WO2019007445A1 - Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos (primario, secundario y mejorado) - Google Patents

Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos (primario, secundario y mejorado) Download PDF

Info

Publication number
WO2019007445A1
WO2019007445A1 PCT/CO2018/000015 CO2018000015W WO2019007445A1 WO 2019007445 A1 WO2019007445 A1 WO 2019007445A1 CO 2018000015 W CO2018000015 W CO 2018000015W WO 2019007445 A1 WO2019007445 A1 WO 2019007445A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy
additive
extra
oil
weight
Prior art date
Application number
PCT/CO2018/000015
Other languages
English (en)
French (fr)
Original Assignee
Ecopetrol S.A.
Polynex S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A., Polynex S.A.S. filed Critical Ecopetrol S.A.
Priority to US16/628,915 priority Critical patent/US11578279B2/en
Priority to MX2020000061A priority patent/MX2020000061A/es
Publication of WO2019007445A1 publication Critical patent/WO2019007445A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G71/00Treatment by methods not otherwise provided for of hydrocarbon oils or fatty oils for lubricating purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives

Definitions

  • the present invention relates to the improvement of the process generated by a system of specialized additives in forming dispersions of very low viscosity (extra-heavy crude oil-water) and increasing the solvent properties of solvents used in the production of extra heavy crude oils, understood by production, stages of lifting, collection, dehydration and transport.
  • composition of the additive system according to the invention comprises: dispersants for water-based fluids and oil of high efficiency over a wide temperature range, pour point reducers, biodegradable oils and organic solvents.
  • the application of the additive system is carried out in two differentiated points: Well head and / or at the bottom of the well (Point where the dispersion is formed) according to need; and downstream, at the points where it is necessary to add a diluent to reduce residence times in the removal of water and / or drainage of the internal phase.
  • the patent of invention CA 2,896,451 reports a method to improve the mobility of heavy oil that includes mixing an additive comprising saponins and fatty acids with a heavy oil, wherein the saponins are derived from Saponidus Saponaria.
  • the present invention does not employ saponin and the injection of the additive is carried out in the diluent and not in the heavy oil.
  • the patent RU2013 / 107628 reports a viscosity reducing additive for heavy fractions of oil-bituminous sands, which It comprises sodium carboxylate which is a by-product of the vegetable oil production industry which is added to heavy oil.
  • the present invention does not employ sodium carboxylate and the injection of the additive is carried out in the diluent and not in the heavy oil.
  • a viscosity reducer based on plant extracts of natural origin.
  • Plant extracts include a mixture of phosphoglycerides and vegetable oils.
  • a reduction in the use of diluents is achieved by using vegetable extracts reducing viscosity.
  • the viscosity reducing composition includes a mixture of phosphoglycerides, vegetable oils, non-aromatic solvent, polycyclic aromatic hydrocarbon and a stabilizer.
  • the present invention does not employ a mixture of phosphoglycerides that could generate an opposite effect over time, since they increase the viscosity of the system.
  • the injection of the additive is done in the diluent and not in the heavy oil.
  • the emulsions are prepared with the help of an emulsifier and subsequently said emulsions are broken with the addition of demulsifiers.
  • the state of the art discloses additives that are added directly to heavy oil in order to improve their fluidity and viscosity conditions. In most cases, the additive requires a mixing process by agitation for incorporation into the crude and then the addition of large quantities of solvent such as naphtha or light crude.
  • Figure 1 shows the conventional collection process.
  • FIG. 2 shows the collection process according to the present invention, wherein the additives of the invention are used.
  • Figure 3 shows the current treatment system.
  • FIG. 4 shows the treatment system according to the present invention, wherein the additives of the invention are employed.
  • Figure 5 shows the effect of the "EG” additive system according to the invention in the reduction of viscosity.
  • Figure 6 shows the effect of Synergy of the Additive system according to the invention.
  • Figure 7 shows the effect of the Additive system on the viscosity of the diluent "N" (Mafta diluent) in heavy crude-diluent mixtures.
  • Figure 8 shows the rheological behavior of the dispersion under static and dynamic conditions (Rest time and system disturbance).
  • Figure 9 shows the removal rate of water in dehydration of mixtures treated with additive system
  • Figure 10 shows the variation of viscosity index of mixtures without additive Vs. a mixture treated with system of additives EG (E additive surfactant flow improver in collection and G additive potentializer of the dilution power of the diluent N according to the invention) .
  • EG E additive surfactant flow improver in collection and G additive potentializer of the dilution power of the diluent N according to the invention
  • the system of additives that has as a principle, on the one hand, to achieve in the phases of collection and treatment, the instantaneous formation of a dispersion of crude oil in water with a stable flow pattern of homogeneous characteristics.
  • This dispersion generates a drastic reduction of the viscosity and thanks to the amphiphilic and lubricating character of this product, the adhering conditions of the crude oil are eliminated, facilitating its rapid displacement through internal cavities of pumps and transport pipes.
  • An effect also obtained by the additive system of the invention is the reduction of the internal friction of the system, resulting in a significant reduction in pressure drops (energy saving) in the pumping systems, facilitating its lifting process to installations of treatment and eliminating the need to dilute with wellhead solvents.
  • the additive system of the present invention has the following identified functions: Generate a crude instant dispersion-water (water that comes from the formation); reduce the friction of the fluid in contact with the walls of the well, pumps and lines of conduction thanks to its lubricating effect; reduce the viscosity of the crude-water system by increasing the linear velocity in pipes; reduce the adherent characteristics of the crude by eliminating the encapsulation of water within it and eliminating contact with the pumping infrastructure, thereby significantly reducing pressure drops in the pipes, thereby generating an increase in pumping capacity; increase in the speed of diffusion of diluent in crude oil thanks to its oleic affinity; reducing losses by evaporation of the diluent; modifying the viscosity index of the dispersed system, and decreasing the
  • the additive system of the present invention is composed of:
  • Dispersants for high efficiency oil base fluids at low temperatures include but are not limited to fatty acids and esters from vegetable oils such as ricinoleic fatty acid (12-hydroxy-9-cis-octadeceneic acid) unsaturated, phosphatidyl choline, glycerol esters, butyl acid, lauric acid, palmitic, stearic, oleic acid, pine oil, ethoxylated alkyl phenol or mixtures thereof in aliphatic and / or aromatic alcohols with carbon numbers between 2 and 22 carbon atoms (C2-C30) and / or their ethoxylated compounds or combinations of them, in concentration ranges between 10 and 30% by weight, more preferably between 15 - 22% and organic solvents
  • the components of surfactant characteristics of the additive E for improving the flowability in collection ducts include but are not limited to aliphatic and / or aromatic alcohols with carbon numbers between 2 and 22 carbon atoms (C2-C30) and / or its ethoxylated compounds in concentration ranges between 5 and 55% by weight, more preferably between 12 and 35% by weight;
  • Alcohols can be methanol, ethanol, propanol, isopropanol, butanol, isobutanol, terbutanol, in concentration ranges between 2 and 10% by weight;
  • alkyl means one or two hydrocarbon groups of 1 to 30 linear or branched carbon atoms, for example LAS or sodium dodecylbenzenesulfonate,
  • ethers of 2 to 6 carbons as for example, but not limited to methoxyethane, methoxymethane, 3,3-oxopropane, ethane-oxyethane, ethyl ether or mixtures thereof, in concentrations which may vary between 2 to 8% by weight;
  • sulphonated vegetable oils such as, for example, olive oil, sunflower oil, soybean oil, palm oil, sesame oil, peanut oil, safflower oil, rapeseed oil or combinations thereof in concentrations between 2 and 8% by weight; water in concentration by weight between 3.5 and 8% and
  • the organic solvents for the additive system of the present invention may be of the aliphatic or aromatic type, wherein the aliphatic solvents may include but are not limited to straight-chain or cyclic carbon compounds and which contain chemical functions such as alcohols, ketones, ethers, esters, amines and amides, among others, all of them straight or branched chain, wherein the aliphatic solvents contain from 1 to 18 carbon atoms, in concentration ranges between 5 to 24% by weight.
  • Aromatic solvents may include but are not limited to aromatic solvents such as benzene, xylene, o-xylene; toluene or any other base-benzene solvent with one or more chains of straight or branched chain aliphatic substituents ranging from 1 to 12 carbon atoms, in concentration ranges between 2 to 34% by weight.
  • the present invention may comprise the mixture of one or more of these aliphatic and / or aromatic organic solvents and their concentration in the additive system of the invention is in a range from 42% to 78%.
  • Alcohols with carbon numbers between 2 and 22 carbon atoms (C2-C30) and their corresponding ethoxylated compounds for both the additive E and the additive G according to the present invention can be but are not limited to alcohols and ethoxylates of dodecanol, tridecanol, tetradecanol, penradecanol, hexadecanol, palmitoleic alcohol, heptadecanol, octadecanol, oleyl alcohol, nanodecanol, elisocanol, docosanol or mixtures thereof or their corresponding isomers.
  • the alcohols may contain from 1 to 22 OH groups which may be partially or totally ethoxylated.
  • the concentration of the additive E can be in a concentration between 350 and 1500 ppm, preferably between 600 and 1000 ppm and more preferably between 650 and 800. In one embodiment, the concentration of the additive E is 750 ppm.
  • the concentration of additive G in the treatment and dehydration stage of heavy and extra-heavy crudes may be in a concentration between 500 and 2000 ppm, preferably between 800 and 1500 ppm and more preferably between 900 and 1200. In one embodiment, the concentration of additive G is 1000 ppm.
  • a process is disclosed to improve the flow capacity and enhance the dilution capacity of diluents in production and transport processes of heavy and extra-heavy crude coming from different phases of recovery of deposits (primary, secondary and improved), specifically the application of the additive system, wherein in a first step, an additive according to the invention is applied in the step of the lifting and collection process (bottom or wellhead, whichever applies), where the additive promotes dispersion, and this operation does not require any type of mechanical element and / or homogenizer since the dispersion is generated immediately, spontaneously forming a coarse dispersion with droplet size ranges between 250 and 1200 microns and very low viscosity.
  • the second stage of the process is carried out with the application of an additional additive (Additive G) according to the present invention in the dehydration step in the treatment facilities (Tanks and / or treaters):
  • An additional additive (Additive G) according to the present invention in the dehydration step in the treatment facilities (Tanks and / or treaters):
  • the conventional operation of diluting with diluents with carbon chains between C5 to C12 had the purpose of modifying the density of the heavy hydrocarbon.
  • it is carried out by directly adding the additive enhancer of the diluent capacity before it is mixed with the heavy and / or extra heavy crude.
  • the diluent already potentiated with the additive of the invention diffuses easily into the crude at low shear stresses, that is, it does not require additional agitation equipment for the additive diluent to become part of the crude.
  • additive E additives of the invention
  • composition of the additive according to the present invention for this example is as follows. " Ethoxylated Alkyl Phenol 23% - 43% by Weight Linear Alkyl Benzene Sulphonate 1% -10% by Weight
  • the process that includes the system of additives of the present invention in the stages of treatment and dehydration of heavy and extra-heavy crudes allows to potentiate the dilution capacity of the diluent in heavy and extra-heavy crudes.
  • This potentiation is given by the increase in the diffusion rate of the diluent in the crude structure due to the oleophilic affinity of one of the components of the additive system (additive G) proposed in the present invention.
  • the proposed process with the additive system product of this invention significantly increases the dilution power by up to 35% of conventional diluents usually used, such as natural gasoline, virgin naphthas, cracked naphthas, condensates, aromatic streams and mixtures of these in the processes of lifting, collecting, treating and transporting heavy and extra-heavy crudes.
  • conventional diluents usually used, such as natural gasoline, virgin naphthas, cracked naphthas, condensates, aromatic streams and mixtures of these in the processes of lifting, collecting, treating and transporting heavy and extra-heavy crudes.
  • the proposed process with the additive system product of this invention improves the dehydration processes of the heavy and extra-heavy crudes, in order to reach in a faster and more efficient way the Dehydration of the crude oil by promoting a greater coalescence of the water droplets by the magnification of the interfacial area, which reduces the residence times from 1 to 6 hours in the treatment systems, leaving the crude oil in the specifications required by the industry (% BSW ⁇ 0.5).
  • the process proposed with the additive system product of this invention improves the viscosity index of the crude-diluent mixtures maintaining viscosity magnitudes within the range of plus or minus 5% of the viscosity value with the temperature variation, this due to the lubricating characteristic of one of its components (additive G).
  • the proposed process with the additive system product of this invention generates an effect on the surface tension of the diluent, which allows to increase the diluent-heavy crude and / or extra heavy contact area by increasing the speed of diffusion thereof in the crude. This characteristic guarantees a high homogeneity and stability of the mixture in the additive time G).
  • the proposed process with the additive system product of this invention generates a positive effect on the integrity of the lifting, collection, treatment and transport infrastructure. Due to the surfactant, lubricant and detergent characteristics of the process additive system, the formation and / or accumulation of organic material that affects the efficiency of corrosion inhibitors is reduced.
  • the proposed process with the additive system product of this invention removes and prevents the formation of organic deposits that decrease the effective diameter of the pipes, which reduces the pressure drops and increases the flow capacity in the collection and treatment stages.
  • the additive system product of this invention proved to be compatible with the additives used in the lifting process and surface facilities such as biocides, anti-foulants, oxygen scavengers, corrosion inhibitors, direct breakers, reverse rockers, flocculants and clarifiers.
  • the efficiency of the additive system is not affected by variations in temperature.
  • the additive system does not affect the quality of the crude cuts in the refining processes.
  • the characteristics of ASSAY II parameters confirmed that they remain unaffected and were within the uncertainty of each parameter.
  • the process and the system of additives according to the present invention have positive synergy since when using only the additive E, in the process, it does not have the same effect of resultant viscosity index as when using E and G. same to employ only G does not obtain the same level of savings of the diluent compared to that achieved when using E and G according to the present invention.
  • the diluents to which the additives are added can be but are not limited to gasoline, naphtha, diesel, biodiesel, liquefied gas of oil or mixtures thereof. Therefore, the additives of the invention can be added to gasoline, diesel and biodisel type fuels.
  • EXAMPLE 3 Effect of the additive system "EG” in the reduction of viscosity As shown in figure 5, with the additive system of the present invention and the process shows an effect in the viscosity reduction.
  • the behavior of an extra-heavy crude called "CHI” was observed and analyzed at different temperatures (30 to 60 ° C), compared to the "CHI” crude added with EG, that is, adding the additive composition E in the process. and then the additive composition G according to the invention, it can be seen that there was a very significant viscosity decrease from 150000 cP to 900 cP under the same test conditions.
  • FIG 8 which teaches the rheological behavior of the dispersion under static and dynamic conditions (Rest time and system disturbance), it is observed that the dispersion under static conditions is separated, however, when applying any disturbance (dynamic condition), it is re-dispersed maintaining the original Rheological characteristics.
  • Figure 8 relates the effect of a dispersion to the time OH, 1 H and 8H ( ⁇ 3 cP variation) confirming the stability with time and under conditions of confinement and against the dynamic state.
  • EXAMPLE 7 Effect of the "EG" additive system on the quality of the water removed after dispersion breaking.
  • Table 1 shows that there is no negative effect on the water quality resulting from the dehydration process of the mixture treated with the EG additive system according to the present invention when it is compared with the quality of the water separated with the process conventional currently used.
  • Table 2 shows the historical water quality data of the dehydration process in a period of 3 months.
  • EXAMPLE 8 Effect of the additive system "EG" on the water separation speed in the dehydration process.
  • figure 9 shows the speed of removal of water in dehydration of mixtures treated with additive systems, since figure 9 shows the improvement in separation time of the oil-water phases in the process of dehydration of crude-water-diluent mixtures treated with the additive system EG according to the invention, when compared to the current conventional process. It is observed that in one hour of treatment a 90% removal is achieved, while with the process only 25% is reached in the same period. Additionally, it is emphasized that a smaller volumetric diluent is required in the dehydration train.
  • the additive system according to the present invention improves the dehydration processes of the heavy and extra-heavy crudes, promoting the high coalescence of the water droplets reducing the drainage times of the water and the consumption of diluent.
  • EXAMPLE 9 Effect of the "EG" additive system on the viscosity index of the crude mix
  • Figure 10 shows the variation of viscosity index of mixtures without additive Vs.
  • a mixture of crude with non-additive diluent presents a high variation of viscosity with temperature
  • the mixture of crude with diluent added with EG according to the invention advantageously shows that its viscosity it does not present an appreciable variation (approximately constant) of the viscosity with temperature. This effect is beneficial in the case of transportation through oil pipelines where temperature variations are generated by changes in the altitude of the pipeline, promoting energy savings in the pumping system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)

Abstract

La presente invención está relacionada con un proceso que incluye un sistema de aditivos que aumentan la fluidez y/o capacidad de flujo y minimizan caídas de presión desde las etapas de levantamiento en pozos productores, líneas de recolección, sistemas de deshidratación y ductos de transporte de hidrocarburos pesados y extrapesados. Adicionalmente, el sistema de aditivos químicos inyectado aumenta la capacidad de dilución de los solventes que requieren ser aplicados para mejorar la calidad del crudo (reducir viscosidad, densidad y aumento de la Gravedad API) facilitando la deshidratación y el transporte.

Description

PROCESO PARA MEJORAR LA CAPACIDAD DE FLUJO Y POTENCIAR LA CAPACIDAD DE DILUCIÓN DE DILUYENTES EN PROCESOS DE PRODUCCIÓN Y TRANSPORTE DE CRUDOS PESADOS Y EXTRAPESADOS PROVENIENTES DE LAS DIFERENTES FASES DE RECOBRO DE YACIMIENTOS (PRIMARIO, SECUNDARIO Y MEJORADO)
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con la mejora del proceso generada por un sistema de aditivos especializados en formar dispersiones de muy baja viscosidad (crudo extrapesado-agua) y aumentar las propiedades diluyentes de solventes empleados en producción de crudos pesados extrapesados, entendiéndose por producción, las etapas de levantamiento, recolección, deshidratación y transporte.
La composición del sistema de aditivos de acuerdo con la invención, comprende: dispersantes para fluidos base agua y aceite de alta eficiencia en un amplio rango de temperaturas, reductores del punto de fluidez, aceites biodegradables y solventes orgánicos. La aplicación del sistema de aditivos se realiza en dos puntos diferenciados: Cabeza de pozo y/o al fondo del pozo (Punto donde se forma la dispersión) según la necesidad; y aguas abajo, en los puntos donde es necesario adicionar un diluyente para reducir tiempos de residencia en la remoción de agua y/o drenaje de la fase interna.
ESTADO DE LA TÉCNICA
A la fecha, los aditivos convencionales mejoradores de flujo tales como reductores de viscosidad, reductores de fricción, reductores de punto de fluidez para la adecuación del petróleo pesado están diseñados para actuar directamente en el crudo.
Si bien el petróleo ha experimentado significativas fluctuaciones en sus precios en los dos últimos años, es claro que aún no se cuenta con fuentes energéticas alternativas a los combustibles fósiles que sean suficientes para abastecer la demanda energética mundial. Dado que las reservas de crudo liviano con grados API de entre 30 a 60 grados son cada vez más escasas, se ha comenzado con la explotación de crudos pesados y extrapesados, cuyos valores de grados API son entre 6.5 y 22°API.
Estos crudos pesados y extrapesados constituyen un reto en todas las fases de la cadena productiva como son levantamiento, recolección, tratamiento, transporte, comercialización y refinación; debido a que presentan una mayor viscosidad por la presencia de compuestos químicos con una alta cantidad de anillos aromáticos en sus estructuras, de alto peso molecular y polaridades relativamente altas por la presencia de metales pesados y azufre, por lo que la infraestructura debe ser adaptada para dichos crudos. Otra alternativa es ajustar dichos crudos a las características de calidad requeridas por la infraestructura existente.
En el estado del arte, la patente de invención CA 2.896.451 reporta un método para mejorar la movilidad del petróleo pesado que incluye mezclar un aditivo que comprende saponinas y ácidos grasos con un petróleo pesado, en donde las saponinas son derivadas del Saponidus Saponaria. Con respecto a esta anterioridad, la presente invención no emplea saponina y la inyección del aditivo se realiza en el diluyente y no en el petróleo pesado.
De otra parte, la patente RU2013/107628 reporta un aditivo reductor de viscosidad para fracciones pesadas de petróleo-arenas bituminosas, el cual comprende carboxilato de sodio que es un subproducto de la industria de producción de aceite vegetal el cual se agrega al petróleo pesado. Con respecto a esta anterioridad, la presente invención no emplea carboxilato de sodio y la inyección del aditivo se realiza en el diluyente y no en el petróleo pesado.
La patente internacional WO2015/100517 divulga un método mejorado para reducir la viscosidad del petróleo crudo a lo largo de un amplio rango de temperaturas, en donde el efecto reductor de viscosidad se logra introduciendo aditivos que comprenden polivinil alcoholes (PVAs) en el petróleo. La mezcla en dispersión resultante no solo presenta movilidad mejorada, sino también facilita la recuperación del crudo original. Con respecto a esta anterioridad, la presente solicitud de patente no emplea polivinil alcoholes (PVAs), adicionalmente mejora el índice de viscosidad del crudo dando como resultado viscosidades bajas y estables a diferentes rangos de temperatura. La inyección del aditivo se realiza en el diluyente y no en el petróleo pesado, mejorando la gravedad API del crudo pesado.
Por su parte, el documento US2016/102241 divulga un reductor de viscosidad a base de extractos vegetales de origen natural. Los extractos vegetales incluyen una mezcla de fosfoglicéridos y aceites vegetales. También se divulga un método para reducir la viscosidad de petróleo crudo pesado y extrapesado, en donde no se requieren solventes de base aromática. Se logra una reducción en el uso de diluyentes empleando los extractos vegetales reductores de viscosidad. La composición reductora de viscosidad incluye una mezcla de fosfoglicéridos, aceites vegetales, solvente no aromático, hidrocarburo aromático policíclico y un estabilizador. Con respecto a esta anterioridad, la presente invención no emplea mezcla de fosfoglicéridos que podría generar un efecto contrario a través del tiempo, dado que los mismos aumentan la viscosidad del sistema. La inyección del aditivo se realiza en el diluyente y no en el petróleo pesado.
Finalmente, se conoce el artículo científico titulado "Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions-A proposed strategy for transporting extra heavy crude oils" de Ramírez Rafael y colaboradores, publicado en 2015 en Chemical Engineering and Processing 98 (2015) pg. 112-122, en donde se enseña un proceso para la preparación de emulsiones de aceite en agua para crudos pesados, especialmente para crudos con grados API de menos de 20 grados. En dicho artículo se estudian diferentes parámetros como la temperatura, el tiempo de agitación y velocidad, la proporción entre aceite y agua y las concentraciones de emulsificantes y desmulsificantes para la formación y rompimiento de emulsiones. Las emulsiones se preparan con la ayuda de un emulsificante y posteriormente se rompen dichas emulsiones con la adición de desmulsificadores. Sin embargo y como se mencionó en un principio, el estado del arte divulga aditivos que son agregados directamente al crudo pesado con el objetivo de mejorar sus condiciones de fluidez y viscosidad. En la mayoría de los casos, el aditivo requiere de un proceso de mezclado por agitación para su incorporación en el crudo y luego la adición de grandes cantidades de disolvente como por ejemplo, nafta o crudo liviano.
En este sentido, es claro que existía en el estado del arte la necesidad aún no satisfecha de un aditivo mejorador de la viscosidad de crudos pesados y extrapesados que pudiera ser ventajosamente agregado al solvente y no al crudo como convencionalmente se hace, de manera tal que se reducen significativamente los volumétricos de diluyente para alcanzar las especificaciones de calidad requeridas gracias al efecto potencializador del aditivo sobre el diluyente. DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra el proceso convencional de recolección.
La figura 2 muestra el proceso de recolección de acuerdo con la presente invención, en donde se emplean los aditivos de la invención.
La figura 3 enseña el sistema actual de tratamiento.
La figura 4 enseña el sistema de tratamiento de acuerdo con la presente invención, en donde se emplean los aditivos de la invención.
La figura 5 muestra el efecto del sistema de Aditivos "EG" de acuerdo con la invención en la reducción de viscosidad. La figura 6 muestra el efecto de Sinergia del sistema de Aditivos de acuerdo con la invención.
La figura 7 muestra el efecto del sistema de Aditivos en la viscosidad del diluyente "N" (Mafta diluyente) en mezclas crudo pesado-diluyente.
La figura 8 muestra el comportamiento reológico de la dispersión bajo condiciones estáticas y dinámicas (Tiempo de reposo y perturbación del sistema).
La figura 9 muestra la velocidad de remoción del agua en deshidratación de mezclas tratadas con sistema de aditivos,
La figura 10 muestra la variación de índice de viscosidad de mezclas sin aditivo Vs. una mezcla tratada con sistema de aditivos EG (E aditivo surfactante mejorador de flujo en recolección y G aditivo potencializador del poder de dilución del diluyente N de acuerdo con la invención). DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Es un objeto de la presente invención, el sistema de aditivos que tiene como principio, por una parte, lograr en las fases de recolección y tratamiento, la formación instantánea de una dispersión de crudo en agua con un patrón de flujo estable de características homogéneas. Esta dispersión genera una reducción drástica de la viscosidad y gracias al carácter amfifílico y lubricante de este producto, se eliminan las condiciones adherentes del crudo, facilitando su rápido desplazamiento a través de cavidades internas de bombas y tuberías de transporte.
Un efecto igualmente obtenido por el sistema de aditivos de la invención, es la reducción de la fricción interna del sistema, dando como resultado una significativa reducción en caídas de presión (ahorro energía) en los sistemas de bombeo, facilitando su proceso de levantamiento hasta instalaciones de tratamiento y eliminando la necesidad de diluir con solventes en cabeza de pozo. Una vez la dispersión formada con adición del aditivo E (composición de acuerdo con la invención) en cabeza de pozo, llega a las instalaciones de tratamiento, el otro componente (aditivo G que es otra composición de acuerdo con la invención) es inyectado directamente al solvente convencional que ya tiene incorporado el rompedor directo, de esta forma se modifica la densidad y viscosidad de crudos extrapesados, parámetros necesarios para que se lleven a cabo los procesos de deshidratación y tratamiento de emulsiones (rompimiento). Adicionalmente al efecto mencionado, se logra una reducción de viscosidad en la mezcla crudo-diluyente, debido a que se potencializa la capacidad oleofílica del diluyente y se reduce su volatilidad (pérdidas por evaporación). Con lo anterior, el sistema de aditivos de la presente invención, tiene las siguientes funciones identificadas: Generar una dispersión instantánea crudo-agua (agua que viene de la formación); reducir la fricción del fluido al contacto con las paredes del pozo, bombas y líneas de conducción gracias a su efecto lubricante; reducir la viscosidad del sistema crudo-agua aumentando la velocidad lineal en tuberías; reducir las características adherentes del crudo eliminando el encapsulamiento de agua en su seno y eliminación del contacto con la infraestructura de bombeo con lo que se disminuyen significativamente las caídas de presión en las tuberías, generando por tanto aumento en la capacidad de bombeo; aumento en la velocidad de difusión del diluyente en el crudo gracias a su afinidad oléica; reduciendo pérdidas por evaporación del diluyente; modificando el índice de viscosidad del sistema disperso, y disminuyendo el consumo de diluyente para alcanzar especificaciones de viscosidad en tratadores y líneas de transporte (menores volumétricos de diluyente requerido para una viscosidad dada).
La estabilidad de la dispersión formada con el sistema de aditivos bajo condición de confinamiento (Proceso rompimiento en tanques de deshidratación) genera rápida segregación de fases. Bajo condiciones de evacuación en líneas de flujo si existe una parada puede generarse segregación de fases, no obstante, con una mínima perturbación, homologa a la que se genera al reiniciar el bombeo, recobra las características Teológicas originales con una variación de viscosidad de más o menos 5% ( ± 5%).
El sistema de aditivos de la presente invención está compuesto por:
- Dispersantes para fluidos base aceite de alta eficiencia a bajas temperaturas. Estos dispersantes para fluidos base aceite, componentes del aditivo G, comprenden pero no se limitan a ácidos grasos y esteres provenientes de aceites vegetales tales como ácido graso ricinoleico (ácido 12-hidroxi-9-cis-octadecenóico) insaturado, fosfatidil colina, esteres de glicerol, acido butílico, ácidos laurico, palmítico, esteárico, ácido oleico, aceite de pino, alquil fenol etoxilado o mezclas de los mismos en alcoholes alifáticos y/o aromáticos con número de carbonos entre 2 y 22 átomos de carbono (C2-C30) y/o sus compuestos etoxilados o combinaciones de los mismos, en rangos de concentración entre 10 y 30% en peso, más de preferencia entre 15 - 22% y solventes orgánicos
Los componentes de características surfactantes del aditivo E para mejorar la capacidad de flujo en ductos de recolección, comprenden pero no se limitan a alcoholes alifáticos y/o aromáticos con número de carbonos entre 2 y 22 átomos de carbono (C2-C30) y/o sus compuestos etoxilados en rangos de concentración entre 5 y 55% en peso, más de preferencia entre 12 y 35% en peso;
Alcoholes primarios, secundarios y terciarios o mezclas de los mismos, en donde los alcoholes pueden ser metanol, etanol, propanol, isopropanol, butanol, isobutanol, terbutanol, en rangos de concentración entre 2 y 10% en peso;
alquil-sulfonatos de sodio, de potasio, de calcio o mezcla de estos en una concentración entre 0.5 y 10% en peso; en donde alquil significa uno o dos grupos hidrocarbonado de 1 a 30 átomos de carbono lineal o ramificado, por ejemplo LAS o dodecilbencenosulfonato de sodio,
hidróxidos de sodio, de Potasio, de calcio y de magnesio o mezclas de los mismos en una concentración entre 0.4 y 20%, de preferencia entre 0.4 y 9% en peso;
éteres de 2 a 6 carbonos, como por ejemplo, pero sin limitarse a metoxietano, metoximetano, 3,3-oxipropano, etano-oxietano, éter etílico o mezclas de los mismos, en concentraciones que pueden variar entre 2 al 8% en peso;
aceites vegetales sulfonados como por ejemplo, aceite de oliva, aceite de girasol, aceite de soya, aceite de palma, aceite de sésamo, aceite de maní, aceite de cártamo, aceite de colza o combinaciones de los mismos en concentraciones entre 2 y 8% en peso; agua en concentración en peso entre 3.5 y 8% y
- Solventes orgánicos
- Los solventes orgánicos para el sistema de aditivos de la presente invención, pueden ser de tipo alifático o aromático, en donde los solventes alifáticos pueden incluir pero no limitarse a compuestos carbonados de cadena lineal o cíclica y que contengan funciones químicas como alcoholes, cetonas, éteres, esteres, aminas y amidas, entre otras, todos ellos de cadena lineal o ramificada, en donde los solventes alifáticos contienen desde 1 hasta 18 átomos de carbono, en rangos de concentración entre 5 al 24 % en peso. Los solventes aromáticos pueden incluir pero no se limitan a solventes aromáticos tal como benceno, xileno, o-xileno; tolueno o cualquier otro solvente base-bencénica con uno o más cadenas de sustituyentes alifáticas de cadena lineal o ramificada comprendiendo entre 1 y 12 átomos de carbono, en rangos de concentración entre el 2 al 34% en peso. La presente invención, puede comprender la mezcla de uno o más de estos solventes orgánicos alifáticos y/o aromáticos y su concentración en el sistema del aditivo de la invención está en un rango desde 42% hasta 78%.
Los alcoholes con número de carbonos entre 2 y 22 átomos de carbono (C2- C30) y sus correspondientes compuestos etoxilados tanto para el caso del aditivo E como para el aditivo G de acuerdo con la presente invención, pueden ser pero no se limitan a alcoholes y etoxilados de dodecanol, tridecanol, tetradecanol, penradecanol, hexadecanol, alcohol palmitoleico, heptadecanol, octadecanol, alcohol oleico, nanodecanol, elisocanol, docosanol o mezclas de los mismos o de sus isómeros correspondientes. Los alcoholes pueden contener de 1 a 22 grupos OH que pueden estar parcial o totalmente etoxilados. En el proceso de recolección con el sistema de aditivos de la presente invención la concentración del aditivo E puede estar en una concentración entre 350 y 1500 ppm, de preferencia entre 600 y 1000 ppm y más de preferencia entre 650 y 800. En una modalidad, la concentración del aditivo E es de 750 ppm. En el proceso de recolección con el sistema de aditivos de la presente invención la concentración del aditivo G en la etapa de tratamiento y deshidratación de crudos pesados y extrapesados puede estar en una concentración entre 500 y 2000 ppm, de preferencia entre 800 y 1500 ppm y más de preferencia entre 900 y 1200. En una modalidad, la concentración del aditivo G es de 1000 ppm.
De acuerdo con otro objeto de la presente invención, se divulga un proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados provenientes de diferentes fases de recobro de yacimientos (primario, secundario y mejorado), específicamente la aplicación del sistema de aditivos, en donde en una primera etapa, se aplica un aditivo de acuerdo con la invención en el paso de proceso de levantamiento y recolección (Fondo o cabeza de pozo, lo que aplique), en donde el aditivo promueve la dispersión, y esta operación no requiere ningún tipo de elemento mecánico y/o homogeneizador ya que la dispersión es generada de manera inmediata, formándose espontáneamente una dispersión gruesa con rangos de tamaño de gota entre 250 y 1200 mieras y de muy baja viscosidad. La segunda etapa del proceso se lleva acabo con la aplicación de un aditivo adicional (Aditivo G) de acuerdo con la presente invención en el paso de deshidratación en las instalaciones de tratamiento (Tanques y/o tratadores): La operación convencional de diluir con diluyentes con cadenas carbonadas entre C5 a C12 tenía como propósito modificar la densidad del hidrocarburo pesado. Ahora, de acuerdo con el proceso de la invención, se lleva a cabo adicionando directamente el aditivo potenciador de la capacidad diluyente antes de que éste sea mezclado con el crudo pesado y/o extrapesado. El diluyente ya potencializado con el aditivo de la invención, se difunde fácilmente dentro del crudo a bajos esfuerzos de corte, es decir, no requiere equipo adicional de agitación para que el diluyente aditivado entre a formar parte del crudo.
- Por presentar en su formulación componentes que reducen el punto de fluidez, promueven rápidamente la difusión del diluyente en el crudo, y adicionalmente las características sinérgicas de éstos, permiten el rápido drenaje de la fase interna (agua) del crudo, favoreciendo la rápida deshidratacion de la fase oléica y disminuyendo las pérdidas por evaporación del diluyente.
Por tanto, Un proceso de producción y transporte de crudos pesados y extrapesados provenientes de recobros convencionales, caracterizado porque comprende los pasos de:
a) Agregar en línea a los fluidos provenientes de yacimiento crudo pesado o crudo extra pesado y agua uno de los aditivos de la invención (aditivo E), que se caracteriza por ser soluble en agua y dispersar el crudo en la fase acuosa sin requerir agitación reduciendo considerablemente la viscosidad de la dispersión formada, remueve residuos o suciedad orgánicas adheridas a las paredes internas de la tubería que reducen el diámetro efectivo interno, incrementando la capacidad de evacuación de la producción de crudos pesados y extra- pesados garantizando la integridad de la infraestructura (al remover la suciedad orgánica acumulada en la línea que promueven la formación de colonias de bacterias sulfato-reductoras promotoras de corrosión).
b) Sinergia en el sistema de aditivos químicos (E y G) de la invención para incrementar la capacidad de flujo, potenciar la capacidad de dilución de diluyentes, disminuir las pérdidas por evaporación de diluyente en el proceso de dilución, reducir los tiempos y temperatura de deshidratacion de los crudos pesados y extra-pesados, optimizando los costos de tratamiento y transporte, garantizando la integridad de la infraestructura.
Resultados que se obtienen usando el sistema de aditivos de la invención
- Formación instantánea de una dispersión crudo-agua de baja viscosidad sin requerimiento de elementos mecánicos ni condiciones térmicas específicas. - Reducción de los procesos de corrosión que impactan la integridad de la infraestructura debido a:
f Minimiza el contacto tubería-agua, la cual es directamente responsable de los procesos de corrosión que impactan la integridad de la infraestructura. Minimiza la formación de depósitos orgánicos que interfieren en el efecto de protección de los inhibidores de corrosión.
V Permite la optimización de la dosificación de productos inhibidores de corrosión y anti-incrustantes
- Reducción de la fricción del fluido al contacto con las paredes del pozo, bombas y líneas de conducción, gracias a su efecto lubricante.
- Reducción de la viscosidad del sistema crudo-agua aumentando la velocidad lineal en tuberías (incrementando capacidad de bombeo).
- Reducción de las propiedades adherentes del crudo eliminando la rigidez de la fase continúa y facilitando la orientación del fluido lo cual disminuye significativamente las caídas de presión en las tuberías (Ahorro energía).
- Aumento de la velocidad de difusión del diluyente en el crudo gracias a su afinidad oléica,
- Mantener la estabilidad y características Teológicas originales después de una parada de bombeo, variando su magnitud de viscosidad en un + 5%.
- Reducción de la volatilidad y/o evaporatividad del diluyente entre un 2% a 30% en la etapa de tratamiento y transporte;
- Disminución del consumo de diluyente hasta en un 35% en el proceso de recolección, des hidratación y transporte del crudo pesado;
- Reducción en el costo de levantamiento y producción del crudo pesado y extrapesado.
- Reducción del costo asociado a la logística necesaria para contar con disponibilidad del diluyente en campo.
- Reducción de costos en la compra del diluyente porque al disminuir la volatilidad y/o evaporatividad del mismo y aumentar la capacidad de dilución al integrar estas dos variables, se logra un ahorro entre el 2 y el 35%; eliminando la necesidad de compra de diluyente menos volátil (Menor RVP) el cual presenta un mayor valor comercial que el diluyente más volátil (Mayor RVP). EJEMPLO 1.
El proceso que incluye el sistema de aditivos de la presente invención en las etapas de levantamiento y recolección de crudos pesados y extrapesados, permite eliminar la inyección del diluyente requerido para alcanzar especificaciones de flujo. Actualmente se emplea entre el 15 y 32% de diluyente para lograr especificaciones de flujo y capacidades de bombeo de las bombas de subsuelo desde fondo de pozo hasta facilidades de tratamiento. Este volumétrico de diluyente no es requerido con la aplicación del sistema de aditivos de la presente invención porque la dispersión formada modifica las características de viscosidad y área de contacto a niveles significativamente menores a las alcanzadas con la dilución convencional. Para precisar lo citado anteriormente, en una troncal de recolección convencional de crudos extrapesados (figura 1) las condiciones actuales empleadas son:
- Inyección de diluyente: 25%
- Presión en cabeza de pozo: 300 psi (2.07 MPa).
- Viscosidad del fluido: 1100 cP.
- Caídas de presión. 230 psi (1.59 MPa).
- Caudal: 32.000 BPD (211960 LPH litros por hora)de fluidos (crudo 30%, agua 45%, diluyente 25%, aditivo rompedor directo comercial utilizado en separación de emulsiones directas W/O: 200 ppm
- Diámetro de tubería: 16 pulgadas (0.41 m).
- Longitud: 12 kilómetros.
El proceso de recolección con el sistema de aditivos de la presente invención como se muestra en la figura 2 tiene las siguientes condiciones:
- Inyección de diluyente: 0% (Se elimina).
- Inyección de aditivo E: 750 ppm
- Presión en cabeza de pozo: 300 psi (2.07 MPa).
- Viscosidad del fluido: 300 cP.
- Caídas de presión: 230 psi (1.59 MPa).
- Caudal: 94.000 BPD de fluidos (crudo 40%, agua 60%, diluyente 0%, aditivo rompedor directo 0 ppm).
- Diámetro de tubería: 16 pulgadas (0.14 m).
- Longitud tubería de recolección de Cabeza de Pozo a Planta de tratamiento: 12 kilómetros.
La composición del aditivo de acuerdo con la presente invención para este ejemplo, es la siguiente." Alquil Fenol etoxilado 23% - 43% en peso Sulfonato de Alquilbenceno lineal 1 % -10% en peso
Alcohol Isopropilico 1% . 6% en peso
Solución alcalina de hidróxido de potasio 10% - 20% en peso Aceite de soya sulfonado 1 % - 7% en peso
Etil éter 4% - 4% en peso
Dosificación para el ejemplo 550 - 750 ppm
EJEMPLO 2.
El proceso que incluye el sistema de aditivos de la presente invención en las etapas de tratamiento y deshidratación de crudos pesados y extrapesados, permite potencializar la capacidad de dilución del diluyente en crudos pesados y extrapesados. Esta potencialización se da por el aumento de la velocidad de difusión del diluyente en la estructura del crudo debido a la afinidad oleofílica de uno de los componentes del sistema de aditivos (aditivo G) propuesta en la presente invención.
El proceso actual convencional de tratamiento y deshidratación de crudos pesados y extrapesados requiere un volumétrico de diluyente entre el 5 y el 37% para alcanzar las especificaciones de viscosidad requeridas. Con el proceso y el sistema de aditivos de la presente invención, el consumo de diluyentes se reduce hasta en un 35% del requerimiento actual. Para precisar lo citado anteriormente, en instalaciones de tratamiento de crudos pesados y extrapesados como se muestra en la figura 3, las condiciones actuales convencionales empleadas son:
- Inyección total de diluyente: 37% (25% en recolección y 12% en deshidratación).
- Temperatura de tratamiento (deshidratación): entre 68 y 75°C.
- Viscosidad del fluido después de deshidratado a transporte: 650 cP a 30°C. El proceso y el sistema de aditivos de la presente invención tienen las condiciones siguientes como se muestra en la figura 4:
- Inyección total de diluyente: 18% - 20%
- Temperatura de tratamiento: 60°C - 70 °C
- Viscosidad del fluido después de deshidratado a transporte: 650 cP a
30°C.
- Aditivo G 1000 ppm a 1000 ppm
Composición aditivo G en ejemplo 2 y 3
Tolueno 20% - 30%en peso O-Xileno 20% - 30% en peso Ácido Oleico 15% - 25% en peso Acido Ricinoleico 15% - 25% en peso Alquil Fenol etoxilado 8% - 13%en peso Butil glicol 12% - 17%en peso Iso propanol 10% - 16% en peso
De acuerdo con lo mostrado en las figuras 1 a 4 se tiene que el proceso propuesto con el sistema de aditivos producto de esta invención aumenta significativamente el poder de dilución hasta en un 35% de diluyentes convencionales usualmente empleados tales como gasolina natural, naftas vírgenes, naftas craqueadas, condensados, corrientes aromáticas y mezclas de estos en los procesos de levantamiento, recolección, tratamiento y transporte de crudos pesados y extrapesados.
Adicionalmente, reduce las velocidades de evaporación entre el 2 y el 30% de los diluyentes livianos empleados en los procesos de tratamiento y transporte de crudos pesados y extra-pesados para rangos de temperatura de recolección y tratamiento entre 25°C a 85°C.
También, el proceso propuesto con el sistema de aditivos producto de esta invención mejora los procesos de deshidratación de los crudos pesados y extrapesados, para alcanzar de una manera más rápida y eficiente la deshidratación del crudo al promover una mayor coalescencia de las gotas de agua por la magnificación del área interfacial con lo cual se reducen los tiempos de residencia entre 1 a 6 horas en los sistemas de tratamiento dejando el crudo en las especificaciones requeridas por la industria (% BSW ≤ 0.5).
El proceso propuesto con el sistema de aditivos producto de esta invención mejora el índice de viscosidad de las mezclas crudo-diluyente manteniendo magnitudes de viscosidad dentro del rango de más o menos 5% del valor de viscosidad con la variación de la temperatura, esto debido a la característica lubricante de uno de sus componentes (aditivo G).
El proceso propuesto con el sistema de aditivos producto de esta invención genera un efecto sobre la tensión superficial del diluyente, lo cual permite incrementar el área de contacto diluyente-crudo pesado y/o extrapesado aumentando la velocidad de difusión de éste en el crudo. Esta característica garantiza una alta homogeneidad y estabilidad de la mezcla en el tiempo aditivo G).
Adicionalmente, se observa que no hay afectación sobre los parámetros de calidad del agua separada en la fase de deshidratación.
El proceso propuesto con el sistema de aditivos producto de esta invención genera un efecto positivo en la integridad de la infraestructura de levantamiento, recolección, tratamiento y transporte. Por las características surfactantes, lubricante y detergentes del sistema de aditivos del proceso se reduce la formación y/o acumulación de material orgánico que afecta la eficiencia de los inhibidores de corrosión.
El proceso propuesto con el sistema de aditivos producto de esta invención remueve y evita la formación de depósitos orgánicos que disminuyen el diámetro efectivo de las tuberías, lo cual reduce las caídas de presión y aumenta la capacidad de flujo en las etapas de recolección y tratamiento. El sistema de aditivos producto de esta invención demostró ser compatible con los aditivos empleados en los proceso de levantamiento y facilidades de superficie tales como biocidas, anti-incrustantes, secuestrantes de oxígeno, inhibidores de corrosión, rompedores directos, rompedores inversos, floculantes y clarificantes.
La eficiencia del sistema de aditivos no se afecta por variaciones en la temperatura. La experimentación realizada en el rango entre 10°C hasta 88°C, verificando parámetros de viscosidad de los fluidos tratados, no mostró variaciones en el desempeño, es decir, la viscosidad verificada antes y después de ser aditivado en el rango de temperaturas citado, no mostró variaciones superiores a la incertidumbre de prueba de viscosidad (± 5%).
El proceso no se afecta por altos esfuerzos de corte, implicando esto que las propiedades del diluyente aditivado no cambia por efectos operacionales (bombas centrífugas, bombas de desplazamiento positivo, válvulas reductoras de caída de presión, codos, medidores de flujo tipo orificio, sistemas de atomización, etc.). Las validaciones realizadas a alto corte de cizallamiento, entre 800 y 4500 rpm no mostraron afectación de la viscosidad de las mezclas aditivadas.
El sistema de aditivos no afecta la calidad de los cortes de crudo en los procesos de refinación. Las características de los parámetros de ASSAY II confirmaron que se mantienen sin afectación y se mostraron dentro de la incertidumbre de cada parámetro.
Se evidencia que el proceso y el sistema de aditivos de acuerdo con la presente invención tienen sinergia positiva ya que al emplear únicamente el aditivo E, en el proceso, no presenta el mismo efecto de índice de viscosidad resultante que al emplear E y G. Así mismo al emplear solo G no se obtiene el mismo nivel de ahorro del diluyente comparado con el alcanzado al usar E y G de acuerdo con la presente invención. En el proceso de producción, deshidraíación y transporte de crudos pesados y extrapesados provenientes de recobros convencionales de acuerdo con la invención, los diluyentes a los que se agregan los aditivos pueden ser pero no se limitan a gasolina, nafta, diésel, biodiesel, gas licuado de petróleo o mezclas de los mismos. Por tanto, los aditivos de la invención pueden ser agregados a combustibles tipo gasolina, diésel y biodisel.
EJEMPLO 3. Efecto del sistema aditivos "EG" en la reducción de viscosidad Como se muestra en la figura 5, con el sistema de aditivos de la presente invención y el proceso muestra un efecto en la reducción de viscosidad. Para este ejemplo se observó y analizó el comportamiento de un crudo extrapesado denominado "CHI" a diferentes temperaturas (30 a 60°C), comparado con el crudo "CHI" aditivado con EG, es decir, agregando en el proceso la composición aditiva E y luego la composición aditiva G de acuerdo con la invención, se puede observar que hubo una disminución de la viscosidad muy significativa desde 150000 cP hasta 900 cP bajo las mismas condiciones de prueba.
EJEMPLO 4. Efecto de la sinergia del sistema aditivos Έ" y "G" en la viscosidad de crudo -dispersión Crudo extra-pesado 7 - 20 °API
Como se muestra en la figura 6, se evidencia un efecto de Sinergia del sistema de Aditivos ya que como se puede observar existe una sinergia positiva al emplear el sistema de aditivos EG, comparado con el efecto del aditivo E cunado se aplica sin la presencia de G, mostrando una disminución adicional de la viscosidad. Además, el comportamiento reológico para el caso EG no presenta variación de viscosidad con respecto a la temperatura.
EJEMPLO 5. Efecto del Sistema de aditivos "EG" en la capacidad de dilución de diluyente "N" (Nafta)
Como se muestra en la figura 7, se evidencia un efecto del sistema de Aditivos en la viscosidad del diluyente "N" en mezclas crudo pesado-diluyente. En efecto, en la figura 7 se compara el comportamiento reológico de la mezclas crudo- diluyente "N" con la mezcla crudo diluyente "N" tratada con el sistema de aditivos "EG" de acuerdo con la presente invención. De lo anterior se puede observar que hay una reducción adicional de viscosidad en todo el rango de temperatura (Entre 30 y 60°C) observándose por ejemplo, que para 30°C se tienen 1250 cP para la mezcla sin sistema de aditivos "EG" mientras que la mezcla aditivada con "EG" cae a 790 cP (36.8% reducción de viscosidad).
EJEMPLO 6. Efecto del aditivo Έ" en la características de estabilidad de la dispersión crudo-agua formación.
De acuerdo con lo mostrado en la figura 8 que enseña el comportamiento reológico de la dispersión bajo condiciones estáticas y dinámicas (Tiempo de reposo y perturbación del sistema), se observa que la dispersión bajo condiciones estáticas se separa, sin embargo, al aplicar cualquier perturbación (condición dinámica), se re-dispersa manteniendo las características Reológicas originales. La Figura 8 relaciona el efecto de una dispersión al tiempo OH, 1 H y 8H (± 3 cP variación) ratificándose la estabilidad con el tiempo y bajo condiciones de confinamiento y frente al estado dinámico. EJEMPLO 7. Efecto del sistema de aditivos "EG" en la calidad del agua removida después de rompimiento de dispersiones.
Comparación de las calidades de agua generadas en el proceso con y sin sistema de aditivos.
TABLA 1 Calidad del agua posterior a proceso de deshidratación con y sin aditivos.
GRASAS Y
DiO DQC CLORUROS : FENOLES ACEITES ; Surfactantes
IDENTIFICACION , ng 02 /L mg 02/l. mg CL /L mg /L mg /L: mg≤AAM / L
Agua de proceso desh. De crudo
CHI+ 37% diluyente -sin adición
de sistemas de aditivos GE 380 4290 1277 0.61 84 <0.3
Agua de proceso desh. De crudo
CHI + 37% diluyente + adición
de sistemas de aditivos GE 382 3932 1011 0.59 34 <0.3
TABLA 2 Rangos típicos de calidad del agua de producción en campo posterior a proceso de deshidratación.
Figure imgf000020_0001
En la tabla 1 se muestra que no hay una afectación negativa en la calidad del agua resultante del proceso de deshidratación de la mezcla tratada con el sistema de aditivo EG de acuerdo con la presente invención cuando es comparada con la calidad del agua separada con el proceso convencional actualmente utilizado. En la tabla 2, se indican los datos históricos de calidad del agua del proceso de deshidratación en un periodo de 3 meses.
EJEMPLO 8. Efecto del sistema de aditivos "EG" en la velocidad de separación de agua en el proceso de deshidratación.
De acuerdo con lo mostrado en la figura 9, la velocidad de remoción del agua en deshidratación de mezclas tratadas con sistemas de aditivos, se mejora, toda vez que la figura 9 muestra la mejora en tiempo de separación de las fases aceite agua en el proceso de deshidratación de mezclas crudo- agua-diluyente tratada con el sistema de aditivos EG de acuerdo con la invención, cuando es comparado con el proceso convencional actual. Se observa que en una hora de tratamiento se alcanza una remoción del 90%, mientras que con el proceso tradicional solo se alcanza el 25% en el mismo periodo. Adicionalmente, se destaca que se requiere un menor volumétrico de diluyente en el tren de deshidratación. Por lo tanto, el sistema de aditivos de acuerdo con la presente invención mejora los procesos de deshidratación de los crudos pesados y extrapesados, promoviendo la alta coalescencia de las gotas de agua reduciendo los tiempos de drenaje del agua y el consumo de diluyente. EJEMPLO 9. Efecto del sistema de aditivos "EG" en el índice de viscosidad del crudo mezcla
En la figura 10 se observa la variación de índice de viscosidad de mezclas sin aditivo Vs. Una mezcla tratadas con sistema de aditivos EG.
Como se puede evidenciar en la figura 10, una mezcla de crudo con diluyente sin aditivar presenta una alta variación de la viscosidad con la temperatura, mientras que la mezcla de crudo con diluyente aditivados con EG de acuerdo con la invención, ventajosamente muestra que su viscosidad no presenta una variación apreciable (aproximadamente constante) de la viscosidad con la temperatura. Este efecto es benéfico en el caso de transporte por oleoductos en donde se presentan variaciones de temperatura generados por cambios de altitud del trazado de tubería, promoviendo ahorros energéticos en el sistema de bombeo.

Claims

REIVINDICACIONES
Un sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados, caracterizado porque dicho sistema comprende:
Un aditivo E que comprende:
Alcoholes alifáticos y/o aromáticos con número de carbonos entre 2 y 30 átomos de carbono (C2-C30) y/o sus correspondientes compuestos etoxilados, y específicamente alcoholes aromáticos con cadenas alquídicas con número de carbonos de 4 a 12 átomos de carbono (C4 a C12) y derivados en rangos de concentración entre 5 y 75% en peso;
alcoholes primarios, secundarios y terciarios, dioles, polioles, éteres de glicoles, o mezclas de los mismos, en rangos de concentración entre 2 y 20% en peso;
ácidos sulfónicos, ésteres sulfónicos, alquil-sulfonatos de sodio, de potasio, de calcio o mezcla de éstos en una concentración entre 0.5 y 10% en peso;
hidróxidos de sodio, de potasio, de calcio y de magnesio o mezclas de los mismos en una concentración entre 0.4 y 20% en peso;
éteres de 2 a 6 carbonos, en concentraciones entre 2 al 18% en peso;
aceites vegetales sulfonados en concentraciones entre 2 y 8% en peso;
dispersantes para fluidos base aceite comprenden ácidos grasos saturados, ¡nsaturados, hidroxiácidos grasos, y/o sales o esteres provenientes de aceites vegetales en cualquiera de sus combinaciones o derivados en concentraciones entre 0,
2% y 8% en peso; agua en concentración en peso entre 3,5 y 8%; y solventes orgánicos; en donde dichos solventes orgánicos son de tipo alifático o aromático en un rango desde 42% hasta 78% en peso.
El sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados de acuerdo con la reivindicación 1 , caracterizado porque dicho sistema vincula además del aditivo E, un aditivo G que comprende:
Dispersantes para fluidos base aceite en solventes alifáticos y/o aromáticos con número de carbonos entre 2 y 22 átomos de carbono (C2-C30) y/o sus compuestos etoxilados, combinaciones de los mismos o derivados en rangos de concentración entre 5 y 30% en peso;
solventes orgánicos mono, di y trialquilados con compuestos alifáticos, o mezclas de los mismos provenientes de la destilación del petróleo en rangos de concentración entre 35% y 75%;
fosfolípidos, esteres de glicerol, acido butílico, ácidos: laurico, palmítico, esteárico, aceites vegetales o mezclas de los mismos, y/o derivados o materias primas que contengan éstos compuestos, y que están en un rango de concentración entre 8 - 22% en peso; los alcoholes y/o glicoles con número de carbonos entre 2 y 22 átomos de carbono (C2-C22) y/o sus correspondientes compuestos etoxilados o combinaciones de los mismos o que se encuentre en el aditivo E, se encuentran en rangos de concentración entre 5 y 25% en peso;
esteres de polialcohol, esteres de glicol, esteres de glicerina, esteres de sorbitano, esteres de polietilenglicol (PEG), esteres de trimetilpropano (T P), poliol-esteres, y/o sus derivados y/o combinaciones de los mismos, se encuentran en rangos de concentración de 0,1 - 15% en peso.
3. El sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados de acuerdo con la reivindicación 1 ó 2, caracterizado porque en dicho sistema los alcoholes primarios, secundarios y terciarios son metanol, etanol, propanol, isopropanol, butanol, isobutanol, terbutanol o una mezcla de los mismos.
4. El sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque los éteres de 2 a 6 carbonos son metoxietano, metoximetano, 3,3- oxipropano, etano-oxietano éter etílico o mezclas de los mismos.
5. El sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque los aceites vegetales sulfonados son aceite de oliva, aceite de girasol, aceite de soya, aceite de palma, aceite de sésamo, aceite de maní, aceite de cártamo, aceite de ricino, aceite de colza o combinaciones de los mismos.
6. El sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque los solventes orgánicos del sistema de aditivos son de tipo alifático o aromático, en donde los solventes alifáticos contienen desde 1 hasta 18 átomos de carbono y los solventes aromáticos son benceno, xileno, tolueno o con una o más cadenas de sustituyentes alifáticas de cadena lineal o ramificada que comprenden entre 1 y 12 átomos de carbono, o mezclas de los mismos.
7. El sistema de aditivos para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el solvente orgánico es Etilenglicol y/o sus derivados y/o está presente éste compuesto en la materia prima.
8. Un proceso de producción, deshidratación y transporte de crudos pesados y extrapesados provenientes de recobros convencionales, caracterizado porque comprende los pasos de
a) Agregar en linea a los fluidos provenientes de yacimiento crudo pesado o crudo extra pesado y agua uno de los aditivos de la invención (aditivo E) y
b) Agregar al diluyente el aditivo G para la dilución de los crudos pesados y extrapesados en el paso de deshidratación y de transporte de los mismos.
9. El proceso de producción, deshidratación y transporte de crudos pesados y extrapesados provenientes de recobros convencionales de acuerdo con la reivindicación 8, caracterizado porque los diluyentes a los que se agregan los aditivos son tipo gasolina, nafta, diésel, biodiesel o mezclas de los mismos.
PCT/CO2018/000015 2017-07-05 2018-07-05 Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos (primario, secundario y mejorado) WO2019007445A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/628,915 US11578279B2 (en) 2017-07-05 2018-07-05 Method for improving the flow capacity and increasing the dilution capacity of diluents in methods for the production and transport of heavy and extra-heavy crude oils coming from the different phases of recovery of deposits (primary, secondary and enhanced)
MX2020000061A MX2020000061A (es) 2017-07-05 2018-07-05 Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilucion de diluyentes en procesos de produccion y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos (primario, secundario y mejorado).

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2017/0006772 2017-07-05
CONC2017/0006772A CO2017006772A1 (es) 2017-07-05 2017-07-05 Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilucion de diluyentes en procesos de produccion y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos ( primario, secundarios y mejorado)

Publications (1)

Publication Number Publication Date
WO2019007445A1 true WO2019007445A1 (es) 2019-01-10

Family

ID=64949723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2018/000015 WO2019007445A1 (es) 2017-07-05 2018-07-05 Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos (primario, secundario y mejorado)

Country Status (4)

Country Link
US (1) US11578279B2 (es)
CO (1) CO2017006772A1 (es)
MX (1) MX2020000061A (es)
WO (1) WO2019007445A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261312A1 (en) * 2011-04-18 2012-10-18 Instituto Mexicano Del Petroleo Synergistic formulations of functionalized copolymers and ionic liquids for dehydrated and desalted of medium, heavy and extra heavy crude oils
US20130172218A1 (en) * 2012-01-02 2013-07-04 Enviromental Development Products (Endevpro), Limited Compound of biodegradable surfactants for separating impurities in a hydrocarbon
US20140238901A1 (en) * 2013-02-28 2014-08-28 Instituto Mexicano Del Petroleo Dehydrating and desalting compositions of crude oils, using triblock copolymers alpha,omega-bifunctionalized with amines
US20150111799A1 (en) * 2013-10-22 2015-04-23 Instituto Mexicano Del Petroleo Application of a chemical composition for viscosity modification of heavy and extra-heavy crude oils
WO2017040412A1 (en) * 2015-09-01 2017-03-09 Baker Hughes Incorporated Method of improving mobility of heavy crude oils in subterranean reservoirs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2537843C2 (ru) 2013-02-20 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Присадка для снижения вязкости тяжелых фракций нефти
WO2015100517A1 (zh) 2013-12-31 2015-07-09 内蒙古蒙西高新技术集团有限公司 含多个环氧官能团的物质、其制备方法、其与二氧化碳和环氧丙烷的三元共聚物及共聚方法
US20160010010A1 (en) 2014-07-11 2016-01-14 Intevep, S.A. Additive for reducing viscosity in heavy crude oil
US9453157B2 (en) 2014-10-08 2016-09-27 Oil & Gas Tech Enterprises C.V. Heavy crude oil viscosity reducer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261312A1 (en) * 2011-04-18 2012-10-18 Instituto Mexicano Del Petroleo Synergistic formulations of functionalized copolymers and ionic liquids for dehydrated and desalted of medium, heavy and extra heavy crude oils
US20130172218A1 (en) * 2012-01-02 2013-07-04 Enviromental Development Products (Endevpro), Limited Compound of biodegradable surfactants for separating impurities in a hydrocarbon
US20140238901A1 (en) * 2013-02-28 2014-08-28 Instituto Mexicano Del Petroleo Dehydrating and desalting compositions of crude oils, using triblock copolymers alpha,omega-bifunctionalized with amines
US20150111799A1 (en) * 2013-10-22 2015-04-23 Instituto Mexicano Del Petroleo Application of a chemical composition for viscosity modification of heavy and extra-heavy crude oils
WO2017040412A1 (en) * 2015-09-01 2017-03-09 Baker Hughes Incorporated Method of improving mobility of heavy crude oils in subterranean reservoirs

Also Published As

Publication number Publication date
CO2017006772A1 (es) 2019-01-18
US11578279B2 (en) 2023-02-14
US20200308499A1 (en) 2020-10-01
MX2020000061A (es) 2020-08-17

Similar Documents

Publication Publication Date Title
JP5837511B2 (ja) 液体燃料の保護
ES2884776T3 (es) Desemulsionantes y un método para utilizar desemulsionantes para romper emulsiones de agua y petróleo bruto
CN1977089B (zh) 低剂量环烷酸盐抑制剂
CA2883675C (en) Acid-in-oil emulsion compositions and methods for treating hydrocarbon-bearing formations
MXPA06014087A (es) Inhibidores de naftenato de baja dosificacion.
KR102060231B1 (ko) 액체 연료의 보호
WO2019007445A1 (es) Proceso para mejorar la capacidad de flujo y potenciar la capacidad de dilución de diluyentes en procesos de producción y transporte de crudos pesados y extrapesados provenientes de las diferentes fases de recobro de yacimientos (primario, secundario y mejorado)
Reis et al. Evaluation of w/o emulsion stability in function of oil polarity: a study using asphaltenes C3I in kerosene
US20230271111A1 (en) Supramolecular Host Guest Product Concentrators For Production Fluids
JP2023547501A (ja) 燃料乳化剤用の分岐界面活性剤及び任意選択によりプロポキシル化界面活性剤を含む乳化剤パッケージ
US20240002740A1 (en) Emulsifier package with a short-chained and optionally with a long-chained surfactant for fuel emulsion
AU2013316040B2 (en) Acid-in-oil emulsion compositions and methods for treating hydrocarbon-bearing formations
KR900005084B1 (ko) 점성 수중(水中)탄화수소 에멀젼
WO2020061671A1 (en) Winterized maturing agent, viscosity reducer and production enhancer
PL237624B1 (pl) Inhibitor do ochrony przeciwkorozyjnej odwiertów ropy naftowej i ropociągów
Elsharkawy et al. Effect of Inorganic Solids, Wax to Asphaltene Ratio, and Water Cut on the Stability of Oilfield Emulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828854

Country of ref document: EP

Kind code of ref document: A1