WO2019009238A1 - Optical fiber cable - Google Patents

Optical fiber cable Download PDF

Info

Publication number
WO2019009238A1
WO2019009238A1 PCT/JP2018/025043 JP2018025043W WO2019009238A1 WO 2019009238 A1 WO2019009238 A1 WO 2019009238A1 JP 2018025043 W JP2018025043 W JP 2018025043W WO 2019009238 A1 WO2019009238 A1 WO 2019009238A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
tension member
fiber cable
fineness
peripheral
Prior art date
Application number
PCT/JP2018/025043
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 石田
一史 野地
賢吾 田邉
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Priority to JP2019527692A priority Critical patent/JP7117302B2/en
Priority to CN201880039032.9A priority patent/CN110914729A/en
Publication of WO2019009238A1 publication Critical patent/WO2019009238A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to optical fiber cables.
  • small cells having a communication area smaller than that of macro cells are installed in addition to macro cells as mobile base stations that are mobile station radio stations.
  • Small cells are installed to suppress deterioration in communication quality in places where there are many users (such as downtown areas such as stations and commercial facilities) and places where radio waves are difficult to reach (such as underground malls).
  • Small cells include nanocells and picocells installed in places such as buildings, underground malls, and the inside of buildings, and include femtocells installed in places such as stores, offices, and general households.
  • a cable aggregation type optical fiber cable is used in a macro cell.
  • the cord assembly type optical fiber cable is low in handleability because of its high rigidity. For this reason, it is not easy to perform the wiring work of the small cell using the cord assembly type optical fiber cable.
  • an optical fiber cable is formed by transversely winding an aramid fiber in an assembly composed of an optical fiber core wire, an inter-fiber interposition and a central buffer material.
  • the outer peripheral side has a higher density than the inner peripheral side. For this reason, when the optical fiber cable is bent, the loss (transmission loss) may increase in the optical fiber cable.
  • breakage may occur, such as disconnection of the optical fiber cable.
  • the problem to be solved by the present invention is to provide an optical fiber cable which suppresses an increase in loss in wiring work and is less likely to be damaged.
  • the optical fiber cable of the present invention comprises an optical fiber core wire, a central tension member, a peripheral tension member and a jacket.
  • the central tension member is formed of a fiber body and is provided vertically to the optical fiber core.
  • the peripheral tension member is formed of a fiber body, and is provided vertically to the optical fiber core wire and the optical fiber core wire around the central tension member.
  • a jacket is provided around the peripheral tension member.
  • the fineness of the peripheral tension members is smaller than the fineness of the central tension member.
  • FIG. 1 is a view schematically showing the main part of the optical fiber cable according to the embodiment.
  • FIG. 2 is a figure which shows typically the principal part of the optical fiber cable concerning the modification of embodiment.
  • FIG. 1 is a view schematically showing a main part of an optical fiber cable according to an embodiment.
  • FIG. 1 shows a cross section (xz plane) in which the axial direction (y direction) of the optical fiber cable 1 is orthogonal.
  • the optical fiber cable 1 is circular in cross section, and includes an optical fiber core wire 10, a tension member 20, and a jacket 30. Each part which comprises the optical fiber cable 1 is demonstrated one by one.
  • optical fiber 10 is circular in cross section.
  • the optical fiber core wire 10 is configured, for example, by sequentially providing a primary coating (not shown) and a secondary coating (not shown) on an optical fiber (not shown).
  • the core and the cladding are formed of quartz glass.
  • the primary coating is formed of, for example, an ultraviolet curable resin.
  • the secondary coating is formed of, for example, a thermoplastic resin.
  • the tension member 20 is a linear tensile member, and is provided as a reinforcing wire for reinforcing the optical fiber core wire 10.
  • the tension member 20 protects the optical fiber core wire 10 by functioning as a cushion that reduces an impact applied to the optical fiber core wire 10 when an external force such as a side pressure is applied to the optical fiber cable 1, for example.
  • the tension member 20 includes a central tension member 21 and a peripheral tension member 22.
  • the central tension member 21 is a fiber body, and a plurality of fibers (not shown) are bundled so as to have a circular outer shape.
  • the peripheral tension member 22 is, like the central tension member 21, a fiber body in which a plurality of fibers are bundled.
  • the peripheral tension member 22 is provided around the optical fiber core 10 and the central tension member 21, and a plurality of fibers (not shown) are bundled so that the outer shape becomes circular.
  • the central tension member 21 and the peripheral tension member 22 are provided vertically to the optical fiber core 10. That is, the axial direction of the central tension member 21 and the axial direction of the peripheral tension member 22 are along the axial direction (y direction) of the optical fiber core wire 10.
  • the fineness of the peripheral tension member 22 is smaller than the fineness of the central tension member 21. That is, in the optical fiber cable 1 of the present embodiment, the density on the outer peripheral side is lower than that on the inner peripheral side. Therefore, for example, even when the optical fiber cable 1 is bent in the small cell wiring operation, it is possible to suppress an increase in communication loss in the optical fiber cable 1. In addition, for example, even when twisting occurs in the optical fiber cable 1 in the wiring operation of the small cell, the occurrence of breakage (breakage or the like) in the optical fiber cable 1 can be suppressed. As a result, it is possible to improve the reliability of the optical fiber cable 1.
  • the fineness of the central tension member 21 is preferably 5000 denier or more and 10000 denier or less.
  • the fineness of the peripheral tension member 22 is preferably 500 deniers or more and 3000 deniers or less. Thereby, it is possible to further enhance the above effect.
  • the central tension member 21 and the peripheral tension member 22 be formed of, for example, aramid fibers. Thereby, since the optical fiber cable 1 becomes easy to bend, the efficiency of the wiring operation can be enhanced.
  • the jacket 30 is a sheath and is provided around the peripheral tension member 22.
  • the jacket 30 is provided to protect the optical fiber 10.
  • the jacket 30 is preferably formed using flame-retardant polyethylene (which does not burn in a test according to JIS C3521). Thereby, the action of the dehydration endothermic reaction of metal hydroxides such as magnesium hydroxide and aluminum hydroxide contained in the flame retardant polyethylene can exert an autodigestive effect.
  • flame-retardant polyethylene which does not burn in a test according to JIS C3521.
  • the thermal contraction rate of the outer jacket 30 is 2% or less.
  • the jacket 30 shrinks when a temperature difference repeatedly occurs in the environment where the optical fiber cable 1 is installed.
  • the loss of the optical fiber cable 1 may increase due to the stress applied to the optical fiber core wire 10 along with this.
  • the thermal contraction rate of the jacket 30 is 2% or less, the jacket 30 is difficult to shrink even when the temperature difference is repeatedly generated. As a result, the loss of the optical fiber cable 1 can be effectively suppressed.
  • the temperature cycle test accordinging to JIS C 6851, temperature condition: -20 to + 60 ° C, number of cycles: 3 times
  • increase in transmission loss should be 0.2 dB / km or less Can.
  • disconnected the optical fiber cable 1 at 1 m was first prepared. And after testing the test piece in a thermostat (100 degreeC) for 1 hour, the test was done by leaving it to stand at normal temperature (20 degreeC) for 1 hour. And about the test piece, the ratio of the length after a test to the length before a test was computed as a heat contraction rate.
  • an extrusion molding apparatus (illustration omitted) is used, for example.
  • the optical fiber 10 with the tension member 20 attached around is passed through a die (not shown) of the extrusion molding apparatus.
  • the central tension member 21 and the peripheral tension member 22 as the tension members 20 are vertically attached to the optical fiber 10.
  • the resin constituting the outer jacket 30 is pushed out from the die.
  • the optical fiber cable 1 is manufactured by forming the jacket 30 around the peripheral tension member 22.
  • FIG. 2 is a view schematically showing a main part of an optical fiber cable according to a modified example of the embodiment.
  • a cross section (xz plane) in which the axial direction (y direction) of the optical fiber cable 1 is orthogonal is shown.
  • the number of the optical fiber cable 10 is single in the optical fiber cable 1 is shown (see FIG. 1), it is not limited thereto.
  • a plurality of (for example, two) optical fiber cores 10 may be provided in the optical fiber cable 1.
  • optical fiber cable 1 Examples of the optical fiber cable 1 and comparative examples will be described using Tables 1 to 3.
  • Table 1 shows the relationship of each example of the optical fiber cable 1.
  • Table 2 shows the result of the 180 ° bending test for each example of the optical fiber cable 1, and
  • Table 3 shows the result of the torsion test.
  • Examples A1 to E4, Example F3, and Example F5 are Examples, and Examples F1 and X are Comparative Examples.
  • each part is given a reference numeral (see FIG. 1) as in the above embodiment.
  • Example A1 In Example A1, as the optical fiber core 10, the core and the cladding are formed of quartz glass, the primary coating is formed of an ultraviolet curable resin, and the secondary coating is formed of a thermoplastic resin (the outer Diameter: about 0.9 mm). Then, as the central tension member 21 and the peripheral tension member 22, a fiber body having fineness shown in Table 1 and formed of aramid fibers was used. Moreover, the outer cover 30 was formed using the flame retardant polyethylene.
  • one central tension member 21 is disposed with the optical fiber core 10 vertically.
  • a plurality of (for example, 12) peripheral tension members 22 are vertically arranged around the optical fiber 10 and the central tension member 21.
  • an outer cover 30 made of flame-retardant polyethylene was formed around the peripheral tension member 22 by extrusion molding.
  • the flame retardant polyethylene one having 50 to 100 parts by mass of magnesium hydroxide blended with 100 parts by mass of EEA (ethylene-ethyl acrylate copolymer) and PE (polyethylene) base resin is used. It was. By blending a large amount of magnesium hydroxide, the flowability of the resin is reduced, and distortion is unlikely to remain at the time of extrusion molding, so the amount of shrinkage of the jacket 30 by heating can be reduced.
  • Example A3 to Example F5 In each of the examples A3 to F5, the optical fiber cable 1 is manufactured in the same manner as the example A1, except that the fiber body having the fineness shown in Table 1 is used as the central tension member 21 and the peripheral tension member 22. did.
  • Example X In Example X, a fiber body having the fineness shown in Table 1 was used as the peripheral tension member 22 without providing the central tension member 21. An optical fiber cable 1 was produced in the same manner as in Example A1 except this point. That is, in Example X, the tension members 20 are configured such that the fineness is uniformly distributed in the cross section.
  • the 180 ° bending test was performed by the method defined in “JIS C 6851”. Specifically, U-bending was performed so that the sample of each example had an angle of 180 degrees around the mandrel (diameter 100 mm). The sample was subjected to reverse U-bending and then returned to the straight state. Here, the U-bending, the reverse U-bending, and the operation of returning to the straight state were repeated 10 cycles. And about the sample of each case, the loss increase amount was measured in the state which is performing the 180 degree bending test, and the largest loss increase amount was calculated
  • the torsion test was performed by the method defined in "JIS C 6851". Specifically, the sample was mounted on a stationary clamp and a rotary clamp in a twisting apparatus. Here, the sample was mounted such that the span length of the sample was 250 mm. The sample was then loaded with tension (40 N) to keep the sample in a straight state. In this state, after rotating the clamp on the rotating side clockwise by 180 ° in the twisting device, the clamp was returned to the initial position. Then, the clamp on the rotating side was rotated 180 degrees counterclockwise, and then returned to the initial position. These operations were repeated 20 cycles.
  • Table 3 shows the results of the torsion test based on the criteria shown below. ⁇ ⁇ ⁇ ... no disconnection of the optical fiber core 10 and the transmission loss is 0.01 dB / km or less ⁇ ... no disconnection of the optical fiber core 10 and the transmission loss 0.01 dB / km 0.05 ⁇ Optical When the fiber 10 is broken
  • Examples A1 to F5 differ from Example X in that the tension members 20 include a central tension member 21 and a peripheral tension member 22.
  • the tension members 20 include a central tension member 21 and a peripheral tension member 22.
  • the fineness of peripheral tension member 22 is smaller than the fineness of central tension member 21.
  • Example F1 Example A1 to E4, Example F3, Example F5
  • Example F1 Example A1 to E4, Example F3, Example F5
  • Example F1 among Example A1 to Example F5 is compared with Example F1 and Example X as shown in Table 2.
  • damage is less likely to occur while the increase in loss is suppressed.
  • Example B2 As shown in Table 1, in Example B2, Example B4, Example B2, Example C2, Example C3, Example C4, Example D3, Example E2, Example E3, and Example E4, the denier of central tension member 21 is 5,000 deniers. As described above, the deniers are 10000 deniers or less, and the fineness of the peripheral tension members 22 is 500 deniers or more and 3000 deniers or less. For this reason, as shown in Table 2, each of the above-described examples can further effectively suppress an increase in loss in the wiring operation. Further, as shown in Table 3, each of the above-described examples can more effectively suppress the occurrence of breakage.
  • the sample in each example has a circular cross-section in a flat state in the “bent portion” bent in the 180 ° bending test, and thus the optical fiber core wire 10 located at the center in the optical fiber cable 1 Is stressed.
  • the fineness of the peripheral tension member 22 is in the range of 500 deniers to 3000 deniers, the side pressure applied in the radial direction in the optical fiber 10 becomes smaller, so the stress applied to the optical fiber 10 becomes smaller.
  • the fineness of the central tension member 21 is not less than 5000 denier and not more than 10000 denier, the curvature of the optical fiber core wire 10 does not become larger than the predetermined curvature in the sample bent in the 180 ° bending test.
  • the loss increase amount of the optical fiber cable 1 can be reduced by setting the fineness of the central tension member 21 and the fineness of the peripheral tension member 22 in the ranges defined above.
  • the samples of each example are more centered on the peripheral tension member 22 than before the torsion test due to the “torsion deformation” caused by the torsion test.
  • the fineness of the peripheral tension member 22 is in the range of 500 deniers to 3000 deniers, the side pressure applied in the radial direction in the optical fiber 10 is reduced, so that the transmission loss can be reduced.
  • the rigidity of the optical fiber cable 1 can be lowered, so that good flexibility can be obtained. it can.
  • the center tension member 21 and the peripheral tension member 22 have a high fineness.
  • eccentricity of the optical fiber core 10 may occur when a large stress is applied to the optical fiber cable 1 . Therefore, it is preferable that the fineness of the central tension member 21 and the fineness of the peripheral tension member 22 be in the above-mentioned range.

Abstract

The present invention provides an optical fiber cable capable of suppressing increased loss during wiring work and breakage. This optical fiber cable includes an optical fiber, a center tensioner, an outer tensioner, and an outer cover. The center tensioner is made of a fibrous body and is provided along the length of the optical fiber. The outer tensioner is made of a fibrous body and is provided along the length of the optical fiber around the optical fiber and the center tensioner. The outer cover is provided around the outer tensioner. Here, the fineness of the outer tensioner is less than that of the center tensioner.

Description

光ファイバケーブルFiber optic cable
 本発明は、光ファイバケーブルに関する。 The present invention relates to optical fiber cables.
 高速通信サービスの開始に伴って、携帯電話の無線局である携帯基地として、マクロセルの他に、マクロセルよりも通信エリアが狭いスモールセルが設置されている。スモールセルは、利用者が多い場所(駅や商業施設などの繁華街)、および、電波が届きにくい場所(地下街など)において、通信品質の劣化を抑制するために設置されている。スモールセルは、ビル街、地下街、ビル内部などの場所に設置されるナノセルおよびピコセルを含むと共に、店舗、事務所、一般家庭などの場所に設置されるフェムトセルを含む。 Along with the start of high-speed communication services, small cells having a communication area smaller than that of macro cells are installed in addition to macro cells as mobile base stations that are mobile station radio stations. Small cells are installed to suppress deterioration in communication quality in places where there are many users (such as downtown areas such as stations and commercial facilities) and places where radio waves are difficult to reach (such as underground malls). Small cells include nanocells and picocells installed in places such as buildings, underground malls, and the inside of buildings, and include femtocells installed in places such as stores, offices, and general households.
特開2008-015414号公報JP 2008-015414 A 特開2005-062744号公報JP, 2005-062744, A
 従来、マクロセルでは、コード集合型の光ファイバケーブルが使用されている。このコード集合型の光ファイバケーブルは、剛性が高いため、ハンドリング性が低い。このため、コード集合型の光ファイバケーブルを用いてスモールセルの配線作業を行うことは、容易でない。 Conventionally, in a macro cell, a cable aggregation type optical fiber cable is used. The cord assembly type optical fiber cable is low in handleability because of its high rigidity. For this reason, it is not easy to perform the wiring work of the small cell using the cord assembly type optical fiber cable.
 たとえば、光ファイバケーブルは、光ファイバ心線と心線間介在体と中心緩衝材とで構成された集合体にアラミド繊維を横巻きすることで形成されている。ここでは、光ファイバケーブルは、外周側の方が内周側よりも密度が高い。このため、光ファイバケーブルが曲げられた場合、光ファイバケーブルにおいて損失(伝送損失)が増加する場合がある。また、光ファイバケーブルにねじれが生じた場合、光ファイバケーブルにおいて断線が生じるなど、破損が発生する場合がある。 For example, an optical fiber cable is formed by transversely winding an aramid fiber in an assembly composed of an optical fiber core wire, an inter-fiber interposition and a central buffer material. Here, in the optical fiber cable, the outer peripheral side has a higher density than the inner peripheral side. For this reason, when the optical fiber cable is bent, the loss (transmission loss) may increase in the optical fiber cable. In addition, if the optical fiber cable is twisted, breakage may occur, such as disconnection of the optical fiber cable.
 特に、スモールセルの配線作業において光ファイバケーブルが曲げられた場合や光ファイバケーブルにねじれが生じた場合には、上記の問題が顕在化する場合がある。 In particular, when the optical fiber cable is bent in the small cell wiring operation or when the optical fiber cable is twisted, the above problem may become apparent.
 したがって、本発明が解決しようとする課題は、配線作業において損失が増加することを抑制し、破損が発生しにくい光ファイバケーブルを提供することである。 Therefore, the problem to be solved by the present invention is to provide an optical fiber cable which suppresses an increase in loss in wiring work and is less likely to be damaged.
 本発明の光ファイバケーブルは、光ファイバ心線と中心テンションメンバと周辺テンションメンバと外被とを備える。中心テンションメンバは、繊維体で形成されており、光ファイバ心線に対して縦添えで設けられている。周辺テンションメンバは、繊維体で形成されており、光ファイバ心線および中心テンションメンバの周囲において光ファイバ心線に対して縦添えで設けられている。外被は、周辺テンションメンバの周囲に設けられている。ここでは、中心テンションメンバの繊度よりも周辺テンションメンバの繊度の方が小さい。 The optical fiber cable of the present invention comprises an optical fiber core wire, a central tension member, a peripheral tension member and a jacket. The central tension member is formed of a fiber body and is provided vertically to the optical fiber core. The peripheral tension member is formed of a fiber body, and is provided vertically to the optical fiber core wire and the optical fiber core wire around the central tension member. A jacket is provided around the peripheral tension member. Here, the fineness of the peripheral tension members is smaller than the fineness of the central tension member.
 本発明によれば、配線作業において損失が増加することを抑制し、破損が発生しにくい光ファイバケーブルを提供することができる。 According to the present invention, it is possible to suppress an increase in loss in wiring work and provide an optical fiber cable which is less likely to be damaged.
図1は、実施形態に係る光ファイバケーブルの要部を模式的に示す図である。FIG. 1 is a view schematically showing the main part of the optical fiber cable according to the embodiment. 図2は、実施形態の変形例に係る光ファイバケーブルの要部を模式的に示す図である。FIG. 2: is a figure which shows typically the principal part of the optical fiber cable concerning the modification of embodiment.
 発明の実施形態について図面を用いて説明する。なお、発明は、図面の内容に限定されない。また、図面は、概略を示すものであって、各部の寸法比などは、現実のものとは必ずしも一致しない。その他、同一の構成要素については、同一の符号を付し、重複する説明は適宜省略する。 Embodiments of the invention will be described using the drawings. The invention is not limited to the contents of the drawings. The drawings show the outline, and the dimensional ratio of each part does not necessarily coincide with the actual one. In addition, about the same component, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted suitably.
[A]構成
 図1は、実施形態に係る光ファイバケーブルの要部を模式的に示す図である。図1では、光ファイバケーブル1の軸方向(y方向)が直交する断面(xz面)を示している。
[A] Configuration FIG. 1 is a view schematically showing a main part of an optical fiber cable according to an embodiment. FIG. 1 shows a cross section (xz plane) in which the axial direction (y direction) of the optical fiber cable 1 is orthogonal.
 図1に示すように、光ファイバケーブル1は、断面が円形であって、光ファイバ心線10、テンションメンバ20、および、外被30を備える。光ファイバケーブル1を構成する各部について順次説明する。 As shown in FIG. 1, the optical fiber cable 1 is circular in cross section, and includes an optical fiber core wire 10, a tension member 20, and a jacket 30. Each part which comprises the optical fiber cable 1 is demonstrated one by one.
[A-1]光ファイバ心線10
 光ファイバ心線10は、断面が円形である。光ファイバ心線10は、たとえば、光ファイバ(図示省略)に1次被覆(図示省略)と2次被覆(図示省略)とを順次設けることで構成されている。光ファイバは、たとえば、コアおよびクラッドが石英ガラスで形成されている。1次被覆は、たとえば、紫外線硬化樹脂で形成されている。2次被覆は、たとえば、熱可塑性樹脂で形成されている。
[A-1] Optical fiber 10
The optical fiber 10 is circular in cross section. The optical fiber core wire 10 is configured, for example, by sequentially providing a primary coating (not shown) and a secondary coating (not shown) on an optical fiber (not shown). In the optical fiber, for example, the core and the cladding are formed of quartz glass. The primary coating is formed of, for example, an ultraviolet curable resin. The secondary coating is formed of, for example, a thermoplastic resin.
[A-2]テンションメンバ20
 テンションメンバ20は、線状の抗張力体であって、光ファイバ心線10を補強する補強線として設けられている。テンションメンバ20は、たとえば、側圧などの外力が光ファイバケーブル1に加えられたときに、光ファイバ心線10に加わる衝撃を緩和するクッションとして機能することで、光ファイバ心線10を保護する。
[A-2] Tension member 20
The tension member 20 is a linear tensile member, and is provided as a reinforcing wire for reinforcing the optical fiber core wire 10. The tension member 20 protects the optical fiber core wire 10 by functioning as a cushion that reduces an impact applied to the optical fiber core wire 10 when an external force such as a side pressure is applied to the optical fiber cable 1, for example.
 本実施形態では、テンションメンバ20は、中心テンションメンバ21と周辺テンションメンバ22とを含む。中心テンションメンバ21は、繊維体であって、外形が円形になるように複数の繊維(図示省略)が束ねられている。周辺テンションメンバ22は、中心テンションメンバ21と同様に、複数の繊維が束ねられた繊維体である。ここでは、周辺テンションメンバ22は、光ファイバ心線10および中心テンションメンバ21の周囲に設けられており、外形が円形になるように複数の繊維(図示省略)が束ねられている。 In the present embodiment, the tension member 20 includes a central tension member 21 and a peripheral tension member 22. The central tension member 21 is a fiber body, and a plurality of fibers (not shown) are bundled so as to have a circular outer shape. The peripheral tension member 22 is, like the central tension member 21, a fiber body in which a plurality of fibers are bundled. Here, the peripheral tension member 22 is provided around the optical fiber core 10 and the central tension member 21, and a plurality of fibers (not shown) are bundled so that the outer shape becomes circular.
 テンションメンバ20において、中心テンションメンバ21および周辺テンションメンバ22は、光ファイバ心線10に対して縦添えで設けられている。つまり、中心テンションメンバ21の軸方向および周辺テンションメンバ22の軸方向が、光ファイバ心線10の軸方向(y方向)に沿っている。 In the tension member 20, the central tension member 21 and the peripheral tension member 22 are provided vertically to the optical fiber core 10. That is, the axial direction of the central tension member 21 and the axial direction of the peripheral tension member 22 are along the axial direction (y direction) of the optical fiber core wire 10.
 テンションメンバ20においては、中心テンションメンバ21の繊度よりも周辺テンションメンバ22の繊度の方が小さい。つまり、本実施形態の光ファイバケーブル1は、外周側の方が内周側よりも密度が低い。このため、たとえば、スモールセルの配線作業で光ファイバケーブル1が曲げられた場合であっても、光ファイバケーブル1において通信の損失が増加することを抑制することができる。また、たとえば、スモールセルの配線作業で光ファイバケーブル1にねじれが生じた場合であっても、光ファイバケーブル1において破損(断線など)が発生することを抑制することができる。その結果、光ファイバケーブル1の信頼性を向上させることが可能である。 In the tension member 20, the fineness of the peripheral tension member 22 is smaller than the fineness of the central tension member 21. That is, in the optical fiber cable 1 of the present embodiment, the density on the outer peripheral side is lower than that on the inner peripheral side. Therefore, for example, even when the optical fiber cable 1 is bent in the small cell wiring operation, it is possible to suppress an increase in communication loss in the optical fiber cable 1. In addition, for example, even when twisting occurs in the optical fiber cable 1 in the wiring operation of the small cell, the occurrence of breakage (breakage or the like) in the optical fiber cable 1 can be suppressed. As a result, it is possible to improve the reliability of the optical fiber cable 1.
 ここでは、中心テンションメンバ21の繊度は、5000デニール以上、10000デニール以下であることが好ましい。また、周辺テンションメンバ22の繊度は、500デニール以上、3000デニール以下であることが好ましい。これにより、上記の効果を更に高めることが可能である。 Here, the fineness of the central tension member 21 is preferably 5000 denier or more and 10000 denier or less. The fineness of the peripheral tension member 22 is preferably 500 deniers or more and 3000 deniers or less. Thereby, it is possible to further enhance the above effect.
 また、テンションメンバ20において、中心テンションメンバ21および周辺テンションメンバ22は、たとえば、アラミド繊維で形成されていることが好ましい。これにより、光ファイバケーブル1が曲げやすくなるので、配線作業の効率を高めることができる。 Further, in the tension member 20, it is preferable that the central tension member 21 and the peripheral tension member 22 be formed of, for example, aramid fibers. Thereby, since the optical fiber cable 1 becomes easy to bend, the efficiency of the wiring operation can be enhanced.
[A-3]外被30
 外被30は、シースであって、周辺テンションメンバ22の周囲に設けられている。外被30は、光ファイバ心線10を保護するために設けられている。
[A-3] Outer cover 30
The jacket 30 is a sheath and is provided around the peripheral tension member 22. The jacket 30 is provided to protect the optical fiber 10.
 外被30は、難燃性(JIS C3521準拠の試験で燃焼しない)のポリエチレンを用いて形成されていることが好ましい。これにより、難燃性ポリエチレンに含有される水酸化マグネシウムや水酸化アルミニウムのような金属水酸化物の脱水吸熱反応の作用によって、自己消化性の効果を奏することができる。 The jacket 30 is preferably formed using flame-retardant polyethylene (which does not burn in a test according to JIS C3521). Thereby, the action of the dehydration endothermic reaction of metal hydroxides such as magnesium hydroxide and aluminum hydroxide contained in the flame retardant polyethylene can exert an autodigestive effect.
 また、外被30は、熱収縮率が2%以下であることが好ましい。外被30は、光ファイバケーブル1が設置された環境において温度差が繰り返し生じたときに縮む。これに伴って光ファイバ心線10に応力が加わることで光ファイバケーブル1の損失が増加する場合がある。しかし、外被30の熱収縮率が2%以下である場合には、温度差が繰り返し生じたときであっても外被30が縮みにくい。その結果、光ファイバケーブル1の損失が増加することを効果的に抑制することができる。具体的には、温度サイクル試験(JIS C 6851に準拠,温度条件:-20~+60℃,サイクル数:3回)を行ったときに、伝送損失の増加を0.2dB/km以下にすることができる。なお、上記の熱収縮率を測定する際には、まず、光ファイバケーブル1を1mに切断した試験片を準備した。そして、その試験片を恒温槽(100℃)にて1時間加熱した後に、常温(20℃)にて1時間放置することで、試験を行った。そして、その試験片について、試験前の長さに対する試験後の長さの割合を熱収縮率として算出した。 Moreover, it is preferable that the thermal contraction rate of the outer jacket 30 is 2% or less. The jacket 30 shrinks when a temperature difference repeatedly occurs in the environment where the optical fiber cable 1 is installed. The loss of the optical fiber cable 1 may increase due to the stress applied to the optical fiber core wire 10 along with this. However, when the thermal contraction rate of the jacket 30 is 2% or less, the jacket 30 is difficult to shrink even when the temperature difference is repeatedly generated. As a result, the loss of the optical fiber cable 1 can be effectively suppressed. Specifically, when the temperature cycle test (according to JIS C 6851, temperature condition: -20 to + 60 ° C, number of cycles: 3 times), increase in transmission loss should be 0.2 dB / km or less Can. In addition, when measuring said thermal contraction rate, the test piece which cut | disconnected the optical fiber cable 1 at 1 m was first prepared. And after testing the test piece in a thermostat (100 degreeC) for 1 hour, the test was done by leaving it to stand at normal temperature (20 degreeC) for 1 hour. And about the test piece, the ratio of the length after a test to the length before a test was computed as a heat contraction rate.
[B]製造方法
 本実施形態の光ファイバケーブル1を製造する製造方法の概要に関して説明する。
[B] Manufacturing Method An outline of a manufacturing method for manufacturing the optical fiber cable 1 of the present embodiment will be described.
 上記の光ファイバケーブル1を製造する際には、たとえば、押出成形装置(図示省略)を用いる。具体的には、テンションメンバ20が周囲に添えられた光ファイバ心線10を押出成形装置のダイス(図示省略)に通す。本実施形態では、上記したように、テンションメンバ20として中心テンションメンバ21および周辺テンションメンバ22を光ファイバ心線10に対して縦添えで添えた状態にする。そして、テンションメンバ20が周囲に添えられた光ファイバ心線10をダイスから送り出した状態で、外被30を構成する樹脂をダイスから押し出す。これにより、周辺テンションメンバ22の周囲に外被30を形成することで、光ファイバケーブル1が製造される。 When manufacturing said optical fiber cable 1, an extrusion molding apparatus (illustration omitted) is used, for example. Specifically, the optical fiber 10 with the tension member 20 attached around is passed through a die (not shown) of the extrusion molding apparatus. In the present embodiment, as described above, the central tension member 21 and the peripheral tension member 22 as the tension members 20 are vertically attached to the optical fiber 10. Then, in a state in which the optical fiber 10 with the tension member 20 attached to the periphery is fed from the die, the resin constituting the outer jacket 30 is pushed out from the die. Thereby, the optical fiber cable 1 is manufactured by forming the jacket 30 around the peripheral tension member 22.
[C]変形例
 図2は、実施形態の変形例に係る光ファイバケーブルの要部を模式的に示す図である。図2では、図1と同様に、光ファイバケーブル1の軸方向(y方向)が直交する断面(xz面)を示している。
[C] Modified Example FIG. 2 is a view schematically showing a main part of an optical fiber cable according to a modified example of the embodiment. In FIG. 2, as in FIG. 1, a cross section (xz plane) in which the axial direction (y direction) of the optical fiber cable 1 is orthogonal is shown.
 上記の実施形態では、光ファイバケーブル1において、光ファイバ心線10が単数である場合について示したが(図1参照)、これに限らない。図2に示すように、光ファイバケーブル1において、光ファイバ心線10は、複数(たとえば、2本)であってもよい。 In the above embodiment, although the case where the number of the optical fiber cable 10 is single in the optical fiber cable 1 is shown (see FIG. 1), it is not limited thereto. As shown in FIG. 2, in the optical fiber cable 1, a plurality of (for example, two) optical fiber cores 10 may be provided.
 光ファイバケーブル1の実施例および比較例に関して表1から表3を用いて説明する。 Examples of the optical fiber cable 1 and comparative examples will be described using Tables 1 to 3.
 表1は、光ファイバケーブル1の各例の関係を示している。表2では、光ファイバケーブル1の各例に関して、180°曲げ試験を行った結果を示しており、表3では、ねじり試験を行った結果を示している。表1から表3において、例A1~例E4,例F3,例F5は、実施例であって、例F1および例Xは、比較例である。なお、理解を容易にするため、各例の説明では、上記の実施形態と同様に、各部に符号を付している(図1を参照)。 Table 1 shows the relationship of each example of the optical fiber cable 1. Table 2 shows the result of the 180 ° bending test for each example of the optical fiber cable 1, and Table 3 shows the result of the torsion test. In Tables 1 to 3, Examples A1 to E4, Example F3, and Example F5 are Examples, and Examples F1 and X are Comparative Examples. In addition, in order to facilitate understanding, in the description of each example, each part is given a reference numeral (see FIG. 1) as in the above embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[サンプルの作製]
 各例のサンプルについては下記のように作製した。
[Preparation of sample]
The samples of each example were prepared as follows.
(例A1)
 例A1では、光ファイバ心線10として、コアおよびクラッドが石英ガラスで形成されており、一次被膜が紫外線硬化樹脂で形成され、2次被覆が熱可塑性樹脂で形成されたものを用いた(外径:約0.9mm)。そして、中心テンションメンバ21および周辺テンションメンバ22として、表1に示す繊度であって、アラミド繊維で形成された繊維体を用いた。また、難燃性のポリエチレンを用いて外被30を形成した。
(Example A1)
In Example A1, as the optical fiber core 10, the core and the cladding are formed of quartz glass, the primary coating is formed of an ultraviolet curable resin, and the secondary coating is formed of a thermoplastic resin (the outer Diameter: about 0.9 mm). Then, as the central tension member 21 and the peripheral tension member 22, a fiber body having fineness shown in Table 1 and formed of aramid fibers was used. Moreover, the outer cover 30 was formed using the flame retardant polyethylene.
 具体的には、1本の中心テンションメンバ21を光ファイバ心線10を縦添えで配置した。そして、光ファイバ心線10と中心テンションメンバ21との周囲に複数本(たとえば、12本)の周辺テンションメンバ22を縦添えで配置した。その後、押出し成形によって、周辺テンションメンバ22の周囲に難燃性のポリエチレンで構成された外被30を形成した。ここでは、難燃性のポリエチレンとして、EEA(エチレン・エチルアクリレート共重合体)およびPE(ポリエチレン)のベース樹脂100質量部に対して、50から100質量部の水酸化マグネシウムを配合したものを用いた。水酸化マグネシウムを多量に配合することで、樹脂の流動性が低下し、押出成形の際に歪みが残りにくくなるため、加熱によって外被30が収縮する量を低減することができる。 Specifically, one central tension member 21 is disposed with the optical fiber core 10 vertically. Then, a plurality of (for example, 12) peripheral tension members 22 are vertically arranged around the optical fiber 10 and the central tension member 21. Thereafter, an outer cover 30 made of flame-retardant polyethylene was formed around the peripheral tension member 22 by extrusion molding. Here, as the flame retardant polyethylene, one having 50 to 100 parts by mass of magnesium hydroxide blended with 100 parts by mass of EEA (ethylene-ethyl acrylate copolymer) and PE (polyethylene) base resin is used. It was. By blending a large amount of magnesium hydroxide, the flowability of the resin is reduced, and distortion is unlikely to remain at the time of extrusion molding, so the amount of shrinkage of the jacket 30 by heating can be reduced.
(例A3~例F5)
 例A3から例F5のそれぞれにおいては、中心テンションメンバ21および周辺テンションメンバ22として、表1に示す繊度の繊維体を用いた点を除き、例A1の場合と同様に、光ファイバケーブル1を作製した。
(Example A3 to Example F5)
In each of the examples A3 to F5, the optical fiber cable 1 is manufactured in the same manner as the example A1, except that the fiber body having the fineness shown in Table 1 is used as the central tension member 21 and the peripheral tension member 22. did.
(例X)
 例Xにおいては、中心テンションメンバ21を設けずに、周辺テンションメンバ22として、表1に示す繊度の繊維体を用いた。この点を除き、例A1の場合と同様に、光ファイバケーブル1を作製した。つまり、例Xにおいて、テンションメンバ20は、断面において繊度が均一に分布するように構成されている。
(Example X)
In Example X, a fiber body having the fineness shown in Table 1 was used as the peripheral tension member 22 without providing the central tension member 21. An optical fiber cable 1 was produced in the same manner as in Example A1 except this point. That is, in Example X, the tension members 20 are configured such that the fineness is uniformly distributed in the cross section.
[評価]
 各例のサンプルについては、表2および表3に示すように、180°曲げ試験とねじり試験とを行い、評価した。
[Evaluation]
About the sample of each case, as shown in Table 2 and Table 3, the 180 degree bending test and the torsion test were done and evaluated.
(180°曲げ試験)
 180°曲げ試験については、「JIS C 6851」に規定される方法で実施した。具体的には、各例のサンプルをマンドレル(直径100mm)の周囲において角度が180度になるようにU字曲げを行った。そして、そのサンプルについて、逆U字曲げを行った後に、直線状態に戻した。ここでは、U字曲げ、逆U字曲げ、および、直線状態に戻す動作を10サイクル繰り返し行った。そして、各例のサンプルについて、180°曲げ試験を実行している状態で損失増加量の測定を行い、最大の損失増加量を求めた。
(180 ° bending test)
The 180 ° bending test was performed by the method defined in “JIS C 6851”. Specifically, U-bending was performed so that the sample of each example had an angle of 180 degrees around the mandrel (diameter 100 mm). The sample was subjected to reverse U-bending and then returned to the straight state. Here, the U-bending, the reverse U-bending, and the operation of returning to the straight state were repeated 10 cycles. And about the sample of each case, the loss increase amount was measured in the state which is performing the 180 degree bending test, and the largest loss increase amount was calculated | required.
 表2においては、180°曲げ試験で求めた最大の損失増加量の結果について、下記に示す基準に基づいて示した。
 ◎・・・最大の損失増加量が0.07dB以下である場合
 ○・・・最大の損失増加量が0.07dBを超え0.08dB以下である場合
 △・・・最大の損失増加量が0.08dBを超え0.1dB以下である場合
 ×・・・最大の損失増加量が0.1dBを超える場合
In Table 2, it showed based on the reference | standard shown below about the result of the largest loss increase amount calculated | required by the 180 degree bending test.
・ ・ ・ ... When the maximum loss increase is 0.07 dB or less ○ ... When the maximum loss increase is more than 0.07 dB and 0.08 dB or less Δ ... More than .08 dB and less than 0.1 dB × · · · When the maximum increase in loss exceeds 0.1 dB
(ねじり試験)
 ねじり試験については、「JIS C 6851」に規定される方法で実施した。具体的には、ねじり装置において固定式のクランプと回転式のクランプとにサンプルを装着した。ここでは、サンプルのスパン長が250mmになるように、サンプルの装着を行った。そして、サンプルが直線状態を保持するようにサンプルに張力(40N)を負荷した。この状態で、ねじり装置において回転側のクランプを時計回りに180°度回転させた後に、初期位置に戻した。そして、回転側のクランプを反時計回りに180°度回転させた後に、初期位置に戻した。これらの動作を20サイクル繰り返し行った。
(Torsion test)
The torsion test was performed by the method defined in "JIS C 6851". Specifically, the sample was mounted on a stationary clamp and a rotary clamp in a twisting apparatus. Here, the sample was mounted such that the span length of the sample was 250 mm. The sample was then loaded with tension (40 N) to keep the sample in a straight state. In this state, after rotating the clamp on the rotating side clockwise by 180 ° in the twisting device, the clamp was returned to the initial position. Then, the clamp on the rotating side was rotated 180 degrees counterclockwise, and then returned to the initial position. These operations were repeated 20 cycles.
 表3においては、ねじり試験の結果について、下記に示す基準に基づいて示した。
 ◎・・・光ファイバ心線10の断線なし、かつ、伝送損失が0.01dB/km以下である場合
 ○・・・光ファイバ心線10の断線なし、かつ、伝送損失が0.01dB/kmを超え0.05dB/km以下である場合
 △・・・光ファイバ心線10の断線なし、かつ、伝送損失が0.05dB/kmを超え0.1dB/km以下である場合
 ×・・・光ファイバ心線10が断線した場合
Table 3 shows the results of the torsion test based on the criteria shown below.
・ ・ ・ ... no disconnection of the optical fiber core 10 and the transmission loss is 0.01 dB / km or less ○ ... no disconnection of the optical fiber core 10 and the transmission loss 0.01 dB / km 0.05 ····························································· Optical When the fiber 10 is broken
[評価まとめ]
 表1に示すように、例A1から例F5は、例Xと異なり、テンションメンバ20は、中心テンションメンバ21と周辺テンションメンバ22とを含む。例A1から例F5のうち例F1を除いた各例(例A1~例E4,例F3,例F5)は、中心テンションメンバ21の繊度よりも周辺テンションメンバ22の繊度の方が小さい。このため、例A1から例F5のうち例F1を除いた各例(例A1~例E4,例F3,例F5)は、例F1および例Xに比べて、表2に示すように、配線作業において損失が増加することが抑制されると共に、表3に示すように、破損が発生しにくい。これに対して、例Xのように、テンションメンバ20の繊度が単一で均一に分布している場合、および、例F1のように、中心テンションメンバ21の繊度よりも周辺テンションメンバ22の繊度の方が大きい場合には、上記の効果を奏することができない。
[Evaluation summary]
As shown in Table 1, Examples A1 to F5 differ from Example X in that the tension members 20 include a central tension member 21 and a peripheral tension member 22. In each of Examples A1 to F5 except Example F1 (Examples A1 to E4, Example F3, and Example F5), the fineness of peripheral tension member 22 is smaller than the fineness of central tension member 21. For this reason, as shown in Table 2, each example (Example A1 to Example E4, Example F3, Example F5) except Example F1 among Example A1 to Example F5 is compared with Example F1 and Example X as shown in Table 2. As shown in Table 3, damage is less likely to occur while the increase in loss is suppressed. On the other hand, when the fineness of the tension member 20 is uniformly distributed uniformly as in Example X, and as in Example F1, the fineness of the peripheral tension member 22 rather than the fineness of the central tension member 21. The above effect can not be achieved when the value of is larger.
 表1に示すように、例B2、例B3、例B4、例C2、例C3、例C4、例D3、例E2、例E3、および、例E4は、中心テンションメンバ21の繊度が、5000デニール以上、10000デニール以下であり、周辺テンションメンバ22の繊度が、500デニール以上、3000デニール以下である。このため、表2に示すように、上記の各例は、配線作業において損失が増加することを更に効果的に抑制することができる。また、表3に示すように、上記の各例は、破損の発生を更に効果的に抑制することができる。 As shown in Table 1, in Example B2, Example B4, Example B2, Example C2, Example C3, Example C4, Example D3, Example E2, Example E3, and Example E4, the denier of central tension member 21 is 5,000 deniers. As described above, the deniers are 10000 deniers or less, and the fineness of the peripheral tension members 22 is 500 deniers or more and 3000 deniers or less. For this reason, as shown in Table 2, each of the above-described examples can further effectively suppress an increase in loss in the wiring operation. Further, as shown in Table 3, each of the above-described examples can more effectively suppress the occurrence of breakage.
 具体的には、各例のサンプルは、180°曲げ試験で曲げられた「曲げ部」において、円形状の断面が扁平状態になるので、光ファイバケーブル1において中央に位置する光ファイバ心線10には、応力が加わる。しかし、周辺テンションメンバ22の繊度が500デニール以上3000デニール以下の範囲である場合には、光ファイバ心線10において径方向に加わる側圧が小さくなるため、光ファイバ心線10に加わる応力が小さくなる。中心テンションメンバ21の繊度が5000デニール以上10000デニール以下である場合には、180°曲げ試験で曲げられたサンプルにおいて、光ファイバ心線10の曲率が所定の曲率よりも大きくならない。その結果、中心テンションメンバ21の繊度および周辺テンションメンバ22の繊度を上記で規定した範囲にすることで、光ファイバケーブル1の損失増加量を低減することができる。 Specifically, the sample in each example has a circular cross-section in a flat state in the “bent portion” bent in the 180 ° bending test, and thus the optical fiber core wire 10 located at the center in the optical fiber cable 1 Is stressed. However, when the fineness of the peripheral tension member 22 is in the range of 500 deniers to 3000 deniers, the side pressure applied in the radial direction in the optical fiber 10 becomes smaller, so the stress applied to the optical fiber 10 becomes smaller. . When the fineness of the central tension member 21 is not less than 5000 denier and not more than 10000 denier, the curvature of the optical fiber core wire 10 does not become larger than the predetermined curvature in the sample bent in the 180 ° bending test. As a result, the loss increase amount of the optical fiber cable 1 can be reduced by setting the fineness of the central tension member 21 and the fineness of the peripheral tension member 22 in the ranges defined above.
 さらに、各例のサンプルは、ねじり試験によって生じた「ねじれ変形」によって、周辺テンションメンバ22がねじり試験前よりも中心側に寄せられる。しかし、周辺テンションメンバ22の繊度が500デニール以上3000デニール以下の範囲である場合には、光ファイバ心線10において径方向に加わる側圧が小さくなるため、伝送損失を低減することができる。この他に、中心テンションメンバ21の繊度および周辺テンションメンバ22の繊度を上記で規定した範囲にすることによって、光ファイバケーブル1の剛性を下げることができるので、良好な可撓性を得ることができる。 In addition, the samples of each example are more centered on the peripheral tension member 22 than before the torsion test due to the “torsion deformation” caused by the torsion test. However, when the fineness of the peripheral tension member 22 is in the range of 500 deniers to 3000 deniers, the side pressure applied in the radial direction in the optical fiber 10 is reduced, so that the transmission loss can be reduced. In addition to this, by setting the fineness of the central tension member 21 and the fineness of the peripheral tension member 22 in the range defined above, the rigidity of the optical fiber cable 1 can be lowered, so that good flexibility can be obtained. it can.
 なお、中心テンションメンバ21および周辺テンションメンバ22は、コストを低減するためには、繊度が高くない方が好ましい。また、中心テンションメンバ21の繊度と周辺テンションメンバ22の繊度との差が極めて大きい場合には、光ファイバケーブル1に大きな応力が加わったときに、光ファイバ心線10の偏心が生ずる場合がある。このため、中心テンションメンバ21の繊度および周辺テンションメンバ22の繊度は、上記した範囲であることが好ましい。 In order to reduce the cost, it is preferable that the center tension member 21 and the peripheral tension member 22 have a high fineness. When the difference between the fineness of the central tension member 21 and the fineness of the peripheral tension member 22 is extremely large, eccentricity of the optical fiber core 10 may occur when a large stress is applied to the optical fiber cable 1 . Therefore, it is preferable that the fineness of the central tension member 21 and the fineness of the peripheral tension member 22 be in the above-mentioned range.
1…光ファイバケーブル、10…光ファイバ心線、20…テンションメンバ、21…中心テンションメンバ、22…周辺テンションメンバ、30…外被。 Reference Signs List 1 optical fiber cable 10 optical fiber core 20 tension member 21 center tension member 22 peripheral tension member 30 jacket

Claims (4)

  1.  光ファイバ心線と、
     繊維体で形成されており、前記光ファイバ心線に対して縦添えで設けられている中心テンションメンバと、
     繊維体で形成されており、前記光ファイバ心線および前記中心テンションメンバの周囲において前記光ファイバ心線に対して縦添えで設けられている周辺テンションメンバと、
     前記周辺テンションメンバの周囲に設けられている外被と
     を備え、
     前記中心テンションメンバの繊度よりも前記周辺テンションメンバの繊度の方が小さいことを特徴とする
     光ファイバケーブル。
    Optical fiber core wire,
    A central tension member formed of a fiber body and provided longitudinally to the optical fiber core wire;
    A peripheral tension member formed of a fiber body and provided vertically to the optical fiber at the periphery of the optical fiber and the central tension member;
    And a jacket provided around the peripheral tension member,
    An optical fiber cable characterized in that the fineness of the peripheral tension member is smaller than the fineness of the central tension member.
  2.  前記中心テンションメンバの繊度は、5000デニール以上、10000デニール以下であり、
     前記周辺テンションメンバの繊度は、500デニール以上、3000デニール以下である、
     請求項1記載の光ファイバケーブル。
    The fineness of the central tension member is not less than 5000 denier and not more than 10000 denier,
    The fineness of the peripheral tension member is 500 deniers or more and 3000 deniers or less.
    The optical fiber cable according to claim 1.
  3.  前記中心テンションメンバおよび周辺テンションメンバは、アラミド繊維で形成されている、
     請求項1または2に記載の光ファイバケーブル。
    The central tension member and the peripheral tension member are formed of aramid fibers,
    The optical fiber cable according to claim 1 or 2.
  4.  前記外被は、難燃性のポリエチレンを用いて形成されており、熱収縮率が2%以下である、
     請求項1から3のいずれかに記載の光ファイバケーブル。
    The jacket is formed of flame-retardant polyethylene and has a thermal shrinkage of 2% or less.
    The optical fiber cable according to any one of claims 1 to 3.
PCT/JP2018/025043 2017-07-03 2018-07-02 Optical fiber cable WO2019009238A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019527692A JP7117302B2 (en) 2017-07-03 2018-07-02 fiber optic cable
CN201880039032.9A CN110914729A (en) 2017-07-03 2018-07-02 Optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130553 2017-07-03
JP2017130553 2017-07-03

Publications (1)

Publication Number Publication Date
WO2019009238A1 true WO2019009238A1 (en) 2019-01-10

Family

ID=64950906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025043 WO2019009238A1 (en) 2017-07-03 2018-07-02 Optical fiber cable

Country Status (3)

Country Link
JP (1) JP7117302B2 (en)
CN (1) CN110914729A (en)
WO (1) WO2019009238A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102909A (en) * 1981-12-16 1983-06-18 Nippon Telegr & Teleph Corp <Ntt> Optical cable unit
JPH09189831A (en) * 1995-12-28 1997-07-22 Lucent Technol Inc Optical fiber cable
JP2005010651A (en) * 2003-06-20 2005-01-13 Fujikura Ltd Optical fiber cable
JP2006243079A (en) * 2005-02-28 2006-09-14 Sumitomo Electric Ind Ltd Optical fiber cord
EP2056146A2 (en) * 2007-11-01 2009-05-06 Nexans Fiber optic cable design with improved compression test results
JP2012140557A (en) * 2011-01-05 2012-07-26 Furukawa Electric Co Ltd:The Flame retardant resin composition, and optical fiber cord using the same
US20150370026A1 (en) * 2014-06-23 2015-12-24 Corning Optical Communications LLC Optical fiber cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421169B2 (en) * 2003-06-20 2008-09-02 Fujikura Ltd. Optical fiber cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102909A (en) * 1981-12-16 1983-06-18 Nippon Telegr & Teleph Corp <Ntt> Optical cable unit
JPH09189831A (en) * 1995-12-28 1997-07-22 Lucent Technol Inc Optical fiber cable
JP2005010651A (en) * 2003-06-20 2005-01-13 Fujikura Ltd Optical fiber cable
JP2006243079A (en) * 2005-02-28 2006-09-14 Sumitomo Electric Ind Ltd Optical fiber cord
EP2056146A2 (en) * 2007-11-01 2009-05-06 Nexans Fiber optic cable design with improved compression test results
JP2012140557A (en) * 2011-01-05 2012-07-26 Furukawa Electric Co Ltd:The Flame retardant resin composition, and optical fiber cord using the same
US20150370026A1 (en) * 2014-06-23 2015-12-24 Corning Optical Communications LLC Optical fiber cable

Also Published As

Publication number Publication date
JP7117302B2 (en) 2022-08-12
CN110914729A (en) 2020-03-24
JPWO2019009238A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
AU2003304518B2 (en) Telecommunication loose tube optical cable with reduced diameter
JP5719052B1 (en) Optical cable
EP2678728B1 (en) Optical-fiber interconnect cable
US11143835B2 (en) Optical fiber ribbon duct cable
JP5322755B2 (en) cable
KR0178021B1 (en) All-dielectric optical fiber cable having enhanced fiber access
CN112400130B (en) Optical fiber cable
CN104395803A (en) Optical fiber cables with polyethylene binder
EP3591451A1 (en) High density optical cables
US20080232749A1 (en) Optical fiber cable
EP3104203A1 (en) Easy accessable outdoor optical fiber cable
JP2011169938A (en) Unit type optical fiber ribbon and optical fiber cable
US6721480B1 (en) Optical fiber cables
JP7117302B2 (en) fiber optic cable
JP2016076377A (en) Optical-electrical composite cable
CN108428497B (en) Environment-friendly network data cable and preparation method thereof
KR20220140381A (en) Optical cable
JP2005345805A (en) Optical fiber cord
EP4239386A1 (en) Optical fiber cable with elongated strength members and manufacturing method thereof
JP2004265780A (en) Metal optical composite cable
US20230204885A1 (en) Optical fiber cable with movable rip cord
US20230152544A1 (en) Flexible indoor/outdoor high-fiber-count cable
JP2000321472A (en) Optical cable
AU2015203046B2 (en) Armored fiber optic assemblies and methods of forming fiber optic assemblies
JP6151580B2 (en) Fiber optic cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828547

Country of ref document: EP

Kind code of ref document: A1