WO2019008931A1 - Wind farm and arrangement determination device - Google Patents

Wind farm and arrangement determination device Download PDF

Info

Publication number
WO2019008931A1
WO2019008931A1 PCT/JP2018/019942 JP2018019942W WO2019008931A1 WO 2019008931 A1 WO2019008931 A1 WO 2019008931A1 JP 2018019942 W JP2018019942 W JP 2018019942W WO 2019008931 A1 WO2019008931 A1 WO 2019008931A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind turbine
turbine
power generation
farm
Prior art date
Application number
PCT/JP2018/019942
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 大竹
順弘 楠野
啓 角谷
守 木村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019008931A1 publication Critical patent/WO2019008931A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to a wind farm having a plurality of wind power generators having blades that rotate in response to wind, and to an arrangement determination device that determines the arrangement of wind power generators.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a technology for enabling effective power generation.
  • a wind farm is a wind farm comprising a plurality of wind power generators having blades rotating in response to wind, wherein at least one wind power generator is a lee of a main wind direction of a ridge. In the area lower than the ridgeline of the side, the lowest reaching point of the blade is arranged to be higher than the elevation of the ridgeline.
  • FIG. 1 is an overall schematic configuration diagram of a wind turbine according to a first embodiment.
  • FIG. 2 is a diagram for explaining the wind conditions passing the ridge line.
  • FIG. 3 is a layout view of one wind turbine of the wind farm according to the first embodiment.
  • FIG. 4 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side.
  • FIG. 5 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side in a small scale wind farm.
  • FIG. 6 is a view for explaining the influence of the wind turbine on the wind side in a large-scale wind farm on the wind turbine on the wind down side.
  • FIG. 7 is a side view showing the configuration of the wind farm according to the second embodiment.
  • FIG. 1 is an overall schematic configuration diagram of a wind turbine according to a first embodiment.
  • FIG. 2 is a diagram for explaining the wind conditions passing the ridge line.
  • FIG. 3 is a layout view of one wind
  • FIG. 8 is a top view showing the configuration of the wind farm according to the second embodiment.
  • FIG. 9 is a view showing the propagation direction of the wind turbine wake generated by the relationship between the direction of the rotation surface of the rotor constituting the wind turbine according to the fourth embodiment and the wind direction.
  • FIG. 10 is a configuration diagram of a wind turbine arrangement determination device according to the fifth embodiment.
  • FIG. 11 is a flowchart of a windmill placement determination process according to the fifth embodiment.
  • FIG. 12 is a diagram showing wind condition data in the wind farm according to the fifth embodiment.
  • FIG. 13 is a figure which shows the wind condition data which considered the wake in the wind farm which concerns on 5th Embodiment.
  • FIG. 14 is a diagram for explaining an example of the method of determining the best plan according to the fifth embodiment.
  • FIG. 15 is a flowchart of a wind turbine arrangement determination process according to the sixth embodiment.
  • FIG. 1 is an overall schematic configuration diagram of a wind turbine according to a first embodiment.
  • the wind turbine 1 includes a rotor 24 provided with blades 23 rotating in response to wind and a hub 22 supporting the blades 23, a nacelle 21 rotatably supporting the rotor 24, and a tower 20 rotatably supporting the nacelle 21. And.
  • a main shaft 25 rotatably connected to the hub 22 and a main shaft 25 connected to the main shaft 25 to rotate at a rotational speed increased by the speed increasing gear 27 and the speed increasing gear 27.
  • a generator 28 is provided which generates electricity by rotating the child.
  • the speed increasing gear 27 and the generator 28 are held on the main frame 29.
  • An anemometer 32 for measuring wind direction data and wind speed data is installed on the top surface of the nacelle 21.
  • the wind turbine 1 includes a yaw angle drive device 33 that drives the direction of the nacelle 21 (referred to as a yaw angle), that is, the direction of the rotation surface of the rotor 24.
  • the yaw angle drive 33 is disposed between the bottom of the nacelle 21 and the tip of the tower 20.
  • the yaw angle drive device 33 includes an actuator and a motor that drives the actuator.
  • the wind turbine 1 includes, in the nacelle 21, a pitch angle driving device (not shown) that drives the inclination angle (pitch angle) of the blades 23.
  • the pitch drive includes an actuator for adjusting the tilt angle of the blade 23 and a motor for driving the actuator.
  • a power converter 30, which converts the frequency of the electric power generated by the generator 28, a control device 31, and a switch, a switching switch, a transformer, etc., which opens and closes current are not shown. It is done.
  • the example which installed the power converter 30 and the control apparatus 31 in the bottom part of the tower 20 is shown in FIG. 1, these apparatuses are not restricted to the bottom part of the tower 20, The other inside of the windmill 2 is shown. It may be installed at a place.
  • a control panel or Supervisory Control And Data Acquisition (SCADA) may be used as the control device 31.
  • the control device 31 centrally controls the operation of the wind turbine 1.
  • the control device 31 is connected to the yaw angle drive device 33 through a signal line, outputs a yaw angle control command, rotates the motor of the yaw angle drive device 33, and displaces the actuator by a desired amount.
  • the rotation of the nacelle 21 is controlled to a desired yaw angle.
  • the control device 31 outputs a pitch angle control command to a pitch angle driving device (not shown) to control the pitch angle of the blade 23 to be a desired angle.
  • FIG. 2 is a diagram for explaining the wind conditions passing the ridge line.
  • the separation region 350 since the wind speed drops sharply, the power generation efficiency is poor even if the wind turbine is disposed in this region. In addition, in the separation region 350, a large wind disturbance such as a local change in wind direction occurs, which may cause a large load fluctuation applied to the wind turbine.
  • FIG. 3 is a layout view of one wind turbine of the wind farm according to the first embodiment.
  • a ridgeline it is not limited to what is formed in the natural world, For example, it may be artificially created.
  • the ridge is artificially created to lower the elevation of the ridge. You may do it.
  • the ridgeline at which the lowest reaching point of the blades 23 of the windmills 1 is located on the windward side The lowest arrival point of the blades 23 of the wind turbine 1 is arranged to be higher than the elevation of the ridge located on the windward side for all the wind turbines 1.
  • the present embodiment it is possible to install the windmill in the area on the leeward side of the main wind direction of the ridgeline in the mountainous region, and install more windmills as compared to the case where the windmills are arranged limited to the ridgeline. can do.
  • the power generation can be performed without the blades 23 of the wind turbine 1 passing through the separation region 350, the power generation efficiency of the wind turbine 1 can be increased.
  • the wind farm according to the second embodiment arranges a plurality of wind turbines in consideration of the positional relationship between each other. A detailed description of the points in common with the first embodiment is omitted.
  • FIG. 4 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side.
  • the wind that has passed through the wind turbine 100 located on the windward side is called a wind turbine wake (also referred to simply as a wake).
  • a wind turbine wake also referred to simply as a wake.
  • the wind characteristics such as the wind direction and the wind speed are changed.
  • the change in the characteristic of the wind turbine wake depends on the operating state of the wind turbine 100 located on the windward side.
  • the operating state includes states such as the inclination angle (pitch angle) of the blades 23 of the wind turbine 100, the direction of the rotation surface of the rotor 24, and the like.
  • FIG. 5 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side in a small scale wind farm.
  • FIG. 6 is a view for explaining the influence of the wind turbine on the wind side in a large-scale wind farm on the wind turbine on the wind down side.
  • the windward side is in the wind turbine wake region (wind turbine wake region) of the wind turbine 100 located on the windward side.
  • wind turbine wake region wind turbine wake region
  • the wind turbine 100 after the wind turbine 100 in the wind-down direction with respect to one wind turbine 100a located on the wind-up.
  • one wind turbine 200b may be located, and two wind turbines 200 may be located in other places.
  • the relationship between the wind turbines changes.
  • the wind turbine 200b located on the downwind side or the wind turbine 200d is a wind turbine located on the windward side
  • any of the wind turbine 100a located on the windward side or the wind turbine 200d is a wind turbine located on the windward side
  • the wind turbine wake (the wake) will be described.
  • the wind conditions such as the wind direction and the wind speed change due to the rotation of the rotor 24 of the wind turbine 100a located on the windward side.
  • the wind turbine wake flows to the windward side while spreading. That is, the wind turbine wake spreads and propagates to the downwind side while generating an eddy current (turbulence).
  • a wind turbine wake area also referred to as a wake area.
  • the amount of power generation is reduced and the accumulated damage degree is increased, as compared with the wind turbine 200d located on the outside of the wind turbine wake area.
  • FIG. 7 is a side view showing the configuration of the wind farm according to the second embodiment.
  • FIG. 7 shows a view of the wind farm in the direction in which the ridges extend (in the depth direction of the drawing).
  • the wind farm In a wind farm, since the average wind speed tends to increase according to the altitude, the wind farm is generally installed on the shoreline like the wind turbine 1 (wind turbine 101). However, since the land on the shoreline is limited, it is necessary to install the wind turbine 1 (wind turbine 201) at a position lower in elevation than the shoreline, for example, in consideration of installing the wind turbine.
  • the windmill 201 is arrange
  • FIG. 8 is a top view showing the configuration of the wind farm according to the second embodiment.
  • the windmill 101 (first windmill) and the windmill 102 (first windmill) are installed on the same shoreline.
  • the ridgeline is likely to be in the direction perpendicular to the main wind direction.
  • a case where the ridgeline is perpendicular to the main wind direction will be described as an example.
  • the distance 401 between the wind turbines 101 and 102 extends in the direction perpendicular to the main wind direction, it is preferable that the distance between the wind turbines 101 and 102 be at least three times the diameter of the rotor 24 of the wind turbines 101 and 102, for example.
  • the wind turbine 201 (second wind turbine) so as to avoid the influence of the wind turbine wake of the wind turbines 101 and 102 on the shoreline when the wind in the main wind direction blows, , 102 is preferably avoided from the downwind direction of the main wind direction.
  • the wind direction of the wind turbine 201 is compared to the wind direction of the wind turbine 101 and the wind turbine 102. It is preferable not to fall within an angle width range (in this example, for example, a range of 90 degrees) in which a predetermined angle is taken on both sides centering on the downwind direction.
  • the distance between the wind turbine 201 and the approximate middle position between the wind turbine 101 and the wind turbine 102 may be half or less of the distance 401 between the wind turbines.
  • the wind turbine 201 can avoid the influence of the wind turbine wake by the wind turbine 101 and the wind turbine 102 as long as the change of the wind direction is within 45 degrees with respect to the main wind direction.
  • the angular width range may be a range of wind direction in which the appearance probability is equal to or higher than a predetermined value (for example, 90%).
  • FIG. 8 shows an example in which the ridge line is a straight line and two wind turbines are arranged on the ridge line
  • the present invention is not limited to this, for example, three or more wind turbines may be arranged on the ridge line
  • the arrangement of one wind turbine on the downwind side of the main wind direction may be made to have the same positional relationship as in FIG. 8 with respect to each two adjacent wind turbines.
  • the windward wind turbine can be disposed at a position where the influence of the wind turbine wake is small. .
  • the wind turbine it is possible to install the wind turbine also in the windward and leeward regions of the ridgeline and the main wind direction of the ridgeline in the mountain area, compared to the case where the wind turbine is disposed limited to the ridgeline. More windmills can be installed. Further, since the wind turbines are not arranged side by side in the direction of the main wind direction, the wind turbine is less affected by the wind turbine wake of the wind turbine on the windward side of the main wind direction, and the power generation efficiency can be increased.
  • the wind farm according to the third embodiment is configured to control an operation state of a wind turbine located on the downwind side of another wind turbine in a wind farm in which a plurality of wind turbines are arranged.
  • positioning of the windmill in a wind farm may be arrangement
  • the wind turbine between the wind turbine 201 and the wind turbine 101 are approximately 2.1 times the diameter of the rotor 24 of the wind turbine 1 and smaller than the distance 401 between the wind turbines.
  • the wind whose wind direction is such that the wind turbine 201 is located in the wind turbine wake region of the wind turbine 102, that is, the wind where the wind turbine 201 is positioned downwind of the wind turbine 102 (the positional relationship of the wind turbine 200b with respect to the wind turbine 100a in FIG.
  • the load amplitude generated in the wind turbine 201 becomes large, and fatigue damage tends to be accumulated.
  • the wind farm according to the fourth embodiment is configured to control the operation state of a wind turbine located on the windward side of another wind turbine in a wind farm in which a plurality of wind turbines are arranged.
  • positioning of the windmill in a wind farm may be arrangement
  • the wind direction is such that the wind turbine 201 is located in the wind turbine wake area of the wind turbine 102, that is, the wind turbine 201 is located in the windward direction of the wind turbine 102
  • a wind a wind in a wind direction that has a positional relationship of the wind turbine 200b with respect to the wind turbine 100a in FIG. 6
  • the load amplitude generated on the wind turbine 201 becomes large, and fatigue damage tends to be accumulated.
  • FIG. 9 is a view showing the propagation direction of the wind turbine wake generated by the relationship between the direction of the rotation surface of the rotor constituting the wind turbine according to the fourth embodiment and the wind direction.
  • FIG. 9 (A) shows the wind turbine wake area in the case where the rotation surface of the rotor 24 of the wind turbine 1 faces the wind direction
  • FIG. 9 (B) shows the wind direction of the rotation surface of the rotor 24 of the wind turbine 1 Shows a wind turbine wake region in the case where control is performed so as to be directed obliquely to.
  • the wind turbine control in the wind turbine 101 (102) is changed to form a wind turbine wake region.
  • the wind turbine 201 is made to go out of the wind turbine wake area by changing the area of the wind turbine 201 so as to reduce the decrease in the amount of power generation and the increase in the degree of damage in the wind turbine 201.
  • the control device 31 of the wind turbine 101 (102) detects a wind in which the wind turbine 101 (102) turns upwind of the wind turbine 201 based on the wind direction data from the wind direction and anemometer 32 In this case, the direction of the rotation surface of the rotor 24 is changed by controlling the yaw angle by the yaw angle drive device 33 of the wind turbine 101 (102). As a result, the propagation direction of the wind turbine wake by the wind turbine 101 (102) is changed, and the wind turbine 201 comes out of the wind turbine wake area of the wind turbine 101 (102), and the amount of power generation in the wind turbine 201 decreases and the degree of damage increases. Can be reduced.
  • the yaw angle is changed as a control change of the wind turbine 101 (102) located on the windward side, but the present invention is not limited to this, and the pitch angle of the blades 23 is also changed. You may do so.
  • the control device 31 changes the yaw angle and changes the pitch angle of the blade 23 when the wind direction in which the wind turbine 101 (102) is in the wind up direction of the wind turbine 201 is detected. May be changed so as to be substantially parallel to the wind direction. Such a change reduces the energy that the wind turbine 101 (102) rotates the rotor 24 to recover.
  • the wind turbine arrangement determination apparatus can determine the arrangement plan of the plurality of wind turbines and the control plan of the wind turbines in the wind farm described in the first to fourth embodiments.
  • FIG. 10 is a configuration diagram of a wind turbine arrangement determination device according to the fifth embodiment.
  • the wind turbine arrangement determining device 50 as an example of the arrangement determining device is configured by, for example, a general PC (Personal Computer), and an auxiliary storage device as an example of a CPU, a memory 52, and a storage unit as an example of a processor unit. 53, a display device 54, an input device 55, and a bus 56 interconnecting the components.
  • a general PC Personal Computer
  • the CPU 51 executes various processes in accordance with programs stored in the memory 52 and / or the auxiliary storage device 53.
  • the CPU 51 is an example of a rotation speed control unit, a wake control unit, and a recovery energy control unit.
  • the memory 52 is, for example, a RAM (RANDOM ACCESS MEMORY), and stores a program executed by the CPU 51 and necessary information.
  • a RAM RANDOM ACCESS MEMORY
  • the auxiliary storage device 53 is, for example, a bird disk, a flash memory, etc., and stores programs executed by the CPU 51 and data used by the CPU 51.
  • the auxiliary storage device 53 is a program for determining the placement plan and control plan of the wind turbine, information such as wind direction and wind speed at the construction site of the wind farm, and a model for obtaining the wind turbine wake in the wind turbine. Store data etc.
  • the display device 54 is, for example, a display device such as a liquid crystal display, and displays various information (for example, a placement plan and a control plan).
  • the input device 55 is, for example, an input device such as a mouse and a keyboard, and receives an input operation by the user.
  • FIG. 11 is a flowchart of a windmill placement determination process according to the fifth embodiment.
  • FIG. 12 is a diagram showing wind condition data in the wind farm according to the fifth embodiment.
  • FIG. 13 is a figure which shows the wind condition data which considered the wake in the wind farm which concerns on 5th Embodiment.
  • FIG. 14 is a diagram for explaining an example of the method of determining the best plan according to the fifth embodiment.
  • the CPU 51 calculates the wind conditions at the construction site of the wind farm based on the information such as the wind direction, the wind power and the like stored in the auxiliary storage device 53 (step S11). In this step, since the arrangement plan of the wind turbine is undecided, the CPU 51 calculates the wind conditions considering only the influence of the topography without considering the influence of the wind turbine wake.
  • the wind conditions to be calculated include, for example, not only the wind direction and the wind speed, but also shear representing the slope of the wind speed in the vertical direction, and turbulence intensity representing the strength of wind turbulence.
  • the CPU 51 formulates an arrangement plan of the wind turbines in the wind farm 10, and extracts information on the wind conditions at the positions of the wind turbines from the wind conditions obtained in step S11 (step S12).
  • the appearance probability 810 of each wind speed at the arrangement position of each wind turbine, turbulence intensity 820 for each wind speed, wind shear 830 and the like are extracted as wind condition information.
  • an arrangement plan an arrangement plan in which at least one wind turbine is arranged such that the lowest reaching point of the blades 23 of the wind turbine 1 is higher than the elevation of the ridge in a region lower than the ridge downstream of the leeward side of the main wind direction of the ridge.
  • the second wind turbine may generate the second
  • a placement plan may be formulated in which the wind turbine is disposed away from the downwind direction of the wind turbine.
  • the CPU 51 determines a windmill to be controlled (hereinafter referred to as a target windmill in the description of the process), and a control plan of the target windmill (for example, control parameters such as yaw control amount and pitch control amount) It determines (step S13).
  • the control proposal may include the control proposals shown in the third and fourth embodiments described above.
  • the wind turbine downstream flow generated by the target wind turbine has characteristics such as the propagation direction, the reduction rate of the wind speed, and the increase rate of the turbulent intensity depending on the contents of the control plan (control parameters). Changes. Therefore, in order to calculate the wind conditions of the wind turbine wake according to various control parameters, the prepared wake model is updated based on the control parameters of the control plan (step S14).
  • the CPU 51 calculates the wind conditions (probability of appearance 811 of each wind speed, turbulence intensity 821 for each wind speed, wind shear 831) at each wind turbine position using the model of the wake ( Step S15).
  • the CPU 51 calculates the total power generation amount of the entire wind farm and the damage degree of each wind turbine (Step S16).
  • the CPU 51 determines whether or not the optimal control plan has been determined (step S17). If the optimal control plan is not determined (step S17: NO), the processes of steps S13 to S16 are performed again. As a result, the control plan is changed with respect to the same layout plan, and step S13 to step S16 are repeatedly executed, and an optimal control plan is searched.
  • the control proposal may be a control proposal in which the degree of damage falls below a design allowable value (predetermined value) and the total power generation amount of the wind farm is maximized (estimated as maximum).
  • a method as shown in FIG. 14 that is, a method in which the damage degree is a constraint function and the total power generation amount is an objective function is considered.
  • the total power generation amount is calculated while changing the control parameter, and the obtained maximum value of the total power generation amount (Nth acquisition) is stored, and the maximum value is obtained.
  • the total power generation amount of the maximum value at that time Nth value
  • the total power generation amount of the maximum value at that time Nth value
  • a method of performing an iterative calculation and determining an optimal plan it is not limited to the said method, You may make it use other optimization algorithms, such as a method using a genetic algorithm.
  • step S17 YES
  • the CPU 51 advances the process to step S18.
  • step S18 the CPU 51 determines whether or not the optimal layout plan has been determined, and if the optimal layout plan has not been determined (step S18: NO), the processing of step S12 to step S17 is performed again. As a result, the arrangement plan is changed, and the process of determining the control plan most suitable for the arrangement plan is repeatedly executed, and the optimum arrangement plan is searched.
  • the degree of damage may be less than a predetermined design allowance, and the total generation amount of the wind farm may be maximized (estimated).
  • step S18 As a specific method of determining the optimal layout plan in step S18, a method similar to that of step S17 described above may be used, or a method different from step S17 may be used.
  • step S18 when the optimal layout plan is determined (step S18: YES), the CPU 51 determines the optimal layout plan determined in step S18 and the optimal control plan determined as the optimal control plan in step S17.
  • the control plan is displayed and output on the display device 54.
  • the user can freely set the number of wind turbines to be arranged in the wind farm, and for example, it is also required to specify a larger number of the number and to determine the optimal arrangement plan for high density windmill arrangement. It is conceivable. For example, by increasing the number of bases, it is possible to increase the amount of power generation at a wind speed below the rated frequency where the appearance frequency is high, and also to improve the effect of smoothing the output.
  • the requirements for the installable area of the wind turbine such as the distance from the residence of the nearby residents where the wind turbine can be installed and the distance from the transport road where the wind turbine can be installed
  • the layout plan is determined in consideration of the installation requirements of the wind turbines such as the requirements for the number of wind turbines.
  • the distance from the haul road where the wind turbine can be installed can be considered, for example, as a requirement for suppressing the transportation cost at the time of installation of the wind turbine, the construction period, and the like.
  • FIG. 15 is a flowchart of a wind turbine arrangement determination process according to the sixth embodiment.
  • the same parts as those in the flowchart of the wind turbine arrangement determining process according to the fifth embodiment shown in FIG. 11 are denoted by the same reference numerals, and the description will not be repeated.
  • step S21 the CPU 51 receives an input of installation requirements by the user via the input device 55.
  • the installation requirements include at least the requirements for the installable area of the wind turbine such as the distance from the residence of the residents capable of installing the wind turbine and the distance from the transport road on which the wind turbine can be installed It may be one side.
  • step S21 when the distance from the residence of the installable nearby residents, the distance from the installable transport road, etc. is accepted as the installation requirement, the area of the construction site which does not satisfy the requirement is Since it is excluded from the position where the wind turbine is arranged when formulating the arrangement plan, the arrangement range to be considered in the processing can be suppressed, and the amount of processing can be reduced.
  • the number of wind turbines when the number of wind turbines is specified, the number of wind turbines to be considered in the process is limited, so that the amount of processing can be reduced.
  • the wind turbine layout determination device since the optimum layout plan is determined based on the requirements for the installable area, the layout of the wind turbine layout with reduced cost, construction period, etc. You can get a plan. In addition, it is possible to appropriately determine the placement plan of the high density wind turbine layout, and to determine the layout plan in consideration of the wind turbine layout corresponding to various geographical factors and the like.
  • a downwind type wind turbine has been described as an example of a wind power generator (wind turbine) in the above embodiment, the present invention is not limited to this and may be an upwind type wind turbine.
  • the wind turbine in which the rotor is constituted by the three blades and the hub is shown as an example, the present invention is not limited thereto, and the rotor may be constituted by the hub and at least one blade. .
  • each wind turbine 1 is provided with the control device 31, and the control device 31 provided in the wind turbine 1 controls the respective wind turbine 1, but the present invention is not limited thereto.
  • a control device that centrally controls the plurality of wind turbines 1 of the farm 10 may be provided, and the control device may control the plurality of wind turbines 1.

Abstract

The purpose of the present invention is to enable effective electric power generation. A wind farm 10 is provided with a plurality of wind turbines 1 that have blades and rotate in the wind. At least one of the wind turbines 1 is arranged, in a region lower than a ridge line on the downwind side of a main wind direction 300 at the ridge line, such that a lowest point L reached by the blades 23 is not lower than the height of the ridge line. In the wind farm, the plurality of wind turbines 1 include a first wind turbine and a second wind turbine arranged on the downwind side in the main wind direction 300 of the first wind turbine. The second wind turbine may be arranged so as to avoid an area which is in the downwind direction of the first wind turbine with respect to a predetermined range of wind directions including the main wind direction 300.

Description

ウィンドファーム、及び配置決定装置Wind farm and arrangement determination device
 本発明は、風を受けて回転するブレードを有する風力発電装置を複数備えるウィンドファーム及び風力発電装置の配置を決定する配置決定装置に関する。 The present invention relates to a wind farm having a plurality of wind power generators having blades that rotate in response to wind, and to an arrangement determination device that determines the arrangement of wind power generators.
 近年、複数の風力発電装置(風車)を備えたウィンドファームが建設されている。ウィンドファームを建設できる場所としては、強い風が吹いている場所である必要があり、例えば、山岳部などに建設されている。 BACKGROUND In recent years, wind farms equipped with a plurality of wind turbines (wind turbines) have been constructed. A place where a wind farm can be built needs to be a place where a strong wind is blowing, for example, it is built in a mountainous area.
 例えば、山岳部にウィンドファームを建設する際には、風を有効に得るために、稜線の近傍や、稜線よりも主風向(年間を通じて最も頻度が高い風向)の風上側の領域に風力発電装置を設置するようにしている。 For example, when constructing a wind farm in a mountainous area, in order to obtain wind effectively, the wind power generator is located in the vicinity of the shoreline or the windward region of the main wind direction (wind direction most frequent throughout the year) than the shoreline. To install.
 ウィンドファームを建設する場合には、どのように風車を配置するかが重要であり、他の風車との位置関係をどのように決定すればよいかを決定することは非常に困難である。 When constructing a wind farm, how to arrange the windmills is important, and it is very difficult to determine how to determine the positional relationship with other windmills.
 これに対して、建設地内の各地点の風速値を各風況ごとにまとめた風速データを用いて、発電量の観点からみて最適な風車の配置を決定する技術が知られている(例えば、特許文献1参照)。 On the other hand, there is known a technique for determining the optimum arrangement of wind turbines from the viewpoint of the amount of power generation using wind speed data in which wind speed values at each point in a construction site are summarized for each wind condition (for example, Patent Document 1).
特開2010-127235号公報JP, 2010-127235, A
 山岳部等に建設されるウィンドファームにおいては、地形によって発生する地形乱流や、風上側に位置する風車を通過した風車後流(後流ともいう)の影響を考慮した風車配置を検討することが必要である。地形乱流中や風車後流中においては、風車の発電量が減少したり、風車に損傷が発生したりする問題がある。 For wind farms constructed in mountainous areas, consider the arrangement of wind turbines considering the effects of topography turbulence generated by terrain and wind turbine wakes (also called wakes) that have passed through wind turbines located on the windward side. is necessary. There is a problem that the power generation amount of the wind turbine decreases or damage to the wind turbine occurs during the topography turbulence and the wind turbine wake.
 本発明は、上記事情に鑑みなされたものであり、その目的は、効果的に発電できるようにするための技術を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a technology for enabling effective power generation.
 上記目的を達成するため、一観点に係るウィンドファームは、風を受けて回転するブレードを有する風力発電装置を複数備えるウィンドファームであって、少なくとも一つの風力発電装置は、稜線の主風向の風下側の稜線よりも低い領域において、ブレードの最低到達点が稜線の標高以上となるように配置されている。 In order to achieve the above object, a wind farm according to one aspect is a wind farm comprising a plurality of wind power generators having blades rotating in response to wind, wherein at least one wind power generator is a lee of a main wind direction of a ridge. In the area lower than the ridgeline of the side, the lowest reaching point of the blade is arranged to be higher than the elevation of the ridgeline.
 本発明によれば、効果的に発電できるようにすることができる。 According to the present invention, power can be generated effectively.
図1は、第1実施形態に係る風車の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a wind turbine according to a first embodiment. 図2は、稜線を通過する風況を説明する図である。FIG. 2 is a diagram for explaining the wind conditions passing the ridge line. 図3は、第1実施形態に係るウィンドファームの一つの風車の配置図である。FIG. 3 is a layout view of one wind turbine of the wind farm according to the first embodiment. 図4は、風上側の風車による風下側の風車への影響を説明する図である。FIG. 4 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side. 図5は、小規模なウィンドファームにおける風上側の風車による風下側の風車への影響を説明する図である。FIG. 5 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side in a small scale wind farm. 図6は、大規模なウィンドファームにおける風上側の風車による風下側の風車への影響を説明する図である。FIG. 6 is a view for explaining the influence of the wind turbine on the wind side in a large-scale wind farm on the wind turbine on the wind down side. 図7は、第2実施形態に係るウィンドファームの構成を示す側面図である。FIG. 7 is a side view showing the configuration of the wind farm according to the second embodiment. 図8は、第2実施形態に係るウィンドファームの構成を示す上面図である。FIG. 8 is a top view showing the configuration of the wind farm according to the second embodiment. 図9は、第4実施形態に係る風車を構成するロータの回転面の向きと風向との関係により生ずる風車後流の伝搬方向を示す図である。FIG. 9 is a view showing the propagation direction of the wind turbine wake generated by the relationship between the direction of the rotation surface of the rotor constituting the wind turbine according to the fourth embodiment and the wind direction. 図10は、第5実施形態に係る風車配置決定装置の構成図である。FIG. 10 is a configuration diagram of a wind turbine arrangement determination device according to the fifth embodiment. 図11は、第5実施形態に係る風車配置決定処理のフローチャートである。FIG. 11 is a flowchart of a windmill placement determination process according to the fifth embodiment. 図12は、第5実施形態に係るウィンドファームにおける風況データを示す図である。FIG. 12 is a diagram showing wind condition data in the wind farm according to the fifth embodiment. 図13は、第5実施形態に係るウィンドファームにおける後流を考慮した風況データを示す図である。FIG. 13: is a figure which shows the wind condition data which considered the wake in the wind farm which concerns on 5th Embodiment. 図14は、第5実施形態に係る最適案決定方法の一例を説明する図である。FIG. 14 is a diagram for explaining an example of the method of determining the best plan according to the fifth embodiment. 図15は、第6実施形態に係る風車配置決定処理のフローチャートである。FIG. 15 is a flowchart of a wind turbine arrangement determination process according to the sixth embodiment.
 いくつかの実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。 Several embodiments will be described with reference to the drawings. The embodiments described below do not limit the invention according to the claims, and all of the elements described in the embodiments and their combinations are essential to the solution means of the invention. There is no limit.
 まず、第1実施形態に係るウィンドファームについて説明する。 First, the wind farm according to the first embodiment will be described.
 ウィンドファームは、少なくとも2基以上の風車(風力発電装置)1を含む集合型風力発電所や風車群である。 The wind farm is a collective wind power plant or a wind turbine group including at least two wind turbines (wind power generation devices) 1.
 図1は、第1実施形態に係る風車の全体概略構成図である。 FIG. 1 is an overall schematic configuration diagram of a wind turbine according to a first embodiment.
 風車1は、風を受けて回転するブレード23及びブレード23を支持するハブ22を備えるロータ24と、ロータ24を回転可能に支持するナセル21と、ナセル21を回動可能に支持するタワー20と、を備える。 The wind turbine 1 includes a rotor 24 provided with blades 23 rotating in response to wind and a hub 22 supporting the blades 23, a nacelle 21 rotatably supporting the rotor 24, and a tower 20 rotatably supporting the nacelle 21. And.
 ナセル21内には、ハブ22に回転可能に接続された主軸25と、主軸25に接続され、回転速度を増速する増速機27と、増速機27により増速された回転速度で回転子を回転させて発電する発電機28とが備えられている。増速機27及び発電機28は、メインフレーム29上に保持されている。ナセル21の上面には、風向データ及び風速データを計測するための風向風速計32が設置されている。 In the nacelle 21, a main shaft 25 rotatably connected to the hub 22 and a main shaft 25 connected to the main shaft 25 to rotate at a rotational speed increased by the speed increasing gear 27 and the speed increasing gear 27. A generator 28 is provided which generates electricity by rotating the child. The speed increasing gear 27 and the generator 28 are held on the main frame 29. An anemometer 32 for measuring wind direction data and wind speed data is installed on the top surface of the nacelle 21.
 また、風車1は、ナセル21の向き(ヨー角と称される)、すなわち、ロータ24の回転面の向きを駆動するヨー角駆動装置33を備える。ヨー角駆動装置33は、ナセル21の底面と、タワー20の先端部との間に配されている。ヨー角駆動装置33は、アクチュエータ及びアクチュエータを駆動するモータを含む。また、風車1は、ナセル21内に、ブレード23の傾斜角(ピッチ角)を駆動する図示しないピッチ角駆動装置を備える。ピッチ角駆動装置は、ブレード23の傾斜角を調整するアクチュエータ及びアクチュエータを駆動するモータを含む。 In addition, the wind turbine 1 includes a yaw angle drive device 33 that drives the direction of the nacelle 21 (referred to as a yaw angle), that is, the direction of the rotation surface of the rotor 24. The yaw angle drive 33 is disposed between the bottom of the nacelle 21 and the tip of the tower 20. The yaw angle drive device 33 includes an actuator and a motor that drives the actuator. In addition, the wind turbine 1 includes, in the nacelle 21, a pitch angle driving device (not shown) that drives the inclination angle (pitch angle) of the blades 23. The pitch drive includes an actuator for adjusting the tilt angle of the blade 23 and a motor for driving the actuator.
 タワー20の内部には、発電機28により発電された電力の周波数を変換する電力変換器30と、制御装置31と、図示しない、電流の開閉を行うスイッチング用の開閉器、変圧器等が配されている。なお、図1においては、電力変換器30及び制御装置31をタワー20の底部に設置した例を示しているが、これらの機器は、タワー20の底部に限られず、風車2の内部の他の場所に設置するようにしてもよい。 Inside the tower 20, a power converter 30, which converts the frequency of the electric power generated by the generator 28, a control device 31, and a switch, a switching switch, a transformer, etc., which opens and closes current are not shown. It is done. In addition, although the example which installed the power converter 30 and the control apparatus 31 in the bottom part of the tower 20 is shown in FIG. 1, these apparatuses are not restricted to the bottom part of the tower 20, The other inside of the windmill 2 is shown. It may be installed at a place.
 制御装置31としては、例えば、制御盤又はSCADA(Supervisory Control And Data Acquisition)を用いてもよい。制御装置31は、風車1の動作を統括制御する。例えば、制御装置31は、信号線を介してヨー角駆動装置33に接続されており、ヨー角制御指令を出力して、ヨー角駆動装置33のモータを回転させて、アクチュエータを所望量変位させることで、ナセル21を所望のヨー角となるように回動制御する。また、制御装置31は、図示しないピッチ角駆動装置に対して、ピッチ角制御指令を出力して、ブレード23のピッチ角を所望の角度となるように制御する。 For example, a control panel or Supervisory Control And Data Acquisition (SCADA) may be used as the control device 31. The control device 31 centrally controls the operation of the wind turbine 1. For example, the control device 31 is connected to the yaw angle drive device 33 through a signal line, outputs a yaw angle control command, rotates the motor of the yaw angle drive device 33, and displaces the actuator by a desired amount. Thus, the rotation of the nacelle 21 is controlled to a desired yaw angle. Further, the control device 31 outputs a pitch angle control command to a pitch angle driving device (not shown) to control the pitch angle of the blade 23 to be a desired angle.
 山岳部におけるウィンドファームにおいては、標高が高くなるほど平均風速が高くなる傾向にあることから、稜線に沿って風車を設置することが一般的である。しかしながら、騒音や周辺民家に対する問題などから、必ずしも稜線上に設置できるわけではないため、稜線上以外の設置場所を検討する必要が生じる場合がある。 In wind farms in mountainous areas, since the average wind speed tends to be higher as the altitude is higher, it is common to install a wind turbine along a ridgeline. However, due to noise and problems with surrounding houses, it may not always be possible to install on the shoreline, so it may be necessary to consider installation places other than the shoreline.
 ここで、稜線を通過する風況について説明する。 Here, the wind conditions passing through the shoreline will be described.
 図2は、稜線を通過する風況を説明する図である。 FIG. 2 is a diagram for explaining the wind conditions passing the ridge line.
 山岳部を通過する風の特徴の一つに、流れの剥離が挙げられる。流れの剥離は、図2に示すように、斜面に沿って上昇してきた風310は、風311として山頂(稜線)を通過後、地面に沿って下降せずに、上空を流れる風312に示すように流れる現象のことをいう。ここで、山の稜線に対して風下側となる領域350を剥離領域と呼ぶ。 One of the features of wind passing through mountainous areas is separation of flow. The separation of the flow is shown in FIG. 2 that the wind 310 rising along the slope passes the mountaintop as a wind 311 and does not descend along the ground, but the wind 312 flows upward. It refers to the phenomenon that flows. Here, the region 350 which is the leeward side with respect to the ridgeline of the mountain is called a peeling region.
 剥離領域350においては、風速が急激に低下するため、この領域に風車を配置しても発電効率が悪い。また、剥離領域350においては、局所的に風向が変化するなど大きな風の乱れが発生するため、風車にかかる荷重変動が大きくなる虞がある。 In the separation region 350, since the wind speed drops sharply, the power generation efficiency is poor even if the wind turbine is disposed in this region. In addition, in the separation region 350, a large wind disturbance such as a local change in wind direction occurs, which may cause a large load fluctuation applied to the wind turbine.
 そこで、本実施形態におけるウィンドファームにおいては、少なくとも一つの風車1のブレード23が剥離領域350を通過することがないように、風車を配置するようにしている。 So, in the wind farm in this embodiment, it arrange | positions a windmill so that the braid | blade 23 of at least one windmill 1 may not pass the peeling area | region 350. As shown in FIG.
 図3は、第1実施形態に係るウィンドファームの一つの風車の配置図である。 FIG. 3 is a layout view of one wind turbine of the wind farm according to the first embodiment.
 本実施形態においては、主風向(年間を通じて最も頻度が高い風向)300に対して稜線よりも風下側の稜線よりも低い位置に配置される風車1(ここでは、風車211とする)において、風車211のブレード23の最低到達点が、風上側に位置する稜線の標高H以上となるように風車211を配置する。なお、ここでの稜線と、風車1の配置位置とは、例えば、同一の山岳部に属し、稜線は、風車1の配置位置に対して直近の稜線である。このように風車211を配置することにより、図2に示す剥離領域350を風車211のブレード23が通過することがなくなり、風車211による発電が流れの剥離の影響を受けてしまうことを適切に回避することができる。 In the present embodiment, the wind turbine 1 (here, the wind turbine 211) is disposed at a position lower than the ridgeline on the leeward side of the ridgeline with respect to the main wind direction (windflow direction of highest frequency throughout the year) 300. The wind turbine 211 is disposed such that the lowest reaching point of the blades 23 of 211 is equal to or higher than the altitude H of the ridge located on the windward side. In addition, the ridgeline here and the arrangement position of the windmill 1 belong to the same mountain part, for example, and the ridgeline is a ridgeline nearest to the arrangement position of the windmill 1. By arranging the wind turbine 211 in this manner, the blade 23 of the wind turbine 211 does not pass through the separation region 350 shown in FIG. 2 and power generation by the wind turbine 211 is appropriately prevented from being affected by flow separation. can do.
 なお、稜線とは、自然界において形成されているものに限定されず、例えば、人工的に造成されたものでもよい。例えば、風車211のブレード23の最低到達点が、風上側に位置する稜線の標高よりも高くなるように風車211を配置するために、例えば、稜線を人工的に造成して稜線の標高を低くするようにしてもよい。 In addition, with a ridgeline, it is not limited to what is formed in the natural world, For example, it may be artificially created. For example, in order to arrange the wind turbine 211 so that the lowest arrival point of the blade 23 of the wind turbine 211 is higher than the elevation of the ridge located on the windward side, for example, the ridge is artificially created to lower the elevation of the ridge. You may do it.
 また、ウィンドファームにおいて、稜線よりも風下側に配置される風車1が複数ある場合には、そのうちの1以上の風車1について、風車1のブレード23の最低到達点が、風上側に位置する稜線の標高よりも高くなるように配置するようにすればよく、すべての風車1について、風車1のブレード23の最低到達点が、風上側に位置する稜線の標高よりも高くなるように配置するようにしてもよい。 In addition, in the wind farm, when there are a plurality of windmills 1 disposed on the leeward side of the ridgeline, the ridgeline at which the lowest reaching point of the blades 23 of the windmills 1 is located on the windward side The lowest arrival point of the blades 23 of the wind turbine 1 is arranged to be higher than the elevation of the ridge located on the windward side for all the wind turbines 1. You may
 本実施形態によれば、山岳部において、稜線の主風向の風下側の領域にも風車を設置することができ、稜線上に限定して風車を配置する場合に比べて、多くの風車を設置することができる。また、風車1のブレード23が剥離領域350を通過しないで発電を行うことができるので、風車1による発電効率を高くすることができる。 According to the present embodiment, it is possible to install the windmill in the area on the leeward side of the main wind direction of the ridgeline in the mountainous region, and install more windmills as compared to the case where the windmills are arranged limited to the ridgeline. can do. In addition, since the power generation can be performed without the blades 23 of the wind turbine 1 passing through the separation region 350, the power generation efficiency of the wind turbine 1 can be increased.
 次に、第2実施形態に係るウィンドファームについて説明する。 Next, a wind farm according to a second embodiment will be described.
 第2実施形態に係るウィンドファームは、複数の風車を相互の位置関係を考慮して配置するようにしたものである。なお、第1実施形態と共通する点についての詳細な説明は省略する。 The wind farm according to the second embodiment arranges a plurality of wind turbines in consideration of the positional relationship between each other. A detailed description of the points in common with the first embodiment is omitted.
 まず、風上側に位置する風車による風下側に位置する風車への影響について説明する。 First, the influence on the windmill located on the downwind side by the windmill located on the upwind side will be described.
 図4は、風上側の風車による風下側の風車への影響を説明する図である。 FIG. 4 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side.
 風上側に位置する風車100を通過した風は、風車後流(単に、後流とも称される)と呼ばれる。この風車後流は、風上側に位置する風車100に流入する前の風と比較した場合には、風向、風速などの風の特性が変化したものとなる。風車後流の特性の変化は、風上側に位置する風車100の運転状態に依存する。ここで、運転状態とは、風車100のブレード23の傾斜角(ピッチ角)や、ロータ24の回転面の向き等の状態も含む。 The wind that has passed through the wind turbine 100 located on the windward side is called a wind turbine wake (also referred to simply as a wake). When this wind turbine wake is compared with the wind before flowing into the wind turbine 100 located on the windward side, the wind characteristics such as the wind direction and the wind speed are changed. The change in the characteristic of the wind turbine wake depends on the operating state of the wind turbine 100 located on the windward side. Here, the operating state includes states such as the inclination angle (pitch angle) of the blades 23 of the wind turbine 100, the direction of the rotation surface of the rotor 24, and the like.
 図5は、小規模なウィンドファームにおける風上側の風車による風下側の風車への影響を説明する図である。図6は、大規模なウィンドファームにおける風上側の風車による風下側の風車への影響を説明する図である。 FIG. 5 is a diagram for explaining the influence of the wind turbine on the upwind side on the wind turbine on the downwind side in a small scale wind farm. FIG. 6 is a view for explaining the influence of the wind turbine on the wind side in a large-scale wind farm on the wind turbine on the wind down side.
 図5に示すように、2基の風車から構成されるウィンドファーム12においては、風向によっては、風上側に位置する風車100の風車後流の領域(風車後流領域)の中に、風下側に位置する風車200が入ってしまう可能性がある。 As shown in FIG. 5, in the wind farm 12 composed of two wind turbines, depending on the wind direction, the windward side is in the wind turbine wake region (wind turbine wake region) of the wind turbine 100 located on the windward side. There is a possibility that the windmill 200 located in may enter.
 また、4基の風車から構成されるウィンドファーム13においては、図6に示すような風向の場合には、風上側に位置する1基の風車100aに対して、風下方向の風車100の風車後流領域の中に、1基の風車200bが位置し、それ以外の場所に2基の風車200が位置する場合がある。風向が変化した場合には、各風車の関係が変化する。例えば、風向によっては、風下側に位置する風車200b、風車200dのいずれかが風上側に位置する風車となり、風上側に位置する風車100a、風車200dのいずれかが風下側に位置する風車となる場合がある。 Further, in the wind farm 13 configured of four wind turbines, in the case of the wind direction as shown in FIG. 6, the wind turbine 100 after the wind turbine 100 in the wind-down direction with respect to one wind turbine 100a located on the wind-up. In the flow area, one wind turbine 200b may be located, and two wind turbines 200 may be located in other places. When the wind direction changes, the relationship between the wind turbines changes. For example, depending on the wind direction, either the wind turbine 200b located on the downwind side or the wind turbine 200d is a wind turbine located on the windward side, and any of the wind turbine 100a located on the windward side or the wind turbine 200d is a wind turbine located on the windward side There is a case.
 ここで、風車後流(後流)について説明する。図6に示すウィンドファームにおいて、風上側に位置する風車100aを通過する風は、風上側に位置する風車100aのロータ24の回転の影響により、風向、風速といった風況が変化する。この時には、風向、風速だけでなく、風の乱れ方である乱流特性や渦の形状などが変化することが考えられる。 Here, the wind turbine wake (the wake) will be described. In the wind farm shown in FIG. 6, in the wind passing through the wind turbine 100a located on the windward side, the wind conditions such as the wind direction and the wind speed change due to the rotation of the rotor 24 of the wind turbine 100a located on the windward side. At this time, it is conceivable that not only the wind direction and the wind speed, but also the turbulence characteristics and the shape of the vortices, which are the wind turbulence, change.
 風車後流は、図6に示すように、風上側に位置する風車100aを通過した後には、拡がりながら風下側へと流れる。すなわち、風車後流は、拡散しつつ渦流(乱流)を生じさせながら風下側へと伝搬する。ここで、拡散しつつ渦流(乱流)を生じさせながら風下側へと風車後流が伝搬する領域を、風車後流領域(後流領域とも称される)と呼ぶ。図6に示す状況においては、風下側に位置する風車200bでは、風車後流領域の外側に位置する風車200dに比べて、発電量が低下するとともに、蓄積される損傷度が増加する。 As shown in FIG. 6, after passing through the wind turbine 100 a located on the windward side, the wind turbine wake flows to the windward side while spreading. That is, the wind turbine wake spreads and propagates to the downwind side while generating an eddy current (turbulence). Here, the area where the wind turbine wake propagates to the downwind side while creating a swirling flow (turbulence) while diffusing is referred to as a wind turbine wake area (also referred to as a wake area). In the situation shown in FIG. 6, in the wind turbine 200b located on the downwind side, the amount of power generation is reduced and the accumulated damage degree is increased, as compared with the wind turbine 200d located on the outside of the wind turbine wake area.
 図7は、第2実施形態に係るウィンドファームの構成を示す側面図である。図7は、ウィンドファームを、稜線の延びる方向(図面奥行き方向)に見た図を示している。 FIG. 7 is a side view showing the configuration of the wind farm according to the second embodiment. FIG. 7 shows a view of the wind farm in the direction in which the ridges extend (in the depth direction of the drawing).
 ウィンドファームにおいて、平均風速は標高に応じて高くなる傾向にあることから、風車1(風車101)のように稜線上に設置される場合が一般的である。しかしながら、稜線上の土地は限られていることから、さらに風車を設置することを考えた場合、例えば、稜線よりも標高が低い位置に風車1(風車201)を設置する必要がある。山岳部において、風向の出現頻度に着目した場合には、図7における風向300のように、稜線を横切る風の出現頻度が高くなることから、風車201は、風向300において、他の風車の後流の影響を受けないように配置することが重要となる。なお、風車201は、ブレード23の最低到達点が、風上側に位置する稜線の標高Hよりも高くなるように配置されている。 In a wind farm, since the average wind speed tends to increase according to the altitude, the wind farm is generally installed on the shoreline like the wind turbine 1 (wind turbine 101). However, since the land on the shoreline is limited, it is necessary to install the wind turbine 1 (wind turbine 201) at a position lower in elevation than the shoreline, for example, in consideration of installing the wind turbine. In the mountainous area, when attention is paid to the appearance frequency of the wind direction, since the appearance frequency of the wind crossing the ridgeline becomes high as in the wind direction 300 in FIG. It is important to arrange so as not to be affected by the flow. In addition, the windmill 201 is arrange | positioned so that the lowest arrival point of the braid | blade 23 may become higher than the altitude H of the ridgeline located in windward.
 図8は、第2実施形態に係るウィンドファームの構成を示す上面図である。 FIG. 8 is a top view showing the configuration of the wind farm according to the second embodiment.
 風車101(第1の風車)と、風車102(第1の風車)とは、同一の稜線上に設置されている。稜線は、例えば、主風向と垂直方向になる可能性が高く、ここでは、稜線が主風向と垂直である場合を例に説明する。風車101と風車102との間の風車間距離401は、主風向と垂直の方向に延びているので、例えば、風車101,102のロータ24の直径の3倍以上とすることが好ましい。ここで、主風向の風が吹いた場合に、風車201(第2の風車)は稜線上の風車101,102の風車後流の影響を回避できるように配置することが好ましいので、各風車101,102の主風向の風下方向を避けて配置することが好ましい。例えば、図6に示す風車100aと風車200dとの位置関係となるように配置するのが望ましい。 The windmill 101 (first windmill) and the windmill 102 (first windmill) are installed on the same shoreline. For example, the ridgeline is likely to be in the direction perpendicular to the main wind direction. Here, a case where the ridgeline is perpendicular to the main wind direction will be described as an example. Since the distance 401 between the wind turbines 101 and 102 extends in the direction perpendicular to the main wind direction, it is preferable that the distance between the wind turbines 101 and 102 be at least three times the diameter of the rotor 24 of the wind turbines 101 and 102, for example. Here, since it is preferable to arrange the wind turbine 201 (second wind turbine) so as to avoid the influence of the wind turbine wake of the wind turbines 101 and 102 on the shoreline when the wind in the main wind direction blows, , 102 is preferably avoided from the downwind direction of the main wind direction. For example, it is desirable to arrange so that it may become physical relationship with windmill 100a shown in Drawing 6, and windmill 200d.
 また、主風向から所定角度(場所に応じて異なるが、例えば、45度)以上傾いた風の出現確率は大きく低下するので、風車201を、風車101及び風車102のそれぞれに対して、主風向の風下方向を中心に両側に所定角度を取った角度幅範囲(この例では、例えば90度の範囲)に入らないようにすることが好ましい。例えば、所定角度が45度の場合には、風車201を、風車101及び風車102の略中間位置との距離410を、風車間距離401の半分以下とするようにすればよい。このような配置にすることにより、主風向に対して、風向の変化が45度以内である限り、風車201は、風車101及び風車102による風車後流の影響を回避することができる。なお、角度幅範囲は、出現確率が所定以上(例えば90%)となる風向の範囲としてもよい。 In addition, since the appearance probability of the wind inclined at least a predetermined angle (for example, 45 degrees depending on the location) from the main wind direction is significantly reduced, the wind direction of the wind turbine 201 is compared to the wind direction of the wind turbine 101 and the wind turbine 102. It is preferable not to fall within an angle width range (in this example, for example, a range of 90 degrees) in which a predetermined angle is taken on both sides centering on the downwind direction. For example, in the case where the predetermined angle is 45 degrees, the distance between the wind turbine 201 and the approximate middle position between the wind turbine 101 and the wind turbine 102 may be half or less of the distance 401 between the wind turbines. With this arrangement, the wind turbine 201 can avoid the influence of the wind turbine wake by the wind turbine 101 and the wind turbine 102 as long as the change of the wind direction is within 45 degrees with respect to the main wind direction. The angular width range may be a range of wind direction in which the appearance probability is equal to or higher than a predetermined value (for example, 90%).
 図8においては、稜線が直線であり、かつ稜線上に2つの風車を配置した例を示していたが、本発明はこれに限られず、例えば稜線上に3基以上の風車を配置するようにしてもよく、この場合でも、それぞれの隣り合う2つの風車に対して、主風向の風下側の1つの風車の配置を、図8と同様な位置関係にするようにすればよい。また、稜線が直線ではなく、曲線であった場合においても、風車同士が同様の位置関係となるようにすることにより、風車後流の影響が少ない位置に風下側の風車を配置することができる。 Although FIG. 8 shows an example in which the ridge line is a straight line and two wind turbines are arranged on the ridge line, the present invention is not limited to this, for example, three or more wind turbines may be arranged on the ridge line Even in this case, the arrangement of one wind turbine on the downwind side of the main wind direction may be made to have the same positional relationship as in FIG. 8 with respect to each two adjacent wind turbines. In addition, even when the ridgeline is not a straight line but a curved line, by setting the wind turbines to have the same positional relationship, the windward wind turbine can be disposed at a position where the influence of the wind turbine wake is small. .
 また、図8においては、稜線に配置される風車と、それよりも主風向の風下側に配置される風車との配置関係を説明していたが、例えば、主風向の風上側に配置された複数の風車と、それよりも主風向の風下側に配置される風車との配置関係についても、上記同様の配置関係とすることにより、風上側の直前の風車の風車後流の影響を適切に回避することができる。 Moreover, in FIG. 8, although the arrangement | positioning relationship between the windmill arrange | positioned in a ridgeline and the windmill arrange | positioned in the leeward side of the main wind direction rather than it was demonstrated, for example, it arrange | positioned in the windward side of the main wind direction. With regard to the placement relationship between multiple wind turbines and the wind turbines located on the leeward side of the main wind direction, the influence of the wind turbine wake of the wind turbine just in front of the windward is appropriately achieved by the same placement relationship as above. It can be avoided.
 本実施形態によれば、山岳部において稜線及び稜線の主風向の風上側及び風下側の領域にも風車を設置することが可能となり、稜線上に限定して風車を配置する場合に比して、より多くの風車を設置することができる。また、主風向の方向に風車が並んで配置されないようにしているので、風車が主風向の風上側の風車の風車後流の影響を受けることが少なく、発電効率を高くすることができる。 According to the present embodiment, it is possible to install the wind turbine also in the windward and leeward regions of the ridgeline and the main wind direction of the ridgeline in the mountain area, compared to the case where the wind turbine is disposed limited to the ridgeline. More windmills can be installed. Further, since the wind turbines are not arranged side by side in the direction of the main wind direction, the wind turbine is less affected by the wind turbine wake of the wind turbine on the windward side of the main wind direction, and the power generation efficiency can be increased.
 次に、第3実施形態に係るウィンドファームについて説明する。 Next, a wind farm according to a third embodiment will be described.
 第3実施形態に係るウィンドファームは、複数の風車を配置したウィンドファームにおいて、他の風車の風下側に位置する風車の動作状態を制御するようにしたものである。なお、ウィンドファームにおける風車の配置は、第2実施形態に示した風車の配置であってもよく、他の風車の配置であってもよいが、ここでは、第2実施形態に示した風車の配置である場合を例に説明する。 The wind farm according to the third embodiment is configured to control an operation state of a wind turbine located on the downwind side of another wind turbine in a wind farm in which a plurality of wind turbines are arranged. In addition, although arrangement | positioning of the windmill in a wind farm may be arrangement | positioning of the windmill shown in 2nd Embodiment and may be arrangement | positioning of another windmill, it is not the windmill shown here in 2nd Embodiment. The case of the arrangement will be described as an example.
 例えば、図8に示すウィンドファームにおいて、風車間距離401が、推奨される最小距離である風車1のロータ24の直径の3倍であった場合には、風車201と風車101との間の風車間距離421及び風車201と風車102との間の風車間距離422は、風車1のロータ24の直径の約2.1倍となり、風車間隔401に比べて小さい。このため、風車201が風車102の風車後流領域に位置するような風向の風、すなわち、風車201が風車102の風下方向の位置となる風(図6における風車100aに対する風車200bの位置関係となる風向の風)が発生した場合には、風車201に発生する荷重振幅が大きくなり、疲労損傷が蓄積しやすくなる。 For example, in the wind farm shown in FIG. 8, when the distance 401 between the wind turbines is three times the diameter of the rotor 24 of the wind turbine 1 which is the recommended minimum distance, the wind turbine between the wind turbine 201 and the wind turbine 101 The distance 421 and the distance 422 between the wind turbine 201 and the wind turbine 102 are approximately 2.1 times the diameter of the rotor 24 of the wind turbine 1 and smaller than the distance 401 between the wind turbines. For this reason, the wind whose wind direction is such that the wind turbine 201 is located in the wind turbine wake region of the wind turbine 102, that is, the wind where the wind turbine 201 is positioned downwind of the wind turbine 102 (the positional relationship of the wind turbine 200b with respect to the wind turbine 100a in FIG. When the wind direction (wind direction) is generated, the load amplitude generated in the wind turbine 201 becomes large, and fatigue damage tends to be accumulated.
 そこで、本実施形態では、このような風向の風が出現した場合において、風車201における風車制御を変更することにより、荷重振幅の影響を低減させるようにする。より具体的には、風車201の制御装置31は、風向風速計32による風向データに基づいて、風車201が風車101又は102の風下方向となる風向の風が検出された場合には、風車201の停止又は縮退運転となるように制御する。縮退運転の制御方法としては、例えば、ブレード23のピッチ角を変更して、ブレード23の向きが風向に対して略平行となるように制御して、ロータ24の回転数を減少させる方法がある。これにより、風車2101が風の乱れが大きい後流領域に位置している場合において、回転による荷重振幅を低減することができ、風車201に与える損傷度の増加を抑制することができる。 So, in this embodiment, when the wind of such a wind direction appears, by changing the windmill control in the windmill 201, the influence of load amplitude is reduced. More specifically, when the control device 31 of the wind turbine 201 detects the wind direction in which the wind turbine 201 turns downwind of the wind turbine 101 or 102 based on the wind direction data from the wind direction and anemometer 32, the wind turbine 201 is detected. Control to stop or fall back on. As a control method of the degeneration operation, for example, there is a method of changing the pitch angle of the blade 23 and controlling the direction of the blade 23 to be substantially parallel to the wind direction to reduce the number of rotations of the rotor 24 . Thus, when the wind turbine 2101 is located in the wake region where the turbulence of the wind is large, the load amplitude due to rotation can be reduced, and an increase in the degree of damage given to the wind turbine 201 can be suppressed.
 本実施形態に係るウィンドファームによれば、高密度に風車を配置することができるとともに、風下側となる風車201の損傷度の増加を抑制することができる。 According to the wind farm which concerns on this embodiment, while being able to arrange | position a windmill in high density, the increase in the damage degree of the windmill 201 which becomes leeward side can be suppressed.
 次に、第4実施形態に係るウィンドファームについて説明する。 Next, a wind farm according to a fourth embodiment will be described.
 第4実施形態に係るウィンドファームは、複数の風車を配置したウィンドファームにおいて、他の風車の風上側に位置する風車の動作状態を制御するようにしたものである。なお、ウィンドファームにおける風車の配置は、第2実施形態に示した風車の配置であってもよく、他の風車の配置であってもよいが、ここでは、第2実施形態に示した風車の配置である場合を例に説明する。 The wind farm according to the fourth embodiment is configured to control the operation state of a wind turbine located on the windward side of another wind turbine in a wind farm in which a plurality of wind turbines are arranged. In addition, although arrangement | positioning of the windmill in a wind farm may be arrangement | positioning of the windmill shown in 2nd Embodiment and may be arrangement | positioning of another windmill, it is not the windmill shown here in 2nd Embodiment. The case of the arrangement will be described as an example.
 第3実施形態で説明した通り、図8に示すウィンドファームにおいては、風車201が風車102の風車後流領域に位置するような風向の風、すなわち、風車201が風車102の風下方向の位置となる風(図6における風車100aに対する風車200bの位置関係となる風向の風)が発生した場合には、風車201に発生する荷重振幅が大きくなり、疲労損傷が蓄積しやすくなる。 As described in the third embodiment, in the wind farm shown in FIG. 8, the wind direction is such that the wind turbine 201 is located in the wind turbine wake area of the wind turbine 102, that is, the wind turbine 201 is located in the windward direction of the wind turbine 102 When a wind (a wind in a wind direction that has a positional relationship of the wind turbine 200b with respect to the wind turbine 100a in FIG. 6) is generated, the load amplitude generated on the wind turbine 201 becomes large, and fatigue damage tends to be accumulated.
 そこで、本実施形態においては、このような風向の風が出現した場合において、風上側の風車101(102)の制御を変更することにより、風車201における風車後流の影響を低減する。 So, in this embodiment, when the wind of such a wind direction appears, the influence of the windmill backflow in the windmill 201 is reduced by changing control of the windmill 101 (102) of windward.
 ここで、風車を構成するロータの回転面の向きと風向との関係により生ずる風車後流の伝搬方向を説明する。 Here, the propagation direction of the wind turbine wake produced by the relationship between the direction of the rotation surface of the rotor that constitutes the wind turbine and the wind direction will be described.
 図9は、第4実施形態に係る風車を構成するロータの回転面の向きと風向との関係により生ずる風車後流の伝搬方向を示す図である。図9(A)は、風車1のロータ24の回転面が風向に対して正対している場合における風車後流領域を示し、図9(B)は、風車1のロータ24の回転面が風向に対して斜めに向くように制御した場合における風車後流領域を示している。 FIG. 9 is a view showing the propagation direction of the wind turbine wake generated by the relationship between the direction of the rotation surface of the rotor constituting the wind turbine according to the fourth embodiment and the wind direction. FIG. 9 (A) shows the wind turbine wake area in the case where the rotation surface of the rotor 24 of the wind turbine 1 faces the wind direction, and FIG. 9 (B) shows the wind direction of the rotation surface of the rotor 24 of the wind turbine 1 Shows a wind turbine wake region in the case where control is performed so as to be directed obliquely to.
 風車1のロータ24の回転面が風向に対して正対している場合には、図9(A)に示すように、風車後流は風向と同じ方向に伝搬し、風車後流領域は、風向に対して左右対称に形成される。一方、風車1のロータ24の回転面を風向に対して斜めに向けるように制御した場合には、図9(B)に示すように、風車1へ流入した風が、ロータ24の回転面から受ける横方向の力により、風車後流は風向に対して斜めに伝搬し、風向に対して傾いた風車後流領域が形成される。 When the rotation surface of the rotor 24 of the wind turbine 1 faces the wind direction, the wind turbine wake propagates in the same direction as the wind direction, as shown in FIG. It is formed symmetrically with respect to the On the other hand, when control is performed so that the rotational surface of the rotor 24 of the wind turbine 1 is directed obliquely to the wind direction, the wind that has flowed into the wind turbine 1 flows from the rotational surface of the rotor 24 as shown in FIG. The lateral force received causes the wind turbine wake to propagate obliquely with respect to the wind direction, forming a wind turbine wake region inclined with respect to the wind direction.
 そこで、本実施形態では、風車101(102)が風車201の風上方向となるような風向が出現した場合において、風車101(102)における風車制御を変更して、風車後流領域が形成される領域を変更することにより、風車201が風車後流領域から外れるようにし、風車201における発電量の低下及び損傷度の増加を低減するようにする。より具体的には、風車101(102)の制御装置31は、風向風速計32による風向データに基づいて、風車101(102)が風車201の風上方向となる風向の風が検出された場合には、風車101(102)のヨー角駆動装置33によりヨー角を制御することによって、ロータ24の回転面の向きを変更する。これにより、風車101(102)による風車後流の伝搬方向が変更され、風車201が風車101(102)の風車後流領域から外れるようになり、風車201における発電量の低下及び損傷度の増加を低減することができる。 Therefore, in the present embodiment, when a wind direction appears such that the wind turbine 101 (102) is in the upwind direction of the wind turbine 201, the wind turbine control in the wind turbine 101 (102) is changed to form a wind turbine wake region. The wind turbine 201 is made to go out of the wind turbine wake area by changing the area of the wind turbine 201 so as to reduce the decrease in the amount of power generation and the increase in the degree of damage in the wind turbine 201. More specifically, when the control device 31 of the wind turbine 101 (102) detects a wind in which the wind turbine 101 (102) turns upwind of the wind turbine 201 based on the wind direction data from the wind direction and anemometer 32 In this case, the direction of the rotation surface of the rotor 24 is changed by controlling the yaw angle by the yaw angle drive device 33 of the wind turbine 101 (102). As a result, the propagation direction of the wind turbine wake by the wind turbine 101 (102) is changed, and the wind turbine 201 comes out of the wind turbine wake area of the wind turbine 101 (102), and the amount of power generation in the wind turbine 201 decreases and the degree of damage increases. Can be reduced.
 上記実施形態において、風上側に位置する風車101(102)の制御変更として、ヨー角を変更させるようにしていたが、本発明はこれに限られず、併せて、ブレード23のピッチ角を変更するようにしてもよい。例えば、制御装置31は、風車101(102)が風車201の風上方向となる風向の風が検出された場合には、ヨー角を変更するとともに、ブレード23のピッチ角を変更し、ブレード23の向きが風向に対して略平行となるように変更するようにしてもよい。このように変更すると、風車101(102)がロータ24を回転させて回収するエネルギが低下する。これにより、後流領域中における風速を高くすることができるとともに、風の乱れの強さ(乱流強度)を小さくすることができ、後流領域中に位置する風車201の発電効率を高くすることができると共に、風車201に対する損傷度の増加を抑制することができる。 In the above embodiment, the yaw angle is changed as a control change of the wind turbine 101 (102) located on the windward side, but the present invention is not limited to this, and the pitch angle of the blades 23 is also changed. You may do so. For example, the control device 31 changes the yaw angle and changes the pitch angle of the blade 23 when the wind direction in which the wind turbine 101 (102) is in the wind up direction of the wind turbine 201 is detected. May be changed so as to be substantially parallel to the wind direction. Such a change reduces the energy that the wind turbine 101 (102) rotates the rotor 24 to recover. This makes it possible to increase the wind speed in the wake region, reduce the intensity of turbulence (turbulence intensity), and increase the power generation efficiency of the wind turbine 201 located in the wake region. It is possible to suppress an increase in the degree of damage to the wind turbine 201.
 次に、第5実施形態に係る風車配置決定装置について説明する。 Next, a wind turbine arrangement determination device according to a fifth embodiment will be described.
 第5実施形態に係る風車配置決定装置は、第1実施形態から第4実施形態に示したウィンドファームにおける複数の風車の配置案及び風車の制御案を決定することができる。 The wind turbine arrangement determination apparatus according to the fifth embodiment can determine the arrangement plan of the plurality of wind turbines and the control plan of the wind turbines in the wind farm described in the first to fourth embodiments.
 図10は、第5実施形態に係る風車配置決定装置の構成図である。 FIG. 10 is a configuration diagram of a wind turbine arrangement determination device according to the fifth embodiment.
 配置決定装置の一例としての風車配置決定装置50は、例えば、一般的なPC(Personal Computer)により構成され、プロセッサ部の一例としてのCPU51と、メモリ52と、記憶部の一例としての補助記憶装置53と、表示装置54と、入力装置55と、各構成を相互に接続するバス56とを備えている。 The wind turbine arrangement determining device 50 as an example of the arrangement determining device is configured by, for example, a general PC (Personal Computer), and an auxiliary storage device as an example of a CPU, a memory 52, and a storage unit as an example of a processor unit. 53, a display device 54, an input device 55, and a bus 56 interconnecting the components.
 CPU51は、メモリ52及び/又は補助記憶装置53に格納されているプログラムに従って各種処理を実行する。CPU51は、回転数制御部、後流制御部、及び回収エネルギ制御部の一例である。 The CPU 51 executes various processes in accordance with programs stored in the memory 52 and / or the auxiliary storage device 53. The CPU 51 is an example of a rotation speed control unit, a wake control unit, and a recovery energy control unit.
 メモリ52は、例えば、RAM(RANDOM ACCESS MEMORY)であり、CPU51で実行されるプログラムや、必要な情報を記憶する。 The memory 52 is, for example, a RAM (RANDOM ACCESS MEMORY), and stores a program executed by the CPU 51 and necessary information.
 補助記憶装置53は、例えば、バードディスクやフラッシュメモリなどであり、CPU51で実行されるプログラムや、CPU51に利用されるデータを記憶する。本実施形態では、補助記憶装置53は、風車の配置案と制御案とを決定するプログラムや、ウィンドファームの建設地における風向、風速等の情報や、風車における風車後流を求めるためのモデルのデータ等を記憶する。 The auxiliary storage device 53 is, for example, a bird disk, a flash memory, etc., and stores programs executed by the CPU 51 and data used by the CPU 51. In the present embodiment, the auxiliary storage device 53 is a program for determining the placement plan and control plan of the wind turbine, information such as wind direction and wind speed at the construction site of the wind farm, and a model for obtaining the wind turbine wake in the wind turbine. Store data etc.
 表示装置54は、例えば、液晶ディスプレイ等の表示装置であり、各種情報(例えば、配置案や制御案)を表示する。入力装置55は、例えば、マウス、キーボード等の入力装置であり、ユーザによる入力操作を受け付ける。 The display device 54 is, for example, a display device such as a liquid crystal display, and displays various information (for example, a placement plan and a control plan). The input device 55 is, for example, an input device such as a mouse and a keyboard, and receives an input operation by the user.
 次に、風車配置決定装置50による風車配置決定処理について説明する。 Next, the windmill arrangement determination processing by the windmill arrangement determination device 50 will be described.
 図11は、第5実施形態に係る風車配置決定処理のフローチャートである。図12は、第5実施形態に係るウィンドファームにおける風況データを示す図である。図13は、第5実施形態に係るウィンドファームにおける後流を考慮した風況データを示す図である。図14は、第5実施形態に係る最適案決定方法の一例を説明する図である。 FIG. 11 is a flowchart of a windmill placement determination process according to the fifth embodiment. FIG. 12 is a diagram showing wind condition data in the wind farm according to the fifth embodiment. FIG. 13: is a figure which shows the wind condition data which considered the wake in the wind farm which concerns on 5th Embodiment. FIG. 14 is a diagram for explaining an example of the method of determining the best plan according to the fifth embodiment.
 風車配置決定処理において、CPU51は、補助記憶装置53に格納された、風向、風力等の情報に基づいて、ウィンドファームの建設地における風況を計算する(ステップS11)。このステップでは、風車の配置案は未決定であるため、CPU51は、風車の後流の影響は考慮せず、地形の影響のみを考慮した風況を計算する。計算する風況としては、例えば、風向、風速だけでなく、鉛直方向の風速の勾配を表すシアや、風の乱れの強さを表す乱流強度などがある。 In the wind turbine arrangement determination process, the CPU 51 calculates the wind conditions at the construction site of the wind farm based on the information such as the wind direction, the wind power and the like stored in the auxiliary storage device 53 (step S11). In this step, since the arrangement plan of the wind turbine is undecided, the CPU 51 calculates the wind conditions considering only the influence of the topography without considering the influence of the wind turbine wake. The wind conditions to be calculated include, for example, not only the wind direction and the wind speed, but also shear representing the slope of the wind speed in the vertical direction, and turbulence intensity representing the strength of wind turbulence.
 次に、CPU51は、ウィンドファーム10における風車の配置案を策定し、各風車の位置における風況の情報をステップS11で得た風況から抽出する(ステップS12)。
このステップでは、例えば、図12に示すように、風況の情報として、各風車の配置位置での各風速の出現確率810、風速毎の乱流強度820、ウィンドシア830等を抽出する。なお、配置案としては、少なくとも一つの風車を、稜線の主風向の風下側の稜線よりも低い領域において、風車1のブレード23の最低到達点が稜線の標高以上となるように配置する配置案を策定してもよく、また、第1の風車よりも主風向の風下側に配置される第2の風車について、第2の風車が、出現確率が所定以上となる風向の範囲に対して第1の風車の風下方向となる範囲を避けて配置する配置案を策定してもよい。
Next, the CPU 51 formulates an arrangement plan of the wind turbines in the wind farm 10, and extracts information on the wind conditions at the positions of the wind turbines from the wind conditions obtained in step S11 (step S12).
In this step, for example, as shown in FIG. 12, the appearance probability 810 of each wind speed at the arrangement position of each wind turbine, turbulence intensity 820 for each wind speed, wind shear 830 and the like are extracted as wind condition information. In addition, as an arrangement plan, an arrangement plan in which at least one wind turbine is arranged such that the lowest reaching point of the blades 23 of the wind turbine 1 is higher than the elevation of the ridge in a region lower than the ridge downstream of the leeward side of the main wind direction of the ridge. For the second wind turbine arranged on the leeward side of the main wind direction with respect to the first wind turbine, the second wind turbine may generate the second A placement plan may be formulated in which the wind turbine is disposed away from the downwind direction of the wind turbine.
 次に、CPU51は、制御対象とする風車(以下、処理の説明において対象風車という)を決定するとともに、対象風車の制御案(例えば、ヨーの制御量、ピッチの制御量等の制御パラメータ)を決定する(ステップS13)。制御案としては、上記した第3実施形態及び第4実施形態で示した制御案を含んでもよい。ここで、対象風車に対して制御を行うと、対象風車が生成する風車後流は、制御案の内容(制御パラメータ)によって、伝搬方向、風速の低下率、乱流強度の増加率等といった特性が変化する。そこで、各種制御パラメータに応じた風車後流の風況を計算するために、予め用意している後流のモデルを、制御案の制御パラメータに基づいて更新する(ステップS14)。 Next, the CPU 51 determines a windmill to be controlled (hereinafter referred to as a target windmill in the description of the process), and a control plan of the target windmill (for example, control parameters such as yaw control amount and pitch control amount) It determines (step S13). The control proposal may include the control proposals shown in the third and fourth embodiments described above. Here, when control is performed on the target wind turbine, the wind turbine downstream flow generated by the target wind turbine has characteristics such as the propagation direction, the reduction rate of the wind speed, and the increase rate of the turbulent intensity depending on the contents of the control plan (control parameters). Changes. Therefore, in order to calculate the wind conditions of the wind turbine wake according to various control parameters, the prepared wake model is updated based on the control parameters of the control plan (step S14).
 次に、CPU51は、図13に示すように、後流のモデルを用いて各風車位置における風況(各風速の出現確率811、風速毎の乱流強度821、ウィンドシア831)を計算する(ステップS15)。これにより得られる風況は、後流の影響により、ステップS12で得た風況から変化している。 Next, as shown in FIG. 13, the CPU 51 calculates the wind conditions (probability of appearance 811 of each wind speed, turbulence intensity 821 for each wind speed, wind shear 831) at each wind turbine position using the model of the wake ( Step S15). The wind conditions obtained by this change from the wind conditions obtained in step S12 due to the influence of the wake.
 次に、CPU51は、ステップS15で得られた、各風速の出現確率811、風速毎の乱流強度821、ウィンドシア831を用いて、ウィンドファーム全体の総発電量及び各風車の損傷度を計算する(ステップS16)。 Next, using the appearance probability 811 of each wind speed, the turbulence intensity 821 for each wind speed, and the wind shear 831 obtained in step S15, the CPU 51 calculates the total power generation amount of the entire wind farm and the damage degree of each wind turbine (Step S16).
 次いで、CPU51は、最適制御案が決定されたか否かを判定し(ステップS17)、
最適制御案が決定されていない場合(ステップS17:NO)には、ステップS13~ステップS16の処理を再び行う。これにより、同一配置案に対して、制御案を変えて、ステップS13~ステップS16を繰り返し実行されることとなり、最適な制御案が探索されることとなる。ここで、最適な制御案としては、損傷度が設計許容値(所定値)を下回り、且つ、ウィンドファームの総発電量が最大となる(最大と推定される)制御案としてもよい。
Next, the CPU 51 determines whether or not the optimal control plan has been determined (step S17).
If the optimal control plan is not determined (step S17: NO), the processes of steps S13 to S16 are performed again. As a result, the control plan is changed with respect to the same layout plan, and step S13 to step S16 are repeatedly executed, and an optimal control plan is searched. Here, as an optimal control proposal, the control proposal may be a control proposal in which the degree of damage falls below a design allowable value (predetermined value) and the total power generation amount of the wind farm is maximized (estimated as maximum).
 ここで、ステップS17において、最適制御案を決定する具体的な方法としては、例えば、図14に示すような方法、すなわち、損傷度を制約関数とし、総発電量を目的関数とした方法が考えられる。具体的には、制約関数を満たす中で、制御パラメータを変更しながら総発電量を計算し、得られた総発電量の最大値(N回目取得)を保存しておき、その最大値を得た後、所定の閾値M回だけ(合計N+M回)計算を行っても、総発電量の最大値の更新がなかった場合に、その時点での最大値の総発電量(N回目の値)を最大値と推定し、その際の制御パラメータを最適制御案に決定する方法が考えられる。なお、繰返し計算を行って最適な案を決定する方法としては、上記方法に限定されるものではなく、遺伝的アルゴリズムを用いた手法など、他の最適化アルゴリズムを用いるようにしてもよい。 Here, as a specific method of determining the optimal control plan in step S17, for example, a method as shown in FIG. 14, that is, a method in which the damage degree is a constraint function and the total power generation amount is an objective function is considered. Be Specifically, while satisfying the constraint function, the total power generation amount is calculated while changing the control parameter, and the obtained maximum value of the total power generation amount (Nth acquisition) is stored, and the maximum value is obtained. After that, even if the calculation is performed only a predetermined threshold value M times (total N + M times), when the maximum value of total power generation amount has not been updated, the total power generation amount of the maximum value at that time (Nth value) It is possible to estimate the maximum value and to determine the control parameter at that time as the optimal control plan. In addition, as a method of performing an iterative calculation and determining an optimal plan, it is not limited to the said method, You may make it use other optimization algorithms, such as a method using a genetic algorithm.
 一方、最適制御案が決定された場合(ステップS17:YES)には、CPU51は、処理をステップS18に進める。 On the other hand, when the optimal control plan is determined (step S17: YES), the CPU 51 advances the process to step S18.
 ステップS18では、CPU51は、最適配置案が決定されたか否かを判定し、最適配置案が決定されていない場合(ステップS18:NO)には、ステップS12~ステップS17の処理を再び行う。これにより、配置案を変えて、その配置案に最適な制御案を決定する処理が繰り返し実行されることとなり、最適な配置案が探索されることとなる。ここで、最適な配置案としては、損傷度が所定の設計許容値を下回り、且つ、ウィンドファームの総発電量が最大となる(最大と推定される)配置案としてもよい。 In step S18, the CPU 51 determines whether or not the optimal layout plan has been determined, and if the optimal layout plan has not been determined (step S18: NO), the processing of step S12 to step S17 is performed again. As a result, the arrangement plan is changed, and the process of determining the control plan most suitable for the arrangement plan is repeatedly executed, and the optimum arrangement plan is searched. Here, as an optimal placement plan, the degree of damage may be less than a predetermined design allowance, and the total generation amount of the wind farm may be maximized (estimated).
 ここで、ステップS18において、最適配置案を決定する具体的な方法としては、上記したステップS17と同様な方法を用いてもよいし、ステップS17と異なる方法を用いてもよい。 Here, as a specific method of determining the optimal layout plan in step S18, a method similar to that of step S17 described above may be used, or a method different from step S17 may be used.
 一方、最適配置案が決定された場合(ステップS18:YES)には、CPU51は、ステップS18で決定された最適配置案と、その配置案に対してステップS17で最適制御案として決定された最適制御案とを、表示装置54に表示出力する。 On the other hand, when the optimal layout plan is determined (step S18: YES), the CPU 51 determines the optimal layout plan determined in step S18 and the optimal control plan determined as the optimal control plan in step S17. The control plan is displayed and output on the display device 54.
 この処理によると、高密度な風車配置を実現しつつ、後流領域に位置する風車の損傷度の増加を低減できるとともに、総発電量を最大にすることのできる、風車の配置案と、制御案とを適切に決定することができる。 According to this process, while realizing high-density wind turbine arrangement, it is possible to reduce an increase in the degree of damage to the wind turbine located in the wake region and maximize the total power generation, and a wind turbine arrangement plan and control You can decide the draft appropriately.
 次に、第6実施形態に係る風車配置決定装置について説明する。 Next, a wind turbine arrangement determination device according to a sixth embodiment will be described.
 ウィンドファームの建設地において実際に風車設置可能な領域としては、地形や風況に関する条件に加えて、機器運搬用の道路の有無や、土地権利者の対応、周辺住民の有無などを考慮しなければならない場合が考えられる。すなわち、風況の観点から最適な風車の配置が決定できた場合であっても、風況以外の要因から設置が困難となる場合が考えられる。また、ウィンドファームに配置する風車の基数をユーザが自由に設定できることが好ましく、例えば、より多くの基数を指定して、高密度な風車配置の最適な配置案を決定することも必要とされることが考えられる。例えば、基数を増やすことによると、出現頻度が高い定格以下の風速における発電量を増加させることができるとともに、出力の平滑化の効果を向上することもできる。 As the area where wind turbines can be installed actually in the construction site of the wind farm, in addition to the conditions related to the terrain and wind conditions, the presence or absence of roads for equipment transportation, the response of the land right holder, the presence or absence of nearby residents, etc. There are cases where it is necessary. That is, even if the optimum arrangement of the wind turbines can be determined from the viewpoint of the wind conditions, it may be considered that installation becomes difficult due to factors other than the wind conditions. In addition, it is preferable that the user can freely set the number of wind turbines to be arranged in the wind farm, and for example, it is also required to specify a larger number of the number and to determine the optimal arrangement plan for high density windmill arrangement. It is conceivable. For example, by increasing the number of bases, it is possible to increase the amount of power generation at a wind speed below the rated frequency where the appearance frequency is high, and also to improve the effect of smoothing the output.
 そこで、第6実施形態に係る風車配置決定装置では、風車を設置可能な周辺住民の住居からの距離や、風車を設置可能な運搬道路からの距離等の風車の設置可能領域に関する要件、設置する風車の基数に関する要件等の風車の設置要件をも考慮して配置案を決定するようにしている。風車を設置可能な運搬道路からの距離は、例えば、風車設置時の運搬コストや、建設工期等を抑制する要件と考えることができる。 Therefore, in the wind turbine arrangement determination apparatus according to the sixth embodiment, the requirements for the installable area of the wind turbine, such as the distance from the residence of the nearby residents where the wind turbine can be installed and the distance from the transport road where the wind turbine can be installed The layout plan is determined in consideration of the installation requirements of the wind turbines such as the requirements for the number of wind turbines. The distance from the haul road where the wind turbine can be installed can be considered, for example, as a requirement for suppressing the transportation cost at the time of installation of the wind turbine, the construction period, and the like.
 次に、風車配置決定装置50による風車配置決定処理について説明する。 Next, the windmill arrangement determination processing by the windmill arrangement determination device 50 will be described.
 図15は、第6実施形態に係る風車配置決定処理のフローチャートである。なお、図11に示す第5実施形態に係る風車配置決定処理のフローチャートと同様な部分については同一の符号を付し、重複する説明を省略する。 FIG. 15 is a flowchart of a wind turbine arrangement determination process according to the sixth embodiment. The same parts as those in the flowchart of the wind turbine arrangement determining process according to the fifth embodiment shown in FIG. 11 are denoted by the same reference numerals, and the description will not be repeated.
 CPU51は、ステップS21において、入力装置55を介して、ユーザによる設置要件の入力を受け付ける。設置要件としては、風車を設置可能な周辺住民の住居からの距離や、風車を設置可能な運搬道路からの距離等の風車の設置可能領域に関する要件と、設置する風車の基数に関する要件との少なくとも一方であってよい。 In step S21, the CPU 51 receives an input of installation requirements by the user via the input device 55. The installation requirements include at least the requirements for the installable area of the wind turbine such as the distance from the residence of the residents capable of installing the wind turbine and the distance from the transport road on which the wind turbine can be installed It may be one side.
 次いで、CPU51は、ステップS21で入力された設置要件に適合する風車配置案を策定する(ステップS22)。ここで、ステップS21において、設置要件として、設置可能な周辺住民の住居からの距離や、設置可能な運搬道路からの距離等を受け付けている場合には、この要件を満たさない建設地の領域は、配置案を策定する際に風車を配置する位置から除外されるので、処理において検討すべき配置範囲を抑えることができ、処理量を低減することができる。また、風車の基数の指定がある場合には、処理において検討すべき風車の基数が制限されることとなるので、処理量を低減することができる。 Next, the CPU 51 formulates a wind turbine arrangement plan that meets the installation requirements input in step S21 (step S22). Here, in step S21, when the distance from the residence of the installable nearby residents, the distance from the installable transport road, etc. is accepted as the installation requirement, the area of the construction site which does not satisfy the requirement is Since it is excluded from the position where the wind turbine is arranged when formulating the arrangement plan, the arrangement range to be considered in the processing can be suppressed, and the amount of processing can be reduced. In addition, when the number of wind turbines is specified, the number of wind turbines to be considered in the process is limited, so that the amount of processing can be reduced.
 上記説明したように、本実施形態に係る風車配置決定装置によると、設置可能領域に関する要件に基づいて、最適配置案を決定するようにしているので、コストや工期等を縮減した風車配置の配置案を得ることができる。また、高密度な風車配置の配置案を適切に決定でき、様々な地理的要因等に対応した風車配置を考慮した配置案を決定することができる。 As described above, according to the wind turbine layout determination device according to the present embodiment, since the optimum layout plan is determined based on the requirements for the installable area, the layout of the wind turbine layout with reduced cost, construction period, etc. You can get a plan. In addition, it is possible to appropriately determine the placement plan of the high density wind turbine layout, and to determine the layout plan in consideration of the wind turbine layout corresponding to various geographical factors and the like.
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 The present invention is not limited to the embodiments described above, and can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、上記実施形態では、風力発電装置(風車)として、ダウンウィンド型の風車を例に説明していたが、本発明はこれに限られず、アップウィンド型の風車としてもよい。また、3枚のブレードとハブとによりロータを構成する風車を例に示していたが、本発明はこれに限られず、ロータは、ハブと、少なくとも1枚のブレードとにより構成されていればよい。 For example, although a downwind type wind turbine has been described as an example of a wind power generator (wind turbine) in the above embodiment, the present invention is not limited to this and may be an upwind type wind turbine. Further, although the wind turbine in which the rotor is constituted by the three blades and the hub is shown as an example, the present invention is not limited thereto, and the rotor may be constituted by the hub and at least one blade. .
 また、上記実施形態において、各風車1がそれぞれ制御装置31を備え、風車1に備えられた制御装置31がそれぞれの風車1を制御するようにしていたが、本発明はこれに限られず、ウィンドファーム10の複数の風車1を集中して制御する制御装置を備えるようにし、この制御装置が複数の風車1を制御するようにしてもよい。 Further, in the above embodiment, each wind turbine 1 is provided with the control device 31, and the control device 31 provided in the wind turbine 1 controls the respective wind turbine 1, but the present invention is not limited thereto. A control device that centrally controls the plurality of wind turbines 1 of the farm 10 may be provided, and the control device may control the plurality of wind turbines 1.
 1…風車、10…ウィンドファーム、23…ブレード、24…ロータ、31…制御装置、33…ヨー角駆動装置
 
DESCRIPTION OF SYMBOLS 1 ... Wind mill, 10 ... Wind farm, 23 ... Blade, 24 ... Rotor, 31 ... Control device, 33 ... Yaw angle drive device

Claims (11)

  1.  風を受けて回転するブレードを有する風力発電装置を複数備えるウィンドファームであって、
     少なくとも一つの前記風力発電装置は、稜線の主風向の風下側の前記稜線よりも低い領域において、前記ブレードの最低到達点が前記稜線の標高以上となるように配置されているウィンドファーム。
    A wind farm comprising a plurality of wind power generators having blades rotating in response to wind.
    A wind farm, wherein at least one of the wind turbines is arranged such that the lowest arrival point of the blade is equal to or higher than the elevation of the ridge in a region lower than the ridge on the downwind side of the main wind direction of the ridge.
  2.  前記複数の風力発電装置は、第1の風力発電装置と、前記第1の風力発電装置よりも主風向の風下側に配置される第2の風力発電装置とを含み、
     前記第2の風力発電装置は、前記主風向を含む所定の範囲の風向に対して前記第1の風力発電装置の風下方向となる範囲を避けて配置されている
    請求項1に記載のウィンドファーム。
    The plurality of wind turbines includes a first wind turbine and a second wind turbine disposed on the downwind side of the main wind direction with respect to the first wind turbine.
    2. The wind farm according to claim 1, wherein the second wind turbine generator is disposed so as to avoid the downwind direction of the first wind turbine with respect to a wind direction of a predetermined range including the main wind direction. .
  3.  前記主風向を含む所定の範囲の風向とは、出現確率が所定以上となる範囲の風向である請求項2に記載のウィンドファーム。 The wind farm according to claim 2, wherein the wind direction in the predetermined range including the main wind direction is a wind direction in a range in which the appearance probability is equal to or higher than a predetermined rate.
  4.  前記風下方向となる範囲は、前記第1の風力発電装置の主風向の風下方向を中心とする所定の角度幅の範囲である
    請求項2又は請求項3に記載のウィンドファーム。
    The wind farm according to claim 2 or 3, wherein the downwind direction is a range of a predetermined angular width centered on the downwind direction of the main wind direction of the first wind turbine.
  5.  前記複数の風力発電装置は、第1の風力発電装置と、前記第1の風力発電装置よりも主風向の風下側に配置される第2の風力発電装置とを含み、
     風向を検出する風向検出部と、
     前記風向が、前記第1の風力発電装置を通過した風が流れる後流領域に前記第2の風力発電装置が属することとなる風向である場合に、前記第2の風力発電装置の前記ブレードを調整することにより、前記ブレードの回転数を減少させるように制御する回転数制御部と、
    をさらに備える
    請求項1から請求項4のいずれか一項に記載のウィンドファーム。
    The plurality of wind turbines includes a first wind turbine and a second wind turbine disposed on the downwind side of the main wind direction with respect to the first wind turbine.
    A wind direction detection unit that detects the wind direction;
    When the wind direction is a wind direction in which the second wind power generation device belongs to a wake area where the wind having passed through the first wind power generation device flows, the blade of the second wind power generation device is A rotation speed control unit that performs control so as to reduce the rotation speed of the blade by adjusting
    The wind farm according to any one of claims 1 to 4, further comprising:
  6.  前記複数の風力発電装置は、第1の風力発電装置と、前記第1の風力発電装置よりも主風向の風下側に配置される第2の風力発電装置とを含み、
     風向を検出する風向検出部と、
     前記風向が、前記第1の風力発電装置を通過した風が流れる後流領域に前記第2の風力発電装置が属することとなる風向である場合に、前記第1の風力発電装置の前記ブレードの回転面を調整することにより、前記第1の風力発電装置を通過した風が流れる後流領域から前記第2の風力発電装置が外れるように制御する後流制御部と、
    をさらに備える
    請求項1から請求項5のいずれか一項に記載のウィンドファーム。
    The plurality of wind turbines includes a first wind turbine and a second wind turbine disposed on the downwind side of the main wind direction with respect to the first wind turbine.
    A wind direction detection unit that detects the wind direction;
    In the case where the wind direction is a wind direction in which the second wind power generation device belongs to a wake area where a wind having passed through the first wind power generation device flows, the blade of the first wind power generation device A wake control unit configured to control the second wind power generator to be detached from a wake area in which the wind having passed through the first wind power generation device flows by adjusting the rotation surface;
    The wind farm according to any one of claims 1 to 5, further comprising:
  7.  前記複数の風力発電装置は、第1の風力発電装置と、前記第1の風力発電装置よりも主風向の風下側に配置される第2の風力発電装置とを含み、
     風向を検出する風向検出部と、
     前記風向が、前記第1の風力発電装置を通過した風が流れる後流領域に前記第2の風力発電装置が属することとなる風向である場合に、前記第1の風力発電装置の前記ブレードのピッチ角を調整することにより、第1の風力発電装置により回収するエネルギを低下させるように制御する回収エネルギ制御部と、
    をさらに備える
    請求項1から請求項6のいずれか一項に記載のウィンドファーム。
    The plurality of wind turbines includes a first wind turbine and a second wind turbine disposed on the downwind side of the main wind direction with respect to the first wind turbine.
    A wind direction detection unit that detects the wind direction;
    In the case where the wind direction is a wind direction in which the second wind power generation device belongs to a wake area where a wind having passed through the first wind power generation device flows, the blade of the first wind power generation device A recovery energy control unit that performs control to reduce the energy recovered by the first wind turbine by adjusting the pitch angle;
    The wind farm according to any one of claims 1 to 6, further comprising:
  8.  風を受けて回転するブレードを有する風力発電装置を複数備えるウィンドファームにおける複数の風力発電装置の配置を決定する配置決定装置であって、
     前記ウィンドファームの建設地における風向情報を記憶する記憶部と、
     処理を実行するプロセッサ部と、を備え、
     前記プロセッサ部は、
     (a)前記ウィンドファームの建設地における複数の風力発電装置の配置案と、運転を制御する対象となる風力発電装置と前記風力発電装置に対する制御内容とを含む制御案とを策定し、
     (b)前記配置案及び前記制御案に従う前記ウィンドファームにおける各風力発電装置の位置における風況を算出し、
     (c)算出された前記風況に基づいて、前記ウィンドファームにおける総発電量及び損傷度を算出し、
     (d)前記(a)~(c)を繰り返し実行することにより、前記ウィンドファームにおける前記損傷度が所定値を下回る場合において、前記総発電量が最大となる配置案及び制御案を探索し、
     (e)探索した配置案を表示装置に出力する
    配置決定装置。
    An arrangement determining device for determining arrangement of a plurality of wind turbines in a wind farm comprising a plurality of wind turbines having blades rotating in response to wind.
    A storage unit that stores wind direction information at a construction site of the wind farm;
    A processor unit that executes processing;
    The processor unit is
    (A) Formulating a layout plan of a plurality of wind turbines at a construction site of the wind farm, a wind turbine as a target to control operation, and a control plan including control contents for the wind turbines;
    (B) calculating the wind conditions at the positions of the wind turbines in the wind farm according to the arrangement plan and the control plan;
    (C) calculating the total amount of power generation and the degree of damage in the wind farm based on the calculated wind conditions;
    (D) By repeatedly executing (a) to (c), when the damage degree in the wind farm falls below a predetermined value, a layout plan and control plan that maximizes the total power generation amount are searched.
    (E) An arrangement determining device which outputs the searched arrangement plan to a display device.
  9.  前記プロセッサ部は、
     前記(a)において、前記ウィンドファームを構成する少なくとも一つの前記風力発電装置が、稜線の主風向の風下側の前記稜線よりも低い領域において、前記ブレードの最低到達点が前記稜線の標高以上となるように配置する配置案を策定する
    請求項8に記載の配置決定装置。
    The processor unit is
    In the above (a), at least one of the wind turbines constituting the wind farm is lower than the ridgeline on the downwind side of the main wind direction of the ridgeline, and the lowest reaching point of the blade is higher than the elevation of the ridgeline. The arrangement determination device according to claim 8, wherein an arrangement plan to be arranged to be arranged is formulated.
  10.  前記プロセッサ部は、
     前記(a)において、第1の風力発電装置と、前記第1の風力発電装置よりも主風向の風下側に配置される第2の風力発電装置とについて、前記第2の風力発電装置が、出現確率が所定以上となる風向の範囲に対して前記第1の風力発電装置の風下方向となる範囲を避けて配置する配置案を作成する
    請求項9に記載の配置決定装置。
    The processor unit is
    In the above (a), the second wind power generation device is the first wind power generation device, and the second wind power generation device disposed on the downwind side of the main wind direction with respect to the first wind power generation device, The arrangement determination device according to claim 9, wherein an arrangement plan is created in which the arrangement proposal is arranged to be arranged so as to avoid the leeward direction of the first wind turbine for the range of wind direction where the appearance probability becomes a predetermined value or more.
  11.  前記プロセッサ部は、
     前記ウィンドファームにおいて設置する風力発電装置の個数、又はウィンドファーム内における風力発電装置の設置可能領域の少なくとも一方に関する設置要件の指定を受け付け、
     前記プロセッサ部は、
     前記(a)において、前記設置要件に適合する配置案を作成する
    請求項8から請求項10のいずれか一項に記載の配置決定装置。
     
    The processor unit is
    Accepting designation of installation requirements regarding at least one of the number of wind turbines installed in the wind farm or the installable area of the wind turbine within the wind farm
    The processor unit is
    The arrangement determination apparatus according to any one of claims 8 to 10, wherein, in (a), an arrangement plan adapted to the installation requirement is prepared.
PCT/JP2018/019942 2017-07-07 2018-05-24 Wind farm and arrangement determination device WO2019008931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-133561 2017-07-07
JP2017133561A JP2019015236A (en) 2017-07-07 2017-07-07 Wind farm, and arrangement determination device

Publications (1)

Publication Number Publication Date
WO2019008931A1 true WO2019008931A1 (en) 2019-01-10

Family

ID=64949887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019942 WO2019008931A1 (en) 2017-07-07 2018-05-24 Wind farm and arrangement determination device

Country Status (3)

Country Link
JP (1) JP2019015236A (en)
TW (1) TWI707085B (en)
WO (1) WO2019008931A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267815B2 (en) * 2019-04-09 2023-05-02 三菱重工業株式会社 Wind turbine cluster power generation evaluation device, wind turbine cluster power generation evaluation method, and program
KR102483234B1 (en) * 2021-01-27 2023-01-03 한국과학기술원 Wind turbine system for reducing wake

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527334A (en) * 2003-06-14 2006-11-30 ステフティング エネルギーオンデルゾエク セントラム ネーデルランド Method and facility for extracting energy from flowing fluid
JP2009138523A (en) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp Method of estimating output of wind power generation
JP2010127235A (en) * 2008-11-28 2010-06-10 Chubu Electric Power Co Inc Windmill arrangement determining device, windmill arrangement determining program, and recording medium
WO2011099147A1 (en) * 2010-02-12 2011-08-18 三菱重工業株式会社 Wind power generation device handy terminal, wind power generation device, and wind power generation site
JP2015155691A (en) * 2014-02-20 2015-08-27 斗山重工業株式会社 Wind farm, wind farm placement structure, and wind power generation unit
WO2015136687A1 (en) * 2014-03-14 2015-09-17 株式会社日立製作所 Wind farm control method and wind farm control system
JP2016070085A (en) * 2014-09-26 2016-05-09 株式会社東芝 Wind farm
JP2017089590A (en) * 2015-11-17 2017-05-25 株式会社日立製作所 Wind power generator and wind farm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757255A1 (en) * 2013-01-21 2014-07-23 Alstom Wind, S.L.U. Method of operating a wind farm
US9512820B2 (en) * 2013-02-19 2016-12-06 Siemens Aktiengesellschaft Method and system for improving wind farm power production efficiency

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527334A (en) * 2003-06-14 2006-11-30 ステフティング エネルギーオンデルゾエク セントラム ネーデルランド Method and facility for extracting energy from flowing fluid
JP2009138523A (en) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp Method of estimating output of wind power generation
JP2010127235A (en) * 2008-11-28 2010-06-10 Chubu Electric Power Co Inc Windmill arrangement determining device, windmill arrangement determining program, and recording medium
WO2011099147A1 (en) * 2010-02-12 2011-08-18 三菱重工業株式会社 Wind power generation device handy terminal, wind power generation device, and wind power generation site
JP2015155691A (en) * 2014-02-20 2015-08-27 斗山重工業株式会社 Wind farm, wind farm placement structure, and wind power generation unit
WO2015136687A1 (en) * 2014-03-14 2015-09-17 株式会社日立製作所 Wind farm control method and wind farm control system
JP2016070085A (en) * 2014-09-26 2016-05-09 株式会社東芝 Wind farm
JP2017089590A (en) * 2015-11-17 2017-05-25 株式会社日立製作所 Wind power generator and wind farm

Also Published As

Publication number Publication date
JP2019015236A (en) 2019-01-31
TW201907085A (en) 2019-02-16
TWI707085B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
Roga et al. Recent technology and challenges of wind energy generation: A review
Rezaeiha et al. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters
EP3037657A1 (en) Optimal wind farm operation
CN103080540B (en) The control of wind turbine in wind energy turbine set
EP2249029B1 (en) A wind turbine
Gupta Efficient wind energy conversion: evolution to modern design
US20060131889A1 (en) Assembly of energy flow collectors, such as windpark, and method of operation
De-Prada-Gil et al. Maximum wind power plant generation by reducing the wake effect
JP6762170B2 (en) How to control a wind farm or wind farm
JP2006527334A (en) Method and facility for extracting energy from flowing fluid
Guo et al. Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine
Hyams Wind energy in the built environment
Óskarsdóttir A general description and comparison of horizontal axis wind turbines and vertical axis wind turbines
Leithead et al. The X-Rotor offshore wind turbine concept
Wang et al. An experimental study on the aeromechanics and wake characteristics of a novel twin-rotor wind turbine in a turbulent boundary layer flow
WO2019008931A1 (en) Wind farm and arrangement determination device
Bukala et al. Small Wind Turbines: Specification, Design, and Economic Evaluation
Ahmad et al. Enhancing vertical axis wind turbine efficiency through leading edge tubercles: A multifaceted analysis
EP3308014B1 (en) Rotor blade shaped to enhance wake diffusion
Sedaghat et al. Aerodynamic design and economical evaluation of site specific horizontal axis wind turbine (HAWT)
TWI717000B (en) Wind power plant
CN104965975B (en) A kind of determination method of gentle breeze area MW class wind turbines wind wheel size primary election
Melissano et al. Real-time optimization of wind farm power through yaw steering control
Roque et al. Expansion of wind power technology in South Africa: Challenges and opportunities
Attias et al. Optimal econoimc layout of turbines on windfarms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828005

Country of ref document: EP

Kind code of ref document: A1