WO2019008741A1 - Ammonia recovery method and recovery device - Google Patents

Ammonia recovery method and recovery device Download PDF

Info

Publication number
WO2019008741A1
WO2019008741A1 PCT/JP2017/024951 JP2017024951W WO2019008741A1 WO 2019008741 A1 WO2019008741 A1 WO 2019008741A1 JP 2017024951 W JP2017024951 W JP 2017024951W WO 2019008741 A1 WO2019008741 A1 WO 2019008741A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
gas
recovery
recovered
cooling
Prior art date
Application number
PCT/JP2017/024951
Other languages
French (fr)
Japanese (ja)
Inventor
桃子 加藤
嘉之 渡邉
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2017/024951 priority Critical patent/WO2019008741A1/en
Publication of WO2019008741A1 publication Critical patent/WO2019008741A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/12Separation of ammonia from gases and vapours

Definitions

  • the present invention relates to an efficient ammonia recovery method and apparatus for industrially synthesizing ammonia from nitrogen gas and hydrogen as raw materials.
  • Ammonia is catalytically synthesized from hydrogen produced by the reforming reaction of natural gas and nitrogen in the air as raw materials.
  • the synthesis of ammonia is largely governed by equilibrium, and the unreacted gas is recycled and supplied again to the ammonia synthesis reactor.
  • An outline of such an existing ammonia synthesis process is shown in FIG.
  • reaction gas containing ammonia synthesized in the ammonia synthesis reactor is cooled and separated, ammonia is recovered, and the separated unreacted raw material gas is recycled.
  • the inert component may be concentrated in the ammonia synthesis loop by recycling.
  • a purge gas line is provided, which is withdrawn from the synthesis loop along with the syngas and a small amount of ammonia.
  • the synthesized ammonia is cooled and separated by cold heat from the ammonia chiller, and is decompressed by the expansion valve from the bottom of the separator provided in the synthesis loop and stored as liquid ammonia at normal pressure.
  • ammonia is used as a refrigerant in the cooling separation unit, and 30 to 40% (dimensionless) of the energy input to the ammonia synthesis unit is used for the cooling liquefaction separation of ammonia.
  • ammonia synthesized in the ammonia synthesis reactor and the unreacted source gas are separated by an ammonia separator installed in the synthesis loop.
  • the ammonia concentration of the ammonia separator overhead is determined by vapor-liquid equilibrium at the operating pressure and temperature of the ammonia separator.
  • the separation temperature depends on the operating pressure of the ammonia refrigerant circuit, generally -10 ° C to -20 ° C is adopted, the lower the cooling temperature, the larger the energy input to the refrigeration compressor and the cooling efficiency Declines.
  • the overhead gas of the ammonia separator generally contains about 2 to 4% by volume of ammonia.
  • the ammonia concentration in the product gas at a general reactor outlet is about 17 to 25% by volume.
  • about 10 to 20% by volume of ammonia generated in the ammonia synthesis reactor is circulated without being separated, and not only motive power for circulation is necessary, Since ammonia is present to a certain extent, ammonia synthesis is performed in a high concentration region where the reaction rate is small, so there is a problem that the reactor capacity needs to be increased.
  • the specific heat of ammonia is larger than that of the synthesis gases hydrogen and nitrogen, and the heat recovery efficiency is degraded.
  • the source gas generally contains inert components such as methane and argon that do not contribute to the reaction, and the synthesis gas containing several volume% of ammonia after the separation device is outside the loop in order to prevent accumulation in the synthesis loop. Purge to
  • the purge gas contains ammonia and hydrogen and nitrogen of the source gas.
  • An ammonia scrubber is installed to recover ammonia, and 97 to 98% by weight of the ammonia contained in the purge gas is recovered.
  • a membrane separation device or a cryogenic separation device is installed in order to recover hydrogen.
  • the hydrogen used as the raw material about 85% by weight in the case of membrane separation, and 95% by weight or more of hydrogen in the case of a cryogenic separation device are recovered. It is about 50% by weight of hydrogen used.
  • Patent Document 1 proposes a method for separating and recovering synthesis gas from purge gas by cryogenic separation. Further, US 20050013768 A1 (Patent Document 2) proposes a process of removing inert components by cryogenic separation before introducing synthesis gas into a synthesis loop.
  • ammonia recovery system consists of a primary cooler that cools to a temperature of -10 to -20 ° C with ammonia as the refrigerant, and a secondary cooler that cools to -80 to 130 ° C using adiabatic expansion or external cooling.
  • Ammonia recovery device characterized in that [6] The ammonia recovery device of [5], wherein the secondary cooler is a cooler with an expansion device selected from an expander generator, an expander compressor, and a Joule Thomson valve.
  • the ammonia recovery device according to [5] or [6], including a mechanism for sending the unreacted raw material gas separated by the separation device to the ammonia synthesis reactor.
  • the ammonia recovery device according to any one of [5] to [7], including a recovery mechanism that recovers ammonia used as a refrigerant, and a separation device and ammonia transferred to the gas phase from a storage and transport device of recovered ammonia.
  • the ammonia recovery device according to [5] to [9], further comprising a mechanism for liquefying and pressurizing the unreacted gas.
  • the existing equipment is used and the number of equipment to be added is small.
  • the reinforcement work can be performed while continuing the operation to the maximum, it is possible to reduce the opportunity loss accompanying the production stop during the reinforcement period.
  • the synthesis can be performed at a high reaction rate by lowering the ammonia concentration of the inlet gas of the ammonia synthesis reactor, the production can be increased without changing the reactor size.
  • the reactor inlet temperature can be adjusted, and it is also possible to respond by adding a heat removal device.
  • ammonia scrubber shown in FIG. 3 it is also possible not to use the ammonia scrubber shown in FIG. 3, and it becomes unnecessary to make up industrial water and to process ammonia-containing water.
  • dehydration equipment for ammonia scrubber overhead gas and its regeneration equipment become unnecessary.
  • the cryogenic separation can eliminate the loss of the ammonia product, and the loss of hydrogen can be suppressed to 0.1% by weight or less of the hydrogen used as the raw material.
  • the outline figure of one mode of the recovery method and recovery device of ammonia concerning the present invention is shown.
  • the outline figure of one mode of the recovery method and recovery device of ammonia concerning the present invention is shown.
  • the outline figure of the existing recovery method and recovery device of ammonia is shown.
  • ammonia raw material Ammonia is synthesized by reacting a nitrogen-containing gas with hydrogen as a raw material.
  • nitrogen-containing gas used as a raw material it is preferable to use nitrogen gas separated from air.
  • means for obtaining nitrogen gas there are generally a cryogenic separation type and an adsorption separation type.
  • pressure swing adsorption method PSA
  • TSA temperature swing Either adsorption
  • PTSA pressure temperature swing adsorption
  • the adsorbent activated carbon, molecular sieves, zeolite, etc. are packed.
  • the nitrogen gas may contain an inert gas such as argon or methane as an impurity.
  • ammonia Synthesis As a hydrogen source at the time of ammonia synthesis, hydrogen obtained by steam reforming such as natural gas or hydrogen obtained by electrolysis of water can be used. Ammonia Synthesis Ammonia synthesis can be carried out by known ammonia production processes.
  • the Haber-Bosch method using an iron-based catalyst.
  • a synthesis reaction is performed under high pressure of one hundred and several tens of atmosphere or more, and is also called high-pressure method.
  • the method (low pressure method) which manufactures ammonia on low pressure conditions using a ruthenium catalyst is also employable.
  • a catalyst having a ruthenium catalyst supported on a carrier can be used.
  • a support for supporting ruthenium alumina or a rare earth oxide can be used as a support for the catalyst.
  • ammonia synthesis reactor is appropriately selected depending on the production process, but in the present invention, a method of reacting nitrogen-containing gas with hydrogen to synthesize ammonia is employed.
  • an ammonia synthesis reactor a recovery device for ammonia, and a separation device for recovered ammonia are provided, and the ammonia recovery device includes a primary cooler and a secondary cooler.
  • the raw material gas, hydrogen gas and nitrogen-containing gas are pressurized to a predetermined pressure by the raw gas compressor, mixed with the recovered recycle gas, and then pressurized to the reaction pressure.
  • the pressurized synthesis gas is preheated and supplied to the ammonia synthesis reactor.
  • reaction In the reactor, the reaction is carried out and the reaction gas is discharged from the reactor outlet.
  • the reaction gas is cooled by cooling water or chiller water after heat recovery by steam production or the like.
  • Primary Recovery The ammonia in the resulting product gas is primarily recovered by cooling to a temperature of ⁇ 10 to ⁇ 20 ° C.
  • Cooling at the time of primary recovery is performed by an ammonia chiller using ammonia as a refrigerant.
  • the ammonia used for the chiller is the one recovered from the product or the like.
  • the ammonia liquefied by being cooled is separated into gas and liquid by an ammonia separator.
  • Secondary Recovery The overhead gas on the gas phase side of the ammonia separator in the primary recovery contains ammonia that could not be recovered in the primary recovery.
  • the unrecovered ammonia is cooled to ⁇ 80 to ⁇ 130 ° C. by a cooling means installed in a cold box, and separated again by gas-liquid separation with an ammonia separator to recover liquid ammonia (secondary recovery).
  • the cooling means by adiabatic expansion shown in FIG. 1 is preferably adopted because it can be easily brought to a low temperature. It is preferable that it is at least 1 sort (s) chosen from an expander generator, an expander compressor, and Joule Thomson valve
  • s 1 sort
  • the means may be a combination of adiabatic expansion and external refrigeration means.
  • the two-stage refrigeration recovery liquefies and separates 98% by weight or more of ammonia contained in the reactor outlet gas.
  • the ammonia synthesis reaction is an equilibrium reaction, and if the recovery rate is high, the energy input of the compressor at the time of recycling, refrigeration compressor, etc. can be reduced by improving the conversion rate of one pass, so the reactor and the synthesis loop Size can be reduced.
  • the secondly recovered ammonia is combined with the firstly recovered ammonia, and the ammonia separated on the liquid side is reduced in pressure by the liquid expander or liquid expansion valve, if necessary, and dissolved in a small amount in the ammonia flash drum After removing the unreacted raw material gas components, it is supplied to an ammonia product drum under normal pressure and sent to an ammonia transportation / storage device.
  • unreacted secondary gas components are recycled after secondary recovery.
  • it may pass through a pressurizer (compressor), a heat exchanger, and a cooling device so as to obtain a predetermined pressure and temperature.
  • an ammonia chiller for recollecting the volatilized ammonia may be provided in the combined container and the ammonia flash drum for the primary recovery and the secondary recovery.
  • ammonia used as a refrigerant, and the ammonia transferred to the gas phase from the separation device and the storage and transportation device of the recovered ammonia are recovered again as required, separated and recovered again, or pressurized with the source gas, and both reactors are used. Or may be removed by an ammonia removal treatment such as absorption into water.
  • the inert component may be concentrated to the unreacted raw material gas component after recovering the ammonia residue by recycling. If the inert component is contained, the partial pressure of the raw material may be lowered during the ammonia synthesis, and the reactivity may be lowered. In order to prevent this, a purge gas line may be provided, and the inert component may be withdrawn from the synthesis loop together with unreacted raw material gas and a small amount of ammonia as a product.
  • an inert component such as argon or methane
  • Extraction of the purge gas is performed from the separator gas phase side at the time of secondary recovery, the gas phase side of ammonia merged after recovery, the evaporation portion of the flash drum, or the like.
  • an ammonia scrubber may be used to absorb the ammonia.
  • the ammonia scrubber uses a liquid such as water as an absorbing liquid to collect and separate ammonia in the liquid.
  • an acid component such as sulfuric acid may be contained to prevent the desorption of ammonia.
  • the overhead gas of the ammonia scrubber contains nitrogen, hydrogen and an inert component, a dewatering facility for dewatering these and a regenerating facility therefor may be provided.
  • the overhead gas of the ammonia scrubber can be further separated by membrane separation or cryogenic separation and recycled as a source gas, or the inert component can be used as a fuel. Separation and Recovery of Raw Material Gas As shown in FIG. 2, the unreacted raw material gas separated from ammonia is further cooled through a two-stage cooling process to obtain inert components and raw material gas components (hydrogen and nitrogen). It may be separated.
  • the overhead gas of the secondary cooling ammonia separator is further brought to a low temperature by adiabatic expansion means or external cooling.
  • adiabatic expansion means or external cooling.
  • the separated overhead gas is further cooled by a multi-pass heat exchanger installed in a cold box and supplied to a hydrogen separation column (or drum) that separates hydrogen and other inert components.
  • the bottom solution of the hydrogen separation column is pumped up to the loop pressure. Part of it is supplied to the top of the hydrogen separation column as reflux, and the hydrogen contained in the bottom of the hydrogen separation column is recovered to the gas phase, and nitrogen, methane, and argon contained in the gas phase are recovered in the liquid phase It is also possible.
  • Hydrogen is recycled as a source gas and adjusted to a predetermined temperature and pressure.
  • the cold heat is recovered until all the methane, which has been pressurized to the loop pressure, liquid nitrogen containing argon is vaporized by the multi-pass heat exchanger installed in the cold box.
  • a portion of the vaporized gas is withdrawn and further expanded to be partially liquefied by an expander, separated into a methane / high argon concentration liquid and a high nitrogen concentration gas, and separated by a low pressure separator.
  • the low temperature gas (nitrogen) and the liquid (methane, argon) are again sent to the multipass heat exchanger in the cold box to recover the cold.
  • the gas containing high concentration of methane and argon recovered to the liquid phase side by the low pressure separator may be purged out of the loop.
  • the other gases are mixed with the ammonia flash drum and the ammonia chiller flash gas, boosted to the source gas pressure by the boosting compressor, and returned to the loop by the source gas compressor and the recycle compressor.
  • the overhead gas of the hydrogen separation column which is substantially composed of hydrogen, has its cold heat recovered by a multipass heat exchanger installed in a cold box, and is boosted to a loop pressure by a boosting compressor or the like. It is returned to the loop by the recycle compressor.
  • the source gases, hydrogen gas and nitrogen gas are pressurized by the source gas compressor to a loop pressure of 50 to 200 barG. Furthermore, after being mixed with the recycle gas sent from the overhead of the ammonia separator, the pressure is raised to the reaction pressure by the recycle compressor.
  • the pressurized synthesis gas is preheated to 150 ° C. to 250 ° C. by the hot reactor outlet gas and supplied to the reactor.
  • the synthesis reaction is carried out at 300 ° C. to 500 ° C.
  • the reactor outlet gas at 400 ° C. to 500 ° C. is subjected to heat recovery by steam production or the like, and then cooled to 20 ° C. to 50 ° C. by cooling water or chiller water.
  • the reactor is cooled to ⁇ 10 ° C. to ⁇ 20 ° C. by an ammonia chiller (primary recovery), 80 to 90% by weight of ammonia contained in the reactor outlet gas is liquefied and separated by an ammonia separator.
  • an ammonia chiller primary recovery
  • 80 to 90% by weight of ammonia contained in the reactor outlet gas is liquefied and separated by an ammonia separator.
  • the separated ammonia is depressurized to 15 to 20 bar G by a liquid expander or liquid expansion valve, and after removing a small amount of synthesis gas components dissolved by an ammonia flash drum, it is supplied to an ammonia product drum under normal pressure.
  • the overhead gas of the ammonia separator is cooled to -80 ° C to -130 ° C by the multiple pass heat exchanger installed in the cold box (second recovery), and 99.9 weight of ammonia contained in the reactor outlet gas % Or more of ammonia is liquefied and separated in the second ammonia separator.
  • the recovered ammonia is combined with the primary recovery ammonia and supplied to the ammonia flash drum.
  • the recovery method and recovery system shown in Fig. 1 can increase production by 10 to 15% by weight simply by applying this process to an existing ammonia plant, and can use a low-pressure drum, expander compressor (or expander generator and so on). Only the combination of compressors) or additional refrigeration equipment can be added, and the number of additional equipment can be reduced.
  • the extension part since there is little interaction between the extension part and the existing part, and the reinforcement work can be performed while continuing the operation to the maximum, it is possible to reduce the opportunity loss accompanying the production stop during the reinforcement period. Furthermore, since the synthesis can be performed at a large reaction rate by lowering the ammonia concentration of the inlet gas of the ammonia synthesis reactor, the production can be increased without changing the reactor size. In the case of the adiabatic reactor, the reaction heat content associated with the increase in production is adjusted by adjusting the reactor inlet temperature or adding a heat removal device.

Abstract

The present invention relates to an efficient ammonia recovery method and recovery device for industrially synthesizing ammonia using nitrogen gas and hydrogen as raw material. The ammonia recovery method is characterized in that nitrogen-containing gas is reacted with hydrogen, ammonia in the produced gas obtained thereby is cooled to a temperature of -10 to -20°C and primarily recovered, and ammonia unrecovered during the primary recovery is cooled to -80 to -130°C and secondarily recovered, so that 98 weight% or more of the ammonia in the produced gas is recovered. The ammonia recovery device comprises an ammonia synthesis reactor, an ammonia recovery device, and a separator for recovered ammonia, and is characterized by being configured from a primary cooler using ammonia as a coolant for cooling to a temperature of -10 to -20°C and a secondary cooler using adiabatic expansion or external cold for cooling to -80 to -130°C.

Description

アンモニアの回収方法および回収装置Method and apparatus for recovering ammonia
 本発明は、窒素ガスと水素を原料にして、工業的にアンモニアを合成するに際し、効率的なアンモニアの回収方法および回収装置に関する。 TECHNICAL FIELD The present invention relates to an efficient ammonia recovery method and apparatus for industrially synthesizing ammonia from nitrogen gas and hydrogen as raw materials.
 アンモニアは天然ガスの改質反応により製造した水素と空気中の窒素を原料として触媒反応により合成されている。アンモニアの合成は平衡に大きく支配されており、未反応ガスはリサイクルされて再度アンモニア合成反応器に供給される。このような既存のアンモニア合成プロセスの概略を図3に示す。 Ammonia is catalytically synthesized from hydrogen produced by the reforming reaction of natural gas and nitrogen in the air as raw materials. The synthesis of ammonia is largely governed by equilibrium, and the unreacted gas is recycled and supplied again to the ammonia synthesis reactor. An outline of such an existing ammonia synthesis process is shown in FIG.
 図3ではアンモニア合成反応器で合成されたアンモニアを含む反応ガスは、冷却分離されて、アンモニアは回収され、分離された未反応原料ガスはリサイクルされる。 In FIG. 3, the reaction gas containing ammonia synthesized in the ammonia synthesis reactor is cooled and separated, ammonia is recovered, and the separated unreacted raw material gas is recycled.
 原料ガスにはイナート成分が含まれているため、リサイクルによってアンモニア合成ループ内にイナート成分が濃縮してしまうことがある。これを防ぐためにパージガスラインが設けられ、合成ガスと少量のアンモニアとともに合成ループから抜き出される。合成されたアンモニアはアンモニアチラーによる冷熱によって冷却分離され、合成ループに設けられたセパレータのボトムより、膨張弁により減圧され常圧の液体アンモニアとして貯蔵される。 Since the raw material gas contains an inert component, the inert component may be concentrated in the ammonia synthesis loop by recycling. To prevent this, a purge gas line is provided, which is withdrawn from the synthesis loop along with the syngas and a small amount of ammonia. The synthesized ammonia is cooled and separated by cold heat from the ammonia chiller, and is decompressed by the expansion valve from the bottom of the separator provided in the synthesis loop and stored as liquid ammonia at normal pressure.
 既存のアンモニア合成のプロセスでは冷却分離装置にアンモニアが冷媒として使用されておりアンモニア合成装置へのエネルギー投入量の30~40%(無次元)をアンモニアの冷却液化分離に使用している。 In the existing ammonia synthesis process, ammonia is used as a refrigerant in the cooling separation unit, and 30 to 40% (dimensionless) of the energy input to the ammonia synthesis unit is used for the cooling liquefaction separation of ammonia.
 アンモニア合成反応器で合成されたアンモニアと未反応原料ガスは、合成ループ内に設置されるアンモニアセパレータで分離される。アンモニアセパレータのオーバーヘッドのアンモニア濃度はアンモニアセパレータの運転圧力および温度における気液平衡により求められる。分離温度は、アンモニア冷媒サーキットの運転圧力に依存し、一般的には-10℃~-20℃が採用されているが、冷却温度が低ければ低いほど冷凍コンプレッサーへの投入エネルギーは大きくなり冷却効率は低下する。 The ammonia synthesized in the ammonia synthesis reactor and the unreacted source gas are separated by an ammonia separator installed in the synthesis loop. The ammonia concentration of the ammonia separator overhead is determined by vapor-liquid equilibrium at the operating pressure and temperature of the ammonia separator. Although the separation temperature depends on the operating pressure of the ammonia refrigerant circuit, generally -10 ° C to -20 ° C is adopted, the lower the cooling temperature, the larger the energy input to the refrigeration compressor and the cooling efficiency Declines.
 従って現在商業化しているアンモニアプロセスではアンモニアセパレータのオーバーヘッドガスは2~4体積%程度のアンモニアを含んでいることが一般的である。一般的な反応器出口の生成ガス中のアンモニア濃度は17~25体積%程度である。このため、アンモニア合成反応器で生成したアンモニアのうち10~20体積%程度のアンモニアが分離されずにループ内を循環していることになり、循環のための動力が必要であるだけでなく、ある程度アンモニアが存在しているため、反応速度の小さい高濃度域でのアンモニア合成を行うことになるため反応器容量の大型化が必要となるという課題がある。さらにアンモニア濃度の高いリサイクルガスを多く含む場合、アンモニアの比熱は合成ガスである水素、窒素に比べて大きく、熱回収効率が悪くなるといった問題点もある。 Therefore, in the ammonia process currently commercialized, the overhead gas of the ammonia separator generally contains about 2 to 4% by volume of ammonia. The ammonia concentration in the product gas at a general reactor outlet is about 17 to 25% by volume. For this reason, about 10 to 20% by volume of ammonia generated in the ammonia synthesis reactor is circulated without being separated, and not only motive power for circulation is necessary, Since ammonia is present to a certain extent, ammonia synthesis is performed in a high concentration region where the reaction rate is small, so there is a problem that the reactor capacity needs to be increased. Furthermore, when a large amount of recycle gas having a high ammonia concentration is contained, the specific heat of ammonia is larger than that of the synthesis gases hydrogen and nitrogen, and the heat recovery efficiency is degraded.
 また原料ガスには一般的に反応に寄与しないメタンやアルゴンといったイナート成分が含まれており、合成ループ内での蓄積を防ぐために分離装置後の数体積%のアンモニアを含んだ合成ガスをループ外にパージしている。 In addition, the source gas generally contains inert components such as methane and argon that do not contribute to the reaction, and the synthesis gas containing several volume% of ammonia after the separation device is outside the loop in order to prevent accumulation in the synthesis loop. Purge to
 パージガスにはアンモニアおよび原料ガスの水素および窒素が含まれている。アンモニアを回収するためにアンモニアスクラバーが設置され、パージガス中に含まれるアンモニアの97~98重量%が回収される。また水素を回収するために、膜分離装置や深冷分離装置が設置される。原料に使用された水素のうち膜分離の場合は85重量%程度、深冷分離装置の場合には95重量%以上の水素が回収されるが、窒素の回収率はどちらの場合も、原料に使用された水素のうち50重量%程度である。 The purge gas contains ammonia and hydrogen and nitrogen of the source gas. An ammonia scrubber is installed to recover ammonia, and 97 to 98% by weight of the ammonia contained in the purge gas is recovered. Also, in order to recover hydrogen, a membrane separation device or a cryogenic separation device is installed. Of the hydrogen used as the raw material, about 85% by weight in the case of membrane separation, and 95% by weight or more of hydrogen in the case of a cryogenic separation device are recovered. It is about 50% by weight of hydrogen used.
 WO2011/124268(特許文献1)では深冷分離によるパージガスからの合成ガスの分離回収する方法について提案されている。またUS20050013768A1(特許文献2)では合成ガスを合成ループ内に入れる前に深冷分離によりイナート成分を除くプロセスが提案されている。 WO 2011/124268 (patent document 1) proposes a method for separating and recovering synthesis gas from purge gas by cryogenic separation. Further, US 20050013768 A1 (Patent Document 2) proposes a process of removing inert components by cryogenic separation before introducing synthesis gas into a synthesis loop.
 特許文献1および2のプロセスを用いることでパージガス量を削減することが可能であるが、やはりイナート成分を完全に取り除くには至っていないため合成ループ内でイナート成分をある程度の濃度まで濃縮してパージし、分離回収を行う設備が必要である。 Although it is possible to reduce the amount of purge gas by using the processes of Patent Documents 1 and 2, it is also not possible to completely remove the inert component, so the inert component is concentrated to a certain concentration and purged in the synthesis loop And equipment for separation and recovery is required.
WO2011/124268WO2011 / 124268 US20050013768A1US20050013768A1
 アンモニア製造設備の省エネルギー化を向上させる手段として、合成圧力の低圧化が考えられるが、低圧でのアンモニアの液化分離率を保つためにはより低い温度の冷熱が必要になる。 Although it is conceivable to lower the synthesis pressure as a means of improving the energy saving of the ammonia production facility, cold heat at a lower temperature is required to maintain the liquefaction separation rate of ammonia at a low pressure.
 また、アンモニアの効率的な合成を行うためには、冷却分離後のループ内のアンモニアおよびイナート成分の濃度を下げること、およびパージによるアンモニア製品および水素、窒素のロスを少なくすることが課題である。 In addition, in order to carry out efficient synthesis of ammonia, it is an issue to lower the concentration of ammonia and inert components in the loop after cooling separation, and to reduce the loss of ammonia product, hydrogen and nitrogen by purge. .
 前記課題を解決すべく、本発明者は鋭意検討した結果、2段階の冷却回収工程を組み合わせることで、上記課題を解決し、生成ガス中の98重量%以上のアンモニアを回収できることを見出し、本発明を解決するに至った。
[1]窒素含有ガスと水素を反応させて、得られた生成ガス中のアンモニアを
 -10~-20℃の温度に冷却して一次回収したのち、
 一次回収で未回収のアンモニアを、-80~-130℃に冷却して二次回収して、
 生成ガス中の98重量%以上のアンモニアを回収することを特徴とする
アンモニアの回収方法。
[2]二次回収時の冷却に、断熱膨張による冷熱を使用する[1]のアンモニアの回収方法。
[3]断熱膨張による冷熱手段が、エクスパンダージェネレータ、エクスパンダーコンプレッサー、ジュールトムソンバルブから選ばれる少なくとも1種である[2]のアンモニアの回収方法。
[4]二次回収後、アンモニアと分離された残留ガス成分を、さらに、断熱膨張または外部冷熱による冷熱を使用して、水素および窒素の原料成分と、不活性ガス成分とに分別し、原料成分を再利用する、[1]~[3]のアンモニアの回収方法。
[5]アンモニア合成反応器と、アンモニアの回収装置と、回収アンモニアの分離装置を備え、
 アンモニア回収装置が、アンモニアを冷媒とする-10~-20℃の温度に冷却する一次冷却器と、断熱膨張または外部冷熱を使用して-80~130℃に冷却する二次冷却器とから構成されることを特徴とするアンモニアの回収装置。
[6]二次冷却器が、エクスパンダージェネレータ、 エクスパンダーコンプレッサー、ジュールトムソンバルブから選ばれる膨張装置による冷却器である[5]のアンモニアの回収装置。
[7]分離装置で分離された未反応原料ガスをアンモニア合成反応器に送るため機構を備える、[5]または[6]のアンモニア回収装置。
[8]冷媒として使用したアンモニア、および分離装置および回収アンモニアの貯蔵・輸送装置から気相に移ったアンモニアを回収する回収機構を備える、[5]~[7]のアンモニア回収装置。
[9]分離装置で分離された未反応原料ガスからイナート成分と原料ガス成分とを分離する分離機構、および分離した原料ガス成分をアンモニア合成反応器に送る機構を備える、[5]~[8]のアンモニア回収装置。
[10]  未反応ガスを液化して昇圧する機構を備えることを特徴とする[5]~[9]のアンモニア回収装置。
In order to solve the above problems, as a result of intensive investigations by the present inventor, the present inventors have found that by combining the two-stage cooling recovery process, the above problems can be solved and 98% by weight or more of ammonia in the product gas can be recovered. We came to solve the invention.
[1] Ammonia in the product gas obtained by reacting nitrogen-containing gas with hydrogen is firstly cooled after cooling to a temperature of -10 to -20 ° C,
Unrecovered ammonia from primary recovery is secondarily recovered by cooling to -80 to -130 ° C.
A method of recovering ammonia, comprising recovering 98 wt% or more of ammonia in a product gas.
[2] The ammonia recovery method according to [1], wherein cold energy by adiabatic expansion is used for cooling at the time of secondary recovery.
[3] The ammonia recovery method according to [2], wherein the cooling means by adiabatic expansion is at least one selected from an expander generator, an expander compressor, and a Joule Thomson valve.
[4] After secondary recovery, residual gas components separated from ammonia are further separated into hydrogen and nitrogen as raw material components and inert gas components using adiabatic expansion or cold energy by external cold heat, and raw materials The method for recovering ammonia according to [1] to [3], wherein components are reused.
[5] An ammonia synthesis reactor, an ammonia recovery device, and a recovery ammonia separation device
The ammonia recovery system consists of a primary cooler that cools to a temperature of -10 to -20 ° C with ammonia as the refrigerant, and a secondary cooler that cools to -80 to 130 ° C using adiabatic expansion or external cooling. Ammonia recovery device characterized in that
[6] The ammonia recovery device of [5], wherein the secondary cooler is a cooler with an expansion device selected from an expander generator, an expander compressor, and a Joule Thomson valve.
[7] The ammonia recovery device according to [5] or [6], including a mechanism for sending the unreacted raw material gas separated by the separation device to the ammonia synthesis reactor.
[8] The ammonia recovery device according to any one of [5] to [7], including a recovery mechanism that recovers ammonia used as a refrigerant, and a separation device and ammonia transferred to the gas phase from a storage and transport device of recovered ammonia.
[9] A separation mechanism for separating an inert component and a raw material gas component from unreacted raw material gas separated by the separation device, and a mechanism for sending the separated raw material gas component to an ammonia synthesis reactor, [5] to [8 ] Ammonia recovery device.
[10] The ammonia recovery device according to [5] to [9], further comprising a mechanism for liquefying and pressurizing the unreacted gas.
 本発明によれば、図3に示すような既存の設備に比べて、10~15重量%のアンモニア増産が可能になる。 According to the present invention, it is possible to increase ammonia production by 10 to 15% by weight as compared with the existing equipment as shown in FIG.
 また既存設備を使用し、追加する装置数が少ない。また増設部分と既設部分との取り合いが少なく、運転を最大限継続させながら増強工事を行うことが出来るため、増強期間中の生産停止に伴う機会損失を少なくすることが可能である。 In addition, the existing equipment is used and the number of equipment to be added is small. In addition, since there is little interaction between the extension part and the existing part, and the reinforcement work can be performed while continuing the operation to the maximum, it is possible to reduce the opportunity loss accompanying the production stop during the reinforcement period.
 アンモニア合成反応器の入口ガスのアンモニア濃度を下げることで大きな反応速度で合成を行うことが出来るため、反応器サイズを変えることなく増産できる。増産に伴う反応熱分については断熱反応器の場合は反応器入口温度を調整可能であり、除熱装置を追加して対応することも可能である。 Since the synthesis can be performed at a high reaction rate by lowering the ammonia concentration of the inlet gas of the ammonia synthesis reactor, the production can be increased without changing the reactor size. With regard to the heat of reaction associated with the increase in production, in the case of the adiabatic reactor, the reactor inlet temperature can be adjusted, and it is also possible to respond by adding a heat removal device.
 さらに図3に示すアンモニアスクラバーを使用しないことも可能であり、工業用水のメークアップが不要になるとともにアンモニア含有水の処理が不要になる。またアンモニアスクラバーオーバーヘッドガスの脱水設備とその再生設備も不要になる。深冷分離によりアンモニアプロダクトのロスをなくし、水素のロスも原料に使用された水素の0.1重量%以下に抑えることができる。 Furthermore, it is also possible not to use the ammonia scrubber shown in FIG. 3, and it becomes unnecessary to make up industrial water and to process ammonia-containing water. In addition, dehydration equipment for ammonia scrubber overhead gas and its regeneration equipment become unnecessary. The cryogenic separation can eliminate the loss of the ammonia product, and the loss of hydrogen can be suppressed to 0.1% by weight or less of the hydrogen used as the raw material.
本発明にかかるアンモニアの回収方法と回収装置の一態様の概要図を示す。The outline figure of one mode of the recovery method and recovery device of ammonia concerning the present invention is shown. 本発明にかかるアンモニアの回収方法と回収装置の一態様の概要図を示す。The outline figure of one mode of the recovery method and recovery device of ammonia concerning the present invention is shown. 既存のアンモニアの回収方法と回収装置の概要図を示す。The outline figure of the existing recovery method and recovery device of ammonia is shown.
 本発明にかかるアンモニアの製造方法では、窒素含有ガスと水素を反応させてアンモニアを合成したのち、
 得られた生成ガス中のアンモニアを、-10~-20℃の温度に冷却して一次回収したのち、
 一次回収アンモニアを、-80~-130℃に冷却して二次回収して、
 生成ガス中の98重量%以上のアンモニアを回収することを特徴とする。
アンモニア原料
 アンモニアは、原料として、窒素含有ガスと、水素を反応させることで合成される。
In the method for producing ammonia according to the present invention, after nitrogen-containing gas is reacted with hydrogen to synthesize ammonia,
The ammonia in the resulting product gas is firstly cooled to a temperature of -10 to -20 ° C and recovered,
The primary recovered ammonia is secondarily recovered by cooling to -80 to -130 ° C,
It is characterized in that 98% by weight or more of ammonia in the product gas is recovered.
Ammonia raw material Ammonia is synthesized by reacting a nitrogen-containing gas with hydrogen as a raw material.
 原料として使用される窒素含有ガスとしては、空気から分離した窒素ガスを使用することが好ましい。窒素ガスを得る手段として、一般的に深冷分離式と吸着分離式がある。吸着分離式では、並列に並んだ複数の吸着塔を使用して、圧力、温度あるいは圧力・温度を変動(スイング)させることにより、窒素を分離・回収する圧力スイング吸着法(PSA)、温度スイング吸着法(TSA)、圧力温度スイング吸着法(PTSA)のいずれかを用いることが可能である。吸着材としては活性炭、モレキュラーシーブ、ゼオライトなどが充填される。窒素ガス中には、アルゴンやメタンなどのイナートガスが不純物として含まれていることもある。 As the nitrogen-containing gas used as a raw material, it is preferable to use nitrogen gas separated from air. As means for obtaining nitrogen gas, there are generally a cryogenic separation type and an adsorption separation type. In the adsorption separation type, pressure swing adsorption method (PSA) that separates and recovers nitrogen by fluctuating (swing) pressure, temperature or pressure and temperature using a plurality of adsorption towers arranged in parallel, temperature swing Either adsorption (TSA) or pressure temperature swing adsorption (PTSA) can be used. As the adsorbent, activated carbon, molecular sieves, zeolite, etc. are packed. The nitrogen gas may contain an inert gas such as argon or methane as an impurity.
 アンモニア合成時の水素源としては、天然ガス等の水蒸気改質で得られる水素または水の電気分解で得られる水素を使用することができる。
アンモニア合成
 アンモニア合成は、公知のアンモニア製造プロセスによって行うことが可能である。
As a hydrogen source at the time of ammonia synthesis, hydrogen obtained by steam reforming such as natural gas or hydrogen obtained by electrolysis of water can be used.
Ammonia Synthesis Ammonia synthesis can be carried out by known ammonia production processes.
 たとえば鉄系触媒を用いたハーバー・ボッシュ法を採用することも可能である。かかるハーバー・ボッシュ法は、百数十気圧以上の高圧下で合成反応が行われ、高圧法とも呼ばれる。また、ルテニウム触媒を用いて低圧条件下でアンモニアを製造する方法(低圧法)も採用できる。 For example, it is also possible to adopt the Haber-Bosch method using an iron-based catalyst. In the Harbor-Bosch method, a synthesis reaction is performed under high pressure of one hundred and several tens of atmosphere or more, and is also called high-pressure method. Moreover, the method (low pressure method) which manufactures ammonia on low pressure conditions using a ruthenium catalyst is also employable.
 ルテニウム触媒を用いるアンモニア製造では、ルテニウム触媒を担体に担持させた触媒を使用することができる。ルテニウムを担持させる担体としては、触媒の担体としてアルミナや希土類酸化物を用いることができる。 In ammonia production using a ruthenium catalyst, a catalyst having a ruthenium catalyst supported on a carrier can be used. As a support for supporting ruthenium, alumina or a rare earth oxide can be used as a support for the catalyst.
 また、最近ではプロトン交換膜を介して供給された水素(イオン)と、窒素とを反応させるアンモニア合成方法が提案されている。 In addition, recently, an ammonia synthesis method has been proposed in which hydrogen (ion) supplied via a proton exchange membrane and nitrogen are reacted.
 アンモニア合成反応器は、製造プロセスに応じて適宜選択されるが、本発明では、窒素含有ガスと水素を反応させてアンモニアを合成させる方法が採用される。 The ammonia synthesis reactor is appropriately selected depending on the production process, but in the present invention, a method of reacting nitrogen-containing gas with hydrogen to synthesize ammonia is employed.
 図1に本発明にかかるアンモニアの回収方法の一態様の概略フローを回収装置とともに示す。 The outline flow of one mode of the recovery method of ammonia concerning the present invention is shown in Drawing 1 with a recovery device.
 具体的にはアンモニア合成反応器と、アンモニアの回収装置と、回収アンモニアの分離装置を備え、アンモニア回収装置が、一次冷却器と、二次冷却器とから構成される。 Specifically, an ammonia synthesis reactor, a recovery device for ammonia, and a separation device for recovered ammonia are provided, and the ammonia recovery device includes a primary cooler and a secondary cooler.
 原料ガスである水素ガスと窒素含有ガスは原料ガスコンプレッサーによって所定の圧力に昇圧され、さらに回収されたリサイクルガスと混合された後、反応圧力まで昇圧される。 The raw material gas, hydrogen gas and nitrogen-containing gas, are pressurized to a predetermined pressure by the raw gas compressor, mixed with the recovered recycle gas, and then pressurized to the reaction pressure.
 昇圧された合成ガスは、予熱されアンモニア合成反応器に供給される。 The pressurized synthesis gas is preheated and supplied to the ammonia synthesis reactor.
 反応器内で、反応が行われ、反応器出口より、反応ガスが排出される。反応ガスはスチーム製造等による熱回収を行った後、冷却水やチラー水によって冷却される。
一次回収
 得られた生成ガス中のアンモニアを、-10~-20℃の温度に冷却して一次回収する。
In the reactor, the reaction is carried out and the reaction gas is discharged from the reactor outlet. The reaction gas is cooled by cooling water or chiller water after heat recovery by steam production or the like.
Primary Recovery The ammonia in the resulting product gas is primarily recovered by cooling to a temperature of −10 to −20 ° C.
 一次回収時の冷却(一次冷却器という)は、アンモニアを冷媒とするアンモニアチラーによって行われる。チラーに使用されるアンモニアは、製品などから回収されたものが使用される。 冷却されることによって液化されたアンモニアは、アンモニアセパレータにて気液分離される。
二次回収
 一次回収でアンモニアセパレータの気相側のオーバーヘッドガスには、一次回収で回収できなかったアンモニアを含む。この未回収アンモニアを、コールドボックス内に設置された冷却手段によって-80~-130℃に冷却して、再度アンモニアセパレータで、気液分離して、液体アンモニアが回収される(二次回収)。
Cooling at the time of primary recovery (referred to as a primary cooler) is performed by an ammonia chiller using ammonia as a refrigerant. The ammonia used for the chiller is the one recovered from the product or the like. The ammonia liquefied by being cooled is separated into gas and liquid by an ammonia separator.
Secondary Recovery The overhead gas on the gas phase side of the ammonia separator in the primary recovery contains ammonia that could not be recovered in the primary recovery. The unrecovered ammonia is cooled to −80 to −130 ° C. by a cooling means installed in a cold box, and separated again by gas-liquid separation with an ammonia separator to recover liquid ammonia (secondary recovery).
 既設改造の場合、二次回収での冷却(二次冷却器)には、断熱膨張または外部冷熱による冷熱手段を使用することが、前記温度範囲まで冷却しやすく、既存設備を増強する点で大掛かりな工事とならず、また装置全体の運転を止める必要がないため好ましい。 In the case of the existing remodeling, using a cooling means by adiabatic expansion or external cooling for cooling in the secondary recovery (secondary cooler) is easy to cool to the above temperature range, and it is a major effort in enhancing existing facilities This is preferable because it does not require any construction work and there is no need to stop the operation of the entire apparatus.
 図1に示す断熱膨張による冷熱手段は、容易に低温下にできるために好ましく採用される。具体的な断熱膨張による冷熱手段としては、エクスパンダージェネレータ、エクスパンダーコンプレッサー、ジュールトムソンバルブから選ばれる少なくとも1種であることが好ましい。これらの手段は、低温を容易に得ることができとともに、回収した動力はコンプレッサーの動力として使用できる。また、追加のエネルギー投入を少なくできる。 The cooling means by adiabatic expansion shown in FIG. 1 is preferably adopted because it can be easily brought to a low temperature. It is preferable that it is at least 1 sort (s) chosen from an expander generator, an expander compressor, and Joule Thomson valve | bulb as a cooling means by specific adiabatic expansion. These means can easily obtain low temperatures, and the recovered power can be used as the power of the compressor. In addition, additional energy input can be reduced.
 また、二次回収の冷却に使用される外部冷熱手段として、窒素、メタン、エタン、エチレンを冷媒とした外部冷凍設備を用いて、-30℃以下の温度に冷却してもよく、2次回収手段を断熱膨張と外部冷凍手段とを組み合わせてもよい。 Moreover, you may cool to the temperature of -30 degrees C or less using the external refrigeration installation which used nitrogen, methane, ethane, and ethylene as a refrigerant as an external cooling means used for cooling of secondary recovery, and secondary recovery The means may be a combination of adiabatic expansion and external refrigeration means.
 これらの二次回収は複数の工程で行ってもよい。 These secondary recovery may be performed in multiple steps.
 2段階の冷却回収によって、反応器出口ガスに含まれる98重量%以上のアンモニアが液化分離される。アンモニア合成反応は平衡反応であり、回収率が高ければワンパスの転化率を向上させることにより、リサイクル時のコンプレッサーや、冷凍コンプレッサーなどのエネルギー投入量を削減することができるので、反応器と合成ループのサイズを小さくすることができる。 The two-stage refrigeration recovery liquefies and separates 98% by weight or more of ammonia contained in the reactor outlet gas. The ammonia synthesis reaction is an equilibrium reaction, and if the recovery rate is high, the energy input of the compressor at the time of recycling, refrigeration compressor, etc. can be reduced by improving the conversion rate of one pass, so the reactor and the synthesis loop Size can be reduced.
 二次回収されたアンモニアは一次回収のアンモニアと合流されて、液体側に分離されたアンモニアは、必要に応じて、リキッドエクスパンダーまたはリキッドエクスパンジョンバルブによって減圧されアンモニアフラッシュドラムにて微量に溶け込んでいる未反応原料ガス成分を除去したのち、常圧のアンモニアプロダクトドラムに供給され、アンモニア輸送・貯蔵装置に送られる。 The secondly recovered ammonia is combined with the firstly recovered ammonia, and the ammonia separated on the liquid side is reduced in pressure by the liquid expander or liquid expansion valve, if necessary, and dissolved in a small amount in the ammonia flash drum After removing the unreacted raw material gas components, it is supplied to an ammonia product drum under normal pressure and sent to an ammonia transportation / storage device.
 二次回収を経て、未反応原料ガス成分は、リサイクル使用されることが好ましい。このとき所定の圧力や温度となるように、加圧器(コンプレッサー)や熱交換器、冷却装置を通してもよい。 Preferably, unreacted secondary gas components are recycled after secondary recovery. At this time, it may pass through a pressurizer (compressor), a heat exchanger, and a cooling device so as to obtain a predetermined pressure and temperature.
 また、一次回収および二次回収の合流容器やアンモニアフラッシュドラムには、揮散したアンモニアを再回収するためのアンモニアチラーが設けられていてもよい。 In addition, an ammonia chiller for recollecting the volatilized ammonia may be provided in the combined container and the ammonia flash drum for the primary recovery and the secondary recovery.
 冷媒として使用したアンモニア、および分離装置および回収アンモニアの貯蔵・輸送装置から気相に移ったアンモニアは、必要に応じて再回収されて、再度分離回収されたり、原料ガスと昇圧されて共に反応器に送られたり、さらに、水への吸収などのアンモニア除去処理を行って除去されてもよい。 The ammonia used as a refrigerant, and the ammonia transferred to the gas phase from the separation device and the storage and transportation device of the recovered ammonia are recovered again as required, separated and recovered again, or pressurized with the source gas, and both reactors are used. Or may be removed by an ammonia removal treatment such as absorption into water.
 未反応原料ガス成分にはアルゴン、メタンなどのイナート成分が含まれているため、リサイクルによってアンモニア残分を回収後の未反応原料ガス成分に、イナート成分が濃縮してしまうことがある。イナート成分が含まれていると、アンモニア合成の際に、原料分圧が低くなり、反応性が低下することがある。これを防ぐためにパージガスラインが設けられ、未反応原料ガスと生成物である少量のアンモニアとともにイナート成分が合成ループから抜き出されてもよい。パージガスの抜出は、二次回収時のセパレータ気相側、回収後に合流させたアンモニアの気相側、フラッシュドラムの蒸発部などから行われる。パージガス中にはアンモニアが含まれているため、アンモニアを吸収するためにアンモニアスクラバーを使用してもよい。アンモニアスクラバーは水などの液体を吸収液として、アンモニアを液中に捕集して分離する。通常、吸収液には工業用水が使用されるが、アンモニアが脱離しないようにするため硫酸など酸成分が含まれていてもよい。またアンモニア含有水の処理設備(中和など)を必要に応じて行ってもよい。またアンモニアスクラバーのオーバーヘッドガスには、窒素、水素およびイナート成分が含まれるが、これらを脱水するための脱水設備とその再生設備を設けていてもよい。 Since the unreacted raw material gas component contains an inert component such as argon or methane, the inert component may be concentrated to the unreacted raw material gas component after recovering the ammonia residue by recycling. If the inert component is contained, the partial pressure of the raw material may be lowered during the ammonia synthesis, and the reactivity may be lowered. In order to prevent this, a purge gas line may be provided, and the inert component may be withdrawn from the synthesis loop together with unreacted raw material gas and a small amount of ammonia as a product. Extraction of the purge gas is performed from the separator gas phase side at the time of secondary recovery, the gas phase side of ammonia merged after recovery, the evaporation portion of the flash drum, or the like. As the purge gas contains ammonia, an ammonia scrubber may be used to absorb the ammonia. The ammonia scrubber uses a liquid such as water as an absorbing liquid to collect and separate ammonia in the liquid. Usually, industrial water is used as the absorbing solution, but an acid component such as sulfuric acid may be contained to prevent the desorption of ammonia. Moreover, you may carry out the processing equipment (neutralization etc.) of ammonia containing water as needed. In addition, although the overhead gas of the ammonia scrubber contains nitrogen, hydrogen and an inert component, a dewatering facility for dewatering these and a regenerating facility therefor may be provided.
 アンモニアスクラバーのオーバーヘッドガスは、膜分離や深冷分離で、さらに分別して、原料ガスとしてリサイクルしたり、またイナート成分は燃料として使用することもできる。
原料ガスの分離・回収
 さらに図2に示されるように、2段階の冷却工程を経て、アンモニアと分離された未反応原料ガスを更に冷却して、イナート成分と原料ガス成分(水素および窒素)を分離させてもよい。
The overhead gas of the ammonia scrubber can be further separated by membrane separation or cryogenic separation and recycled as a source gas, or the inert component can be used as a fuel.
Separation and Recovery of Raw Material Gas As shown in FIG. 2, the unreacted raw material gas separated from ammonia is further cooled through a two-stage cooling process to obtain inert components and raw material gas components (hydrogen and nitrogen). It may be separated.
 具体的には二次冷却のアンモニアセパレータのオーバーヘッドガスを、さらに断熱膨張手段または外部冷熱によって低温下にする。このうち、断熱膨張手段としてエクスパンダーを用いることが、より低温下を達成できるために好ましい。 Specifically, the overhead gas of the secondary cooling ammonia separator is further brought to a low temperature by adiabatic expansion means or external cooling. Among these, it is preferable to use an expander as the adiabatic expansion means because lower temperatures can be achieved.
 分離されたオーバーヘッドガスはコールドボックス内に設置された複数パスの熱交換器によりさらに冷却され、水素と他のイナート成分とを分離する水素セパレーションカラム(またはドラム)に供給される。水素セパレーションカラムのボトム液はポンプによりループ圧力まで昇圧される。その一部はリフラックスとして水素セパレーションカラムのトップに供給され、水素セパレーションカラムのボトムに含まれている水素を気相側へ、気相に含まれている窒素、メタン、アルゴンを液相に回収することも可能である。水素は原料ガスとしてリサイクルされ、所定の温度および圧力に調整される。 The separated overhead gas is further cooled by a multi-pass heat exchanger installed in a cold box and supplied to a hydrogen separation column (or drum) that separates hydrogen and other inert components. The bottom solution of the hydrogen separation column is pumped up to the loop pressure. Part of it is supplied to the top of the hydrogen separation column as reflux, and the hydrogen contained in the bottom of the hydrogen separation column is recovered to the gas phase, and nitrogen, methane, and argon contained in the gas phase are recovered in the liquid phase It is also possible. Hydrogen is recycled as a source gas and adjusted to a predetermined temperature and pressure.
 ループ圧力まで昇圧されたメタン、アルゴンを含む液体窒素はコールドボックス内に設置された複数パスの熱交換器によってすべて気化するまで冷熱を回収される。気化したガスの一部は抜き出されて、さらにエクスパンダーによって一部液化するように膨張され、メタン、アルゴン濃度の高い液体と窒素濃度の高い気体とに分離させ、低圧セパレータによって分別される。低温の気体(窒素)と、液体(メタン、アルゴン)はそれぞれ再びコールドボックス内の複数パスの熱交換器に送られ、冷熱を回収される。 The cold heat is recovered until all the methane, which has been pressurized to the loop pressure, liquid nitrogen containing argon is vaporized by the multi-pass heat exchanger installed in the cold box. A portion of the vaporized gas is withdrawn and further expanded to be partially liquefied by an expander, separated into a methane / high argon concentration liquid and a high nitrogen concentration gas, and separated by a low pressure separator. The low temperature gas (nitrogen) and the liquid (methane, argon) are again sent to the multipass heat exchanger in the cold box to recover the cold.
 低圧セパレータにて液相側に回収された高濃度のメタンとアルゴンを含むガスはループ外にパージされてもよい。 The gas containing high concentration of methane and argon recovered to the liquid phase side by the low pressure separator may be purged out of the loop.
 それ以外のガスは、アンモニアフラッシュドラム、アンモニアチラーのフラッシュガスと混合されてブースティングコンプレッサーによって原料ガス圧力まで昇圧され、原料ガスコンプレッサー、リサイクルコンプレッサーによってループ内に返される。 The other gases are mixed with the ammonia flash drum and the ammonia chiller flash gas, boosted to the source gas pressure by the boosting compressor, and returned to the loop by the source gas compressor and the recycle compressor.
 ほぼ水素で構成される水素セパレーションカラムのオーバーヘッドガスはコールドボックス内に設置された複数パスの熱交換器によって冷熱が回収され、ブースティングコンプレッサー等によりループ圧力まで昇圧される。リサイクルコンプレッサーによってループ内に戻される。 The overhead gas of the hydrogen separation column, which is substantially composed of hydrogen, has its cold heat recovered by a multipass heat exchanger installed in a cold box, and is boosted to a loop pressure by a boosting compressor or the like. It is returned to the loop by the recycle compressor.
 図2の方法によれば、極低温まで冷却することにより窒素を液化させることで、ポンプによる昇圧が可能になり、コンプレッサーでの昇圧に比べ大きなエネルギー削減が可能である。未反応原料ガスから、原料ガス成分とイナート成分を分別できるので、パージガスとして、排出する必要がなくなるか、あるいはその量が少なくなる。このため、アンモニアスクラバーを使用しなくてもよいか、使用頻度を少なくすることができる。 According to the method of FIG. 2, by liquefying nitrogen by cooling to a cryogenic temperature, pressure increase by a pump becomes possible, and energy can be largely reduced as compared with pressure increase by a compressor. Since the source gas component and the inert component can be separated from the unreacted source gas, it is not necessary to discharge the purge gas, or the amount thereof is reduced. Therefore, the ammonia scrubber may not be used or may be used less frequently.
 このため工業用水のメークアップが不要になるか少なくできるので、アンモニア含有水の処理が不要になったり、処理量を少なくできる。さらにアンモニアスクラバーのオーバーヘッドガスの脱水設備とその再生設備も不要になるか小規模とすることもできる。さらに、深冷分離によりアンモニアプロダクトのロスをゼロにすることが可能であり、水素のロスも原料に使用した水素の0.1重量%以下に抑えることが可能である。
実施例
 たとえば図1に示す回収方法では以下のような運転条件を採用することができる。
Therefore, it is possible to eliminate or reduce the make-up of the industrial water, so that the treatment of the ammonia-containing water becomes unnecessary and the amount of treatment can be reduced. Furthermore, it is possible to eliminate the need for dehydration equipment for the ammonia scrubber overhead gas and its regeneration equipment, or to reduce the size of the equipment. Furthermore, it is possible to make the loss of the ammonia product zero by cryogenic separation, and the loss of hydrogen can also be suppressed to 0.1 wt% or less of the hydrogen used for the raw material.
In the recovery method shown in the embodiment, for example, FIG. 1, the following operating conditions can be adopted.
 原料ガスである水素ガスと窒素ガスを原料ガスコンプレッサーによって50~200barGのループ圧力まで昇圧する。さらにアンモニアセパレータのオーバーヘッドから送られてきたリサイクルガスと混合された後、リサイクルコンプレッサーによって反応圧力まで昇圧される。 The source gases, hydrogen gas and nitrogen gas, are pressurized by the source gas compressor to a loop pressure of 50 to 200 barG. Furthermore, after being mixed with the recycle gas sent from the overhead of the ammonia separator, the pressure is raised to the reaction pressure by the recycle compressor.
 昇圧された合成ガスは、高温の反応器出口ガスによって150℃~250℃まで予熱され反応器に供給される。合成反応は300℃~500℃で行われる。 The pressurized synthesis gas is preheated to 150 ° C. to 250 ° C. by the hot reactor outlet gas and supplied to the reactor. The synthesis reaction is carried out at 300 ° C. to 500 ° C.
 400℃~500℃の反応器出口ガスはスチーム製造等による熱回収を行った後、冷却水やチラー水によって20℃~50℃まで冷却される。 The reactor outlet gas at 400 ° C. to 500 ° C. is subjected to heat recovery by steam production or the like, and then cooled to 20 ° C. to 50 ° C. by cooling water or chiller water.
 さらにアンモニアチラーにより-10℃~-20℃まで冷却を行い(一次回収)、反応器出口ガスに含まれるアンモニアのうち80~90重量%のアンモニアを液化し、アンモニアセパレータにて分離させる。 Further, the reactor is cooled to −10 ° C. to −20 ° C. by an ammonia chiller (primary recovery), 80 to 90% by weight of ammonia contained in the reactor outlet gas is liquefied and separated by an ammonia separator.
 分離されたアンモニアはリキッドエクスパンダーまたはリキッドエクスパンジョンバルブによって15~20barGまで減圧されアンモニアフラッシュドラムにて微量に溶け込んでいる合成ガス成分を除去したのち、常圧のアンモニアプロダクトドラムに供給される。 The separated ammonia is depressurized to 15 to 20 bar G by a liquid expander or liquid expansion valve, and after removing a small amount of synthesis gas components dissolved by an ammonia flash drum, it is supplied to an ammonia product drum under normal pressure.
 アンモニアセパレータのオーバーヘッドガスはコールドボックス内に設置された複数パスの熱交換器により-80℃~-130℃まで冷却され(二次回収)、反応器出口ガスに含まれるアンモニアのうち99.9重量%以上のアンモニアが二つ目のアンモニアセパレータにて液化分離される。回収されたアンモニアは一次回収のアンモニアと合流されてアンモニアフラッシュドラムに供給される。 The overhead gas of the ammonia separator is cooled to -80 ° C to -130 ° C by the multiple pass heat exchanger installed in the cold box (second recovery), and 99.9 weight of ammonia contained in the reactor outlet gas % Or more of ammonia is liquefied and separated in the second ammonia separator. The recovered ammonia is combined with the primary recovery ammonia and supplied to the ammonia flash drum.
 図1の回収方法及び回収装置は、既設のアンモニアプラントに対して、本プロセスを適用するだけで、10~15重量%の増産が可能になり、低圧ドラム、エクスパンダーコンプレッサー(またはエクスパンダージェネレータとコンプレッサーの組み合わせ)または追加冷凍設備のみの増設であり追加装置数が少なくて済む。 The recovery method and recovery system shown in Fig. 1 can increase production by 10 to 15% by weight simply by applying this process to an existing ammonia plant, and can use a low-pressure drum, expander compressor (or expander generator and so on). Only the combination of compressors) or additional refrigeration equipment can be added, and the number of additional equipment can be reduced.
 また増設部分と既設部分との取り合いが少なく、運転を最大限継続させながら増強工事を行うことが出来るため、増強期間中の生産停止に伴う機会損失を少なくすることが可能である。さらにアンモニア合成反応器の入口ガスのアンモニア濃度を下げることで大きな反応速度で合成を行うことが出来るため、反応器サイズを変えることなく増産できる。増産に伴う反応熱分については断熱反応器の場合は反応器入口温度を調整するか、除熱装置を追加して対応する。 In addition, since there is little interaction between the extension part and the existing part, and the reinforcement work can be performed while continuing the operation to the maximum, it is possible to reduce the opportunity loss accompanying the production stop during the reinforcement period. Furthermore, since the synthesis can be performed at a large reaction rate by lowering the ammonia concentration of the inlet gas of the ammonia synthesis reactor, the production can be increased without changing the reactor size. In the case of the adiabatic reactor, the reaction heat content associated with the increase in production is adjusted by adjusting the reactor inlet temperature or adding a heat removal device.

Claims (10)

  1.  窒素含有ガスと水素を反応させて、得られた生成ガス中のアンモニアを
     -10~-20℃の温度に冷却して一次回収したのち、
     一次回収で未回収のアンモニアを、-80~-130℃に冷却して二次回収して、
     生成ガス中の98重量%以上のアンモニアを回収することを特徴とする
    アンモニアの回収方法。
    The ammonia in the resulting product gas is cooled to a temperature of −10 to −20 ° C. and primarily recovered by reacting nitrogen-containing gas with hydrogen,
    Unrecovered ammonia from primary recovery is secondarily recovered by cooling to -80 to -130 ° C.
    A method of recovering ammonia, comprising recovering 98 wt% or more of ammonia in a product gas.
  2.  二次回収時の冷却に、断熱膨張による冷熱を使用することを特徴とする請求項1に記載のアンモニアの回収方法。 2. The method for recovering ammonia according to claim 1, wherein cold energy by adiabatic expansion is used for cooling at the time of secondary recovery.
  3.  断熱膨張による冷熱手段が、エクスパンダージェネレータ、 エクスパンダーコンプレッサー、ジュールトムソンバルブから選ばれる少なくとも1種であることを特徴とする請求項2に記載のアンモニアの回収方法。 The method for recovering ammonia according to claim 2, wherein the cooling means by adiabatic expansion is at least one selected from an expander generator, an expander compressor, and a Joule Thomson valve.
  4.  二次回収後、アンモニアと分離された残留ガス成分を、さらに、断熱膨張または外部冷熱による冷熱を使用して、水素および窒素の原料成分と、不活性ガス成分とに分別し、原料成分を再利用することを特徴とする請求項1~3のいずれかに記載のアンモニアの回収方法。 After secondary recovery, residual gas components separated from ammonia are further separated into hydrogen and nitrogen source components and inert gas components using adiabatic expansion or cold energy by external cooling, and the source components are re-used. The method for recovering ammonia according to any one of claims 1 to 3, wherein the method is used.
  5.  アンモニア合成反応器と、アンモニアの回収装置と、回収アンモニアの分離装置を備え、
     アンモニア回収装置が、アンモニアを冷媒とする-10~-20℃の温度に冷却する一次冷却器と、断熱膨張または外部冷熱を使用して-80~-130℃に冷却する二次冷却器とから構成されることを特徴とするアンモニアの回収装置。
    An ammonia synthesis reactor, an ammonia recovery device, and a recovery ammonia separation device
    Ammonia recovery unit from a primary cooler that cools to a temperature of -10 to -20 ° C with ammonia as a refrigerant, and a secondary cooler that cools to -80 to -130 ° C using adiabatic expansion or external cooling An ammonia recovery device characterized by comprising.
  6.  二次冷却器が、エクスパンダージェネレータ、エクスパンダーコンプレッサー、ジュールトムソンバルブから選ばれる膨張装置による冷却器であることを特徴とする請求項5に記載のアンモニアの回収装置。 The ammonia recovery device according to claim 5, wherein the secondary cooler is a cooler with an expansion device selected from an expander generator, an expander compressor, and a Joule Thomson valve.
  7.  分離装置で分離された未反応原料ガスをアンモニア合成反応器に送るための機構を備えることを特徴とする請求項5または6に記載のアンモニア回収装置。 The ammonia recovery device according to claim 5 or 6, further comprising a mechanism for sending the unreacted raw material gas separated by the separation device to the ammonia synthesis reactor.
  8.  冷媒として使用したアンモニア、および分離装置および回収アンモニアの貯蔵・輸送装置から気相に移ったアンモニアおよび未反応ガスを回収する回収機構を備えることを特徴とする請求項5~7のいずれかに記載のアンモニア回収装置。 8. The method according to any one of claims 5 to 7, further comprising: a recovery mechanism for recovering ammonia used as a refrigerant, and ammonia and non-reacted gas transferred to the gas phase from the separation device and the storage and transport device of recovered ammonia. Ammonia recovery equipment.
  9.  分離装置で分離された未反応原料ガスからイナート成分と原料ガス成分とを分離する分離機構、および分離した原料ガス成分をアンモニア合成反応器に送る機構を備えることを特徴とする請求項5~8のいずれかに記載のアンモニア回収装置。 9. A separation mechanism for separating an inert component and a raw material gas component from unreacted raw material gas separated by a separation device, and a mechanism for feeding the separated raw material gas component to an ammonia synthesis reactor. The ammonia recovery device according to any one of the above.
  10.  未反応ガスを液化して昇圧する機構を備えることを特徴とする請求項5~9のいずれかに記載のアンモニア回収装置。 The ammonia recovery apparatus according to any one of claims 5 to 9, further comprising a mechanism for liquefying and pressurizing the unreacted gas.
PCT/JP2017/024951 2017-07-07 2017-07-07 Ammonia recovery method and recovery device WO2019008741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024951 WO2019008741A1 (en) 2017-07-07 2017-07-07 Ammonia recovery method and recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024951 WO2019008741A1 (en) 2017-07-07 2017-07-07 Ammonia recovery method and recovery device

Publications (1)

Publication Number Publication Date
WO2019008741A1 true WO2019008741A1 (en) 2019-01-10

Family

ID=64950794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024951 WO2019008741A1 (en) 2017-07-07 2017-07-07 Ammonia recovery method and recovery device

Country Status (1)

Country Link
WO (1) WO2019008741A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304283A (en) * 1998-04-20 1999-11-05 Chiyoda Corp Refrigerating system in ammonia-synthesizing apparatus
WO2011124268A1 (en) * 2010-04-07 2011-10-13 Ammonia Casale Sa Hydrogen and nitrogen recovery from ammonia purge gas
JP2013163599A (en) * 2011-03-31 2013-08-22 Sumitomo Seika Chem Co Ltd Method for purifying ammonia and ammonia purification system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304283A (en) * 1998-04-20 1999-11-05 Chiyoda Corp Refrigerating system in ammonia-synthesizing apparatus
WO2011124268A1 (en) * 2010-04-07 2011-10-13 Ammonia Casale Sa Hydrogen and nitrogen recovery from ammonia purge gas
JP2013163599A (en) * 2011-03-31 2013-08-22 Sumitomo Seika Chem Co Ltd Method for purifying ammonia and ammonia purification system

Similar Documents

Publication Publication Date Title
US10597301B2 (en) Ammonia production method
JP6653388B2 (en) Method of synthesizing urea by supplying carbon dioxide
US3349571A (en) Removal of carbon dioxide from synthesis gas using spearated products to cool external refrigeration cycle
US7192468B2 (en) Configurations and method for improved gas removal
US10816262B2 (en) Production equipment and production method of liquefied hydrogen and liquefied natural gas
JP5756180B2 (en) Method and system for producing high purity hydrogen chloride
CN106595221B (en) Oxygen generation system and oxygen generation method
JP5835851B2 (en) Ethylene expansion for cryogenic refrigeration in polyethylene vent recovery
CN106000000B (en) A kind of the multistage flash distillation parsing separator and method of synthesis ammonia decarburization absorption tower bottom rich solution
US6173585B1 (en) Process for the production of carbon monoxide
WO2017104021A1 (en) Method for producing ammonia
CN112374960A (en) System and process for recovering ethylene from industrial tail gas
SU1064863A3 (en) Process for producing urea
CN103925773B (en) A kind of synthetic ammonia tailgas prepares liquefied natural gas and the method for nitrogen hydrogen
JP2000159519A (en) Plant and method for producing ammonia and urea
JP2018090436A (en) Recovery method of ammonia
WO2019008741A1 (en) Ammonia recovery method and recovery device
CN110736302A (en) For cryogenic separation of CO/CH-containing gas4/N2/H2Apparatus and method for multi-component synthesis gas
CN111004082A (en) System and method for removing carbon dioxide from C2 fraction
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP3326536B2 (en) Method and apparatus for liquefying nitrogen gas
JPH11304283A (en) Refrigerating system in ammonia-synthesizing apparatus
US20170350648A1 (en) Process for liquefying carbon dioxide resulting from a natural gas stream
CN220478148U (en) Comprehensive utilization system for hydrogen in cyclohexanone device by esterification method
JP6703127B2 (en) Integrated synthesis of ammonia and urea

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2020)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17916472

Country of ref document: EP

Kind code of ref document: A1