように、側面断熱パネル110である正面断熱パネル150、左面断熱パネル130、背面断熱パネル140および右面断熱パネル120は、それぞれ保護部材150B、130B、140B、120B、および真空断熱部材150A、130A、140A、120Aを備える。天面断熱パネル160は保護部材160Bと真空断熱部材160Aを備える。底面断熱パネル170は真空断熱部材170Aを備える。図示しないが、真空断熱部材の各々は、真空断熱材を備える。 As shown in FIG. 8, the front thermal insulation panel 150, the left thermal insulation panel 130, the rear thermal insulation panel 140 and the right thermal insulation panel 120 which are the side thermal insulation panels 110 respectively have protective members 150 B, 130 B, 140 B, 120 B, and a vacuum thermal insulation member 150 A. , 130A, 140A, 120A. The top heat insulation panel 160 includes a protection member 160B and a vacuum heat insulation member 160A. The bottom heat insulation panel 170 includes a vacuum heat insulation member 170A. Although not shown, each of the vacuum insulation members comprises a vacuum insulation.
 図1および図8に示すように、右面断熱パネル120、左面断熱パネル130、および正面断熱パネル150は、断熱パネルの左側および右側の端部にそれぞれ、断熱パネルの上側である天面断熱パネル側の端部から断熱パネルの下側である底面断熱パネル側の端部まで連続的に延びる、縦枠310を備えている。図示しないが、背面断熱パネル140も同様である。組立状態で接合された断熱パネルどうしが縦枠310により動きにくくなるので、気密性が向上する。また、縦枠310は、断熱パネルの自重や天面側からの荷重を支持する柱や壁としての役割を果たす。縦枠は金属製でもプラスチックや木材等の非金属製でもよい。金属製の縦枠を用いることで、断熱容器の耐荷重性をより向上させて、気密性を低下し難くすることができる。金属製の縦枠を用いた場合、縦枠を保護部材に配置することによって、金属製の縦枠が断熱空間300に接触しなくなり、断熱容器の断熱性の低下を抑制できる。 As shown in FIGS. 1 and 8, the right heat insulation panel 120, the left heat insulation panel 130, and the front heat insulation panel 150 are on the top heat insulation panel side which is the upper side of the heat insulation panel at the left and right ends of the heat insulation panel. A vertical frame 310 extends continuously from the end of the frame to the end on the bottom heat insulation panel side which is the lower side of the heat insulation panel. Although not shown, the rear heat insulating panel 140 is also the same. Since the thermal insulation panels joined in the assembled state are less likely to move due to the vertical frame 310, the airtightness is improved. In addition, the vertical frame 310 plays a role as a pillar or a wall that supports the weight of the heat insulation panel and the load from the top surface side. The vertical frame may be made of metal or nonmetal such as plastic or wood. By using the metal vertical frame, the load resistance of the heat insulation container can be further improved, and the airtightness can be hardly reduced. When a metal vertical frame is used, by arranging the vertical frame on the protective member, the metal vertical frame does not contact the heat insulation space 300, and it is possible to suppress the decrease in the heat insulation of the heat insulation container.
 図1および図8に示すように、右面断熱パネル120、左面断熱パネル130および正面断熱パネル150は、断熱パネルの上側および下側の端部にそれぞれ、断熱パネルの右側の端部から断熱パネルの左側の端部まで連続的に延びる、横枠320を備えている。また、正面断熱パネル150は、断熱パネルの中央付近に断熱パネルの右側の端部から断熱パネルの左側の端部まで連続的に延びる、横枠(図示しない)も備えている。さらに、天面断熱パネル160は、断熱パネルの上側、下側、左側、右側の端部にそれぞれ、断熱パネルの一方の端部からもう一方の端部まで連続的に延びる、横枠320を備えている。組立状態で接合された断熱パネルどうしが横枠320により動きにくくなるので、気密性が向上する。横枠は金属製でもプラスチックや木材等の非金属製でもよい。金属製の横枠を用いることで、断熱容器の耐荷重性をより向上させて、気密性を低下し難くすることができる。金属製の横枠を用いた場合、横枠を保護部材に配置することによって、金属製の横枠が断熱空間300に接触しないので、断熱容器の断熱性の低下を抑制できる。 As shown in FIGS. 1 and 8, the right thermal insulation panel 120, the left thermal insulation panel 130, and the front thermal insulation panel 150 are respectively provided at the upper and lower ends of the thermal insulation panel from the right side of the thermal insulation panel. A transverse frame 320 is provided which extends continuously to the left end. The front thermal insulation panel 150 also includes a transverse frame (not shown) extending continuously from the right end of the thermal insulation panel to the left end of the thermal insulation panel near the center of the thermal insulation panel. Furthermore, the top heat insulation panel 160 has horizontal frames 320 continuously extending from one end of the heat insulation panel to the other end at the upper, lower, left, and right ends of the heat insulation panel, respectively. ing. Since the heat insulating panels joined in the assembled state are less likely to move due to the horizontal frame 320, the airtightness is improved. The horizontal frame may be made of metal or nonmetal such as plastic or wood. By using the metal horizontal frame, the load resistance of the heat insulation container can be further improved, and the airtightness can be hardly reduced. When the metal horizontal frame is used, the metal horizontal frame does not contact the heat insulation space 300 by arranging the horizontal frame on the protective member, so that the heat insulation deterioration of the heat insulation container can be suppressed.
 一方、図9に示すように、分解状態の断熱容器100は、例えば、真空断熱部材170Aを有する底面断熱パネル170が置かれ、その上に、左面断熱パネル130が、下側を真空断熱部材130A、上側を保護部材130Bとなる向きで重ねられ、その上に、背面断熱パネル140が、下側を保護部材140B、上側を真空断熱部材140Aとなる向きで重ねられる。さらに、その上に、右面断熱パネル120が、下側を真空断熱部材120A、上側を保護部材120Bとなる向きで重ねられ、その上に、正面断熱パネル150が、下側を保護部材150B、上側を真空断熱部材150Aとなる向きで重ねられ、最後に、天面断熱パネル160が、下側を真空断熱部材160A、上側を保護部材160Bとなる向きで重ねられている。分解状態の断熱容器100の最上側を保護部材とすることで、真空断熱材を保護することできる。 On the other hand, as shown in FIG. 9, in the heat insulation container 100 in the disassembled state, for example, the bottom heat insulation panel 170 having the vacuum heat insulation member 170A is placed, and the left heat insulation panel 130 is placed thereon. The rear heat insulating panel 140 is stacked on the lower side in the direction of the protective member 140B and the upper side of the rear heat insulating panel 140 in the direction of the vacuum heat insulating member 140A. Furthermore, the right side heat insulation panel 120 is stacked on the lower side in the direction of the vacuum heat insulation member 120A and the upper side being the protection member 120B, and the front heat insulation panel 150 is formed on the lower side as the protection member 150B. And the top surface heat insulation panel 160 is finally stacked so that the lower side is the vacuum heat insulation member 160A and the upper side is the protection member 160B. By using the uppermost side of the heat insulation container 100 in the disassembled state as a protective member, the vacuum heat insulating material can be protected.
 また、図1および図8に示すように、断熱容器100が、縦枠310を備える場合、側面断熱パネルの自重や、二段積みされた断熱容器の下段の断熱容器が受ける天面側からの荷重を支えることができ、組立状態で断熱パネルどうしの接合が自重や過重により動いて気密性が低下することや真空断熱材が破損することを抑制できる。具体的には、縦枠310を設けることによって、図10に示すように、断熱容器100に同じ仕様の断熱容器100Aを上側に積み上げた状態で保管や運送ができるようにしてもよい。耐荷重性をより向上させて、気密性を低下し難くするために、縦枠に加えて横枠を設けることもできる。 Further, as shown in FIGS. 1 and 8, when the heat insulation container 100 includes the vertical frame 310, the weight of the side heat insulation panel or the top surface side received by the heat insulation container at the lower end of the two-tiered heat insulation container. The load can be supported, and in the assembled state, the bonding of the heat insulating panels can be moved by its own weight or excessive weight to reduce the airtightness or damage of the vacuum heat insulating material. Specifically, by providing the vertical frame 310, as shown in FIG. 10, storage and transportation may be performed in a state where the heat insulation container 100A of the same specification is stacked on the heat insulation container 100 at the upper side. In addition to the vertical frame, a horizontal frame may be provided in order to further improve the load resistance and make it difficult to reduce the air tightness.
 なお、本開示の断熱容器は、パレットを備えていてもよく、備えていなくてもよい。前者の場合、パレットは、断熱容器の底面断熱パネルの断熱空間とは反対のパネル面側に位置することが好ましい。パレット付きの断熱容器は、フォークリフトおよびハンドリフト等により容易に移動させることができるので、移動作業中に真空断熱材を誤って破損させる危険性が低減する。断熱容器の底面断熱パネルは、パレットに接合されていてもよく、パレットから分離可能であってもよい。 The heat insulation container of the present disclosure may or may not include the pallet. In the former case, the pallet is preferably located on the side opposite to the heat insulation space of the bottom heat insulation panel of the heat insulation container. Insulated containers with pallets can be easily moved by forklifts and handlifts, etc., thus reducing the risk of accidentally damaging the vacuum insulation during moving operations. The bottom insulation panel of the insulation container may be joined to the pallet and may be separable from the pallet.
6.その他
 断熱容器の他の例について、図11および図12を用いて説明する。図11は、本開示の断熱容器の組立工程を例示する概略斜視図である。図12は、図11で説明した断熱容器を搬送用かごに配置した状態を例示する概略斜視図である。
6. Others Another example of the heat insulation container will be described using FIGS. 11 and 12. FIG. 11 is a schematic perspective view illustrating the assembly process of the heat insulation container of the present disclosure. FIG. 12 is a schematic perspective view illustrating a state in which the heat insulation container described in FIG.
 図11(a)に示すように、分解状態(折り畳み状態)の断熱容器100は、右側(+Y側)から順に、正面断熱パネル150、右面断熱パネル120、背面断熱パネル140、底面断熱パネル170、天面断熱パネル160、左面断熱パネル130が積層された状態であり、右面断熱パネル120、背面断熱パネル140、底面断熱パネル170、天面断熱パネル160、左面断熱パネル130の積層体の上面(+Z側の面)、底面(-Z側の面)、左右側面(+Y及び-Y側の面)、背面(-X側の面)を囲むようにして外装部材180が配置されている。また、外装部材180の上面、底面、背面は、その一部が、天面断熱パネル160と左面断熱パネル130との間に折り畳まれている。なお、正面断熱パネル150は、外装部材180を介して右面断熱パネル120の右側(+Y側)に折り重ねられている。 As shown in FIG. 11 (a), the heat insulation container 100 in the disassembled state (folded state) is, in order from the right side (+ Y side), the front heat insulation panel 150, the right heat insulation panel 120, the back heat insulation panel 140, the bottom heat insulation panel 170, The top surface heat insulation panel 160 and the left surface heat insulation panel 130 are stacked, and the upper surface (+ Z of the stack of the right surface heat insulation panel 120, the back surface heat insulation panel 140, the bottom surface heat insulation panel 170, the top surface heat insulation panel 160, and the left surface heat insulation panel 130) The exterior member 180 is disposed so as to surround the side surface), the bottom surface (the surface on the -Z side), the left and right side surfaces (the surfaces on the + Y and -Y sides), and the back surface (the surface on the -X side). In addition, the upper surface, the bottom surface, and the back surface of the exterior member 180 are partially folded between the top heat insulation panel 160 and the left heat insulation panel 130. The front heat insulation panel 150 is folded on the right side (+ Y side) of the right heat insulation panel 120 via the exterior member 180.
 まず、図11(a)に示すように、左面断熱パネル130を左側(-Y側)へ移動して(矢印A)、折り畳まれた外装部材180の上面、底面、背面を展開する。次に、図11(b)に示すように、外装部材180内において、天面断熱パネル160を左上側へ開いて(矢印B)、外装部材180の天面に沿うようにして配置する。さらに、底面断熱パネル170を左下側へ開いて(矢印C)、外装部材180の底面に沿うようにして配置する。さらに、右面断熱パネル120に積層された背面断熱パネル140を、後側(-X側)端縁を支点にして、前側(+X側)端縁を左後側へ倒して(矢印D)、外装部材180の背面に沿うようにして配置する。最後に、図11(c)に示すように、右面断熱パネル120に折り重ねられた正面断熱パネル150を折り返して(矢印E)、断熱容器100が完成する。このようにして、分解状態(折り畳み状態)から組立状態へ変更することが可能である。また、逆の手順により、組立状態から分解状態(折り畳み状態)へ変更することも可能である。 First, as shown in FIG. 11A, the left heat insulation panel 130 is moved to the left (−Y side) (arrow A), and the top, bottom, and back of the folded exterior member 180 are developed. Next, as shown in FIG. 11B, in the exterior member 180, the top surface heat insulation panel 160 is opened to the upper left side (arrow B), and is disposed along the top surface of the exterior member 180. Furthermore, the bottom heat insulation panel 170 is opened to the lower left side (arrow C), and is arranged along the bottom of the exterior member 180. Furthermore, with the back heat insulation panel 140 stacked on the right heat insulation panel 120, with the back (-X side) edge as a fulcrum, the front (+ X side) edge is turned to the left back (arrow D) It arranges along the back of member 180. Finally, as shown in FIG. 11C, the front heat insulation panel 150 folded on the right heat insulation panel 120 is folded back (arrow E), and the heat insulation container 100 is completed. In this way, it is possible to change from the disassembled state (folded state) to the assembled state. It is also possible to change from the assembled state to the disassembled state (folded state) by the reverse procedure.
 図11に示す断熱容器100は、右面断熱パネル120、左面断熱パネル130、背面断熱パネル140、天面断熱パネル160、底面断熱パネル170は、真空断熱材を含む真空断熱部材を有する真空断熱パネルである。また、正面断熱パネル150が部分的に開閉可能な構造である断熱容器100は、正面断熱パネル150を閉じた状態にすることによって、四角柱構造の組立状態になり、断熱パネルに囲まれた断熱空間をその容器内部に形成することが可能である。また、図11に示す断熱容器100は、組立状態において、換気回数が特定の値以下である。 The heat insulation container 100 shown in FIG. 11 is a vacuum heat insulation panel having a vacuum heat insulation member including a right heat insulation panel 120, a left heat insulation panel 130, a back heat insulation panel 140, a top heat insulation panel 160 and a bottom heat insulation panel 170. is there. Further, the heat insulation container 100 having a structure in which the front heat insulation panel 150 can be partially opened and closed is brought into an assembled state of a quadrangular prism structure by closing the front heat insulation panel 150 and the heat insulation surrounded by the heat insulation panel. It is possible to form a space inside the container. Further, in the heat insulation container 100 shown in FIG. 11, the ventilation frequency is equal to or less than a specific value in the assembled state.
 図12に示すように、図11で説明した断熱容器100は搬送用かご250上に配置されており、搬送用かご250により、物品を収納した断熱容器100を自在に搬送することができる。図12に示す搬送用かご250は、断熱容器100を載置する台車部251と、断熱容器100における対向する側面を保持する柵部252と、台車部251の各角部に位置する車輪251aとを有する。 As shown in FIG. 12, the heat insulating container 100 described in FIG. 11 is disposed on the transfer cage 250, and the transfer cage 250 can freely transfer the heat insulating container 100 containing articles. The transport car 250 shown in FIG. 12 includes a carriage portion 251 on which the heat insulation container 100 is placed, a fence portion 252 holding opposite side surfaces of the heat insulation container 100, and wheels 251a located at each corner of the carriage portion 251. Have.
 本開示の断熱容器の外周形状や各寸法は、特に限定されない。本開示の断熱容器は、各寸法がcmオーダーのものであってもよいし、各寸法の一つ以上が1m以上のものであってもよい。断熱容器の側面断熱パネルの外周形状の具体例としては、組立状態の断熱容器を天面側から見た場合に、縦幅および横幅がそれぞれ1000mm以上かつ1200mm以下の四辺形、縦幅が1119mm以上かつ1319mm以下で横幅が916mm以上かつ1116mm以下の四辺形、縦幅が1100mm以上かつ1300mm以下で横幅が900mm以上かつ1100mm以下の四辺形、縦幅が1100mm以上かつ1300mm以下で横幅が700mm以上かつ900mm以下の四辺形、縦幅および横幅がそれぞれ1065mm以上かつ1265mm以下の四辺形を挙げることができる。側面断熱パネルの形状を各国の標準的なパレットの形状に適した寸法にすることによって、輸送や保管の効率化を図ることができる。なお、断熱容器の側面断熱パネルの外周形状の高さとしては、例えば、300mm以上とすることができ、500mm以上であってもよく、700mm以上であってもよい。また、断熱容器の側面断熱パネルの外周形状として、例えば、組立状態の断熱容器を天面側から見た場合に、縦幅が795mm以上かつ995mm以下で横幅が644mm以上かつ844mm以下の四辺形としてもよい。標準的な台車の形状に適した寸法にすることによって、輸送や保管の効率化を図ることができる。また、本開示の断熱容器は、例えば物流分野において、保冷または保温が必要な物品の保管または輸送に使用されることが好ましい。 The outer peripheral shape and each dimension of the heat insulation container of this indication are not specifically limited. The heat insulation container of the present disclosure may have a size on the order of cm, or one or more of the sizes may be 1 m or more. As a specific example of the outer peripheral shape of the side heat insulation panel of the heat insulation container, when the heat insulation container in the assembled state is seen from the top surface side, the vertical width and the horizontal width are respectively a quadrangle of 1000 mm or more and 1200 mm or less And 1319 mm or less quadrilateral of 916 mm or more and 1116 mm or less, vertical width of 1100 mm or more and 1300 mm or less quadrilateral of 900 mm or more and 1100 mm or less, vertical width of 1100 mm or more and 1300 mm or less and horizontal width of 700 mm or more and 900 mm The following quadrilaterals may be mentioned: quadrilaterals each having a longitudinal width and a lateral width of 1065 mm or more and 1265 mm or less. By making the shape of the side heat insulation panel suitable for the shape of the standard pallet of each country, it is possible to improve the efficiency of transportation and storage. The height of the outer peripheral shape of the side heat insulation panel of the heat insulation container can be, for example, 300 mm or more, may be 500 mm or more, and may be 700 mm or more. In addition, as the outer peripheral shape of the side heat insulation panel of the heat insulation container, for example, when the heat insulation container in the assembled state is viewed from the top surface side, a quadrilateral having a vertical width of 795 mm to 995 mm and a horizontal width of 644 mm to 844 mm It is also good. By making the dimensions suitable for the shape of a standard carriage, transportation and storage can be made more efficient. Moreover, it is preferable that the heat insulation container of this indication is used for storage or transport of the articles | goods which need cold insulation or heat retention, for example in the distribution field.
7.実験例
 本開示の断熱容器の具体例の一つを作製して、上述の方法で換気回数および保冷時間を測定した。本具体例では、断熱容器は、図1および図2に示す構成とし、1辺の内寸が縦幅1010mm×横幅1010mm×高さ740mmの直方体形状とした。断熱容器の各々の真空断熱パネルでは、第一断熱材として厚み6mmの真空断熱材(芯材としてグラスウール、熱伝導率0.003W/mK)、第二断熱材として厚み15mmの発泡断熱材(XPS:押出発泡ウレタン、熱伝導率0.036W/mK)、ならびに第一断熱材および第二断熱材の全周を覆う遮熱シートとして厚み1mmのアルミニウム蒸着層付きプラスチックシートを用いた。また、断熱容器では、保護部材として厚み1mmのポリエチレンシート、および縦枠および横枠としてアルミニウムを用いた。断熱容器の換気回数の上述の方法による測定値は0.034回/hrであり、上述の方法による75.5kgの水の保冷時間の測定値は13.6hrであり、断熱容器が良好な断熱性を示すことを確認した。
7. EXPERIMENTAL EXAMPLE One of the specific examples of the heat insulation container of this indication was produced, and the ventilation frequency and the cold storage time were measured by the above-mentioned method. In this specific example, the heat insulating container has a configuration shown in FIGS. 1 and 2, and has a rectangular parallelepiped shape with an inner dimension of one side of 1010 mm long × 1010 mm wide × 740 mm high. In each vacuum heat insulation panel of the heat insulation container, a 6 mm thick vacuum heat insulating material (glass wool as a core material, thermal conductivity 0.003 W / m K) as a first heat insulating material, a 15 mm thick foamed heat insulating material (XPS as a second heat insulating material) : A 1 mm thick plastic sheet with an aluminum vapor deposition layer was used as a heat shielding sheet covering the entire circumference of an extruded foam urethane, a thermal conductivity of 0.036 W / mK), and the first heat insulating material and the second heat insulating material. In the heat insulation container, a polyethylene sheet having a thickness of 1 mm was used as a protective member, and aluminum was used as a vertical frame and a horizontal frame. The measured value of the ventilation frequency of the heat insulation container by the above-mentioned method is 0.034 times / hr, the measurement value of the cooling time of the water of 75.5 kg by the above-mentioned method is 13.6 hr, and the heat insulation container is a good heat insulation It confirmed that it showed sex.
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本開示の特許請求の範囲に記載された技術的思想と、実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる場合であっても本開示の技術的範囲に包含される。 The present disclosure is not limited to the above embodiment. The above-described embodiment is an exemplification, and the technical idea described in the claims of the present disclosure has substantially the same configuration as that of the technical idea described in the claims of the present disclosure, and exhibits the same operation and effect as the present invention in any case. It is included in the technical scope of the disclosure.
B.シミュレーション
 以下、シミュレーションによる保冷時間と換気回数との関係について説明する。
B. Simulation In the following, the relationship between the cooling time and the ventilation frequency by simulation is described.
 断熱容器の外部の温度が高く、断熱容器の内部の温度が低い場合、所定の時間t[hr]の間に断熱容器の外部から内部に流入する熱量Q[J]は、下記の式(1)で示すことができる。
 Q=(q+q)×t   式(1)
 ここで、qは、断熱容器を構成する断熱パネルを通って流入する単位時間当たりの熱量[J/hr]であり、qは、断熱容器の断熱パネルどうしの間等の隙間を通って流入する単位時間当たりの熱量[J/hr]である。
When the temperature outside the heat insulation container is high and the temperature inside the heat insulation container is low, the heat quantity Q [J] flowing from the outside to the inside of the heat insulation container during a predetermined time t [hr] is expressed by the following equation (1 It can be shown in).
Q = (q A + q B ) × t formula (1)
Here, q A is the amount of heat per unit time [J / hr] flowing through the heat insulating panel constituting the heat insulating container, and q B passes through the gap between the heat insulating panels of the heat insulating container, etc. It is the heat quantity [J / hr] per unit time which flows in.
 断熱容器を構成する断熱パネルを通って流入する単位時間当たりの熱量q[J/hr]は、下記の式(2)で示すことができる。
 q=U×L×T×3600   式(2)
 ここで、Uは、断熱容器を構成する各々の断熱パネルの熱貫流率[W/mK]の平均であり、Lは、断熱容器の内部側の表面積[m]であり、Tは、断熱容器の内部と外部の温度差[K]である。
The heat quantity q A [J / hr] per unit time flowing in through the heat insulation panel constituting the heat insulation container can be expressed by the following equation (2).
q A = U x L x T x 3600 Formula (2)
Here, U is the average of the heat transmission coefficient [W / m 2 K] of each heat insulation panel constituting the heat insulation container, L is the surface area of the inner side of the heat insulation container [m 2 ], and T is The temperature difference [K] between the inside and the outside of the heat insulation container.
 断熱容器の断熱パネルどうしの間等の隙間を通って流入する単位時間当たりの熱量q[J/hr]は、下記の式(3)で示すことができる。
 q=D×V×a×C×T   式(3)
 ここで、Dは、換気回数[回/hr]であり、Vは、断熱容器の内容積[m]であり、aは、環境係数であり、Cは、空気の熱容量[J/mK]であり、Tは、断熱容器の内部と外部の温度差[K]である。本シミュレーションでは、環境係数5.34、空気の比熱容量1.0J/gK、空気の密度1.3×10g/mとした。
The amount of heat q B [J / hr] per unit time flowing in through the gap between the heat insulation panels of the heat insulation container can be expressed by the following equation (3).
q B = D x V x a x C x T Formula (3)
Here, D is the number of times of ventilation [times / hr], V is the internal volume of the insulation container [m 3 ], a is an environmental coefficient, and C is the heat capacity of air [J / m 3 K], and T is a temperature difference [K] between the inside and the outside of the heat insulation container. In this simulation, the environmental coefficient is 5.34, the specific heat capacity of air is 1.0 J / gK, and the density of air is 1.3 × 10 3 g / m 3 .
 なお、環境係数aは、断熱容器の外部と内部の温度差や断熱容器の外部の風速等の環境要因の影響を反映させるための乗率である。断熱容器の断熱パネルどうしの間等の隙間を通って流入する空気の移動は、断熱パネルどうしの間の大きさや形状等の断熱容器自体の要因だけでなく、環境要因の影響も受けるためである。環境係数aは、次の手順で決定した。断熱容器を温度制御せずに密閉した部屋内に設置して、断熱容器の通常の換気回数を測定した。保冷材を入れて内部を約10℃に保った状態の断熱容器を、35℃~40℃(湿度無制御)に設定し、かつ、換気状態の環境試験室内に設置して、断熱容器の環境試験の換気回数を測定した。断熱容器の環境試験の換気回数を断熱容器の通常の換気回数で除することにより、環境係数を求めた。 The environmental coefficient a is a multiplication factor for reflecting the influence of environmental factors such as the temperature difference between the outside and the inside of the heat insulation container and the wind speed outside the heat insulation container. This is because the movement of the air flowing in through the gaps between the heat insulation panels of the heat insulation container is influenced not only by the factors of the heat insulation container itself such as the size and shape of the heat insulation panels but also by environmental factors. . The environmental factor a was determined by the following procedure. The thermal insulation container was placed in a sealed room without temperature control to measure the normal ventilation frequency of the thermal insulation container. Set the insulation container in a state where the inside is kept at about 10 ° C with a cold storage material set at 35 ° C to 40 ° C (no humidity control), and install it in a ventilated environmental test room to set the environment of the insulation container. The ventilation rate of the test was measured. The environmental factor was determined by dividing the ventilation frequency of the environmental test of the heat insulation container by the normal ventilation frequency of the heat insulation container.
 断熱容器は、全ての面が断熱パネルに囲まれた1辺の内寸が1mの立方体(内側の表面積Lが6m、内容積Vが1m)を設定した。また、断熱パネルは、押出発泡ポリスチレン(XPS、熱伝導率0.036W/mK、厚み15mm)、真空断熱材(熱伝導率0.003W/mK、厚み5mm)、押出発泡ポリスチレン(XPS、熱伝導率0.036W/mK、厚み15mm)の三層構造を設定した。なお、この断熱パネルの熱貫流率Uは、0.4(W/mK)である。 The heat insulation container set the cube (inner surface area L is 6 m < 2 >, internal volume V is 1 m < 3 >) of 1 mm of internal dimensions of one side which all surfaces were enclosed by the heat insulation panel. In addition, the heat insulation panel is extruded foam polystyrene (XPS, thermal conductivity 0.036 W / mK, thickness 15 mm), vacuum heat insulating material (thermal conductivity 0.003 W / m K, thickness 5 mm), extruded foam polystyrene (XPS, heat conductive A three-layer structure with a rate of 0.036 W / mK and a thickness of 15 mm was set. The heat transmission coefficient U of this heat insulating panel is 0.4 (W / m 2 K).
 断熱容器の使用状態は、断熱容器の内部に保冷材(単位重量当たりの潜熱量320kJ/kg)8kgを入れて、断熱容器の内部と外部の温度差が30Kの環境に断熱容器が設置されている状態を設定した。なお、この設定は、例えば、日本の夏(気温30℃~35℃)に断熱内部が保冷材で冷蔵温度帯(0℃~5℃)に保持されている状態が想定できる。 In the use condition of the heat insulation container, 8 kg of cold storage material (latent heat amount of 320 kJ / kg per unit weight) is put inside the heat insulation container, and the heat insulation container is installed in an environment where the temperature difference between inside and outside of the heat insulation container is 30K. Was set. In this setting, for example, it is possible to assume a state in which the inside of the heat insulation is kept in the cold storage temperature zone (0 ° C. to 5 ° C.) with a cold storage material in summer of Japan (air temperature 30 ° C.
 上記より、保冷時間と換気回数との関係について、シミュレーションを行なった。保冷時間t[hr]は、断熱容器の外部から内部に流入する熱量Q[J]が、断熱容器の内部の保冷材の潜熱量2560kJに達した時間とした。0.001回/hr~10回/hrの範囲に対数軸で概ね偏りなく換気回数を設定し、設定した換気回数ごとに保冷時間をそれぞれ計算し、計算値より最小二乗法で近似曲線を求めた。 From the above, a simulation was performed on the relationship between the time for keeping cold and the number of times of ventilation. The cold storage time t [hr] is a time when the heat quantity Q [J] flowing from the outside of the heat insulation container into the inside reaches the latent heat quantity 2560 kJ of the cold storage material inside the heat insulation container. The ventilation frequency is set almost without bias on the logarithmic axis in the range of 0.001 times / hr to 10 times / hr, the cooling time is calculated for each set number of ventilation times, and the approximate curve is calculated by the least squares method from the calculated value. The
 図13は、真空断熱材の厚みが5.0mmのシミュレーションの結果である。換気回数が0.1回/hrである場合、換気回数が0.001回/hrである場合(気密性が極めて高い場合)に近い保冷時間を実現できた。これに対して、換気回数が0.1回/hrより大きい場合、換気回数が大きくなるほど、保冷時間の低下が顕著であった。すなわち、換気回数が0.1回/hrより大きい場合、換気回数(気密性)が僅かに変動すると、保冷時間に大きな影響を与えるが、換気回数が0.1回/hr以下である場合、換気回数(気密性)が多少変動しても、保冷時間に与える影響は少なく、保冷時間は安定していた。この傾向は、真空断熱材の厚みが5.0mmである場合に限られず、図14に示すように、真空断熱材の厚みが変わっても同様であった。なお、真空断熱材の厚みを変えた以外は、シミュレーションの条件は同じとし、各々の真空断熱材の厚みが、aでは0.5mm、bでは2.5mm、cでは5.0mm、dでは7.5mm、eでは10.0mm、fでは12.5mmの場合の結果である。 FIG. 13 shows the result of simulation in which the thickness of the vacuum heat insulating material is 5.0 mm. When the ventilation frequency is 0.1 times / hr, a cooling time close to the case where the ventilation frequency is 0.001 / hr (when the airtightness is extremely high) can be realized. On the other hand, when the ventilation frequency was more than 0.1 times / hr, the decrease in the cooling time was remarkable as the ventilation frequency increased. That is, when the ventilation frequency is more than 0.1 times / hr, slight fluctuation of the ventilation frequency (airtightness) has a great influence on the cooling time, but when the ventilation frequency is 0.1 times / hr or less, Even if the number of times of ventilation (airtightness) fluctuated, the influence on the cooling time was small, and the cooling time was stable. This tendency is not limited to the case where the thickness of the vacuum heat insulating material is 5.0 mm, and as shown in FIG. 14, it was the same even if the thickness of the vacuum heat insulating material changed. The simulation conditions are the same except that the thickness of the vacuum heat insulating material is changed, and the thickness of each vacuum heat insulating material is 0.5 mm for a, 2.5 mm for b, 5.0 mm for c, and 7 for d The results for .5 mm, e are 10.0 mm, and f is 12.5 mm.
 断熱容器の外部から内部に流入する熱量Qは、断熱容器を構成する断熱パネルを通って流入する熱量Qと断熱容器の断熱パネルどうしの間等の隙間を通って流入する熱量Qの和である。保冷時間を安定させるためには、Qが保冷時間に与える影響をQが保冷時間に与える影響よりも十分に小さくすればよい。Qが保冷時間に与える影響よりも十分に小さいQの値は、Qの値に依存し、Qの値が大きければ比較的大きくてもよく、Qの値が小さければ比較的小さいことが必要になる。したがって、真空断熱材の使用によりQの値を小さくした断熱容器では、Qの値も相応に小さくしなければ、保冷時間は安定しない。上記のシミュレーションの結果より、真空断熱材を用いた断熱容器の性能を十分に発揮させるのは、換気回数が0.1回/hr以下の断熱容器であることがわかる。すなわち、組立状態と、分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器においては、換気回数が0.1回/hr以下であることが、気密性に起因する断熱容器の断熱性の低下を抑制するうえで重要であることが確認できた。 Heat Q T which flows from the outside to the inside of the heat insulating container, the heat quantity Q B flowing through the gap, such as between the insulation panels to each other in the heat Q A and the heat insulating container which flows through the insulation panel constituting the heat insulating container It is a sum. To stabilize the cold time, the effect of Q B gives the cold time Q A may be sufficiently smaller than the impact on the cold time. The value of Q A is sufficiently small Q B than impact on cold time depends on the value of Q A, it may be relatively large A high value of Q A, a relatively smaller value of Q A It needs to be small. Therefore, in the heat insulating container having a smaller value of Q A by use of the vacuum heat insulating material, unless the value is also correspondingly small Q B, the cold time is not stable. From the above simulation results, it can be seen that it is the heat insulation container having a ventilation frequency of not more than 0.1 times / hr that can sufficiently exhibit the performance of the heat insulation container using the vacuum heat insulating material. That is, the heat insulation container can be changed between the assembled state and the disassembled state, and in the heat insulation container using the vacuum heat insulating material, the air insulation frequency is 0.1 times / hr or less due to the airtightness. It has been confirmed that it is important to suppress the decrease in heat insulation of
 一方、図13において、換気回数が0.02回/hrである場合、換気回数が0.001回/hrである場合(気密性が極めて高い場合)と、ほぼ同じ保冷時間であった。この傾向は、真空断熱材の厚みが5mmである場合に限られず、図14に示すように、真空断熱材の厚みが変わっても、同様であった。すなわち、断熱容器の断熱性向上を図る場合、換気回数を0.02回/hrよりも低くすることよりも(気密性を過度に高めるよりも)、断熱パネルの断熱性向上を図ることが有効であることが示唆された。 On the other hand, in FIG. 13, when the ventilation frequency was 0.02 / hr, the same cold-sinking time was obtained as when the ventilation frequency was 0.001 / hr (when the airtightness was extremely high). This tendency is not limited to the case where the thickness of the vacuum heat insulating material is 5 mm, and as shown in FIG. 14, it was the same even if the thickness of the vacuum heat insulating material changed. That is, in order to improve the heat insulation property of the heat insulation container, it is effective to improve the heat insulation property of the heat insulation panel (rather than excessively improving the airtightness) than setting the ventilation frequency lower than 0.02 times / hr. Was suggested.
 また、図13および図14における各曲線の傾きより、図15および図16に示すように、換気回数の常用対数における保冷時間の変化率を求める。換気回数の常用対数における保冷時間の変化率が-1となる換気回数の断熱容器は、換気回数の常用対数における保冷時間の変化率が小さいので、断熱パネルの断熱性能が適切に発揮されている状態と言える。そのため、断熱パネルの断熱性を発揮させる観点より、換気回数の常用対数における保冷時間の変化率が-1となる換気回数をその断熱パネルを備えた断熱容器の換気回数の上限とすることが好ましい。 Further, as shown in FIG. 15 and FIG. 16, the change rate of the cold storage time in the common logarithm of the ventilation frequency is determined from the slope of each curve in FIG. 13 and FIG. 14. The insulation container of ventilation frequency where change rate of cooling time in common logarithm of ventilation frequency is -1, change rate of cold storage time in common logarithm of ventilation frequency is small, so the insulation performance of heat insulation panel is properly exhibited It can be said that it is a state. Therefore, from the viewpoint of exhibiting the heat insulating property of the heat insulation panel, it is preferable to set the ventilation frequency at which the change rate of the cooling time in the common logarithm of the ventilation frequency is -1 as the upper limit of the ventilation frequency of the heat insulation container provided with the heat insulation panel. .
 また、気密性の影響だけを考慮すると、真空断熱材の厚みが厚くなるほど、目的とする換気回数が低くなり、一見すると、真空断熱材が厚いほど、高い気密性が要求されるようにも見える。しかしながら、実際には、真空断熱材が厚くなるほど、断熱パネルの断熱性は向上し、断熱容器としての断熱性も向上する。例えば、本シミュレーションでは、図14において、真空断熱材の厚みが12.5mmであり、換気回数が0.1回/hrである場合、保冷時間は17時間もあり、この値は、真空断熱材の厚みが10.0mmであり、換気回数が0.001回/hrである場合の保冷時間を上回っている。このように、真空断熱材が厚くなるほど、断熱パネルの断熱性の影響が優位になり、断熱容器としての断熱性も向上する。 In addition, considering only the effect of air tightness, the thicker the vacuum heat insulating material, the lower the target ventilation frequency. At first glance, the thicker the vacuum heat insulating material, the higher air tightness seems to be required. . However, in fact, as the vacuum heat insulating material is thicker, the heat insulating property of the heat insulating panel is improved, and the heat insulating property as the heat insulating container is also improved. For example, in this simulation, in FIG. 14, when the thickness of the vacuum heat insulating material is 12.5 mm and the ventilation frequency is 0.1 times / hr, the cold storage time is 17 hours, and this value is the vacuum heat insulating material. Of a thickness of 10.0 mm and a ventilation frequency of 0.001 / hr. Thus, as the vacuum heat insulating material is thicker, the influence of the heat insulating property of the heat insulating panel becomes dominant, and the heat insulating property as the heat insulating container is also improved.
 また、換気回数と保冷時間との関係の詳細を表1に示す。 Further, the details of the relationship between the number of times of ventilation and the cooling time are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 真空断熱材の厚みは、断熱パネルの熱貫流率と相関しており、真空断熱材の熱伝導率が同じであれば、真空断熱材の厚みが厚くなるほど、断熱パネルの熱貫流率は低くなる。例えば、本シミュレーションでは、7時間以上の保冷時間を有する断熱容器を得るための断熱パネルの熱貫流率は、0.5W/mK以下である。 The thickness of the vacuum heat insulating material correlates with the heat transmission coefficient of the heat insulating panel, and if the heat conductivity of the vacuum heat insulating material is the same, the heat transmission coefficient of the heat insulating panel decreases as the thickness of the vacuum heat insulating material increases. . For example, in this simulation, the heat transmission coefficient of the heat insulation panel for obtaining a heat insulation container having a cold storage time of 7 hours or more is 0.5 W / m 2 K or less.
(断熱パネル厚み、断熱容器の容積および小型化指標の関係)
 断熱パネル厚み、断熱容器の容積および小型化指標の関係を評価した。組立状態における断熱容器の外容積をVとし、内容積をVとした場合に、小型化指標=(V-V)/Vと定義する。
(Relationship between insulation panel thickness, insulation container volume and miniaturization index)
The relationship between the thickness of the heat insulation panel, the volume of the heat insulation container and the miniaturization index was evaluated. When the external volume of the thermal insulation container in the assembled state is V A and the internal volume is V B , the miniaturization index is defined as (V A -V B ) / V A.
 例えば、一辺の長さが100cmであり、断熱パネル厚みが10mm(1cm)である立方体を想定した場合、断熱容器の外容積Vは、1m(1000L)となる。一方、断熱容器の内容積Vは、(1.00-(0.01×2))=0.94m(940L)となる。そのため、小型化指標は、6%となる。また、一辺の長さおよび断熱パネル厚みを表2に示す値に変更したこと以外は、同様にして、小型化指標を算出した。 For example, when assuming a cube whose side is 100 cm long and the heat insulation panel thickness is 10 mm (1 cm), the outer volume VA of the heat insulation container is 1 m 3 (1000 L). On the other hand, the internal volume V B of the thermally insulated container becomes (1.00- (0.01 × 2)) 3 = 0.94m 3 (940L). Therefore, the miniaturization index is 6%. Further, the miniaturization index was calculated in the same manner except that the length of one side and the thickness of the heat insulation panel were changed to the values shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、断熱パネル厚みと、断熱容器の一辺長(断熱パネルの一辺の長さ)との間には相関関係がある。例えば(V-V)/V≦1/3を実現しようとする場合、断熱パネルの一辺の長さが100cmの時に、厚みが70mm(7cm)未満という薄い断熱パネルを用いる必要がある。すなわち、不使用時の小型化を図ろうとすると、断熱パネル厚みを薄くする必要があり、断熱パネル厚みを薄くすると、断熱パネルの断熱性が低下しやすい。真空断熱材を用いることで断熱パネルの断熱性を高くすることが可能はあるが、真空断熱材を用いた場合、上述したように、真空断熱材に特有の性質(厚みが薄く、加工性が低く、破損時の性能劣化が大きい性質)に起因して、断熱容器の気密性が低下しやすい。そのため、不使用時に小型化できる断熱容器を得ようとする場合、より気密性に着目する必要がある。 As shown in Table 2, there is a correlation between the thickness of the heat insulation panel and the side length of the heat insulation container (length of one side of the heat insulation panel). For example, in order to realize (V A −V B ) / V A ≦ 1/3, it is necessary to use a thin heat insulating panel having a thickness of less than 70 mm (7 cm) when the length of one side of the heat insulating panel is 100 cm. . That is, in order to reduce the size when not in use, it is necessary to reduce the thickness of the heat insulation panel, and when the thickness of the heat insulation panel is reduced, the heat insulation of the heat insulation panel is likely to be degraded. It is possible to increase the thermal insulation of the thermal insulation panel by using a vacuum thermal insulation material, but when using a vacuum thermal insulation material, as mentioned above, the properties peculiar to the vacuum thermal insulation material (Thin thickness and processability are Due to the low property that the performance degradation at the time of breakage is large, the airtightness of the heat insulation container tends to be reduced. Therefore, when it is going to obtain the heat insulation container which can be miniaturized at the time of nonuse, it is necessary to pay more attention to airtightness.
 100 … 断熱容器
 110 … 側面断熱パネル
 110A … 真空断熱部材
 110B … 保護部材
 120 … 右面断熱パネル
 130 … 左面断熱パネル
 140 … 背面断熱パネル
 150 … 正面断熱パネル
 160 … 天面断熱パネル
 170 … 底面断熱パネル
 310 … 縦枠
 320 … 横枠
 331 … 第一断熱材
 331a … 芯材
 331b … 外装材
 332 … 第二断熱材
 333 … 遮熱シート
 334 … 接着層
100 ... thermal insulation container 110 ... side thermal insulation panel 110A ... vacuum thermal insulation member 110B ... protection member 120 ... right thermal insulation panel 130 ... left thermal insulation panel 140 ... rear thermal insulation panel 150 ... frontal thermal insulation panel 160 ... top thermal insulation panel 170 ... bottom thermal insulation panel 310 ... Vertical frame 320 ... Horizontal frame 331 ... First heat insulating material 331 a ... Core material 331 b ... Exterior material 332 ... Second heat insulating material 333 ... Heat shielding sheet 334 ... Adhesive layer

Claims (6)

  1.  組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器であって、
     前記断熱容器は、天面断熱パネル、底面断熱パネル、ならびに右面断熱パネル、背面断熱パネル、左面断熱パネル、および正面断熱パネルを有する複数の側面断熱パネルを有し、
     前記組立状態は、前記天面断熱パネル、前記底面断熱パネル、および前記複数の側面断熱パネルに囲まれた断熱空間が形成されている状態であり、
     前記分解状態は、前記断熱空間が形成されていない状態であり、
     前記天面断熱パネル、前記底面断熱パネル、および前記複数の側面断熱パネルのうち少なくとも4つの断熱パネルは、前記真空断熱材を含む真空断熱部材を有し、
     前記組立状態において、換気回数が0.1回/hr以下である、断熱容器。
    An insulation container which can be changed between an assembled state and a disassembled state, and which uses a vacuum insulation material,
    The insulation container comprises a top insulation panel, a bottom insulation panel, and a plurality of side insulation panels having a right insulation panel, a rear insulation panel, a left insulation panel, and a front insulation panel.
    In the assembled state, a heat insulation space surrounded by the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels is formed.
    The decomposition state is a state in which the heat insulation space is not formed,
    At least four heat insulation panels of the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels have a vacuum heat insulation member including the vacuum heat insulation material,
    The heat insulation container whose ventilation frequency is 0.1 times / hr or less in the said assembly state.
  2.  組立状態と分解状態とを変更可能であり、かつ、真空断熱材を用いた断熱容器であって、
     前記断熱容器は、天面断熱パネル、底面断熱パネル、ならびに右面断熱パネル、背面断熱パネル、左面断熱パネル、および正面断熱パネルを有する複数の側面断熱パネルを有し、
     前記組立状態は、前記天面断熱パネル、前記底面断熱パネル、および前記複数の側面断熱パネルに囲まれた断熱空間が形成されている状態であり、
     前記分解状態は、前記断熱空間が形成されていない状態であり、
     前記天面断熱パネル、前記底面断熱パネル、および前記複数の側面断熱パネルのうち少なくとも4つの断熱パネルは、前記真空断熱材を含む真空断熱部材を有し、
     前記組立状態において、換気回数が、前記換気回数の常用対数における保冷時間の変化率が-1となる値以下である、断熱容器。
    An insulation container which can be changed between an assembled state and a disassembled state, and which uses a vacuum insulation material,
    The insulation container comprises a top insulation panel, a bottom insulation panel, and a plurality of side insulation panels having a right insulation panel, a rear insulation panel, a left insulation panel, and a front insulation panel.
    In the assembled state, a heat insulation space surrounded by the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels is formed.
    The decomposition state is a state in which the heat insulation space is not formed,
    At least four heat insulation panels of the top heat insulation panel, the bottom heat insulation panel, and the plurality of side heat insulation panels have a vacuum heat insulation member including the vacuum heat insulation material,
    The heat insulation container whose ventilation frequency is less than or equal to a value at which a change rate of cooling time in common logarithm of the ventilation frequency is -1 in the assembled state.
  3.  前記組立状態において、前記断熱容器の内容積が0.2m以上である、請求項1または請求項2に記載の断熱容器。 The heat insulation container of Claim 1 or Claim 2 whose internal volume of the said heat insulation container is 0.2 m < 3 > or more in the said assembly state.
  4.  前記組立状態において、前記断熱容器の外容積をVとし、内容積をVとした場合に、(V-V)/Vの値が1/3以下である、請求項1から請求項3までのいずれかの請求項に記載の断熱容器。 The value of (V A -V B ) / V A is 1/3 or less when the external volume of the heat insulation container is V A and the internal volume is V B in the assembled state. An insulated container according to any of the preceding claims.
  5.  前記換気回数が0.02回/hr以上である、請求項1から請求項4までのいずれかの請求項に記載の断熱容器。 The heat insulation container according to any one of claims 1 to 4, wherein the ventilation frequency is 0.02 times / hr or more.
  6.  各々の前記真空断熱材を含む前記真空断熱部材を有する前記断熱パネルの熱貫流率の平均が0.5W/mK以下である、請求項1から請求項5までのいずれかの請求項に記載の断熱容器。 The average of the heat transmission coefficient of the said heat insulation panel which has the said vacuum heat insulating member containing each said vacuum heat insulating material is 0.5 W / m < 2 > K or less, The claim in any one of Claim 1 to 5 Insulated container as described.
PCT/JP2018/025072 2017-07-04 2018-07-02 Heat-insulating container WO2019009247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-131139 2017-07-04
JP2017131139A JP7162416B2 (en) 2017-07-04 2017-07-04 insulated container

Publications (1)

Publication Number Publication Date
WO2019009247A1 true WO2019009247A1 (en) 2019-01-10

Family

ID=64951033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025072 WO2019009247A1 (en) 2017-07-04 2018-07-02 Heat-insulating container

Country Status (2)

Country Link
JP (1) JP7162416B2 (en)
WO (1) WO2019009247A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020249049A1 (en) * 2019-06-13 2020-12-17 上海鸿研物流技术有限公司 Foldable box
WO2020249046A1 (en) * 2019-06-13 2020-12-17 上海鸿研物流技术有限公司 Foldable box
WO2020249047A1 (en) * 2019-06-13 2020-12-17 上海鸿研物流技术有限公司 Foldable box

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279332B2 (en) * 2018-10-09 2023-05-23 大日本印刷株式会社 cart for transportation
JP2021008311A (en) * 2019-07-02 2021-01-28 大日本印刷株式会社 Heat insulation container, and heat insulation container containing content

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058955A (en) * 2004-08-17 2006-03-02 Fukuvi Chem Ind Co Ltd System for automatic design of ventilation system, method for design of ventilation system, and program
JP2006076624A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Thermally insulated container using vacuum heat insulating material, and transporting method
JP2007333363A (en) * 2006-06-15 2007-12-27 Noboru Hasebe Ventilation system ventilating fixed ventilation air quantity for whole house, and individually supplying necessary ventilation air quantity for individual room
JP2010008011A (en) * 2008-06-30 2010-01-14 Panasonic Corp Vacuum heat insulating box
JP2012122285A (en) * 2010-12-10 2012-06-28 Misawa Homes Co Ltd Ventilation route selection system
JP2013249125A (en) * 2012-06-04 2013-12-12 Hitachi Transport Syst Ltd Low temperature container for transportation
JP2014211221A (en) * 2013-04-22 2014-11-13 大日本印刷株式会社 Heat insulation member
JP2016210466A (en) * 2015-05-08 2016-12-15 大日本印刷株式会社 Cold insulation and heat insulation container, outer packaging box, assembly method for cold insulation and heat insulation container, folding method, and storage method
JP2017052553A (en) * 2015-09-11 2017-03-16 大日本印刷株式会社 Cold- and heat-insulating box body and assembling method therefor
JP2017081646A (en) * 2015-10-27 2017-05-18 大日本印刷株式会社 Folding type cold and heat insulation box and assembly type cold and heat insulation box
JP2018008719A (en) * 2016-07-13 2018-01-18 大日本印刷株式会社 Thermal insulation box

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058955A (en) * 2004-08-17 2006-03-02 Fukuvi Chem Ind Co Ltd System for automatic design of ventilation system, method for design of ventilation system, and program
JP2006076624A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Thermally insulated container using vacuum heat insulating material, and transporting method
JP2007333363A (en) * 2006-06-15 2007-12-27 Noboru Hasebe Ventilation system ventilating fixed ventilation air quantity for whole house, and individually supplying necessary ventilation air quantity for individual room
JP2010008011A (en) * 2008-06-30 2010-01-14 Panasonic Corp Vacuum heat insulating box
JP2012122285A (en) * 2010-12-10 2012-06-28 Misawa Homes Co Ltd Ventilation route selection system
JP2013249125A (en) * 2012-06-04 2013-12-12 Hitachi Transport Syst Ltd Low temperature container for transportation
JP2014211221A (en) * 2013-04-22 2014-11-13 大日本印刷株式会社 Heat insulation member
JP2016210466A (en) * 2015-05-08 2016-12-15 大日本印刷株式会社 Cold insulation and heat insulation container, outer packaging box, assembly method for cold insulation and heat insulation container, folding method, and storage method
JP2017052553A (en) * 2015-09-11 2017-03-16 大日本印刷株式会社 Cold- and heat-insulating box body and assembling method therefor
JP2017081646A (en) * 2015-10-27 2017-05-18 大日本印刷株式会社 Folding type cold and heat insulation box and assembly type cold and heat insulation box
JP2018008719A (en) * 2016-07-13 2018-01-18 大日本印刷株式会社 Thermal insulation box

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020249049A1 (en) * 2019-06-13 2020-12-17 上海鸿研物流技术有限公司 Foldable box
WO2020249046A1 (en) * 2019-06-13 2020-12-17 上海鸿研物流技术有限公司 Foldable box
WO2020249047A1 (en) * 2019-06-13 2020-12-17 上海鸿研物流技术有限公司 Foldable box
US11999526B2 (en) 2019-06-13 2024-06-04 Horen Cortp Co., Ltd. Foldable box

Also Published As

Publication number Publication date
JP7162416B2 (en) 2022-10-28
JP2019014489A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2019009247A1 (en) Heat-insulating container
US20120031957A1 (en) Vacuum insulation panel
US7140508B2 (en) Shipping box for shipping of highly-value high sensitive objects
KR200471021Y1 (en) Box-type packaging which can control the internal temperature
KR102197514B1 (en) Vacuum insulation panel
US8617684B2 (en) Vacuum thermal insulating material and thermal insulating box including the same
US20130213977A1 (en) Insulating inserts, containers comprising them and methods of assembling and using them
CN106662286B (en) Vacuum insulation part and use its thermally insulated container, house wall, transporting equipment, hydrogen cargo ship and LNG cargo ships
US20110073604A1 (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP2013010524A (en) Thermally insulated container
CN201458052U (en) Horizontal packing structure for indoor unit of cabinet air conditioner
JP2008030790A (en) Heat insulating container
KR20110103225A (en) The adiabatic panel of high airtightness adiabatic doors
JP2009092222A (en) Vacuum thermal insulation panel and warming box
US20220267081A1 (en) Method and system for storing and/or transporting temperature-sensitive materials
US9027782B1 (en) Composite material based insulated shipping container
KR20100119939A (en) Vacuum insulator and envelope for vacuum insulator
JP6831622B2 (en) Cold and warm box
JP7279332B2 (en) cart for transportation
KR20150000671U (en) Box-type packaging which can control the internal temperature
JP4335721B2 (en) Cryogenic transport packing device and manufacturing method thereof
JP2018008719A (en) Thermal insulation box
WO2009067007A1 (en) Thermally insulated container provided with at least two stacked layers of vacuum insulation panels
JP5500428B2 (en) Package of prepreg roll
KR20030060191A (en) Paper Box Using Vacuum Heat Shield Merterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828307

Country of ref document: EP

Kind code of ref document: A1