WO2019006795A1 - 液晶面板、液晶显示器及黄色染料偏光片的制作方法 - Google Patents

液晶面板、液晶显示器及黄色染料偏光片的制作方法 Download PDF

Info

Publication number
WO2019006795A1
WO2019006795A1 PCT/CN2017/094553 CN2017094553W WO2019006795A1 WO 2019006795 A1 WO2019006795 A1 WO 2019006795A1 CN 2017094553 W CN2017094553 W CN 2017094553W WO 2019006795 A1 WO2019006795 A1 WO 2019006795A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
yellow dye
substrate
dye polarizer
polarizer
Prior art date
Application number
PCT/CN2017/094553
Other languages
English (en)
French (fr)
Inventor
闫春秋
陈珍霞
陈黎暄
陈孝贤
李泳锐
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/570,237 priority Critical patent/US10585306B2/en
Publication of WO2019006795A1 publication Critical patent/WO2019006795A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133533Colour selective polarisers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating a liquid crystal panel, a liquid crystal display, and a yellow dye polarizer.
  • Liquid crystal panels usually rely on backlights provided by backlight modules to display text or other images.
  • a class of liquid crystal display devices containing blue light-emitting diodes has become a promising technology. trend.
  • the blue light directly emitted by the Light Emitting Diode (LED) the corresponding blue pixel in the color filter can be designed as a blank area, which can save not only one-third of the photoresist material but also the use of the backlight.
  • the rate is increased to 100%.
  • the polarizer of the liquid crystal panel is an important factor affecting the display quality of the liquid crystal display.
  • the research on the polarizer used in conjunction with the liquid crystal display is not yet mature.
  • the polarizers are mainly iodine-based polarizers, and corresponding to the liquid crystal display using the blue light-emitting diode backlight, the wavelength region of the blue light is relatively narrow, and the effect with the existing iodine-based polarizer is not good.
  • the backlight is inefficient and the cost of the display is high.
  • the technical problem to be solved by the present invention is to provide a method for fabricating a liquid crystal panel, a liquid crystal display, and a yellow dye polarizer, which is used to solve the problem that the wavelength region of blue light is relatively narrow in the prior art, and is used in combination with the existing iodine polarizer.
  • the effect is poor, the backlight utilization efficiency is low, and the cost of the display is high.
  • a liquid crystal panel comprising a first yellow dye polarizer, a second yellow dye polarizer, and a first substrate, a liquid crystal layer and a layer a second substrate, the first yellow dye polarizer is located between the liquid crystal layer and the first substrate, and the second yellow dye polarizer is located between the second substrate and the liquid crystal layer or the second a side of the substrate facing away from the liquid crystal layer, the first yellow dye polarizer being perpendicular to a polarization direction of the second yellow dye polarizer, the blue backlight module providing a blue backlight through the liquid crystal panel Display the image.
  • first yellow dye polarizer and the second yellow dye polarizer comprise a dichroic yellow dye compound
  • the dichroic yellow dye compound comprises azo, anthracene, naphthalimide One or more of the compounds.
  • the first yellow dye polarizer and the second yellow dye polarizer further comprise a polymerizable liquid crystal monomer, a photoinitiator and a light stabilizer.
  • the first substrate includes a plurality of color block blocks arranged in an array, the color block includes a red block and a green block, and the blue backlight passes through the red block to form a red light.
  • the blue backlight passes through the green block to form green light.
  • the first substrate comprises a plurality of arrays of quantum dot units
  • the quantum dot unit comprises a red quantum dot unit and a green quantum dot unit
  • the blue backlight illuminates the red quantum dot unit to form a red light
  • the blue backlight illuminates the green quantum dot unit to form green light.
  • the blue backlight module is located on a side of the first substrate facing away from the second substrate.
  • a liquid crystal display comprising a blue backlight module and a liquid crystal panel, the liquid crystal panel comprising a first yellow dye polarizer, a second yellow dye polarizer, and a first substrate, a liquid crystal layer and a layer a second substrate, the first yellow dye polarizer is located between the liquid crystal layer and the first substrate, and the second yellow dye polarizer is located between the second substrate and the liquid crystal layer or the second a side of the substrate facing away from the liquid crystal layer, the first yellow dye polarizer being perpendicular to a polarization direction of the second yellow dye polarizer, the blue backlight module providing a blue backlight through the liquid crystal panel Displaying an image, the blue backlight module is disposed opposite to the liquid crystal panel, and the blue backlight module provides a blue backlight to display an image through the liquid crystal panel.
  • first yellow dye polarizer and the second yellow dye polarizer comprise a dichroic yellow dye compound
  • the dichroic yellow dye compound comprises azo, anthracene, naphthalimide One or more of the compounds.
  • the first yellow dye polarizer and the second yellow dye polarizer further comprise a polymerizable liquid crystal monomer, a photoinitiator and a light stabilizer.
  • the first substrate includes a plurality of color block blocks arranged in an array, the color block includes a red block and a green block, and the blue backlight passes through the red block to form a red light.
  • the blue backlight passes through the green block to form green light.
  • the first substrate comprises a plurality of arrays of quantum dot units
  • the quantum dot unit comprises a red quantum dot unit and a green quantum dot unit
  • the blue backlight illuminates the red quantum dot unit to form a red light
  • the blue backlight illuminates the green quantum dot unit to form green light.
  • the blue backlight module is located on a side of the first substrate facing away from the second substrate.
  • a method for preparing a yellow dye polarizer comprising:
  • the yellow dye solution is dropped on the alignment film and spin-coated to obtain a wet film;
  • the solvent is completely evaporated, it is cured by ultraviolet light irradiation to obtain the yellow dye polarizer.
  • yellow dye mixed solution comprises:
  • dichroic yellow dye compound having a mass ratio of 3% to 15%
  • the polymerizable liquid crystal monomer has a mass ratio of 20% to 30%;
  • Photoinitiator the mass ratio is 1% to 3%
  • Solvent, mass ratio is 70% to 75%
  • the light stabilizer has a mass ratio of 1% to 5%.
  • the method further comprises using a positive light source to align.
  • the beneficial effects of the present invention are as follows: the absorption wavelength of the yellow dye polarizer (the first yellow dye polarizer and the second yellow dye polarizer) can just coincide with the light-emitting wavelength region of the blue backlight module, so that the utilization efficiency of the blue backlight is achieved.
  • the degree of polarization is greatly improved, while retaining the low cost and low power consumption advantages of the liquid crystal display using the blue backlight module, the dye polarizer has a simple manufacturing process and excellent heat and humidity resistance.
  • FIG. 1 is a schematic structural diagram of a liquid crystal panel according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a liquid crystal panel according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a liquid crystal panel according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a liquid crystal display according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for fabricating a yellow dye polarizer according to an embodiment of the present invention.
  • the liquid crystal panel 20 and the blue backlight module 10 are stacked on opposite sides of the first embodiment of the present invention.
  • the blue backlight module 10 emits a blue backlight through the liquid crystal panel 20 to make the liquid crystal panel.
  • 20 displays color image information for the user to receive through the human eye 30.
  • the liquid crystal panel 20 includes a first yellow dye polarizer 202, a second yellow dye polarizer 204, a first substrate 22, a liquid crystal layer 26, and a second substrate 24.
  • the first substrate 22, the liquid crystal layer 26, and the second substrate 24 are sequentially stacked. Specifically, the first substrate 22 and the second substrate 24 are disposed opposite to each other, and the liquid crystal layer 26 is located between the first substrate 22 and the second substrate 24.
  • the first substrate 22 is a color filter substrate
  • the second substrate 24 is an array substrate
  • the first substrate 22, the liquid crystal layer 26, and the second substrate 24 are pasted by a sealant to form a closed liquid crystal cell, and the liquid crystal cell passes through the liquid crystal cell.
  • the rotational state of the liquid crystal molecules 260 functioning as a switch within the layer 26 controls whether the backlight can pass through the liquid crystal cell.
  • first yellow dye polarizer 202 is located between the liquid crystal layer 26 and the first substrate 22, and the second yellow dye polarizer 204 is located between the second substrate 24 and the liquid crystal layer 26.
  • the first yellow dye polarizer 202 and the first The polarization direction of the two yellow dye polarizer 204 is perpendicular.
  • the first yellow dye polarizer 202 is attached to one surface of the first substrate 22 facing the liquid crystal layer 26, and the second yellow dye polarizer 204 is attached to the surface of the second substrate 24 facing the liquid crystal panel 20.
  • a yellow dye polarizer 202 and a second yellow dye polarizer 204 are located inside the liquid crystal cell, thereby avoiding the influence of the external environment (such as moist heat, etc.) on the first yellow dye polarizer 202 and the second yellow dye polarizer 204, and the improvement is improved.
  • First yellow dye polarizer The service life of the 202 and the second yellow dye polarizer 204 reduces the maintenance cost and improves the display effect of the liquid crystal panel 20.
  • the color backlight passes through the second yellow dye polarizer 204 and is received by the human eye 30 outside the liquid crystal panel 20.
  • the blue backlight provided by the blue backlight module 10 is directed to the first yellow dye polarizer 202 and filtered to the liquid crystal.
  • the layer 26 changes the polarization direction of the blue backlight by controlling the deflection state of the liquid crystal molecules 260 of the liquid crystal layer 26, thereby controlling the image content received by the second yellow dye polarizer 204 to be received by the human eye 30 outside the liquid crystal panel 20.
  • the absorption wavelength of the yellow dye polarizer (the first yellow dye polarizer 202 and the second yellow dye polarizer 204) can be exactly matched with the light-emitting wavelength region of the blue backlight module 10, so that the utilization efficiency of the blue backlight is maximized, and the degree of polarization is maximized.
  • the dye polarizer has a simple manufacturing process and excellent moisture and heat resistance.
  • the liquid crystal panel 20 further includes an alignment layer 200 between the liquid crystal layer 26 and the first yellow dye polarizer 202, and between the liquid crystal layer 26 and the second yellow dye polarizer 204.
  • the alignment layer 200 is used to image the liquid crystal molecules 260 of the liquid crystal layer 26 so that the liquid crystal molecules 260 have a regular initial deflection state for subsequent control of the liquid crystal layer 26.
  • the first yellow dye polarizer 202 and the second yellow dye polarizer 204 comprise a dichroic yellow dye compound
  • the dichroic yellow dye compound comprises an azo, an anthracene, a naphthalimide compound.
  • the dichroic yellow dye compound has a weight ratio of 3% to 15%.
  • the main feature of the dichroic yellow dye compound is that the absorption wavelength distribution is in the wavelength range of 400-480 nm, but it is not limited to pure yellow, and may be expressed in a yellowish color, such as orange yellow, dark yellow, or brick yellow. Experimental studies have shown that a single dichroic yellow dye compound is more favorable for dispersion, and the obtained polarizer has the highest degree of polarization and can reach more than 99%.
  • the first yellow dye polarizer 202 and the second yellow dye polarizer 204 further include a polymerizable liquid crystal monomer, a photoinitiator, and a light stabilizer.
  • the photoinitiator is combined with the polymerizable liquid crystal monomer, and the photoinitiator has a weight ratio of 1% to 3%;
  • the light stabilizers are benzophenones, benzotriazoles, octyloxyphenols, phosphites, etc., and the light stabilizers have a weight ratio of 1% to 5%.
  • the yellow dichroic dye compound is more easily dispersed during the preparation of the yellow dye solution, and is less prone to agglomeration, which is more advantageous for the polarizing performance of
  • the first yellow dye polarizer 202 and the second yellow dye polarizer 204 are formed by coating a yellow dye solution, the yellow dye solution further comprising a solvent, the solvent is acetone, toluene, propylene glycol, dichloromethane, DMF, NMP, PGMEA, etc., the solvent weight ratio is 70% to 75%.
  • the yellow dye polarizer is prepared by a yellow dichroic dye coating method. Compared with the conventional polarizer, the coating process is simple, the TAC layer is less, the lighter and thinner, and the dye has excellent resistance. The damp heat performance can replace iodine-based polarizers in new technologies such as quantum dots and OLEDs, and has broad application prospects. Dye-based organic materials have excellent moisture and oxygen resistance characteristics, and the manufacturing process is simple, and the performance of the polarizer is not affected by the high-temperature process of the subsequent process, which is more favorable for mass production.
  • the first substrate 22 includes a plurality of arrays of color block blocks, and the color block includes a red block 222 and a green block 224.
  • the blue backlight passes through the red block 222 to form red light and blue.
  • the backlight passes through the green block 224 to form green light.
  • the color block is formed by the photoresist material by illumination, and the blue backlight that does not pass through the red block or the green block is still blue light, and the blue light, the green light, and the red light form the three primary colors to form a color.
  • the image controls the content of the display image of the liquid crystal panel 20 by controlling the deflection state of the liquid crystal molecules 260.
  • the absorption wavelength of the yellow dye polarizer (the first yellow dye polarizer 202 and the second yellow dye polarizer 204) can be exactly matched with the light-emitting wavelength region of the blue backlight module 10, so that the utilization efficiency of the blue backlight is maximized, and the degree of polarization is maximized.
  • the dye polarizer has a simple manufacturing process and excellent moisture and heat resistance.
  • the liquid crystal panel 20 provided in the second embodiment of the present invention is different from the first embodiment in that the second yellow dye polarizer 204 is located on the side of the second substrate 24 facing away from the liquid crystal layer 26, that is, the second yellow dye polarizer. 204 is located outside the liquid crystal cell. Specifically, the second yellow dye polarizer 204 is attached to a surface of the second substrate 24 facing away from the liquid crystal layer 26. Since the dye-based organic material has excellent moisture and oxygen resistance characteristics, the second yellow dye polarizer 204 located outside the liquid crystal cell maintains good characteristics in a hot and humid use environment, improves the display effect of the liquid crystal surface, and has a long service life and is improved. The user experience reduces maintenance costs.
  • the liquid crystal panel 20 provided in the third embodiment of the present invention is different from the first embodiment in that the first substrate 22 includes a plurality of arrays of quantum dot units, and the quantum dot units include red quantum dot units 226 and green quantum.
  • the quantum dot liquid crystal display can effectively increase the color gamut value of the display, making the color more pure and vivid, and making the color performance more tension.
  • the blue backlight module 10 is located on a side of the first substrate 22 facing away from the second substrate 24.
  • the blue backlight excites the red quantum dot unit 226 and the green quantum dot unit 228.
  • the first yellow dye polarizer 202 can correct the light so that the light enters the liquid crystal layer 26 in the form of linearly polarized light, so that the liquid crystal display can be Normally, this is of great significance for the application of quantum dot materials in blue-backlit liquid crystal displays.
  • the dye-based organic matter has excellent moisture and oxygen resistance characteristics, and the manufacturing process is simple, and the performance of the polarizer is more affected by the high-temperature process of the subsequent process, which is more advantageous for mass production.
  • the liquid crystal display includes a blue backlight module 10 and a liquid crystal panel 20 provided by the embodiment of the present invention.
  • the blue backlight module 10 and the liquid crystal panel 20 are stacked on opposite sides, and the blue backlight module 10 provides a blue backlight.
  • the image information displayed through the liquid crystal panel 20 is received by the user's human eye 30.
  • the liquid crystal panel 20 includes a display surface 26 and a non-display surface 28 , and the blue backlight module 10 is located on the non-display surface 28 side of the liquid crystal panel 20 .
  • the liquid crystal display further includes a driving circuit that controls the common electrode and the pixel electrode in the liquid crystal panel 20, thereby controlling the deflection of the liquid crystal molecules 260 and changing the image display content.
  • the absorption wavelength of the yellow dye polarizer (the first yellow dye polarizer 202 and the second yellow dye polarizer 204) can be exactly matched with the light-emitting wavelength region of the blue backlight module 10, so that the utilization efficiency of the blue backlight is maximized, and the degree of polarization is maximized.
  • the dye polarizer has a simple manufacturing process and excellent moisture and heat resistance.
  • a method for fabricating a yellow dye polarizer includes:
  • the yellow dye mixed solution includes
  • dichroic yellow dye compound having a mass ratio of 3% to 15%
  • the polymerizable liquid crystal monomer has a mass ratio of 20% to 30%;
  • Photoinitiator the mass ratio is 1% to 3%
  • Solvent, mass ratio is 70% to 75%
  • the light stabilizer has a mass ratio of 1% to 5%.
  • the dichroic yellow dye compound includes one or more of an azo, an anthracene, and a naphthalimide compound. Further, the dichroic yellow dye compound has a weight ratio of 3% to 15%.
  • the main feature of the dichroic yellow dye compound is that the absorption wavelength distribution is in the wavelength range of 400-480 nm, but it is not limited to pure yellow, and may be expressed in a yellowish color, such as orange yellow, dark yellow, or brick yellow. Experimental studies have shown that a single dichroic yellow dye compound is more favorable for dispersion, and the obtained polarizer has the highest degree of polarization and can reach more than 99%.
  • the weight ratio of the stabilizer is 1% to 5%; the solvent is acetone, toluene, propylene glycol, dichloromethane, DMF, NMP, PGMEA, etc., and the solvent has a weight ratio of 70% to 75%.
  • the yellow dichroic dye compound is more easily dispersed during the preparation of the yellow dye solution, and is less prone to agglomeration, which is more advantageous for the polarizing performance of the polarizer.
  • the first substrate 22 includes a plurality of arrays of color block blocks, and the color block includes a red block 222 and a green block 224.
  • the blue backlight passes through the red block 222 to form red light and blue.
  • the backlight passes through the green block 224 to form green light.
  • the color block is formed by the photoresist material by illumination, and the blue backlight that does not pass through the red block or the green block is still blue light, and the blue light, the green light, and the red light form the three primary colors to form a color.
  • the image controls the content of the display image of the liquid crystal panel 20 by controlling the deflection state of the liquid crystal molecules 260.
  • the yellow dye mixed solution is stirred under a constant temperature water bath condition of 50 to 100 ° C to optimize the stirring effect, that is, the stirring is uniform.
  • the spin coating apparatus sets the rotation speed of 400 to 2500 r/min, the first spin coating time is 1 to 4 s, and the second spin coating time is 2 to 6 s to achieve an optimum spin coating effect.
  • the baking temperature is controlled to be 40 to 70 ° C to shorten the baking time and improve the production efficiency without destroying the yellow dye polarizer.
  • the ultraviolet light has a wavelength of 200 to 400 nm and a strength of 100 to 1000 mj to obtain an optimum curing effect.
  • the yellow dye polarizer obtained by curing is also aligned to obtain a specific polarization direction.
  • the alignment is aligned by a positive light source.
  • the alignment may also be a TN type PI film, an IPS type PI film, a UV2A type PI film, a hydrophobic/oil modified interface, or the like.
  • the absorption wavelength of the yellow dye polarizer can be matched with the light-emitting wavelength region of the blue backlight module 10, so that the blue backlight utilization efficiency is maximized and the degree of polarization is greatly improved; while the blue backlight is retained, the liquid crystal display is low-cost.
  • the dye polarizer has a simple manufacturing process and excellent moist heat resistance; the yellow dichroic dye pure substance is more favorable for dispersion, avoiding the phenomenon of dye agglomeration during the production of the yellow dye solution, and more Conducive to the preparation of high polarization and high contrast polarizers.

Abstract

一种液晶面板(20),与蓝色背光模组(10)相对层叠设置。液晶面板(20)包括第一黄色染料偏光片(202)、第二黄色染料偏光片(204)及依次层叠设置的第一基板(22)、液晶层(26)及第二基板(24),第一黄色染料偏光片(202)位于液晶层(26)与第一基板(22)之间,第二黄色染料偏光片(204)位于第二基板(24)与液晶层(26)之间或第二基板(24)背离液晶层(26)的一侧,第一黄色染料偏光片(202)与第二黄色染料偏光片(204)的偏振方向垂直,蓝色背光模组(10)提供蓝色光源穿过液晶面板(20)显示图像。一种液晶显示器及基色染料偏光片的制作方法。

Description

液晶面板、液晶显示器及黄色染料偏光片的制作方法
本申请要求于2017年7月6日提交中国专利局、申请号为201710548132.1、发明名称为“液晶面板、液晶显示器及黄色染料偏光片的制作方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及显示技术领域,尤其是涉及一种液晶面板、液晶显示器及黄色染料偏光片的制作方法。
背景技术
液晶面板通常依靠背光模组提供的背光源来显示文本或者其他图像,近年来,随着对低成本、低功耗产品的要求,一类含蓝光发光二极管的液晶显示装置逐渐成为有前景的技术趋势。利用蓝光发光二极管(Light Emitting Diode,LED)直接发出的蓝光,可以将彩色滤光片中对应的蓝色像素设计为空白区域,不仅可以节约三分之一的光阻材料,而且对背光的利用率提升到100%。进一步的,液晶面板的偏光片是影响液晶显示器显示品质的重要因素,针对蓝光发光二极管液晶显示器,与之相搭配使用的偏光片的研究尚未成熟。
现有技术中,偏光片大多还是以碘系偏光片为主,对应使用蓝光发光二极管背光源的液晶显示器,蓝光的波长区域相对较窄,与现有的碘系偏光片搭配使用效果不佳,背光源利用效率低,显示器的成本高。
发明内容
本发明要解决的技术问题是提供一种液晶面板、液晶显示器及黄色染料偏光片的制作方法,用以解决现有技术中蓝光的波长区域相对较窄,与现有的碘系偏光片搭配使用效果不佳,背光源利用效率低,显示器的成本高的问题。
一种液晶面板,与蓝色背光模组相对层叠设置,所述液晶面板包括第一黄色染料偏光片、第二黄色染料偏光片及依次层叠设置的第一基板、液晶层及第 二基板,所述第一黄色染料偏光片位于所述液晶层与所述第一基板之间,所述第二黄色染料偏光片位于所述第二基板与所述液晶层之间或所述第二基板背离所述液晶层的一侧,所述第一黄色染料偏光片与所述第二黄色染料偏光片的偏振方向垂直,所述蓝色背光模组提供蓝色背光源穿过所述液晶面板显示图像。
其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片包括二向色性黄色染料化合物,所述二向色性黄色染料化合物包括偶氮、蒽醌类、萘酰亚胺类化合物中的一种或多种。
其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片还包括可聚合性液晶单体、光引发剂及光稳定剂。
其中,所述第一基板包括多个阵列排布的色阻块,所述色阻块包括红色阻块与绿色阻块,所述蓝色背光源穿过所述红色阻块形成红色光线、所述蓝色背光源穿过所述绿色阻块形成绿色光线。
其中,所述第一基板包括多个阵列排布的量子点单元,所述量子点单元包括红色量子点单元与绿色量子点单元,所述蓝色背光源照射所述红色量子点单元形成红色光线、所述蓝色背光源照射所述绿色量子点单元形成绿色光线。
其中,所述蓝色背光模组位于所述第一基板背离所述第二基板的一侧。
一种液晶显示器,所述液晶显示器包括蓝色背光模组及液晶面板,所述液晶面板包括第一黄色染料偏光片、第二黄色染料偏光片及依次层叠设置的第一基板、液晶层及第二基板,所述第一黄色染料偏光片位于所述液晶层与所述第一基板之间,所述第二黄色染料偏光片位于所述第二基板与所述液晶层之间或所述第二基板背离所述液晶层的一侧,所述第一黄色染料偏光片与所述第二黄色染料偏光片的偏振方向垂直,所述蓝色背光模组提供蓝色背光源穿过所述液晶面板显示图像,所述蓝色背光模组与所述液晶面板相对层叠设置,所述蓝色背光模组提供蓝色背光源穿过所述液晶面板显示图像。
其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片包括二向色性黄色染料化合物,所述二向色性黄色染料化合物包括偶氮、蒽醌类、萘酰亚胺类化合物中的一种或多种。
其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片还包括可聚合性液晶单体、光引发剂及光稳定剂。
其中,所述第一基板包括多个阵列排布的色阻块,所述色阻块包括红色阻块与绿色阻块,所述蓝色背光源穿过所述红色阻块形成红色光线、所述蓝色背光源穿过所述绿色阻块形成绿色光线。
其中,所述第一基板包括多个阵列排布的量子点单元,所述量子点单元包括红色量子点单元与绿色量子点单元,所述蓝色背光源照射所述红色量子点单元形成红色光线、所述蓝色背光源照射所述绿色量子点单元形成绿色光线。
其中,所述蓝色背光模组位于所述第一基板背离所述第二基板的一侧。
一种黄色染料偏光片的制作方法,包括:
将黄色染料混合溶液在恒温水浴条件下搅拌均匀;
将所述黄色染料溶液滴落在配向膜上,并旋涂制得湿膜;
烘烤所述湿膜;
待溶剂挥发完全后,采用紫外光照射固化,得到所述黄色染料偏光片。
其中,所述黄色染料混合溶液包括:
二向色性黄色染料化合物,质量比为3%~15%;
可聚合性液晶单体,质量比为20%~30%;
光引发剂,质量比为1%~3%;
溶剂,质量比为70%~75%;
光稳定剂,质量比为1%~5%。
其中,所述方法还包括使用偏正光源配向。
本发明的有益效果如下:黄色染料偏光片(第一黄色染料偏光片和第二黄色染料偏光片)的吸收波长刚好可以与蓝色背光模组的发光波长区域吻合,使蓝光背光源利用效率达到最大,偏振度大幅度提升,在保留了应用蓝色背光模组的液晶显示器低成本、低功耗优势的同时,染料偏光片制造工艺简单,且具有优异的耐湿热性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的液晶面板的结构示意图。
图2为本发明实施例二提供的液晶面板的结构示意图。
图3为本发明实施例三提供的液晶面板的结构示意图。
图4为本发明实施例提供的液晶显示器的结构示意图。
图5为本发明实施例提供的黄色染料偏光片的制作方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1和图4,本发明实施例一提供的液晶面板20与蓝色背光模组10相对层叠设置,蓝色背光模组10发出蓝色的背光源穿过液晶面板20后使液晶面板20显示彩色图像信息,用于用户通过人眼30接收。
液晶面板20包括第一黄色染料偏光片202、第二黄色染料偏光片204、第一基板22、液晶层26及第二基板24。第一基板22、液晶层26及第二基板24依次层叠设置,具体的,第一基板22与第二基板24相对设置,液晶层26位于第一基板22与第二基板24之间,一种实施方式中,第一基板22为彩膜基板,第二基板24为阵列基板,第一基板22、液晶层26、第二基板24通过框胶粘贴后形成封闭的液晶盒,液晶盒通过液晶层26内起开关作用的液晶分子260的旋转状态控制背光源是否能够穿过液晶盒。
进一步的,第一黄色染料偏光片202位于液晶层26与第一基板22之间,第二黄色染料偏光片204位于第二基板24与液晶层26之间,第一黄色染料偏光片202与第二黄色染料偏光片204的偏振方向垂直。具体的,第一黄色染料偏光片202贴合于第一基板22面对液晶层26的一侧表面,第二黄色染料偏光片204贴合于第二基板24面对液晶面板20的表面,第一黄色染料偏光片202和第二黄色染料偏光片204位于液晶盒的内部,避免了外部环境(如湿热等)对第一黄色染料偏光片202和第二黄色染料偏光片204的影响,提高了第一黄色染料偏光片 202和第二黄色染料偏光片204的使用寿命,降低了维护成本,并且提高了液晶面板20的显示效果。
仅有与第一黄色染料偏光片202的偏振方向相同的蓝色背光源穿过第一黄色染料偏光片202射向液晶层26,仅有与第二黄色染料偏光片204的偏振方向相同的蓝色背光源穿过第二黄色染料偏光片204射向液晶面板20外被人眼30接收,蓝色背光模组10提供的蓝色背光源射向第一黄色染料偏光片202筛选后射向液晶层26,通过控制液晶层26的液晶分子260偏转状态改变蓝色背光源的偏振方向,从而控制穿过第二黄色染料偏光片204射向液晶面板20外被人眼30接收的图像内容。
黄色染料偏光片(第一黄色染料偏光片202和第二黄色染料偏光片204)的吸收波长刚好可以与蓝色背光模组10的发光波长区域吻合,使蓝光背光源利用效率达到最大,偏振度大幅度提升,在保留了应用蓝色背光模组10的液晶显示器低成本、低功耗优势的同时,染料偏光片制造工艺简单,且具有优异的耐湿热性能。
本实施例中,液晶面板20还包括配向层200,配向层200位于液晶层26与第一黄色染料偏光片202之间,以及液晶层26与第二黄色染料偏光片204之间。配向层200用于给液晶层26的液晶分子260进行配像,以使液晶分子260具有规律的初始偏转状态,便于后续对液晶层26的控制。
本实施例中,第一黄色染料偏光片202和第二黄色染料偏光片204包括二向色性黄色染料化合物,二向色性黄色染料化合物包括偶氮、蒽醌类、萘酰亚胺类化合物中的一种或多种。进一步的,二向色性黄色染料化合物的重量占比为3%~15%。二向色性黄色染料化合物的主要特征是吸收波长分布在400-480nm波长范围内,但并不局限于纯黄色,可以表现为橙黄色、暗黄色、砖黄色等呈近黄色颜色。实验研究证明,单种二向色性黄色染料化合物更有利于分散,所制得的偏光片偏振度最高,可以达到99%以上。
进一步的,第一黄色染料偏光片202和第二黄色染料偏光片204还包括可聚合性液晶单体、光引发剂及光稳定剂。具体的,可聚合性液晶单体为具有-C=C-,-C=C-C-等可聚合链基的小分子单体,可聚合性液晶单体的重量占比为20%~30%;光引发剂搭配可聚合性液晶单体,光引发剂的重量占比为1%~3%; 光稳定剂为苯甲酮类,苯并三唑类,辛氧基酚类,亚磷酸酯类等,光稳定剂的重量占比为1%~5%。黄色二色向性染料化合物在黄色染料溶液的配制过程中,更容易分散,不容易出现团聚的状况,更加有利于偏光片偏振性能的提升。
一种实施方式中,第一黄色染料偏光片202和第二黄色染料偏光片204为黄色染料溶液涂布后形成,该黄色染料溶液还包括溶剂,溶剂为丙酮,甲苯,丙二醇,二氯甲烷,DMF,NMP,PGMEA等,溶剂的体重占比为70%~75%。黄色染料偏光片的制作采用黄色二色向性染料涂布方式,相较于传统的偏光片制作拉伸的方法,涂布制程简易,少了TAC层,更轻薄化,并且染料具有优异的耐湿热性能,在量子点、OLED等新技术等方面更能取代碘系偏光片,具有广泛的应用前景。染料类有机物具有优异的耐湿氧特性,制作工艺简单,更能保证偏光片性能不受后续工艺高温制程的影响,更有利于其大规模生产。
本实施例中,第一基板22包括多个阵列排布的色阻块,色阻块包括红色阻块222与绿色阻块224,蓝色背光源穿过红色阻块222形成红色光线、蓝色背光源穿过绿色阻块224形成绿色光线。进一步的,色组块由光阻材料通过光照形成,未穿过红色组块或绿色组块的蓝色背光源依然为蓝色光线,蓝色光线、绿色光线及红色光线组成三原色,组成彩色的图像,通过控制液晶分子260的偏转状态控制液晶面板20的显示图像的内容。
黄色染料偏光片(第一黄色染料偏光片202和第二黄色染料偏光片204)的吸收波长刚好可以与蓝色背光模组10的发光波长区域吻合,使蓝光背光源利用效率达到最大,偏振度大幅度提升,在保留了应用蓝色背光模组10的液晶显示器低成本、低功耗优势的同时,染料偏光片制造工艺简单,且具有优异的耐湿热性能。
请参阅图2,本发明实施例二提供的液晶面板20与实施例一的区别在于,第二黄色染料偏光片204位于第二基板24背离液晶层26的一侧,即第二黄色染料偏光片204位于液晶盒的外部。具体的,第二黄色染料偏光片204贴合于第二基板24背离液晶层26的一侧表面。由于染料类有机物具有优异的耐湿氧特性,位于液晶盒外的第二黄色染料偏光片204在湿热的使用环境中依然保持良好的特性,提高了液晶面的显示效果,并且使用寿命较长,提高了用户体验,降低了维护成本。
请参阅图3,本发明实施例三提供的液晶面板20与实施例一的区别在于,第一基板22包括多个阵列排布的量子点单元,量子点单元包括红色量子点单元226与绿色量子点单元228,蓝色背光源照射红色量子点单元226形成红色光线、蓝色背光源照射绿色量子点单元228形成绿色光线。量子点液晶显示器可以高效提升显示屏的色域值,让色彩更加纯净鲜艳,使色彩表现更具张力。进一步的,蓝色背光模组10位于第一基板22背离第二基板24的一侧,当量子点材料和蓝色背光搭配时,蓝色背光源激发红色量子点单元226和绿色量子点单元228时,光线(红色光线和绿色光线)会变得散乱无序,此时,第一黄色染料偏光片202可以对光线加以修正,使得光线以线性偏振光的形式进入液晶层26,使液晶显示器得以正常显示,这对量子点材料在蓝色背光液晶显示器中的应用具有重大意义。此外,染料类有机物具有优异的耐湿氧特性,制作工艺简单,更能保证偏光片性能不受后续工艺高温制程的影响,更有利于其大规模生产。
请参阅图4,液晶显示器包括蓝色背光模组10及本发明实施例提供的液晶面板20,蓝色背光模组10与液晶面板20相对层叠设置,蓝色背光模组10提供蓝色背光源穿过液晶面板20显示图像信息被用户人眼30接收。具体的,液晶面板20包括显示面26与非显示面28,蓝色背光模组10位于液晶面板20的非显示面28一侧。进一步的,液晶显示器还包括驱动电路,驱动电路控制液晶面板20内的公共电极与像素电极,从而控制液晶分子260的偏转,改变图像显示内容。
黄色染料偏光片(第一黄色染料偏光片202和第二黄色染料偏光片204)的吸收波长刚好可以与蓝色背光模组10的发光波长区域吻合,使蓝光背光源利用效率达到最大,偏振度大幅度提升,在保留了应用蓝色背光模组10的液晶显示器低成本、低功耗优势的同时,染料偏光片制造工艺简单,且具有优异的耐湿热性能。
请参阅图5,一种黄色染料偏光片的制作方法,包括:
S101、将黄色染料混合溶液在恒温水浴条件下搅拌均匀。
本实施例中,黄色染料混合溶液包括
二向色性黄色染料化合物,质量比为3%~15%;
可聚合性液晶单体,质量比为20%~30%;
光引发剂,质量比为1%~3%;
溶剂,质量比为70%~75%;
光稳定剂,质量比为1%~5%。
具体的,二向色性黄色染料化合物包括偶氮、蒽醌类、萘酰亚胺类化合物中的一种或多种。进一步的,二向色性黄色染料化合物的重量占比为3%~15%。二向色性黄色染料化合物的主要特征是吸收波长分布在400-480nm波长范围内,但并不局限于纯黄色,可以表现为橙黄色、暗黄色、砖黄色等呈近黄色颜色。实验研究证明,单种二向色性黄色染料化合物更有利于分散,所制得的偏光片偏振度最高,可以达到99%以上。
可聚合性液晶单体为具有-C=C-,-C=C-C-等可聚合链基的小分子单体,可聚合性液晶单体的重量占比为20%~30%;光引发剂搭配可聚合性液晶单体,光引发剂的重量占比为1%~3%;光稳定剂为苯甲酮类,苯并三唑类,辛氧基酚类,亚磷酸酯类等,光稳定剂的重量占比为1%~5%;溶剂为丙酮,甲苯,丙二醇,二氯甲烷,DMF,NMP,PGMEA等,溶剂的体重占比为70%~75%。黄色二色向性染料化合物在黄色染料溶液的配制过程中,更容易分散,不容易出现团聚的状况,更加有利于偏光片偏振性能的提升。
本实施例中,第一基板22包括多个阵列排布的色阻块,色阻块包括红色阻块222与绿色阻块224,蓝色背光源穿过红色阻块222形成红色光线、蓝色背光源穿过绿色阻块224形成绿色光线。进一步的,色组块由光阻材料通过光照形成,未穿过红色组块或绿色组块的蓝色背光源依然为蓝色光线,蓝色光线、绿色光线及红色光线组成三原色,组成彩色的图像,通过控制液晶分子260的偏转状态控制液晶面板20的显示图像的内容。
本实施例中,黄色染料混合溶液在50~100℃恒温水浴条件下搅拌,以使搅拌效果最佳,即搅拌均匀。
S102、将黄色染料溶液滴落在配向膜上,并旋涂制得湿膜。
本实施例中,旋涂仪设定转速400~2500r/min,第一旋涂时间为1~4s,第二旋涂时间为2~6s,以达到最佳的旋涂效果。
S103、烘烤湿膜。
本实施例中,烘烤温度控制为40~70℃,以在不破坏黄色染料偏光片的前提下缩短烘烤的时间,提高制作效率。
S104、待溶剂挥发完全后,采用紫外光照射固化,得到黄色染料偏光片。
采用紫外光波长为200~400nm,强度为100~1000mj,以得到最佳的固化效果。
本实施例中,固化得到的黄色染料偏光片还要进行配向,以得到特定的偏振方向。一种较佳的实施方式中,配向采用偏正光源配向,其他实施方式中,配向还可以采用TN型PI膜、IPS型PI膜、UV2A型PI膜、亲疏水/油改性界面等。
黄色染料偏光片的吸收波长刚好可以与蓝色背光模组10的发光波长区域吻合,使蓝色背光源利用效率达到最大,偏振度大幅度提升;在保留了蓝色背光源液晶显示低成本、低功耗优势的同时,染料偏光片制造工艺简单,且具有优异的耐湿热性能;黄色二色向性染料纯净物更有利于分散,避免黄色染料溶液制作过程中染料团聚现象的发生,更有利于高偏振度和高对比度偏光片的制备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种液晶面板,与蓝色背光模组相对层叠设置,其中,所述液晶面板包括第一黄色染料偏光片、第二黄色染料偏光片及依次层叠设置的第一基板、液晶层及第二基板,所述第一黄色染料偏光片位于所述液晶层与所述第一基板之间,所述第二黄色染料偏光片位于所述第二基板与所述液晶层之间或所述第二基板背离所述液晶层的一侧,所述第一黄色染料偏光片与所述第二黄色染料偏光片的偏振方向垂直,所述蓝色背光模组提供蓝色背光源穿过所述液晶面板显示图像。
  2. 根据权利要求1所述的液晶面板,其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片包括二向色性黄色染料化合物,所述二向色性黄色染料化合物包括偶氮、蒽醌类、萘酰亚胺类化合物中的一种或多种。
  3. 根据权利要求2所述的液晶面板,其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片还包括可聚合性液晶单体、光引发剂及光稳定剂。
  4. 根据权利要求3所述的液晶面板,其中,所述第一基板包括多个阵列排布的色阻块,所述色阻块包括红色阻块与绿色阻块,所述蓝色背光源穿过所述红色阻块形成红色光线、所述蓝色背光源穿过所述绿色阻块形成绿色光线。
  5. 根据权利要求3所述的液晶面板,其中,所述第一基板包括多个阵列排布的量子点单元,所述量子点单元包括红色量子点单元与绿色量子点单元,所述蓝色背光源照射所述红色量子点单元形成红色光线、所述蓝色背光源照射所述绿色量子点单元形成绿色光线。
  6. 根据权利要求5所述的液晶面板,其中,所述蓝色背光模组位于所述第一基板背离所述第二基板的一侧。
  7. 一种液晶显示器,其中,所述液晶显示器包括蓝色背光模组及液晶面板,所述液晶面板包括第一黄色染料偏光片、第二黄色染料偏光片及依次层叠设置的第一基板、液晶层及第二基板,所述第一黄色染料偏光片位于所述液晶层与所述第一基板之间,所述第二黄色染料偏光片位于所述第二基板与所述液晶层之间或所述第二基板背离所述液晶层的一侧,所述第一黄色染料偏光片与所述第二黄色染料偏光片的偏振方向垂直,所述蓝色背光模组提供蓝色背光源穿过 所述液晶面板显示图像,所述蓝色背光模组与所述液晶面板相对层叠设置,所述蓝色背光模组提供蓝色背光源穿过所述液晶面板显示图像。
  8. 根据权利要求7所述的液晶显示器,其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片包括二向色性黄色染料化合物,所述二向色性黄色染料化合物包括偶氮、蒽醌类、萘酰亚胺类化合物中的一种或多种。
  9. 根据权利要求8所述的液晶显示器,其中,所述第一黄色染料偏光片和所述第二黄色染料偏光片还包括可聚合性液晶单体、光引发剂及光稳定剂。
  10. 根据权利要求9所述的液晶显示器,其中,所述第一基板包括多个阵列排布的色阻块,所述色阻块包括红色阻块与绿色阻块,所述蓝色背光源穿过所述红色阻块形成红色光线、所述蓝色背光源穿过所述绿色阻块形成绿色光线。
  11. 根据权利要求9所述的液晶显示器,其中,所述第一基板包括多个阵列排布的量子点单元,所述量子点单元包括红色量子点单元与绿色量子点单元,所述蓝色背光源照射所述红色量子点单元形成红色光线、所述蓝色背光源照射所述绿色量子点单元形成绿色光线。
  12. 根据权利要求11所述的液晶显示器,其中,所述蓝色背光模组位于所述第一基板背离所述第二基板的一侧。
  13. 一种黄色染料偏光片的制作方法,其中,包括:
    将黄色染料混合溶液在恒温水浴条件下搅拌均匀;
    将所述黄色染料溶液滴落在配向膜上,并旋涂制得湿膜;
    烘烤所述湿膜;
    待溶剂挥发完全后,采用紫外光照射固化,得到所述黄色染料偏光片。
  14. 根据权利要求13所述的黄色染料偏光片的制作方法,其中,所述黄色染料混合溶液包括:
    二向色性黄色染料化合物,质量比为3%~15%;
    可聚合性液晶单体,质量比为20%~30%;
    光引发剂,质量比为1%~3%;
    溶剂,质量比为70%~75%;
    光稳定剂,质量比为1%~5%。
  15. 根据权利要求14所述的黄色染料偏光片的制作方法,其中,所述方法 还包括使用偏正光源配向。
PCT/CN2017/094553 2017-07-06 2017-07-26 液晶面板、液晶显示器及黄色染料偏光片的制作方法 WO2019006795A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/570,237 US10585306B2 (en) 2017-07-06 2017-07-26 Liquid crystal panel, liquid crystal display, and method for manufacturing a yellow-dye polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710548132.1A CN107315276A (zh) 2017-07-06 2017-07-06 液晶面板、液晶显示器及黄色染料偏光片的制作方法
CN201710548132.1 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019006795A1 true WO2019006795A1 (zh) 2019-01-10

Family

ID=60177641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094553 WO2019006795A1 (zh) 2017-07-06 2017-07-26 液晶面板、液晶显示器及黄色染料偏光片的制作方法

Country Status (2)

Country Link
CN (1) CN107315276A (zh)
WO (1) WO2019006795A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102380640B1 (ko) * 2017-11-23 2022-03-29 엘지디스플레이 주식회사 액정캡슐을 포함하는 액정표시장치
CN114420870B (zh) * 2022-01-19 2024-02-23 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005748A1 (en) * 1999-12-24 2001-06-28 Yutaka Kayane Azo-compounds and dye polarizing films containing them
CN103649793A (zh) * 2011-07-22 2014-03-19 日本化药株式会社 偏光元件和偏振片
CN104597654A (zh) * 2015-02-13 2015-05-06 厦门天马微电子有限公司 液晶显示面板及液晶显示装置
CN104793281A (zh) * 2015-05-13 2015-07-22 京东方科技集团股份有限公司 一种显示装置、曲面显示面板、内置偏光片及其制作方法
CN106019448A (zh) * 2015-03-31 2016-10-12 东友精细化工有限公司 复合偏光板
CN106154390A (zh) * 2016-09-21 2016-11-23 深圳市华星光电技术有限公司 涂布型染料偏光组件的制备方法及液晶面板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015168A (ko) * 1999-07-06 2001-02-26 모리시타 요이찌 액정표시장치와 그 제조방법
JP6144995B2 (ja) * 2013-08-13 2017-06-07 富士フイルム株式会社 液晶表示装置
CN106324893A (zh) * 2016-10-12 2017-01-11 深圳市华星光电技术有限公司 液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005748A1 (en) * 1999-12-24 2001-06-28 Yutaka Kayane Azo-compounds and dye polarizing films containing them
CN103649793A (zh) * 2011-07-22 2014-03-19 日本化药株式会社 偏光元件和偏振片
CN104597654A (zh) * 2015-02-13 2015-05-06 厦门天马微电子有限公司 液晶显示面板及液晶显示装置
CN106019448A (zh) * 2015-03-31 2016-10-12 东友精细化工有限公司 复合偏光板
CN104793281A (zh) * 2015-05-13 2015-07-22 京东方科技集团股份有限公司 一种显示装置、曲面显示面板、内置偏光片及其制作方法
CN106154390A (zh) * 2016-09-21 2016-11-23 深圳市华星光电技术有限公司 涂布型染料偏光组件的制备方法及液晶面板

Also Published As

Publication number Publication date
CN107315276A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN105954920B (zh) 柔性液晶显示面板的制作方法
CN105093643B (zh) 彩色发光元件及液晶显示装置
CN104765187B (zh) 液晶显示器
CN105068296B (zh) 液晶显示装置
CN105093677B (zh) 液晶显示器及其液晶显示模组
WO2017201777A1 (zh) Woled显示装置
WO2017092130A1 (zh) Coa型液晶显示面板的制作方法及coa型液晶显示面板
CN105185790B (zh) 阵列基板及其制作方法
WO2013135077A1 (zh) 液晶显示面板及其制作方法、液晶显示器
CN106773319B (zh) 显示装置及其制备方法
CN108873470B (zh) 一种量子点彩膜背光结构
CN110007508A (zh) 彩膜基板、液晶显示面板及液晶显示装置
TWI275832B (en) Colored composition for color filter and a display using the color filters
WO2017015988A1 (zh) 一种液晶显示面板及偏光片的制作方法
WO2019006795A1 (zh) 液晶面板、液晶显示器及黄色染料偏光片的制作方法
CN107219669A (zh) 一种显示装置
CN103744211B (zh) 彩色液晶显示面板
CN108957828A (zh) 一种显示装置、显示面板及其制造方法
CN109298564A (zh) 显示装置
CN109143662B (zh) 一种量子点彩色滤光片基板及显示面板
US10585306B2 (en) Liquid crystal panel, liquid crystal display, and method for manufacturing a yellow-dye polarizer
US11803079B2 (en) Quantum dot display panel, quantum dot display device, and preparation method thereof
CN208721946U (zh) 一种平板电脑及其lcd显示设备
CN204227208U (zh) 一种背光组件
Gao et al. 72‐2: Invited Paper: Color‐Conversion Liquid Crystal Display with In‐Cell Polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916894

Country of ref document: EP

Kind code of ref document: A1