WO2019008197A1 - Sistema info-optico para la monitorización del movimiento de roedores de laboratorio - Google Patents

Sistema info-optico para la monitorización del movimiento de roedores de laboratorio Download PDF

Info

Publication number
WO2019008197A1
WO2019008197A1 PCT/ES2017/070493 ES2017070493W WO2019008197A1 WO 2019008197 A1 WO2019008197 A1 WO 2019008197A1 ES 2017070493 W ES2017070493 W ES 2017070493W WO 2019008197 A1 WO2019008197 A1 WO 2019008197A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
info
wii
monitoring
reflective material
Prior art date
Application number
PCT/ES2017/070493
Other languages
English (en)
French (fr)
Inventor
Aurelio ARENAS DALLA-VECCHIA
José Luis Eduardo FERRÁN
José Ambrosio TOVAL ÁLVAREZ
Miraljub POPOVIC POPOVIC
Ángel TOVAR SÁNCHEZ
Daniel ESCRIBANO MARTÍNEZ
Original Assignee
Universidad De Murcia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Murcia filed Critical Universidad De Murcia
Priority to PCT/ES2017/070493 priority Critical patent/WO2019008197A1/es
Publication of WO2019008197A1 publication Critical patent/WO2019008197A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Definitions

  • the present invention consists of an info-optical system designed to monitor the movements, mainly, of laboratory rodents (mice, rats, hamsters, guinea pigs, etc.). This information will allow analyzing their displacement or positioning, which in many cases will lead to specific conclusions about their behavior in the course of physical training sessions, or during specific experiments carried out in specially designed enclosures.
  • the system tracks and records the trajectory of the movement of the laboratory animal by capturing and storing the successive Cartesian coordinates of its position obtained in periods of time of 5 ms.
  • the processing of the series of coordinates and the instants of time relative to these positions allows the determination of parameters of interest, such as: frequency of the positions in different zones of the enclosure, total distance traveled, described angles, instantaneous speeds, average speeds , maximum speeds, inaction time, and other parameters derived from these.
  • This system can be applied in different experimental designs that include behavioral tests of different nature carried out with laboratory rodents (specific labyrinths, T-Maze, Morris water Maze, Open-Field, etc); or to assess the behavior of rodents, mainly in terms of spatial position during the execution of physical activity (voluntary wheels, motorized wheels, in treadmills or in water tanks).
  • This system fits into the field of electronic instrumentation applied to experimentation with laboratory rodents and to the study of their behavior during their physical activity.
  • the monitoring of rodent trainings on wheels is done by spinning account systems, which measures the number of rounds made by the rodent.
  • This technique does not provide visual information, it only generates data on the total number of laps and the frequency of the wheel, data that must be interpreted a posteriori.
  • This method does not allow knowing the preferences of spatial position of the rodent during the execution of the exercise, a key aspect in the determination of a possible long-term response.
  • An example of this system is the one manufactured by the Bioseb company, BIO-ACTIVM-M, which measures the number of turns, the average angular speed, the maximum and minimum speed, among other variables. It can monitor up to 64 wheels simultaneously.
  • the dynamic characterization of physical activity developed by laboratory rodents can be performed from the measurement of the individual's position at specific moments of time, that is, in a synchronized manner, with a sufficiently high sampling rate so that a quasi-continuous movement.
  • other variables of interest such as speed and acceleration are deduced.
  • the system presented here measures the position of one or more moving points, with a resolution of 0.1% of the full scale, within a range of variable dimensions and with a maximum sampling frequency of 200 Hz.
  • uses a Nintendo Wii console controller that contains a camera with a 940 nm infrared light filter and an embedded graphic processor, capable of locating one or more spotlights (up to 4 bulbs) that emit infrared light, determines its geometric center and it assigns a pair of Cartesian coordinates (xi, yi) to each of the geometric centers of the focus (s), all in a time of 5 ms.
  • the field of view of the camera is a rectangular window of 1,024 pixels in the horizontal direction and 768 pixels in the vertical and the opening angles of the lens are 35 ° and 25 ° respectively, so that the further away from the camera, greater are the measurements in units of length of the vision range.
  • an infrared light source that moves in a plane perpendicular to the axis of vision of the camera lens, located at 1,500 mm, can make a movement registered by the camera within a rectangle of 1,000 mm x 750 mm, representing 1 mm each pixel, approximately.
  • a previous calibration must be carried out to provide us with the conversion of units in pixels to units in millimeters.
  • the communication that makes possible the transfer of data collected by the camera to a computer is the standard Bluetooth communication.
  • an element (or more than one) of light-reflecting material must be placed so that when illuminated by an infrared light bulb of 940 nm in length wave, can be "seen” by reflection by the Wii's command camera and can follow the trajectory of its movement.
  • the computer program can be designed in such a way as to allow the monitoring and recording of data of up to 6 Wi controls simultaneously in operation, over as many rodents subjected to training, which constitutes a technological advantage.
  • FIG. General view of the Open-Field enclosure monitored with the Wii command.
  • FIG 2. General view of a training wheel monitored with the Wii command.
  • FIG 3. View of a control of the Wii with a focus of LEDs installed around its objective.
  • FIG 1 The operation of the info-optical system that was prepared for tracking the trajectories of a laboratory animal is illustrated in FIG 1, in zenith observation mode in an Open-Field exercise and in FIG 2 in horizontal observation mode in an exercise with training wheel.
  • the Wi control camera which is illustrated in FIG 3, can locate one to four infrared light emission spotlights in its field of view.
  • This printed circuit board was powered by a direct current source to polarize the LEDs and emit infrared light.
  • Laboratory animal 8 carries a sheet 9 of reflective material is adhered to its skin, in a visible place by the Wii control camera.
  • the Wii remote sends, through Bluetooth communication, the position data to the computer with which it is tuned, at a sampling frequency set by a computer program installed on the computer. This frequency can be configured from the computer program between 0 Hz and 200 Hz maximum.
  • the computer receives via wireless Bluetooth communication the data of the Cartesian coordinates (X, Y) in pixels and based on a calibration previously made, a computer program converts them into units of millimeters, registers and processes the data of said coordinates and times and presents by tables and graphs the physical variables of interest: trajectories, frequencies of the positions in different areas of the enclosure, distance traveled, instantaneous speed, maximum speed, average speed, angular speed, linear and angular acceleration, etc. This allows to characterize qualitatively and quantitatively the movement and behavior of the laboratory animal under observation.
  • the sheet of reflective material that was attached to the skin of the laboratory animal reflects infrared light from the focus of LEDs located around the lens of the Wii command camera. The light is reflected by that sheet in the same direction that it falls on it, allowing even a 50 ° inclination of the normal of said sheet with respect to the direction of the incident radiation, without stopping to reflect the light in the same direction from where he receives it.
  • the command was placed the Wii about 170 cm from the reference plane of the Open-Field enclosure, while a sheet size of reflective material of about 3 cm 2 was used .
  • the control was placed about 70 cm away from the training wheel, while a sheet size of 1 cm 2 .
  • the size of said piece of reflective material can range between 1 cm 2 and 3 cm 2 of surface; however, the geometric shape of said sheet can be circular, oval, regular polygonal and even irregular with straight or curved sides, as the Pixar's embedded graphic processor that has the Wii's command camera calculates the geometric center of the reflective sheet and extracts its Cartesian coordinates.
  • the Wii console controller can simultaneously locate and capture the position coordinates of up to 4 infrared radiation points, four pieces of aligned sheet of reflective material were fixed on the skin of the animal, which provided more data to the program to determine other parameters such as the direction in which it is oriented at each moment, or the degree of stretch or contraction of the body of the laboratory animal.
  • One way to achieve reflection of infrared radiation similar to that provided by the reflective material sheets is through the use of a liquid varnish reflecting the radiation. With this varnish, a small surface region (similar in size to that of the reflective sheet) was painted on the skin of the laboratory rodent. Once dry this varnish presents the desired properties of light reflection.
  • the computer program determines the trajectory, the frequencies of the different locations, the resting times, the movement times, the instantaneous speed, the maximum speed, the average speed, etc. of the laboratory rodent.
  • the computer program was designed in such a way that it allowed the monitoring and recording of data of up to 6 Wii commands simultaneously in operation, on other rodents subjected to training.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Sistema info-óptico para la monitorización del movimiento de roedores de laboratorio. La presente invención consiste en un sistema info-óptico diseñado para monitorizar los movimientos de roedoresde laboratorio en experimentos llevados a cabo en laberintos como Open-field, T-Maze y Morriswater Mazey en ruedas de entrenamiento del tipo voluntario o motorizadas. El sistema localiza, sigue y registra la trayectoria descrita a lo largo del tiempo por uno o varios focos de luz infrarroja fijados a la piel del animal de laboratorio; esto permite la determinación de un conjunto de variables como: tiempo de movimiento, tiempo de inacción, frecuencia en distintas zonas del recinto, forma de la trayectoria, longitud de la trayectoria recorrida, velocidad instantánea, velocidad media, velocidad máxima, aceleración y otras magnitudes físicas derivadas de éstas. Por tanto, permite una monitorización automática de los movimientos de roedores de laboratorio, sustituyendo al operador humano. Este sistema puede aplicarse simultáneamente hasta en 6 instrumentos de entrenamiento o experimentación de otros tantos roedores de laboratorio.

Description

DESCRIPCIÓN
Sistema ¡nfo-óptico para la monitorización del movimiento de roedores de laboratorio Objeto de la invención
La presente invención consiste en un sistema info-óptico diseñado para monitorizar los movimientos, principalmente, de roedores de laboratorio (ratones, ratas, hámsters, cobayos, etc). Esta información permitirá analizar su desplazamiento o posicionamiento que derivará en muchos casos en conclusiones específicas sobre su comportamiento en el transcurso de sesiones de entrenamiento físico, o durante experimentos específicos realizados en recintos diseñados especialmente para ello. El sistema sigue y registra la trayectoria del movimiento del animal de laboratorio mediante la captura y almacenamiento de las sucesivas coordenadas cartesianas de su posición obtenidas en periodos de tiempo de 5 ms. El procesado de la serie de coordenadas y los instantes de tiempo relativos a esas posiciones, permite la determinación de parámetros de interés, tales como: frecuencia de las posiciones en distintas zonas del recinto, distancia total recorrida, ángulos descritos, velocidades instantáneas, velocidades medias, velocidades máximas, tiempo de inacción, y otros parámetros derivados de éstos. Este sistema puede aplicarse en distintos diseños experimentales que incluyan test conductuales de diferente naturaleza llevados a cabo con roedores de laboratorio (laberintos específicos, T-Maze, Morris water Maze, Open-Field, etc); o para valorar el comportamiento de los roedores, principalmente en cuanto a la posición espacial durante la ejecución de actividad física (ruedas voluntarias, ruedas motorizadas, en cintas para correr o en tanques de agua).
Sector de la técnica
Este sistema se encuadra en el sector de la instrumentación electrónica aplicada a la experimentación con roedores de laboratorio y al estudio de su comportamiento durante su actividad física.
Antecedentes de la invención y estado de la técnica
La investigación con modelos roedores se aplica en muchas situaciones como: estudios de procesos biológicos, desarrollo de productos farmacéuticos, diagnóstico y prevención de enfermedades, evaluación de terapias, ensayos de evaluación de seguridad biológica, etc. Muchos de estos experimentos requieren de la evaluación y el análisis del comportamiento del animal, en particular, cuando éstos se utilizan en investigaciones que tienen repercusiones inmediatas o a largo plazo en el funcionamiento del sistema nervioso central. Aspectos que van desde el estudio del funcionamiento normal de las estructuras del cerebro, hasta la evaluación del efecto de determinadas drogas o la consecuencia que pudiera tener una modificación genética (cubriendo campos muy amplios que van desde la neurobiología comparada, la embriología experimental, la neurología, la psicología, la farmacología o la fisiología entre otros). Para evaluar estas conductas, por ejemplo, en determinados aspectos relacionados con la memoria y el aprendizaje, suele ser importante conocer en detalle la posición espacial del roedor a lo largo del tiempo. Para ello se utilizan diferentes instrumentos tales como laberintos, para el estudio de la memoria y el aprendizaje (Open-Field, Morris water Maze, T-Maze), o instrumentos para el estudio de la actividad física (tapiz rodante, rueda voluntaria o rueda a motor). Este último caso tiene efectividad para valorar cual es la respuesta del roedor a la actividad física y generar modelos que permitan predecir cuál será la respuesta más probable en el tiempo a un protocolo de actividad física.
Para la evaluación y registro del comportamiento de los roedores en este tipo de instrumentos, tradicionalmente se ha utilizado la observación humana mediante registro manual in situ, o con la filmación de vídeos para su posterior análisis por un operador humano. La automatización de la monitorización de la conducta animal en este tipo de experimentos disminuye posibles sesgos por fallos humanos y facilita la reproducibilidad de los experimentos.
Actualmente, existen algunas estrategias que permiten una monitorización automática. En el caso de experimentos en laberintos, la monitorización mediante cámaras es una de las técnicas más potentes en el campo del análisis del comportamiento animal, gracias a su precisión y a su monitorización constante. Consiste en el uso de cámaras infrarrojas o de alta resolución, junto a un software de captura de movimiento que procesa los datos obtenidos. Uno de los exponentes de esta técnica es Ethovision XT10, desarrollado por la empresa estadounidense Noldus, compuesto por un programa informático y unas cámaras que se adquieren por separado. El software de Ethovision se dedica al análisis cenital de roedores en laberintos y tiene un coste económico elevado, incluso en su versión básica.
Sin embargo, la monitorización de entrenamientos de roedores en ruedas, por ejemplo, se realiza por sistemas cuenta vueltas, que mide el número de vueltas realizadas por el roedor. Esta técnica no aporta información visual, sólo genera datos de número total de vueltas y de la frecuencia de la rueda, datos que deben interpretarse a posteriori. Este método no permite conocer las preferencias de posición espacial del roedor durante la ejecución del ejercicio, aspecto clave en la determinación de una posible respuesta a largo plazo. Un ejemplo de este sistema es el fabricado por la empresa Bioseb, BIO-ACTIVM-M, que mide el número de vueltas, la velocidad angular media, la velocidad máxima y mínima, entre otras variables. Puede monitorizar simultáneamente hasta 64 ruedas.
Por otra parte, en lo relativo al seguimiento de trayectorias utilizando cámaras de infrarrojos, se ha descrito el uso de la cámara de infrarrojos del mando de la consola Wii de Nintendo en [ABELLÁN, F.J., ARENAS, A., NÚÑEZ, M.J. y VICTORIA, L, "The use of a Nintendo Wii remote control in physics experiments", Eur J Phys, 2013, Vol. 34, páginas 1.277-1.286], donde se describe el modo de obtención de los parámetros más importantes en el estudio de distintos tipos de movimientos rectilíneos, circulares, parabólicos, etc., de interés en los experimentos de laboratorio de Física.
Descripción de la invención
La caracterización dinámica de la actividad física desarrollada por roedores de laboratorio puede realizarse a partir de la medida de la posición del individuo en instantes de tiempo concretos, es decir, de forma sincronizada, con una velocidad de muestreo lo suficientemente alta para que pueda resultar un movimiento cuasi continuo. Además de la obtención detallada de la trayectoria del individuo a lo largo del tiempo, a partir de esas dos variables, posición y tiempo, por derivación matemática, se deducen otras variables de interés como velocidad y aceleración.
El sistema que aquí se presenta mide la posición de uno o más puntos que se desplazan, con una resolución del 0.1 % del fondo de escala, dentro de un rango de dimensiones variables y con una frecuencia de muestreo máxima de 200 Hz. Para ello se utiliza un mando de la consola Wii de Nintendo que contiene una cámara con un filtro de luz infrarroja de 940 nm y un procesador gráfico embebido, capaz de localizar uno o varios focos (hasta 4 focos) que emiten luz infrarroja, determina su centro geométrico y le asigna un par de coordenadas cartesianas (xi, yi) a cada uno de los centros geométricos del (los) foco(s), todo ello en un tiempo de 5 ms. El campo de visión de la cámara es una ventana rectangular de 1.024 pixeles en la dirección horizontal y 768 pixeles en la vertical y los ángulos de apertura del objetivo son de 35° y 25° respectivamente, de forma que a mayor alejamiento de la cámara, mayores son las medidas en unidades de longitud del rango de visión. Haciendo unos cálculos trigonométricos, se puede deducir la distancia a la que hay que situar el objetivo de la cámara para abrir el campo a una superficie dada. Por ejemplo, a una distancia de unos 1.500 mm el campo de visión de la cámara es de 1.000 mm x 750 mm, aproximadamente. Es decir, un foco de luz infrarroja que se mueva en un plano perpendicular al eje de visión del objetivo de la cámara, situada a 1.500 mm, podrá realizar un movimiento registrado por la cámara dentro de un rectángulo de 1.000 mm x 750 mm, representando 1 mm cada pixel, aproximadamente. Lógicamente, para determinar exactamente la relación mm/pixel deberá realizarse un calibrado previo que nos proporcione la conversión de unidades en pixeles a unidades en milímetros.
La comunicación que hace posible el trasvase de datos recogidos por la cámara hasta un ordenador es la comunicación estándar Bluetooth.
Para seguir el movimiento del animal de laboratorio durante fases de entrenamiento, se le ha de colocar un elemento (o más de uno) de material reflector de la luz de forma que al ser iluminado por un foco de luz infrarroja de 940 nm de longitud de onda, pueda ser "visto" por reflexión por la cámara del mando de la Wii y pueda seguir la trayectoria de su movimiento.
En experimentos con observación cenital, como Open-Field y otros laberintos, existen sistemas de observación y monitorización mediante cámaras infrarrojas o de alta velocidad que envían las imágenes a un ordenador con un programa informático que las procesa. La ventaja tecnológica del sistema de esta invención es que se utiliza una cámara (la del mando de la consola Wii) que tiene un procesador gráfico embebido para calcular la posición del centro geométrico del objeto luminoso (en infrarrojo) y envía sólo las coordenadas de posición de uno hasta cuatro puntos observados, lo que simplifica el proceso que ha de realizar posteriormente el programa informático y, por tanto, el costo económico de todo el sistema, de hecho el coste de un mando de la Wii es de unos 30€. Esto hace que el sistema de esta invención presente una ventaja tecnológica para ser usado en la monitorización con observación cenital del recinto. En experimentos con roedores de laboratorio en los que se utilizan ruedas voluntarias o motorizadas, actualmente, la monitorización no se realiza con cámaras si no utilizando dispositivos cuenta-vueltas, que permiten extraer información limitada de la actividad física realizada por el animal de laboratorio en dicho dispositivo. La monitorización de ejercicios en ruedas voluntarias o motorizadas mediante el sistema que representa esta invención, presenta una ventaja tecnológica al extraerse un volumen de información superior, que permite realizar análisis más profundos de la actividad física y del comportamiento de los roedores de laboratorio. Por otra parte resulta fundamental el valor predictivo que presenta el conocer la posición espacial del roedor durante la ejecución del programa de ejercicio.
En sistemas de monitorización con cámaras infrarrojas o cámaras de alta velocidad, como el reseñado en el apartado del estado de la técnica, se realiza la grabación de un solo recinto con un roedor de laboratorio. En esta invención, el programa informático puede diseñarse de forma que permita la monitorización y el registro de datos de hasta 6 mandos de la Wi simultáneamente en funcionamiento, sobre otros tantos roedores sometidos a entrenamiento, lo que constituye una ventaja tecnológica. Descripción de las figuras
Para complementar la descripción de la invención y con objeto de ayudar a una mejor compresión de sus características, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de la descripción, un juego de dibujos, donde, con carácter ilustrativo y no limitativo, se representa lo siguiente:
FIG 1.- Vista general de recinto Open-Field monitorizado con el mando de la Wii.
FIG 2.- Vista general de una rueda de entrenamiento monitorizada con el mando de la Wii. FIG 3.- Vista de un mando de la Wii con un foco de LEDs instalado en torno a su objetivo.
Lista de referencias
1. Mando de la consola Wii.
2. Soporte.
3. Objetivo.
4. Recinto de Open Field.
5. Rueda de entrenamiento.
6. Foco de LEDs.
7. Placa de circuito impreso.
8. Roedor de laboratorio.
9. Trozo de lámina de material reflectante.
Descripción de un modo de realización preferente de la invención
El funcionamiento del sistema info-óptico que se preparó para el seguimiento de trayectorias de un animal de laboratorio se ilustra en la FIG 1 , en modo de observación cenital en un ejercicio de Open-Field y en la FIG 2 en modo de observación horizontal en un ejercicio con rueda entrenamiento. En ambas figuras se aprecia el mando de la Wii 1 sujeto por un soporte 2 que la mantiene fijamente en el espacio con su objetivo 3 orientado hacia el recinto de Open-field 4, en un caso, y hacia la rueda de entrenamiento 5, en otro. La cámara del mando de la Wi, que se ilustra en la FIG 3, puede localizar de uno hasta cuatro focos de emisión de luz infrarroja que se encuentren en su campo de visión. En torno al objetivo de la cámara se fijó un foco de LEDs 6 de infrarrojos montados sobre una placa de circuito impreso 7, que iluminan el campo de visión de la cámara. Esta placa de circuito impreso se alimentó con una fuente de corriente continua para polarizar a los LEDs y que emitan luz infrarroja. El animal de laboratorio 8 lleva adherido a su piel una lámina 9 de material reflectante, en un lugar visible por la cámara del mando de la Wii. El mando de la Wii envía, a través de comunicación Bluetooth, los datos de posición al ordenador con el que está sintonizado, a una frecuencia de muestreo fijada por un programa informático instalado en el ordenador. Esta frecuencia puede configurarse desde el programa informático entre 0 Hz y 200 Hz como máximo.
El ordenador recibe a través de comunicación inalámbrica Bluetooth los datos de las coordenadas cartesianas (X,Y) en pixeles y en base a un calibrado realizado previamente, un programa informático los convierte en unidades de milímetros, registra y procesa los datos de dichas coordenadas y tiempos y presenta mediante tablas y gráficos las variables físicas de interés: trayectorias, frecuencias de las posiciones en distintas zonas del recinto, distancia recorrida, velocidad instantánea, velocidad máxima, velocidad media, velocidad angular, aceleración lineal y angular, etc. Esto permite caracterizar cualitativa y cuantitativamente el movimiento y el comportamiento del animal de laboratorio bajo observación.
Durante la instalación del mando de la Wii en su soporte se realizó un proceso de calibrado, con ayuda del programa informático, de forma que la información en pixeles de las coordenadas de posición se traduce a unidades de milímetros. La lámina de material reflectante que se fijó a la piel del animal de laboratorio refleja la luz infrarroja procedente del foco de LEDs situados en torno al objetivo de la cámara del mando de la Wii. La luz es reflejada por esa lámina en la misma dirección con que incide en ella, permitiendo incluso una inclinación de 50° de la normal de dicha lámina respecto de la dirección de la radiación incidente, sin que deje de reflejar la luz en la misma dirección de donde la recibe.
Dado que el campo de visión se hace mayor para planos más alejados del objetivo de la cámara del mando de la Wii, para escenarios de mayor superficie, como es el caso de Open- Field de dimensiones de 1 mx1 m, se situó el mando de la Wii a unos 170 cm del plano de referencia del recinto del Open-Field, a la vez que se utilizó un tamaño de la lámina del material reflectante de unos 3 cm2. Para el caso de un escenario de movimiento de menor superficie, como el caso de la rueda de entrenamiento de unos 40 cm de diámetro, el mando se situó a unos 70 cm de distancia de la rueda de entrenamiento, a la vez que se utilizó un tamaño de lámina de 1 cm2. Por tanto, el tamaño de dicho trozo de material reflectante puede oscilar entre 1 cm2 y 3 cm2 de superficie; sin embargo la forma geométrica de dicha lámina puede ser circular, ovalada, poligonal regular e incluso irregular con lados rectos o curvos, pues el procesador gráfico embebido de Pixar que tiene la cámara del mando de la Wii calcula el centro geométrico de la lámina reflectante y extrae sus coordenadas cartesianas.
Como el mando de la consola Wii puede localizar y capturar simultáneamente las coordenadas de posición de hasta 4 puntos de radiación infrarroja, se fijó en la piel del animal hasta cuatro trozos de lámina de material reflectante alineados, que proporcionaron más datos al programa para determinar otros parámetros como la dirección en la que está orientado en cada momento, o el grado de estiramiento o contracción del cuerpo del animal de laboratorio. Una forma de conseguir la reflexión de la radiación infrarroja similar a la que proporcionan las láminas de material reflectante, es mediante el uso de un barniz líquido reflectante de la radiación. Con este barniz se pintó una pequeña región superficial (de similar tamaño a la de la lámina reflectante) en la piel del roedor de laboratorio. Una vez seco este barniz presenta las propiedades deseadas de reflexión de la luz.
A partir de las posiciones en unidades de mm y los tiempos en unidades de ms, medidos por el sistema, el programa informático determina la trayectoria, las frecuencias de las distintas localizaciones, los tiempos de reposo, los tiempos de movimiento, la velocidad instantánea, la velocidad máxima, la velocidad media, etc del roedor de laboratorio.
En esta realización de la invención, el programa informático se diseñó de forma que permitió la monitorización y el registro de datos de hasta 6 mandos de la Wii simultáneamente en funcionamiento, sobre otros tantos roedores sometidos a entrenamiento.

Claims

REIVINDICACIONES
1. - Sistema info-óptico para el seguimiento de trayectorias de focos puntuales de luz infrarroja inscritas en un área plana, que comprende:
- un mando a distancia de la consola Wii de Nintendo (1) conteniendo una cámara de visión infrarroja que localiza 1 , 2, 3, o 4 focos de luz infrarroja y que asigna las coordenadas cartesianas en dos dimensiones de sus centros geométricos dentro de un marco rectangular de referencia;
- un soporte (2) que mantiene al mando de la consola Wii en posición fija en el espacio cuyo objetivo se orienta hacia el instrumento de entrenamiento o experimentación para roedores de laboratorio;
- un foco de LEDs de luz infrarroja (6);
- trozos de lámina de material reflectante (9) de luz infrarroja con adhesivo;
- un ordenador con sistema de comunicación Bluetooth;
- un programa informático instalado en el ordenador que recibe la información de las coordenadas cartesianas y el tiempo, enviados por el mando de la consola Wii, registra, procesa los datos de dichas coordenadas y presenta mediante tablas y gráficos las variables estadísticas y físicas: frecuencia de las posiciones, distancia recorrida, velocidad instantánea, velocidad máxima, velocidad media, tiempos de movimiento, tiempos de reposo, aceleración, discriminación de tipos de trayectorias, para caracterizar cualitativa y cuantitativamente el desplazamiento de los focos emisores de luz infrarroja.
2. - Sistema info-óptico según la reivindicación 1 , donde un trozo de material reflectante de radiación infrarroja con adhesivo, se fija en el dorso del cuerpo del roedor de laboratorio (8) de forma que refleja la luz procedente del foco de luz infrarroja que circunda el objetivo de la cámara del mando de la Wii.
3. - Sistema info-óptico según las reivindicaciones anteriores, donde dos, tres o cuatro trozos de material reflectante se fijan a lo largo de la espalda del animal de laboratorio definiendo su orientación concreta y su grado de estiramiento o contracción de su cuerpo.
4. - Sistema info-óptico según las reivindicaciones anteriores, donde el mando de la Wii captura las coordenadas de las posiciones de los centros geométricos de los trozos de material reflectante a una frecuencia de muestreo configurable entre 1 Hz y 200 Hz.
5. - Sistema info-óptico según las reivindicaciones anteriores, donde el programa informático transforma la información recibida en pixeles de las coordenadas de las posiciones de los centros geométricos de los trozos de material reflectante, en unidades de milímetros.
6. - Sistema info-óptico según las reivindicaciones anteriores, donde el foco de luz infrarroja está formado por una serie de LEDs montados en una placa de circuito impreso
(7) y dispuestos en torno al objetivo (3) de la cámara del mando de la Wii.
7. - Sistema info-óptico según las reivindicaciones anteriores, donde el área de la lámina de material reflectante puede tener distinto tamaño, comprendido entre 1 cm2 y 3 cm2.
8. - Sistema info-óptico según las reivindicaciones anteriores, donde la forma de la lámina de material reflectante puede ser circular, ovalada, poligonal regular o poligonal irregular, de lados rectos o de lados curvos, o de contorno irregular.
9.- Sistema info-óptico según las reivindicaciones de 1 a 6, donde el elemento reflectante consiste en una capa de barniz reflectante de la luz, aplicada sobre una zona de la piel del roedor de laboratorio.
10. - Uso del sistema info-óptico según las reivindicaciones 1 a 9, para la observación cenital, monitorización y el análisis del comportamiento de roedores de laboratorio, en entornos Open Field (4), T-Maze y Morris water Maze, así como en otros laberintos específicos.
1 1. - Uso del sistema info-óptico según las reivindicaciones 1 a 9, para la observación, monitorización y el análisis del comportamiento de roedores de laboratorio en ruedas voluntarias (5) y en ruedas motorizadas.
12. - Uso del sistema info-óptico según las reivindicaciones 1 a 9, para conocer la posición espacial del roedor en la rueda de entrenamiento durante la realización del ejercicio.
13. - Uso del sistema info-óptico según las reivindicaciones anteriores, para la monitorización simultánea con 6 mandos de la consola Wii con observación cenital o de 6 ruedas de entrenamiento con observación horizontal, utilizando un solo ordenador con un único programa informático.
PCT/ES2017/070493 2017-07-07 2017-07-07 Sistema info-optico para la monitorización del movimiento de roedores de laboratorio WO2019008197A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2017/070493 WO2019008197A1 (es) 2017-07-07 2017-07-07 Sistema info-optico para la monitorización del movimiento de roedores de laboratorio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2017/070493 WO2019008197A1 (es) 2017-07-07 2017-07-07 Sistema info-optico para la monitorización del movimiento de roedores de laboratorio

Publications (1)

Publication Number Publication Date
WO2019008197A1 true WO2019008197A1 (es) 2019-01-10

Family

ID=64950641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070493 WO2019008197A1 (es) 2017-07-07 2017-07-07 Sistema info-optico para la monitorización del movimiento de roedores de laboratorio

Country Status (1)

Country Link
WO (1) WO2019008197A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236356A1 (en) * 2006-03-29 2007-10-11 Jingxi Zhang Method and apparatus for tracking a laboratory animal location and movement
CN101540090A (zh) * 2009-04-14 2009-09-23 华南理工大学 基于多元信息融合的驾驶员疲劳监测装置及其监测方法
WO2011005080A1 (en) * 2009-07-06 2011-01-13 Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patientenzorg Three dimensional tracking system and method
US20120192088A1 (en) * 2011-01-20 2012-07-26 Avaya Inc. Method and system for physical mapping in a virtual world
US20130165770A1 (en) * 2011-12-23 2013-06-27 Texas Tech University System System, Method and Apparatus for Tracking Targets During Treatment Using a Radar Motion Sensor
US20130324310A1 (en) * 2012-05-31 2013-12-05 Nike, Inc. Golf Balls and Other Game Balls Having Improved Launch Monitor or Motion Tracking Visibility
CN105116892A (zh) * 2015-08-24 2015-12-02 铜陵学院 双核高速六轮微微鼠冲刺控制器及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236356A1 (en) * 2006-03-29 2007-10-11 Jingxi Zhang Method and apparatus for tracking a laboratory animal location and movement
CN101540090A (zh) * 2009-04-14 2009-09-23 华南理工大学 基于多元信息融合的驾驶员疲劳监测装置及其监测方法
WO2011005080A1 (en) * 2009-07-06 2011-01-13 Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patientenzorg Three dimensional tracking system and method
US20120192088A1 (en) * 2011-01-20 2012-07-26 Avaya Inc. Method and system for physical mapping in a virtual world
US20130165770A1 (en) * 2011-12-23 2013-06-27 Texas Tech University System System, Method and Apparatus for Tracking Targets During Treatment Using a Radar Motion Sensor
US20130324310A1 (en) * 2012-05-31 2013-12-05 Nike, Inc. Golf Balls and Other Game Balls Having Improved Launch Monitor or Motion Tracking Visibility
CN105116892A (zh) * 2015-08-24 2015-12-02 铜陵学院 双核高速六轮微微鼠冲刺控制器及其控制方法

Similar Documents

Publication Publication Date Title
US20180271378A1 (en) Handheld skin measuring or monitoring device
US8282274B2 (en) Remote temperature sensing device
ES2398353T3 (es) Sistema de control
US9014469B2 (en) Color-mapping wand
Haggag et al. Measuring depth accuracy in RGBD cameras
RU2015142278A (ru) Система и способ определения информации об основных показателях состояния организма
KR20080064155A (ko) 표면 특징을 모니터링하는 방법 및 장치
CN111397763A (zh) 基于人脸跟踪的体温测量装置、方法
JP7116526B2 (ja) 照明環境計測システム
ES2596879B1 (es) Sistema info-óptico para la monitorización del movimiento de roedores de laboratorio
BR112015006862B1 (pt) Sistema e método para determinar a área de uma abertura de caixilho em uma capela de exaustão
WO2019008197A1 (es) Sistema info-optico para la monitorización del movimiento de roedores de laboratorio
US20210267463A1 (en) System and method for automated thermographic examination
US9606003B2 (en) Clinical hand-held infrared thermometer with special optical configuration
Diaz Novo et al. The impact of technical parameters such as video sensor technology, system configuration, marker size and speed on the accuracy of motion analysis systems
CN106537160B (zh) 可视化装置及可视化方法
JP6816575B2 (ja) 体動検出装置及び見守りシステム
CN211668668U (zh) 基于人脸跟踪的体温测量装置
JP2015223290A5 (es)
US20220292807A1 (en) Targets for tracking, and systems and methods for tracking the targets
ES2326503B2 (es) Sistema de acceso a un ordenador basado en guiños voluntarios.
KR101559252B1 (ko) 안진측정을 위한 마커 어레이
RU2776203C1 (ru) Устройство установки датчиков для контроля параметров в помещении для содержания сельскохозяйственных животных
ES2884249B2 (es) Procedimiento y sistema para detectar en tiempo real agentes biológicos suspendidos en el aire
US20210052189A1 (en) Lesion Volume Measurements System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916591

Country of ref document: EP

Kind code of ref document: A1