WO2019008686A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2019008686A1
WO2019008686A1 PCT/JP2017/024550 JP2017024550W WO2019008686A1 WO 2019008686 A1 WO2019008686 A1 WO 2019008686A1 JP 2017024550 W JP2017024550 W JP 2017024550W WO 2019008686 A1 WO2019008686 A1 WO 2019008686A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
fuel cell
hot water
tank
Prior art date
Application number
PCT/JP2017/024550
Other languages
French (fr)
Japanese (ja)
Inventor
竹本 真典
純 迫田
大視 筒井
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to PCT/JP2017/024550 priority Critical patent/WO2019008686A1/en
Publication of WO2019008686A1 publication Critical patent/WO2019008686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system used in a building.
  • a fuel cell that uses hydrocarbon fuel such as city gas as a raw fuel is a cogeneration system in which the energy of the fuel is converted into electricity and heat.
  • hydrocarbon fuel such as city gas
  • the electric mains thermal slave operation according to the power load is fundamental.
  • the efficiency of the fuel cell (total efficiency) is determined by the sum of the power generation efficiency and the heat recovery efficiency. Therefore, if the off-gas waste heat generated with the power generation can not be used well, the overall efficiency will be reduced.
  • the fuel cell generates hydrogen gas by the steam reforming reaction of the raw fuel, and supplies the hydrogen gas to the cell stack to generate power.
  • the reforming water used for steam reforming reaction is ensured by condensing the water
  • Patent No. 5593948 (FIG. 5)
  • a hot water circulation system is known as a hot water supply system for a building.
  • the hot water circulation facility is a facility provided with a hot water tank whose main heat source is a steam boiler or the like, and a hot water circulation pipe that sends hot water in the hot water tank to a hot water demand point.
  • a hot water circulation pipe that sends hot water in the hot water tank to a hot water demand point.
  • An auxiliary device (a pressure reducing valve, a pump, etc.) for preferentially using hot water on the fuel cell side is required.
  • the efficiency of the entire system may be reduced.
  • An auxiliary device (temperature sensor and shutoff valve) is required to shut off the water supply when the hot water in the fuel cell side runs out.
  • the fuel cell is selected as a distributed power source based on the power generation output. Therefore, the amount of waste heat of the fuel cell, that is, the heat output, is not large, and there is a possibility that the hot water shortage occurs frequently in the facility having a large demand for hot water.
  • the problem to be solved by the present invention is a fuel cell system that achieves both heat recovery of the fuel cell and water self-sustaining with a simple configuration that can utilize the existing facility environment without the need for the above-mentioned auxiliary equipment. To provide.
  • the present invention has been made to solve the above problems, and the invention according to claim 1 is a hot water tank which is installed on the ground or underground floor and to which normal temperature water is supplied via a water supply pipe and A fuel cell system used in a building having as a building facility a main heat source unit capable of heating stored water in the hot water tank, the fuel cell capable of supplying power into the building, the water supply pipe A preheating tank disposed in the middle, and the offgas can be cooled while preheating the stored water in the preheating tank by heat recovery of the offgas of the fuel cell, and the replenishment is performed via the water supply pipe
  • the fuel cell system is characterized in that the normal temperature water used is used as a heat source for cooling the off gas in the preheating tank, and the condensed water generated by the cooling of the off gas is reused in the fuel cell.
  • the water supply pipe to the hot water tank is provided with a preheating tank, and the stored water in the preheating tank and thus the water supply to the hot water tank is preheated by the waste heat of the fuel cell
  • the off-gas of the battery can be cooled to achieve water self-sustaining.
  • the hot water on the fuel cell side is preferentially used, or water supply is interrupted when hot water on the fuel cell side runs out.
  • the fuel cell system has a simple structure.
  • an existing building installation of a building can also be used as a warm water tank, a main heat source machine, and a water supply pipe, and a fuel cell and a preheating tank may be newly built in the existing building installation.
  • the fuel cell has a reformer, a cell stack, and an off-gas heat exchanger, and the off-gas heat exchanger exchanges the off-gas with a dew point by heat exchange between the off-gas and the coolant. It cools below, condenses the moisture in the off gas, re-supplys the condensed water to the reformer, and contains hydrogen by subjecting the raw fuel and the condensed water to a steam reforming reaction in the reformer
  • water in the off-gas heat exchanger, water is self-sustaining, which can be operated without makeup water from the outside by condensing the water in the off-gas and re-supplying the condensed water to the reformer. It becomes possible fuel cell system.
  • the invention according to claim 3 circulates the cooling fluid between a preheating heat exchanger for preheating the stored water in the preheating tank, the off gas heat exchanger and the preheating heat exchanger.
  • the coolant is circulated between the off-gas heat exchanger on the fuel cell side and the preheating heat exchanger in the preheating tank. Then, the off gas heat exchanger exchanges heat between the off gas and the coolant to heat the coolant while cooling the off gas, and the heat of the heated coolant causes the inside of the preheating tank in the preheating heat exchanger. Storage water can be heated.
  • the invention according to claim 4 is the fuel cell system according to any one of claims 1 to 3, wherein the fuel cell is a solid oxide fuel cell.
  • Fuel cells include, in addition to solid oxide form (SOFC), phosphoric acid form (PAFC) and solid polymer form (PEFC).
  • SOFC is used.
  • the SOFC has a high-temperature operating temperature of 650 to 800 ° C and a medium-temperature operating temperature of 450 to 650 ° C. Therefore, from the viewpoint of cell stack protection, the electric main heat secondary does not stop after startup / heating. It is basic to drive. Therefore, high overall efficiency can be maintained by enabling recovery of offgas waste heat that continues to be generated.
  • SOFCs have higher power generation efficiency than PAFCs and PEFCs, so the off-gas waste heat quantity is small when compared at the same power generation output, and there is a possibility that they can not meet the hot water demand of buildings alone.
  • off-gas waste heat for preheating the water supply to the hot water tank capable of heating the stored water with the main heat source unit, it is possible to construct a system that simultaneously satisfies the power demand of the building and the hot water demand.
  • the building equipment is a hot water supply circulation pipe connected to the hot water tank so as to be able to circulate the hot water stored in the hot water tank; and the hot water supply pipe from the main pipe
  • the fuel cell system according to any one of claims 1 to 4, further comprising a branch pipe for sending hot water to a demand point.
  • the hot water demand point via the branch pipe branched from the circulation pipe Hot water can be taken out quickly.
  • FIG. 1 is a schematic view showing a fuel cell system according to an embodiment of the present invention.
  • FIG. 1 is a schematic view showing a fuel cell system 1 according to an embodiment of the present invention.
  • the fuel cell system 1 of the present embodiment is used as part of building equipment in a building 2 such as a public facility, an industrial facility, or a housing facility.
  • the building 2 is not particularly limited in its hierarchy, but is typically a low-rise building (1-2 hierarchy) or a middle-rise building (3-5 hierarchy). However, depending on the case, it may be a high-rise building (more than six levels). In the example of illustration, it is set as the building 2 of the basement 1 floor and 3 floors above the ground.
  • the building equipment refers to devices and devices integrated with the building 2 to perform various functions that are necessary for people to live their lives.
  • the building equipment may include various equipment (for example, boiler equipment and communication equipment etc.) according to the needs of the building user, in addition to the equipment etc. defined in Building Standard Law Article 2, Item 3.
  • the building 2 of the present embodiment is, as building equipment, a water receiving tank 3 and a hot water tank 4 that can be supplied with water from a water supply source, a preheating tank 5 provided in a water supply system to the hot water tank 4, and storage in the hot water tank 4
  • a main heat source 6 capable of heating water
  • hot water circulation piping 8 for circulating hot water stored in the hot water tank 4 to each floor
  • a water supply pipe 9 for supplying normal temperature water stored in the water receiving tank 3 to each floor.
  • the fuel cell 7 and the preheating tank 5 constitute the main part of the fuel cell system 1.
  • the water receiving tank 3, the hot water tank 4 and the preheating tank 5 are mounted on the floor of the basement floor (here, the first floor B1 in this case) in the present embodiment.
  • one or more of the tanks 3 to 5 may be installed on the ground (outdoor or indoor), as the case may be.
  • these tanks 3 to 5 are mounted on the ground (typically, the first floor F1).
  • the water receiving tank 3 is an open tank (a tank opened to the atmosphere) in the present embodiment. Tap water is supplied and stored in the water receiving tank 3 via the water supply pipe (first water supply pipe) 10. In the present embodiment, the presence or absence of water supply to the water receiving tank 3 is switched using the constant water level valve (ball tap) 11, and the inside of the water receiving tank 3 is maintained at a predetermined water level.
  • the hot water tank 4 is an open tank in this embodiment. Tap water is supplied and stored in the hot water tank 4 via the water supply pipe (second water supply pipe) 12. In the present embodiment, the presence or absence of water supply to the hot water tank 4 is switched using the constant water level valve (ball tap) 13, and the inside of the hot water tank 4 is maintained at a predetermined water level.
  • the first water supply pipe 10 to the water receiving tank 3 and the second water supply pipe 12 to the hot water tank 4 are formed as a common pipe line 14 on the upstream side.
  • the water from the water distribution pipe (not shown) can be supplied to the water receiving tank 3 by the first water supply pipe 10 through the common pipeline 14, and to the hot water tank 4 by the second water supply pipe 12.
  • a distribution pipe means the pipe which sends water from a distribution station to a water supply area
  • the water supply pipes 10 and 12 mean a pipe which branches from a distribution pipe and supplies water to consumers such as each household.
  • Tap water (normally in the range of 5 to 30 ° C. in season) is supplied from the water distribution pipe to the water supply pipes 10, 12.
  • the water supply pipes 10 and 12 are not provided with a pump, if the constant water level valves 11 and 13 are opened by the water pressure from the water distribution pipe, the water supply pipes 10 and 12 to the respective tanks 3 and 4 It can be watered.
  • a water pump may be provided in the common pipeline 14 (or the water supply pipes 10, 12).
  • the stored water in the hot water tank 4 can be heated by the main heat source unit 6.
  • the water supplied to the hot water tank 4 is preheated using the off-gas waste heat of the fuel cell 7.
  • the machine 6 can maintain the water temperature in the warm water tank 4 as desired, and has a heating capacity that does not affect the warm water supply into the building 2.
  • the main heat source unit 6 has a heat output that can meet the hot water demand of the building 2 alone.
  • the main heat source unit 6 is not particularly limited, but in the present embodiment, it is a steam boiler 6A.
  • a steam heater heat exchanger for steam from the steam boiler 6A and stored water in the hot water tank 4
  • steam from the steam boiler 6A is supplied to the steam heater 15.
  • the stored water in the hot water tank 4 is heated.
  • the hot water stored in the hot water tank 4 is circulated to the floors of the building 2 through the hot water supply circulation pipe 8. Therefore, from the viewpoint of hygiene such as prevention of Legionella contamination of circulating hot water, it is desirable to set the set temperature at the time of heating by the steam heater 15 to 60 ° C. or higher.
  • the preheating tank 5 is provided in the middle of the water supply pipe 12 to the hot water tank 4.
  • the preheating tank 5 is a closed tank (a tank which is not open to the atmosphere) in the present embodiment.
  • the preheating tank 5 is typically installed on the same floor as the hot water tank 4. However, if the piping from the water supply source to the hot water tank 4 via the preheating tank 5 does not have an open part to the atmosphere, the water pressure of the water supply source can supply water to the hot water tank 4, so the preheating tank 5 and the hot water tank 4 are on different floors It can also be installed. For example, while the preheating tank 5 may be installed on the ground floor, the hot water tank 4 may be installed on the basement floor.
  • the preheating tank 5 is connected to a water supply source (water distribution pipe) via the upstream water supply pipe 12A, and is connected to the hot water tank 4 via the downstream water supply pipe 12B. Therefore, water from the water supply source fills the preheating tank 5 via the upstream water supply pipe 12A, and can be supplied to the hot water tank 4 via the downstream water supply pipe 12B.
  • the hot water tank 4 is provided with the constant water level valve 13. By opening the constant water level valve 13, the water from the water supply source can be divided into the upstream water supply pipe 12A, the preheating tank 5, and the downstream water supply pipe. It can be supplied to the hot water tank 4 via 12B. That is, by opening the constant water level valve 13, it is possible to supply water from the water supply source to the preheating tank 5 from the water supply source while supplying water from the preheating tank 5 to the hot water tank 4.
  • the stored water in the preheating tank 5 is heated using the off-gas waste heat of the fuel cell 7. At this time, temperature stratification (higher temperature in the upper part and lower temperature in the lower part) is formed in the preheating tank 5 .
  • temperature stratification higher temperature in the upper part and lower temperature in the lower part
  • the upstream side water supply pipe 12A from the water supply source is connected to the lower part of the preheating tank 5 as shown in the illustrated example, and the upper side is the downstream side water supply pipe 12B to the hot water tank 4 Are preferably connected.
  • the upstream water supply pipe 12A and the downstream water supply pipe 12B are optionally connected by a bypass pipe 12C.
  • the inlet valve 16 is provided in the upstream water supply pipe 12A downstream of the branch with the bypass pipe 12C, while the downstream water supply pipe 12B is provided with a junction with the bypass pipe 12C.
  • An outlet valve 17 is provided upstream.
  • a bypass valve 18 is provided in the bypass pipe 12C.
  • the inlet valve 16, the outlet valve 17 and the bypass valve 18 are constituted by manual valves in this embodiment.
  • the inlet valve 16 and the outlet valve 17 are maintained in the open state. Therefore, the water from the water supply source is supplied to the preheating tank 5 via the upstream water supply pipe 12A without via the bypass pipe 12C, and the water in the preheating tank 5 is supplied to the hot water tank via the downstream water supply pipe 12B. It is supplied to 4.
  • the bypass valve 18 is opened while the inlet valve 16 and the outlet valve 17 are closed, and water from the water supply source is transferred to the hot water tank 4 via the bypass pipe 12C without passing through the preheating tank 5 It is possible to supply.
  • the bypass valve 18 may be opened while the inlet valve 16 and the outlet valve 17 may be closed.
  • the hot water tank 4 can be supplied with water directly from the water supply source, and the main heat source unit 6 can produce hot water in the hot water tank 4, so that hot water to the hot water demand point can be prevented. .
  • the stored water in the preheating tank 5 can be heated using the off-gas waste heat of the fuel cell 7. Therefore, in the present embodiment, the off-gas heat exchanger 21 for exchanging heat between the off-gas of the fuel cell 7 (more specifically, the fuel cell main body 20 described later) and the coolant thereof, and 21 heating by the off-gas heat exchanger A preheating heat exchanger 22 for heating the stored water in the preheating tank 5 with the cooling fluid, and a circulating fluid circuit 19 for circulating the cooling fluid between the off gas heat exchanger 21 and the preheating heat exchanger 22; Prepare.
  • the coolant circulating in the circulating fluid circuit 19 is water here, but may be another liquid (for example, antifreeze containing ethylene glycol as a main component).
  • the fuel cell 7 includes, in addition to the off-gas heat exchanger 21, a fuel cell body 20, a power conditioner (not shown), various accessories (not shown), and the like.
  • the fuel cell main body 20 includes a reformer (not shown), a cell stack (not shown) and the like.
  • the fuel cell main body 20 is configured as a power generation module in which main devices used for power generation are accommodated in a heat insulation container, and the main devices include (I) an evaporation unit, a mixing unit, and a reforming unit.
  • a reformer (II) a cell stack composed of a plurality of power generation cells; (III) a combustor for burning the anode off gas and the cathode off gas; (IV) an air preheater for heat exchange between the combustion off gas and the anode air.
  • a raw fuel (city gas) G, air A, and water (reforming water) W are supplied to the fuel cell main body 20. Then, a reformed gas is produced by causing the raw fuel (city gas mainly containing methane gas) G and water (steam) W to undergo a steam reforming reaction to produce a reformed gas containing hydrogen, which is contained in the reformed gas.
  • the hydrogen and oxygen in the air are chemically reacted in the cell stack to generate electricity.
  • an anode off gas and a cathode off gas are generated as the power is generated, but these gases are supplied to the combustor and then discharged as a combustion off gas.
  • the combustion off gas is passed through an air preheater disposed upstream of the cell stack and used to preheat cathode air.
  • the cell output of the cell stack is fed into the building 2 after being conditioned by the power conditioner.
  • the power conditioner is a DC / DC converter (boost circuit) that boosts the DC voltage output from the cell stack, and a system that converts the DC voltage boosted by the DC / DC converter into an AC voltage synchronized with the system power supply. It has an interconnection inverter (voltage conversion circuit) and an output current control unit (output control circuit) that controls the output current of the cell stack.
  • the grid-connected inverter is electrically connected to the switchboard of the commercial power system installed in the building 2.
  • the grid interconnection inverter and the switchboard can switch between parallel and parallel connection via a grid interconnection switch.
  • a grid power supply and a plurality of distribution boards are electrically connected to the switchboard.
  • the power distribution board is electrically connected to load devices such as lighting devices, power devices, and outlets used on each floor of the building.
  • the type of fuel cell main body 20 is not particularly limited, but is preferably in the form of solid oxide (SOFC).
  • SOFC has a high-temperature operating temperature of 650 to 800 ° C and a medium-temperature operating temperature of 450 to 650 ° C. Therefore, from the viewpoint of cell stack protection, the electric main heat secondary does not stop after startup / heating. It is basic to drive. Therefore, high overall efficiency can be maintained by enabling recovery of offgas waste heat that continues to be generated.
  • SOFC solid oxide form
  • PAFC phosphoric acid form
  • PEFC solid polymer form
  • the off-gas heat exchanger 21 is an indirect heat exchanger that exchanges heat without mixing the off-gas from the fuel cell body 20 and the coolant thereof. Therefore, the off gas is passed from the fuel cell main body 20 to the off gas heat exchanger 21 through the off gas pipe 23, and the circulating fluid in the circulating fluid circuit 19 is passed as a coolant for the off gas. As a result, in the off-gas heat exchanger 21, the off-gas is cooled by the circulating coolant, and the water (water vapor) in the off-gas is condensed. On the other hand, the circulating coolant in the circulating fluid circuit 19 is heated by exchanging heat with the off gas in the off gas heat exchanger 21.
  • the off-gas to be subjected to heat exchange in the off-gas heat exchanger 21 is an off-gas containing water vapor generated in the fuel cell main body 20.
  • anode off gas discharged from the anode side of the cell stack (ii) cathode off gas discharged from the cathode side of the cell stack; (iii) combustion off gas discharged from the combustor
  • One or more can be the target of heat exchange.
  • the off gas passed through the off gas heat exchanger 21 may be in a state after partial heat recovery by an air preheater or the like.
  • the anode off gas contains water vapor because a chemical reaction between hydrogen and oxygen takes place. Since the air supplied to the cathode side of the SOFC cell stack contains atmospheric water vapor, the cathode off gas also contains water vapor.
  • the combustion off gas includes the water vapor derived from the anode off gas and the cathode off gas, as well as the water vapor generated by the combustion reaction of the residual hydrogen in the anode off gas and the residual oxygen in the cathode off gas. Therefore, even when any off-gas is subjected to heat exchange, condensed water can be obtained by cooling to a dew point temperature or lower.
  • a separator tank 24 is provided on the outlet side of the off gas from the off gas heat exchanger 21 so that the gas and liquid of the off gas passed through the off gas heat exchanger 21 can be separated. Then, the condensed water after gas-liquid separation can be re-supplied to the reformer of the fuel cell main body 20 via the supply pump 25 as reformed water W to the fuel cell main body 20. As a result, the fuel cell 7 is capable of water self-sustaining operation capable of continuing power generation without replenishment water from the outside.
  • the anode off gas and the cathode off gas after gas-liquid separation are supplied to the combustor, and the combustion off gas after gas-liquid separation is discharged to the outside.
  • the raw fuel G and the water vapor are mixed in the mixing unit. Then, the mixed gas is supplied to the catalyst layer of the reforming unit to generate a reformed gas containing hydrogen.
  • the reformed gas obtained in the reforming section is sent to the anode side of the cell stack as an anode fuel.
  • the off-gas heat exchanger 21 can perform the gas-liquid separation of the off-gas in the off-gas heat exchanger 21 instead of the separator tank by devising the structure and the flow of the fluid.
  • a branch line for exhaust is connected to the outlet side of the off gas from the off gas heat exchanger 21.
  • the preheating heat exchanger 22 is disposed in the preheating tank 5 and performs indirect heat exchanger (for example, heat transfer) for exchanging heat without mixing the stored water in the preheating tank 5 with the circulating coolant from the off-gas heat exchanger 21. Coil).
  • the preheating heat exchanger 22 is disposed so as to be able to heat at least a lower region (for example, a height region of 30 to 50% from the bottom) into which the normal temperature water flows in the inner region of the preheating tank 5. As a result, in the preheating heat exchanger 22, the stored water in the preheating tank 5 is heated, while the circulating coolant in the circulating fluid circuit 19 is cooled.
  • the circulating fluid circuit 19 circulates the coolant between the off-gas heat exchanger 21 and the preheating heat exchanger 22. Specifically, the cooling fluid is supplied from the preheating heat exchanger 22 to the off gas heat exchanger 21 via the cooling fluid feed passage 19A, and the cooling from the off gas heat exchanger 21 to the preheating heat exchanger 22 is performed. The coolant is returned through the liquid return path 19B. Then, the coolant is circulated between the off-gas heat exchanger 21 and the preheating heat exchanger 22 by operating the circulation pump 26 provided in the coolant feed passage 19A (or the coolant return passage 19B). it can.
  • a radiator 27 and a circulation pump 26 are provided in order from the heat exchanger 22 for preheating to the off gas heat exchanger 21 in the coolant delivery passage 19A.
  • the circulation pump 26 may be provided in the cooling fluid return passage 19B instead of being provided in the cooling fluid feed passage 19A.
  • the radiator 27 is a heat exchanger for the coolant to the off-gas heat exchanger 21 and the ventilation by the fan 28.
  • the coolant supplied to the off-gas heat exchanger 21 can be cooled with the open air.
  • the off gas heat exchanger 21 is set by setting the temperature of the coolant to the off gas heat exchanger 21 below the dew point temperature of the off gas by the cooling action of the radiator 27.
  • the water contained in the off-gas can be condensed in order to achieve water independence of the fuel cell 7.
  • the radiator 27 is preferably adjustable in ventilation rate.
  • the drive motor of the fan 28 is a DC motor, and a plurality of radiators 27 are arranged in the coolant feed path 19A (an example of arrangement of only one is described in FIG. 1).
  • the fan 28 is driven at a constant speed.
  • the drive motor of the fan 28 may be a brushless DC motor, and this DC motor may be configured to perform variable speed control by pulse width modulation (PWM).
  • PWM pulse width modulation
  • the amount of ventilation can be adjusted by changing the duty ratio of the drive voltage pulse of the DC motor while the fan 28 is operating.
  • the drive motor of the fan 28 may be an AC motor, and this AC motor may be configured to perform variable voltage variable frequency control (VVVF control) by an inverter device. While the fan 28 is operating, the amount of ventilation can be adjusted by changing the drive frequency or drive voltage of the AC motor.
  • VVVF control variable voltage variable frequency control
  • the circulation pump 26 is preferably configured to be able to adjust the flow rate of the coolant.
  • the drive motor of the circulation pump 26 is a brushless DC motor, and this DC motor is configured to perform variable speed control by pulse width modulation (PWM).
  • PWM pulse width modulation
  • the circulation flow rate in the circulation fluid circuit 19 can be adjusted by changing the duty ratio of the drive voltage pulse of the DC motor while the circulation pump 26 is operating.
  • the drive motor of the circulation pump 26 may be an AC motor, and this AC motor may be configured to perform variable voltage variable frequency control (VVVF control) by an inverter device.
  • VVVF control variable voltage variable frequency control
  • the circulation flow rate in the circulation fluid circuit 19 can be adjusted by changing the drive frequency or drive voltage of the AC motor while the circulation pump 26 is in operation.
  • the coolant return path 19 B from the off gas heat exchanger 21 to the preheating heat exchanger 22 or the off gas from the preheating heat exchanger 22 A proportional control valve is provided in the coolant feed passage 19A to the heat exchanger 21.
  • the circulation flow rate in the circulation fluid circuit 19 can be adjusted by adjusting the opening degree of the proportional control valve.
  • a first temperature sensor 30 is provided on the outlet side of the radiator 27, and in the coolant return passage 19B, a second temperature sensor 31 is provided.
  • the first temperature sensor 30 detects the temperature of the coolant on the inlet side of the off gas heat exchanger 21, and the second temperature sensor 31 detects the temperature of the coolant on the outlet side of the off gas heat exchanger 21.
  • the circulation pump 26 When the fuel cell 7 is in operation, the circulation pump 26 is operated. As a result, the coolant is circulated between the off-gas heat exchanger 21 and the preheating heat exchanger 22.
  • the off-gas heat exchanger 21 In the off-gas heat exchanger 21, the off-gas from the fuel cell main body 20 is cooled, while the coolant for the preheating heat exchanger 22 is heated.
  • the preheating heat exchanger 22 the stored water in the preheating tank 5 is heated by the cooling fluid from the off gas heat exchanger 21. In this manner, off-gas waste heat of the fuel cell 7 can be used to heat the stored water in the preheating tank 5 to recover heat.
  • the number of driven fans 28 in the plurality of radiators 27 increases or decreases so that the temperature detected by the first temperature sensor 30 is maintained in the first target temperature range (for example, a setting range of 35 to 40.degree. C.). Be done.
  • feed forward control is used to increase or decrease the number of driving.
  • the detected temperature of the first temperature sensor 30 becomes equal to or higher than the upper limit set value (for example, 40 ° C.) and the first set time (for example, 10 seconds) continues in that state, while one unit is activated,
  • the temperature detected by the temperature sensor 30 becomes equal to or lower than the lower limit set value (for example, 35 ° C.), and one unit is stopped when the second set time (for example, 10 seconds) elapses in that state.
  • the temperature of the coolant can be prevented from rising excessively, and water self-sustaining can be reliably achieved. That is, the off gas can be cooled to the dew point temperature or less in the off gas heat exchanger 21 to condense the moisture in the off gas, and the condensed water can be resupplied to the reformer.
  • the drive motor output of the circulation pump 26, that is, the circulation flow rate, so as to maintain the temperature detected by the second temperature sensor 31 at the second target temperature (for example, a set value selected from 60 to 75 ° C.) is adjusted.
  • the second target temperature for example, a set value selected from 60 to 75 ° C.
  • feedback control based on a velocity type PID algorithm is used.
  • the hot water in the hot water tank 4 is supplied to one or more hot water demand points in the building 2 and made available.
  • a hot water supply circulation pipe 8 for circulating the hot water stored in the hot water tank 4 is laid in the building 2, and the hot water can be taken out from the hot water outlet 32 provided in the hot water supply circulation pipe 8 It is assumed.
  • the hot water supply circulation pipe 8 is a loop pipe for circulating the hot water in the hot water tank 4 to each floor of the building 2.
  • the outgoing route 8A is laid from the underground warm water tank 4 toward the top floor, and the return route 8B is laid from the top floor toward the warm water tank 4.
  • a circulation pump 33 which doubles as a pumping pump is provided at the outlet from the hot water tank 4 in the outward path 8A.
  • the hot water tank 4 is typically in the form of a substantially rectangular box, and the hot water supply port to the forward path 8A of the hot water supply circulation pipe 8 and the return port from the return path 8B are provided diagonally. preferable. Further, in the hot water tank 4, it is preferable that the water supply port from the water supply pipe 12 and the hot water outlet from the return path 8B of the hot water supply circulation pipe 8 be disposed adjacent to each other. Thus, it is possible to mix the makeup water from the water supply source through the preheating tank 5 and the hot water from the return path 8B of the hot water supply circulation pipe 8.
  • a hot water outlet 32 to a hot water demand point is provided on each floor (or desired floor) of the building 2.
  • the branch pipe 8X is provided, which uses the hot water supply circulation pipe 8 as a main pipe and sends hot water from the main pipe to a hot water demand point.
  • the branch pipe 8X is branched from the forward passage 8A of the main pipe. That is, the branch pipe 8 ⁇ / b> X is a construction facility associated with the hot water supply circulation pipe 8.
  • only one branch pipe 8X is shown on each floor, but a plurality of branch pipes 8X may be provided. Also, if desired, one branch pipe 8X may be branched from one branch pipe 8X.
  • Each branch pipe 8X is a pipe for supplying the hot water from the trunk pipe (hot water supply circulation pipe 8) to the hot water discharge portion 32.
  • the hot water outlet 32 is, for example, a mixing plug 32A provided in a wash basin, a bathroom, a kitchen or the like.
  • the water supply piping 9 of cold water (normal temperature water) is separately laid from the water receiving tank 3 to each floor. Then, it is possible to supply hot water from the hot water tank 4 via the main pipe 8A and the branch pipe 8X and cold water from the water receiving tank 3 via the water supply pipe 9 to the mixing plugs 32A on each floor, and the mixing ratio
  • the hot water of desired temperature can be discharged by adjusting.
  • a water pump 34 is provided on the water receiving pipe 3 side of the water supply pipe 9. When the mixing valve 32A is opened in a state where the water pump 34 is operated, the water from the water receiving tank 3 is discharged. It can be done.
  • the fuel cell 7 performs electric main heat secondary operation which constantly generates power while connecting to the grid, and according to the power demand in the building 2, the power generation output of the fuel cell 7 (cell output of the cell stack as power conditioner The output adjusted by) is adjusted. That is, the system power supply is used as a peak load power supply while using the fuel cell 7 as a base load power supply.
  • the circulation pump 26 of the circulating fluid circuit 19 between the off-gas heat exchanger 21 and the preheating heat exchanger 22 operates.
  • the number of driven fans 28 in the plurality of radiators 27 is increased or decreased and the detected temperature of the second temperature sensor 31 is set to the second target so that the temperature detected by the first temperature sensor 30 is maintained in the first target temperature range.
  • the drive motor output of the circulation pump 26 is automatically controlled to maintain the temperature.
  • the off-gas heat exchanger 21 the off-gas can be cooled to the dew point temperature or lower, and reliable and stable water self-sustaining can be achieved.
  • the stored water in the preheating tank 5 can be heated by the circulating coolant at a predetermined temperature (second target temperature).
  • the stored water in the preheating tank 5 is heated up to the second target temperature by heat exchange in the preheating heat exchanger 22.
  • the second target temperature is set to a temperature equal to or lower than the set temperature (the heating target temperature by the main heat source unit 6) in the hot water tank 4.
  • Water of a predetermined water level is stored in the hot water tank 4 by controlling the water supply by the constant water level valve 13.
  • the preheating tank 5 is provided in the water supply pipe 12 to the hot water tank 4, and the off gas waste heat of the fuel cell 7 is recovered, whereby the preheated hot water can be supplied to the hot water tank 4.
  • the stored water in the hot water tank 4 is heated to the set temperature by the main heat source unit 6 and maintained.
  • the circulation pump 33 of the hot water supply circulation pipe 8 continues to operate. Therefore, if the desired mixing stopper 32A on the desired floor is opened, hot water can be poured out immediately. At this time, by mixing normal temperature water from the water receiving tank 3 via the water supply pipe 9 with the hot water from the hot water tank 4, hot water can be discharged at a desired temperature.
  • the off gas waste heat of the fuel cell 7 is used for preheating the water supply to the hot water tank 4 to recover the heat, so that the off gas can be cooled while preheating the stored water in the preheating tank 5. . If this point is demonstrated concretely, the following case is assumed.
  • the off gas can be cooled to the dew point or less only by heat recovery in the preheating tank 5. In this case, in the circulating fluid circuit 19, the fan 28 of the radiator 27 may be stopped.
  • the water supplied to the hot water tank 4 can be preheated with the waste heat of the fuel cell 7, and the stored water in the hot water tank 4 can be heated by the main heat source machine 6. Accordingly, it is possible to obtain warm water that preferentially uses the waste heat of the fuel cell 7 with a simple configuration.
  • the existing building equipment of the building 2 can be used as the hot water tank 4, the main heat source machine 6 and the water supply pipe 12, and the fuel cell 7 and the preheating tank 5 are newly constructed in the existing building equipment Is also easy.
  • the fuel cell system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate.
  • a building 2 using the fuel cell system 1 is (a) installed on the ground or underground floor, and a warm water tank 4 to which normal temperature water is supplied via a water supply pipe 12; (b) a warm water tank
  • the main heat source unit 6 capable of heating the stored water in 4 is provided as a building facility, and the fuel cell system 1 can supply (c) a fuel cell 7 capable of supplying power into the building 2; (d) water supply (E) cooling the off gas while preheating the stored water in the preheating tank 5 by recovering the heat of the off gas of the fuel cell 7 (f) )
  • If normal temperature water supplied via the water supply pipe 12 is used as a heat source for cooling off gas in the preheating tank 5 and (g) condensed water generated by cooling off gas is reused in the fuel cell 7
  • the other configurations can be changed as appropriate.
  • the hot water tank 4 is constituted by the open tank, but in some cases it may be constituted by the closed tank. In that case, the installation of the constant water level valve 13 in the hot water tank 4 is unnecessary, and the hot water for the hot water supply is supplied to the hot water tank 4 via the preheating tank 5 along with the hot water at the hot water demand point.
  • the warm water tank 4 was maintained at the predetermined water level by the constant water level valve 13, based on the detection signal of the water level sensor provided in the warm water tank 4, the feedwater valve provided in the water supply pipe 12 is automatically controlled. You may This applies not only to the hot water tank 4 but also to the water receiving tank 3.
  • the preheating tank 5 was made into the closed type tank, you may be made into an open type tank depending on the case.
  • the preheating tank 5 is provided with a constant water level valve or the upstream to the preheating tank 5 to maintain the water level in the preheating tank 5 at the set water level.
  • the water supply valve provided in the side water supply pipe 12A may be automatically controlled.
  • the preheating heat exchanger 22 is installed in the preheating tank 5 to perform indirect heat exchange between the circulating coolant in the circulating fluid circuit 19 and the stored water in the preheating tank 5.
  • the installation of the preheating heat exchanger 22 may be omitted, and the stored water itself in the preheating tank 5 may be circulated to and from the off-gas heat exchanger 21. That is, the stored water in the preheating tank 5 is supplied to the off-gas heat exchanger 21 as a coolant for the off-gas via the coolant feed path 19A, and is heated using the off-gas waste heat in the off-gas heat exchanger 21
  • the circulation to the preheating tank 5 may be repeated via the coolant return path 19B.
  • the receiving water tank 3 was installed in the building 2, you may install it in the outdoors (ground) adjacent to the building 2 depending on the case.
  • the first basement floor B1 is shown as the basement, but the second basement floor may be provided.
  • the receiving tank 3 was installed in the building 2, and water was supplied to each floor from the receiving tank 3, depending on the case, installation of the receiving tank 3 may be abbreviate
  • Water may be supplied by a system or a direct compression system.
  • the direct pressure direct pressure system is applied to buildings up to about 5 stories above the ground, and water is supplied to each floor only by the water pressure of the distribution pipe.
  • the direct compression method is applied to buildings up to about 10 stories above the ground, and water is supplied to each floor while compensating for the insufficient pressure only by the water pressure of the distribution pipe with a booster pump provided in the middle of the water supply pipe.
  • the main heat-source equipment 6 was comprised from the steam boiler 6A, you may be comprised from an electric heater, a burner, heat pump etc. depending on the case.

Abstract

This fuel cell system (1) is used in a building having, as building equipment; a hot water tank (4) which is installed on the ground or on a basement floor and replenished with room-temperature water via a water supply pipe (12); and a main heat source machine (6) that can heat the stored water inside the hot water tank (4). The fuel cell system (1) is provided with a fuel cell (7) that can supply power inside the building (2), and a preheating tank (5) disposed midway along the water supply pipe (12). In the preheating tank (5), heat recovery from an off gas of the fuel cell (7) causes the stored water to be preheated and the off gas to be cooled. The room-temperature water replenished via the water supply pipe (12) is used as the heat source for cooling the off gas in the preheating tank (5). Condensate water generated by cooling the off gas is reused in the fuel cell (7).

Description

燃料電池システムFuel cell system
 本発明は、建築物で利用される燃料電池システムに関するものである。 The present invention relates to a fuel cell system used in a building.
 都市ガス等の炭化水素燃料を原燃料とする燃料電池は、燃料のエネルギーが電気と熱に変換されるコジェネレーション装置である。燃料電池を事業所や各種施設などの分散電源として使用する場合には、電力負荷に応じた電主熱従運転が基本となる。燃料電池の効率(総合効率)は、発電効率と熱回収効率との合計によって決まる。そのため、発電に伴って発生するオフガス廃熱をうまく利用できなければ、総合効率の低下を招くことになる。 A fuel cell that uses hydrocarbon fuel such as city gas as a raw fuel is a cogeneration system in which the energy of the fuel is converted into electricity and heat. When the fuel cell is used as a distributed power source for business establishments and various facilities, the electric mains thermal slave operation according to the power load is fundamental. The efficiency of the fuel cell (total efficiency) is determined by the sum of the power generation efficiency and the heat recovery efficiency. Therefore, if the off-gas waste heat generated with the power generation can not be used well, the overall efficiency will be reduced.
 また、燃料電池は、原燃料の水蒸気改質反応によって水素ガスを生成し、その水素ガスをセルスタックに供給して発電している。この際、水蒸気改質反応に使用する改質水は、下記特許文献1に開示されるように、オフガス中の水分を凝縮させることにより確保される(水自立)。そのため、オフガスを露点温度以下に冷却し続けることができなければ、燃料電池の発電を継続することができない。 In addition, the fuel cell generates hydrogen gas by the steam reforming reaction of the raw fuel, and supplies the hydrogen gas to the cell stack to generate power. Under the present circumstances, the reforming water used for steam reforming reaction is ensured by condensing the water | moisture content in off-gas, as disclosed by following patent document 1 (water self-supporting). Therefore, if the off gas can not be cooled to the dew point temperature or less, the fuel cell can not continue the power generation.
 このように、燃料電池をコジェネレーション装置として成立させるためには、事業所や各種施設などの様々な熱利用形態に合わせて、オフガス廃熱の熱利用と冷却を同時に確立する必要がある。 As described above, in order to establish a fuel cell as a cogeneration system, it is necessary to simultaneously establish heat utilization and cooling of offgas waste heat in accordance with various heat utilization forms of business establishments and various facilities.
特許第5593948号公報(図5)Patent No. 5593948 (FIG. 5)
 建築物の給湯設備として、たとえば即湯循環設備が知られている。即湯循環設備は、蒸気ボイラ等を主熱源機とする温水タンクと、この温水タンク内の温水を温水需要箇所に送る給湯循環配管とを備えた設備である。そして、このような既存の給湯設備が存在する建築物において、後から燃料電池を設置したい場合がある。すなわち、既存の給湯設備を活用しながら、燃料電池の熱回収を可能にし、更には燃料電池の水自立を成立させたい場合がある。 For example, a hot water circulation system is known as a hot water supply system for a building. The hot water circulation facility is a facility provided with a hot water tank whose main heat source is a steam boiler or the like, and a hot water circulation pipe that sends hot water in the hot water tank to a hot water demand point. And in a building where such existing hot-water supply equipment exists, it may be desirable to install a fuel cell later. That is, there are cases where it is desired to enable heat recovery of the fuel cell while utilizing the existing hot water supply facility, and to establish water self-sustaining of the fuel cell.
 このような要求に応えるシステムとして、出願人は、先に、次のようなシステムを提案し、既に特許出願を済ませている(特願2016-64802)。すなわち、この先願のシステムでは、燃料電池の熱回収により製造した温水と、主熱源機により製造した温水とを、並列に給湯循環配管に供給可能とし、かつ燃料電池側の温水を優先的に利用しようとするものである。しかしながら、このシステムには、次のような課題が残る。 As a system for meeting such a demand, the applicant has previously proposed the following system, and has already completed patent applications (Japanese Patent Application No. 2016-64802). That is, in the system of this prior application, the hot water produced by heat recovery of the fuel cell and the hot water produced by the main heat source unit can be supplied in parallel to the hot water supply circulation pipe, and the hot water on the fuel cell side is preferentially used. It is something to try. However, the following problems remain in this system.
 (a)燃料電池側の温水を優先利用させる補助機器(減圧弁やポンプ等)が必要となる。また、その補助機器による圧力損失や電力消費の大きさによっては、システム全体の効率が低下するおそれがある。 (A) An auxiliary device (a pressure reducing valve, a pump, etc.) for preferentially using hot water on the fuel cell side is required. In addition, depending on the pressure loss and the power consumption by the auxiliary device, the efficiency of the entire system may be reduced.
 (b)燃料電池側の湯切れ時に給水を遮断する補助機器(温度センサおよび遮断弁)が必要となる。なお、燃料電池は、分散電源として発電出力を基準に選定される。そのため、燃料電池の廃熱量、すなわち熱出力は大きくないので、温水需要の大きい施設では頻繁に湯切れを起こすおそれがある。 (B) An auxiliary device (temperature sensor and shutoff valve) is required to shut off the water supply when the hot water in the fuel cell side runs out. The fuel cell is selected as a distributed power source based on the power generation output. Therefore, the amount of waste heat of the fuel cell, that is, the heat output, is not large, and there is a possibility that the hot water shortage occurs frequently in the facility having a large demand for hot water.
 そこで、本発明が解決しようとする課題は、上記のような補助機器を必要とせず、既存の設備環境を利用できる簡易な構成で、燃料電池の熱回収と水自立を両立させた燃料電池システムを提供することにある。 Therefore, the problem to be solved by the present invention is a fuel cell system that achieves both heat recovery of the fuel cell and water self-sustaining with a simple configuration that can utilize the existing facility environment without the need for the above-mentioned auxiliary equipment. To provide.
 本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、地上又は地下階床上に設置されると共に、給水管を介して常温水が補給される温水タンクと;前記温水タンク内の貯留水を加熱可能な主熱源機と、を建築設備として有する建築物で利用される燃料電池システムであって、前記建築物内に給電可能な燃料電池と、前記給水管の途中に配設した予熱タンクと、を備え、前記燃料電池のオフガスの熱回収により、前記予熱タンク内の貯留水を予熱しながら前記オフガスを冷却可能に構成し、前記給水管を介して補給される常温水を前記予熱タンクで前記オフガスの冷却用熱源として利用し、前記オフガスの冷却により生成させた凝縮水を前記燃料電池で再利用することを特徴とする燃料電池システムである。 The present invention has been made to solve the above problems, and the invention according to claim 1 is a hot water tank which is installed on the ground or underground floor and to which normal temperature water is supplied via a water supply pipe and A fuel cell system used in a building having as a building facility a main heat source unit capable of heating stored water in the hot water tank, the fuel cell capable of supplying power into the building, the water supply pipe A preheating tank disposed in the middle, and the offgas can be cooled while preheating the stored water in the preheating tank by heat recovery of the offgas of the fuel cell, and the replenishment is performed via the water supply pipe The fuel cell system is characterized in that the normal temperature water used is used as a heat source for cooling the off gas in the preheating tank, and the condensed water generated by the cooling of the off gas is reused in the fuel cell.
 請求項1に記載の発明によれば、温水タンクへの給水管に予熱タンクを設けて、この予熱タンク内の貯留水ひいては温水タンクへの給水を、燃料電池の廃熱で予熱しながら、燃料電池のオフガスを冷却して水自立を図ることができる。また、仮に、燃料電池による温水と主熱源機による温水とを並列に出湯可能とする場合には、燃料電池側の温水を優先利用したり、燃料電池側の湯切れ時に給水を遮断したりするための構成が必要となるが、温水タンクへの給水を燃料電池の廃熱で予熱すると共に、温水タンク内の貯留水を主熱源機で加熱可能とするので、簡易な構成で、燃料電池の廃熱を優先利用した温水を得ることができる。なお、温水タンク、主熱源機および給水管として、建築物の既存建築設備を利用することもでき、その既存建築設備に、燃料電池および予熱タンクを新設してもよい。 According to the invention as set forth in claim 1, the water supply pipe to the hot water tank is provided with a preheating tank, and the stored water in the preheating tank and thus the water supply to the hot water tank is preheated by the waste heat of the fuel cell The off-gas of the battery can be cooled to achieve water self-sustaining. In addition, if hot water from the fuel cell and hot water from the main heat source unit can be discharged in parallel, the hot water on the fuel cell side is preferentially used, or water supply is interrupted when hot water on the fuel cell side runs out. In addition to preheating the water supply to the hot water tank with the waste heat of the fuel cell and enabling the stored water in the hot water tank to be heated by the main heat source unit, the fuel cell system has a simple structure. It is possible to obtain hot water that preferentially uses waste heat. In addition, an existing building installation of a building can also be used as a warm water tank, a main heat source machine, and a water supply pipe, and a fuel cell and a preheating tank may be newly built in the existing building installation.
 請求項2に記載の発明は、前記燃料電池は、改質器、セルスタックおよびオフガス熱交換器を有し、前記オフガス熱交換器において、前記オフガスと冷却液との熱交換によりオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器に再供給し、前記改質器において、原燃料と前記凝縮水を水蒸気改質反応させることにより水素を含有する改質ガスを生成し、前記セルスタックにおいて、前記改質ガス中の水素と空気中の酸素を化学反応させて発電することを特徴とする請求項1に記載の燃料電池システムである。 In the invention according to claim 2, the fuel cell has a reformer, a cell stack, and an off-gas heat exchanger, and the off-gas heat exchanger exchanges the off-gas with a dew point by heat exchange between the off-gas and the coolant. It cools below, condenses the moisture in the off gas, re-supplys the condensed water to the reformer, and contains hydrogen by subjecting the raw fuel and the condensed water to a steam reforming reaction in the reformer The fuel cell system according to claim 1, wherein the fuel cell system generates a reformed gas, and generates hydrogen by chemically reacting hydrogen in the reformed gas and oxygen in air in the cell stack.
 請求項2に記載の発明によれば、オフガス熱交換器において、オフガス中の水分を凝縮させてその凝縮水を改質器に再供給することで、外部からの補給水なしで運転できる水自立可能な燃料電池システムとなる。 According to the invention as set forth in claim 2, in the off-gas heat exchanger, water is self-sustaining, which can be operated without makeup water from the outside by condensing the water in the off-gas and re-supplying the condensed water to the reformer. It becomes possible fuel cell system.
 請求項3に記載の発明は、前記予熱タンク内の前記貯留水を予熱する予熱用熱交換器と、前記オフガス熱交換器と前記予熱用熱交換器との間で、前記冷却液を循環させる循環液回路と、を備えることを特徴とする請求項2に記載の燃料電池システムである。 The invention according to claim 3 circulates the cooling fluid between a preheating heat exchanger for preheating the stored water in the preheating tank, the off gas heat exchanger and the preheating heat exchanger. 3. The fuel cell system according to claim 2, further comprising: a circulating fluid circuit.
 請求項3に記載の発明によれば、燃料電池側のオフガス熱交換器と、予熱タンク内の予熱用熱交換器との間で、冷却液を循環させる。そして、オフガス熱交換器において、オフガスと冷却液とを熱交換して、オフガスを冷却しつつ冷却液を加熱し、この加熱された冷却液の熱で、予熱用熱交換器において、予熱タンク内の貯留水を加熱することができる。 According to the third aspect of the invention, the coolant is circulated between the off-gas heat exchanger on the fuel cell side and the preheating heat exchanger in the preheating tank. Then, the off gas heat exchanger exchanges heat between the off gas and the coolant to heat the coolant while cooling the off gas, and the heat of the heated coolant causes the inside of the preheating tank in the preheating heat exchanger. Storage water can be heated.
 請求項4に記載の発明は、前記燃料電池は、固体酸化物形の燃料電池であることを特徴とする請求項1~3のいずれか1項に記載の燃料電池システムである。 The invention according to claim 4 is the fuel cell system according to any one of claims 1 to 3, wherein the fuel cell is a solid oxide fuel cell.
 燃料電池には、固体酸化物形(SOFC)の他、リン酸形(PAFC)や固体高分子形(PEFC)もあるが、請求項4に記載の発明によれば、SOFCが用いられる。SOFCは、高温型の動作温度が650~800℃、中温型の動作温度が450~650℃と高いため、セルスタック保護の観点から、起動・昇温後は停止させることなく、電主熱従運転させるのが基本である。そのため、発生し続けるオフガス廃熱の回収を可能とすることで、高い総合効率を維持することができる。但し、SOFCはPAFCやPEFCに比べて発電効率が高い分、同じ発電出力で比較するとオフガス廃熱量が少なく、単独では建築物の温水需要には応えられないおそれがある。ところが、主熱源機で貯留水を加熱可能な温水タンクへの給水予熱にオフガス廃熱を利用することで、建築物の電力需要と温水需要を同時に満足するシステムを構築することができる。 Fuel cells include, in addition to solid oxide form (SOFC), phosphoric acid form (PAFC) and solid polymer form (PEFC). According to the invention of claim 4, SOFC is used. The SOFC has a high-temperature operating temperature of 650 to 800 ° C and a medium-temperature operating temperature of 450 to 650 ° C. Therefore, from the viewpoint of cell stack protection, the electric main heat secondary does not stop after startup / heating. It is basic to drive. Therefore, high overall efficiency can be maintained by enabling recovery of offgas waste heat that continues to be generated. However, SOFCs have higher power generation efficiency than PAFCs and PEFCs, so the off-gas waste heat quantity is small when compared at the same power generation output, and there is a possibility that they can not meet the hot water demand of buildings alone. However, by using off-gas waste heat for preheating the water supply to the hot water tank capable of heating the stored water with the main heat source unit, it is possible to construct a system that simultaneously satisfies the power demand of the building and the hot water demand.
 さらに、請求項5に記載の発明は、前記建築設備は、前記温水タンク内に貯留された温水を循環可能に接続された給湯循環配管と;前記給湯循環配管を幹管として当該幹管から温水需要箇所に温水を送る枝管と、を更に含むことを特徴とする請求項1~4のいずれか1項に記載の燃料電池システムである。 Furthermore, according to the invention as set forth in claim 5, the building equipment is a hot water supply circulation pipe connected to the hot water tank so as to be able to circulate the hot water stored in the hot water tank; and the hot water supply pipe from the main pipe The fuel cell system according to any one of claims 1 to 4, further comprising a branch pipe for sending hot water to a demand point.
 請求項5に記載の発明によれば、温水タンク内に貯留された温水を給湯循環配管(幹管)に循環させておくことで、その循環配管から分岐した枝管を介して、温水需要箇所にて温水を迅速に取り出すことができる。 According to the invention of claim 5, by circulating the hot water stored in the hot water tank to the hot water supply circulation pipe (stem pipe), the hot water demand point via the branch pipe branched from the circulation pipe Hot water can be taken out quickly.
 本発明によれば、既存の設備環境を利用できる簡易な構成で、燃料電池の熱回収と水自立を両立させた燃料電池システムを実現することができる。 According to the present invention, it is possible to realize a fuel cell system that achieves both heat recovery of the fuel cell and water self-sustaining with a simple configuration that can utilize the existing facility environment.
本発明の一実施例の燃料電池システムを示す概略図である。FIG. 1 is a schematic view showing a fuel cell system according to an embodiment of the present invention.
 以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
 図1は、本発明の一実施例の燃料電池システム1を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail based on the drawings.
FIG. 1 is a schematic view showing a fuel cell system 1 according to an embodiment of the present invention.
 本実施例の燃料電池システム1は、公共的施設,産業施設,住宅施設等の建築物2における建築設備の一部として利用される。 The fuel cell system 1 of the present embodiment is used as part of building equipment in a building 2 such as a public facility, an industrial facility, or a housing facility.
 建築物2は、その階層を特に問わないが、典型的には、低層建築物(1~2階層)または中層建築物(3~5階層)とされる。但し、場合により、高層建築物(6階層以上)とされてもよい。図示例では、地下1階、地上3階建ての建築物2とされる。 The building 2 is not particularly limited in its hierarchy, but is typically a low-rise building (1-2 hierarchy) or a middle-rise building (3-5 hierarchy). However, depending on the case, it may be a high-rise building (more than six levels). In the example of illustration, it is set as the building 2 of the basement 1 floor and 3 floors above the ground.
 建築設備とは、人が生活を営むうえで必要になる様々な機能を果たすために、建築物2に一体化されて機能する機器および装置をいう。建築設備には、建築基準法第2条第3号に定義されている設備等のほか、建築物利用者のニーズに応じた各種設備(たとえば、ボイラ設備や通信設備など)を含み得る。 The building equipment refers to devices and devices integrated with the building 2 to perform various functions that are necessary for people to live their lives. The building equipment may include various equipment (for example, boiler equipment and communication equipment etc.) according to the needs of the building user, in addition to the equipment etc. defined in Building Standard Law Article 2, Item 3.
 本実施例の建築物2は、建築設備として、給水源から給水可能な受水タンク3および温水タンク4と、温水タンク4への給水系統に設けられる予熱タンク5と、温水タンク4内の貯留水を加熱可能な主熱源機6と、予熱タンク5内の貯留水の加熱にオフガス廃熱が用いられる燃料電池7と、温水タンク4内に貯留された温水を各階に循環させる給湯循環配管8と、受水タンク3内に貯留された常温水を各階に供給する水供給配管9とを備える。そして、これらの建築設備のうち、燃料電池7および予熱タンク5が燃料電池システム1の主要部を構成している。 The building 2 of the present embodiment is, as building equipment, a water receiving tank 3 and a hot water tank 4 that can be supplied with water from a water supply source, a preheating tank 5 provided in a water supply system to the hot water tank 4, and storage in the hot water tank 4 A main heat source 6 capable of heating water, a fuel cell 7 in which off-gas waste heat is used to heat stored water in the preheating tank 5, and hot water circulation piping 8 for circulating hot water stored in the hot water tank 4 to each floor And a water supply pipe 9 for supplying normal temperature water stored in the water receiving tank 3 to each floor. Among these building facilities, the fuel cell 7 and the preheating tank 5 constitute the main part of the fuel cell system 1.
 受水タンク3、温水タンク4および予熱タンク5は、本実施例では、地下階(ここでは地下1階B1)の床上に架台設置される。但し、これらタンク3~5の内、いずれか一以上のタンクは、場合により、地上(屋外または屋内)に設置されてもよい。たとえば、地下階のない建築物では、これらタンク3~5は、地上(典型的には地上1階F1)に架台設置される。いずれにしても、受水タンク3と温水タンク4とは、同じ階に併設されるのが好ましい。 The water receiving tank 3, the hot water tank 4 and the preheating tank 5 are mounted on the floor of the basement floor (here, the first floor B1 in this case) in the present embodiment. However, one or more of the tanks 3 to 5 may be installed on the ground (outdoor or indoor), as the case may be. For example, in a building without a basement, these tanks 3 to 5 are mounted on the ground (typically, the first floor F1). In any case, it is preferable that the water receiving tank 3 and the hot water tank 4 be provided on the same floor.
 受水タンク3は、本実施例では開放型タンク(大気開放されたタンク)とされる。受水タンク3には、給水管(第一給水管)10を介して、水道水が供給され貯留される。本実施例では、定水位弁(ボールタップ)11を用いて、受水タンク3への給水の有無が切り替えられ、受水タンク3内は所定水位に維持される。 The water receiving tank 3 is an open tank (a tank opened to the atmosphere) in the present embodiment. Tap water is supplied and stored in the water receiving tank 3 via the water supply pipe (first water supply pipe) 10. In the present embodiment, the presence or absence of water supply to the water receiving tank 3 is switched using the constant water level valve (ball tap) 11, and the inside of the water receiving tank 3 is maintained at a predetermined water level.
 温水タンク4は、本実施例では開放型タンクとされる。温水タンク4には、給水管(第二給水管)12を介して、水道水が供給され貯留される。本実施例では、定水位弁(ボールタップ)13を用いて、温水タンク4への給水の有無が切り替えられ、温水タンク4内は所定水位に維持される。 The hot water tank 4 is an open tank in this embodiment. Tap water is supplied and stored in the hot water tank 4 via the water supply pipe (second water supply pipe) 12. In the present embodiment, the presence or absence of water supply to the hot water tank 4 is switched using the constant water level valve (ball tap) 13, and the inside of the hot water tank 4 is maintained at a predetermined water level.
 受水タンク3への第一給水管10と温水タンク4への第二給水管12とは、上流側において共通管路14とされている。言い換えれば、配水管(図示省略)からの水は、共通管路14を介して、第一給水管10により受水タンク3へ供給可能とされると共に、第二給水管12により温水タンク4へ供給可能とされる。なお、配水管とは、配水場から給水区域まで水を送る管をいい、給水管10,12とは、配水管から分岐して各家庭など需要者に水を供給する管をいう。配水管から給水管10,12へは、常温の水道水(通常5~30℃の範囲で季節により成行き)が供給される。 The first water supply pipe 10 to the water receiving tank 3 and the second water supply pipe 12 to the hot water tank 4 are formed as a common pipe line 14 on the upstream side. In other words, the water from the water distribution pipe (not shown) can be supplied to the water receiving tank 3 by the first water supply pipe 10 through the common pipeline 14, and to the hot water tank 4 by the second water supply pipe 12. It is possible to supply. In addition, a distribution pipe means the pipe which sends water from a distribution station to a water supply area, and the water supply pipes 10 and 12 mean a pipe which branches from a distribution pipe and supplies water to consumers such as each household. Tap water (normally in the range of 5 to 30 ° C. in season) is supplied from the water distribution pipe to the water supply pipes 10, 12.
 ところで、本実施例の場合、給水管10,12にポンプを設けなくても、配水管からの水圧で、定水位弁11,13を開けると、給水管10,12から各タンク3,4へ給水することができる。但し、場合により、共通管路14(または給水管10,12)に送水ポンプを設けてもよい。 By the way, in the case of this embodiment, even if the water supply pipes 10 and 12 are not provided with a pump, if the constant water level valves 11 and 13 are opened by the water pressure from the water distribution pipe, the water supply pipes 10 and 12 to the respective tanks 3 and 4 It can be watered. However, if necessary, a water pump may be provided in the common pipeline 14 (or the water supply pipes 10, 12).
 温水タンク4内の貯留水は、主熱源機6により加熱可能とされる。後述するように、温水タンク4への給水は燃料電池7のオフガス廃熱を用いて予熱されるが、この予熱がなくても(つまり燃料電池7の発電が停止していても)、主熱源機6は、温水タンク4内の水温を所望に維持でき、建築物2内への温水供給には影響を及ぼさない加熱能力を有する。言い換えれば、主熱源機6は、単独で建築物2の温水需要を賄うことのできる熱出力を有する。 The stored water in the hot water tank 4 can be heated by the main heat source unit 6. As described later, the water supplied to the hot water tank 4 is preheated using the off-gas waste heat of the fuel cell 7. However, even if this preheating is not performed (that is, even if the power generation of the fuel cell 7 is stopped) The machine 6 can maintain the water temperature in the warm water tank 4 as desired, and has a heating capacity that does not affect the warm water supply into the building 2. In other words, the main heat source unit 6 has a heat output that can meet the hot water demand of the building 2 alone.
 主熱源機6は、特に問わないが、本実施例では、蒸気ボイラ6Aとされる。この場合、温水タンク4には蒸気ヒータ(蒸気ボイラ6Aからの蒸気と温水タンク4内の貯留水との熱交換器)15が組み込まれており、蒸気ボイラ6Aからの蒸気が蒸気ヒータ15に供給され、温水タンク4内の貯留水を加熱する。温水タンク4内の貯留水の水温に基づき、蒸気ボイラ6Aから蒸気ヒータ15への給蒸を自動制御することで、温水タンク4内の貯留水を設定温度に維持することができる。このようにして、温水タンク4内には、建築物2内に供給するための温水が貯留される。なお、後述するように、温水タンク4内に貯留された温水は、給湯循環配管8を通じて建築物2の各階に循環される。そのため、循環温水のレジオネラ汚染防止など衛生上の観点からは、蒸気ヒータ15による加熱時の設定温度を60℃以上にしておくのが望ましい。 The main heat source unit 6 is not particularly limited, but in the present embodiment, it is a steam boiler 6A. In this case, a steam heater (heat exchanger for steam from the steam boiler 6A and stored water in the hot water tank 4) 15 is incorporated in the hot water tank 4, and steam from the steam boiler 6A is supplied to the steam heater 15. And the stored water in the hot water tank 4 is heated. By automatically controlling the steam supply from the steam boiler 6A to the steam heater 15 based on the temperature of the stored water in the warm water tank 4, the stored water in the warm water tank 4 can be maintained at the set temperature. Thus, in the warm water tank 4, warm water to be supplied into the building 2 is stored. As described later, the hot water stored in the hot water tank 4 is circulated to the floors of the building 2 through the hot water supply circulation pipe 8. Therefore, from the viewpoint of hygiene such as prevention of Legionella contamination of circulating hot water, it is desirable to set the set temperature at the time of heating by the steam heater 15 to 60 ° C. or higher.
 予熱タンク5は、温水タンク4への給水管12の途中に設けられる。予熱タンク5は、本実施例では密閉型タンク(大気開放されないタンク)とされる。予熱タンク5は、典型的には、温水タンク4と同一階に設置される。但し、給水源から予熱タンク5を介した温水タンク4への配管に大気開放部分がなければ、給水源の水圧で温水タンク4に給水できるので、予熱タンク5と温水タンク4とを異なる階に設置することもできる。たとえば、予熱タンク5を地上1階に設置する一方、温水タンク4を地下階に設置することもできる。 The preheating tank 5 is provided in the middle of the water supply pipe 12 to the hot water tank 4. The preheating tank 5 is a closed tank (a tank which is not open to the atmosphere) in the present embodiment. The preheating tank 5 is typically installed on the same floor as the hot water tank 4. However, if the piping from the water supply source to the hot water tank 4 via the preheating tank 5 does not have an open part to the atmosphere, the water pressure of the water supply source can supply water to the hot water tank 4, so the preheating tank 5 and the hot water tank 4 are on different floors It can also be installed. For example, while the preheating tank 5 may be installed on the ground floor, the hot water tank 4 may be installed on the basement floor.
 予熱タンク5は、上流側給水管12Aを介して給水源(配水管)と接続される一方、下流側給水管12Bを介して温水タンク4と接続される。そのため、給水源からの水は、上流側給水管12Aを介して予熱タンク5を満たし、下流側給水管12Bを介して温水タンク4へ供給可能とされる。前述したとおり、温水タンク4には定水位弁13が設けられており、この定水位弁13を開けることで、給水源からの水を、上流側給水管12A、予熱タンク5および下流側給水管12Bを介して、温水タンク4へ供給することができる。つまり、定水位弁13の開放により、予熱タンク5から温水タンク4へ給水しつつ、その給水分の水を給水源から予熱タンク5へ補給することができる。 The preheating tank 5 is connected to a water supply source (water distribution pipe) via the upstream water supply pipe 12A, and is connected to the hot water tank 4 via the downstream water supply pipe 12B. Therefore, water from the water supply source fills the preheating tank 5 via the upstream water supply pipe 12A, and can be supplied to the hot water tank 4 via the downstream water supply pipe 12B. As described above, the hot water tank 4 is provided with the constant water level valve 13. By opening the constant water level valve 13, the water from the water supply source can be divided into the upstream water supply pipe 12A, the preheating tank 5, and the downstream water supply pipe. It can be supplied to the hot water tank 4 via 12B. That is, by opening the constant water level valve 13, it is possible to supply water from the water supply source to the preheating tank 5 from the water supply source while supplying water from the preheating tank 5 to the hot water tank 4.
 予熱タンク5内の貯留水は、燃料電池7のオフガス廃熱を用いて加熱されるが、その際、予熱タンク5内には温度成層(上部ほど高温で下部ほど低温の状態)が形成される。この温度成層を乱さないために、予熱タンク5には、図示例のように、下部に、給水源からの上流側給水管12Aが接続され、上部に、温水タンク4への下流側給水管12Bが接続されるのが好ましい。 The stored water in the preheating tank 5 is heated using the off-gas waste heat of the fuel cell 7. At this time, temperature stratification (higher temperature in the upper part and lower temperature in the lower part) is formed in the preheating tank 5 . In order not to disturb the thermal stratification, the upstream side water supply pipe 12A from the water supply source is connected to the lower part of the preheating tank 5 as shown in the illustrated example, and the upper side is the downstream side water supply pipe 12B to the hot water tank 4 Are preferably connected.
 上流側給水管12Aと下流側給水管12Bとは、所望によりバイパス管12Cで接続される。この場合、給水源からの水を、予熱タンク5を介して温水タンク4へ供給するか、予熱タンク5を介さずにバイパス管12Cを介して温水タンク4へ供給するかを切替可能とされる。そのために、本実施例では、上流側給水管12Aには、バイパス管12Cとの分岐部より下流に入口弁16が設けられる一方、下流側給水管12Bには、バイパス管12Cとの合流部より上流に出口弁17が設けられる。さらに、バイパス管12Cには、バイパス弁18が設けられる。これら入口弁16、出口弁17およびバイパス弁18は、本実施例では手動弁から構成される。そして、通常、バイパス弁18が閉じられると共に、入口弁16および出口弁17が開けられた状態に維持される。従って、給水源からの水は、バイパス管12Cを介することなく、上流側給水管12Aを介して予熱タンク5へ供給され、予熱タンク5内の水が、下流側給水管12Bを介して温水タンク4へ供給される。 The upstream water supply pipe 12A and the downstream water supply pipe 12B are optionally connected by a bypass pipe 12C. In this case, it is possible to switch whether water from the water supply source is supplied to the hot water tank 4 via the preheating tank 5 or supplied to the hot water tank 4 via the bypass pipe 12C without the preheating tank 5 . Therefore, in the present embodiment, the inlet valve 16 is provided in the upstream water supply pipe 12A downstream of the branch with the bypass pipe 12C, while the downstream water supply pipe 12B is provided with a junction with the bypass pipe 12C. An outlet valve 17 is provided upstream. Furthermore, a bypass valve 18 is provided in the bypass pipe 12C. The inlet valve 16, the outlet valve 17 and the bypass valve 18 are constituted by manual valves in this embodiment. And normally, while the bypass valve 18 is closed, the inlet valve 16 and the outlet valve 17 are maintained in the open state. Therefore, the water from the water supply source is supplied to the preheating tank 5 via the upstream water supply pipe 12A without via the bypass pipe 12C, and the water in the preheating tank 5 is supplied to the hot water tank via the downstream water supply pipe 12B. It is supplied to 4.
 一方、所望時には、バイパス弁18を開ける一方、入口弁16および出口弁17を閉じた状態として、給水源からの水を、予熱タンク5を介することなく、バイパス管12Cを介して温水タンク4へ供給可能とされる。たとえば、予熱タンク5や後述する循環液回路19などをメンテナンスする際、バイパス弁18を開ける一方、入口弁16および出口弁17を閉じた状態としておけばよい。その場合、温水タンク4には給水源から直接に給水可能であると共に、温水タンク4において主熱源機6にて温水を製造可能であるから、温水需要箇所への湯切れを防止することができる。 On the other hand, when desired, the bypass valve 18 is opened while the inlet valve 16 and the outlet valve 17 are closed, and water from the water supply source is transferred to the hot water tank 4 via the bypass pipe 12C without passing through the preheating tank 5 It is possible to supply. For example, when maintaining the preheating tank 5 and the circulating fluid circuit 19 described later, the bypass valve 18 may be opened while the inlet valve 16 and the outlet valve 17 may be closed. In that case, the hot water tank 4 can be supplied with water directly from the water supply source, and the main heat source unit 6 can produce hot water in the hot water tank 4, so that hot water to the hot water demand point can be prevented. .
 予熱タンク5内の貯留水は、燃料電池7のオフガス廃熱を用いて加熱可能とされる。そのために、本実施例では、燃料電池7(より具体的には後述する燃料電池本体20)のオフガスとその冷却液とを熱交換するオフガス熱交換器21と、このオフガス熱交換器で21加熱された冷却液で予熱タンク5内の貯留水を加熱する予熱用熱交換器22と、オフガス熱交換器21と予熱用熱交換器22との間で冷却液を循環させる循環液回路19とを備える。循環液回路19を循環する冷却液は、ここでは水であるが、その他の液体(たとえばエチレングリコールなどを主成分とする不凍液)であってもよい。 The stored water in the preheating tank 5 can be heated using the off-gas waste heat of the fuel cell 7. Therefore, in the present embodiment, the off-gas heat exchanger 21 for exchanging heat between the off-gas of the fuel cell 7 (more specifically, the fuel cell main body 20 described later) and the coolant thereof, and 21 heating by the off-gas heat exchanger A preheating heat exchanger 22 for heating the stored water in the preheating tank 5 with the cooling fluid, and a circulating fluid circuit 19 for circulating the cooling fluid between the off gas heat exchanger 21 and the preheating heat exchanger 22; Prepare. The coolant circulating in the circulating fluid circuit 19 is water here, but may be another liquid (for example, antifreeze containing ethylene glycol as a main component).
 燃料電池7は、オフガス熱交換器21の他、燃料電池本体20、パワーコンディショナ(図示省略)および各種の補機(図示省略)などを備える。燃料電池本体20は、改質器(図示省略)およびセルスタック(図示省略)などを備える。具体的には、燃料電池本体20は、発電に使用する主要機器を断熱容器に収容した発電モジュールとして構成されており、主要機器には、(I)蒸発部、混合部および改質部を有する改質器;(II)複数の発電セルよりなるセルスタック;(III)アノードオフガスとカソードオフガスを燃焼させる燃焼器;(IV)燃焼オフガスとアノード空気を熱交換させる空気予熱器などが含まれる。 The fuel cell 7 includes, in addition to the off-gas heat exchanger 21, a fuel cell body 20, a power conditioner (not shown), various accessories (not shown), and the like. The fuel cell main body 20 includes a reformer (not shown), a cell stack (not shown) and the like. Specifically, the fuel cell main body 20 is configured as a power generation module in which main devices used for power generation are accommodated in a heat insulation container, and the main devices include (I) an evaporation unit, a mixing unit, and a reforming unit. A reformer; (II) a cell stack composed of a plurality of power generation cells; (III) a combustor for burning the anode off gas and the cathode off gas; (IV) an air preheater for heat exchange between the combustion off gas and the anode air.
 燃料電池本体20には、原燃料(都市ガス)G、空気A、および水(改質水)Wが供給される。そして、原燃料(メタンガスを主成分とする都市ガス)Gと水(水蒸気)Wとを改質器において水蒸気改質反応させることにより水素を含有する改質ガスを生成し、改質ガス中の水素と空気中の酸素とをセルスタックにおいて化学反応させて発電する。セルスタックでは、発電に伴ってアノードオフガスおよびカソードオフガスが生成されるが、これらのガスは、燃焼器に供給されたのち、燃焼オフガスとなって排出される。この燃焼オフガスは、セルスタックの前段に配置された空気予熱器に通され、カソード空気の予熱に利用される。 A raw fuel (city gas) G, air A, and water (reforming water) W are supplied to the fuel cell main body 20. Then, a reformed gas is produced by causing the raw fuel (city gas mainly containing methane gas) G and water (steam) W to undergo a steam reforming reaction to produce a reformed gas containing hydrogen, which is contained in the reformed gas. The hydrogen and oxygen in the air are chemically reacted in the cell stack to generate electricity. In the cell stack, an anode off gas and a cathode off gas are generated as the power is generated, but these gases are supplied to the combustor and then discharged as a combustion off gas. The combustion off gas is passed through an air preheater disposed upstream of the cell stack and used to preheat cathode air.
 セルスタックの電池出力は、パワーコンディショナで調整された後に、建築物2内に給電される。パワーコンディショナは、セルスタックから出力された直流電圧を昇圧するDC/DCコンバータ(昇圧回路)と、DC/DCコンバータで昇圧された直流電圧を系統電源と同期の取れた交流電圧に変換する系統連系インバータ(電圧変換回路)と、セルスタックの出力電流を制御する出力電流制御部(出力制御回路)と、を有している。系統連系インバータは、建築物2内に設置された商用電力系統の配電盤と電気的に接続されている。系統連系インバータと配電盤とは、系統連系用のスイッチを介して並列・解列を切換可能である。配電盤には、系統電源および複数の分電盤が電気的に接続されている。分電盤には、建築物の各階で使用する照明器具、動力装置、コンセント等の負荷機器が電気的に接続されている。 The cell output of the cell stack is fed into the building 2 after being conditioned by the power conditioner. The power conditioner is a DC / DC converter (boost circuit) that boosts the DC voltage output from the cell stack, and a system that converts the DC voltage boosted by the DC / DC converter into an AC voltage synchronized with the system power supply. It has an interconnection inverter (voltage conversion circuit) and an output current control unit (output control circuit) that controls the output current of the cell stack. The grid-connected inverter is electrically connected to the switchboard of the commercial power system installed in the building 2. The grid interconnection inverter and the switchboard can switch between parallel and parallel connection via a grid interconnection switch. A grid power supply and a plurality of distribution boards are electrically connected to the switchboard. The power distribution board is electrically connected to load devices such as lighting devices, power devices, and outlets used on each floor of the building.
 燃料電池本体20の種類は、特に問わないが、好適には固体酸化物形(SOFC)とされる。SOFCは、高温型の動作温度が650~800℃、中温型の動作温度が450~650℃と高いため、セルスタック保護の観点から、起動・昇温後は停止させることなく、電主熱従運転させるのが基本である。そのため、発生し続けるオフガス廃熱の回収を可能とすることで、高い総合効率を維持することができる。但し、SOFC(固体酸化物形)はPAFC(リン酸形)やPEFC(固体高分子形)に比べて発電効率が高い分、同じ発電出力で比較するとオフガス廃熱量が少なく、単独では建築物の温水需要には応えられないおそれがある。ところが、主熱源機6で貯留水を加熱可能な温水タンク4への給水予熱にオフガス廃熱を利用することで、建築物2の電力需要と温水需要を同時に満足する熱電併給システムを構築することができる。 The type of fuel cell main body 20 is not particularly limited, but is preferably in the form of solid oxide (SOFC). The SOFC has a high-temperature operating temperature of 650 to 800 ° C and a medium-temperature operating temperature of 450 to 650 ° C. Therefore, from the viewpoint of cell stack protection, the electric main heat secondary does not stop after startup / heating. It is basic to drive. Therefore, high overall efficiency can be maintained by enabling recovery of offgas waste heat that continues to be generated. However, SOFC (solid oxide form) has higher power generation efficiency compared to PAFC (phosphoric acid form) and PEFC (solid polymer form), so the off-gas waste heat quantity is small when compared with the same power generation output. It may not be possible to meet the demand for hot water. However, by using off-gas waste heat to preheat the feed water to the hot water tank 4 capable of heating the stored water by the main heat source unit 6, building a cogeneration system that simultaneously satisfies the power demand and the hot water demand of the building 2 Can.
 オフガス熱交換器21は、燃料電池本体20からのオフガスとその冷却液とを混ぜることなく熱交換する間接熱交換器である。そのために、オフガス熱交換器21には、燃料電池本体20からオフガス配管23を介してオフガスが通されると共に、循環液回路19の循環液がオフガスの冷却液として通される。これにより、オフガス熱交換器21において、オフガスは循環冷却液により冷却され、オフガス中の水分(水蒸気)の凝縮が図られる。一方、循環液回路19の循環冷却液は、オフガス熱交換器21において、オフガスと熱交換することで加熱される。 The off-gas heat exchanger 21 is an indirect heat exchanger that exchanges heat without mixing the off-gas from the fuel cell body 20 and the coolant thereof. Therefore, the off gas is passed from the fuel cell main body 20 to the off gas heat exchanger 21 through the off gas pipe 23, and the circulating fluid in the circulating fluid circuit 19 is passed as a coolant for the off gas. As a result, in the off-gas heat exchanger 21, the off-gas is cooled by the circulating coolant, and the water (water vapor) in the off-gas is condensed. On the other hand, the circulating coolant in the circulating fluid circuit 19 is heated by exchanging heat with the off gas in the off gas heat exchanger 21.
 オフガス熱交換器21での熱交換の対象となるオフガスは、燃料電池本体20で発生する水蒸気を含むオフガスである。具体的には、(i)セルスタックのアノード側から排出されるアノードオフガス;(ii)セルスタックのカソード側から排出されるカソードオフガス;(iii)燃焼器から排出される燃焼オフガスから選ばれた一種以上を熱交換の対象とすることができる。オフガス熱交換器21に通されるオフガスは、空気予熱器等で部分的に熱回収された後の状態であってもよい。 The off-gas to be subjected to heat exchange in the off-gas heat exchanger 21 is an off-gas containing water vapor generated in the fuel cell main body 20. Specifically, (i) anode off gas discharged from the anode side of the cell stack; (ii) cathode off gas discharged from the cathode side of the cell stack; (iii) combustion off gas discharged from the combustor One or more can be the target of heat exchange. The off gas passed through the off gas heat exchanger 21 may be in a state after partial heat recovery by an air preheater or the like.
 SOFCセルスタックのアノード側では、水素と酸素の化学反応が起こるので、アノードオフガスには水蒸気が含まれる。SOFCセルスタックのカソード側に供給される空気には大気の水蒸気が含まれるので、カソードオフガスにも水蒸気が含まれる。燃焼オフガスには、アノードオフガスおよびカソードオフガスに由来する水蒸気のほか、アノードオフガス中の残留水素とカソードオフガス中の残留酸素の燃焼反応によって生成した水蒸気が含まれる。そのため、いずれのオフガスを熱交換の対象とした場合でも、露点温度以下に冷却することで凝縮水を得ることができる。 On the anode side of the SOFC cell stack, the anode off gas contains water vapor because a chemical reaction between hydrogen and oxygen takes place. Since the air supplied to the cathode side of the SOFC cell stack contains atmospheric water vapor, the cathode off gas also contains water vapor. The combustion off gas includes the water vapor derived from the anode off gas and the cathode off gas, as well as the water vapor generated by the combustion reaction of the residual hydrogen in the anode off gas and the residual oxygen in the cathode off gas. Therefore, even when any off-gas is subjected to heat exchange, condensed water can be obtained by cooling to a dew point temperature or lower.
 オフガス熱交換器21からのオフガスの出口側には、セパレータタンク24が設けられており、オフガス熱交換器21に通されたオフガスの気液分離が図られる。そして、気液分離後の凝縮水は、燃料電池本体20への改質水Wとして、供給ポンプ25を介して燃料電池本体20の改質器へ再供給可能とされる。これにより、燃料電池7は、外部からの補給水なしで発電を継続できる水自立運転が可能になっている。なお、気液分離後のアノードオフガスおよびカソードオフガスは燃焼器に供給され、気液分離後の燃焼オフガスは外部に排出される。 A separator tank 24 is provided on the outlet side of the off gas from the off gas heat exchanger 21 so that the gas and liquid of the off gas passed through the off gas heat exchanger 21 can be separated. Then, the condensed water after gas-liquid separation can be re-supplied to the reformer of the fuel cell main body 20 via the supply pump 25 as reformed water W to the fuel cell main body 20. As a result, the fuel cell 7 is capable of water self-sustaining operation capable of continuing power generation without replenishment water from the outside. The anode off gas and the cathode off gas after gas-liquid separation are supplied to the combustor, and the combustion off gas after gas-liquid separation is discharged to the outside.
 燃料電池7の水自立運転において、改質器では、蒸発部で改質水Wとしての凝縮水が気化された後、混合部で原燃料Gと水蒸気が混合される。そして、この混合ガスが改質部の触媒層に供給されて、水素を含有する改質ガスが生成される。改質部で得られた改質ガスは、アノード燃料としてセルスタックのアノード側に送られる。 In the water self-sustaining operation of the fuel cell 7, in the reformer, after the condensed water as the reforming water W is vaporized in the evaporation unit, the raw fuel G and the water vapor are mixed in the mixing unit. Then, the mixed gas is supplied to the catalyst layer of the reforming unit to generate a reformed gas containing hydrogen. The reformed gas obtained in the reforming section is sent to the anode side of the cell stack as an anode fuel.
 また、オフガス熱交換器21は、その構造や流体の流し方を工夫することにより、オフガスの気液分離をセパレータタンクではなく、オフガス熱交換器21内で行うようにすることもできる。その場合、オフガス熱交換器21からのオフガスの出口側に、排気用の分岐ラインを接続する。 In addition, the off-gas heat exchanger 21 can perform the gas-liquid separation of the off-gas in the off-gas heat exchanger 21 instead of the separator tank by devising the structure and the flow of the fluid. In that case, a branch line for exhaust is connected to the outlet side of the off gas from the off gas heat exchanger 21.
 予熱用熱交換器22は、予熱タンク5内に配置され、予熱タンク5内の貯留水とオフガス熱交換器21からの循環冷却液とを混ぜることなく熱交換する間接熱交換器(たとえば伝熱コイル)である。予熱用熱交換器22は、予熱タンク5の内部領域のうち、少なくとも常温水が流入する下層領域(たとえば底部から30~50%の高さ領域)を加熱可能に配置される。これにより、予熱用熱交換器22において、予熱タンク5内の貯留水が加熱される一方、循環液回路19の循環冷却液は冷却される。 The preheating heat exchanger 22 is disposed in the preheating tank 5 and performs indirect heat exchanger (for example, heat transfer) for exchanging heat without mixing the stored water in the preheating tank 5 with the circulating coolant from the off-gas heat exchanger 21. Coil). The preheating heat exchanger 22 is disposed so as to be able to heat at least a lower region (for example, a height region of 30 to 50% from the bottom) into which the normal temperature water flows in the inner region of the preheating tank 5. As a result, in the preheating heat exchanger 22, the stored water in the preheating tank 5 is heated, while the circulating coolant in the circulating fluid circuit 19 is cooled.
 循環液回路19は、オフガス熱交換器21と予熱用熱交換器22との間で、冷却液を循環させる。具体的には、予熱用熱交換器22からオフガス熱交換器21へは、冷却液送り路19Aを介して冷却液が供給され、オフガス熱交換器21から予熱用熱交換器22へは、冷却液戻し路19Bを介して冷却液が戻される。そして、冷却液送り路19A(または冷却液戻し路19B)に設けた循環ポンプ26を作動させることで、オフガス熱交換器21と予熱用熱交換器22との間で冷却液を循環させることができる。 The circulating fluid circuit 19 circulates the coolant between the off-gas heat exchanger 21 and the preheating heat exchanger 22. Specifically, the cooling fluid is supplied from the preheating heat exchanger 22 to the off gas heat exchanger 21 via the cooling fluid feed passage 19A, and the cooling from the off gas heat exchanger 21 to the preheating heat exchanger 22 is performed. The coolant is returned through the liquid return path 19B. Then, the coolant is circulated between the off-gas heat exchanger 21 and the preheating heat exchanger 22 by operating the circulation pump 26 provided in the coolant feed passage 19A (or the coolant return passage 19B). it can.
 本実施例では、冷却液送り路19Aには、予熱用熱交換器22からオフガス熱交換器21へ向けて順に、ラジエータ27および循環ポンプ26が設けられている。なお、循環ポンプ26は、冷却液送り路19Aに設けられる代わりに、冷却液戻し路19Bに設けられてもよい。 In the present embodiment, a radiator 27 and a circulation pump 26 are provided in order from the heat exchanger 22 for preheating to the off gas heat exchanger 21 in the coolant delivery passage 19A. The circulation pump 26 may be provided in the cooling fluid return passage 19B instead of being provided in the cooling fluid feed passage 19A.
 ラジエータ27は、オフガス熱交換器21への冷却液とファン28による通風との熱交換器である。所望時にラジエータ27のファン28を作動させることで、オフガス熱交換器21へ供給する冷却液を、外気で冷却することができる。たとえば予熱タンク5でオフガス廃熱の熱回収が十分にできない場合に、ラジエータ27の冷却作用によってオフガス熱交換器21への冷却液温度をオフガスの露点温度以下にすることで、オフガス熱交換器21においてオフガス中の水分を凝縮させ、燃料電池7の水自立を図ることができる。 The radiator 27 is a heat exchanger for the coolant to the off-gas heat exchanger 21 and the ventilation by the fan 28. By operating the fan 28 of the radiator 27 when desired, the coolant supplied to the off-gas heat exchanger 21 can be cooled with the open air. For example, when the heat recovery of the off gas waste heat can not be sufficiently performed in the preheating tank 5, the off gas heat exchanger 21 is set by setting the temperature of the coolant to the off gas heat exchanger 21 below the dew point temperature of the off gas by the cooling action of the radiator 27. The water contained in the off-gas can be condensed in order to achieve water independence of the fuel cell 7.
 ラジエータ27は、好ましくは、通風量を調整可能とされる。本実施例では、ファン28の駆動モータをDCモータとすると共に、冷却液送り路19Aに複数台のラジエータ27を配置している(図1では1台のみの配置例を記載)。この構成では、ファン28を一定速度で駆動する。ラジエータ27の稼動台数、すなわちファン28の駆動台数を制御することで、通風量を調整することができる。 The radiator 27 is preferably adjustable in ventilation rate. In the present embodiment, the drive motor of the fan 28 is a DC motor, and a plurality of radiators 27 are arranged in the coolant feed path 19A (an example of arrangement of only one is described in FIG. 1). In this configuration, the fan 28 is driven at a constant speed. By controlling the number of radiators 27 operated, that is, the number of fans 28 driven, the amount of ventilation can be adjusted.
 また、ラジエータ27を1台で構成する場合には、ファン28の駆動モータをブラシレスDCモータとし、このDCモータをパルス幅変調(PWM)により可変速制御するように構成してもよい。ファン28の作動中、DCモータの駆動電圧パルスのデューティ比を変化させることで、通風量を調整することができる。 Further, when the radiator 27 is configured as one unit, the drive motor of the fan 28 may be a brushless DC motor, and this DC motor may be configured to perform variable speed control by pulse width modulation (PWM). The amount of ventilation can be adjusted by changing the duty ratio of the drive voltage pulse of the DC motor while the fan 28 is operating.
 また、ラジエータ27を1台で構成する場合には、ファン28の駆動モータをACモータとし、このACモータをインバータ装置により可変電圧可変周波数制御(VVVF制御)するように構成してもよい。ファン28の作動中、ACモータの駆動周波数または駆動電圧を変化させることで、通風量を調整することができる。 When the radiator 27 is configured as one unit, the drive motor of the fan 28 may be an AC motor, and this AC motor may be configured to perform variable voltage variable frequency control (VVVF control) by an inverter device. While the fan 28 is operating, the amount of ventilation can be adjusted by changing the drive frequency or drive voltage of the AC motor.
 循環ポンプ26は、冷却液の流量を調整可能に構成されていることが好ましい。本実施例では、循環ポンプ26の駆動モータをブラシレスDCモータとし、このDCモータをパルス幅変調(PWM)により可変速制御するように構成している。循環ポンプ26の作動中、DCモータの駆動電圧パルスのデューティ比を変化させることで、循環液回路19内の循環流量を調整することができる。 The circulation pump 26 is preferably configured to be able to adjust the flow rate of the coolant. In this embodiment, the drive motor of the circulation pump 26 is a brushless DC motor, and this DC motor is configured to perform variable speed control by pulse width modulation (PWM). The circulation flow rate in the circulation fluid circuit 19 can be adjusted by changing the duty ratio of the drive voltage pulse of the DC motor while the circulation pump 26 is operating.
 また、循環ポンプ26の駆動モータをACモータとし、このACモータをインバータ装置により可変電圧可変周波数制御(VVVF制御)するように構成してもよい。循環ポンプ26の作動中、ACモータの駆動周波数または駆動電圧を変化させることで、循環液回路19内の循環流量を調整することができる。 Further, the drive motor of the circulation pump 26 may be an AC motor, and this AC motor may be configured to perform variable voltage variable frequency control (VVVF control) by an inverter device. The circulation flow rate in the circulation fluid circuit 19 can be adjusted by changing the drive frequency or drive voltage of the AC motor while the circulation pump 26 is in operation.
 また、DCかACかに関わらず駆動モータを一定速度で駆動する場合には、オフガス熱交換器21から予熱用熱交換器22への冷却液戻し路19B、または予熱用熱交換器22からオフガス熱交換器21への冷却液送り路19Aに、比例制御弁が設けられる。循環ポンプ26の作動中、比例制御弁の開度を調整することで、循環液回路19内の循環流量を調整することができる。 Also, when driving the drive motor at a constant speed regardless of whether it is DC or AC, the coolant return path 19 B from the off gas heat exchanger 21 to the preheating heat exchanger 22 or the off gas from the preheating heat exchanger 22 A proportional control valve is provided in the coolant feed passage 19A to the heat exchanger 21. During operation of the circulation pump 26, the circulation flow rate in the circulation fluid circuit 19 can be adjusted by adjusting the opening degree of the proportional control valve.
 冷却液送り路19Aには、ラジエータ27の出口側に第一温度センサ30が設けられる一方、冷却液戻し路19Bには、第二温度センサ31が設けられる。第一温度センサ30は、オフガス熱交換器21の入口側の冷却液の温度を検出し、第二温度センサ31は、オフガス熱交換器21の出口側の冷却液の温度を検出する。 In the coolant delivery passage 19A, a first temperature sensor 30 is provided on the outlet side of the radiator 27, and in the coolant return passage 19B, a second temperature sensor 31 is provided. The first temperature sensor 30 detects the temperature of the coolant on the inlet side of the off gas heat exchanger 21, and the second temperature sensor 31 detects the temperature of the coolant on the outlet side of the off gas heat exchanger 21.
 燃料電池7の稼働時、循環ポンプ26を作動させる。これにより、オフガス熱交換器21と予熱用熱交換器22との間で冷却液が循環される。オフガス熱交換器21において、燃料電池本体20からのオフガスが冷却される一方、予熱用熱交換器22への冷却液が加熱される。一方、予熱用熱交換器22において、オフガス熱交換器21からの冷却液で、予熱タンク5内の貯留水が加熱される。このようにして、燃料電池7のオフガス廃熱を、予熱タンク5内の貯留水の加熱に用いて、熱回収することができる。 When the fuel cell 7 is in operation, the circulation pump 26 is operated. As a result, the coolant is circulated between the off-gas heat exchanger 21 and the preheating heat exchanger 22. In the off-gas heat exchanger 21, the off-gas from the fuel cell main body 20 is cooled, while the coolant for the preheating heat exchanger 22 is heated. On the other hand, in the preheating heat exchanger 22, the stored water in the preheating tank 5 is heated by the cooling fluid from the off gas heat exchanger 21. In this manner, off-gas waste heat of the fuel cell 7 can be used to heat the stored water in the preheating tank 5 to recover heat.
 循環ポンプ26の作動中、第一温度センサ30の検出温度を第一目標温度範囲(たとえば35~40℃の設定範囲)に維持するように、複数台のラジエータ27におけるファン28の駆動台数が増減される。この駆動台数の増減には、たとえばフィードフォワード制御が用いられる。具体的には、第一温度センサ30の検出温度が上限設定値(たとえば40℃)以上となり、その状態で第一設定時間(たとえば10秒)が継続すると1台を起動する一方で、第一温度センサ30の検出温度が下限設定値(たとえば35℃)以下となり、その状態で第二設定時間(たとえば10秒)が経過すると1台を停止する。これにより、冷却液の温度が高まり過ぎるのを防止して、水自立を確実に図ることができる。すなわち、オフガス熱交換器21においてオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器へ再供給することができる。 During operation of the circulation pump 26, the number of driven fans 28 in the plurality of radiators 27 increases or decreases so that the temperature detected by the first temperature sensor 30 is maintained in the first target temperature range (for example, a setting range of 35 to 40.degree. C.). Be done. For example, feed forward control is used to increase or decrease the number of driving. Specifically, when the detected temperature of the first temperature sensor 30 becomes equal to or higher than the upper limit set value (for example, 40 ° C.) and the first set time (for example, 10 seconds) continues in that state, while one unit is activated, The temperature detected by the temperature sensor 30 becomes equal to or lower than the lower limit set value (for example, 35 ° C.), and one unit is stopped when the second set time (for example, 10 seconds) elapses in that state. Thereby, the temperature of the coolant can be prevented from rising excessively, and water self-sustaining can be reliably achieved. That is, the off gas can be cooled to the dew point temperature or less in the off gas heat exchanger 21 to condense the moisture in the off gas, and the condensed water can be resupplied to the reformer.
 循環ポンプ26の作動中、第二温度センサ31の検出温度を第二目標温度(たとえば60~75℃から選択された設定値)に維持するように、循環ポンプ26の駆動モータ出力、すなわち循環流量が調整される。この駆動モータ出力の調整には、たとえば速度型PIDアルゴリズムによるフィードバック制御が用いられる。これにより、予熱用熱交換器22へ供給する循環液温度を所定温度に維持して、予熱タンク5内の貯留水を所望温度に加熱することができる。 The drive motor output of the circulation pump 26, that is, the circulation flow rate, so as to maintain the temperature detected by the second temperature sensor 31 at the second target temperature (for example, a set value selected from 60 to 75 ° C.) Is adjusted. For the adjustment of the drive motor output, for example, feedback control based on a velocity type PID algorithm is used. Thus, the temperature of the circulating fluid supplied to the preheating heat exchanger 22 can be maintained at a predetermined temperature, and the stored water in the preheating tank 5 can be heated to a desired temperature.
 温水タンク4内の温水は、建築物2内の一または複数の温水需要箇所に供給され利用可能とされる。本実施例では、建築物2内には、温水タンク4内に貯留された温水を循環させる給湯循環配管8が敷設されており、その給湯循環配管8に設けた出湯部32から温水を取り出し可能とされている。 The hot water in the hot water tank 4 is supplied to one or more hot water demand points in the building 2 and made available. In the present embodiment, a hot water supply circulation pipe 8 for circulating the hot water stored in the hot water tank 4 is laid in the building 2, and the hot water can be taken out from the hot water outlet 32 provided in the hot water supply circulation pipe 8 It is assumed.
 給湯循環配管8は、温水タンク4内の温水を建築物2の各階に行き渡らせるループ配管である。本実施例では、地下の温水タンク4から最上階へ向けて往路8Aが敷設され、最上階から温水タンク4へ向けて復路8Bが敷設される。往路8Aには、温水タンク4からの出口部に、揚水ポンプを兼ねる循環ポンプ33が設けられる。 The hot water supply circulation pipe 8 is a loop pipe for circulating the hot water in the hot water tank 4 to each floor of the building 2. In the present embodiment, the outgoing route 8A is laid from the underground warm water tank 4 toward the top floor, and the return route 8B is laid from the top floor toward the warm water tank 4. A circulation pump 33 which doubles as a pumping pump is provided at the outlet from the hot water tank 4 in the outward path 8A.
 ところで、温水タンク4は、典型的には略矩形のボックス状とされ、給湯循環配管8の往路8Aへの給湯口と、復路8Bからの返湯口とが、対角の位置に設けられるのが好ましい。また、温水タンク4は、給水管12からの給水口と、給湯循環配管8の復路8Bからの返湯口とが、隣接して配置されるのが好ましい。これにより、給水源から予熱タンク5を介した補給水と、給湯循環配管8の復路8Bからの温水との混合を図ることができる。 By the way, the hot water tank 4 is typically in the form of a substantially rectangular box, and the hot water supply port to the forward path 8A of the hot water supply circulation pipe 8 and the return port from the return path 8B are provided diagonally. preferable. Further, in the hot water tank 4, it is preferable that the water supply port from the water supply pipe 12 and the hot water outlet from the return path 8B of the hot water supply circulation pipe 8 be disposed adjacent to each other. Thus, it is possible to mix the makeup water from the water supply source through the preheating tank 5 and the hot water from the return path 8B of the hot water supply circulation pipe 8.
 建築物2の各階(あるいは所望の階)には、温水需要箇所への出湯部32が設けられる。本実施例では、1階以上の各階には、給湯循環配管8を幹管として、その幹管から温水需要箇所に温水を送る枝管8Xが設けられている。この際、通常、枝管8Xは、幹管の往路8Aから分岐して設けられる。つまり、枝管8Xは、給湯循環配管8に付随する建築設備である。図示例では、各階に一つの枝管8Xのみを示しているが、複数の枝管8Xを設けてもよい。また、所望により、一つの枝管8Xからさらに枝管8Xを分岐させてもよい。 On each floor (or desired floor) of the building 2, a hot water outlet 32 to a hot water demand point is provided. In the present embodiment, on each floor of the first floor or more, the branch pipe 8X is provided, which uses the hot water supply circulation pipe 8 as a main pipe and sends hot water from the main pipe to a hot water demand point. At this time, normally, the branch pipe 8X is branched from the forward passage 8A of the main pipe. That is, the branch pipe 8 </ b> X is a construction facility associated with the hot water supply circulation pipe 8. In the illustrated example, only one branch pipe 8X is shown on each floor, but a plurality of branch pipes 8X may be provided. Also, if desired, one branch pipe 8X may be branched from one branch pipe 8X.
 各枝管8Xは、幹管(給湯循環配管8)からの温水を出湯部32に供給するための配管である。出湯部32としては、たとえば、洗面台、浴室、厨房等に設けられた混合栓32Aである。なお、受水タンク3から各階へは、冷水(常温水)の水供給配管9が別途、敷設されている。そして、各階の混合栓32Aには、温水タンク4から幹管8Aおよび枝管8Xを介した温水と、受水タンク3から水供給配管9を介した冷水とが供給可能とされ、その混合割合を調整することで所望温度の温水を出湯可能とされる。なお、水供給配管9には、受水タンク3側に揚水ポンプ34が設けられており、この揚水ポンプ34を作動させた状態で混合栓32Aを開けると、受水タンク3からの水を吐出させることができる。 Each branch pipe 8X is a pipe for supplying the hot water from the trunk pipe (hot water supply circulation pipe 8) to the hot water discharge portion 32. The hot water outlet 32 is, for example, a mixing plug 32A provided in a wash basin, a bathroom, a kitchen or the like. In addition, the water supply piping 9 of cold water (normal temperature water) is separately laid from the water receiving tank 3 to each floor. Then, it is possible to supply hot water from the hot water tank 4 via the main pipe 8A and the branch pipe 8X and cold water from the water receiving tank 3 via the water supply pipe 9 to the mixing plugs 32A on each floor, and the mixing ratio The hot water of desired temperature can be discharged by adjusting. A water pump 34 is provided on the water receiving pipe 3 side of the water supply pipe 9. When the mixing valve 32A is opened in a state where the water pump 34 is operated, the water from the water receiving tank 3 is discharged. It can be done.
 次に、本実施例の燃料電池システム1の作用(運転)について、説明する。
 燃料電池7は、系統連系しながら常時発電する電主熱従運転を行っており、建築物2内の電力需要に合わせて、燃料電池7の発電出力(セルスタックの電池出力をパワーコンディショナで調整した出力)が調整される。すなわち、燃料電池7をベースロード電源として使用しつつ、系統電源をピークロード電源として使用している。燃料電池7の運転に伴い、オフガス熱交換器21と予熱用熱交換器22との間の循環液回路19の循環ポンプ26が作動する。また、第一温度センサ30の検出温度を第一目標温度範囲に維持するように、複数台のラジエータ27におけるファン28の駆動台数を増減すると共に、第二温度センサ31の検出温度を第二目標温度に維持するように、循環ポンプ26の駆動モータ出力を自動制御するのは前述したとおりである。これにより、オフガス熱交換器21において、オフガスを露点温度以下に冷却して、確実で安定した水自立を図ることができる。また、予熱用熱交換器22において、予熱タンク5内の貯留水を、所定温度(第二目標温度)の循環冷却液で加熱することができる。
Next, the operation (operation) of the fuel cell system 1 of the present embodiment will be described.
The fuel cell 7 performs electric main heat secondary operation which constantly generates power while connecting to the grid, and according to the power demand in the building 2, the power generation output of the fuel cell 7 (cell output of the cell stack as power conditioner The output adjusted by) is adjusted. That is, the system power supply is used as a peak load power supply while using the fuel cell 7 as a base load power supply. Along with the operation of the fuel cell 7, the circulation pump 26 of the circulating fluid circuit 19 between the off-gas heat exchanger 21 and the preheating heat exchanger 22 operates. In addition, the number of driven fans 28 in the plurality of radiators 27 is increased or decreased and the detected temperature of the second temperature sensor 31 is set to the second target so that the temperature detected by the first temperature sensor 30 is maintained in the first target temperature range. As described above, the drive motor output of the circulation pump 26 is automatically controlled to maintain the temperature. As a result, in the off-gas heat exchanger 21, the off-gas can be cooled to the dew point temperature or lower, and reliable and stable water self-sustaining can be achieved. Further, in the preheating heat exchanger 22, the stored water in the preheating tank 5 can be heated by the circulating coolant at a predetermined temperature (second target temperature).
 なお、予熱用熱交換器22での熱交換により、予熱タンク5内の貯留水は最大、第二目標温度まで加熱されることになる。この第二目標温度は、温水タンク4内の設定温度(主熱源機6による加熱目標温度)と同一かそれよりも低い温度とされる。 The stored water in the preheating tank 5 is heated up to the second target temperature by heat exchange in the preheating heat exchanger 22. The second target temperature is set to a temperature equal to or lower than the set temperature (the heating target temperature by the main heat source unit 6) in the hot water tank 4.
 温水タンク4には、定水位弁13により給水が制御されることで、所定水位の水が貯留される。温水タンク4への給水管12には予熱タンク5を設けて、燃料電池7のオフガス廃熱が回収されることで、予熱された温水を温水タンク4へ供給することができる。しかも、温水タンク4内の貯留水は、主熱源機6により設定温度に加熱され維持される。 Water of a predetermined water level is stored in the hot water tank 4 by controlling the water supply by the constant water level valve 13. The preheating tank 5 is provided in the water supply pipe 12 to the hot water tank 4, and the off gas waste heat of the fuel cell 7 is recovered, whereby the preheated hot water can be supplied to the hot water tank 4. Moreover, the stored water in the hot water tank 4 is heated to the set temperature by the main heat source unit 6 and maintained.
 建築物2内の温水需要に備えて、給湯循環配管8の循環ポンプ33は、作動を継続する。そのため、所望の階の所望の混合栓32Aを開ければ、即座に出湯することができる。その際、温水タンク4からの温水に、受水タンク3から水供給配管9を介した常温水を混合することで、所望の温度で出湯することができる。 In preparation for the hot water demand in the building 2, the circulation pump 33 of the hot water supply circulation pipe 8 continues to operate. Therefore, if the desired mixing stopper 32A on the desired floor is opened, hot water can be poured out immediately. At this time, by mixing normal temperature water from the water receiving tank 3 via the water supply pipe 9 with the hot water from the hot water tank 4, hot water can be discharged at a desired temperature.
 ところで、予熱タンク5では、燃料電池7のオフガス廃熱を温水タンク4への給水予熱に用いて熱回収することで、予熱タンク5内の貯留水を予熱しながらオフガスの冷却が可能とされる。この点について、具体的に説明すると、次のケースが想定される。 By the way, in the preheating tank 5, the off gas waste heat of the fuel cell 7 is used for preheating the water supply to the hot water tank 4 to recover the heat, so that the off gas can be cooled while preheating the stored water in the preheating tank 5. . If this point is demonstrated concretely, the following case is assumed.
 (a)夏場以外で、上流側給水管12Aを流れる水道水がオフガスの露点温度を超えない場合、予熱タンク5での熱回収のみでオフガスを露点以下に冷却できる。この場合、循環液回路19では、ラジエータ27のファン28を停止しておけばよい。 (A) If the tap water flowing through the upstream water supply pipe 12A does not exceed the dew point temperature of the off gas in other than the summer season, the off gas can be cooled to the dew point or less only by heat recovery in the preheating tank 5. In this case, in the circulating fluid circuit 19, the fan 28 of the radiator 27 may be stopped.
 (b)夏場で、上流側給水管12Aを流れる水道水がオフガスの露点温度を超える場合(たとえば屋外に敷設された上流側給水管12Aが直射日光で加熱される場合)、予熱タンク5での熱回収と、ラジエータ27での放熱とにより、オフガスを露点以下に冷却する。但し、夏場であっても建築物2内で温水需要が十分にある場合には、上流側給水管12A内の水道水は頻繁に入れ替わるため、基本的に(b)の状態になることは稀なので、予熱タンク5への補給水に露点温度以下の水を確保すれば、補給水の冷熱利用による水自立を成立させつつ、熱回収効率を高めることができる。 (B) In summer, when the tap water flowing through the upstream water supply pipe 12A exceeds the dew point temperature of the off gas (for example, when the upstream water supply pipe 12A laid outdoors) is heated by direct sunlight, By the heat recovery and the heat radiation in the radiator 27, the off gas is cooled to the dew point or less. However, even if it is a summer season, when there is a demand for hot water in the building 2, the tap water in the upstream water supply pipe 12A is frequently replaced, so the condition of (b) is basically rare. Therefore, if the water below the dew point temperature is secured for the makeup water to the preheating tank 5, it is possible to enhance the heat recovery efficiency while establishing the water independence by cold energy utilization of the makeup water.
 なお、建築物2内での温水需要が少ない場合には、給水源からの水温とは無関係に十分な熱回収ができないので、ラジエータ27のファン28を作動させて、外気への放熱によりオフガスを露点以下に冷却して水自立を成立させることになる。 When the demand for hot water in building 2 is small, sufficient heat recovery can not be performed regardless of the water temperature from the water supply source, so the fan 28 of the radiator 27 is operated to dissipate the off gas by heat dissipation to the outside air. It will be cooled below the dew point to establish water independence.
 本実施例の燃料電池システム1を利用する建築物2においては、温水タンク4への給水を燃料電池7の廃熱で予熱すると共に、温水タンク4内の貯留水を主熱源機6で加熱可能とするので、簡易な構成で、燃料電池7の廃熱を優先利用した温水を得ることができる。また、温水タンク4、主熱源機6および給水管12として、建築物2の既存建築設備を利用することもでき、その既存建築設備に、燃料電池7および予熱タンク5を新設して構成することも容易である。 In the building 2 using the fuel cell system 1 of the present embodiment, the water supplied to the hot water tank 4 can be preheated with the waste heat of the fuel cell 7, and the stored water in the hot water tank 4 can be heated by the main heat source machine 6. Accordingly, it is possible to obtain warm water that preferentially uses the waste heat of the fuel cell 7 with a simple configuration. In addition, the existing building equipment of the building 2 can be used as the hot water tank 4, the main heat source machine 6 and the water supply pipe 12, and the fuel cell 7 and the preheating tank 5 are newly constructed in the existing building equipment Is also easy.
 本発明の燃料電池システム1は、前記実施例の構成に限らず、適宜変更可能である。特に、燃料電池システム1を利用する建築物2が、(a)地上又は地下階床上に設置されると共に、給水管12を介して常温水が補給される温水タンク4と;(b)温水タンク4内の貯留水を加熱可能な主熱源機6と、を建築設備として有しており、燃料電池システム1が、(c)建築物2内に給電可能な燃料電池7と、(d)給水管12の途中に配設した予熱タンク5と、を備え、(e)燃料電池7のオフガスの熱回収により、予熱タンク5内の貯留水を予熱しながらオフガスを冷却可能に構成し、(f)給水管12を介して補給される常温水を予熱タンク5でオフガスの冷却用熱源として利用し、(g)オフガスの冷却により生成させた凝縮水を燃料電池7で再利用するものであれば、その他の構成は適宜に変更可能である。 The fuel cell system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, a building 2 using the fuel cell system 1 is (a) installed on the ground or underground floor, and a warm water tank 4 to which normal temperature water is supplied via a water supply pipe 12; (b) a warm water tank The main heat source unit 6 capable of heating the stored water in 4 is provided as a building facility, and the fuel cell system 1 can supply (c) a fuel cell 7 capable of supplying power into the building 2; (d) water supply (E) cooling the off gas while preheating the stored water in the preheating tank 5 by recovering the heat of the off gas of the fuel cell 7 (f) ) If normal temperature water supplied via the water supply pipe 12 is used as a heat source for cooling off gas in the preheating tank 5 and (g) condensed water generated by cooling off gas is reused in the fuel cell 7 The other configurations can be changed as appropriate.
 たとえば、前記実施例では、温水タンク4は、開放型タンクにより構成されたが、場合により、密閉型タンクにより構成されてもよい。その場合、温水タンク4への定水位弁13の設置は不要であり、温水需要箇所での出湯に伴い、その出湯分の温水が予熱タンク5を介して温水タンク4へ供給される。 For example, in the above embodiment, the hot water tank 4 is constituted by the open tank, but in some cases it may be constituted by the closed tank. In that case, the installation of the constant water level valve 13 in the hot water tank 4 is unnecessary, and the hot water for the hot water supply is supplied to the hot water tank 4 via the preheating tank 5 along with the hot water at the hot water demand point.
 また、前記実施例では、温水タンク4は、定水位弁13により所定水位に維持されたが、温水タンク4に設けた水位センサの検出信号に基づき、給水管12に設けた給水弁を自動制御してもよい。このことは、温水タンク4に限らず、受水タンク3についても同様である。 Moreover, in the said Example, although the warm water tank 4 was maintained at the predetermined water level by the constant water level valve 13, based on the detection signal of the water level sensor provided in the warm water tank 4, the feedwater valve provided in the water supply pipe 12 is automatically controlled. You may This applies not only to the hot water tank 4 but also to the water receiving tank 3.
 また、前記実施例では、予熱タンク5は、密閉型タンクとされたが、場合により開放型タンクとされてもよい。その場合、温水タンク4を開放型タンクとする場合と同様にして、予熱タンク5内の水位を設定水位に維持するように、予熱タンク5に定水位弁を設けるか、予熱タンク5への上流側給水管12Aに設けた給水弁を自動制御すればよい。 Moreover, in the said Example, although the preheating tank 5 was made into the closed type tank, you may be made into an open type tank depending on the case. In that case, as in the case where the hot water tank 4 is an open tank, the preheating tank 5 is provided with a constant water level valve or the upstream to the preheating tank 5 to maintain the water level in the preheating tank 5 at the set water level. The water supply valve provided in the side water supply pipe 12A may be automatically controlled.
 また、前記実施例では、予熱タンク5内に予熱用熱交換器22を設置して、循環液回路19の循環冷却液と予熱タンク5内の貯留水とを間接熱交換したが、場合により、予熱用熱交換器22の設置を省略して、予熱タンク5内の貯留水自体をオフガス熱交換器21との間で循環させてもよい。つまり、予熱タンク5内の貯留水を、オフガスの冷却液として、冷却液送り路19Aを介してオフガス熱交換器21に供給して、オフガス熱交換器21においてオフガス廃熱を用いて加熱し、冷却液戻し路19Bを介して予熱タンク5へ戻す循環を繰り返してもよい。 In the above embodiment, the preheating heat exchanger 22 is installed in the preheating tank 5 to perform indirect heat exchange between the circulating coolant in the circulating fluid circuit 19 and the stored water in the preheating tank 5. The installation of the preheating heat exchanger 22 may be omitted, and the stored water itself in the preheating tank 5 may be circulated to and from the off-gas heat exchanger 21. That is, the stored water in the preheating tank 5 is supplied to the off-gas heat exchanger 21 as a coolant for the off-gas via the coolant feed path 19A, and is heated using the off-gas waste heat in the off-gas heat exchanger 21 The circulation to the preheating tank 5 may be repeated via the coolant return path 19B.
 また、前記実施例において、受水タンク3は、建築物2内に設置したが、場合により、建築物2に隣接した屋外(地上)に設置してもよい。なお、前記実施例では、地下として、地下1階B1のみを示したが、地下2階以上にしてもよい。 Moreover, in the said Example, although the receiving water tank 3 was installed in the building 2, you may install it in the outdoors (ground) adjacent to the building 2 depending on the case. In the above embodiment, only the first basement floor B1 is shown as the basement, but the second basement floor may be provided.
 また、前記実施例において、受水タンク3を建築物2内に設置し、受水タンク3から各階へ水を供給したが、場合により、受水タンク3の設置を省略して、直結直圧方式または直結加圧方式で水を供給してもよい。直結直圧方式は、地上5階建て程度までの建築物に適用され、配水管の水圧のみで各階へ水を供給する。直結加圧方式は、地上10階建て程度までの建築物に適用され、配水管の水圧のみでは不足する圧力を給水管の途中に設けたブースターポンプで補いながら、各階へ水を供給する。 Moreover, in the said Example, although the receiving tank 3 was installed in the building 2, and water was supplied to each floor from the receiving tank 3, depending on the case, installation of the receiving tank 3 may be abbreviate | omitted and direct pressure direct pressure. Water may be supplied by a system or a direct compression system. The direct pressure direct pressure system is applied to buildings up to about 5 stories above the ground, and water is supplied to each floor only by the water pressure of the distribution pipe. The direct compression method is applied to buildings up to about 10 stories above the ground, and water is supplied to each floor while compensating for the insufficient pressure only by the water pressure of the distribution pipe with a booster pump provided in the middle of the water supply pipe.
 さらに、前記実施例において、主熱源機6は、蒸気ボイラ6Aから構成されたが、場合により電気ヒータ、バーナ、ヒートポンプなどから構成されてもよい。 Furthermore, in the said Example, although the main heat-source equipment 6 was comprised from the steam boiler 6A, you may be comprised from an electric heater, a burner, heat pump etc. depending on the case.
  1 燃料電池システム
  2 建築物
  3 受水タンク
  4 温水タンク
  5 予熱タンク
  6 主熱源機(6A:蒸気ボイラ)
  7 燃料電池
  8 給湯循環配管(8A:往路、8B:復路、8X:枝管)
  9 水供給配管
 10 給水管
 11 定水位弁
 12 給水管(12A:上流側給水管、12B:下流側給水管、12C:バイパス管)
 13 定水位弁
 14 共通管路
 15 蒸気ヒータ
 16 入口弁
 17 出口弁
 18 バイパス弁
 19 循環液回路(19A:冷却液送り路、19B:冷却液戻し路)
 20 燃料電池本体
 21 オフガス熱交換器
 22 予熱用熱交換器
 23 オフガス配管
 24 セパレータタンク
 25 供給ポンプ
 26 循環ポンプ
 27 ラジエータ
 28 ファン
 29 流量調整弁
 30 第一温度センサ
 31 第二温度センサ
 32 出湯部(32A:混合栓)
 33 循環ポンプ
 34 揚水ポンプ
1 fuel cell system 2 building 3 water receiving tank 4 hot water tank 5 preheating tank 6 main heat source machine (6A: steam boiler)
7 fuel cell 8 hot water supply circulation piping (8A: outward path, 8B: return path, 8X: branch pipe)
9 water supply piping 10 water supply pipe 11 constant water level valve 12 water supply pipe (12A: upstream water supply pipe, 12B: downstream water supply pipe, 12C: bypass pipe)
13 Constant water level valve 14 Common pipeline 15 Steam heater 16 Inlet valve 17 Outlet valve 18 Bypass valve 19 Circulating fluid circuit (19A: Coolant feed path, 19B: Coolant return path)
DESCRIPTION OF SYMBOLS 20 Fuel cell main body 21 Off-gas heat exchanger 22 Heat exchanger for preheating 23 Off-gas piping 24 Separator tank 25 Supply pump 26 Circulation pump 27 Radiator 28 Fan 29 Flow control valve 30 1st temperature sensor 31 2nd temperature sensor 32 Hot water part (32A : Mixing stopper)
33 Circulating pump 34 Pumping pump

Claims (5)

  1.  地上又は地下階床上に設置されると共に、給水管を介して常温水が補給される温水タンクと;前記温水タンク内の貯留水を加熱可能な主熱源機と、を建築設備として有する建築物で利用される燃料電池システムであって、
     前記建築物内に給電可能な燃料電池と、
     前記給水管の途中に配設した予熱タンクと、を備え、
       前記燃料電池のオフガスの熱回収により、前記予熱タンク内の貯留水を予熱しながら前記オフガスを冷却可能に構成し、
       前記給水管を介して補給される常温水を前記予熱タンクで前記オフガスの冷却用熱源として利用し、
       前記オフガスの冷却により生成させた凝縮水を前記燃料電池で再利用する
     ことを特徴とする燃料電池システム。
    A building having a hot water tank installed on the ground or underground floor and supplemented with normal temperature water through a water supply pipe; and a main heat source unit capable of heating stored water in the hot water tank as a building facility A fuel cell system to be used,
    A fuel cell capable of supplying electricity into the building;
    And a preheating tank disposed in the middle of the water supply pipe,
    It is possible to cool the off gas while preheating the stored water in the preheating tank by heat recovery of the fuel cell off gas;
    The preheated tank utilizes normal temperature water supplied via the water supply pipe as a heat source for cooling the off gas,
    A fuel cell system, wherein condensed water generated by the cooling of the off gas is reused in the fuel cell.
  2.  前記燃料電池は、改質器、セルスタックおよびオフガス熱交換器を有し、
     前記オフガス熱交換器において、前記オフガスと冷却液との熱交換によりオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器に再供給し、
     前記改質器において、原燃料と前記凝縮水を水蒸気改質反応させることにより水素を含有する改質ガスを生成し、
     前記セルスタックにおいて、前記改質ガス中の水素と空気中の酸素を化学反応させて発電する
     ことを特徴とする請求項1に記載の燃料電池システム。
    The fuel cell comprises a reformer, a cell stack and an off-gas heat exchanger,
    In the off-gas heat exchanger, the off-gas is cooled to a dew point temperature or less by heat exchange between the off-gas and the coolant to condense water in the off-gas, and the condensed water is supplied again to the reformer.
    In the reformer, a reformed gas containing hydrogen is generated by subjecting a raw fuel and the condensed water to a steam reforming reaction,
    The fuel cell system according to claim 1, wherein in the cell stack, hydrogen in the reformed gas and oxygen in air are chemically reacted to generate power.
  3.  前記予熱タンク内の前記貯留水を予熱する予熱用熱交換器と、
     前記オフガス熱交換器と前記予熱用熱交換器との間で、前記冷却液を循環させる循環液回路と、を備える
     ことを特徴とする請求項2に記載の燃料電池システム。
    A preheating heat exchanger for preheating the stored water in the preheating tank;
    The fuel cell system according to claim 2, further comprising: a circulating fluid circuit that circulates the cooling fluid between the off-gas heat exchanger and the preheating heat exchanger.
  4.  前記燃料電池は、固体酸化物形の燃料電池である
     ことを特徴とする請求項1~3のいずれか1項に記載の燃料電池システム。
    The fuel cell system according to any one of claims 1 to 3, wherein the fuel cell is a solid oxide fuel cell.
  5.  前記建築設備は、前記温水タンク内に貯留された温水を循環可能に接続された給湯循環配管と;前記給湯循環配管を幹管として当該幹管から温水需要箇所に温水を送る枝管と、を更に含む
     ことを特徴とする請求項1~4のいずれか1項に記載の燃料電池システム。

     
    The building facility includes a hot water supply circulation pipe connected so as to be able to circulate the hot water stored in the hot water tank; and a branch pipe which sends the hot water from the main pipe to the hot water demand point using the hot water supply circulation pipe as a main pipe. The fuel cell system according to any one of claims 1 to 4, further comprising.

PCT/JP2017/024550 2017-07-04 2017-07-04 Fuel cell system WO2019008686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024550 WO2019008686A1 (en) 2017-07-04 2017-07-04 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024550 WO2019008686A1 (en) 2017-07-04 2017-07-04 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2019008686A1 true WO2019008686A1 (en) 2019-01-10

Family

ID=64949829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024550 WO2019008686A1 (en) 2017-07-04 2017-07-04 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2019008686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022024726A (en) * 2020-07-28 2022-02-09 トヨタ自動車株式会社 Ventilation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172598A (en) * 1996-12-13 1998-06-26 Tokyo Gas Co Ltd Fuel cell mechanism
JP2003242992A (en) * 2002-02-15 2003-08-29 Takasago Thermal Eng Co Ltd Building for business use having energy supply function and its operation method
JP2009123488A (en) * 2007-11-14 2009-06-04 Aisin Seiki Co Ltd Fuel cell system
JP2014182923A (en) * 2013-03-19 2014-09-29 Panasonic Corp Fuel cell system and operation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172598A (en) * 1996-12-13 1998-06-26 Tokyo Gas Co Ltd Fuel cell mechanism
JP2003242992A (en) * 2002-02-15 2003-08-29 Takasago Thermal Eng Co Ltd Building for business use having energy supply function and its operation method
JP2009123488A (en) * 2007-11-14 2009-06-04 Aisin Seiki Co Ltd Fuel cell system
JP2014182923A (en) * 2013-03-19 2014-09-29 Panasonic Corp Fuel cell system and operation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022024726A (en) * 2020-07-28 2022-02-09 トヨタ自動車株式会社 Ventilation system
JP7243693B2 (en) 2020-07-28 2023-03-22 トヨタ自動車株式会社 ventilation system

Similar Documents

Publication Publication Date Title
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
KR100764784B1 (en) Fuel cell unit system
WO2017017734A1 (en) Power supply system and method for controlling same
KR100664076B1 (en) Heat supplying system using fuel cell
RU2331818C2 (en) Heat and hot water supply system (versions)
JP2016515190A (en) Heating equipment and method of operating heating equipment
WO2019008686A1 (en) Fuel cell system
JP2018006016A (en) Fuel cell system
JP2018006018A (en) Fuel cell system
JP2004327160A (en) Fuel cell cogeneration system
KR101860135B1 (en) Geothermal energy system using fuel cell energy
JP6238099B1 (en) Fuel cell system
WO2019030830A1 (en) Fuel cell system
JP6881062B2 (en) Fuel cell system
JP2004139914A (en) Fuel cell power generation/water heating system
JP7249172B2 (en) A heat supply device that heats a fluid
WO2019030831A1 (en) Fuel cell system
KR101080311B1 (en) Fuel cell system having separate type auxiliary burner and driving method threrof
JP2017116192A (en) Cogeneration system, control device, control method
JP7181127B2 (en) heat pump system
JP6274607B2 (en) Fuel cell system
JP3199992U (en) Apartment house cogeneration system
JP5509671B2 (en) Fuel cell cogeneration system
JP2010067616A (en) Fuel cell system
WO2017168770A1 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP