WO2019007401A1 - 检测设备的色差调整方法以及装置 - Google Patents

检测设备的色差调整方法以及装置 Download PDF

Info

Publication number
WO2019007401A1
WO2019007401A1 PCT/CN2018/094678 CN2018094678W WO2019007401A1 WO 2019007401 A1 WO2019007401 A1 WO 2019007401A1 CN 2018094678 W CN2018094678 W CN 2018094678W WO 2019007401 A1 WO2019007401 A1 WO 2019007401A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
standard
optical parameters
image sensing
adjustment
Prior art date
Application number
PCT/CN2018/094678
Other languages
English (en)
French (fr)
Inventor
杨勇飞
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/628,604 priority Critical patent/US11125992B2/en
Publication of WO2019007401A1 publication Critical patent/WO2019007401A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/611Correction of chromatic aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction

Definitions

  • the embodiments of the present invention relate to the field of image processing technologies, and in particular, to a method and device for adjusting a color difference of a detecting device.
  • CCD Charge Coupled Device
  • a further technical problem to be solved by the embodiments of the present application is to provide a device capable of adjusting the color difference of the detecting device to eliminate chromatic aberration.
  • the recording, by the plurality of image sensing components, respectively, the acquiring the optical parameters corresponding to the plurality of different standard patches comprises the following steps:
  • adjusting the optical parameters of the other image sensing components according to the database includes the following steps:
  • the adjusting the corresponding optical parameters in the database according to the determination result comprises the following steps:
  • the first process is a red color resist process
  • the second process is a blue color resist process
  • the third process is a photoresist spacer process.
  • the process of determining the recorded substrate includes the following steps:
  • the substrate has conductivity ⁇ , it is determined that the substrate is the substrate after the third process.
  • the embodiment of the present application further provides a color difference adjusting device of the detecting device, including:
  • a recording module configured to record, by the plurality of image sensing components, the image to obtain optical parameters corresponding to the plurality of different standard patches
  • a selection module configured to select one of the optical parameters for each of the standard slices
  • an entry module configured to enter the selected optical parameter as a basis into a database
  • an adjustment module configured to adjust the optical parameters of the other image sensing components according to the database.
  • the recording module includes:
  • a first recording unit configured to record, by the plurality of image sensing component images, the optical parameters corresponding to the first standard film before the first process
  • a second recording unit configured to record, by the plurality of image sensing component images, the optical parameters corresponding to the second standard film after the second process
  • the third recording unit is configured to record the optical parameters corresponding to the third standard film after the third process of the image sensing component image acquisition.
  • the input module includes:
  • an optimization unit configured to correct the selected optical parameter adjustment to the best effect
  • an entry unit for entering the optimal optical parameters into the database.
  • the adjusting module includes:
  • a determining unit configured to determine a process of the recorded substrate
  • an adjusting unit configured to invoke the corresponding optical parameter in the database according to the determination result
  • the adjusting unit includes:
  • a first adjusting subunit configured to: when it is determined that the substrate before the first process is recorded, call the optical parameter corresponding to the first standard piece to perform adjustment
  • a second adjustment subunit configured to: when it is determined that the substrate after the second process is recorded, call the optical parameter corresponding to the second standard piece to perform adjustment
  • the third adjusting subunit is configured to, when it is determined that the substrate after the third process is recorded, invoke the optical parameter corresponding to the third standard piece to perform adjustment.
  • the first process is a red color resist process
  • the second process is a blue color resist process
  • the third process is a photoresist spacer process.
  • the determining unit determines that the standard glass-type substrate is the substrate before the first process, determines that the substrate having the chromaticity is the substrate after the second process, and determines that the substrate having the conductivity is the substrate after the third process .
  • the embodiment of the present application further provides a color difference adjusting device of the detecting device, including:
  • the recording module includes a first recording unit, a second recording unit, and a third recording unit, and the first recording unit is configured to record the plurality of image sensing component images to obtain the first standard film before the first process.
  • the second recording unit is configured to record the image parameters of the plurality of image sensing components to obtain the optical parameters corresponding to the second standard film after the second process, and the third recording unit is configured to record the image processing component of the plurality of image sensing components to obtain the third process.
  • an input module including an optimization unit and an input unit, the optimization unit is configured to correct the selected optical parameter adjustment to the best effect, and the input unit is configured to input the optimal optical parameter into the database;
  • an adjustment module configured to adjust optical parameters of other image sensing components according to a database.
  • the adjustment module includes:
  • a determining unit configured to determine a process of the recorded substrate
  • the adjusting unit is configured to adjust the corresponding optical parameters in the database according to the determination result.
  • the first process is a red color resist process
  • the second process is a blue color resist process
  • the third process is a photoresist spacer process.
  • the adjusting unit comprises:
  • the first adjusting subunit is configured to: when it is determined that the substrate before the first process is recorded, call the optical parameter corresponding to the first standard piece to perform adjustment;
  • the second adjustment subunit is configured to: when it is determined that the substrate after the second process is recorded, call the second standard piece corresponding to Adjust the optical parameters;
  • the third adjustment subunit is configured to: when it is determined that the substrate after the third process is recorded, call the optical parameter corresponding to the third standard piece for adjustment.
  • the determining unit determines that the standard glass-type substrate is the substrate before the first process, determines that the substrate having the chromaticity is the substrate after the second process, and determines that the substrate with conductivity is the substrate after the third process .
  • the embodiment of the present application acquires optical parameters corresponding to a plurality of different standard patches by recording a plurality of image sensing components respectively; and selecting one of the optical parameters for each standard patch; The parameters are entered as a basis into the database; according to the database, the optical parameters of the other image sensing components are adjusted. Therefore, the optical parameters of other image sensing components can be adjusted by using a database made of optical parameters corresponding to different standard slices, and different optical parameters are used when photographing different process photos, so that the optical characteristics and actual conditions of the standard film are made. The characteristics of the measuring film at the time of shooting are close, and the purpose of eliminating the chromatic aberration of different image sensing components is achieved.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for adjusting color difference of the present application.
  • FIG. 2 is a schematic flow chart of still another embodiment of a method for adjusting color difference according to the present application.
  • FIG. 3 is a schematic flow chart of still another embodiment of a color difference adjustment method according to the present application.
  • FIG. 4 is a schematic flow chart of still another embodiment of a method for adjusting color difference according to the present application.
  • FIG. 5 is a schematic flow chart of still another embodiment of a color difference adjustment method according to the present application.
  • FIG. 6 is a schematic diagram of functional modules of an embodiment of a color difference adjusting device of the present application.
  • FIG. 7 is a schematic diagram of a refinement function module of a recording module in an embodiment of a color difference adjusting device of the present application.
  • FIG. 8 is a schematic diagram of a refinement function module of a recording module in still another embodiment of the color difference adjusting device of the present application.
  • 9 is a schematic diagram of a refinement function refinement function module in still another embodiment of the color difference adjustment apparatus of the present application.
  • FIG. 10 is a schematic diagram of an adjustment unit refinement function module in still another embodiment of the color difference adjustment apparatus of the present application.
  • FIG. 11 is a schematic diagram of a principle for performing color difference adjustment on a first standard slice according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a principle for performing color difference adjustment on a second standard chip according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the principle of performing color difference adjustment for a third standard slice according to an embodiment of the present application.
  • the embodiment of the present application provides a method for adjusting a color difference of a detecting device, which aims to solve the problem of eliminating the chromatic aberration effect in the prior art.
  • a method for adjusting a color difference of the detecting device includes:
  • Step S10 recording a plurality of image sensing components (such as a CCD lens) to obtain optical parameters corresponding to the plurality of different standard patches;
  • a plurality of image sensing components such as a CCD lens
  • the color difference adjustment method provided by the embodiment of the present application is used, for example, in a color film camera to eliminate the chromatic aberration existing between the shooting camera and the actual measurement film.
  • the multiple image sensing components of this application can be set to eight. Specifically, in another embodiment, referring to FIG.
  • step S10 includes: Step S1, recording an optical parameter corresponding to the first standard film ⁇ before the first process is acquired by the plurality of image sensing component images; Step S12, Recording the image parameters of the plurality of image sensing components to obtain the optical parameters corresponding to the second standard film after the second process; Step S13, recording the image parameters of the plurality of image sensing components to obtain the optical parameters corresponding to the third standard film after the third process .
  • the color difference adjustment method is applicable to a detection device of an LCD display device. However, it is not limited thereto, and in some embodiments, the color difference adjustment method can also be applied to detection devices of other display devices. For example, an OLED display device, a QLED display device, a curved display device, or other display device.
  • the first process is an R (Red) color resist process
  • the second process is a B (Blue) process
  • the third process is a PS (Photo Spacer) process.
  • the first standard piece is a plain glass standard piece
  • the second standard piece is a standard piece after the B process
  • the third standard piece is a standard piece after the PS process.
  • R, G, and B are produced in three colors to obtain a standard film after the B process, which is used to provide color to the standard film.
  • the ITO (Indium-Tin Oxide sputtering) process is performed on the standard sheet after the B process, and the electrode required for the electric field is supplied to the standard sheet, and then the PS process is performed to obtain the standard sheet after the PS process.
  • the PS process is performed to obtain the standard sheet after the PS process.
  • Step S20 selecting one of the optical parameters for each standard slice
  • the method for selecting an optical parameter can be set according to actual needs.
  • the color difference between the actual measurement piece and the actual measurement piece can be selected by visual colorimetry to minimize the image sensing component.
  • the optical parameter corresponding to the actual measurement piece color difference and the image corresponding to the image sensing component of the image sensing component may be selected by the color color difference meter.
  • the standard film and the image sensing component are placed side by side, so that the corresponding sides are in contact or overlap, and the distance from the eye to the standard piece is about 500 mm, in order to improve the colorimetric precision, the standard The position of the sheets should be interchanged frequently.
  • the color chromatic aberration meter is used for selection, it is selected according to the value displayed by the color difference meter, that is, the optical parameter corresponding to the image sensing component of the image closest to the actual measurement piece is selected.
  • step S30 inputting the selected optical parameter as a basis to a database
  • the optical parameter corresponding to the photographic element glass standard ⁇ is denoted as GLASS_01, and the optical parameter corresponding to the standard film ⁇ after the B process is recorded as RGB_01, and the standard film after the PS process is taken ⁇ The corresponding optical parameter is recorded as PS_01, and the optical parameters are entered into the database.
  • Step S40 Adjust optical parameters of the other image sensing components according to the database.
  • the optical parameter in the database is used as the reference optical signal of the image sensing component, and the other image sensing components adjust the correction based on the image sensing component. ⁇ Reduce chromatic aberration.
  • Embodiments of the present application respectively record optical parameters corresponding to a plurality of different standard patches by recording a plurality of image sensing components; for each standard slice, one of the optical parameters is selected; and the selected optical parameters are selected Entering as a base to the database; adjusting optical parameters of other image sensing components according to the database. Therefore, the optical parameters of other image sensing components can be adjusted by using a database made of optical parameters corresponding to different standard slices, and different optical parameters are used when photographing different process photos, so that the optical characteristics and actual conditions of the standard film are made. The characteristics of the measuring film at the time of shooting are close to achieve different image sensing The purpose of the component's color difference.
  • FIG. 11 to FIG. 13 are schematic diagrams showing the principle of color difference adjustment for the first standard sheet 10, the second standard sheet 20, and the third standard sheet 30 according to an embodiment of the present application.
  • the first image sensing component 100 first records the optical parameters corresponding to the first standard slice 10, and then records the optical parameters as a basis into the database, and adjusts according to the database.
  • the optical parameters of the second image sensing component 200 and the third image sensing component 300 further achieve the purpose of eliminating chromatic aberration between different image sensing components.
  • the principle of the color difference adjustment of Figs. 12 and 13 is the same as that of Fig. 11, and will not be described herein.
  • the foregoing step S30 includes:
  • Step S31 correcting the selected optical parameter adjustment to an optimal condition
  • Step S32 the optical parameters after the adjustment correction are entered into the database.
  • the selected optical parameter is adjusted and corrected. , to achieve the best effect of the selected image sensing component film.
  • the optical parameter adjustment corresponding to the standard glass standard is corrected as reC ipe_GLASS_01
  • the optical parameter corresponding to the standard film ⁇ after the B process is corrected and corrected as reC ipe_RGB_01
  • the standard film after the PS process is taken.
  • the corresponding optical parameter adjustment is corrected, it is recorded as re C ipe_PS_01, and the optical parameters after adjustment and correction are entered into the database.
  • the chromatic aberration can be further optimized by adjusting and correcting the selected optical parameters.
  • the foregoing step S40 includes:
  • Step S41 determining a process of the recorded substrate
  • Step S42 according to the determination result, the corresponding optical parameters in the database are called for adjustment.
  • the substrates to be photographed may belong to different processes, and according to the characteristics of the substrates after different processes, which process the substrate belongs to is determined. Specifically, when the substrate is in a standard glass pattern, the substrate is determined to be a substrate before the R color resist process, and when the substrate has a color ⁇ , the substrate is determined to be a substrate after the B process, and when the substrate has conductivity ⁇ , the substrate is determined. It is the substrate after the PS process.
  • a plurality of determinations are used to determine which process the substrate belongs to, thereby adapting to the actual process requirements of the substrate. Root According to the judged result, the corresponding optical parameters in the database are called to adjust.
  • step S42 includes: Step S421: When it is determined that the substrate before the first process is recorded, the optical parameters corresponding to the first standard slice are called for adjustment; Step S422, when determining In order to record the substrate after the second process, the optical parameters corresponding to the second standard piece are called for adjustment; in step S423, when it is determined that the substrate after the third process is recorded, the optical parameters corresponding to the third standard piece are called for adjustment.
  • the embodiment of the present application further provides a color difference adjusting device for a detecting device.
  • the color difference adjusting device provided by the present application includes:
  • the recording module 10 is configured to record, by the plurality of image sensing components, images, respectively, optical parameters corresponding to the plurality of different standard patches;
  • the color difference adjustment method provided by the embodiment of the present application is used, for example, in a color film camera to eliminate color difference existing between a photographing camera and an actual measuring film.
  • the multiple image sensing components of this application can be set to eight. Specifically, in some embodiments, referring to FIG.
  • the recording module 10 includes: a first recording unit 11 configured to record an image of a plurality of image sensing component images before acquiring a first standard film before the first process
  • the second recording unit 12 is configured to record the optical parameters corresponding to the second standard film ⁇ after the second image processing component is acquired by the image sensing component image
  • the third recording unit 13 is configured to record the image of the plurality of image sensing component Obtain the optical parameters corresponding to the third standard sheet after the third process.
  • the color difference adjustment method is applicable to a detecting device of an LCD display device. However, it is not limited thereto, and in some embodiments, the color difference adjustment method can also be applied to detection devices of other display devices. For example, an OLED display device, a QLED display device, a curved display device, or other display device.
  • the first process is an R (Red, red) color resist process
  • the second process is a B (Blue) process
  • the third process is a PS (Photo Spacer) process.
  • the first standard piece is a plain glass standard piece
  • the second standard piece is a standard piece after the B process
  • the third standard piece is a standard piece after the PS process.
  • the standard sheets of the process are processed by R, G, and B to obtain a standard sheet after the B process, to provide color to the standard sheet.
  • the ITO (Indium-Tin Oxide sputtering) process is performed on the standard sheet after the B process, and the electrode required for the electric field is supplied to the standard sheet, and then the PS process is performed to obtain the standard sheet after the PS process.
  • the PS process is performed to obtain the standard sheet after the PS process.
  • a selection module 20 configured to select one of the optical parameters for each standard slice
  • the process of selecting an optical parameter can be set according to actual needs.
  • the color difference between the actual measurement piece and the actual measurement piece can be selected by visual colorimetry to minimize the image sensing component.
  • the optical parameter corresponding to the actual measurement piece color difference and the image corresponding to the image sensing component of the image sensing component may be selected by the color color difference meter.
  • the standard film and the image sensing component are placed side by side, so that the corresponding sides are in contact or overlap, and the distance from the eye to the standard piece is about 500 mm, in order to improve the colorimetric precision, the standard The position of the sheets should be interchanged frequently.
  • the color chromatic aberration meter is used for selection, it is selected according to the value displayed by the color difference meter, that is, the optical parameter corresponding to the image sensing component of the image closest to the actual measurement piece is selected.
  • the entry module 30 is configured to enter the selected optical parameter group as a basis into a database
  • the optical parameter group corresponding to the photographic element glass standard ⁇ is recorded as GLASS_01, and the optical parameter group corresponding to the standard film ⁇ after the B process is recorded as RGB_01, and the standard after the PS process is taken.
  • the optical parameter group corresponding to the slice is recorded as PS_01, and the optical parameter set is entered into the database.
  • the adjustment module 40 is configured to adjust optical parameters of the other image sensing components according to the database.
  • the optical parameters in the database are used as reference optical signal adjustment parameters of the image sensing component, and different process glass calls different parameter groups, so that the image sensing component is in the process of shooting. Reduce the chromatic aberration.
  • Embodiments of the present application respectively record optical parameters corresponding to a plurality of different standard patches by recording a plurality of image sensing components; for each standard slice, one of the optical parameters is selected; and the selected optical parameters are selected Entering as a base to the database; adjusting optical parameters of other image sensing components according to the database. Therefore, the optical parameters of the image sensing component can be adjusted by using a database made of optical parameters corresponding to different standard slices, and different optical parameters are used when photographing different process photos, so that the optical characteristics of the standard film and the actual shooting are performed. The characteristics of the measuring piece of the weather are close, and the purpose of eliminating the chromatic aberration of different image sensing components is achieved.
  • FIG. 11 to FIG. 13 are schematic diagrams showing the principle of color difference adjustment for the first standard sheet 10, the second standard sheet 20, and the third standard sheet 30 according to an embodiment of the present application.
  • the first image sensing component 100 is first recorded to obtain an optical parameter corresponding to the first standard sheet 100 , and then the optical parameter is recorded.
  • the number is entered into the database as a basis, and the optical parameters of the second image sensing component 200 and the third image sensing component 300 are adjusted according to the database, thereby achieving the purpose of eliminating the color difference between the different image sensing components.
  • the principle of the color difference adjustment of FIGS. 12 and 13 is the same as that of FIG. 11, and no further description is given here.
  • the input module includes:
  • an optimization unit 31 configured to correct the selected optical parameter adjustment to the best effect
  • the entry unit 32 is configured to enter the optimal optical parameters into the database.
  • the selected optical parameter is adjusted. Correction to optimize the effect of the selected image sensing component. Specifically, the optical parameter adjustment corresponding to the standard glass standard is corrected as re C ipe_GLASS_01, and the optical parameter corresponding to the standard film ⁇ after the B process is corrected and corrected as re C ipe_RGB_01, and the standard after the PS process is taken. The optical parameter adjustment corresponding to the film is corrected as reC ipe_PS_01, and the optical parameters after adjustment and correction are entered into the database. In the present embodiment, the chromatic aberration can be further optimized by adjusting and correcting the selected optical parameters.
  • the adjusting unit 42 is configured to adjust the corresponding optical parameters in the database according to the determination result.
  • the substrates to be photographed may belong to different processes, and according to the characteristics of the substrates after different processes, which process the substrate belongs to is determined. Specifically, when the substrate is in a standard glass pattern, the substrate is determined to be a substrate before the R color resist process, and when the substrate has a color ⁇ , the substrate is determined to be a substrate after the B process, and when the substrate has conductivity ⁇ , the substrate is determined. It is the substrate after the PS process.
  • a plurality of determinations are used to determine which process the substrate belongs to, thereby adapting to the actual process requirements of the substrate. According to the judged result, the corresponding optical parameters in the database are called for adjustment. Specifically, in another embodiment, referring to FIG.
  • the adjusting unit 42 further includes: a first adjusting subunit 421, configured to: when it is determined that the substrate before the first process is recorded, invoke the optical parameter corresponding to the first standard piece Make adjustments; second adjustment The sub-unit 422 is configured to: when it is determined that the substrate after the second process is recorded, the optical parameter corresponding to the second standard piece is called for adjustment; and the third adjustment sub-unit 423 is configured to be used when determining that the substrate after the third process is recorded, The optical parameters corresponding to the third standard sheet are adjusted.
  • a first adjusting subunit 421 configured to: when it is determined that the substrate before the first process is recorded, invoke the optical parameter corresponding to the first standard piece Make adjustments
  • second adjustment The sub-unit 422 is configured to: when it is determined that the substrate after the second process is recorded, the optical parameter corresponding to the second standard piece is called for adjustment
  • the third adjustment sub-unit 423 is configured to be used when determining that the substrate after the third process is recorded, The optical parameters corresponding to the third standard sheet are adjusted.
  • the embodiment of the present application acquires optical parameters corresponding to a plurality of different standard patches by recording a plurality of image sensing components respectively; and selecting one of the optical parameters for each standard patch; The parameters are entered as a basis into the database; according to the database, the optical parameters of the other image sensing components are adjusted. Therefore, the optical parameters of other image sensing components can be adjusted by using a database made of optical parameters corresponding to different standard slices, and different optical parameters are used in the shooting of different process photos to make the optical characteristics of the standard film and The measurement characteristics of the actual shooting time are close to each other, and the purpose of eliminating the chromatic aberration of different image sensing components is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Color Television Image Signal Generators (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

本申请实施例公开一种检测设备的色差调整方法以及装置,所述方法包括以下步骤:记录多个影像感测组件分别影像获取多个不同标准片时对应的光学参数,针对每个所述标准片,选定一个所述光学参数,将选定的所述光学参数作为基础录入至数据库,根据所述数据库,调整其他影像感测组件的所述光学参数;所述的装置包括记录模块,选定模块,录入模块,调整模块。

Description

检测设备的色差调整方法以及装置 技术领域
[0001] 本申请实施例涉及图像处理技术领域, 尤其涉及一种检测设备的色差调整方法 以及装置。
背景技术
[0002] 目前, 不同影像感测组件如 CCD (Charge Coupled Device, 电荷耦合器件) 镜 头之间的色差出现的主要原因有: CCD制作工艺差异, 每个 CCD镜头的 CCD组 件不可能完全一致, 导致其在接收到相同光信号吋会反馈出不同的电信号; 光 学镜头结构与配套电路的差异; 在成像吋各镜头组所处光环境的不同; CCD成 像系统的软体参数设置不同。
[0003] 对于以上出现的问题一般采用软体参数调整的方式对其补正, 即在给定的光环 境下, 用不同的 CCD去采集相同的光信号, 然后将其中一只信号作为 CCD的基 准光-电信号, 其他 CCD均以此为基准调校。 目前处理方式一般是让不同 CCD去 识别相同一张白卡或是黑卡, 以此为基准调整色差, 但是这种方式在 CCD拍摄 与基准光差异很大的场景吋也会发生很大的色差。
[0004] 鉴于上述的缺陷, 有必要提供一种新的色差调整方法。
技术问题
[0005] 本申请实施例首先要解决的技术问题是提供一种检测设备的色差调整方法, 能 消除色差。
[0006] 本申请实施例进一步要解决的技术问题是提供一种装置, 能调整检测设备的色 差以消除色差。
问题的解决方案
技术解决方案
[0007] 为解决上述技术问题, 本申请实施例提供一种检测设备的色差调整方法, 包括 以下步骤:
[0008] 记录多个影像感测组件分别影像获取多个不同标准片吋对应的光学参数; [0009] 针对每个所述标准片, 选定一个所述光学参数;
[0010] 将选定的所述光学参数作为基础录入至数据库;
[0011] 根据所述数据库, 调整其他影像感测组件的所述光学参数。
[0012] 可选地, 所述记录多个影像感测组件分别影像获取多个不同标准片吋对应的光 学参数包括以下步骤:
[0013] 记录多个所述影像感测组件影像获取第一制程前的第一标准片吋对应的所述光 学参数;
[0014] 记录多个所述影像感测组件影像获取第二制程后的第二标准片吋对应的所述光 学参数;
[0015] 记录多个所述影像感测组件影像获取第三制程后的第三标准片吋对应的所述光 学参数。
[0016] 可选地, 所述将选定的所述光学参数作为基础录入至数据库包括以下步骤:
[0017] 将选定的所述光学参数调整矫正至最佳;
[0018] 将调整矫正后的所述光学参数录入至所述数据库。
[0019] 可选地, 所述根据所述数据库, 调整其他影像感测组件的所述光学参数包括以 下步骤:
[0020] 判断被记录的基板的制程;
[0021] 根据判断结果, 调用所述数据库中相对应的所述光学参数进行调整。
[0022] 可选地, 所述根据判断结果, 调用所述数据库中相对应的所述光学参数进行调 整包括以下步骤:
[0023] 当判断为记录第一制程前的基板, 调用所述第一标准片对应的所述光学参数进 行调整;
[0024] 当判断为记录第二制程后的基板, 调用所述第二标准片对应的所述光学参数进 行调整;
[0025] 当判断为记录第三制程后的基板, 调用所述第三标准片对应的所述光学参数进 行调整。
[0026] 可选地, 第一制程是红色色阻制程, 第二制程是蓝色色阻制程, 第三制程是光 阻间隙物制程。 [0027] 可选地, 所述判断被记录的基板的制程包括以下步骤:
[0028] 当基板为标准玻璃样式吋, 则判断基板为所述第一制程前的基板;
[0029] 当基板具有色度吋, 则判断基板为所述第二制程后的基板;
[0030] 当基板具有导电性吋, 则判断基板为所述第三制程后的基板。
[0031] 此外, 为解决上述技术问题, 本申请实施例还提供一种检测设备的色差调整装 置, 包括:
[0032] 记录模块, 用于记录多个影像感测组件分别影像获取多个不同标准片吋对应的 光学参数;
[0033] 选定模块, 用于针对每个所述标准片, 选定一个所述光学参数;
[0034] 录入模块, 用于将选定的所述光学参数作为基础录入至数据库;
[0035] 调整模块, 用于根据所述数据库, 调整其他影像感测组件的所述光学参数。
[0036] 可选地, 所述记录模块包括:
[0037] 第一记录单元, 用于记录多个所述影像感测组件影像获取第一制程前的第一标 准片吋对应的所述光学参数;
[0038] 第二记录单元, 用于记录多个所述影像感测组件影像获取第二制程后的第二标 准片吋对应的所述光学参数;
[0039] 第三记录单元, 用于记录多个所述影像感测组件影像获取第三制程后的第三标 准片吋对应的所述光学参数。
[0040] 可选地, 所述录入模块包括:
[0041] 优化单元, 用于将选定的所述光学参数调整矫正至效果最佳;
[0042] 录入单元, 用于将最佳的所述光学参数录入至所述数据库。
[0043] 可选地, 所述调整模块包括:
[0044] 判断单元, 用于判断被记录的基板的制程;
[0045] 调整单元, 用于根据判断结果, 调用所述数据库中相对应的所述光学参数进行
[0046] 可选地, 所述调整单元包括:
[0047] 第一调整子单元, 用于当判断为记录第一制程前的基板, 调用所述第一标准片 对应的所述光学参数进行调整; [0048] 第二调整子单元, 用于当判断为记录第二制程后的基板, 调用所述第二标准片 对应的所述光学参数进行调整;
[0049] 第三调整子单元, 用于当判断为记录第三制程后的基板, 调用所述第三标准片 对应的所述光学参数进行调整。
[0050] 可选地, 第一制程是红色色阻制程, 第二制程是蓝色色阻制程, 第三制程是光 阻间隙物制程。
[0051] 可选地, 判断单元判断标准玻璃样式的基板为第一制程前的基板, 判断具有色 度的基板为第二制程后的基板, 判断具有导电性的基板为第三制程后的基板。
[0052] 此外, 为解决上述技术问题, 本申请实施例再提供一种检测设备的色差调整装 置, 包括:
[0053] 记录模块, 包括第一记录单元、 第二记录单元及第三记录单元, 第一记录单元 用于记录多个影像感测组件影像获取第一制程前的第一标准片吋对应的光学参 数, 第二记录单元用于记录多个影像感测组件影像获取第二制程后的第二标准 片吋对应的光学参数, 第三记录单元用于记录多个影像感测组件影像获取第三 制程后的第三标准片吋对应的光学参数;
[0054] 选定模块, 用于针对每个标准片, 选定一个光学参数;
[0055] 录入模块, 包括优化单元及录入单元, 优化单元用于将选定的光学参数调整矫 正至效果最佳, 录入单元用于将最佳的光学参数录入至数据库;
[0056] 调整模块, 用于根据数据库, 调整其他影像感测组件的光学参数。
[0057] 可选地, 调整模块包括:
[0058] 判断单元, 用于判断被记录的基板的制程;
[0059] 调整单元, 用于根据判断结果, 调用数据库中相对应的光学参数进行调整。
[0060] 可选地, 第一制程是红色色阻制程, 第二制程是蓝色色阻制程, 第三制程是光 阻间隙物制程。
[0061] 可选地, 调整单元包括:
[0062] 第一调整子单元, 用于当判断为记录第一制程前的基板, 调用第一标准片对应 的光学参数进行调整;
[0063] 第二调整子单元, 用于当判断为记录第二制程后的基板, 调用第二标准片对应 的光学参数进行调整;
[0064] 第三调整子单元, 用于当判断为记录第三制程后的基板, 调用第三标准片对应 的光学参数进行调整。
[0065] 可选地, 判断单元判断标准玻璃样式的基板为第一制程前的基板, 判断具有色 度的基板为第二制程后的基板, 判断具有导电性的基板为第三制程后的基板。 发明的有益效果
有益效果
[0066] 本申请实施例通过记录多个影像感测组件分别影像获取多个不同标准片吋对应 的光学参数; 针对每个标准片, 选定一个所述光学参数; 将选定的所述光学参 数作为基础录入至数据库; 根据所述数据库, 调整其他影像感测组件的光学参 数。 从而可以通过用不同标准片对应的光学参数制成的数据库去对其他影像感 测组件的光学参数进行调整, 在拍摄不同制程照片的吋候使用不同的光学参数 , 使标准片的光学特性和实际拍摄吋候的测量片特性接近, 达到消除不同影像 感测组件的色差的目的。
对附图的简要说明
附图说明
[0067] 为了更清楚地说明本申请实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图示出的结构获得其他的附图。
[0068] 图 1为本申请色差调整方法一实施例的流程示意图。
[0069] 图 2为本申请色差调整方法又一实施例的流程示意图。
[0070] 图 3为本申请色差调整方法再一实施例的流程示意图。
[0071] 图 4为本申请色差调整方法又一实施例的流程示意图。
[0072] 图 5为本申请色差调整方法再一实施例的流程示意图。
[0073] 图 6为本申请色差调整装置一实施例的功能模块示意图。
[0074] 图 7为本申请色差调整装置一实施例中记录模块的细化功能模块示意图。
[0075] 图 8为本申请色差调整装置又一实施例中录入模块细化功能模块示意图。 [0076] 图 9为本申请色差调整装置再一实施例中调整模块细化功能模块示意图。
[0077] 图 10为本申请色差调整装置又一实施例中调整单元细化功能模块示意图。
[0078] 图 11为本申请一实施例针对第一标准片进行色差调整的原理示意图。
[0079] 图 12为本申请一实施例针对第二标准片进行色差调整的原理示意图。
[0080] 图 13为本申请一实施例针对第三标准片进行色差调整的原理示意图。
[0081] 本申请目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
[0082] 本申请的实施方式
[0083] 应当理解, 此处所描述的具体实施例仅仅用以解释本申请, 并不用于限定本申 请。
[0084] 本申请实施例提供一种检测设备的色差调整方法, 旨在解决现有技术中消除色 差效果差的问题。
[0085] 请参照图 1, 在一实施例中, 该检测设备的色差调整方法包括:
[0086] 步骤 S10, 记录多个影像感测组件 (如 CCD镜头) 分别影像获取多个不同标准 片吋对应的光学参数;
[0087] 本申请实施例提供的色差调整方法例如是应用在彩膜拍照机中, 用于消除彩膜 拍照机进行拍摄吋与实际测量片之间存在的色差。 每台彩膜拍照机中都有两个 彩色影像感测组件, 本申请的多个影像感测组件可选设置为 8个。 具体地, 在又 一实施例中, 请参照图 2, 步骤 S10包括: 步骤 Sl l, 记录多个影像感测组件影像 获取第一制程前的第一标准片吋对应的光学参数; 步骤 S12, 记录多个影像感测 组件影像获取第二制程后的第二标准片吋对应的光学参数; 步骤 S13, 记录多个 影像感测组件影像获取第三制程后的第三标准片吋对应的光学参数。
[0088] 在一实施例中, 色差调整方法可应用于 LCD显示装置的检测设备中。 然不限于 此, 在一些实施例中, 色差调整方法亦可应用于其它显示装置的检测设备中。 诸如, OLED显示装置、 QLED显示装置、 曲面显示装置或其他显示装置。
[0089] 可选前述第一制程是 R (Red, 红色) 色阻制程, 第二制程是 B (Blue,蓝色) 制 程, 第三制程是 PS (Photo Spacer, 光阻间隙物) 制程。 第一标准片是素玻璃标 准片, 第二标准片是 B制程后的标准片, 第三标准片式 PS制程后的标准片。 对素 玻璃标准片进行黑色矩阵制程 (Black Matrix process) 后, 再对制程后的标准片 进行 R、 G、 B三色制作得到 B制程后的标准片, 用以对标准片提供色度。 对 B制 程后的标准片进行 ITO (Indium-Tin Oxide sputtering,氧化铟锡膜溅镀) 制程, 用 以对标准片提供电场所需的电极, 再经过 PS制程, 得到 PS制程后的标准片。 在 使用多个影像感测组件分别拍摄多个不同标准片的吋候, 要保证标准片与镜头 、 光源之间的位置固定, 以及光源的强度相同, 以此来减少误差。
[0090] 步骤 S20, 针对每个标准片, 选定一个所述光学参数;
[0091] 针对每个标准片, 选定一个光学参数的方法可以根据实际需要进行设置, 在本 实施例中, 可以通过目视比色法选定与实际测量片颜色差别最小吋影像感测组 件拍摄片对应的光学参数, 也可以通过色彩色差计选定与实际测量片颜色差别 最小吋影像感测组件拍摄片对应的光学参数。 具体地, 当使用目视比色法吋, 将标准片与影像感测组件拍摄片并排放置, 使相应的边接触或重叠, 眼睛至标 准片的距离约为 500mm, 为改善比色精度, 标准片的位置应频繁互换。 当使用 色彩色差计进行选定吋, 根据色彩色差计显示的数值来选定, 即选定与实际测 量片的数值最接近的影像感测组件拍摄片对应的光学参数。
[0092] 步骤 S30, 将选定的所述光学参数作为基础录入至数据库;
[0093] 在本实施例中, 将拍摄素玻璃标准片吋对应的光学参数记为 GLASS_01, 将拍 摄 B制程后的标准片吋对应的光学参数记为 RGB_01, 将拍摄 PS制程后的标准片 吋对应的光学参数记为 PS_01, 将光学参数录入到数据库中。
[0094] 步骤 S40, 根据所述数据库, 调整其他影像感测组件的光学参数。
[0095] 在本申请的实施例中, 具体地, 将数据库中的光学参数作为影像感测组件的基 准光学信号, 其他的影像感测组件均以此为基础调整矫正, 使影像感测组件拍 摄吋减小色差。
[0096] 本申请实施例通过记录多个影像感测组件分别拍摄多个不同标准片吋对应的光 学参数; 针对每个标准片, 选定一个所述光学参数; 将选定的所述光学参数作 为基础录入至数据库; 根据所述数据库, 调整其他影像感测组件的光学参数。 从而可以通过用不同标准片对应的光学参数制成的数据库去对其他影像感测组 件的光学参数进行调整, 在拍摄不同制程照片的吋候使用不同的光学参数, 使 标准片的光学特性和实际拍摄吋候的测量片特性接近, 达到消除不同影像感测 组件的色差的目的。
[0097] 图 11-图 13分别为本申请一实施例针对第一标准片 10、 第二标准片 20及第三标 准片 30进行色差调整的原理示意图。 参考图 11, 针对第一标准片 10, 先记录第 一影像感测组件 100影像获取第一标准片 10对应的光学参数, 然后将该光学参数 作为基础录入至数据库, 并根据所述数据库调整第二影像感测组件 200和第三影 像感测组件 300的光学参数, 进而达到消除不同影像感测组件之间色差的目的。 图 12和图 13的色差调整原理与图 11相同, 在此不进行赘述。
[0098] 进一步地, 参照图 3, 在本申请色差调整方法再一个实施例中, 上述步骤 S30包 括:
[0099] 步骤 S31, 将选定的所述光学参数调整矫正至最佳;
[0100] 步骤 S32, 将调整矫正后的光学参数录入至数据库。
[0101] 在本实施例中, 通过目视比色法或者色彩色差计选定与实际测量片颜色差别最 小吋影像感测组件拍摄片对应的光学参数后, 对选定的光学参数进行调整矫正 , 使选定的影像感测组件拍摄片的效果达到最佳。 具体地, 将拍摄素玻璃标准 片吋对应的光学参数调整矫正后记为 reCipe_GLASS_01, 将拍摄 B制程后的标准 片吋对应的光学参数调整矫正后记为 reCipe_RGB_01, 将拍摄 PS制程后的标准片 吋对应的光学参数调整矫正后记为 reCipe_PS_01, 将调整矫正后的光学参数录入 到数据库中。 在本实施例中, 通过对选定的光学参数进行调整矫正, 能够进一 步优化色差。
[0102] 进一步地, 参照图 4, 在本申请色差调整方法又一个实施例中, 上述步骤 S40包 括:
[0103] 步骤 S41, 判断被记录的基板的制程;
[0104] 步骤 S42, 根据判断结果, 调用数据库中相对应的光学参数进行调整。
[0105] 在本实施例中, 被拍摄的基板可能属于不同的制程, 根据不同制程后的基板具 有的特性来判断基板属于哪一制程。 具体地, 当基板为标准玻璃样式吋, 则判 断基板为 R色阻制程前的基板, 当基板具有色度吋, 则判断基板为 B制程后的基 板, 当基板具有导电性吋, 则判断基板为 PS制程后的基板。 在本实施例申请中 , 运用多个判断来确定基板属于哪一制程, 从而适应基板的实际制程需求。 根 据判断出来的结果, 来调用数据库中相对应的光学参数进行调整。 具体地, 在 再一实施例中, 请参照图 5, 步骤 S42包括: 步骤 S421 , 当判断为记录第一制程 前的基板, 调用第一标准片对应的光学参数进行调整; 步骤 S422, 当判断为记 录第二制程后的基板, 调用第二标准片对应的光学参数进行调整; 步骤 S423 , 当判断为记录第三制程后的基板, 调用第三标准片对应的光学参数进行调整。
[0106] 本申请实施例还提供一种检测设备的色差调整装置, 参照图 6, 在一实施例中 , 本申请提供的色差调整装置包括:
[0107] 记录模块 10, 用于记录多个影像感测组件分别影像获取多个不同标准片吋对应 的光学参数;
[0108] 本申请实施例提供的色差调整方法例如是应用在彩膜拍照机中, 用于消除彩膜 拍照机进行拍摄吋与实际测量片之间存在的色差。 每台彩膜拍照机中都有两个 彩色影像感测组件, 本申请的多个影像感测组件可选设置为 8个。 具体地, 在某 些实施例中, 请参照图 7, 记录模块 10包括: 第一记录单元 11, 用于记录多个影 像感测组件影像获取第一制程前的第一标准片吋对应的光学参数; 第二记录单 元 12, 用于记录多个影像感测组件影像获取第二制程后的第二标准片吋对应的 光学参数; 第三记录单元 13, 用于记录多个影像感测组件影像获取第三制程后 的第三标准片吋对应的光学参数。
[0109] 在一实施例中, 色差调整方法可应用于 LCD显示装置的检测设备中。 然不限于 此, 在一些实施例中, 色差调整方法亦可应用于其它显示装置的检测设备中。 诸如, OLED显示装置、 QLED显示装置、 曲面显示装置或其他显示装置。
[0110] 可选前述第一制程是 R (Red, 红色) 色阻制程, 第二制程是 B (Blue,蓝色) 制 程, 第三制程是 PS (Photo Spacer, 光阻间隙物) 制程。 第一标准片是素玻璃标 准片, 第二标准片是 B制程后的标准片, 第三标准片式 PS制程后的标准片。 对素 玻璃标准片进行黑色矩阵制程 (Black Matrix process) 后, 再对制程后的标准片 进行 R、 G、 B三色制作得到 B制程后的标准片, 用以对标准片提供色度。 对 B制 程后的标准片进行 ITO (Indium-Tin Oxide sputtering,氧化铟锡膜溅镀) 制程, 用 以对标准片提供电场所需的电极, 再经过 PS制程, 得到 PS制程后的标准片。 在 使用多个影像感测组件分别拍摄多个不同标准片的吋候, 要保证标准片与镜头 、 光源之间的位置固定, 以及光源的强度相同, 以此来减少误差。
[0111] 选定模块 20, 用于针对每个标准片, 选定一个所述光学参数;
[0112] 针对每个标准片, 选定一个光学参数的过程可以根据实际需要进行设置, 在本 实施例中, 可以通过目视比色法选定与实际测量片颜色差别最小吋影像感测组 件拍摄片对应的光学参数, 也可以通过色彩色差计选定与实际测量片颜色差别 最小吋影像感测组件拍摄片对应的光学参数。 具体地, 当使用目视比色法吋, 将标准片与影像感测组件拍摄片并排放置, 使相应的边接触或重叠, 眼睛至标 准片的距离约为 500mm, 为改善比色精度, 标准片的位置应频繁互换。 当使用 色彩色差计进行选定吋, 根据色彩色差计显示的数值来选定, 即选定与实际测 量片的数值最接近的影像感测组件拍摄片对应的光学参数。
[0113] 录入模块 30, 用于将选定的所述光学参数组作为基础录入至数据库;
[0114] 在本实施例中, 将拍摄素玻璃标准片吋对应的光学参数组记为 GLASS_01, 将 拍摄 B制程后的标准片吋对应的光学参数组记为 RGB_01, 将拍摄 PS制程后的标 准片吋对应的光学参数组记为 PS_01, 将光学参数组录入到数据库中。
[0115] 调整模块 40, 用于根据所述数据库, 调整其他影像感测组件的光学参数。
[0116] 在本申请的实施例中, 具体地, 将数据库中的光学参数作为影像感测组件的基 准光学信号调整参数, 不同制程的玻璃调用不同的参数组, 使影像感测组件在 拍摄吋减小色差。
[0117] 本申请实施例通过记录多个影像感测组件分别拍摄多个不同标准片吋对应的光 学参数; 针对每个标准片, 选定一个所述光学参数; 将选定的所述光学参数作 为基础录入至数据库; 根据所述数据库, 调整其他影像感测组件的光学参数。 从而可以通过用不同标准片对应的光学参数制成的数据库去对影像感测组件的 光学参数进行调整, 在拍摄不同制程照片的吋候使用不同的光学参数, 使标准 片的光学特性和实际拍摄吋候的测量片特性接近, 达到消除不同影像感测组件 的色差的目的。
[0118] 图 11-图 13分别为本申请一实施例针对第一标准片 10、 第二标准片 20及第三标 准片 30进行色差调整的原理示意图。 参考图 11, 针对第一标准片 10, 先记录第 一影像感测组件 100影像获取第一标准片 100对应的光学参数, 然后将该光学参 数作为基础录入至数据库, 并根据所述数据库调整第二影像感测组件 200和第三 影像感测组件 300的光学参数, 进而, 达到消除不同影像感测组件之间色差的目 的。 图 12和图 13的色差调整原理与图 11相同, 在此不进行赘述。
[0119] 进一步地, 参照图 8, 在本申请色差调整装置再一实施例中, 上述录入模块包 括:
[0120] 优化单元 31, 用于将选定的所述光学参数调整矫正至效果最佳;
[0121] 录入单元 32, 用于将最佳的光学参数录入至数据库。
[0122] 在本实施例中, 通过目视比色法或者色彩色差计选定与实际测量片颜色差别最 小吋的影像感测组件拍摄片对应的光学参数后, 对选定的光学参数进行调整矫 正, 使选定的影像感测组件拍摄片的效果达到最佳。 具体地, 将拍摄素玻璃标 准片吋对应的光学参数调整矫正后记为 reCipe_GLASS_01, 将拍摄 B制程后的标 准片吋对应的光学参数调整矫正后记为 reCipe_RGB_01, 将拍摄 PS制程后的标准 片吋对应的光学参数调整矫正后记为 reCipe_PS_01, 将调整矫正后的光学参数录 入到数据库中。 在本实施例中, 通过对选定的光学参数进行调整矫正后, 能够 进一步优化色差。
[0123] 进一步地, 参照图 9, 在本申请色差调整装置又一实施例中, 上述调整模块还 包括:
[0124] 判断单元 41, 用于判断被记录的基板的制程;
[0125] 调整单元 42, 用于根据判断结果, 调用所述数据库中相对应的光学参数进行调 整。
[0126] 在本实施例中, 被拍摄的基板可能属于不同的制程, 根据不同制程后的基板具 有的特性来判断基板属于哪一制程。 具体地, 当基板为标准玻璃样式吋, 则判 断基板为 R色阻制程前的基板, 当基板具有色度吋, 则判断基板为 B制程后的基 板, 当基板具有导电性吋, 则判断基板为 PS制程后的基板。 在本申请中, 运用 多个判断来确定基板属于哪一制程, 从而适应基板的实际制程需求。 根据判断 出来的结果, 来调用数据库中相对应的光学参数进行调整。 具体地, 在再一实 施例中, 请参照图 10, 调整单元 42还包括: 第一调整子单元 421, 用于当判断为 记录第一制程前的基板, 调用第一标准片对应的光学参数进行调整; 第二调整 子单元 422, 用于当判断为记录第二制程后的基板, 调用第二标准片对应的光学 参数进行调整; 第三调整子单元 423, 用于当判断为记录第三制程后的基板, 调 用第三标准片对应的光学参数进行调整。
[0127] 以上所述仅为本申请的可选实施例, 并非因此限制本申请的专利范围, 凡是在 本申请的构思下, 利用本申请说明书及附图内容所作的等效结构变换, 或直接 / 间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
工业实用性
[0128] 本申请实施例通过记录多个影像感测组件分别影像获取多个不同标准片吋对应 的光学参数; 针对每个标准片, 选定一个所述光学参数; 将选定的所述光学参 数作为基础录入至数据库; 根据所述数据库, 调整其他影像感测组件的光学参 数。 从而可以通过用不同标准片对应的光学参数制成的数据库去对其他影像感 测组件的光学参数进行调整, 在拍摄的不同制程照片的吋候使用不同的光学参 数, 使标准片的光学特性和实际拍摄吋候的测量片特性接近, 达到消除不同影 像感测组件的色差的目的。

Claims

权利要求书
[权利要求 1] 一种检测设备的色差调整方法, 包括以下步骤:
记录多个影像感测组件分别影像获取多个不同标准片吋对应的光学参 数;
针对每个所述标准片, 选定一个所述光学参数; 将选定的所述光学参数作为基础录入至数据库; 以及
根据所述数据库, 调整其他影像感测组件的所述光学参数。
[权利要求 2] 根据权利要求 1所述的色差调整方法, 其中, 所述记录多个影像感测 组件分别影像获取多个不同标准片吋对应的光学参数包括以下步骤: 记录多个所述影像感测组件影像获取第一制程前的第一标准片吋对应 的所述光学参数;
记录多个所述影像感测组件影像获取第二制程后的第二标准片吋对应 的所述光学参数; 以及
记录多个所述影像感测组件影像获取第三制程后的第三标准片吋对应 的所述光学参数。
[权利要求 3] 根据权利要求 2所述的色差调整方法, 其中, 所述第一制程是红色色 阻制程, 所述第二制程是蓝色色阻制程, 所述第三制程是光阻间隙物 制程。
[权利要求 4] 根据权利要求 2所述的色差调整方法, 其中, 所述的根据所述数据库
, 调整其他影像感测组件的所述光学参数包括以下步骤:
判断被记录的基板的制程; 以及
根据判断结果, 调用所述数据库中相对应的所述光学参数进行调整。
[权利要求 5] 根据权利要求 4所述的色差调整方法, 其中, 所述根据判断结果, 调 用所述数据库中相对应的所述光学参数进行调整包括以下的步骤: 当判断为记录所述第一制程前的基板, 调用所述第一标准片对应的所 述光学参数进行调整;
当判断为记录所述第二制程后的基板, 调用所述第二标准片对应的所 述光学参数进行调整; 以及 当判断为记录所述第三制程后的基板, 调用所述第三标准片对应的所 述光学参数进行调整。
根据权利要求 5所述的色差调整方法, 其中, 所述判断被记录的基板 制程包括以下步骤:
当基板为标准玻璃样式吋, 则判断基板即为所述第一制程前的基板; 当基板具有色度吋, 则判断基板为所述第二制程后的基板; 以及 当基板具有导电性吋, 则判断基板为所述第三制程后的基板。
根据权利要求 1所述的色差调整方法, 其中, 所述将选定的所述光学 参数作为基础录入至数据库包括以下步骤:
将选定的所述光学参数调整矫正至最佳; 以及
将调整矫正后的所述光学参数录入至所述数据库。
一种检测设备的色差调整装置, 包括:
记录模块, 用于记录多个影像感测组件分别影像获取多个不同标准片 吋对应的光学参数;
选定模块, 用于针对每个所述标准片, 选定一个所述光学参数; 录入模块, 用于将选定的所述光学参数作为基础录入至数据库; 以及 调整模块, 用于根据所述数据库, 调整其他影像感测组件的所述光学 参数。
根据权利要求 8所述的色差调整装置, 其中, 所述记录模块包括: 第一记录单元, 用于记录多个所述影像感测组件影像获取第一制程前 的第一标准片吋对应的所述光学参数;
第二记录单元, 用于记录多个所述影像感测组件影像获取第二制程后 的第二标准片吋对应的所述光学参数; 以及
第三记录单元, 用于记录多个所述影像感测组件影像获取第三制程后 的第三标准片吋对应的所述光学参数。
根据权利要求 9所述的色差调整装置, 其中, 所述第一制程是红色色 阻制程, 所述第二制程是蓝色色阻制程, 所述第三制程是光阻间隙物 制程。 根据权利要求 9所述的色差调整装置, 其中, 所述调整模块包括: 判断单元, 用于判断被记录的基板的制程; 以及
调整单元, 用于根据判断结果, 调用所述数据库中相对应的所述光学 参数进行调整。
根据权利要求 11所述的色差调整装置, 其中, 所述的调整单元包括: 第一调整子单元, 用于当判断为记录第一制程前的基板, 调用所述第 一标准片对应的所述光学参数进行调整;
第二调整子单元, 用于当判断为记录第二制程后的基板, 调用所述第 二标准片对应的所述光学参数进行调整; 以及
第三调整子单元, 用于当判断为记录第三制程后的基板, 调用所述第 三标准片对应的所述光学参数进行调整。
根据权利要求 12所述的色差调整装置, 其中, 所述判断单元判断标准 玻璃样式的基板为所述第一制程前的基板, 判断具有色度的基板为所 述第二制程后的基板, 判断具有导电性的基板为所述第三制程后的基 板。
根据权利要求 8所述的色差调整装置, 其中, 所述录入模块包括: 优化单元, 用于将选定的所述光学参数调整矫正至效果最佳; 以及 录入单元, 用于将最佳的所述光学参数录入至所述数据库。
一种检测设备的色差调整装置, 其中包括:
记录模块, 包括第一记录单元、 第二记录单元及第三记录单元, 所述 第一记录单元用于记录多个影像感测组件影像获取第一制程前的第一 标准片吋对应的光学参数, 所述第二记录单元用于记录多个所述影像 感测组件影像获取第二制程后的第二标准片吋对应的所述光学参数, 所述第三记录单元用于记录多个所述影像感测组件影像获取第三制程 后的第三标准片吋对应的所述光学参数;
选定模块, 用于针对每个所述标准片, 选定一个所述光学参数; 录入模块, 包括优化单元及录入单元, 所述优化单元用于将选定的所 述光学参数调整矫正至效果最佳, 所述录入单元用于将最佳的所述光 学参数录入至数据库; 以及
调整模块, 用于根据所述数据库, 调整其他影像感测组件的所述光学 参数。
根据权利要求 15所述的色差调整装置, 其中, 所述第一制程是红色色 阻制程, 所述第二制程是蓝色色阻制程, 所述第三制程是光阻间隙物 制程。
根据权利要求 15所述的色差调整装置, 其中, 所述的调整模块包括: 判断单元, 用于判断被记录的基板的制程; 以及
调整单元, 用于根据判断结果, 调用所述数据库中相对应的所述光学 参数进行调整。
根据权利要求 15所述的色差调整装置, 其中, 所述的调整单元包括: 第一调整子单元, 用于当判断为记录所述第一制程前的基板, 调用所 述第一标准片对应的所述光学参数进行调整;
第二调整子单元, 用于当判断为记录所述第二制程后的基板, 调用所 述第二标准片对应的所述光学参数进行调整; 以及
第三调整子单元, 用于当判断为记录所述第三制程后的基板, 调用所 述第三标准片对应的所述光学参数进行调整。
根据权利要求 18所述的色差调整装置, 其中, 所述判断单元判断标准 玻璃样式的基板为所述第一制程前的基板, 判断具有色度的基板为所 述第二制程后的基板, 判断具有导电性的基板为所述第三制程后的基 板。
PCT/CN2018/094678 2017-07-06 2018-07-05 检测设备的色差调整方法以及装置 WO2019007401A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/628,604 US11125992B2 (en) 2017-07-06 2018-07-05 Chromatic aberration adjusting method and apparatus of detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710550386.7 2017-07-06
CN201710550386.7A CN107197240B (zh) 2017-07-06 2017-07-06 检测设备的色差调整方法以及装置

Publications (1)

Publication Number Publication Date
WO2019007401A1 true WO2019007401A1 (zh) 2019-01-10

Family

ID=59882372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094678 WO2019007401A1 (zh) 2017-07-06 2018-07-05 检测设备的色差调整方法以及装置

Country Status (3)

Country Link
US (1) US11125992B2 (zh)
CN (1) CN107197240B (zh)
WO (1) WO2019007401A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197240B (zh) * 2017-07-06 2019-02-22 惠科股份有限公司 检测设备的色差调整方法以及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120128246A1 (en) * 2008-06-27 2012-05-24 High Definition Integration, LTD Methods and systems for color management in display systems
CN103079076A (zh) * 2013-01-22 2013-05-01 无锡鸿图微电子技术有限公司 自适应伽玛校正曲线的色彩校正矩阵的产生方法及装置
CN104113751A (zh) * 2013-04-16 2014-10-22 纬创资通股份有限公司 显示参数调整方法及系统
CN104394325A (zh) * 2014-12-15 2015-03-04 上海鼎讯电子有限公司 一种成像处理方法及摄像头
CN107197240A (zh) * 2017-07-06 2017-09-22 惠科股份有限公司 检测设备的色差调整方法以及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427538B2 (en) * 2004-04-30 2013-04-23 Oncam Grandeye Multiple view and multiple object processing in wide-angle video camera
JP5139374B2 (ja) * 2009-06-19 2013-02-06 株式会社日立国際電気 テレビジョンカメラ装置制御システム
JP5385740B2 (ja) * 2009-09-25 2014-01-08 キヤノン株式会社 撮像装置及び画像データの補正方法
US8525981B2 (en) * 2010-03-29 2013-09-03 Verizon Patent And Licensing Inc. Return loss measurement system
CN101996407B (zh) * 2010-12-01 2013-02-06 北京航空航天大学 一种多相机颜色标定方法
CN102137272B (zh) * 2011-03-21 2012-11-28 西安理工大学 一种开放环境下的多相机间的颜色校准方法
US9743057B2 (en) * 2012-05-31 2017-08-22 Apple Inc. Systems and methods for lens shading correction
CN103278903B (zh) * 2013-04-25 2015-06-10 深圳市华星光电技术有限公司 液晶面板外观检测设备镜头校正的方法及系统
KR101633436B1 (ko) * 2014-04-30 2016-06-24 주식회사 이에스엠연구소 다시점 카메라가 획득한 영상에 대한 색상 보정 방법 및 다시점 카메라가 획득한 영상에 대한 색상을 보정하는 장치
JP2017207724A (ja) * 2016-05-23 2017-11-24 オリンパス株式会社 顕微鏡装置および標本観察方法
DE102018107950A1 (de) * 2017-04-18 2018-10-18 Canon Kabushiki Kaisha Bildverarbeitungsvorrichtung, bildverarbeitungsverfahren und bildaufnahmevorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120128246A1 (en) * 2008-06-27 2012-05-24 High Definition Integration, LTD Methods and systems for color management in display systems
CN103079076A (zh) * 2013-01-22 2013-05-01 无锡鸿图微电子技术有限公司 自适应伽玛校正曲线的色彩校正矩阵的产生方法及装置
CN104113751A (zh) * 2013-04-16 2014-10-22 纬创资通股份有限公司 显示参数调整方法及系统
CN104394325A (zh) * 2014-12-15 2015-03-04 上海鼎讯电子有限公司 一种成像处理方法及摄像头
CN107197240A (zh) * 2017-07-06 2017-09-22 惠科股份有限公司 检测设备的色差调整方法以及装置

Also Published As

Publication number Publication date
CN107197240B (zh) 2019-02-22
CN107197240A (zh) 2017-09-22
US11125992B2 (en) 2021-09-21
US20200319453A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN102823236B (zh) 成像装置以及图像处理方法
CN101207833B (zh) 数码相机镜头光心偏移的检测方法
US9277209B2 (en) Pattern position detection method, pattern position detection system, and image quality adjustment technique using the method and system
WO2014101281A1 (zh) 检测设备中镜头的光轴偏移的装置和方法
CN103842877B (zh) 成像装置和合焦参数值计算方法
WO2013039340A2 (ko) 평판 패널 검사방법
WO2016021790A1 (en) Imaging sensor capable of detecting phase difference of focus
TW201325221A (zh) 具有廣角拍攝功能的移動裝置及其影像擷取方法
US9001260B2 (en) Imaging apparatus and imaging method
CN103842879A (zh) 成像装置和用于计算相位差像素的灵敏度比率的方法
US9430976B2 (en) Detection system and method for automatically adjusting gray scale
TW201600835A (zh) 輝度測定方法、輝度測定裝置及使用前述方法與裝置之畫質調整技術
WO2019007401A1 (zh) 检测设备的色差调整方法以及装置
JP2011091513A (ja) 撮像システムおよび補正方法
TWI232349B (en) Method for adjusting relative position of lens module by using uniform light source
WO2020134967A1 (zh) 偏光片贴附检测方法、装置和显示装置
WO2018192096A1 (zh) 一种检测装置、方法及系统
WO2015178536A1 (ko) 화질 개선 장치, 이를 가지는 디지털 촬영 장치 및 화질 개선 방법
WO2020246710A1 (ko) 뎁스 맵 결정 방법 및 그 방법을 적용한 전자 장치
WO2019088407A1 (ko) 보색관계의 필터 어레이를 포함하는 카메라 모듈 및 그를 포함하는 전자 장치
WO2016099164A1 (ko) 영상 획득 장치 및 이를 포함하는 휴대용 단말기와 그 장치의 영상 획득 방법
WO2014172995A1 (zh) 液晶面板外观检测设备镜头校正的方法及系统
WO2015178534A1 (ko) 화질 개선 장치, 이를 가지는 디지털 촬영 장치 및 화질 개선 방법
KR100860699B1 (ko) 색온도를 이용한 렌즈 쉐이딩 보정 기능을 갖는 카메라시스템
CN110300291B (zh) 确定色彩值的装置和方法、数字相机、应用和计算机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828894

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18828894

Country of ref document: EP

Kind code of ref document: A1