WO2019008737A1 - 内視鏡用トレーニングシステム - Google Patents

内視鏡用トレーニングシステム Download PDF

Info

Publication number
WO2019008737A1
WO2019008737A1 PCT/JP2017/024938 JP2017024938W WO2019008737A1 WO 2019008737 A1 WO2019008737 A1 WO 2019008737A1 JP 2017024938 W JP2017024938 W JP 2017024938W WO 2019008737 A1 WO2019008737 A1 WO 2019008737A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
endoscope
treatment tool
operation input
interference
Prior art date
Application number
PCT/JP2017/024938
Other languages
English (en)
French (fr)
Inventor
智也 酒井
勝 柳原
岸 宏亮
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/024938 priority Critical patent/WO2019008737A1/ja
Publication of WO2019008737A1 publication Critical patent/WO2019008737A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to a training system for endoscopes.
  • a biopsy or procedure (hereinafter referred to simply as a biopsy) using an endoscope and an endoscope system in which a treatment tool for an endoscope is inserted through a treatment tool insertion channel provided in an endoscope insertion portion
  • the procedure is often described).
  • the endoscope insertion portion is inserted to a target site in the patient's body, the endoscope treatment tool is inserted into the treatment tool insertion channel, and the endoscope insertion portion is used by being protruded from the tip of the endoscope insertion portion .
  • the operator operates each operation unit of the endoscope and the endoscopic treatment tool while confirming the image of the target site imaged by the imaging unit of the endoscope, and the endoscope and the endoscope within the patient's body are obtained. Operate the treatment tool and perform the procedure.
  • an endoscope operator who operates an endoscope and a treatment tool operator who operates a treatment tool for endoscope may perform operations jointly.
  • the endoscope operator operates the operation unit of the endoscope to perform an operation of focusing the endoscope on the treatment target site and an operation of enlarging or reducing the field of view of the endoscope.
  • the operator operates the first input unit to move the distal end portion of the endoscopic treatment tool, move the bending operation, and operate the treatment unit.
  • Patent Document 1 discloses a medical system provided with medical devices operable by a plurality of operators for the purpose of acquiring advanced skill of the operator.
  • the determination unit compares the detection value of one operator's operation with a threshold stored in advance to determine the appropriateness of one operator's operation, and makes the determination. Display the result on the detection monitor. The other operator operates the holding operation lever according to the determination result displayed on the detection monitor.
  • a signal for giving advice for the operation of one of the operators or a switching signal for limiting the operation of one of the operators is output and displayed on the detection monitor.
  • One operator performs an operation based on the advice inputted by the other operator. With such an endoscope system, training for improving the skill of the operator is performed.
  • Patent Document 1 is a system for an inexperienced doctor to acquire skills under the supervision of a skilled doctor, and the evaluation results for the operation of the inexperienced doctor are fed back. In other words, it aims at the improvement of the technology to the single operation of the operator.
  • a plurality of operators perform the operation of the device which constitutes the endoscope system, cooperation of the operations between the operators becomes important. Therefore, there has been a demand for a training system that improves the technology of cooperative operation between a plurality of operators.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a training system for endoscopes, which improves the technique of cooperative operation between a plurality of operators.
  • An endoscope training system is displayed on a display that displays a virtual treatment target site and a treatment tool for an endoscope as a virtual captured image of an endoscope, and the display
  • a treatment tool operation input unit for performing an operation input to operate the endoscope treatment tool
  • an endoscope operation input unit for performing an operation input for changing the imaging field of view of the virtual captured image displayed on the display
  • the treatment tool operation input unit and the endoscope operation input unit based on an operation signal based on the operation input of the treatment tool operation input unit and an operation signal based on the operation input of the endoscope operation input unit
  • a control unit that calculates and outputs an evaluation of a cooperative operation with the control unit.
  • a second aspect of the present invention is the training system for an endoscope according to the first aspect, wherein the control unit is an operation signal based on the operation input of the treatment instrument operation input unit or the endoscope operation input unit And a single evaluation calculation unit that calculates and outputs an operation evaluation of the treatment instrument operation input unit or the endoscope operation input unit based on the operation signal based on the operation input of
  • the control unit controls the distal end of the endoscope treatment tool based on the operation input of the treatment tool operation input unit.
  • a treatment tool position and posture calculation unit that calculates a position or posture, and an endoscope position and posture calculation that calculates and outputs a position or a posture of an imaging unit of the endoscope based on the operation input of the endoscope operation input unit Unit, the position or posture of the distal end of the endoscopic treatment tool calculated by the treatment tool position and posture calculation unit, and the position of the imaging unit of the endoscope calculated by the endoscope position and posture calculation unit
  • the relative position between the tip of the endoscope treatment tool and the imaging unit of the endoscope is calculated based on the posture, and the evaluation of the cooperative operation is calculated and output in comparison with a threshold stored in advance.
  • a cooperative evaluation calculation unit may be provided.
  • the control unit is configured to position the endoscope treatment tool based on the operation input of the treatment tool operation input unit.
  • a treatment tool position and posture calculation unit that calculates a posture; an endoscope position and posture calculation unit that calculates and outputs a position and a posture of an insertion portion of the endoscope based on the operation input of the endoscope operation input unit;
  • an interference determination unit configured to determine the presence or absence of interference between the endoscopic treatment tool and the insertion unit.
  • the interference determination unit determines that there is interference between the endoscopic treatment tool and the insertion portion.
  • the control unit may output an interference notification signal indicating interference between the endoscopic treatment tool and the insertion unit.
  • a sixth aspect of the present invention is the training system for an endoscope according to the fifth aspect, further comprising: an interference notification unit that notifies interference between the endoscope treatment tool and the insertion portion based on the interference notification signal. You may have.
  • a seventh aspect of the present invention is the training system for an endoscope according to the fifth aspect, wherein the display device is configured to measure an interference portion between the endoscope treatment tool and the insertion portion based on the interference notification signal. You may display it.
  • the training system for endoscopes of the present invention it is possible to provide a system for improving the technique of cooperative operation between a plurality of operators.
  • FIGS. 1 and 3 are functional block diagrams of an endoscope training system (hereinafter referred to as a “training system”) 100 according to an embodiment.
  • the training system 100 includes a treatment tool input device 2, an endoscope input device 3, a control device 1, monitors (displays) 41 and 42, and an interference notification unit 5.
  • the training system 100 is a system for virtually operating a biopsy or surgery on a monitor using an endoscope and an endoscope treatment tool. Therefore, the treatment tool input device 2 and the endoscope input device 3 are members for practice, and unlike the real endoscope treatment tool and the endoscope, they do not have the operated portion.
  • the treatment tool input device 2 is a practice operation device that simulates the configuration of the operation unit of a real endoscope treatment tool.
  • the treatment tool input device 2 includes a treatment tool operation input unit (hereinafter, referred to as “first input unit”) 20 and a first monitor (display unit) 41.
  • the first input unit 20 can adopt various known mechanisms. For example, a track ball, a touch panel, a joystick, a master arm or the like, or a combination of a button, a lever or the like with these as appropriate can be exemplified.
  • the first input unit 20 is provided to perform operation input for operating the endoscope treatment tool displayed on the display.
  • the first input unit 20 is configured to be able to perform the same operation as driving a soft or rigid treatment tool.
  • the first input unit 20 supports an operation for bending a plurality of multi-degree-of-freedom joints provided on a bending unit of a real treatment tool, an operation for advancing and retracting the treatment unit, and an operation for opening and closing the treatment unit and power feeding. Operation input is configured to be possible.
  • the first input unit 20 includes a first detector 29 that detects an operation input amount, and an operation signal is generated according to the detection result of the operation input amount by the first detector 29.
  • the first input unit 20 is configured to output the generated operation signal to the control device 1.
  • the first detector 29 is, for example, an encoder or a sensor, and detects the movement angle, the movement distance, the movement speed, and the like of various mechanisms constituting the first input unit 20.
  • the first monitor 41 of the treatment tool input device 2 is provided in the vicinity of the first input unit 20, and the first user U1 checks the image of the treatment tool displayed on the first monitor 41 while the first input unit Can operate 20.
  • a virtual treatment target site hereinafter, referred to as a "treatment target site”
  • an endoscope treatment tool are displayed as a virtual captured image of the endoscope.
  • the endoscope input device 3 is provided to perform an operation input for changing the imaging field of view of the virtual captured image displayed on each of the monitors 41 and 42.
  • the endoscope input device 3 is an endoscope operation input unit (hereinafter referred to as a "second input unit") 30, 31 which operates in the same manner as an operation unit of a real endoscope, and a real endoscope
  • the endoscope insertion portion 34 having the same configuration as that of the insertion portion, and the housing 32 are provided.
  • the second input units 30 and 31 include a bending operation input unit, an illumination switch, a viewpoint change switch, and the like.
  • the second input parts 30 and 31 have the same size and weight as the operation part of the real endoscope apparatus.
  • the length of the endoscope insertion portion 34 is shorter than that of the real endoscope insertion portion.
  • the distal end portion 34 a of the endoscope insertion portion 34 is inserted into the housing 32, and can be advanced and retracted with respect to the housing 32 and rotatably supported around the longitudinal axis of the endoscope insertion portion 34.
  • the housing 32 is provided with a second detector 33 that detects the amount of forward and backward movement and the amount of rotation of the endoscope insertion unit 34.
  • the second detector 33 is, for example, an encoder or a sensor.
  • the second detector 33 detects the amount of forward and backward movement, the amount of rotation, the operation time, and the like of the endoscope insertion unit 34 in accordance with the operation input to the second input units 30 and 31.
  • the housing 32 is provided with a signal output unit 37, and the signal output unit 37 and the control device 1 are connected via a communication cable.
  • the signal output unit 37 is configured to generate an operation signal based on the detection result of the second detector 33 and to transmit the operation signal to the control device 1.
  • a second monitor (display unit) 42 is provided in the vicinity of the endoscope input device 3.
  • the configuration of the second monitor 42 has the same configuration as the first monitor 41 of the treatment tool input device 2.
  • FIG. 1 shows an example in which the treatment tool input device 2 is provided separately from the endoscope input device 3.
  • the training system 100 according to the present invention is not limited to this configuration.
  • the treatment tool input device 2 and the endoscope input device 3 may be arranged close to each other.
  • the control device 1 includes a first single evaluation calculation unit (a single evaluation calculation unit for a treatment tool, hereinafter referred to as a “first single evaluation unit”) 60, and a second single evaluation calculation unit (a single evaluation of an endoscope) Calculation unit (hereinafter referred to as “second independent evaluation unit”) 61, treatment tool position and posture calculation unit 62, endoscope position and posture calculation unit 63, cooperative operation evaluation calculation unit (hereinafter, "cooperation evaluation” Section), an interference determination section 66, a display signal generation section 65, a first comprehensive evaluation calculation section 68, and a second comprehensive evaluation calculation section 69.
  • the block diagram of the 2nd comprehensive evaluation calculation parts 68 and 69 is shown.
  • the first and second independent evaluation units 60 and 61, the treatment tool position and posture calculation unit 62, the endoscope position and posture calculation unit 63, the cooperation evaluation unit 64, and the interference determination unit 66 display signal generation unit 65
  • the first and second comprehensive evaluation calculation units 68 and 69 each include an operation unit 71 such as a CPU, a volatile storage unit 70, a non-volatile storage unit 74, and an FPGA (field-programmable gate array) 72. And a plant model 73.
  • a RAM or the like can be used as the volatile storage unit 70.
  • a flash memory or the like can be used as the non-volatile storage unit 74.
  • the FPGA 72 is a gate array capable of updating the contents of the program.
  • the calculation unit 71 is connected to the volatile storage unit 70, the non-volatile storage unit 74, and the FPGA 72.
  • the plant model 73 is data obtained by physically modeling structures, dimensions, operation modes, and the like of the virtual operated parts, virtual drive parts, and virtual drive part drivers of the endoscope and the endoscope treatment tool for an endoscope. It is stored.
  • the FPGA 72 stores operation signal generation data for generating an operation signal of the virtual drive unit driver based on the operation signal output from the first input unit 20 or the second input units 30 and 31.
  • the operation signal generation data includes a signal generation program for generating an operation signal, control parameters, and the like.
  • the treatment tool position / posture calculation unit 62 executes an operation simulation with reference to the operation signal output from the first input unit 20 and the data stored in the plant model 73 and the FPGA 72. By performing the motion simulation, the position and posture of the treatment tool corresponding to the operation signal are calculated. Furthermore, the treatment tool position / posture calculation unit 62 also calculates movement speeds, accelerations, and jerks of the treatment tool arms 21 and 22 by execution of the motion simulation.
  • the treatment tool position and posture information calculated by the treatment tool position and posture calculation unit 62 is transmitted to the display signal generation unit 65, the first single evaluation unit 60, and the cooperation evaluation unit 64.
  • the calculated movement speed, acceleration, and jerk data of the treatment tool arms 21 and 22 are transmitted to the first independent evaluation unit 60 and the cooperation evaluation unit 64.
  • the endoscope position and orientation calculation unit 63 executes operation simulation with reference to the operation signals output from the second input units 30 and 31 and the data stored in the plant model 73 and the FPGA 72. By executing the operation simulation, the position and attitude of the driven part of the endoscope corresponding to the operation signal based on the operation input of the second input unit 30 or 31 are calculated. Furthermore, the endoscope position and orientation calculation unit 63 calculates the distance between the imaging unit of the endoscope and the treatment target site based on the received operation signal. That is, the distance from the position of the virtual imaging unit of the endoscope to the position of the treatment target site set in advance is calculated based on the operation simulation execution result. The calculated endoscope position and orientation information is transmitted to the display signal generation unit 65, the second independent evaluation unit 61, and the linkage evaluation unit 64.
  • the display signal generation unit 65 generates an image display signal to be displayed on the first monitor 41 and the second monitor 42 based on the execution result of the operation simulation and the image generation information stored in the plant model 73.
  • the generated image display signal is transmitted to each monitor 41 and 42 and displayed.
  • the display signal generation unit 65 sequentially generates and outputs a new image display signal when the operation signal is received.
  • an image is displayed as if the endoscope and the treatment tool are operating in conjunction with the operation input input from the first input unit 20 and the second input units 30 and 31. Be done. Therefore, when each user U1 and U2 operates the first input unit 20 and the second input units 30 and 31 while checking the monitor, a feeling as if the endoscope and treatment tool are actually operated can be obtained. .
  • an image display signal that simulates the movement of the tissue of the treatment target site may be generated and sequentially output.
  • the display signal generation unit 65 displays the presence or absence of an interference, an evaluation result, and the like described later on each monitor 41, 42 based on output signals from an independent evaluation unit, a cooperation evaluation unit 64, and an interference determination unit 66 described later. May be configured to generate and output an image signal.
  • the first single evaluation unit 60 calculates and outputs an operation evaluation of the first input unit 20.
  • the plant model 73 of the first single evaluation unit 60 stores the appropriate operation data and the threshold value of the appropriate operation data regarding the appropriate operation of the treatment tool.
  • the first independent evaluation unit 60 compares the operation simulation execution result with the appropriate operation data and the threshold value stored in the plant model 73 of the first independent evaluation unit 60. The first independent evaluation unit 60 determines that the operation of the first user U1 is appropriate when the comparison result is within the threshold. On the other hand, when the result of the operation simulation exceeds the threshold as a result of the comparison, it is determined that the operation of the first user U1 is inappropriate.
  • FIG. 4 is a view showing an example of display screens of the first monitor 41 and the second monitor 42 in the present embodiment.
  • FIG. 5 is a graph showing an example of the evaluation method of the single operation of the first input unit 20 in the present embodiment.
  • each of the monitors 41 and 42 is an image imitating an image captured by the imaging unit 36 of the endoscope, and an image including the region to be treated and the treatment tools 21, 22, 23, 24. Is displayed.
  • the treatment tools 21, 22, 23, 24 displayed on the monitors 41, 42 are configured to move in response to the operation input of the first input unit 20.
  • an arm 20 having a multi-degree-of-freedom joint is provided as a first input unit, and a three-dimensional motion of the arm 20 is input as an operation signal by an operation input to the arm 20 of the first user U1.
  • the input operation signal is transmitted to the control device 1.
  • the treatment tool position / posture calculation unit 62 receives the operation signal, and refers to the data of the plant model 73 to execute operation simulation of the virtual drive unit driver, the virtual drive unit, and the virtual operated unit.
  • the treatment tool arms 21 and 22 on each of the monitors 41 and 42 are displayed to perform operations similar to the three-dimensional operation of the arm 20 based on the result of the operation simulation execution.
  • the treatment tool position and posture calculation unit 62 calculates the velocity, acceleration, and jerk when the treatment arms 21 and 22 move in addition to the position and posture information of the treatment arms 21 and 22.
  • the first independent evaluation unit 60 that receives the information on the velocity, acceleration, and jerk at the time of movement of the treatment arms 21 and 22 by the treatment tool position and posture calculation unit 62 determines the velocity and acceleration at the movement of the treatment arms 21 and 22 , To calculate the jerk.
  • a threshold value s of the movement speed of the treatment tool is set, and as shown in FIG. 5, the number mt of movement speeds of the treatment tool moving faster than the threshold value s is calculated. A threshold is also set for this number mt.
  • the treatment tools 21, 22, 23, 24 for one minute are more than the threshold s, the treatment tools 21, 22, 23, 24 are frequently moved at high speed.
  • the evaluation is deducted because there is a high risk that the treatment tool contacts the tissue T around the treatment tool against the intention of the user.
  • the second independent evaluation unit 61 calculates and outputs an operation evaluation of the endoscope operation unit.
  • the plant model 73 of the second independent evaluation unit 61 stores threshold values of the appropriate operation data and the appropriate operation data regarding the appropriate operation of the endoscope.
  • the second independent evaluation unit 61 compares the operation simulation execution result with the appropriate operation data and the threshold value stored in the plant model 73 of the second independent evaluation unit 61. When the comparison result is within the threshold, the second independent evaluation unit 61 determines that the operation of the second user U2 is appropriate. On the other hand, when the result of the operation simulation exceeds the threshold as a result of the comparison, it is determined that the operation of the second user U2 is inappropriate.
  • FIG. 6 is a view showing an example of the display screen of each of the monitors 41 and 42 in the present embodiment.
  • FIG. 7 is a graph showing an example of the evaluation method of the single operation of the second input unit 30, 31 in the present embodiment.
  • an endoscope is assumed in which a long-axis member 35 having an imaging unit 36 at its tip is provided so as to be able to move forward and backward in the endoscope channel of the endoscope insertion unit 34. Therefore, the imaging field of view of the imaging unit 36 changes in accordance with the amount of protrusion of the long-axis member 35 from the endoscope insertion unit 34.
  • the virtual position of the imaging unit 36 is calculated by the endoscope position and orientation calculation unit 63.
  • the calculated virtual position information is transmitted to the display signal generation unit 65, and an image display signal is generated, and the monitors 41 and 42 display the imaging visual field, the focal length for the treatment target region, and the treatment tools included in the imaging visual field. Ru.
  • the imaging visual field etc. displayed on each of the monitors 41, 42 is configured to be variable.
  • FIG. 6 shows a state in which the imaging unit displays the region to be treated in an enlarged manner, as compared to the example of the display screen of each of the monitors 41 and 42 shown in FIG. 4.
  • the field of view imaged by the imaging unit is narrow, and the tips 23 and 24 of the treatment tool can not be sufficiently confirmed, which is not preferable for the first user U1 operating the treatment tool.
  • the distance between the treatment target site and the imaging unit 36 is evaluated as appropriate, and no deduction occurs.
  • D if the distance between the treatment target site and the imaging unit 36 is too short, the entire treatment tool can not be displayed, and deduction is evaluated.
  • D>0 the distance between the treatment target site and the imaging unit 36 is too long, and it is evaluated that it is difficult to confirm the details of the treatment tool, and the point is deducted.
  • each monitor 41, 42 has an auxiliary image 4 a viewed from the side with respect to the long axis of the endoscope insertion unit 34 different from the angle taken by the imaging unit 36 of the endoscope. May be displayed together.
  • the auxiliary image 4a is displayed on each of the monitors 41 and 42 by the image display signal generated and transmitted by the display signal generation unit 65 based on the operation simulation execution result.
  • the cooperation evaluation unit 64 measures the position or posture of the distal end 23 or 24 of the treatment tool calculated by the treatment tool position and posture calculation unit 62 and the image of the endoscope calculated by the endoscope position and posture calculation unit 63. Based on the position or posture of the part 36, the relative position of the tip 23, 24 of the treatment tool and the imaging part 36 of the endoscope is calculated, compared with the threshold stored in advance, and the evaluation of cooperation operation is calculated and output It is configured to
  • FIG. 8A to 8C are schematic views showing an example of the evaluation method of the cooperative operation in the endoscope training system according to the present embodiment.
  • FIG. 9 is a graph showing an example of an evaluation method of cooperative operation in the endoscope training system according to the present embodiment.
  • the plant model 73 of the cooperation evaluation unit 64 stores the threshold value of the difference L of the protrusion amount.
  • the positional relationship between the imaging unit 36 and the tips 23 and 24 of the treatment tool is determined to be an appropriate distance, and no deduction occurs (FIG. 8B).
  • the difference L in the amount of protrusion is smaller than the threshold, the amount of protrusion Li of the tips 23 and 24 of the treatment tool is longer than the appropriate value, and many treatment tool arms 21 and 22 are displayed in the imaging field of view.
  • the points 23 and 24 of the treatment tool are hidden by the treatment tool arms 21 and 22 so that it is difficult to confirm them, and therefore deduction is evaluated (FIG. 8A).
  • the difference L in the amount of protrusion is larger than the threshold, the amount of protrusion Ls of the imaging unit 36 is longer than the appropriate value, and the treatment arms 21 and 22 fall outside the field of view.
  • the case where the vehicle is in a collision with can not be grasped and evaluated as inappropriate and deducted (FIG. 8C).
  • a vector from a predetermined reference point of 34 may be calculated to evaluate the appropriateness of the relative positional relationship between the tips 23 and 24 of the treatment tool and the imaging unit 36.
  • the images displayed on the monitors 41 and 42 during the operation training reproduce the images taken by the imaging unit 36 of the endoscope, but the display signal generation unit 65 is shown in FIGS. 8A to 8C.
  • the auxiliary image 4a corresponding to the above state may be generated and displayed on each of the monitors 41 and 42. Further, the arrows Li and Ls shown in FIGS. 8A to 8C may not be displayed on the monitors 41 and 42.
  • the interference determination unit 66 calculates the positions and orientations of the treatment tool arms 21 and 22 of the endoscopic treatment tool calculated by the treatment tool position and posture calculation unit 62 and the endoscope position and posture calculation unit 63. Based on the position and posture of the long axis member 35, the presence or absence of interference between the treatment instrument arms 21 and 22 and the long axis member 35 is determined and output.
  • the control device 1 may further include an interference determination unit 66 that determines the presence or absence of interference between the operation of the long axis member 35 and the operations of the treatment instrument arms 21 and 22.
  • the interference determination unit 66 may, for example, contact the long axis member 35 with the tissue T, contact the treatment arms 21 and 22 with the tissue T other than the treatment target site, contact between the treatment arms 21 and 22, long axis members It is determined whether or not there is a contact between the treatment instrument arm 35 and the treatment instrument arms 21 and 22.
  • FIG. 10 is a schematic view showing an example of the evaluation method of the cooperative operation in the endoscope training system according to the present embodiment.
  • a fixed coordinate system is set at a predetermined position of the distal end portion of the endoscope insertion portion 34.
  • a fixed coordinate system having the above-described predetermined base point P as an origin is set.
  • the number i is sequentially set along the axial direction for each multi-degree-of-freedom joint of the treatment tool arms 21 and 22, and information on each multi-degree-of-freedom joint is stored . Furthermore, the diameters of the treatment tool arms 21 and 22 are also stored in the plant model 73.
  • the calculation unit 71 of the interference determination unit 66 uses the operation information based on the operation input to the first input unit 20 and the information of each of the multiple degrees of freedom joints recorded in the plant model 73 Calculate the joint angle ⁇ i. Furthermore, the protrusion amount Li of the treatment tool arms 21 and 22 is calculated.
  • the position and orientation of the treatment instrument arms 21 and 22 on the fixed coordinate system are calculated from the angle ⁇ i and the projection amount Li. Furthermore, the occupied space of the treatment tool arms 21 and 22 in the fixed coordinate system is calculated based on the diameters of the treatment tool arms 21 and 22 and the protrusion amount Li.
  • the long-axis member 35 As for the long-axis member 35, a plurality of segments j are sequentially defined in the axial direction of the endoscope insertion unit 34, and the distance between the segments is stored in the plant model 73 of the interference determination unit 66.
  • the diameter of the long axis member 35 is also stored in the plant model 73 of the interference determination unit 66.
  • the calculation unit 71 of the interference determination unit 66 operates the operation information based on the operation input to the second input unit 30, 31 and the bending angle ⁇ j in each segment j stored in the plant model 73 and the projection amount Lj of the long axis member 35.
  • the position and attitude of the long axis member 35 are calculated from Based on the diameter and the projection amount Lj of the long axis member 35, the occupied space of the long axis member 35 in the fixed coordinate system is calculated.
  • the interference determination unit 66 compares the calculated occupied space of the treatment tool arms 21 and 22 with the occupied space of the long axis member 35, and determines the presence or absence of overlap of the occupied space in the fixed coordinate system. If there is no overlapping portion between the occupied space of the treatment instrument arms 21 and 22 and the occupied space of the long axis member 35, the evaluation point is not reduced. If there is a portion overlapping the occupied space of the treatment instrument arms 21 and 22 and the occupied space of the long axis member 35, the evaluation point is deducted.
  • the presence or absence of interference between the treatment instrument arms 21, 22 or the long axis member 35 and the surrounding tissue T the presence or absence of interference between the treatment instrument arms 21, 22 or the presence or absence of interference between the long axis members 35 Also in the same procedure as described above, the determination is made by calculating and comparing the occupied space.
  • the interference notification unit 5 is a device for notifying the users U1 and U2 of the occurrence of interference when the interference determination unit 66 determines that there is interference.
  • the interference notification unit 5 is configured to display interference information on each of the monitors 41 and 42.
  • the interference notification unit 5 is configured to be able to receive interference information from the interference determination unit 66.
  • the interference notification unit 5 transmits an interference notification signal to the display signal generation unit 65.
  • the display signal generation unit 65 generates an image display signal for displaying the occurrence of interference in each of the monitors 41 and 42 based on the received interference notification signal, and transmits the image display signal to each of the monitors 41 and 42.
  • the interference notification signal may include information on an interference occurrence point.
  • the image display signal includes information for displaying the location of the occurrence of the interference, and the interference portion is displayed on each of the monitors 41 and 42.
  • the interference determination unit 66 determines that interference has occurred
  • the screen display of each of the monitors 41 and 42 is viewed from the side of the endoscope insertion unit 34 as shown in FIG. 10 from the endoscopic image. It may be switched to Alternatively, an image as shown in FIG. 10 may be displayed as an auxiliary image 4a (see FIG. 6) together with the endoscopic image.
  • the users U1 and U2 can confirm that interference has occurred during training.
  • the timing of notification of interference information is not limited during training, and may be configured to notify each of the users U1 and U2 after training.
  • the interference notification unit 5 is not limited to the configuration in which the interference information is displayed on each of the monitors 41 and 42.
  • the training system 100 further includes a warning unit including a speaker and lighting, and when the interference determination unit 66 outputs an interference notification signal, a warning sound is emitted and a warning light is turned on. It is also good.
  • the first comprehensive evaluation calculation unit 68 calculates the comprehensive evaluation point of the first user U1 based on the evaluation results of the first single evaluation unit 60 and the cooperation evaluation unit 64, and transmits the general evaluation information to the display signal generation unit 65 And stored in the storage unit 67.
  • the second comprehensive evaluation calculation unit 69 calculates the comprehensive evaluation point of the second user U2 based on the evaluation results of the second single evaluation unit 61 and the cooperation evaluation unit 64, and transmits the general evaluation information to the display signal generation unit 65. And stored in the storage unit 67.
  • FIG. 11 is a flowchart showing the procedure of the operation evaluation in the control device 1.
  • the screens in the initial state are displayed on the respective monitors 41 and 42, and the respective users U1 and U2 check the respective monitors 41 and 42, and the first input unit 20 and the second input unit 30 respectively.
  • Operate 31 When the operation input to the first input unit 20 is performed, the operation amount of the first input unit 20 is detected by the first detector 29, and the operation input information generated based on the detection result of the first detector 29 is a controller Sent to 1.
  • the second input units 30 and 31 perform the same processing as the first input unit 20, and the operation input information of the second input units 30 and 31 is sent to the control device 1 Will be sent.
  • the control device 1 acquires operation input information of the first input unit 20 and the second input units 30 and 31 (steps S11 and S21). Subsequently, the control device 1 transmits the operation input information of the first input unit 20 to the treatment tool position and orientation calculation unit 62, and transmits the operation input information of the second input units 30 and 31 to the endoscope position and orientation calculation unit 63. Do.
  • the position and orientation of the tips 23 and 24 of the treatment tool are calculated by the treatment tool position and posture calculation unit 62 (step S12), and the position of the tip (imaging unit) 36 of the endoscope is simultaneously calculated by the endoscope position and posture calculation unit 63.
  • the attitude is calculated (step S22).
  • the position and orientation information of the tips 23 and 24 of the treatment instrument calculated by the treatment instrument position and orientation calculation unit 62 is transmitted to the first single evaluation unit 60, the cooperation evaluation unit 64, and the display signal generation unit 65.
  • the display signal generation unit 65 generates an image display signal based on the position and orientation information of the tips 23 and 24 of the treatment instrument, and transmits the image display signal to each of the monitors 41 and 42.
  • the position and orientation information of the imaging unit 36 calculated by the endoscope position and orientation calculation unit 63 is transmitted to the second independent evaluation unit 61, the cooperation evaluation unit 64, and the display signal generation unit 65.
  • the display signal generation unit 65 generates an image display signal based on the position and orientation information of the imaging unit 36 and transmits the image display signal to each of the monitors 41 and 42.
  • Each of the monitors 41 and 42 displays an operation image of the long-axis member 35, the treatment tool arms 21 and 22, and the tips 23 and 24 based on the received position and orientation information of the imaging unit 36 and the tips 23 and 24 of the treatment tools.
  • the first single evaluation unit 60 compares the operation input of the first input unit 20 with a preset threshold value to calculate the operation evaluation of the first input unit 20 (step S13).
  • the second independent evaluation unit 61 compares the operation input of the second input unit 30, 31 with a preset threshold value, and calculates the operation evaluation of the second input unit 30, 31 (step S23).
  • the evaluation process of the first single evaluation unit 60 and the evaluation process of the second single evaluation unit 61 are performed in parallel.
  • the cooperation evaluation unit 64 that has received the position and orientation information of the imaging unit 36 and the position and orientation information of the tips 23 and 24 of the treatment tool, the position and orientation information of the first input unit 20 and the second input units 30 and 31 in time series In comparison, the evaluation of the cooperative operation is calculated (step S14).
  • the single evaluation result of the user U1 and the cooperation evaluation result calculated by the first single evaluation unit 60 and the cooperation evaluation unit 64 are transmitted to the first comprehensive evaluation calculation unit 68.
  • the first comprehensive evaluation calculation unit 68 calculates a comprehensive evaluation point related to the single operation and cooperative operation of the first user U1 (step S15), transmits the calculated comprehensive evaluation information to the display signal generation unit 65, and generates the display signal
  • the total evaluation result of the first user U1 is displayed on the first monitor 41 based on the image display signal generated by the unit 65 (step S16).
  • the individual evaluation result and the cooperation evaluation result of the second user U2 calculated by the second independent evaluation unit 61 and the cooperation evaluation unit 64 are transmitted to the second comprehensive evaluation calculation unit 69.
  • the second comprehensive evaluation calculating unit 69 calculates the comprehensive evaluation on the single operation and the cooperative operation of the second user U2 (step S25), transmits the calculated general evaluation information to the display signal generating unit 65, and the display signal generating unit
  • the total evaluation result of the second user U2 is displayed on the second monitor 42 based on the image display signal generated at 65 (step S26).
  • the timing of the feedback of the evaluation result of the cooperative operation and the comprehensive evaluation result in the first and second comprehensive evaluation calculation units 68 and 69 may be training or after the training is over. Further, the method of feeding back the evaluation results of the cooperative operation and the general evaluation results to the respective users U1 and U2 is not limited to the method of displaying them on the respective monitors 41 and 42, and feedback may be made using data or output documents.
  • FIG. 12 is a flowchart showing an interference notification method in the control unit.
  • the control device 1 receives the position information of the imaging unit and treatment tool of the endoscope (steps S101 and S102), and the interference determination unit 66 calculates the imaging unit 36 of the endoscope and the occupied space of the treatment tool, respectively. (Steps S201 and S202).
  • the interference determination unit 66 compares the space occupied by the imaging unit of the endoscope with the space occupied by the treatment tool to calculate presence / absence of interference between the imaging unit of the endoscope and the tip of the treatment tool (step S103). ). The presence or absence of interference is determined based on the calculation result (step S104).
  • the interference information including the information of the interference portion between the imaging unit 36 of the endoscope and the treatment tool arms 21 and 22 is a display signal generation unit Send to 65
  • the display signal generation unit 65 that has received the interference information generates an image display signal related to the interference and transmits it to each of the monitors 41 and 42, and the interference part is highlighted on each of the monitors 41 and 42 (step S105).
  • the interference determination unit 66 also transmits the interference information to the interference notification unit 5, and the interference notification unit 5 notifies of the occurrence of the interference by voice or illumination (step S106).
  • the interference determination unit 66 calculates an evaluation value regarding the interference of each of the users U1 and U2 (steps S107 and S207).
  • the interference determination unit 66 transmits the evaluation result on the interference to the first and second comprehensive evaluation calculation units 68 and 69 (steps S15 and S25 in FIG. 11).
  • the first and second comprehensive evaluation calculation units add evaluation results regarding the presence or absence of interference to the comprehensive evaluation and feed back to the respective users U1 and U2 (steps S16 and S26 in FIG. 11).
  • the first and second comprehensive evaluation calculation units 68 and 69 store the comprehensive evaluation results of the respective users U1 and U2 in the storage device 67.
  • the various evaluation results using the training system 100 of each of the users U1 and U2 are configured to be extractable in time series, and it is possible to confirm the result of training on a user basis.
  • the display mode on each of the monitors 41 and 42 may be set individually.
  • the number of operation input units is not limited to this, and three or more users may operate to perform single operation evaluation, cooperative operation evaluation, and evaluation regarding the presence or absence of interference.
  • the cooperation evaluation unit 64 since the cooperation evaluation unit 64 is provided, the cooperation operation at the time of training by the user U1 who operates the treatment tool and the user U2 who operates the endoscope is quantitatively evaluated it can.
  • the single evaluation units 60 and 61 are provided, the evaluation of the single operation of each of the users U1 and U2 can also be quantitatively evaluated.
  • the cooperation evaluation unit 64 calculates the position and posture information of the tips 23 and 24 of the treatment tool calculated by the treatment tool position and posture calculation unit 62, and the endoscope position and posture calculation unit 63.
  • the cooperation operation between the first user U1 and the second user U2 is evaluated on the basis of the position and orientation information of the imaging unit 36 calculated in the above and the threshold stored in advance. Therefore, cooperation operation at the time of training by the first user U1 and the second user U2 can be quantitatively evaluated.
  • the position and orientation information of the tips 23 and 24 of the treatment instrument calculated by the treatment instrument position and orientation calculation unit 62 and the imaging unit calculated by the endoscope position and orientation calculation unit 63
  • An interference determination unit 66 that identifies the occupied space between the treatment tool arms 21 and 22 and the long-axis member 35 based on the position and orientation information of 36 and the threshold stored in advance, and determines and outputs the presence or absence of both interference Equipped with The interference determination unit 66 detects the occurrence of the interference between the endoscope and the treatment tool due to the lack of cooperation between the operation of the first user U1 and the operation of the second user U2.
  • the determination results of the interference determination unit 66 can be notified to the respective users U1 and U2 by the respective monitors 41 and 42 or the interference notification unit 5 during training. Therefore, the training which corrects the lack of cooperation with operation of the 1st user U1 and operation of the 2nd user U2 is realizable.
  • the training system for endoscopes it is possible to provide a system for improving the technique of cooperative operation between a plurality of operators.
  • Control device control unit 5 interference notification unit 41 first monitor (display unit) 42 Second monitor (display unit) 20 first input unit (treatment tool operation input unit) 30, 31 Second input unit (endoscope operation input unit) 60 1st independent evaluation calculation unit (single evaluation calculation unit) 61 Second independent evaluation calculation unit (single evaluation calculation unit) 62 Treatment tool position and posture calculation unit 63 Endoscope position and posture calculation unit 64 Cooperative evaluation calculation unit 66 Interference determination unit 100 Training system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pure & Applied Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

この内視鏡用トレーニングシステムは、内視鏡の仮想撮像画像として仮想処置対象部位及び内視鏡用処置具を表示する表示機と、前記表示機に表示される前記内視鏡用処置具を動作させる操作入力を行う処置具操作入力部と、前記表示機に表示される前記仮想撮像画像の撮像視野の変更の操作入力を行う内視鏡入力部と、前記処置具操作入力部の前記操作入力に基づく動作信号と、前記内視鏡入力部の前記操作入力に基づく動作信号とに基づいて、前記処置具操作入力部と前記内視鏡入力部との連携操作の評価を計算して出力する制御部と、を備える。

Description

内視鏡用トレーニングシステム
 本発明は、内視鏡用トレーニングシステムに関する。
 内視鏡と、内視鏡挿入部に設けられた処置具挿通チャンネルに内視鏡用処置具が挿通された内視鏡システムを用いた生検や手技(以下、生検を含め、単に「手技」と記載する。)が多く行われている。このような手技では、内視鏡挿入部を患者の体内の対象部位まで挿入し、処置具挿通チャンネルに内視鏡用処置具を挿入し、内視鏡挿入部の先端から突出させて使用する。術者は、内視鏡の撮像部により撮像された対象部位の画像を確認しながら、内視鏡及び内視鏡用処置具の各操作部を操作して、患者の体内の内視鏡及び処置具を動作させて手技を行う。
 このような内視鏡システムを用いた手技では、内視鏡を操作する内視鏡操作者と、内視鏡用処置具を操作する処置具操作者とが共同で操作を行う場合がある。具体的には、内視鏡操作者が内視鏡の操作部を操作して、処置対象部位に内視鏡の焦点を合わせる操作や内視鏡の視野を拡大縮小する操作を行い、処置具操作者が第一入力部を操作して内視鏡用処置具の先端部の進退や湾曲動作や処置部を動作させる。
 内視鏡システムによる手技では、対象部位以外を傷付けることが無いように細心の注意を払いながら行う繊細な操作が求められ、高度な技能が必要である。
 例えば、特許文献1には、操作者の高度な技能の習得の為に、複数の術者により操作可能な医療機器を備える医療システムが開示されている。特許文献1に記載された医療システムでは、判定部が一方の操作者の操作に関する検出値と、予め記憶されている閾値とを比較して、一方の操作者の操作の適正を判定し、判定結果を検出モニタに表示する。他方の操作者は、検出モニタに表示された判定結果に応じて、把持している操作レバーを操作する。他方の操作者の操作により、一方の操作者の操作に対する助言を行うための信号や一方の操作者の操作に制限を加える切り換え信号が出力され、検出モニタ上に表示される。一方の操作者は、他方の操作者により入力された助言に基づき、操作を行う。このような内視鏡システムにより、操作者の技能の向上を図るトレーニングが行われている。
特表2014-520279号公報
 特許文献1の医療用システムは経験の浅い医師が熟練技術を有する医師の監督下で技術を習得するためのシステムであり、経験の浅い医師の操作に対する評価結果がフィードバックされる。つまり、操作者の単独操作に対する技術の向上を目的としている。しかし、内視鏡システムを構成する装置の操作を複数の操作者が行う場合、操作者同士の操作の連携が重要となる。そこで、複数の操作者同士の連携操作の技術を向上させるトレーニングシステムが望まれていた。
 本発明は上記事情に鑑みて成されたものであり、複数の操作者同士の連携操作の技術を向上させる内視鏡用トレーニングシステムを提供することを目的とする。
 本発明の第一の態様に係る内視鏡用トレーニングシステムは、内視鏡の仮想撮像画像として仮想処置対象部位及び内視鏡用処置具を表示する表示機と、前記表示機に表示される前記内視鏡用処置具を動作させる操作入力を行う処置具操作入力部と、前記表示機に表示される前記仮想撮像画像の撮像視野の変更の操作入力を行う内視鏡操作入力部と、前記処置具操作入力部の前記操作入力に基づく動作信号と、前記内視鏡操作入力部の前記操作入力に基づく動作信号とに基づいて、前記処置具操作入力部と前記内視鏡操作入力部との連携操作の評価を計算して出力する制御部と、を備える。
 本発明の第二の態様は、第一の態様に係る内視鏡用トレーニングシステムにおいて、前記制御部は、前記処置具操作入力部の前記操作入力に基づく動作信号または前記内視鏡操作入力部の前記操作入力に基づく動作信号に基づき前記処置具操作入力部または前記内視鏡操作入力部の操作評価を計算して出力する単独評価計算部を備えてもよい。
 本発明の第三の態様は、第一の態様に係る内視鏡用トレーニングシステムにおいて、前記制御部は、前記処置具操作入力部の前記操作入力に基づき前記内視鏡用処置具の先端の位置または姿勢を計算する処置具位置姿勢計算部と、前記内視鏡操作入力部の前記操作入力に基づき前記内視鏡の撮像部の位置または姿勢を計算して出力する内視鏡位置姿勢計算部と、前記処置具位置姿勢計算部により計算された前記内視鏡用処置具の先端の位置または姿勢と、前記内視鏡位置姿勢計算部により計算された前記内視鏡の撮像部の位置または姿勢とに基づき前記内視鏡用処置具の先端と前記内視鏡の撮像部との相対位置を計算し、予め記憶された閾値と比較して前記連携操作の評価を計算して出力する連携評価計算部と、を備えてもよい。
 本発明の第四の態様は、第一の態様に係る内視鏡用トレーニングシステムにおいて、前記制御部は、前記処置具操作入力部の前記操作入力に基づき前記内視鏡用処置具の位置及び姿勢を計算する処置具位置姿勢計算部と、前記内視鏡操作入力部の前記操作入力に基づき前記内視鏡の挿入部の位置及び姿勢を計算して出力する内視鏡位置姿勢計算部と、前記処置具位置姿勢計算部により計算された前記内視鏡用処置具の位置及び姿勢と、前記内視鏡位置姿勢計算部により計算された前記内視鏡の挿入部の位置及び姿勢とに基づき、前記内視鏡用処置具と前記挿入部との干渉の有無を判定して出力する干渉判定部と、を備えてもよい。
 本発明の第五の態様は、第四の態様に係る内視鏡用トレーニングシステムでは、前記干渉判定部が前記内視鏡用処置具と前記挿入部との干渉が有ると判定した場合に、前記制御部は、前記内視鏡用処置具と前記挿入部との干渉を示す干渉告知信号を出力してもよい。
 本発明の第六の態様は、第五の態様に係る内視鏡用トレーニングシステムにおいて、前記干渉告知信号に基づき前記内視鏡用処置具と前記挿入部との干渉を告知する干渉告知部を備えてもよい。
 本発明の第七の態様は、第五の態様に係る内視鏡用トレーニングシステムにおいて、前記表示機は、前記干渉告知信号に基づき前記内視鏡用処置具と前記挿入部との干渉部分を表示してもよい。
 本発明の内視鏡用トレーニングシステムによれば、複数の操作者同士の連携操作の技術を向上させるシステムを提供できる。
本発明の第一実施形態に係る内視鏡用トレーニングシステムのブロック図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムのブロック図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムのブロック図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける表示画面の一例を示す図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける単独操作の評価方法の一例を示すグラフである。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける表示画面の一例を示す図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける単独操作の評価方法の一例を示すグラフである。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける表示画面の一例を示す図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける表示画面の一例を示す図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける表示画面の一例を示す図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける連携操作の評価方法の一例を示すグラフである。 本発明の第二実施形態に係る内視鏡用トレーニングシステムにおける干渉判定方法の一例を示す模式図である。 本発明の第一実施形態に係る内視鏡用トレーニングシステムにおける操作の判定方法を示すフローチャートである。 本発明の第二実施形態に係る内視鏡用トレーニングシステムにおける操作の判定方法を示すフローチャートである。
 以下、本発明の第一実施形態について、図1から図9を参照して説明する。
 図1及び図3は、実施形態に係る内視鏡用トレーニングシステム(以下、「トレーニングシステム」と記載する。)100の機能ブロック図である。トレーニングシステム100は、処置具入力装置2と、内視鏡入力装置3と、制御装置1と、モニタ(表示機)41,42と、干渉告知部5と、を備えている。トレーニングシステム100は、内視鏡及び内視鏡用処置具を用いて生検や手術をモニタ上で仮想的に動作させるためのシステムである。したがって、処置具入力装置2及び内視鏡入力装置3は練習用の部材であり、本物の内視鏡用処置具及び内視鏡とは異なり、被操作部を備えない。
 処置具入力装置2は、本物の内視鏡用処置具の操作部の構成を模した練習用の操作装置である。処置具入力装置2は、処置具操作入力部(以下、「第一入力部」と記載する。)20と、第一モニタ(表示機)41とを備えている。第一入力部20は、公知の各種機構を採用可能であり、例えば、トラックボール、タッチパネルやジョイスティック、マスターアーム等、あるいは、これらに適宜ボタンやレバー等を組み合わせたものが例示できる。
 第一入力部20は、表示機に表示される内視鏡用処置具を動作させる操作入力を行うために設けられている。第一入力部20は、軟性または硬性の処置具を駆動する操作と同じ動作が可能に構成されている。例えば、第一入力部20は、本物の処置具の湾曲部に設けられる複数の多自由度関節を湾曲させる動作、処置部の進退操作、処置部の開閉動作や給電等に対応する操作に対応する操作入力が可能に構成されている。第一入力部20には、操作入力量を検出する第一検出器29を備え、第一検出器29による操作入力量の検出結果に応じて、操作信号が生成される。第一入力部20は、生成された操作信号が制御装置1へ出力されるように構成されている。第一検出器29は、例えば、エンコーダやセンサであり、第一入力部20を構成する各種機構の移動角度、移動距離、移動速度等が検出される。
 処置具入力装置2の第一モニタ41は、第一入力部20の近傍に設けられており、第一ユーザU1は第一モニタ41に表示される処置具の画像を確認しながら第一入力部20を操作できる。第一モニタ41には、内視鏡の仮想撮像画像として仮想処置対象部位(以下、「処置対象部位」と記載する。)及び内視鏡用処置具が表示される。詳細は後述するが、第一入力部20の操作入力と第一モニタ41に表示される処置具の動きは連動する。
 内視鏡入力装置3は、各モニタ41,42に表示される仮想撮像画像の撮像視野の変更の操作入力を行うために設けられている。内視鏡入力装置3は、本物の内視鏡の操作部と同様に作動する内視鏡操作入力部(以下、「第二入力部」と記載する)30,31と、本物の内視鏡挿入部と同じ構成の内視鏡挿入部34と、筐体32とを備える。具体的には、第二入力部30,31は、湾曲操作入力部と、照明スイッチ、視点変更スイッチ等を備える。
 第二入力部30,31は、本物の内視鏡装置の操作部と同様の寸法及び重量を有する。内視鏡挿入部34の長さは本物の内視鏡挿入部よりも短い。内視鏡挿入部34の先端部34aは筐体32に挿入され、筐体32に対して進退可能及び内視鏡挿入部34の長手軸周りに回転可能に支持されている。
 筐体32には、内視鏡挿入部34の進退量及び回転量を検出する第二検出器33が設けられている。第二検出器33は例えば、エンコーダやセンサである。第二検出器33は、第二入力部30,31への操作入力に伴う内視鏡挿入部34の進退量、回転量、操作時間等を検出する。筐体32には、信号出力部37を備え、信号出力部37と制御装置1とが通信ケーブルを介して接続されている。信号出力部37は、第二検出器33の検出結果に基づく操作信号を生成し、制御装置1に送信するように構成されている。
 内視鏡入力装置3の近傍には、第二モニタ(表示機)42が設けられている。第二モニタ42の構成は処置具入力装置2の第一モニタ41と同様の構成を備える。
 なお、図1では、処置具入力装置2は内視鏡入力装置3と離間して設けられている例を示している。しかし、本発明に係るトレーニングシステム100は、この構成に限定されず、例えば、処置具入力装置2と内視鏡入力装置3とが近接配置される構成であってもよい。
 制御装置1は、第一単独評価計算部(処置具の単独評価計算部。以下、「第一単独評価部」と記載する。)60と、第二単独評価計算部(内視鏡の単独評価計算部。以下、「第二単独評価部」と記載する。)61と、処置具位置姿勢計算部62と、内視鏡位置姿勢計算部63と、連携操作評価計算部(以下、「連携評価部」と記載する。)64と、干渉判定部66と、表示信号生成部65と、第一総合評価計算部68と第二総合評価計算部69とを備える。
 図2に第一、第二単独評価部60,61、処置具位置姿勢計算部62、内視鏡位置姿勢計算部63、連携評価部64、干渉判定部66、表示信号生成部65及び第一、第二総合評価計算部68,69のブロック図を示す。図2に示すように、第一、第二単独評価部60,61、処置具位置姿勢計算部62、内視鏡位置姿勢計算部63、連携評価部64、干渉判定部66表示信号生成部65及び第一、第二総合評価計算部68,69は、それぞれ、CPU等の演算部71と、揮発性記憶部70と、不揮発性記憶部74と、FPGA(field-programmable gate array)72と、プラントモデル73と、を備える。
 揮発性記憶部70としては、例えば、RAM等を用いることができる。不揮発性記憶部74としては、例えばフラッシュメモリ等を用いることができる。FPGA72は、プログラムの内容を更新可能なゲートアレイである。演算部71は、揮発性記憶部70、不揮発性記憶部74、およびFPGA72と接続されている。
 プラントモデル73は、内視鏡及び内視鏡用処置具の仮想被操作部、仮想駆動部、仮想駆動部ドライバの構造や寸法、作動態様等を物理モデル化したデータであり、記憶媒体等に格納されている。
 FPGA72には、第一入力部20または第二入力部30,31から出力された操作信号に基づいて、仮想駆動部ドライバの動作信号を生成するための動作信号生成データが格納されている。動作信号生成データは、動作信号を生成するための信号生成プログラムや、制御パラメータ等を含む。演算部71は、第一入力部20または第二入力部30,31から入力された操作信号を受信すると、プラントモデル73のデータを参照して、仮想駆動部ドライバ、仮想駆動部の動作および仮想被操作部の動作のシミュレーションを実行する。
 処置具位置姿勢計算部62は、第一入力部20から出力された操作信号と、プラントモデル73及びFPGA72に格納されているデータとを参照して動作シミュレーションが実行される。動作シミュレーションの実行により、操作信号に対応する処置具の位置及び姿勢が計算される。さらに、処置具位置姿勢計算部62は、動作シミュレーションの実行により、処置具アーム21,22の移動速度、加速度、躍度についても計算する。
 処置具位置姿勢計算部62にて計算された処置具位置姿勢情報は、表示信号生成部65、第一単独評価部60及び連携評価部64に送信される。計算した処置具アーム21,22の移動速度、加速度、躍度のデータは第一単独評価部60及び連携評価部64に送信される。
 内視鏡位置姿勢計算部63は、第二入力部30,31から出力された操作信号と、プラントモデル73及びFPGA72に格納されているデータとを参照して動作シミュレーションが実行される。動作シミュレーションの実行により、第二入力部30,31の操作入力に基づく操作信号に対応する内視鏡の被駆動部の位置及び姿勢が計算される。さらに、内視鏡位置姿勢計算部63は、受信した操作信号に基づき、内視鏡の撮像部と処置対象部位との間の距離を計算する。つまり、動作シミュレーション実行結果に基づく内視鏡の仮想撮像部の位置から、予め設定されている処置対象部位の位置までの距離を計算する。計算された内視鏡位置姿勢情報は、表示信号生成部65、第二単独評価部61及び連携評価部64に送信される。
 表示信号生成部65は、動作シミュレーションの実行結果と、プラントモデル73に記憶されている画像生成情報とに基づき、第一モニタ41及び第二モニタ42に表示する画像表示信号を生成する。生成された画像表示信号は各モニタ41,42に送信されて表示される。
 表示信号生成部65は、操作信号の受信時に逐次新たな画像表示信号を生成して出力する。この結果、各モニタ41,42には、第一入力部20及び第二入力部30,31で入力された操作入力に連動して内視鏡及び処置具が動作しているような画像が表示される。したがって、各ユーザU1,U2は、モニタを確認しながら第一入力部20及び第二入力部30,31を操作すると、実際に内視鏡及び処置具を操作しているような感覚が得られる。この他、例えば、操作信号の受信時以外も、処置対象部位の組織の動き等を模した画像表示信号を生成して逐次出力してもよい。さらに、表示信号生成部65は、後述する単独評価部、連携評価部64、及び干渉判定部66からの出力信号に基づき、後述する干渉の有無や評価結果等を各モニタ41,42に表示するための画像信号を生成して出力するように構成されていてもよい。
 第一単独評価部60では、動作シミュレーション実行結果に基づく処置具位置姿勢情報を受信すると、第一入力部20の操作評価を計算して出力する。第一単独評価部60のプラントモデル73には、処置具の適正な動作に関する適正動作データ及び適正動作データの閾値が記憶されている。
 第一単独評価部60は、動作シミュレーション実行結果と、第一単独評価部60のプラントモデル73に記憶された適正動作データ並びに閾値とを対比する。第一単独評価部60は、この対比結果が閾値内の場合、第一ユーザU1の操作が適正であると判定する。一方、上記対比の結果、動作シミュレーション実行結果が閾値を越えている場合は、第一ユーザU1の操作が不適正であると判定する。
 以下、第一入力部20の操作に対する単独評価例を説明する。
(第一入力部20の単独操作評価例)
 図4は本実施形態における第一モニタ41及び第二モニタ42の表示画面の一例を示す図である。図5は、本実施形態における第一入力部20の単独操作の評価方法の一例を示すグラフである。図4に示すように、各モニタ41,42には、内視鏡の撮像部36により撮像される画像を模した画像であり、処置対象部位及び処置具21,22,23,24を含む画像が表示される。
 上述の通り、第一入力部20の操作入力に応じて各モニタ41,42に表示される処置具21,22,23,24が動くように構成されている。例えば、第一入力部として多自由度関節を有するアーム20を備え、第一ユーザU1のアーム20に対する操作入力によって、アーム20の3次元動作が操作信号として入力される。入力された操作信号は制御装置1に送信される。処置具位置姿勢計算部62は、操作信号を受信し、プラントモデル73のデータを参照して、仮想駆動部ドライバ、仮想駆動部および仮想被操作部の動作シミュレーションを実行する。動作シミュレーション実行結果に基づき、各モニタ41,42上の処置具アーム21,22がアーム20の3次元動作と相似形の動作が行われるように表示される。
 本実施形態では、処置具位置姿勢計算部62が、処置具アーム21,22の位置姿勢情報に加えて処置具アーム21,22の移動時の速度、加速度、躍度を計算する。処置具位置姿勢計算部62による処置具アーム21,22の移動時の速度、加速度、躍度の情報を受信した第一単独評価部60は、処置具アーム21,22の移動時の速度、加速度、躍度を計算する。
 内視鏡システムによる手技では、対象部位以外を傷付けることが無いように細心の注意を払いながら行う繊細な操作が求められ、高度な技能が必要である。そのため、処置具を高速で移動させることが少ないことが好ましい。
 そこで、例えば、処置具の移動速度の閾値sを設定し、図5に示すように、処置具の移動速度が閾値sよりも早く移動した回数mtを計算する。この回数mtについても閾値が設定されている。所定時間、例えば、1分間の処置具の移動速度が閾値sよりも早く移動した回数mtが少ない場合、処置具周辺の組織Tに処置具21,22,23,24が接触する危険が少ないため、評価は減点されない。一方、1分間の処置具21,22,23,24の移動速度が閾値sよりも早く移動した回数mtが多い場合は、頻繁に処置具21,22,23,24を高速で移動させていることとなり、ユーザの意に反して処置具周辺の組織Tに処置具が接触する危険性が高いため、評価は減点される。
 次に、第二単独評価部61では、動作シミュレーション実行結果に基づく内視鏡位置姿勢情報を受信すると、内視鏡作部の操作評価を計算して出力する。第二単独評価部61のプラントモデル73には、内視鏡の適正な動作に関する適正動作データ及び適正動作データの閾値が記憶されている。
 第二単独評価部61は、動作シミュレーション実行結果と、第二単独評価部61のプラントモデル73に記憶された適正動作データ並びに閾値とを対比する。第二単独評価部61は、上記対比結果が閾値内の場合、第二ユーザU2の操作が適正であると判定する。一方、上記対比の結果、動作シミュレーション実行結果が閾値を越えている場合は、第二ユーザU2の操作が不適正であると判定する。
 以下、第二入力部30,31の操作に対する単独評価例を説明する。
(第二入力部30,31の単独評価例)
 図6は本実施形態における各モニタ41,42の表示画面の一例を示す図である。図7は、本実施形態における第二入力部30,31の単独操作の評価方法の一例を示すグラフである。
 本実施形態では、先端に撮像部36を備える長軸部材35が内視鏡挿入部34の内視鏡チャンネルに進退可能に設けられる内視鏡を想定している。したがって、長軸部材35が内視鏡挿入部34から突出する突出量に応じて、撮像部36の撮像視野が変化する。第二入力部30,31の操作入力に応じて、内視鏡位置姿勢計算部63で撮像部36の仮想位置が計算される。計算された仮想位置情報が表示信号生成部65に送信され、画像表示信号が生成され、各モニタ41,42に、撮像視野、処置対象部位に対する焦点距離、撮像視野に含まれる処置具が表示される。また、第二入力部30,31の操作入力に応じて、各モニタ41,42に表示される撮像視野等が変動可能に構成されている。
 各モニタ41,42に表示される画像の焦点距離は、処置具を操作する上で適正な距離であることが望まれる。図6は、図4に示す各モニタ41,42の表示画面の例よりも、撮像部が処置対象部位を拡大表示している状態を示している。図6に示す例では、撮像部により撮像される視野が狭く、処置具の先端23,24が十分に確認できず、第一ユーザU1が処置具を操作する上では好ましくない。
 そこで、第二単独評価部61では、図7に示すように、操作入力に基づく撮像部36と処置対象部位との距離dと、処置対象部位に撮像部36のピントが合う距離dfとの差D=d-dfを計算する。D=0の場合、距離dが適切な距離である。そのため、閾値はD=0と設定されている。D=0の場合、処置対象部位と撮像部36との距離が適切であると評価され、減点されない。次に、D<0の場合、処置対象部位と撮像部36との距離が近すぎると、処置具全体が表示できず、減点評価される。また、D>0の場合、処置対象部位と撮像部36との距離が遠すぎて、処理具の細部が確認し難いと評価され減点される。
 なお、図6に示すように、各モニタ41,42には、内視鏡の撮像部36により撮像される角度と異なり、内視鏡挿入部34の長軸に対する側方から見た補助画像4aを併せて表示してもよい。補助画像4aは、動作シミュレーション実行結果に基づき表示信号生成部65において生成され送信された画像表示信号により各モニタ41,42に表示される。
 次に、連携評価部64は、処置具位置姿勢計算部62により計算された処置具の先端23,24の位置または姿勢と、内視鏡位置姿勢計算部63により計算された内視鏡の撮像部36の位置または姿勢とに基づき処置具の先端23,24と内視鏡の撮像部36との相対位置を計算し、予め記憶された閾値と比較して連携操作の評価を計算して出力するように構成されている。
 連携評価部64による連携操作の具体例を以下に示す。図8Aから図8Cは本実施形態に係る内視鏡用トレーニングシステムにおける連携操作の評価方法の一例を示す模式図である。図9は本実施形態に係る内視鏡用トレーニングシステムにおける連携操作の評価方法の一例を示すグラフである。
 連携評価部64は、処置具の先端23,24の位置姿勢情報と内視鏡の撮像部36の位置姿勢情報とを受信すると、演算部71において両者の相対位置を計算する。例えば、図8Aから図8Cに示すように、内視鏡挿入部34の所定の基点Pからの撮像部の突出量Lsと所定の基点Pからの処置具の突出量Liとの差L=Ls-Liを計算する。連携評価部64のプラントモデル73には、上記突出量の差Lの閾値が記憶されている。突出量の差Lが閾値と一致する場合、撮像部36と処置具の先端23,24との位置関係が適切な距離であると判定され、減点されない(図8B)。次に、突出量の差Lが閾値より小さい場合、処置具の先端23,24の突出量Liが適正値よりも長く、撮像視野内に処置具アーム21,22が多く表示される。この結果、各モニタ41,42に表示される画像では、処置具の先端23,24が処置具アーム21,22に隠れて確認し難いため、減点評価される(図8A)。また、突出量の差Lが閾値よりも大きい場合、撮像部36の突出量Lsが適正値よりも長過ぎて、処置具アーム21,22が視野外となり、例えば処置具アーム21,22が組織に衝突している場合が把握できず不適切であると評価され減点される(図8C)。
 上記連携評価部64による連携操作の判定例では、距離のみで判定する例を示したが、処置具の先端23,24及び内視鏡の撮像部36の位置姿勢情報から、内視鏡挿入部34の所定の基点からのベクトルを計算して、処置具の先端23,24と撮像部36との相対位置関係の適正を評価する構成であってもよい。
 操作トレーニング中に各モニタ41,42に表示される画像は、内視鏡の撮像部36により撮像される画像を再現したものであるが、表示信号生成部65は、図8Aから図8Cに示した状態に対応する補助画像4aを生成し、各モニタ41,42に表示するように構成してもよい。また、図8A~8Cに示した矢印Li,Lsは各モニタ41,42に表示されなくてもよい。
 次に、干渉判定部66は、処置具位置姿勢計算部62により計算された内視鏡用処置具の処置具アーム21,22の位置及び姿勢と、内視鏡位置姿勢計算部63により計算された長軸部材35の位置及び姿勢とに基づき、処置具アーム21,22と長軸部材35との干渉の有無を判定して出力するように構成されている。
 処置具アーム21,22と長軸部材35とが接触すると、互いの操作が阻害される。そこで、制御装置1は、長軸部材35の動作と処置具アーム21,22の動作との間の干渉の有無を判定する干渉判定部66をさらに備えてもよい。干渉判定部66は、例えば、長軸部材35と組織Tとの接触、処置具アーム21,22と処置対象部位以外の組織Tとの接触、処置具アーム21,22同士の接触、長軸部材35と処置具アーム21,22との接触の有無を判定する。
 干渉判定部66による干渉判定の具体例を以下に示す。図10は本実施形態に係る内視鏡用トレーニングシステムにおける連携操作の評価方法の一例を示す模式図である。内視鏡挿入部34の先端部の所定位置に固定座標系を設定する。本実施形態では、上述した所定の基点Pを原点とする固定座標系を設定する。
 干渉判定部66のプラントモデル73には、処置具アーム21,22の各多自由度関節に番号iが軸線方向に沿って順次設定されており、各多自由度関節に関する情報が記憶されている。さらに、処置具アーム21,22の直径もプラントモデル73に記憶されている。干渉判定部66の演算部71は、第一入力部20への操作入力に基づく操作情報と、プラントモデル73に記録された各多自由度関節の情報とにより、処置具アーム21,22の各関節の角度θiを計算する。さらに、処置具アーム21,22の突出量Liを計算する。角度θi及び突出量Liから固定座標系上の処置具アーム21,22の位置姿勢を計算する。さらに、処置具アーム21,22の直径と突出量Liに基づき、固定座標系における処置具アーム21,22の占有空間を計算する。
 長軸部材35については、内視鏡挿入部34の軸線方向に複数のセグメントjを順次定義し、各セグメント間の距離等が干渉判定部66のプラントモデル73に記憶されている。長軸部材35の直径も干渉判定部66のプラントモデル73に記憶されている。干渉判定部66の演算部71は、第二入力部30,31への操作入力に基づく操作情報と、プラントモデル73に記憶された各セグメントjにおける湾曲角度θj及び長軸部材35の突出量Ljから長軸部材35の位置・姿勢を計算する。長軸部材35の直径と突出量Ljに基づき、固定座標系における長軸部材35の占有空間を計算する。
 干渉判定部66は、計算された処置具アーム21,22の占有空間と長軸部材35の占有空間とを比較し、固定座標系における占有空間の重なりの有無を判定する。処置具アーム21,22の占有空間と長軸部材35の占有空間とに重なる部分が無ければ評価点を減点しない。処置具アーム21,22の占有空間と長軸部材35の占有空間とに重なる部分が有れば評価点を減点する。
 処置具アーム21,22または長軸部材35と周辺組織Tとの干渉の有無、処置具アーム21,22同士の干渉の有無、長軸部材35と処置具アーム21,22との干渉の有無についても上記と同様の手順で、それぞれ占有空間を計算して対比することにより判定する。
 干渉告知部5は、干渉判定部66で干渉があると判定されたときに、ユーザU1,U2に干渉の発生を告知する装置である。干渉告知部5は、各モニタ41,42に干渉情報を表示する構成である。干渉告知部5は、干渉判定部66から干渉情報を受信可能に構成されている。干渉告知部5は、干渉判定部66から干渉が発生したことを示す干渉情報を受信すると、表示信号生成部65に干渉告知信号を送信する。表示信号生成部65では、受信した干渉告知信号に基づき、各モニタ41,42に干渉が発生していることを表示するための画像表示信号を生成して各モニタ41,42に送信する。干渉告知信号には、干渉発生箇所に関する情報を含んでもよい。この場合、画像表示信号には干渉発生箇所を表示する情報が含まれ、各モニタ41,42には干渉部分が表示される。例えば、干渉判定部66で干渉が発生したと判定された時に、各モニタ41,42の画面表示が内視鏡画像から図10に示すような内視鏡挿入部34の側方から見た図に切り換えられてもよい。あるいは、図10に示すような画像が内視鏡画像と併せて補助画像4a(図6参照)として表示されてもよい。
 各モニタ41,42に干渉情報が表示されると、ユーザU1,U2は、トレーニング中に干渉が発生したことを確認できる。なお、干渉情報の告知のタイミングはトレーニング中に限定されず、トレーニング後に各ユーザU1,U2に告知する構成であってもよい。
 干渉告知部5は、干渉情報を各モニタ41,42に表示する構成に限定されない。例えば、トレーニングシステム100に、さらにスピーカや照明からなる警告部を備え、干渉判定部66から干渉告知信号が出力された場合に、警告音を発したり警告灯が点灯したりするように構成してもよい。
 第一総合評価計算部68は、第一単独評価部60と連携評価部64との評価結果に基づき、第一ユーザU1の総合評価点を計算し、総合評価情報を表示信号生成部65に送信すると共に記憶装置67に記憶する。
 第二総合評価計算部69は、第二単独評価部61と連携評価部64との評価結果に基づき、第二ユーザU2の総合評価点を計算し、総合評価情報を表示信号生成部65に送信すると共に記憶装置67に記憶する。
 次に本実施形態のトレーニングシステムの手順について説明する。図11は、制御装置1における操作評価の処理手順を示すフローチャートである。
 トレーニングが開始されると、各モニタ41,42に初期状態の画面が表示され、各ユーザU1,U2は各モニタ41,42を確認しながら、それぞれ第一入力部20ならびに第二入力部30,31を操作する。第一入力部20へ操作入力が行われると、第一検出器29により第一入力部20の操作量が検出され、第一検出器29の検出結果に基づき生成された操作入力情報が制御装置1に送信される。第一入力部20の操作と並行して、第二入力部30,31においても第一入力部20と同様の処理が行われ、第二入力部30,31の操作入力情報が制御装置1に送信される。
 制御装置1は、第一入力部20並びに第二入力部30,31の操作入力情報を取得する(ステップS11,S21)。続いて制御装置1は、第一入力部20の操作入力情報を処置具位置姿勢計算部62に送信し、第二入力部30,31の操作入力情報を内視鏡位置姿勢計算部63に送信する。処置具位置姿勢計算部62で処置具の先端23,24の位置姿勢が計算され(ステップS12)、並行して内視鏡位置姿勢計算部63で内視鏡の先端(撮像部)36の位置姿勢が計算される(ステップS22)。
 処置具位置姿勢計算部62で計算された処置具の先端23,24の位置姿勢情報は、第一単独評価部60、連携評価部64、及び表示信号生成部65に送信される。表示信号生成部65は、処置具の先端23,24の位置姿勢情報に基づく画像表示信号を生成し各モニタ41,42に送信する。
 内視鏡位置姿勢計算部63で計算された撮像部36の位置姿勢情報は、第二単独評価部61、連携評価部64、及び表示信号生成部65に送信される。表示信号生成部65は、撮像部36の位置姿勢情報に基づく画像表示信号を生成して各モニタ41,42に送信する。
 各モニタ41,42は、受信した撮像部36及び処置具の先端23,24の位置姿勢情報に基づき、長軸部材35、処置具アーム21,22及び先端23,24の動作画像を表示する。
 第一単独評価部60は、第一入力部20の操作入力と、予め設定された閾値とを対比し、第一入力部20の操作評価を計算する(ステップS13)。
 第二単独評価部61は、第二入力部30,31の操作入力と、予め設定された閾値とを対比し、第二入力部30,31の操作評価を計算する(ステップS23)。第一単独評価部60の評価処理と第二単独評価部61の評価処理とは並行して行われる。
 撮像部36の位置姿勢情報及び処置具の先端23,24の位置姿勢情報を受信した連携評価部64では、第一入力部20と第二入力部30,31との位置姿勢情報を時系列で対比し、連携操作の評価を計算する(ステップS14)。
 第一単独評価部60及び連携評価部64で計算されたユーザU1の単独評価結果及び連携評価結果が第一総合評価計算部68に送信される。第一総合評価計算部68では、第一ユーザU1の単独操作及び連携操作に関する総合評価点を計算し(ステップS15)、計算された総合評価情報を表示信号生成部65に送信し、表示信号生成部65で生成された画像表示信号に基づき第一モニタ41に第一ユーザU1の総合評価結果を表示する(ステップS16)。
 第一ユーザU1と同様に、第二単独評価部61及び連携評価部64で計算された第二ユーザU2の単独評価結果及び連携評価結果が第二総合評価計算部69に送信される。第二総合評価計算部69では、第二ユーザU2の単独操作及び連携操作に関する総合評価を計算し(ステップS25)、計算された総合評価情報を表示信号生成部65に送信し、表示信号生成部65で生成された画像表示信号に基づき第二モニタ42に第二ユーザU2の総合評価結果を表示する(ステップS26)。
 第一及び第二総合評価計算部68,69における連携操作の評価結果及び総合評価結果のフィードバックのタイミングは、トレーニング中でもトレーニング終了後でもよい。また、連携操作の評価結果及び総合評価結果を各ユーザU1,U2にフィードバックする方法は各モニタ41,42に表示する方法に限定されず、データや出力書類等でフィードバックしてもよい。
 次に、トレーニング時の内視鏡挿入部と処置具挿入部との干渉告知方法について説明する。図12は、制御部における干渉告知方法を示すフローチャートである。
 制御装置1は、内視鏡の撮像部及び処置具の位置情報を受信する(ステップS101,S102)と、干渉判定部66で内視鏡の撮像部36及び処置具の占有空間をそれぞれ計算する(ステップS201,S202)。
 干渉判定部66は、内視鏡の撮像部の占有空間と処置具の占有空間とを対比して、内視鏡の撮像部と処置具の先端部との干渉の有無を計算する(ステップS103)。計算結果に基づき干渉の有無を判定する(ステップS104)。干渉判定部66が各占有空間に重なる部分があると判定した場合(Yes)、内視鏡の撮像部36と処置具アーム21,22との干渉部分の情報を含む干渉情報を表示信号生成部65に送信する。干渉情報を受信した表示信号生成部65は、干渉に関する画像表示信号を生成して各モニタ41,42に送信し、各モニタ41,42では干渉部分が強調表示される(ステップS105)。
 さらに、干渉判定部66は、干渉情報を干渉告知部5にも送信し、干渉告知部5では、音声や照明により干渉の発生を告知する(ステップS106)。
 トレーニング終了後、干渉判定部66は、各ユーザU1,U2の干渉に関する評価値を計算する(ステップS107,S207)。干渉判定部66は干渉に関する評価結果を第一及び第二総合評価計算部68,69に送信する(図11のステップS15,S25)。第一及び第二総合評価計算部は、干渉の有無に関する評価結果を上記総合評価に加えて各ユーザU1,U2にフィードバックする(図11のステップS16,26)。
 第一及び第二総合評価計算部68,69は各ユーザU1,U2の総合評価結果を記憶装置67に記憶する。各ユーザU1,U2のトレーニングシステム100を用いた各種評価結果は時系列で抽出可能に構成され、ユーザ単位でのトレーニングの成果が確認できる。
 以上、本発明の一実施形態について説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、各構成要素に種々の変更を加えたり、削除したり、各実施形態の構成要素を組み合わせたりすることが可能である。
 例えば、上述の実施形態においては、第一モニタ41及び第二モニタ42に同じ画像が表示される例を説明した。しかし、各モニタ41,42への表示態様は個別に設定されてもよい。
 例えば、上述の実施形態においては、処置具を操作するユーザU1と内視鏡を操作するユーザU2とが操作を行う例を説明した。しかし、操作入力部の数はこれに限定されず、3人以上のユーザがそれぞれ操作を行い、単独操作評価、連携操作評価、及び干渉の有無について評価を行う構成であってもよい。
 本実施形態に係るトレーニングシステム100によれば、連携評価部64を備えるので、処置具の操作を行うユーザU1と内視鏡の操作を行うユーザU2とによるトレーニング時の連携操作を定量的に評価できる。
 本実施形態に係るトレーニングシステム100によれば、単独評価部60,61を備えるので、各ユーザU1,U2の単独操作の評価も定量的に評価できる。
 本実施形態に係るトレーニングシステム100によれば、連携評価部64は、処置具位置姿勢計算部62で計算された処置具の先端23,24の位置姿勢情報と、内視鏡位置姿勢計算部63で計算された撮像部36の位置姿勢情報と、予め記憶された閾値とに基づき、第一ユーザU1と第二ユーザU2との連携操作を評価する。したがって、第一ユーザU1と第二ユーザU2とによるトレーニング時の連携操作を定量的に評価できる。
 本実施形態に係るトレーニングシステム100によれば、処置具位置姿勢計算部62で計算された処置具の先端23,24の位置姿勢情報と、内視鏡位置姿勢計算部63で計算された撮像部36の位置姿勢情報と、予め記憶された閾値とに基づき、処置具アーム21,22と長軸部材35との占有空間を特定し、両者の干渉の有無を判定して出力する干渉判定部66を備える。干渉判定部66により、第一ユーザU1の操作と第二ユーザU2の操作との連携不足による内視鏡と処置具との干渉の発生が検出される。
 さらに、干渉判定部66の判定結果は、トレーニング中に各モニタ41,42または干渉告知部5により、各ユーザU1,U2に告知可能である。そのため、第一ユーザU1の操作と第二ユーザU2の操作との連携不足を是正するトレーニングが実現できる。
 本発明によれば、内視鏡用トレーニングシステムによれば、複数の操作者同士の連携操作の技術を向上させるシステムを提供できる。
1 制御装置(制御部)
5 干渉告知部
41 第一モニタ(表示機)
42 第二モニタ(表示機)
20 第一入力部(処置具操作入力部)
30,31 第二入力部(内視鏡操作入力部)
60 第一単独評価計算部(単独評価計算部)
61 第二単独評価計算部(単独評価計算部)
62 処置具位置姿勢計算部
63 内視鏡位置姿勢計算部
64 連携評価計算部
66 干渉判定部
100 トレーニングシステム

Claims (7)

  1.  内視鏡の仮想撮像画像として仮想処置対象部位及び内視鏡用処置具を表示する表示機と、
     前記表示機に表示される前記内視鏡用処置具を動作させる操作入力を行う処置具操作入力部と、
     前記表示機に表示される前記仮想撮像画像の撮像視野の変更の操作入力を行う内視鏡操作入力部と、
     前記処置具操作入力部の前記操作入力に基づく動作信号と、前記内視鏡操作入力部の前記操作入力に基づく動作信号とに基づいて、前記処置具操作入力部と前記内視鏡操作入力部との連携操作の評価を計算して出力する制御部と、
     を備える内視鏡用トレーニングシステム。
  2.  前記制御部は、
     前記処置具操作入力部の前記操作入力に基づく動作信号または前記内視鏡操作入力部の操作入力に基づく動作信号に基づき前記処置具操作入力部または前記内視鏡操作入力部の操作評価を計算して出力する単独評価計算部を備える
     請求項1に記載の内視鏡用トレーニングシステム。
  3.  前記制御部は、
      前記処置具操作入力部の前記操作入力に基づき前記内視鏡用処置具の先端の位置または姿勢を計算する処置具位置姿勢計算部と、
      前記内視鏡操作入力部の前記操作入力に基づき前記内視鏡の撮像部の位置または姿勢を計算して出力する内視鏡位置姿勢計算部と、
     前記処置具位置姿勢計算部により計算された前記内視鏡用処置具の先端の位置または姿勢と、前記内視鏡位置姿勢計算部により計算された前記内視鏡の撮像部の位置または姿勢とに基づき前記内視鏡用処置具の先端と前記内視鏡の撮像部との相対位置を計算し、予め記憶された閾値と比較して前記連携操作の評価を計算して出力する連携評価計算部と、
     を備える請求項1に記載の内視鏡用トレーニングシステム。
  4.  前記制御部は、
      前記処置具操作入力部の前記操作入力に基づき前記内視鏡用処置具の位置及び姿勢を計算する処置具位置姿勢計算部と、
      前記内視鏡操作入力部の前記操作入力に基づき前記内視鏡の挿入部の位置及び姿勢を計算して出力する内視鏡位置姿勢計算部と、
     前記処置具位置姿勢計算部により計算された前記内視鏡用処置具の位置及び姿勢と、前記内視鏡位置姿勢計算部により計算された前記内視鏡の挿入部の位置及び姿勢とに基づき、前記内視鏡用処置具と前記挿入部との干渉の有無を判定して出力する干渉判定部と、
     を備える請求項1に記載の内視鏡用トレーニングシステム。
  5.  前記干渉判定部が前記内視鏡用処置具と前記挿入部との干渉が有ると判定した場合に、前記制御部は、前記内視鏡用処置具と前記挿入部との干渉を示す干渉告知信号を出力する
     請求項4に記載の内視鏡用トレーニングシステム。
  6.  前記干渉告知信号に基づき前記内視鏡用処置具と前記挿入部との干渉を告知する干渉告知部を備える
     請求項5に記載の内視鏡用トレーニングシステム。
  7.  前記表示機は、前記干渉告知信号に基づき前記内視鏡用処置具と前記挿入部との干渉部分を表示する
     請求項5に記載の内視鏡用トレーニングシステム。
PCT/JP2017/024938 2017-07-07 2017-07-07 内視鏡用トレーニングシステム WO2019008737A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024938 WO2019008737A1 (ja) 2017-07-07 2017-07-07 内視鏡用トレーニングシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024938 WO2019008737A1 (ja) 2017-07-07 2017-07-07 内視鏡用トレーニングシステム

Publications (1)

Publication Number Publication Date
WO2019008737A1 true WO2019008737A1 (ja) 2019-01-10

Family

ID=64950683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024938 WO2019008737A1 (ja) 2017-07-07 2017-07-07 内視鏡用トレーニングシステム

Country Status (1)

Country Link
WO (1) WO2019008737A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213484A1 (ja) * 2019-04-19 2020-10-22 学校法人慶應義塾 手術評価システム
CN113017830A (zh) * 2021-02-23 2021-06-25 刘睿 一种基于视频识别的显微外科吻合操作评分系统
WO2022014017A1 (ja) * 2020-07-16 2022-01-20 オリンパス株式会社 医療システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097825A1 (ja) * 2013-12-26 2015-07-02 独立行政法人科学技術振興機構 動き学習支援装置及び動き学習支援方法
JP2017510826A (ja) * 2013-12-20 2017-04-13 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 医療処置トレーニングのためのシミュレータシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510826A (ja) * 2013-12-20 2017-04-13 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 医療処置トレーニングのためのシミュレータシステム
WO2015097825A1 (ja) * 2013-12-26 2015-07-02 独立行政法人科学技術振興機構 動き学習支援装置及び動き学習支援方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213484A1 (ja) * 2019-04-19 2020-10-22 学校法人慶應義塾 手術評価システム
WO2022014017A1 (ja) * 2020-07-16 2022-01-20 オリンパス株式会社 医療システム
JPWO2022014017A1 (ja) * 2020-07-16 2022-01-20
JP7483008B2 (ja) 2020-07-16 2024-05-14 オリンパス株式会社 管理装置、検査画像評価方法、医療システム
CN113017830A (zh) * 2021-02-23 2021-06-25 刘睿 一种基于视频识别的显微外科吻合操作评分系统

Similar Documents

Publication Publication Date Title
CN110475523B (zh) 用于操纵器的关联过程和相关系统
CN110494095B (zh) 用于约束虚拟现实手术系统的系统和方法
JP6851427B2 (ja) 遠隔操作医療システムにおける器具のオフスクリーン表示のためのシステム及び方法
US11478133B2 (en) Medical observation system, apparatus for controlling the same, and method for controlling the same
KR102501099B1 (ko) 원격조작 의료 시스템에서 기구의 스크린상 식별정보를 렌더링하기 위한 시스템 및 방법
US9107686B2 (en) Surgical robot and surgical robot control method
KR102698268B1 (ko) 원격조작 의료 시스템에서 기구의 스크린상 식별을 위한 시스템 및 방법
KR102358967B1 (ko) 이미징 기기의 방향 제어 시스템 및 방법
JP5908172B2 (ja) 手術支援システムおよび手術支援システムの制御方法
EP2533678B1 (en) System for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope
CN101422901B (zh) 机械手装置和医疗设备系统
JP7015256B2 (ja) コンピュータ支援遠隔操作システムにおける補助器具制御
JP2020532383A (ja) 手術ロボットシステムのためのカメラ制御
US20130103197A1 (en) Method for graphically providing continuous change of state directions to a user of medical robotic system
JPWO2016203858A1 (ja) 医療システム
KR20120004479A (ko) 수술 로봇의 통합적 표현
JP2019188038A (ja) 外科手術システム及び外科手術システムの制御方法
WO2019008737A1 (ja) 内視鏡用トレーニングシステム
US20220280238A1 (en) Robot-assisted setup for a surgical robotic system
US20200117176A1 (en) Robot arm controller and robot arm system
KR102720969B1 (ko) 원격조작 의료 시스템에서 기구의 스크린상 식별정보를 렌더링하기 위한 시스템 및 방법
CN116568235A (zh) 用于远程指导的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP