WO2019006699A1 - Imide-functional unit, copolymer thereof and their preparation methods, as well as their uses - Google Patents

Imide-functional unit, copolymer thereof and their preparation methods, as well as their uses Download PDF

Info

Publication number
WO2019006699A1
WO2019006699A1 PCT/CN2017/091845 CN2017091845W WO2019006699A1 WO 2019006699 A1 WO2019006699 A1 WO 2019006699A1 CN 2017091845 W CN2017091845 W CN 2017091845W WO 2019006699 A1 WO2019006699 A1 WO 2019006699A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
tbdi
imide
heating
conducted
Prior art date
Application number
PCT/CN2017/091845
Other languages
French (fr)
Inventor
Xugang GUO
Jianhua Chen
Xianhe ZHANG
Original Assignee
South University Of Science And Technology Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South University Of Science And Technology Of China filed Critical South University Of Science And Technology Of China
Priority to PCT/CN2017/091845 priority Critical patent/WO2019006699A1/en
Publication of WO2019006699A1 publication Critical patent/WO2019006699A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications

Abstract

An imide-functional unit of Formula I, a copolymer thereof and their preparation methods, as well as their uses in a thin-film transistor. The imide-functional unit is an effective electron-deficient building block for constructing high-performance polymer semiconductors due to its solubilizing ability, extended π conjugation length, close π-π stacking, and appropriate electron-withdrawing ability and lower-lying FMOs versus the previously reported imide-functional units.

Description

[Title established by the ISA under Rule 37.2] IMIDE-FUNCTIONAL UNIT, COPOLYMER THEREOF AND THEIR PREPARATION METHODS, AS WELL AS THEIR USES FIELD
The present invention belongs to the field of semiconductor material, in particular relates to an imide-functional unit, a copolymer thereof and their preparation methods, as well as their uses.
BACKGROUND
π-conjugated organic and polymeric semiconductors have attracted substantial attentions owing to their great potentials for applications in low-cost, flexible, light-weight electronic devices such as organic n-channel thin-film transistors (OTFTs) , organic photovoltaics (OPVs) , and organic light-emitting diodes (OLEDs) . [1-6] Among them, most of high-performance polymer semiconductors for OPV and OTFT applications are constructed based on the donor-acceptor (D-A) strategy, [7-8] which results in good intramolecular charge transport and close intermolecular stacking for efficient charge carrier hoping between neighboring molecules. The physical properties and device performance of D-A polymers can be readily modulated by modifying the donor and acceptor units. For achieving improved n-channel OTFT performance, the design and synthesis of novel electron-deficient building blocks with optimized geometry and opto-electrical property plays a critical role. [9, 10] The acceptor units leading to promising n-channel OTFT performance typically have two key features, i.e. high degree of backbone planarity and large electron affinity. [1, 11] Therefore, tremendous efforts have been  made to develop novel acceptor units with such features for improving the performance of n-channel OTFTs. [12] However, most of high-mobility n-type polymer semiconductors constructed by D-A strategy typically resulting in narrow bandgaps with high-lying HOMOs, which lead to facile hole injection and pronounced p-channel performance, hence suffering from low Ion/Ioff ratios of 103-104[13, 14] Hence, the HOMOs also should be taken into consideration in order to achieve ideal n-channel OTFT performance.
Imide-functionalized building blocks are considered as the most promising electron-deficient units for constructing high-performance n-channel polymer semiconductors in OTFTs, which are mainly contributed to their intrinsic advantages including: (a) the strong electron-withdrawing capability of imide groups, which suppresses the lowest unoccupied molecular orbitals (LUMOs) of organic semiconductors, resulting in facile electron injection and stabilizing the generated organic anions; (b) the good π-conjugation with the neighboring arenes due to the enforced compact geometry and/or intramolecular non-covalent interactions, such as hydrogen bond and sulfur-oxygen interaction; (c) the solubilizing N-alkyl chains, which are distal from conjugated backbones, offering good solubility without generating significant steric hindrance, therefore fine-tuned film morphology, close intermolecular π-stacking, and long range ordering can be obtained. [1] To date many imide-functionalized electron-deficient units have been reported, such as perylenediimide (PDI) , [15-24] naphthalenediimide (NDI) , [25-30] phthalimide (PhI) , [31-37] , thienopyrroledione (TPD) [38-43] , and bithiopheneimide (BTI) . [10, 44-48] The polymer semiconductors derived from these building blocks show the most promising OTFT  performance.
In our previous work, we have reported several families of high-performance polymer semiconductors by incorporating NDI, [49, 50] PhI, [51-54] TPD, [55, 56] and BTI[57-60] and systematically investigated their device performance in OTFTs and OPVs and elucidated their structure-property correlations. In 2008, a novel electron deficient unit, the highly planar BTI, was synthesized and the derived BTI homopolymer exhibits an excellent electron mobility > 0.01 cm2 V-1 s-1 with a current on/off ratio (Ion/Ioff) of 107[10] Molecular weight optimization in combination with device engineering leads to enhanced film crystallinity and an improved electron mobility of ~0.2 cm2 V-1 s-1 was obtained in top-gated OTFTs. [59] Recently, Osaka and co-workers designed and synthesized a doubly BTI-fused building block dithienylthienothiophenebisimide (TBI, Formula 1) . The corresponding polymers exhibit versatile performance in OPVs as donor materials or acceptor materials as well as in OTFTs as n-type and p-type semiconductors with charge carrier mobility of 10-3 ~10-2 cm2 V-1 s-1[61]
Figure PCTCN2017091845-appb-000001
Ding and co-workers reported the synthesis and photovoltaic application of a pentacyclic amide-based lactam acceptor unit, thieno [2', 3': 5, 6] pyrido [3, 4-g] thieno [3, 2-c] isoquinoline-5, 11 (4H, 10H) -dione (TPTI, Formula 2) . The TPTI-based polymers exhibit promising photovoltaic performance as p-type materials in OPVs. [62]
Figure PCTCN2017091845-appb-000002
Thereafter Pei, [63] Takimiya, [64] and Kim [65] reported the TPTI isomer thieno [20, 30: 4, 5] -pyrido [2, 3-g] thieno [3, 2-c] quinoline-4, 10 (5H, 11H) -dione (TPT, Formula 3) and its derived polymers for p-channel OTFTs. Attributed to the fused structure of TPTI and TPT unit, the corresponding polymers possess high-degree of backbone planarity and substantial crystallinity, resulting in large hole mobilities up to 0.58 cm2 V-1 s-1[63]
Figure PCTCN2017091845-appb-000003
However, limited by the weaker electron-withdrawing ability of amide group in TPTI and TPT, the HOMO and LUMO energy levels of the resulting polymers are relative high and hence inappropriate for n-channel OTFTs owing to the large electron injection barrier and pronounced p-channel performance.
SUMMARY
In order to promote n-channel performance in OTFTs, less electron rich group or more electron-deficient group is need to lower the FMOs without sacrificing good solubility, close packing and so on. The present invention provides the design and synthesis of the novel imide-functional unit dithienylbenzodiimide (TBDI, Formula I) and that its incorporation into copolymers affords semiconductors (Formula II) with good solubilizing ability, extended π conjugation length, close π-π stacking, and  appropriate electron withdrawing ability and lower-lying FMOs.
In order to achieve this purpose, the present invention employs the following technical solutions:
An imide-functional unit of the Formula I,
Figure PCTCN2017091845-appb-000004
wherein
R is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms,
X is H or F atom.
Compared to the TBI unit, the imide-functional unit dithienylbenzodiimide (TBDI) or dithienylfluorobenzodiimide (FTBDI) replaces the central thienothiophene of TBI with a less electron rich benzene or fluorobenzene moiety, [1, 66, 67] which should lower the HOMO level and suppress p-channel performance in OTFTs for the resulting polymers. Combining the advantages of TPTI and TPT by attaching additional carbonyl group, the new building block TBDI and FTBDI should lead to the derived polymer semiconductors with lower-lying FMOs versus the polymer analogues based on the amide-functionalized TPTI and TPT. Single crystal structure of TBDI indicates that the imide-functional unit features a non-planar backbone but with a remarkable π-π stacking distance of
Figure PCTCN2017091845-appb-000005
Such close intermolecular π-π stacking is beneficial to intermolecular charge transport. [60]
In another aspect, the present invention provides a copolymer of the imide-functional unit of the invention having the Formula II,
Figure PCTCN2017091845-appb-000006
wherein
Figure PCTCN2017091845-appb-000007
is an aromatic unit can be the same as or different from the building block, n is 5-100.
Preferably, on the basis of the technical solution provided by the present invention, 
Figure PCTCN2017091845-appb-000008
is selected from the following group:
Figure PCTCN2017091845-appb-000009
wherein R is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms.
To verify the above materials design strategy, thiophene, 3, 4-difluorothiophene, bithiophene, 4, 4'-didodecyl-2, 2'-bithiophene, 3-dodecyl-3'- (undecyloxy) -2, 2'-bithio-phene, difluorobithiophene, 2, 2'-bithiazole, 4, 4'-bis (octyloxy) -5, 5'-bithiazole, 2, 5-bis (2-ethylhexyl) -3, 6-di (thiophen-2-yl) pyrrolo [3, 4-c] pyrrole-1, 4 (2H, 5H) -dione,  and 5, 6-difluoro-4, 7-bis (4-hexylthiophen-2-yl) benzo [c] [1, 2, 5] thiadiazole were chosen as the in-chain ∏ aromatic unit for constructing a copolymer semiconductor series. It will be seen that the resulting TBDI-based polymers exhibit promising device performance in n-channel organic thin-film transistors, with electron mobility (μe) up to 0.4 cm2 V-1 s-1 and current modulation ratio (Ion/Ioff) of 106-107. These results demonstrate that TBDI is an efficient building block for enabling polymer semiconductors with unipolar n-channel OTFT performance. Materials structure-property-device performance correlations are established here, and offer useful insights into organic electronics materials design. We believe that more promising performance can be realized by optimizing the chemical structures of TBDI-based materials.
In another aspect, the present invention provides a preparation method of the imide-functional unit described herein wherein R is branched alkyls comprising:
(1) adding dimethyl 2, 5-dibromoterephthalate, methyl 2- (trimethylstannyl) thiophene -3-carboxylate, an organic solvent into a reaction vessel, and purging the mixture with an inert gas;
(2) adding Pd (PPh34 and then purging an inert gas, heating the mixture to 80-140 ℃℃;
(3) adding alkali carbonate, an organic solvent or water to the mixture and refluxing the mixture at 40-90 ℃;
(4) adding SOCl2 into a reaction vessel;
(5) adding alkyl amine and heating the mixture to 140-160 ℃;
(6) adding Br2 and FeCl3 and heating the mixture to 40-90 ℃;
(7) extracting the reaction mixture and washing;
(8) concentrating the organic layer and purifying to give the imide-functional unit.
Preferably, on the basis of the technical solution provided by the present invention, in step (1) , the mole ratio of the dimethyl 2, 5-dibromoterephthalate to methyl 2- (trimethylstannyl) thiophene-3-carboxylate is 1: 2-4, preferably 1: 2.2-3, more preferably 1: 2.5;
preferably, the ratio of the organic solvent to the 2, 5-dibromoterephthalate is 2-10 mL/mmol, preferably 3-7 mL/mmol;
preferably, the organic solvent is selected from THF, EtOH, dioxane, DMF, toluene or a mixture thereof;
preferably, time of the purging is more than 10 minutes, preferably more than 20 minutes, more preferably 30 minutes;
preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture thereof;
preferably, in step (2) , the mole ratio of the Pd (PPh34 to 2, 5-dibromoterephthalate is 1: 5-20, preferably 1: 8-15, more preferably 1: 10;
preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture thereof;
preferably, time of the purging is more than 5 minutes, preferably more than 10 minutes, more preferably 20 minutes;
preferably, the mixture is heated to 80-140 ℃; preferably to 111 ℃;
preferably, the heating is conducted under microwave irradiation;
preferably, in step (3) , preferably, the alkali carbonate is selected from K2CO3,  Na2CO3, Li2CO3, LiOH, NaOH, KOH or a mixture thereof;
preferably, the organic solvent is selected from THF, EtOH, dioxane, DMF or a mixture thereof;
preferably, the mixture is refluxed at 70 ℃;
preferably, in step (4) , the ratio of SOCl2 is 1-5 mL/mmol, preferably 2-4 mL/mmol;
preferably, the ratio of alkyl amine to 2, 5-bis (3- (chlorocarbonyl) thiophen-2-yl) terephthaloyl dichloride is is 1: 2-4, preferably 1: 2.2-3, more preferably 1: 2.5;
preferably, the mixture is heated to 140-160 ℃; preferably to 150 ℃;
preferably, in step (6) , the mixture is heated to 40-90 ℃; preferably to 60 ℃;
preferably, in step (7) , the reaction mixture is extracted with an organic solvent, preferably with DCM;
preferably, the washing is conducted with water and brine;
preferably, in step (8) , the concentrating is conducted under reduced pressure;
preferably, the purifying is conducted by column chromatography using petroleum ether as an eluent.
In another aspect, the present invention provides a preparation method of the copolymer of the invention, comprising:
(1) adding the imide-functional unit of claim 1, an aromatic unit material, tris (di-benzylideneacetone) dipalladium (0) (Pd2 (dba) 3) , and tris (o-tolyl) phosphine (P (o-tolyl) 3) into a reaction vessel, and subjecting the reaction vessel and the mixture to an inert gas;
(2) adding an organic solvent; sealing the reaction vessel under an inert gas flow and then stirring while heating;
(3) adding 2- (tributylstanny) thiophene and stirring the reaction mixture while heating, then adding 2-bromothiophene and stirring the reaction mixture while heating;
(4) after cooling to room temperature, dripping the reaction mixture into methanol containing hydrochloric acid;
(5) drying the solid precipitate obtained in step (4) to give the crude product, and then extracting the crude product;
(6) after the extracting, concentrating the polymer solution, and then being dripped into methanol, collecting the solid and drying to obtain the copolymer.
Preferably, the mole ratio of the electron-donating unit of the invention to the aromatic unit material is 1: 0.5-2, for example, 1: 0.8, 1: 1.2, 1: 1.8 and so on, preferably 1: 0.8-1.5, more preferably 1: 1.
Preferably, the mole ratio of the tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3) to tris (o-tolyl) phosphine (P (o-tolyl) 3) is 1: 4-15, for example, 1: 6, 1: 9, 1: 13 and so on, preferably 1: 6-10, more preferably 1: 8; the Pd loading is 0.005-0.1 equiv, preferably 0.01-0.06.
Preferably, the reaction vessel and the mixture are subjected to 1-5 pump/purge cycles with Ar.
Preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture thereof.
Preferably, in step (2) , the inert gas is selected from any one of Ar, N2, He, Ne,  or a mixture thereof.
Preferably, the organic solvent is selected from any one of anhydrous toluene, benzene, chlorobenzene, DMF, or a mixture thereof.
Preferably, the ratio of the organic solvent to the electron-donating unit is 10-75 mL/mmol, preferably 5-50 mL/mmol.
Preferably, the heating is conducted at 50-170 ℃ for 1-72h, preferably at 80-150 ℃ for 3-50h.
Preferably, the heating is conducted under microwave irradiation.
Preferably, the heating is conducted by 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140 ℃ for 3 h under microwave irradiation.
Preferably, in step (3) , the heating is conducted at 80-170 ℃ for more than 0.2 h, preferably at 100-160 ℃ for more than 0.4 h.
Preferably, the heating is conducted under microwave irradiation.
Preferably, the heating is conducted under microwave irradiation at 140 ℃ for 0.5 h, then adding 2-bromothiophene and stirring the reaction mixture at 140 ℃ for another 0.5 h.
Preferably, the mole ratio of the 2- (tributylstanny) thiophene to the electron-donating unit is 0.1-0.5: 1, for example, 0.2: 1, 0.4: 1 and so on, preferably 0.2: 0.4-1.
Preferably, the mole ratio of the 2-bromothiophene to the electron-donating unit is 0.2-1.5: 1, for example, 0.4: 1, 0.8: 1, 1.3: 1 and so on, preferably 0.4: 0.8-1; preferably, in step (4) , the methanol contains 0.5-10mL hydrochloric acid, preferably 0.5-10mLof 5-20 mol/L hydrochloric acid.
Preferably, the dripping is conducted under vigorous stirring, preferably is conducted for at least 0.5 h, preferably at least 1 h.
Preferably, in step (6) , the dripping is conducted under vigorous stirring.
Preferably, the collecting is conducted by filtration.
Preferably, the drying is conducted under reduced pressure.
In still another aspect, the present invention provides a use of the copolymer according to the present invention in n-channel thin-film transistor.
The raw material used in above preparation method can be prepared by known method in the art or by the following method described below or buying on the market.
We report herein the design and synthesis of a novel imide-functionalized building block, dithienylbenzodiimide (TBDI) , which features a non-planar backbone but a close π-stacking of 
Figure PCTCN2017091845-appb-000010
 as revealed by single crystal structure study. The twisted backbone and intrinsic electrical property of TBDI leads to the TBDI-based polymer semiconductors with low-lying FMO level. Low-lying FMOs should promote n-channel but suppress p-channel performance in OTFTs, which greatly differs from most high-performance n-type polymer semiconductors reported to date, showing narrow bandgap, high-lying HOMOs, and substantial p-type characteristics. In spite of its twisted backbone, all TBDI-based polymers show high-degree of film crystallinity with close π-stackings of
Figure PCTCN2017091845-appb-000011
Attributed to the strong electron withdrawing imide group, all TBDI-based polymers show low-lying HOMOs and LUMOs, which facilitate electron injection but suppress hole injection. OTFT characterizations show that TBDI-bithiophene based OTFTs exhibit  ambipolar characteristics with electron and hole mobility of 0.15 and 0.015 cm2V-1s-1, respectively. TBDI-thiophene and TBDI-difluorobithiophene OTFTs can achieve unipolar n-channel OTFT performance with electron mobility of 0.11 and 0.40 cm2V-1s-1, respectively. Our study reveals that dithienylbenzodiimide is a highly promising building block for enabling high-performance n-channel organic thin-film transistors and non-planar building block also can be used for constructing high mobility polymer semiconductors.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1. The chemical structure of TBDI-based polymers.
Figure 2. Top view (a) , side view (b) , and intermolecular arrangements (c) of the TBDI-C8 single crystal.
Figure 3. Optimized geometries of TBDI-based polymers with 2.5 repeat units. The DFT calculation was performed at B3LYP/6-31G*level.
Figure 4. Calculated molecular orbitals of TBDI-based polymers.
Figure 5. The TGA curves of TBDI-based polymers.
Figure 6. The DSC curves of TBDI-based polymers.
Figure 7. The UV-vis absorption spectra of TBDI-based polymers in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 8. The UV absorption spectra of TBDI-T in o-DCB solution (1x 10-5 M) in different temperature.
Figure 9. The UV absorption spectra of TBDI-DT in o-DCB solution (1x 10-5 M) in different temperature.
Figure 10. The UV absorption spectra of TBDI-DFDT in o-DCB solution (1x 10-5 M) in different temperature.
Figure 11. The cyclic voltammograms of TBDI-based polymer films in 0.1 M (n-Bu) 4N. PF6 acetonitrile solution with the Fc/Fc+ as the internal standard.
Figure 12. Transfer (up) and output (down) characteristics of TBDI-T (a, e) , TBDI-DT (b, f) , and TBDI-DFDT (c, g) OTFTs in n-channel regime at the optimized annealing temperature (250, 220, and 250 ℃, respectively) with Au source/drain electrodes. The transfer (d) and output (h) characteristics of TBDI-DFDT OTFTs at the optimized annealing temperature (250 ℃) with Al source/drain electrodes, the OTFTs show unipolar n-channel performance.
Figure 13. AFM height and phase images (5 × 5 μm) of TBDI-T (a, d) , TBDI-DT (b, e) and TBDI-DFDT (c, f) as cast films.
Figure 14. AFM height and phase images (5 × 5 μm) of TBDI-T (a, d) , TBDI-DT (b, e) and TBDI-DFDT (c, f) films after annealing at the optimized temperature (250, 220, and 250 ℃, respectively) .
Figure 15. GIXD images of TBDI-T (a) TBDI-DT (b) TBDI-DFDT (c) and the corresponding linecuts of the TBDI-based polymer films in out-of-plane and (d) in-plane (e) . The as cast films were casted on silicon substrate for thin-film transistor fabrication.
Figure 16. GIXD images of TBDI-T (a) TBDI-DT (b) TBDI-DFDT (c) and the corresponding linecuts of the TBDI-based polymer films in out-of-plane and (d) in-plane (e) . The films were casted on silicon substrate under the optimal conditions for thin-film transistor fabrication.
Figure 17. The 1H NMR of compound TBDI monomer.
Figure 18. The 13C NMR of compound TBDI monomer.
Figure 19. The HRMS of compound TBDI monomer.
Figure 20. The UV-vis absorption spectra of TBDI-DTR in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 21. The UV-vis absorption spectra of TBDI-TRTOR in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 22. The UV-vis absorption spectra of TBDI-DFT in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 23. The UV-vis absorption spectra of TBDI-DTz in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 24. The UV-vis absorption spectra of TBDI-TzOR in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 25. The UV-vis absorption spectra of TBDI-BT in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 26. The UV-vis absorption spectra of TBDI-DPP in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 27. The UV-vis absorption spectra of Homo-TBDI in chloroform solution (1 × 10-5 M) and in film states (spin coated from 3 mg mL-1 chloroform solution) .
Figure 28. A BGTC device comprising TBDI-based polymers of the invention.
DETAILED DESCRIPTION
To facilitate understanding of the present invention, the embodiment of the present invention is exemplified as follows. A person skilled in the art should be appreciated that the embodiments are merely used to help understand the present invention and should not be regarded as specific limits on the invention.
All reagents and chemicals were commercially available and were used without further purification unless otherwise stated. Tetrahydrofuran and toluene were distilled from Na/benzophenone, and anhydrous dichloromethane and acetonitrile were distilled from CaH2Dimethyl 2, 5-dibromo-terephthalate (1) and methyl 2-(trimethylstannyl) thiophene-3-carboxylate (2) were prepared following published procedures. [61, 69] All other reagents were used as received except where noted. Unless otherwise stated, all manipulations and reactions were carried out under argon using standard Schlenk line techniques. Polymerizations were carried out on Initiator+ Microwave Synthesizer (Biotage, Sweden) .
1H and 13C spectra were recorded on a Bruker Ascend 400 MHz spectrometer. HR-MS measurements were performed on a Bruker APEX II FT-ICRMS spectrometer. Elemental analyses (EA) of monomer and polymers were performed on Vario EL Cube at Shenzhen University (Shenzhen, Guangdong) . Polymer molecular weights were measured on Polymer Laboratories GPC-PL220 high temperature GPC/SEC system at 130 ℃ vs polystyrene standards using trichlorobenzene as eluent. Differential scanning calorimetry (DSC) curves were recorded on a differential scanning calorimetry with heating rate of 10 ℃/min in nitrogen atmosphere. Thermogravimetric analysis (TGA) curves were recorded on a  Mettler, STARe TA Instrument. UV-Vis absorption spectra were recorded on a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer. Cyclic voltammetry (CV) measurements were carried out using a CHI760E voltammetric analyzer with 0.1 M tetra-n-butyl-ammonium hexafluorophosphate (Bu4NPF6) in acetonitrile as supporting electrolyte. A platinum disk, platinum wire and silver wire were employed as working electrode, counter electrode and reference electrode, respectively. Polymer films were drop-coated from chloroform solutions on a Pt working electrode. The scan rate was 100 mV/s. And Fc/Fc+ was used as internal reference for all measurements. AFM measurements of pure polymer films were performed by using a Dimension Icon Scanning Probe Microscope (Asylum Research, MFP-3D-Stand Alone) in tapping mode.
The synthesis of the key TBDI building block is straightforward, and Scheme 1 depicts the Synthesis of TBDI monomer and TBDI-based polymers.
Figure PCTCN2017091845-appb-000012
Figure PCTCN2017091845-appb-000013
More detailed TBDI monomer and polymer synthetic and characterization information is reported as follows. Dimethyl 2, 5-dibromo-terephthalate (1) and methyl 2- (trimethylstannyl) thiophene-3-carboxylate (2) were prepared following published procedures. [61, 69] Still coupling between 1 and 2 affords compound 3 with a yield of 44%under microwave condition at 150 ℃, which is then followed by hydrolysis to provide compound 4. The compound 4 is reacted with SOCl2 overnight to give compound 5, which can be used for the next step without further purification. After the removal of SOCl2, the alkyl amine is added and the reaction mixture is heated to 150 ℃ to afford compound 6 with a yield of 40%. The final monomer is obtained with a high yield > 90%by brominating compound 6 using Br2/Fe. [58] .
The TBDI monomer was copolymerized with tin product or borate product of ∏aromatic unit under a standard Stille or Suzuki polymerization condition using microwave as the heating source to give the TBDI-based polymers. Figure 1 depicts the molecular structure of TBDI-based polymers. The product polymers were purified by Soxhlet extractions using methanol, acetone, n-hexane, dichloromethane, and chloroform as the solvents. The chloroform fraction was collected and dried under vacuum.
Monomer and Polymer Synthesis-wherein R is a branched alkane
(3) : dimethyl 2, 5-bis (3- (methoxycarbonyl) thiophen-2-yl) terephthalate synthesized by following Scheme 2
Figure PCTCN2017091845-appb-000014
Compound 1 (351 g, 1 mmol) , 2 (915 mg, 3 mmol) , Pd (PPh34 (100 mg) and DMF (15 mL) were added to a reaction tube under nitrogen atmosphere. The reaction tube was heated to 150 ℃ for 4 hours with a microwave reactor. After cooling to room temperature, the DMF was evaporated under a reduced pressure. 100 mL methanol was added to the round bottom flask and then filtrated. The solid was washed with water (30 mL) and methanol (30 mL) to give compound 3 as gray solid (210 mg, yield 44%) .
1H NMR (400 MHz, CDCl3) δ (ppm) : 8.03 (s, 2H) , 7.56 (d, J = 5.3 Hz, 2H) , 7.37 (d, J = 5.3 Hz, 2H) , 3.73 (s, 6H) , 3.70 (s, 6H) . 13C NMR (100 MHz, CDCl3) δ(ppm) : 165.92, 163.19, 147.94, 134.72, 133.40, 133.31, 129.44, 128.99, 124.70, 52.35, 51.59.
(4) : 2, 5-bis (3-carboxythiophen-2-yl) terephthalic acid was synthesized by following Scheme 3
Figure PCTCN2017091845-appb-000015
Compound 3 (351 g, 1 mmol) , KOH (915 mg, 3 mmol) , H2O (15 mL) and THF (15 mL) were added to a round bottom flask. The reaction mixture was heated to  70 ℃ overnight. After cooling to room temperature, the THF was evaporated under a reduced pressure. The aqueous solution was cooled to 0 ℃, and then 2 mL hydro-chloric acid was added. The product 4 was obtained by filtration and then washed by water (30 mL) as white solid (210 mg, yield 44%) . The product was pure without any further purification.
1H NMR (500 MHz, DMSO) δ (ppm) : 12.61 (s, 4H) , 7.80 (s, 2H) , 7.65 (d, J = 5.3 Hz, 2H) , 7.44 (d, J = 5.3 Hz, 2H) . 13C NMR (100 MHz, DMSO) δ (ppm) : 167.04, 163.96, 147.63, 134.64, 134.35, 133.09, 130.83, 129.65, 125.98.
(5) : 2, 5-bis (3- (chlorocarbonyl) thiophen-2-yl) terephthaloyl dichloride synthesized by following Scheme 4
Figure PCTCN2017091845-appb-000016
Compound 4 (351 g, 1 mmol) and SOCl2 (15 mL) were added to a round bottom flask in nitrogen atmosphere and then heated to 80 ℃ overnight. The excess SOCl2 was removed by evaporation. The crude product of 5 was directly used in the next step without any further purification.
(6) : TBDI synthesized by following Scheme 5
Figure PCTCN2017091845-appb-000017
To a round bottom flask with dry compound 5 was added 2 eq RNH2 in nitrogen  atmosphere. The reaction mixture was carefully seal up and then heated to 150 ℃ for 4 hours. After cooling to room temperature, the dark residue was dissolved in CHCl3 (2 mL) and then purified by silica gel column chromatography with CHCl3/petroleum ether (1: 4) as eluent. The compound 6 was obtained as pale yellow solid. 6a (yield: 40%)
1H NMR (500 MHz, CDCl3) δ (ppm) : 8.35 (s, 2H) , 7.63 (d, J = 5.2 Hz, 2H) , 7.41 (d, J = 5.2 Hz, 2H) , 4.19 (d, J = 7.2 Hz, 4H) , 1.95 (s, 2H) , 1.29-1.24 (m, 80H) , 0.92-0.84 (m, 12H) . 13C NMR (100 MHz, CDCl3) δ (ppm) : 168.24 , 161.69, 142.29, 135.24, 135.03, 134.71, 132.16, 128.68, 114.26, 51.12, 36.87, 31.95, 31.53, 30.17, 29.81, 29.49, 29.39, 26.26, 22.72, 14.16. HRMS (MALDI+) Calcd for: C66H104N2O4S2 (M+) : 1053.7510, found: 1053.7528.
TBDI monomers: synthesized by following Scheme 6
Figure PCTCN2017091845-appb-000018
To a solution of compound 6 (1eq) in CH2Cl2 was added a catalytic amount of FeCl3 and Br2 (2.2 eq) . And then, the reaction mixture was heated to 55 ℃ for 24 hours. After cooling to room temperature, the reaction mixture was poured to water and extracted by CH2Cl2. The combined organic layer was dried by anhydrous Na2SO4 and then filtrated. The organic solution was evaporated under a reduced pressure. The yellow residue was dissolved in CHCl3 (2 mL) and then purified by silica gel column chromatography with CHCl3/petroleum ether (1: 4) as eluent. The  compound 6 was obtained as pale yellow solid in high yield over 90%.
1H NMR (400 MHz, CDCl3) δ (ppm) : 8.21 (s, 2H) , 7.59 (s, 2H) , 4.16 (d, J = 7.3 Hz, 4H) , 1.91 (s, 2H) , 1.37 -1.26 (m, 80H) , 0.91 -0.88 (m, 12H) . 13C NMR (100 MHz, CDCl3) δ (ppm) : 168.24, 161.69, 142.29, 135.24, 135.03, 134.71, 132.16, 128.68, 114.26, 51.12, 36.87, 31.95, 31.94, 31.53, 30.17, 29.73, 29.68, 29.67, 29.40, 29.39, 26.26, 22.72, 14.16. HRMS (MALDI+) Calcd for: C66H103O4N2Br2S2 (M+) : 1211.5700, found: 1211.5714. The 1H NMR, 13C NMR and HRMS were shown in Figure17, 18 and 19, respectively.
General Procedure for Polymerizations via Stille Coupling for Synthesis of TBDI-based Polymers.
An glass tube was charged with two monomers (0.2 mmol each) , tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3, and tris (o-tolyl) phosphine (P (o-tolyl) 3) (1: 8, Pd2 (dba) 3: P (o-tolyl) 3 molar ratio; Pd loading: 0.03-0.05 equiv) . The tube and its contents were subjected to 3 pump/purge cycles with argon, followed by the addition of anhydrous toluene (6-8 mL) via syringe. The tube was sealed under argon flow and then stirred at 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140 ℃ for 3 h under microwave irradiation. Then, 0.1 mL of 2- (tributylstanny) thiophene was added and the reaction mixture was stirred under microwave irradiation at 140 ℃ for 0.5 h. Finally, 0.2 mL of 2-bromothiophene was added and the reaction mixture was stirred at 140 ℃ for another 0.5 h. After cooling to room temperature, the reaction mixture was slowly dripped into 100 mL of methanol (containing 5 mL 12 N hydrochloric acid) under vigorous stirring. After stirring for 4h, the solid precipitate was transferred to a Soxhlet thimble. After  drying, the crude product was subjected to sequential Soxhlet extraction with the choice of solvents and sequence depending on the solubility of the particular polymer. After final extraction, the polymer solution was concentrated to approximately 20 mL, and then dripped into 100 mL of methanol under vigorous stirring. The polymer was collected by filtration and dried under reduced pressure to afford deep colored solid as the product.
TBDI-T was synthesized by following Scheme 7.
Figure PCTCN2017091845-appb-000019
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a red solid (104 mg, yield: 93%) . 1H NMR (400 MHz, CDCl3) : δ 8.17 (br) , 7.63 (br) , 4.62 (br) , 1.99 (br) , 1.36 (br) , 0.96 (br) . Anal. Calcd for C70H104N2O4S3 (%) : C, 74.15; H, 9.25; N, 2.47; O, 5.64; S, 8.48. Found (%) : C, 73.96; H, 9.33; N, 2.43; S, 8.56.
TBDI-DT was synthesized by following Scheme 8.
Figure PCTCN2017091845-appb-000020
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a purple solid (111  mg, yield: 92%) . 1H NMR (400 MHz, CDCl3) : δ 8.01 (br) , 7.54 (br) , 4.43 (br) , 1.64-1.38 (br, ) , 0.96 (br) . Anal. Calcd for C74H106N2O4S4 (%) : C, 73.10; H, 8.79; N, 2.30; O, 5.26; S, 10.55. Found (%) : C, 71.2; H, 8.72; N, 2.18; S, 10.15.
TBDI-DFDT was synthesized by following Scheme 9.
Figure PCTCN2017091845-appb-000021
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a red solid (102 mg, yield: 81%) . 1H NMR (400 MHz, CDCl3) : δ 8.49 (br) , 7.73 (br) , 4.45 (br) , 1.63-1.35 (br, ) , 0.94 (br) . . Anal. Calcd for C74H104F2N2O4S4 (%) : C, 71.00; H, 8.37; F, 3.04; N, 2.24; O, 5.11; S, 10.25. Found (%) : C, 70.65; H, 8.49; N, 2.19; S, 10.24.
TBDI-DTR was synthesized by following Scheme 10.
Figure PCTCN2017091845-appb-000022
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a purple solid (120 mg, yield: 90%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 20.
TBDI-TRTPR was synthesized by following Scheme 11.
Figure PCTCN2017091845-appb-000023
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a blue solid (115 mg, yield: 93%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 21.
TBDI-DFT was synthesized by following Scheme 12.
Figure PCTCN2017091845-appb-000024
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a red solid (108 mg, yield: 88%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 22
TBDI-DTz was synthesized by following Scheme 13.
Figure PCTCN2017091845-appb-000025
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a red solid (104 mg,  yield: 91%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 23.
TBDI-TzOR was synthesized by following Scheme 14.
Figure PCTCN2017091845-appb-000026
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a blue solid (120 mg, yield: 86%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 24.
TBDI-BT was synthesized by following Scheme 15.
Figure PCTCN2017091845-appb-000027
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a blue solid (135 mg, yield: 89%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 25.
TBDI-DPP was synthesized by following Scheme 16.
Figure PCTCN2017091845-appb-000028
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a dark green solid (140 mg, yield: 87%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 26.
Homo-TBDI was synthesized by following Scheme 17.
Figure PCTCN2017091845-appb-000029
The solvent sequence for Soxhlet extraction was methanol, acetone, and hexane. The polymer was obtained as a blue solid (50 mg, yield: 65%) . The corresponding UV-Vis absorption spectra of chloroform solution (10-5 M) and in film solid state are shown in Figure 27.
After polymerizations, the polymer chains were end-capped with mono-functionalized thiophene68. The polymers were collected by precipitation in methanol, which were then subjected to purification via Soxhlet extractions using different solvent sequences, depending on the polymer solubility. The identity and purity of the product polymers were supported by 1H NMR as well as by elemental analysis. All the polymers exhibit good solubility in common organic solvents for device fabrication. Polymer molecular weights were measured by gel permeation  chromatography (GPC) versus polystyrene standards. Number average molecular weight, Mns are summarized in Table 1.
Table 1 Molecular weight, optical absorption, and electrochemical data of the TBDI-Based polymers.
Figure PCTCN2017091845-appb-000030
a Eg opt = 1240/λonset (eV) ; b Calculated from CV; c Calculated from EHOMO and Eg opt : ELUMO = EHOMO + Eg opt
Single Crystal Structure of Dithienylbenzodiimide
In order to better understand the structure-property correlations of these new TBDI-based polymer semiconductors, the single crystal of dithienylbenzodiimide (TBDI-C8) with a short and linear n-octyl chain was cultivated by slow diffusing MeOH into the concentrated TBDI-C8 solution in CHCl3 as pale yellow acicular crystal. The crystal structure of TBDI-C8 was determined. The crystal of TBDI-C8 belongs to the triclinic system with
Figure PCTCN2017091845-appb-000031
and
Figure PCTCN2017091845-appb-000032
Figure PCTCN2017091845-appb-000033
as well as α = 76.86 (5) °, β = 81.81 (3) °, and γ = 88.16 (4) °. As illustrated in  Figure 2, TBDI-C8 shows a symmetrical structure with benzene as the center. However, it exhibits a high degree of backbone torsion with the dihedral angle between benzene (or thiophene) ring with adjacent imide rings up to 31° (or 26°) . In comparison to the highly planar bithiophene imide, [10] this distortion is likely caused by the heterogeneous bond length of benzene, thiophene, and imide moiety. The high degree backbone distortion typically is detrimental to intramolecular charge delocalization, the molecule packing, and intermolecular charge hopping. To our delight, in spite of its twisted backbone, TBDI-C8 shows a close face-to-face π-πstacking with a remarkable distance of
Figure PCTCN2017091845-appb-000034
which should compensate the disadvantage of backbone distortion and facilitate intermolecular charge transfer between distinct molecules.
Density Functional Theory Calculation
To investigate the electronic structures and geometries, density functional theory (DFT) calculations were performed at the B3LYP/6-311G*level using the Gaussian 09 program. [70] TBDI-based polymers (TBDI-T, TBDI-DT and TBDI-DFDT for example) having 2.5 repeat units with N-methyl substituent were used to reduce the calculation time. The optimized geometries for TBDI-based polymers are shown in Figure 3. All polymers exhibit slightly twisted geometries, which mainly originate from the torsion of TBDI unit. TBDI-DFDT exhibits improved planarity versus TBDI-DT and TBDI-T, which is contributed to the additional F atom, resulting in intramolecular conformation locking through non-covalent F-S interaction. [71, 72] The twisted backbone geometries typically are unfavorable for intramolecular charge delocalization and intermolecular charge transfer. The  calculated frontier molecular orbitals (Figure 4) indicate that both HOMO and LUMO distribute across the entire backbones of polymers. Although all TBDI-based polymers show twisted backbone geometries, the well delocalized conjugated systems should be beneficial to intramolecular charge carrier delocalization.
Thermal Properties and Materials Crystallinity
The thermal stability and materials crystallinity are investigated by thermal gravimetric analysis (TGA, Figure 5) and differential scanning calorimetry (DSC, Figure 6) , respectively. All the TBDI-based polymers show excellent stability with the decomposition temperature (Td) of 420, 426, and 402 ℃ for TBDI-T, TBDI-DT, and TBDI-DFDT, respectively. The TGA results indicate that the stability of all TBDI-based polymers is sufficient for OTFT fabrication. The DSC curves reveal that there are no evident thermal transitions for three polymers. It might be caused by high crystallinity that the transition peak much higher than 300 ℃ (instrument limits) .
Optoelectronic Properties
The ultraviolet-visible (UV-vis) absorption spectra of polymers in chloroform solution and in film states are shown in Figure 7, and the corresponding absorption data and optical bandgaps are summarized in Table 1. All polymers show broad absorption band with absorption onset (λonset) around 600-640 nm in solution state. Compared to that of BBIT-T, the λonsets of TBDI-DT and TBDI-DFDT exhibit a red-shift of 40 and 20 nm, respectively, which is attributed to the stronger electron-donating ability of bithiophene than monothiophene. However, the difluorobithiophene-based polymer TBDI-DFDT shows blue-shifted absorption  versus TBDI-DT, which is consistent with the other fluorinated polymer semiconductors. [72, 73] The absorption spectra of polymer films are highly similar with those of polymer solution, showing a red-shift of λmax less than 10 nm. In addition, distinctive absorption shoulders are observed for all polymers, especially for TBDI-DFDT film, which are attributed to enhanced polymer backbone planarity and stronger inter-chain interaction. These results clearly indicate that all TBDI-based polymer semiconductors exhibit strong aggregation in both solution and thin films, which should be beneficial to charge carrier transport. The temperature-dependent UV-vis absorption of polymers in o-DCB solution was also measured and the relevant spectra are shown in Figure 8-10. The absorption of all polymer solutions shows limited blue-shift as the temperature is increased up to 100 ℃, accompanied by gradually reduced absorption shoulder. The results indicate that all polymers possess strong intermolecular interaction even at high temperature, which is consistent with the 1H NMR measurement. The aggregation leads to NMR signal broadening. The optical bandgaps (Eg opt) derived from the absorption onsets of polymer films are 2.05, 1.94, and 2.01 eV for TBDI-T, TBDI-DT, and TBDI-DFDT, respectively.
Electrochemical properties
The electrochemical properties of polymer films were investigated using cyclic voltammetry (CV) versus a ferrocene/ferrocium (Fc/Fc+) internal standard. The CV curves are shown in Figure 11 and the corresponding data are compiled in Table 1. All polymers show pronounced reversible oxidation and reduction peaks. The HOMO and LUMO energy levels of polymers are calculated from the onset of  oxidation and reduction potentials using the equation of EHOMO = - (4.40 + Eonset ox) eV and ELUMO = - (4.40 + Eonset red) eV, respectively. The calculated HOMOs of TBDI-T, TBDI-DT, and TBDI-DFDT are -5.84, -5.57, and -5.74 eV, respectively. The relative higher-lying HOMO of TBDI-DT (versus that of TBDI-T) is originated from the stronger electron-donating ability of bithiophene than thiophene. Due to the electron-withdrawing ability of F atom on the bithiopehne unit, the TBDI-DFDT HOMO (-5.74 eV) is greatly downshifted compared to that (-5.57 eV) of TBDI-DT. The low-lying HOMOs of TBDI-based polymers should suppress p-channel performance in OTFTs. The CV-derived LUMOs of TBDI-T, TBDI-DT, and TBDI-DFDT are -3.11, -3.11, and -3.20 eV, respectively. Among the polymer series, TBDI-DFDT shows the lowest-lying LUMO, which should facilitate electron injection and stabilize the generated organic anion, and hence leads to improved n-channel OTFT performance. The LUMO energy level can also be calculated from HOMO energy level and Eg opt using the equation: ELUMO = EHOMO + Eg opt. The LUMO energy levels derived from this method are -3.78, -3.65, and -3.76 eV for TBDI-T, TBDI-DT, and TBDI-DFDT, respectively. The low-lying LUMO in combination with the suppressed HOMO should promote n-channel performance and suppress p-channel performance in OTFTs and afford the device with large current modulation ratios (Ion/Ioffs) .
Device Fabrication and Characterization
Bottom Gate/Top Contact (BGTC) thin film transistor was fabricated in order to investigate the mobility of TBDI-based polymers. P-doped silicons with 200nm SiO2 substrate were sonicated in acetone and isopropanol followed by SC-1 cleaning,  which the solution made up of 100mL H2O, 20mL ammonium hydroxide and 20mL hydrogen peroxide at the temperature of 120 ℃. 3mM octadecyltrimethoxysilane (OTS) solution with trichloroethylene (TCE) solvent was spin-coated after UV-ozone and plasma treatment. Exposing the substrates in ammonium vapor for 15h, and treating them in toluene, isopropanol and deionized water subsequently, the contact angles on these substrates are 108°-110°. The polymer layer from 3mg/mL CF solution was spin coated in on substrate at 3000rmp. After that, they were annealed at 250 ℃, 220 ℃ and 190 ℃ for 10 minutes, and then cooled to room temperature. The device without annealing was also fabricated to compare with others. Eventually, 40nm Au was evaporated on the top of substrate as source-drain electrodes. The mobility of polymers were extracted from saturated region based on the equation
Figure PCTCN2017091845-appb-000035
W the width of channel (1000μm) , L the length of channel (100μm) . IDS the source-drain saturation current, Ci the capacitance per unit area of the insulator, μ the mobility, VG the gate voltage, and Vth the threshold voltage.
The charge transport characteristics of the TBDI-based polymer semiconductors are investigated by fabricating OTFTs with a bottom-gate/top-contact (BGTC) device configuration: Au (or Al) /polymer/SAM/SiO2/Si (doped) . The trimethoxyoctadecylsilane was used as the self-assembly monolayer (SAM) . [74] The semiconducting layers are deposited on the dielectric layer via spin-coating polymer solution. The OTFT devices were optimized through thermal annealing at various temperatures. The optimized OTFT data and the corresponding transfer and output  characteristics are shown in Table 2 and Figure 12. During device optimization it was found that the annealing temperature shows profound impacts on OTFT performance. The as-casted thin films of TBDI-based polymers exhibit electron-dominating transistor performance with electron mobilities (μes) of 0.031 -0.096 cm2 V-1 s-1) . After thermal annealing at the optimal condition, the mobility of TBDI-T, TBDI-DT, and TBDI-DFDT OTFTs was greatly increased. TBDI-T OTFTs exhibit an improved n-channel transport characteristic with an average μe value of 0.07 cm2 V-1 s-1, VT of 36 V, and Ion/Ioff of 104 after thermal annealing at 250 ℃. The bithiophene-based polymer TBDI-DT shows ambipolar transport characteristics with an average μe of 0.13 cm2 V-1 s-1 and an average hole mobility (μh) of 0.011 cm2 V-1 s-1 after thermal annealing at 220 ℃. In Comparison to TBDI-T, the transistor performance variation of TBDI-DT is in good accord with the evolution of FMO energy levels. The replacement of bithiophene leads to elevated HOMO (-5.57 eV) and more facile hole injection, hence TBDI-DT OTFTs show ambipolar transport characteristics. The slightly increased μe of TBDI-DT is likely attributed to its higher degree of film crystallinity as revealed by the X-ray study. Compared to TBDI-DT, the F addition on the bithiophene co-unit leads to TBDI-DFDT with substantially improved n-channel transport characteristic under optimal fabrication condition, which is attributed to its lower-lying LUMO due to the electron-withdrawing F addition and increased backbone planarity enabled by intramolecular F-S non-covalent interaction. As the thermal annealing temperature is increased, TBDI-DFDT OTFTs exhibit gradually improved electron mobility, and the highest μe of 0.40 cm2 V-1 s-1 with a VT of 49 V and an Ion/Ioff of 106 was obtained after  annealing at 250 ℃. The influence of thermal annealing on transistor performance will be investigated by AFM and GIXD (vide infra) . As shown in Table 2, all TBDI-based polymers exhibit relative high VTs, which are correlated with large electron injection barrier. Compared to TBDI-DT, the VTs of TBDI-DFDT are slightly reduced due to its lower-lying LUMO, resulting in decreased electron injection barrier.
Considering the large electron injection barrier between the Fermi level of Au electrode and the LUMO level of TBDI-based polymers, low work function Al is employed as the source/drain electrodes in TBDI-DFDT-based OTFTs. The reduced electron injection barrier results in a greatly decreased VT of 22 V (Table 2) . Hence the TBDI-DFDT OTFTs exhibit unipolar n-channel transport characteristics with nearly ideal transfer and output curves (Figure 13d and 13h) . The OTFTs show an average μe of 0.27 cm2 V-1 s-1 with minimal off-current (Ioff) of 10-12 -10-11 A and a remarkable Ion/Ioff ratio of ~107. High mobility n-type polymer semiconductors typically show narrow bandgaps with high-lying HOMOs, which lead to facile hole injection and pronounced p-channel performance, hence suffering from low Ion/Ioff ratios of 103-104. Using TBDI as the building block, the resulting polymer semiconductor TBDI-DFDT shows a wide bandgap (2.01 eV) with a very low-lying HOMO (-5.74 eV) , which in combination with device engineering affords the OTFTs with unipolar n-channel with a substantial μe of 0.34 cm2 V-1 s-1, a remarkable Ion/Ioff ratio of ~107, and a moderate VT of 22 V. Such unipolar n-channel OTFTs are highly desired for application in real electrical devices.
Table 2 Bottom-Gate/Top-Contact (BGTC) OTFT Device Performance Parameters of the  TBDI-based Polymer Semiconductors. 
Figure PCTCN2017091845-appb-000036
a Data represent the best mobilities. The average mobilities from > 5 devices are shown in parentheses. b Al was applied as source-drain electrodes.
Film Morphology and the Correlation with Device Performance
The film morphology and microstructure of BDTI-based polymer semiconductors was investigated by atomic force microscopy (AFM) and grazing incident X-ray diffraction (GIXD) . The AFM height and phase images of as-casted TBDI-based polymers are depicted in Figure 13, all polymers exhibit fiber like interwoven networks with distinct structural features, which indicate that all polymers have good crystallinity. Compared to that (0.67 nm) of TBDI-T, the root-mean-square (RMS) surface roughness of TBDI-DT and TBDI-DFDT is greatly increased to 2.45 and 1.74 nm, respectively, which demonstrates that the crystallinity of TBDI-DT and TBDI-DFDT is significantly improved. The height and phase images of TBDI-T, TBDI-DT, and TBDI-DFDT films after annealing at 250, 220, and 250 ℃ are depicted in Figure 14. The RMS roughness of annealed films of TBDI-T, TBDI-DT, and TBDI-DFDT films is increased to 0.77, 4.16, and 3.83 nm, respectively. The results indicate that thermal annealing can promote film crystallinity, which is in good accord with the improved OTFT mobility.
The two-dimensional GIXD images of the diffraction patterns and the corresponding linecuts of polymer films are shown in Figure 15 and Figure 16, and the relevant crystal packing parameters are summarized in Table 3 and Table 4. On the basis of the as-cast film GIXD patterns (Figure 15) , polymer TBDI-T displays isotropic diffraction along the out-of-plane and in-plane up to 200 diffractions peak with the corresponding inter-lamellar digitation distances of ~3.0 nm and strong out-of-plane dominated π-stacking at
Figure PCTCN2017091845-appb-000037
which corresponds to a π-stacking distance of ~0.37 nm with a face-on backbone orientation. Interestingly the as-cast films of TBDI-DT and TBDI-DFDT polymers display remarkable anisotropic diffraction along the out-of-plane up to 500 diffraction peak with the corresponding interlamellar digitation distances of 2.4-2.8 nm and strong in-plane dominated π-stacking at
Figure PCTCN2017091845-appb-000038
which corresponds a π-stacking distance of ~0.36 nm. The diffraction patterns indicate an edge-on dominating backbone orientation for polymer TBDI-DT and TBDI-DFDT, which is beneficial to charge transport in OTFTs. [75] The film crystallinity and polymer backbone orientation well explain the improved OTFT performance of TBDI-DT and TBDI-DFDT compared to TBDI-T. It is remarkable to note that the twisted TBDI moiety can enable the resulting polymer semiconductors with high-degree of film crystallinity with remarkable compact polymer chain packing (0.36-0.37 nm) .
After thermal annealing under the optimal OTFT fabrication condition, all TBDI-based polymers exhibit further improved film crystallinity (Figure 16) , as revealed by the increased diffraction intensity and the diffraction peaks progressing to higher orders. On the basis of the GIXD image and the corresponding linecuts,  thermal annealing shows minimal impact on the polymer chain orientation, and TBDI-DT and TBDI-DFDT maintain the edge-on-dominating orientation versus the face-on-dominating orientation of TBDI-T. Replacement of thiophene with bithiophene unit, TBDI-DT and TBDI-DFDT show improved film crystallinity versus TBDI-T. According to the Scherrer equation, [76] the crystalline coherence lengths (CCL) of both out-of-plane and in-plane directions are estimated for all films. Thermal annealing leads to increased CCLs of all polymers, which indicates improved microstructural ordering. Therefore thermal annealing results in improved carrier transport properties in OTFTs.
Table 3. d-Spacings and crystalline correlation lengths (calculated via Scherrer analysis) for TBDI-based polymers as cast films.
Figure PCTCN2017091845-appb-000039
Table 4 d-Spacings and crystalline correlation lengths (calculated via Scherrer analysis) for TBDI-based polymers under thermal annealed films.
Figure PCTCN2017091845-appb-000040
Figure PCTCN2017091845-appb-000041
In summary, we have developed a novel imide-functionalized building block, dithienylbenzodiimide (TBDI) , which features a non-planar backbone but a close π-stacking of
Figure PCTCN2017091845-appb-000042
as revealed by single crystal structure study. The twisted backbone and intrinsic electrical property of TBDI leads to the TBDI-based polymer semiconductors with wide bandgaps and low-lying FMO levels. In spite of its twisted backbone, all TBDI-based polymers show high-degree of film crystallinity with close π-stackings of
Figure PCTCN2017091845-appb-000043
specifically TBDI-DT and TBDI-DFDT. Attributed to the strong electron withdrawing imide group, all TBDI-based polymers show low-lying HOMOs and LUMOs, which facilitate electron injection but suppress hole injection. OTFT characterizations show that TBDI-DT-based OTFTs exhibit ambipolar characteristics with electron and hole mobility of 0.15 and 0.015 cm2 V-1 s-1, respectively. TBDI-T and TBDI-DFDT OTFTs can achieve unipolar n-channel OTFT performance with electron mobility of 0.11 and 0.34 cm2 V-1 s-1, respectively. Our study reveals that dithienylbenzodiimide is a highly promising building block for enabling high-performance n-channel organic thin-film transistors and non-planar building block also can be used for constructing high mobility polymer semiconductors.
Embodiments of the invention have been described above and, obviously, modifications and alterations will occur to others upon the reading and understanding of this specification. The invention and any claims are intended to include all  modifications and alterations insofar as they come within the scope of the claims or the equivalent thereof.
All of the following reference documents are incorporated herein by reference.
Reference documents:
[1] X. Guo, A. Facchetti and T.J. Marks, Chem. Rev., 2014, 114, 8943-9021.
[2] A.J. Heeger, Chem. Soc. Rev., 2010, 39, 2354-2371.
[3] S. Günes, H. Neugebauer and N.S. r Sariciftci, Chem. Rev., 2007, 107, 1324-1338.
[4] S. Allard, M. Forster, B. Souharce, H. Thiem and U. Scherf, Angew. Chem. Int. Ed., 2008, 47, 4070-4098.
[5] S. Holliday, J.E. Donaghey and I. McCulloch, Chem. Mater., 2014, 26, 647-663.
[6] W. Wu, Y. Liu and D. Zhu, Chem. Soc. Rev., 2010, 39, 1489-1502.
[7] T. Lei, J.Y. Wang and J. Pei, Acc. Chem. Res., 2014, 47, 1117-1126.
[8] Z.G. Zhang and J. Wang, J. Mater. Chem., 2012, 22, 4178-4187.
[9] F.S. Kim, X. Guo, M.D. Watson and S.A. Jenekhe, Adv. Mater., 2010, 22, 478-482.
[10] J.A. Letizia, M.R. Salata, C.M. Tribout, A. Facchetti, M.A. Ratner and T.J. Marks. J. Am. Chem. Soc., 2008, 130, 9679-9694.
[11] Y. Zhao, Y. Guo and Y. Liu, Adv. Mater., 2013, 25, 5372-5391.
[12] Y. i He, W. Hong and Y. Li, J. Mater. Chem. C, 2014, 2, 8651-8661.
[13] Z. Yi, S. Wang and Y. Liu, Adv. Mater., 2015, 27, 3589-3606.
[14] E. Wang, W. Mammo and M.R. Andersson, Adv. Mater., 2014, 26, 1801-1826.
[15] F.F. Lázaro, N.Z. Lorre and A.S. Santos, J. Mater. Chem. A, 2016, 4, 9336-9346
[16] W. Jiang, Y. Li and Z. Wang, Acc. Chem. Res., 2014, 47, 3135-3147.
[17] Z. Liu, Y. Wu, Q. Zhang and Xiang Gao, J. Mater. Chem. A, 2016, 4, 17604-17622.
[18] W. Zhou, Y. Wen, L. Ma, Y. Liu and X. Zhan, Macromolecules, 2012, 45, 4115-4121.
[19] P.M. Beaujuge and J.M. Frechet, J. Am. Chem. Soc., 2011, 133, 20009-20029.
[20] C. Xiao, W. Jiang, X. Li, L. Hao, C. Liu and Z. Wang, ACS Appl. Mater. Interfaces, 2014, 6,  18098-18103.
[21] Y. Zhong, B. Kumar, S. Oh, M.T. Trinh, Y. Wu, K. Elbert, P. Li, X. Zhu, S. Xiao, F. Ng, M.L. Steigerwald and C. Nuckolls, J. Am. Chem. Soc., 2014, 136, 8122-8130.
[22] Z. Yu, Y. Wu, Q. Liao, H. Zhang, S. Bai, H. Li, Z. Xu, C. Sun, X. Wang, J. Yao and H. Fu, J. Am. Chem. Soc., 2015, 137, 15105-15111.
[23] P.E. Hartnett, E.A. Margulies, H.S.S.R. Matte, M.C. Hersam, T.J. Marks and M.R. Wasielewski, Chem. Mater., 2016, 28, 3928-3936.
[24] Y. Li, Y. Yang, X. Bao, M. Qiu, Z. Liu, N. Wang, G. Zhang, R. Yang and D. Zhang, J. Mater. Chem. C, 2016, 4, 185-192.
[25] Y. Kim, D.X. Long, J. Lee, G. Kim, T.J. Shin, K. -W. Nam, Y. -Y. Noh and C. Yang, Macromolecules, 2015, 48, 5179-5187.
[26] Z. Wang, X. Li, Y. Zou, J. Tan, X. Fu, J. Liu, C. Xiao, H. Dong, W. Jiang, F. Liu, Y. Zhen, Z. Wang, T.P. Russell and W. Hu, J. Mater. Chem. C, 2016, 4, 7230-7240.
[27] Z. Fei, Y. Han, J. Martin, F.H. Scholes, M. Al-Hashimi, S.Y. AlQaradawi, N. Stingelin, T.D. Anthopoulos and M. Heeney, Macromolecules, 2016, 49, 6384-6393.
[28] Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L. Zhang, S. Tan, H. Wang, Y. Guo, Q. Tang and Y. Liu, Adv. Mater., 2017, 29. DOI: 10.1002/adma. 201602410.
[29] A. Giovannitti, C.B. Nielsen, D.T. u Sbircea, S. Inal, M. Donahue, M.R. Niazi, D.A. Hanifi, A. Amassian, G.G. Malliaras, J. Rivnay and I. McCulloch, Nat. commun., 2016, 7, 13066.
[30] Y. Kim, J. Hong, J.H. Oh and C. Yang, Chem. Mater., 2013, 25, 3251-3259.
[31] Y. Lu, Y. n Lei, B. Wu, X. Xu, F. Zhu, X. Hu, B.S. Ong and S.C. Ng, New J. Chem., 2015, 39, 2642-2650.
[32] D. Khim, K. -J. Baeg, J. Kim, J. -S. Yeo, M. Kang, P.S. K. Amegadzea, M. -G. Kim, J. Cho, J.H.  Lee, D. -Y. Kim and Y. -Y. Noh, J. Mater. Chem., 2012, 22, 16979-16985.
[33] G. Zhang, Y. Fu, Q. Zhang and Z. Xie, Macromol. Chem. Phys., 2010, 211, 2596-2601.
[34] X. Zhou, Y. Cao, X.Y. Wang, Z.H. Guo, J.Y. Wang and J. Pei, Asian J. Org. Chem., 2014, 3, 209-215.
[35] H. Wang, Q. Shi, Y. Lin, H. Fan, P. Cheng, X. Zhan, Y. Li and D. Zhu, Macromolecules, 2011, 44, 4213-4221.
[36] K.J. Baeg, J. Kim, D. Khim, M. Caironi, D.Y. Kim, I.K. You, J.R. Quinn, A. Facchetti and Y. Y. Noh, ACS Appl. Mater. Interfaces, 2011, 3, 3205-3214.
[37] J. Kim, K. -J. Baeg, D. Khim, D.T. James, J. -S. Kim, B. Lim, J. -M. Yun, H. -G. Jeong, P.S.K. Amegadze, Y. -Y. Noh and D. -Y. Kim, Chem. Mater., 2013, 25, 1572-1583.
[38] G. Kim, A.R. Han, H.R. Lee, J. Lee, J.H. Oh and C. Yang, Chem Commun (Camb) , 2014, 50, 2180-2183.
[39] P. Berrouard, A. Najari, A. Pron, D. Gendron, P.O. Morin, J.R. Pouliot, J. Veilleux and M. Leclerc, Angew Chem Int Ed Engl, 2012, 51, 2068-2071.
[40] Y. Deng, Y. Chen, X. Zhang, H. Tian, C. Bao, D. Yan, Y. Geng and F. Wang, Macromolecules, 2012, 45, 8621-8627.
[41] Y.S. Choi, T.J. Shin and W.H. Jo, ACS Appl. Mater. Interfaces, 2014, 6, 20035-20042.
[42] B. Walker, S. Yum, B. Jang, J. Kim, T. Kim, J.Y. Kim and H. Y. Woo, RSC Adv., 2016, 6, 77655-77665
[43] Y. Zhang, J. Zou, H. -L. Yip, Y. Sun, J.A. Davies, K. -S. Chen, O. Acton and A.K.Y. Jen, J. Mater. Chem., 2011, 21, 3895-3902.
[44] L. Zhang, M. Yu, H. Zhao, Y. Wang and J. Gao, Chem. Phys. Lett., 2013, 570, 153-158.
[45] F.S. Melkonyan, W. Zhao, M. Drees, N. D. Eastham, M.J. Leonardi, M.R. Butler, Z. Chen, X.  Yu, R.P.H. Chang, M.A. Ratner, A.F. Facchetti and T.J. Marks, J. Am. Chem. Soc., 2016, 138, 6944-6947.
[46] S. Song, T. Kim, S.Y. Bang, M. Heo, J. Kim, Y. Jin, I. Kim, J.Y. Kim and H. Suh, Synth. Met., 2013, 177, 65-71.
[47] D. Yang, T. Zhang, X. Zhao, G. Zeng, Z. Li, Y. Tian, F. He, J. Zhang and X. Yang, Polym. Chem., 2016, 7, 5366-5374.
[48] D. He, L. Qian and L. Ding, Polym. Chem., 2016, 7, 2329-2332.
[49] X. Guo, F.S. Kim, M.J. Seger, S.A. Jenekhe and M.D. Watson, Chem. Mater., 2012, 24, 1434-1442.
[50] X. Guo and M, D. Watson, Org. Lett., 2008, 10, 5333-5336.
[51] X. Guo, F.S. Kim, S.A. Jenekhe and M.D. Watson, J. Am. Chem. Soc., 2009, 131, 7206-7207.
[52] X. Guo, J. Quinn, Z. Chen, H. Usta, Y. Zheng, Y. Xia, J.W. Hennek, R.P. Ortiz, T.J. Marks and A. Facchetti, J. Am. Chem. Soc., 2013, 135, 1986-1996.
[53] X. Guo and M.D. Watson, Macromolecules, 2011, 44, 6711-6716.
[54] X. Guo, Q. Liao, E.F. Manley, Z. Wu, Y. Wang, W. Wang, T. Yang, Y. -E. Shin, X. Cheng, Y. Liang, L.X. Chen, K. -J. Baeg, T.J. Marks and X. Guo, Chem. Mater., 2016, 28, 2449-2460.
[55] X. Guo, H. Xin, F.S. Kim, A.D.T. Liyanage, S.A. Jenekhe and M.D. Watson, Macromolecules, 2011, 44, 269-277.
[56] X. Guo, R.P. Ortiz, Y. Zheng, M.G. Kim, S. Zhang, Y. Hu, G. Lu, A. Facchetti and T.J. Marks, J. Am. Chem. Soc., 2011, 133, 13685-13697.
[57] X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti and T.J. Marks, Nat. Photon., 2013,  7, 825-833 .
[58] X. Guo, N. Zhou, S.J. Lou, J.W. Hennek, R. Ponce Ortiz, M.R. Butler, P.L. Boudreault, J. Strzalka, P.O. Morin, M. Leclerc, J.T. Lopez Navarrete, M.A. Ratner, L.X. Chen, R.P. Chang, A. Facchetti and T.J. Marks, J. Am. Chem. Soc., 2012, 134, 18427-18439.
[59] X. Guo, R.P. Ortiz, Y. Zheng, Y. Hu, Y.Y. Noh, K.J. Baeg, A. Facchetti and T.J. Marks, J. Am. Chem. Soc., 2011, 133, 1405-1418.
[60] N. Zhou, X. Guo, R.P. Ortiz, T. Harschneck, E.F. Manley, S.J. Lou, P.E. Hartnett, X. Yu, N. E. Horwitz, P.M. Burrezo, T.J. Aldrich, J.T.L. Navarrete, M.R. Wasielewski, L.X. Chen, R. P.H. Chang, A. Facchetti, and T.J. Marks, J. Am. Chem. Soc., 2015, 137, 12565-12579.
[61] M. Saito, I. Osaka, Y. Suda, H. Yoshida and K. Takimiya, Adv. Mater., 2016, 28, 6921-6925.
[62] J. Cao, Q. Liao, X. Du, J. Chen, Z. Xiao, Q. Zuo and L. Ding, Energy Environ. Sci., 2013, 6, 3224-3228.
[63] Y. Cao, Z. -H. Guo, Z. -Y. Chen, J. -S. Yuan, J. -H. Dou, Y. -Q. Zheng, J. -Y. Wang and J. Pei, Polym. Chem., 2014, 5, 5369-5374.
[64] M. Akita, M. Saito, I. Osaka, T. Koganezawa and K. Takimiya, RSC Adv., 2016, 6, 16437-16447.
[65] M.K. Poduval, P.M. Burrezo, J. Casado, J.T. López Navarrete, R.P. Ortiz and T. -H. Kim, Macromolecules, 2013, 46, 9220-9230.
[66] C.H. Lee, Y.Y. Lai, J.Y. Hsu, P.K. Huang and Y.J. Cheng, Chem. Sci., 2017, DOI: 10. 1039/C6SC04129A.
[67] J. Dhar, T. Mukhopadhay, N. Yaacobi-Gross, T.D. Anthopoulos, U. Salzner, S. Swaraj and S. Patil, J. Phys. Chem. B, 2015, 119, 11307-11316.
[68] Y. Fukutomi, M. Nakano, J. -Y. Hu, I. Osaka and K. Takimiya, J. Am. Chem. Soc., 2013, 135,  11445-11448.
[69] Y. -X. Xu, C. -C. Chueh, H. -L. Yip, F. -Z. Ding, Y. -X. Li, C. -Z. Li, X. Li, W. -C. Chen and A. K. -Y. Jen, Adv. Mater., 2012, 24, 6356-6361.
[70] M. Reiher; O. Salomon, B.A. Hess, Theor. Chem. Acc., 2001, 107, 48-55.
[71] N.E. Jackson, B.M. Savoie, K.L. Kohlstedt, M.O. de la Cruz, G.C. Schatz, L.X. Chen and M.A. Ratner, J. Am. Chem. Soc., 2013, 135, 10475-10483.
[72] K. Kawashima, T. Fukuhara, Y. Suda, Y. Suzuki, T. Koganezawa, H. Yoshida, H. Ohkita, I. Osaka and K. Takimiya, J. Am. Chem. Soc., 2016, 138, 10265-10275.
[73] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade and H. Yan, Nat. commun., 2014, 5, 5293.
[74] J.Y. Oh, S. Rondeau-Gagné, Y. -C. Chiu, A. Chortos, F. Lissel, G. -J. N. Wang, B.C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. -G. Bae, Y. Kim, L. Jin, J.W. Chung, J.B. -H. Tok and Z. Bao, Nature, 2016, 539, 411-415.
[75] J. Rivnay, R. Steyrleuthner, L.H. Jimison, A. Casadei, Z. Chen, M.F. Toney, A. Facchetti, D. Neher and A. Salleo, Macromolecules, 2011, 44, 5246-5255.
D.M. Smilgies, J. Appl. Cryst., 2009, 42, 1030-1034.

Claims (10)

  1. An imide-functional unit of Formula I,
    Figure PCTCN2017091845-appb-100001
    wherein
    R is a straight or branched alkyl, and
    X is H or F atom.
  2. The imide-functional unit of claim 1, wherein R is a straight or branched alkyl having 5-15 carbon atoms.
  3. The imide-functional unit of claim 1, wherein R is a straight or branched alkyl having 7-23 carbon atoms.
  4. A copolymer comprising the imide-functional unit of any of claims 1-3 having Formula II,
    Figure PCTCN2017091845-appb-100002
    wherein
    Figure PCTCN2017091845-appb-100003
    is an aromatic unit, and
    n is an integer ranging from 5 to 100, inclusive.
  5. The copolymer according to claim 4, wherein
    Figure PCTCN2017091845-appb-100004
    is selected from the group consisting of the following moieties:
    Figure PCTCN2017091845-appb-100005
    wherein
    .
  6. Preparation method of the imide-functional unit of any of claims 1-3, comprising the following steps:
    (1) adding dimethyl 2, 5-dibromoterephthalate, methyl 2- (trimethylstannyl) thiophene -3-carboxylateθand an organic solvent into a reaction vessel, and purging the mixture  with an inert gas;
    (2) adding Pd (PPh34, then blowing an inert gas and heating the mixture to 80-140 ℃ ℃;
    (3) adding alkali carbonate, an organic solvent or water to the mixture and refluxing the mixture at 40-90 ℃;
    (4) adding SOCl2 into the reaction vessel;
    (5) adding alkyl amine and heating the mixture to 140-160 ℃;
    (6) adding Br2 and FeCl3 and heating the mixture to 40-90 ℃;
    (7) extracting the reaction mixture and washing; and
    (8) concentrating the organic layer and purifying to obtain the imide-functional unit.
  7. The preparation method according to claim 6, wherein
    in step (1) ,
    the mole ratio of the dimethyl 2, 5-dibromoterephthalate to methyl 2-(trimethylstannyl) thiophene-3-carboxylate is 1: 2-4, preferably 1: 2.2-3, more preferably 1: 2.5;
    preferably, the organic solvent is selected from THF, EtOH, dioxane, DMF, toluene or a mixture thereof and the adding amount of the organic solvent is 2-10 mL per mmol of the 2, 5-dibromoterephthalate, preferably 3-7 mL per mmol of the 2,5-dibromoterephthalate;
    preferably, the purging is maintained for more than 10 minutes, preferably more than 20 minutes, more preferably about 30 minutes;
    preferably, the inert gas is selected from Ar, N2, He, Ne, or a mixture thereof.
    preferably, in step (2) ,
    the mole ratio of the Pd (PPh34 to 2, 5-dibromoterephthalate is 1: 5-20, preferably 1:8-15, more preferably 1: 10;
    preferably, the inert gas is selected from Ar, N2, He, Ne, or a mixture thereof;
    preferably, the blowing is maintained for more than 5 minutes, preferably more than 10 minutes, more preferably about 20 minutes;
    preferably, the mixture is heated to 80-140 ℃; preferably to 111 ℃;
    preferably, the heating is conducted under microwave irradiation;
    preferably, in step (3) ,
    preferably, the alkali carbonate is selected from K2CO3, Na2CO3, Li2CO3, LiOH, NaOH, KOH or a mixture thereof;
    preferably, the organic solvent is selected from THF, EtOH, dioxane, DMF or a mixture of at least two of them;
    preferably, the mixture is refluxed at 70 ℃;
    preferably, in step (4) , the ratio of SOCl2 is 1-5 mL/mmol, preferably 2-4 mL/mmol;
    preferably, the ratio of alkyl amine to 2, 5-bis (3- (chlorocarbonyl) thiophen-2-yl) terephthaloyl dichloride is1: 2-4, preferably 1: 2.2-3, more preferably 1: 2.5;
    preferably, the mixture is heated to 140-160 ℃; preferably to 150 ℃;
    preferably, in step (6) , the mixture is heated to 40-90 ℃; preferably to 60 ℃;
    preferably, in step (7) , the reaction mixture is extracted with an organic solvent, preferably with DCM;
    preferably, the washing is conducted with water and brine;
    preferably, in step (8) , the concentrating is conducted under reduced pressure;
    preferably, the purifying is conducted by column chromatography using petroleum  ether as an eluent.
  8. Preparation method of the copolymer of claim 4 or 5, comprising:
    (1) adding the imide-functional unit of claim 1, an aromatic unit material, tris (di-benzylideneacetone) dipalladium (0) (Pd2 (dba) 3) , and tris (o-tolyl) phosphine (P(o-tolyl) 3) into a reaction vessel, and subjecting the reaction vessel and the mixture to an inert gas;
    (2) adding an organic solvent; sealing the reaction vessel under an inert gas flow and then stirring while heating;
    (3) adding 2- (tributylstanny) thiophene and stirring the reaction mixture while heating;finally, adding 2-bromothiophene and stirring the reaction mixture while heating;
    (4) after cooling to room temperature, dripping the reaction mixture into methanol containing hydrochloric acid;
    (5) drying the solid precipitate obtained in step (4) to obtain a crude product, and then extracting the crude product;
    (6) after extracting, concentrating the polymer solution, and then dripping into methanol, collecting the solid and drying to obtain the copolymer.
  9. The preparation method of according to claim 7, wherein in step (1) ,
    the mole ratio of the imide-functional unit of claim 1to the aromatic unit material is 1:0.5-2, preferably 1: 0.8-1.5, more preferably 1: 1;
    preferably, the mole ratio of the tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3) to tris (o-tolyl) phosphine (P (o-tolyl) 3) is 1: 4-15, preferably 1: 6-10, more preferably 1: 8; the Pd loading is 0.005-0.1 equiv, preferably 0.01-0.06;
    preferably, the reaction vessel and the mixture are subjected to 1-5 pump/purge cycles with Ar;
    preferably, the inert gas is selected from Ar, N2, He, Ne, or a mixture thereof;
    preferably, in step (2) , the inert gas is selected from Ar, N2, He, Ne, or a mixture thereof;
    preferably, the organic solvent is selected from any one of anhydrous toluene, benzene, chlorobenzene, DMF, or a mixture thereof;
    preferably, the ratio of the organic solvent to the electron-donating unit is 10-75 mL/mmol, preferably 5-50 mL/mmol;
    preferably, the heating is conducted at 50-170 ℃ for 1-72h, preferably at 80-150 ℃ for 3-50h;
    preferably, the heating is conducted under microwave irradiation;
    preferably, the heating is conducted by 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140 ℃ for 3 h under microwave irradiation;
    preferably, in step (3) , the heating is conducted at 80-170 ℃ for more than 0.2 h, preferably at 100-160 ℃ for more than 0.4 h;
    preferably, the heating is conducted under microwave irradiation;
    preferably, the heating is conducted under microwave irradiation at 140 ℃ for 0.5 h, then adding 2-bromothiophene and stirring the reaction mixture at 140 ℃ for another 0.5 h;
    preferably, the mole ratio of the 2- (tributylstanny) thiophene to the electron-donating unit is 0.1-0.5: 1, preferably 0.2: 0.4-1;
    preferably, the mole ratio of the 2-bromothiophene to the electron-donating unit is  0.2-1.5: 1, preferably 0.4: 0.8-1;
    preferably, in step (4) , the methanol contains 0.5-10mL hydrochloric acid,preferably 0.5-10mLof 5-20 mol/L hydrochloric acid;
    preferably, the dripping is conducted under vigorous stirring, preferably is conducted for at least 0.5 h, preferably at least 1 h;
    preferably, in step (6) , the dripping is conducted under vigorous stirring;
    preferably, the collecting is conducted by filtration;
    preferably, the drying is conducted under reduced pressure.
  10. Use of the copolymer according to claim 4 or 5 in thin-film transistor.
PCT/CN2017/091845 2017-07-05 2017-07-05 Imide-functional unit, copolymer thereof and their preparation methods, as well as their uses WO2019006699A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091845 WO2019006699A1 (en) 2017-07-05 2017-07-05 Imide-functional unit, copolymer thereof and their preparation methods, as well as their uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091845 WO2019006699A1 (en) 2017-07-05 2017-07-05 Imide-functional unit, copolymer thereof and their preparation methods, as well as their uses

Publications (1)

Publication Number Publication Date
WO2019006699A1 true WO2019006699A1 (en) 2019-01-10

Family

ID=64949582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091845 WO2019006699A1 (en) 2017-07-05 2017-07-05 Imide-functional unit, copolymer thereof and their preparation methods, as well as their uses

Country Status (1)

Country Link
WO (1) WO2019006699A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150105520A1 (en) * 2013-10-15 2015-04-16 The Board of Trustees of the Leland Stanford Junior Uninersity Conjugated polymer-based apparatuses, articles and compounds
CN104725613A (en) * 2015-03-30 2015-06-24 华南理工大学 n-type water and alcohol soluble conjugated polymer material containing naphtho-diamide ring, and preparation method and application of material
CN106188091A (en) * 2016-07-11 2016-12-07 合肥市激子能源技术有限公司 A kind of azepines 2,7 diketone is by body unit and application thereof
CN106661204A (en) * 2014-09-23 2017-05-10 南方科技大学 Edot functionalized conjugated polymer and photodetector containing same
EP2915205B1 (en) * 2012-10-31 2017-05-31 Toyota Motor Europe NV/SA Organic active materials for electrochemical energy storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915205B1 (en) * 2012-10-31 2017-05-31 Toyota Motor Europe NV/SA Organic active materials for electrochemical energy storage
US20150105520A1 (en) * 2013-10-15 2015-04-16 The Board of Trustees of the Leland Stanford Junior Uninersity Conjugated polymer-based apparatuses, articles and compounds
CN106661204A (en) * 2014-09-23 2017-05-10 南方科技大学 Edot functionalized conjugated polymer and photodetector containing same
CN104725613A (en) * 2015-03-30 2015-06-24 华南理工大学 n-type water and alcohol soluble conjugated polymer material containing naphtho-diamide ring, and preparation method and application of material
CN106188091A (en) * 2016-07-11 2016-12-07 合肥市激子能源技术有限公司 A kind of azepines 2,7 diketone is by body unit and application thereof

Similar Documents

Publication Publication Date Title
Wang et al. Rational Design of High‐Mobility Semicrystalline Conjugated Polymers with Tunable Charge Polarity: Beyond Benzobisthiadiazole‐Based Polymers
Sun et al. High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo [3, 4-c] pyridine units for thin film transistor and photovoltaic applications
Osaka et al. Novel thiophene‐thiazolothiazole copolymers for organic field‐effect transistors
Sonar et al. Furan containing diketopyrrolopyrrole copolymers: synthesis, characterization, organic field effect transistor performance and photovoltaic properties
Fei et al. Conjugated copolymers of vinylene flanked naphthalene diimide
JP5728003B2 (en) Condensed bithiophene vinylene copolymer
Elsawy et al. Isoindigo-based small molecules for high-performance solution-processed organic photovoltaic devices: the electron donating effect of the donor group on photo-physical properties and device performance
TW201139503A (en) Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells
Mishra et al. Mixed selenium-sulfur fused ring systems as building blocks for novel polymers used in field effect transistors
Chen et al. Dithienylbenzodiimide: a new electron-deficient unit for N-type polymer semiconductors
Wang et al. Inversion of charge carrier polarity and boosting the mobility of organic semiconducting polymers based on benzobisthiadiazole derivatives by fluorination
Li et al. Benzodifuran‐containing Well‐defined π‐conjugated Polymers for Photovoltaic Cells
Zhang et al. Vinylidenedithiophenmethyleneoxindole: a centrosymmetric building block for donor–acceptor copolymers
Patil et al. Synthesis and photovoltaic properties of narrow band gap copolymers of dithieno [3, 2-b: 2′, 3′-d] thiophene and diketopyrrolopyrrole
Du et al. Evaluation of (E)-1, 2-di (furan-2-yl) ethene as building unit in diketopyrrolopyrrole alternating copolymers for transistors
Duan et al. Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: Band gap and energy level engineering
KR101743241B1 (en) Naphthalene diimide based copolymers with high electron mobility and synthesizing method of the same
Zhang et al. Novel conjugated polymers with planar backbone bearing acenaphtho [1, 2-b] quinoxaline acceptor subunit for polymer solar cells
Chiou et al. Synthesis and side-chain isomeric effect of 4, 9-/5, 10-dialkylated-β-angular-shaped naphthodithiophenes-based donor–acceptor copolymers for polymer solar cells and field-effect transistors
Can et al. Indenofluorenes for organic optoelectronics: the dance of fused five-and six-membered rings enabling structural versatility
Tamilavan et al. Property modulation of dithienosilole-based polymers via the incorporation of structural isomers of imide-and lactam-functionalized pyrrolo [3, 4-c] pyrrole units for polymer solar cells
JP2020186316A (en) Acceptor-acceptor type n-type semiconductor polymer, manufacturing method thereof, as well as organic semiconductor layer containing such polymer and organic electronic device
Wang et al. New alternating electron donor–acceptor conjugated polymers entailing (E)-[4, 4′-biimidazolylidene]-5, 5′(1 H, 1′ H)-dione moieties
Truong et al. Phenothiazine derivatives, diketopyrrolopyrrole-based conjugated polymers: Synthesis, optical and organic field effect transistor properties
Dai et al. Dithieno-naphthalimide based copolymers for air-stable field effect transistors: synthesis, characterization and device performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916647

Country of ref document: EP

Kind code of ref document: A1