WO2019004732A1 - Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer - Google Patents

Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer Download PDF

Info

Publication number
WO2019004732A1
WO2019004732A1 PCT/KR2018/007316 KR2018007316W WO2019004732A1 WO 2019004732 A1 WO2019004732 A1 WO 2019004732A1 KR 2018007316 W KR2018007316 W KR 2018007316W WO 2019004732 A1 WO2019004732 A1 WO 2019004732A1
Authority
WO
WIPO (PCT)
Prior art keywords
prxii
cells
catenin
apc
compound
Prior art date
Application number
PCT/KR2018/007316
Other languages
French (fr)
Korean (ko)
Inventor
강상원
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority claimed from KR1020180074375A external-priority patent/KR102108567B1/en
Publication of WO2019004732A1 publication Critical patent/WO2019004732A1/en
Priority to US16/728,100 priority Critical patent/US11439640B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine

Definitions

  • the present invention relates to a pharmaceutical composition for the treatment of colorectal cancer comprising as an active ingredient a substance which inhibits the enzyme activity of peroxiredoxin-2.
  • Cancer is one of the most intractable diseases and is constantly being studied for the cure of patients. In hospitals, techniques such as drug therapy, radiation therapy, gene therapy and the like are used to treat cancer.
  • Colorectal cancer is a common cancer worldwide. In Korea, malignant tumors are followed by gastric cancer, lung cancer, and liver cancer in women, followed by breast cancer and gastric cancer in women. Recently, as the diet has been westernized, the incidence has increased more rapidly. In the last decade, mortality from colon cancer has increased by about 80% and has continued to increase.
  • CRC colorectal cancer
  • APC adenomatous polyposis coli
  • ROS reactive oxygen species
  • Peroxiredoxin is known in vivo as a peroxidase of hydrogen peroxide and alkylhydroperoxides. (Chae, H. Z. et al., Proc. Nat. Acad Sci. 91: 7017-7021, 1994). Peroxiredoxin (Prx) is classified as type I to VI Prx isozymes in mammals and is observed in various parts of the tissue (Rhee, SG et al., IUBMB Life 52: 35-41, 2001) .
  • Peroxiredoxin is known to exhibit strong antioxidant activity in cells. Most of the peroxidase isoenzymes except Prx type VI use thioredoxin as electron donor. Therefore, it is known as thioredoxin peroxidase.
  • the Prx family consists of six isozymes divided into 2-Cys and 1-Cys (Cysteine) subfamilies.
  • the 2-Cys subfamily enzyme is a thioredoxin-dependent peroxidase that is extensively conserved from bacteria to humans.
  • cytoplasmic PrxI and PrxII isozymes are over-expressed in a variety of cancer types and are known to play important regulatory roles in membrane receptor-mediated signal transduction.
  • the mammalian 2-Cys Prx enzyme is electron-donated from an electron-conveying system consisting of thioredoxin-thioredoxin reductase, and is activated by nicotinamide adenine dinucleotide phosphate (NADPH) In the presence of H 2 O 2 (hydrogen peroxide) is reduced to water.
  • NADPH nicotinamide adenine dinucleotide phosphate
  • H 2 O 2 regulates the reversible oxidation of signaling proteins, including protein kinases or protein tyrosine phosphatases. H 2 O 2 thus functions as a potential secondary messenger in proliferating cancer cells. PrxII is known to regulate H 2 O 2 locally. Therefore, PrxII, a 2-Cys Prx enzyme, is thought to play a diverse role in the detoxification and signal transduction of intracellular ROS.
  • Tankyrase is a kind of poly (ADP-ribose) polymerase (Poly (ADP-ribose) polymerase).
  • the activity of Tankyrase (TNKS) in colorectal cancer cells inhibits ⁇ -catenin degradation, leading to abnormal cell proliferation.
  • the inhibition of tannicase is of interest as a target for the treatment of colorectal cancer (CRC), but the direct inhibition of tannicase (TNK) may cause pleiotropic effects or side effects due to a wide range of substrates .
  • the mechanisms controlling the activity of Tankyrase (TNKS) in colon cancer tumors are not well known.
  • Axis Inhibitor Protein Tumor suppressor is another skeletal protein that constitutes a beta-catenin breakdown complex.
  • the mechanism of Axin1 protein regulation by tannase in APC mutant cells is not clear.
  • CRC colorectal cancer
  • peroxiredoxin 2 (Prx II), which plays a diverse role in the redox system and signal transduction in APC mutant cells, is expressed by Tankyrase (TNKS) And to provide a pharmaceutical composition for the treatment of colorectal cancer which is capable of inhibiting colon cancer by inhibiting the enzyme activity of peroxiredoxin 2 by such a mechanism.
  • TNKS Tankyrase
  • one embodiment of the present invention includes a pharmaceutical composition for treating colon cancer, comprising a substance that inhibits the enzyme activity of peroxiredoxin-2 as an effective ingredient.
  • the substance inhibiting the enzyme activity of peroxycorticosin 2 is represented by the following formula (1).
  • R1 is -O-R2 or a compound consisting of a cyclic compound or -H
  • the substance inhibiting the enzyme activity of peroxiredoxin 2 may include a compound selected from the group consisting of the following compounds-1 to 6 have.
  • the substance inhibiting the enzyme activity of peroxycorticosin 2 is characterized in that ⁇ -catenin degradation is increased.
  • the substance that inhibits the enzyme activity of peroxycorticosin 2 is characterized by reducing the degradation of Axin1 by Tankyrase (TNKS).
  • the substance which inhibits the enzyme activity of peroxycorticosin 2 is characterized by increasing oxidative inactivation of Tankyrase (TNKS).
  • the oxidative inactivation of the above-mentioned TK occurs in the cytoplasm of APC mutant cells.
  • the substance inhibiting the enzyme activity of peroxycorticosin 2 is characterized by inhibiting the interaction of peroxycorticosin 2 and tannase.
  • the pharmaceutical composition for treating colon cancer according to the present invention is characterized by containing a pharmaceutical effective amount of a substance inhibiting the enzymatic activity of peroxiredoxin-2.
  • the term " pharmaceutically effective amount " of the present invention means an amount sufficient to achieve efficacy or activity of the substance inhibiting the peroxycorticin 2 protein activity.
  • the pharmaceutically acceptable carriers to be contained in the pharmaceutical composition are those conventionally used in pharmaceutical preparations such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not.
  • the pharmaceutical composition may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.
  • a lubricant e.g., a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc.
  • Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).
  • the pharmaceutical composition may be prepared in unit dose form by formulating it with a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs.
  • a pharmaceutically acceptable carrier and / or excipient Into a multi-dose container.
  • the formulations may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of excipients, powders, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
  • a composition capable of inhibiting the enzyme activity of peroxiredoxin 2 to regulate the redox system of colon cancer cells thereby reducing the colonic polyps and treating or preventing colon cancer.
  • a pharmaceutical composition capable of reducing colonic polyps and treating or preventing colon cancer can be provided by reducing the interaction of PrxII and tannase with the cytoplasm of APC mutant cells.
  • a method for treating cancer-suppressing colorectal cancer can be provided by controlling intracellular redox system.
  • FIG. 1 and FIG. 2 show the result of confirming the genotype of a double mutant mouse produced according to an embodiment of the present invention.
  • Figure 3 shows the results of measurement of peroxycorticosin 2 protein expression in immunofluorescent staining in non-polyp segments and polyp of the small intestine according to one embodiment of the present invention.
  • Figure 4 is a micrograph of intestinal tissue of a double mutant mouse produced according to one embodiment of the present invention.
  • FIG. 5 shows the results of measurement of the number of polyps in the intestinal tissues of a double mutant mouse produced according to an embodiment of the present invention.
  • Figure 6 is a result of staining of the small intestine and colon sections of a double mutant mouse produced according to an embodiment of the present invention with hematoxylin and eosin.
  • FIG. 7 is a micrograph of the intestinal tissue of a double mutant mouse produced according to one embodiment of the present invention.
  • FIG. 8 shows the results of measurement of the number of polyps in the intestinal tissues of a double mutant mouse produced according to an embodiment of the present invention.
  • 9 is a result of immunoblotting using a double-mutant mouse prepared according to an embodiment of the present invention.
  • FIG. 10 shows the results of measurement of expression of Axin1, ⁇ -catenin and ⁇ -catenin target genes in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
  • Fig. 11 shows immunohistochemical image measurement results of Ki-67 in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
  • FIG. 12 shows the results of measurement of the number of cells proliferating after fluorescent staining with an anti-BrdU antibody in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
  • FIG. 13 shows the result of immunostaining with anti-BrdU antibody in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
  • FIG. 14 shows the result of measurement of cell death in a polyp (TUNEL) staining of a polypoid mouse according to an embodiment of the present invention.
  • Figure 15 shows the results of immunoblot (IB) measurements of beta catenin infecting cells with a set of siRNA specific for PrxI and PrxII for 48 hours according to one embodiment of the present invention.
  • Figure 16 shows the results of immunoblot (IB) measurement of beta-catenin by infecting cells with different concentrations of PrxII-1 siRNA for 48 hours according to one embodiment of the present invention.
  • 17 is a graph showing the results of immunization with PrxII-1 siRNA in various APC mutant colorectal cancer cell lines for 48 hours according to one embodiment of the present invention and immunization against beta-catenin and active beta-catenin Blowing (IB) measurements.
  • FIGS. 18 and 19 are graphs showing the expression of PrxII active form (WT) and inactive form (CS or C172S) after infection with PrxII-1 siRNA in APC mutant colorectal cancer cell line for 48 hours according to an embodiment of the present invention (IB) measurements of ⁇ -catenin and active ⁇ -catenin in retrovirus-infected cells.
  • FIG. 20 shows the results of measurement of Prx II-dependent cell H 2 O 2 levels in APC mutant colorectal cancer cells according to an embodiment of the present invention.
  • FIGS. 21-23 are graphs showing the inhibition of proteasome and GSK3 beta (glycogen synthase kinase-3 beta) inhibitors (25 ⁇ M MG132 and lactacystin) in the control and PrxII-deficient SW480 and HT29 colon cancer cell lines according to an embodiment of the present invention 2.5 [mu] M BIO and SB216763) for 1 hour and measuring the beta-catenin and active beta-catenin expression levels, indicating that beta-catenin destruction complex is involved Results.
  • GSK3 beta glycose kinase-3 beta
  • 25 is a graph showing that PrxII deficiency in the HEK293 cell line according to an embodiment of the present invention does not affect normal Wnt3A signal stimulation.
  • 26 shows the results of measurement of ⁇ -catenin / TCF transcription activity according to an embodiment of the present invention.
  • 27 to 32 are results of analysis of genes differentially expressed in HT29 and SW480 cells by PrxII deficiency according to an embodiment of the present invention
  • FIG. 33 shows the results of transfecting H. 29 and SW480 cells according to an embodiment of the present invention with a control group or PrxII-1 siRNA and immunoblotting against active beta-catenin and Axin1.
  • Figure 34 shows the results of immunoblotting of all of the complex binding proteins obtained by transfecting SW480 cells with the control group or PrxII-1 siRNA and isolating Axin-1 by immunoprecipitation (IP) according to an embodiment of the present invention It is the result that PrxII deficiency greatly increases the complex.
  • FIG. 35 shows the results of transfection of H ⁇ 29 cells according to an embodiment of the present invention with control or Axin-1 / Axin-2 siRNAs and immunoblotting against active beta-catenin and Axin1.
  • FIG. 36 shows the results of immunohistochemical staining for transfection of ⁇ T29 and SW480 cells with a control or PrxII-1 siRNA according to one embodiment of the present invention, immunoprecipitation of Axin-1 followed by immunoblotting for ubiquitination and poly-ADP-risose Results.
  • FIG. 37 shows the result of transfecting APC wild-type colorectal cancer cell line RKO and APC mutant cell lines, Ht29 and SW480 cells with a control group or PrxII-1 siRNA and performing a colony line assay according to an embodiment of the present invention.
  • FIG. 38 is a graph showing the results of transfecting the APC mutant cell lines, ⁇ T29 and SW480 cells, with a control group or PrxII-1 siRNA, followed by expressing the activated beta-catenin (S37A), followed by a colony line assay to be.
  • 39 and 40 are then HT29 and RKO cells, the control group or to transfect siRNA into PrxII-1 or H 2 O 2 by immunoprecipitation (IP) and then treated with a TNKS1 according to one embodiment of the present invention ADP- risose polymerase (PARP) activity.
  • IP immunoprecipitation
  • PARP ADP- risose polymerase
  • Figure 41 shows the results of transfection with a control or PrxII-1 siRNA in various APC wild-type and mutant colorectal cancer cell lines according to an embodiment of the present invention, and the expression of TNKS1 and Axin1 and TRF1 as substrates of the enzyme by immunoblotting to be.
  • FIG. 42 shows the results of pretreatment of TNKS1 inhibitor (XAV939) for 1 hour in various APC wild-type and mutant colorectal cancer cell lines according to an embodiment of the present invention, and then the expression of TNKS1 and the enzymes Axin1 and TRF1 were measured by immunoblotting This is a result.
  • FIG 43 shows the results of measuring the degree of cell proliferation after pretreatment of the TNKS1 inhibitor (XAV939) for 1 hour in various APC mutant colorectal cancer cell lines according to an embodiment of the present invention.
  • FIG. 44 shows the results of measurement of intracellular H 2 O 2 level after deficiency of APC gene expression using siRNA in RKO colorectal cancer cells according to an embodiment of the present invention.
  • FIG. 45 shows the results of immunoblot measurement of levels of beta-catenin, Axin1, and TNKS1 according to an embodiment of the present invention.
  • Figure 46 shows the results of measurement of ADP-ribose polymerase activity of TNKS1 according to one embodiment of the present invention.
  • FIG. 47 shows the results of measurement of ADP-ribose polymerase activity of TNKS1 after immunization with anti-TNKS antibody by expressing various TNKS1 cysteine mutant enzymes in cells according to an embodiment of the present invention.
  • FIG. 48 shows the results of expression and purification of a recombinant protein in E. coli cells against the PARP domain of TNKS1 according to an embodiment of the present invention.
  • Figure 49 shows the results of measurement of the extraction of Zinc ions by H 2 O 2 treatment in the purified recombinant TNKS1-PARD protein according to an embodiment of the present invention.
  • FIG. 50 is a result of immunoblotting the cells according to an embodiment of the present invention with respect to a protein expressed after immunoprecipitation with an anti-TNKS antibody.
  • Figure 51 is a co-immunoprecipitation (co-IP) result for detecting binding between TNKS and PrxII protein according to one embodiment of the present invention.
  • Figures 52 and 53 are results of in situ proximity ligation assays according to one embodiment of the present invention.
  • Figures 54 and 55 are the results of analyzing the mutual binding of each other using truncation mutations or single residue mutations of TNKS and Myc-PrxII, respectively, according to an embodiment of the present invention.
  • Figures 56 and 57 are the results of measurement of intracellular expression and activity of peroxidase of wild-type and G116V mutants of PrxII according to an embodiment of the present invention.
  • Figure 58 shows the results of performing PARP activity analysis of TNKS1 in cells expressing PrxII wild type and G116V mutant according to an embodiment of the present invention.
  • Figure 59 shows the results of performing a colony forming assay on cells expressing PrxII wild type and G116V mutant according to an embodiment of the present invention.
  • Figure 62 shows PrxII immunostaining results in the colon arrangement of healthy human and colorectal cancer patients according to one embodiment of the present invention.
  • FIG. 63 shows the results of inhibition of the activity of Compound-6 (conoidine A) against PRXI and PrxII according to an embodiment of the present invention.
  • FIG. 64 is a result of performing a colony forming assay on a colon cancer cell line pretreated with Compound-6 (a compound of the present invention) (Compound 6) according to an embodiment of the present invention.
  • 65 to 66 are graphs showing the results of xenografting a compound cancer cell line HT29 treated with Compound-6 (chondroitin A) according to an embodiment of the present invention and then measuring the growth of the tumor by in vivo luminescence imaging and weighing This is a result.
  • 67 is a schematic diagram showing the effect of inhibiting PrxII enzyme activity according to an embodiment of the present invention to inhibit colon cancer.
  • FIG. 70 shows the results of peroxidase activity measured by reacting PrxII with Compound-2 in vitro in accordance with an embodiment of the present invention.
  • 71 shows the results of peroxidase activity measured by reacting PrxII with Compound-3 in vitro in accordance with an embodiment of the present invention.
  • FIG. 73 shows the results of peroxidase activity measured by reacting PrxII with Compound-5 in vitro in accordance with an embodiment of the present invention.
  • FIGS. 74 and 75 show results of an experiment for culturing RKO cell colonies of the compound I-1 and the compound-5 according to the present invention.
  • FIGS. 76 and 77 show results of culturing HT29 cell colonies of the compound 1 with compound 1 and compound 5 according to an embodiment of the present invention.
  • FIG. 76 and 77 show results of culturing HT29 cell colonies of the compound 1 with compound 1 and compound 5 according to an embodiment of the present invention.
  • Compound-1 to Compound-6 refer to the substances listed in Table 1 below.
  • CRC and HEK293 cells were provided from the American Type Culture Collection (Manassas, VA, USA).
  • SW480, DLD1, CoLo205, Colo741 and SW620 cells were subcultured in RPMI 1840 medium supplemented with 10% fetal bovine serum.
  • HEK293 and RKO cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with 10% FBS.
  • HT29 cells were cultured in McCoy 's 5A medium supplemented with 10% FBS.
  • Mycoplasma contamination was periodically tested in cell culture supernatants using mycoplasma detection kit (Biotool, USA).
  • PrxI +/- and PrxII +/- C57BL / 6 mice were crossed with APC Min / + mice according to C57BL / 6 background (Jackson Laboratory, Bar Harbor, USA) and cultivated and maintained in an aseptic facility to obtain APCMin / +; PrxI + / + APCMin / +; PrxI +/-, APCMin / +; PrxI - / -, APCMin / +; PrxII + / +, APCMin / +; A complex mutant showing the genotype of PrxII +/- and APCMin / +; Prx II - / - was constructed.
  • the littermates were genotyped by genomic PCR of specific primers and rat tail DNA. Literate refers to the cubs born on a ship. :
  • mice experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Ewha Womens University and complied with the ARRIVE guidelines. Animal experiments were carried out in a double-blind fashion by separating animal sarcoma and tissue analysis.
  • IACUC Institutional Animal Care and Use Committee
  • mice were anesthetized by inhalation of isoflurane gas (N2O: O2 / 70%: 30%) and HT29-luc2 cells (2.5x10 5 cells) suspended in 200 ⁇ l of PBS Lt; / RTI > Intraperitoneal administration of compounds 1 to 6 (286 [mu] M in DMSO) was started 6 days after cell injection and repeated every 3 days.
  • isoflurane gas N2O: O2 / 70%: 30%
  • HT29-luc2 cells 2.5x10 5 cells suspended in 200 ⁇ l of PBS Lt; / RTI &gt
  • Intraperitoneal administration of compounds 1 to 6 (286 [mu] M in DMSO) was started 6 days after cell injection and repeated every 3 days.
  • Bioluminescent imaging was performed with IVIS Lumina Series III (Perkin Elmer). For each imaging session, luciferin in PBS (Luciferin 150 mg / kg body weight) was administered intraperitoneally according to the manufacturer's protocol. Up to four animals were maintained in an integral anesthetic manifold instrument and imaged 10 min after luciferin injection. The IVIS imaging system collects photographic images and quantitative bioluminescent signals of mice and then overlaps them.
  • the genotypes of the double mutation-induced mice prepared in the above Example were determined by genomic PCR at 4 weeks, and the genotypes of the double mutant mice produced by the above-mentioned Examples were determined in FIGS. 1 and 2 .
  • FIGS. 1 to 3 it can be confirmed that the double mutant mouse produced by the above example generates multiple intestinal neoplasia (Min) by mutation of APC (adenomatous polyposis coli) cleavage.
  • the products for the APC gene cleaved in Figures 1 and 2 are indicated by an asterisk.
  • APC mutation is heterozygous, it is known that polymorphonuclear polyposis is caused by the disappearance of residual APC wild type (WT), and the resulting adenomatous polyposis is the result of human colon cancer It is known to contain a truncated APC wild type (WT) copy similar to the tumor.
  • WT truncated APC wild type
  • the primers used to determine the genotype are as follows.
  • the small intestine and colon were excised from the main mouse, and the adenomatous polyp of the intestine was separated and observed using a stereoscopic microscope, and is shown in Fig. 4
  • the number of polyps having a diameter of more than 0.3 mm in the small intestine and colon of the mouse was measured and shown in Fig. FIG APC Min / +, as shown in 5; PrxII - / - number of the small intestine and colon on average greater than the visible diameter 0.3 mm in polyps of mice APC Min / +; PrxII + / + and APC Min / +; PrxII + / - about 50% as compared to the number of mouse polyps.
  • FIGS. 7 and 8 The adenomatous polyps of the intestine for PrxI-deficient mice were observed using a stereomicroscope and the number of them was counted, as shown in FIGS. 7 and 8.
  • PrxII promotes intestinal tumors induced by APC mutations in vivo, whereas PrxI is independent of APC mutation induced intestinal tumors.
  • Example 6 Measurement of whether beta-catenin target gene is involved in the proliferation and survival of CRC cells
  • PrxII ⁇ -catenin expression regulation by PrxII in human CRC cells overexpressing PrxII was analyzed.
  • the decrease in ⁇ -catenin expression is proportional to the degree of PrxII deficiency, which suggests that strict knockdown of PrxII is important for decreasing the ⁇ -catenin level Able to know.
  • PrxII deficiency was also associated with total beta-catenin and active beta-catenin (non-phosphorylated forms) in SWC220, DLD-1 and CoLo205, other APC- mutant CRC cells The amount of expression was decreased.
  • PrxII was expressed by transfecting HT29 cells with the siRNA-resistant form of PrxII.
  • the PrxII wild type (WT) completely restored the total beta-catenin and active beta-catenin levels compared to control cells transfected with siRNA This confirms the specific role of PrxII in regulating ⁇ -catenin expression.
  • PrxII deficiency increased intracellular H 2 O 2 levels in HT29 and SW480 cells.
  • beta-catenin is ubiquitinated by an enzyme called ⁇ -TrCP (Beta-transducin repeats-containing proteins) or E3 ubiquitin E3 ligase and degraded by proteasome .
  • ⁇ -TrCP Beta-transducin repeats-containing proteins
  • E3 ubiquitin E3 ligase E3 ubiquitin E3 ligase
  • glycogen synthase kinase-3 ⁇ (GSK3 ⁇ ) inhibitors increased active ⁇ -catenin expression, suggesting that constitutively-active GSK3 ⁇ (glycogen synthase kinase-3 ⁇ ) .
  • PrxII deletion is not likely to stimulate GSK3 ⁇ (glycogen synthase kinase-3 ⁇ ) activation from the tyrosine phosphorylation level of GSK3 ⁇ (glycogen synthase kinase-3 ⁇ ), which is an index of kinase activation .
  • ⁇ -catenin / TCF-dependent transcription was examined by mRNA sequencing in HT29 cells by mRNA sequencing, and the results are shown in FIGS. 27, 28, 29 and 30.
  • PrxII deficiency downregulated 13 ⁇ -catenin target genes in SW480 cells (FDR ⁇ 0.05), and in FIG. 32, four of these genes (CCND1, S100A4, ID2, EDN1) .
  • Axin1 another scaffold protein in the APC mutation, is known to play an important role in beta-catenin destruction.
  • Axin1 overexpression in APC-mutant CRC cells is well known to induce ⁇ -catenin degradation.
  • FIG. 9 it has been confirmed that Axin1 expression is increased in the intestinal polyp of the PrxII gene-deleted rat.
  • Axin is degraded by poly (ADP-ribose) polymerisation (PARPylation) and subsequent ubiquitination
  • PARPylation poly (ADP-ribose) polymerisation
  • ubiquitination the status of Axin1 was analyzed in HT29 and SW480 cells.
  • PrxII deficiency can induce the ⁇ -catenin degradation by Axin1, thereby sufficiently reversing the carcinogenic phenotype of the APC mutation.
  • TNKS is the only poly ADP ribocylating enzyme for Axin proteins. It was confirmed by in vitro PARP analysis whether PrxII is essential for TNKS activity.
  • TNK expression levels were measured with the substrate protein in CRC cell panels.
  • the PrxII deletion increased the expression level of TNKS and Axin1, but the expression level did not increase in the APC-functioning cells including RKO and Colo741 cells.
  • TRF1 telomeric repeat-binding factor 1
  • TRF1 telomeric repeat-binding factor 1
  • APC knockdown was performed on RKO cells to confirm a direct correlation between APC and PrxII function in CRC cells.
  • the APC knockdown definitely induces a marked increase in the expression of H 2 O 2 and ⁇ -catenin in the cells, and consequently, the H 2 O 2 -dependent fire of TNKS1 Acceleration of activation.
  • concurrent deficiency of APC and PrxII increased TNKS and Axin1 protein expression with a decrease in ⁇ -catenin expression.
  • PrxII is a cytoplasmic peroxidase
  • PrxII suggests that it can selectively protect intracellular TNKS from oxidative stress induced by APC mutation or loss.
  • the peptide sequences of the various PARP domains were aligned to reveal five Cys residues containing three zinc binding motifs and found to be unique in the TNKS isoform between the PARP lines.
  • the recombinant TNKS1 PARP domain (amino acids 1023-1327) was prepared to test if zinc binding motifs were unstable under oxidative conditions.
  • the TNKS1 PARP domain exhibited intact poly ADP lysylating activity and was completely inactivated by incubation with H 2 O 2 as shown in FIG.
  • the zinc binding protein is produced by cysteine oxidation, and the released zinc ions are measured with a spectrophotometer using 4- (2-pyridylazo) resorcinol. .
  • Fig. 49 shows the result of measurement by a spectrophotometer by the above method.
  • Figure 44B it can be seen that the H 2 O 2 treatment induced almost complete release of zinc ions, with more than 90% of the TNKS1 PARP protein ultimately losing zinc ions.
  • PrxII The interaction between PrxII and TNKS was examined to demonstrate how PrxII protects TNKS from H 2 O 2 mediated inactivation.
  • TNKS did not interact with PrxI in APC-mutant HT29 and SW480 cells, confirming the specific role of PrxII in the TNKS / Axin1 / ⁇ -catenin pathway.
  • the in situ proximity ligation assay (in situ PLA) in Figures 52 and 53 demonstrates that direct interaction between TNKS and PrxII occurs in the cytoplasm of HT29 and SW480 cells that are not RKO cells Visualized.
  • the red fluorescence signal indicative of the interaction of the two proteins almost completely disappeared by PrxII deficiency.
  • TNKS and PrxII mutagenesis were performed to analyze the molecular interaction map.
  • the IP experiment in Figure 54 showed that PrxII interacted with an ankyrin repeat cluster (ARC) 4/5 domain of TNKS when truncated TNKS mutants were expressed with PrxII, It does not overlap Axin1 binding to the 2/3 domain.
  • ARC ankyrin repeat cluster
  • the TNKS ARC domain recognizes the consensus sequence RXXPXG in the client protein, and the Gly residue at position 6 plays a crucial role in direct binding.
  • the PrxII WT and G116V mutants exhibited the same level of expression and peroxidase activity. However, as shown in FIG. 53, the PrxII G116V mutant did not prevent the inhibition of TNKS activity by H 2 O 2 , The PrxII WT was completely blocked.
  • Prx-SO2 / 3 blot in lane 2 and lane 3 of Figure 58 also shows that the endogenous 2-Cys Prx is completely peroxidized during H 2 O 2 treatment whereas the exogenous Prx II (PrxII-Myc) with C-terminal Myc tag Is resistant to peroxidation.
  • PrxII-Myc enzyme showed strong peroxidase activity without any signs of peroxidation.
  • binding PrxII can prevent the oxidative inactivation of tannase by removing H 2 O 2 from the tannase, which is important for the growth of APC-mutated CRC cells.
  • PrxII expression was significantly higher in tumor samples of patients with colorectal adenocarcinoma than in normal colon tissues, and the expression of PrxI, the closest homologous protein, .
  • Figure 61 increased PrxII expression was observed at all tumor stages.
  • the PrxII level was about two times higher in the CRC tissue than in the normal tissue. From these results, it can be seen that certain PrxII induction can be a prerequisite for CRC expansion.
  • Conoidin A which is known to covalently bind to PrxII in order to evaluate the possibility of treating human CRC by inhibiting PrxII Cell permeable compounds were tested.
  • colony formation analysis showed that treatment with Compound 6 (conoid A) sufficiently inhibited proliferation of HT29 and SW480 cells that are not RKO cells.
  • Lt; RTI ID 0.0 > PrxII < / RTI > inhibition to selectively target human APC mutant CRC cells.
  • PrxII can be a new target treatment for human CRC as shown in the schematic diagram of FIG. 67, and a compound that inhibits PrxII such as Compound 6 (conoid A) can be a new therapeutic drug for human CRC Able to know.
  • Compound-6 is conoidine A and is widely sold, such as Candia Thamtech Company Limited, Shanghai YuLue Chemical Co., Ltd.
  • reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared.
  • reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared.
  • reaction solution is added to the ice water after cooling at room temperature.
  • the mixture was then extracted with diethyl ether until the spot disappeared in the aqueous layer.
  • the organic layer was washed with brine, dried over MgSO4 and concentrated to obtain a red solid.
  • 6-isoproxy-2,3-dimethylquinoxaline 1,4-dioxide (1.00 g, 4.03 mmol) was dissolved in 1,4-dioxane (1,4 -dioxide, bromine (12.71 mmol) was added dropwise.
  • reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared.
  • reaction solution is added to the ice water after cooling at room temperature. Then, diethyl ether was added until the spot disappears in the water layer. The organic layer was washed with brine, dried over MgSO4 and concentrated to obtain a red solid.
  • reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared.
  • NaHCO 3 aqueous solution was added thereto and extracted with ethyl acetate.
  • the organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated to obtain a mixture.
  • reaction solution is added to the ice water after cooling at room temperature.
  • the mixture was then extracted with diethyl ether until the spot disappeared in the aqueous layer.
  • the organic layer was washed with brine, dried over MgSO4 and concentrated to obtain a red solid.
  • reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared.
  • 76 shows the number of colonies after treatment with Compound-1 to Compound-5 in HT29 cells. 77 shows the result of analysis of colony formation in which HT29 cells were treated with Compound-1 to Compound-5 and conoidin A (Compound-6).
  • PrxII can be a new target therapy for human CRC, and compounds that inhibit PrxII, such as conoid A (compound-6) and compound-1 through compound-5, can be new therapeutic agents for human CRC .
  • mRNA expression data was generated using an Agilent G4502A microarray platform and processed and standardized as previously described. For analysis of gene expression data, 155 colon cancer tissue samples and 26 normal colon tissue samples were included.
  • the lumen of the intestine was washed with ice-cold phosphate buffered saline (PBS) using a flat needle syringe and longitudinally incised.
  • PBS phosphate buffered saline
  • the polyp-free section of the intestine was resected for immunoblot analysis with the polyp.
  • Tissues were suspended in HEPES-buffered saline containing 10% glycerol, 1 mM EDTA, 2 mM EGTA, 1 mM DTT, 5 mM Na3VO4, 5 mM NaF, 1 mM AEBSF, aprotinin, 5 ⁇ g / ml, leupeptin Homogenized using a Dounce homogenizer.
  • the cultured cells were rinsed once with ice cold PBS and resuspended in 20 mM HEPES pH 7.0, 1% Triton X-100, 150 mM NaCl, 10% glycerol, 1 mM EDTA, 2 mM EGTA, 1 mM DTT, 5 mM Na3 VO4, 5 mM NaF, 1 mM AEBSF, aprotinin (5 ⁇ g / ml) and leupeptin (5 ⁇ g / ml).
  • Tissue homogenates and cell lysates were centrifuged at 15,000 x g for 15 minutes and protein concentrations were examined by Bradford assay (Pierce). Protein samples were mixed with SDS sample buffer and boiled for 5 minutes.
  • the protein was separated by SDS-PAGE and electroblotted for 1 hour to transfer to nitrocellulose membranes.
  • the membranes were blocked with 5% bovine serum albumin (BSA) or 5% dried skim milk for 2 hours in Tris buffered saline containing 0.05% (v / v) Tween-20 (TBST) And incubated with appropriate primary antibodies in blocking buffer.
  • BSA bovine serum albumin
  • Tween-20 Tween-20
  • the membranes were incubated with horseradish peroxidase-conjugated secondary antibody (Amersham Biosciences) in blocking buffer.
  • the immune-reactive bands were detected with a chemiluminescence kit (AbFrontier, Korea) and quantified with a LAS-3000 imaging system (Fuji Film, Japan).
  • the purified cell lysate (0.5-1 mg protein) was pre-removed with 30 ⁇ l protein-A / G Sepharose 4 Fast Flow beads (Amersham Biosciences) for 1 hour.
  • the supernatant was incubated overnight with 3 ⁇ g of the appropriate antibody and then precipitated again by mixing with 30 ⁇ l of protein-A / G beads at 4 ° C for 3 hours.
  • the beads were then washed three times with 1 ml of lysis buffer followed by in vitro PARP analysis or immunoblotting.
  • Beta-catenin / TCF transcription reporter assay ( ⁇ -catenin / TCF transcription reporter assay)
  • SW480 cells were plated in 12-well plates and transfected with pTOPflash or pFOPflash plasmids. To normalize the transfection efficiency, cells were transfected with the pRL-TK Renilla Luciferase control plasmid.
  • Fold induction is the ratio of experimental activity to control activity.
  • RNA libraries ⁇ 300 bp insert size was generated using the TruSeq RNA Library Preparation kit v2 (Illumina).
  • Paired-end transcriptome sequencing (101 bp read length) was performed on an Illumina HiSeq 2500. The number of reads for each sample ranges from 69.4 million to 74.8 million. Sequencing data was deposited with the GEO database (accession number is GSE81429).
  • RNA sequence data was aligned with the human genome (hg19 of UCSC) using MapSplice v2.1.7.
  • the mapping rate of reads ranged from 96.5 to 96.8%, and RSG v1.2.12 was used to estimate the abundance of the transcriptome of refGene mRNA.
  • DEG Differentially expressed genes
  • Immunocomplex-bound beads were incubated in 40 ⁇ l of assay buffer (50 mM Tris-HCl pH 8.0, 4 mM MgCl 2) containing 4 ⁇ Ci of ⁇ -32 [P] -NAD + at 25 ° C for 30 min Lt; / RTI > The reaction is stopped by the addition of 2x SDS sample buffer. The sample is boiled and separated using SDS denaturing gel (SDS denaturing gel).
  • the gel was vacuum dried and irradiated on an imaging plate.
  • the radioactivity recorded on the plate was read and quantified by Fujifilm Bio-imaging Analyzer System (BAS) -3000.
  • TNKS1 human turkey-1
  • E. coli expression plasmid for GST-TNKS1 (1023-1327) was donated from Chang-Woo Lee (Sungkyunkwan University School of Medicine).
  • Retroviral vectors (pQ-CXIX) expressing Myc-tagged siRNA-resistant PrxII WT, C172S single mutants and C51 / 172S double mutants were prepared as described above. Site-directed mutagenesis for amino acid substitution was performed using the QuikChange kit (Stratagene).
  • Double strand primers for Cys-Ser substitution in tankyrase-1 are as follows:
  • the double strand primers for Gly-Val substitution for human PrxII are as follows:
  • the retroviral pQ vector expressing the beta-catenin S37A variant was constructed by PCR subcloning from the previously described pBI-EGFP-beta-catenin (S37A) structure. All structures and mutations were confirmed by nucleotide sequencing.
  • Zinc ions are observed in aqueous solution using 4- (2-pyridylazo) resorcinol (PAR).
  • GST glutathione S-transferase
  • the purity (> 99.5%) of the GST-TNKS1 PARP protein is determined by the concentration method and dialyzed extensively in Chelex100 treatment buffer containing 25 mM HEPES (pH 7.0) and 2 mM DTT to remove unbound zinc ions.
  • the PARP protein 40mM HEPES containing 0.1mM PAR (pH 7.0) 200 ⁇ l reaction buffer for 30 min and incubated with 500 ⁇ M H 2 O 2.
  • the formation of the PAR2-Zn2 + complex was monitored at 500 nm with a UV / VIS spectrophotometer (Agilent).
  • the total zinc content of the purified GST-TNKS1 PARP protein used in the assay was determined by adding 0.5 mM p-chloromercuribenzoic acid to the reaction mixture.
  • the peroxidase assay was performed in a 200 ⁇ l reaction mixture containing 250 ⁇ M NADPH, 1.5 ⁇ M yeast TR, 3 ⁇ M yeast Trx, recombinant human Prx (PrxI, 4.6 ⁇ M, PrxII, 16.4 ⁇ m) and 1 mM EDTA 50mM HEPES (pH 7.0) that was performed at 200 ⁇ M H 2 O 2.
  • the mixture (minus H 2 O 2 ) was preliminarily incubated for 5 minutes in the presence or absence of compounds 1 to 6 (100 ⁇ M), and then H 2 O 2 was added to initiate the reaction.
  • NADPH oxidation was monitored for 5 min at 30 ° C with a decrease in absorbance around 340 nm on an Agilent UV8453 spectrophotometer (Hewlett Packard, USA). The initial reaction rate was calculated using the linear portion of the curve and expressed as the amount of oxidized NADPH per minute.
  • the folded sheet was paraffin embedded and segmented by a rotary microtome (Leica RM2255).
  • HE hematoxylin and eosin
  • Cryotome is a microtome that deals with frozen tissue.
  • a microtome is a machine that cuts a specimen into pieces of uniform thickness to make a specimen for microscopic observation. Placed on a Superfrost Plus slide (Surgipath Medical Inc. UK), dried at room temperature and held at -80 ° C until thawed for immunostaining.
  • paraffin sections were waxed off with xylene and rehydrated in ethanol. Antigen retrieval was then performed by boiling the sections in sodium citrate buffer (pH 6.0).
  • Tissue sections were incubated with anti-Ki-67 antibody (1: 200 dilution) and affinity-purified anti-PrxII antibody (1: 500 dilution) for 48 h at 4 ° C. After washing three times with PBS, the sections were incubated with a peroxidase-conjugated secondary antibody and incubated with a 3,3'-diaminobenzidine (DAB) substrate solution Lt; / RTI >
  • DAB 3,3'-diaminobenzidine
  • the nuclei were further stained with hematoxylin.
  • DAB staining images were obtained and quantified using HistoFAXS tissue analysis system (HistoFAXS Tissue Analysis System, TissueGnostics, USA).
  • HistoFAXS tissue analysis system HistoFAXS Tissue Analysis System, TissueGnostics, USA.
  • immunofluorescence staining paraffin or frozen sections were blocked with 5% normal rabbit serum (Vector Laboratories) in PBST (0.3% Triton X-100 in PBS) for 1 hour at room temperature.
  • the sections were incubated overnight at 4 ° C with primary antibody (1: 500 dilution for anti-PrxII antibody and 1: 100 dilution for anti-BrdU antibody). After washing the PBST several times, the samples were incubated with Alexa Fluor 568 conjugated donkey anti-rabbit IgG antibody for 2 hours at room temperature.
  • the sections were counterstained with (4 ', 6-diamidino-2-phenylindole, DAPI, Sigma-Aldrich) for 30 min and Vectashield mounting medium Respectively.
  • Fluorescence images were acquired in three random fields per tissue section at 100x magnification using an LSM 51 Meta confocal microscope equipped with argon and a helium-neon laser (Carl Zeiss, Germany).
  • RNA sequencing data supporting this study are deposited in the GEO (Gene Expression Omnibus DB, GEO DB) database (accession number: GSE81429).
  • Antibacterials (mouse monoclonal, B-5-1-2, 1: 8000, T5168) and anti-FLAG antibodies (mouse monoclonal, M2, 1: 1000, F3165) were purchased from Sigma-Aldrich.
  • ⁇ -catenin (rabbit monoclonal, 6B3, 1: 1000, 9582), Axin1 (rabbit monoclonal, C76H11, 1: 1000, 2087), pS33 / 37pT41- rabbit monoclonal, 76G6, 1: 1000, 2151), GSK3 ⁇ (rabbit monoclonal, 27C10, 1: 1000, 9315), ⁇ - actin (rabbit monoclonal, 13E5, 1000, 2922) were purchased from Cell Signaling Technology.
  • anti-Myc (agmouse monoclonal, 9E10, 1: 1000, 05-419) and anti-APC (mouse monoclonal, FE9, , ABC202) antibody was purchased from Millipore.
  • Alexa Fluor 568-conjugated donkey anti-rabbit IgG (1: 200, A-21206) and anti- ⁇ -TrCP (mouse monoclonal, 1B1D2, 1: 1000, 37-3400) antibodies were purchased from Invitrogen Respectively.
  • Anti-PAR antibody (rabbit polyclonal, 1: 2000, 551813), which detects the poly (ADP-ribose) chain, was purchased from BD Bioscience.
  • Anti-Ki-67 antibody (rabbit monoclonal, SP6, 1: 200, MA5-14520) was purchased from Thermo Fisher Scientific.
  • Rabbit anti-PrxII antisera were affinity-purified with recombinant PrxII protein and agarose gel beads and used for immunofluorescence and proximity ligation assays (PLA).
  • Wnt3a was purchased from R & D Biosystems.
  • DuoLink in situ fluorescence reagents were purchased from Sigma-Aldrich.
  • TissueFocus colon cancer microarray was purchased from OriGene Technologies (Rockville, USA)
  • composition capable of inhibiting the enzyme activity of peroxiredoxin 2 to regulate the redox system of colon cancer cells, thereby reducing the colonic polyps and treating or preventing colon cancer.
  • a pharmaceutical composition capable of reducing colonic polyps and treating or preventing colon cancer can be provided by reducing the interaction of PrxII and tannase with the cytoplasm of APC mutant cells.

Abstract

The present invention relates to a pharmaceutical composition comprising a substance inhibitory of the enzymatic activity of peroxiredoxin 2 as an effective ingredient for treatment of colorectal cancer and, more particularly, to a pharmaceutical composition for treatment of colorectal cancer wherein, on the basis of the mechanism in which peroxiredoxin 2 (Prx II) interacts with tankyrase (TNKS) in APC mutant cells to play a tumor-promoting role in colorectal cancer, the composition exhibits the effect of reducing colorectal tumors by inhibiting the activity of peroxiredoxin 2 to increase the active β-catenin destruction.

Description

퍼록시레독신 2 의 효소 활성을 억제하는 물질을 유효 성분으로 포함하는 대장암 치료용 약학적 조성물A pharmaceutical composition for the treatment of colorectal cancer comprising as an active ingredient a substance which inhibits the enzyme activity of peroxiredoxin 2
본 발명은 퍼록시레독신 2 의 효소 활성을 억제하는 물질을 유효 성분으로 포함하는 대장암 치료용 약학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for the treatment of colorectal cancer comprising as an active ingredient a substance which inhibits the enzyme activity of peroxiredoxin-2.
암은 가장 다루기 힘든 질병들 중의 하나이며, 환자들의 완치를 위해 끊임없이 연구되고 있다. 또한, 병원에서는 암을 치료하기 위해 약물 치료, 방사선치료, 유전자치료 등등의 기술들이 이용되고 있다. Cancer is one of the most intractable diseases and is constantly being studied for the cure of patients. In hospitals, techniques such as drug therapy, radiation therapy, gene therapy and the like are used to treat cancer.
대장암(Colorectal cancer, CRC)은 전세계적으로 흔한 암이다. 우리나라에서는 남자의 경우 위암, 폐암, 간암에 이어, 여자의 경우는 유방암, 위암에 이어 흔히 발생하는 암이다. 근래에 식생활이 서구화되면서 그 발생 빈도가 더욱 가파르게 증가하였다. 최근 10년 사이 대장암에 의한 사망률은 약 80%정도 증가하였고, 계속 증가하는 추세이다. Colorectal cancer (CRC) is a common cancer worldwide. In Korea, malignant tumors are followed by gastric cancer, lung cancer, and liver cancer in women, followed by breast cancer and gastric cancer in women. Recently, as the diet has been westernized, the incidence has increased more rapidly. In the last decade, mortality from colon cancer has increased by about 80% and has continued to increase.
대장암(Colorectal cancer, CRC) 환자의 약 40-50%는 재발 및 전이가 발생한다. 대장암을 비롯한 악성 종양 환자의 주된 사망 원인은 악성 종양 자체가 아니라 악성 종양의 전이 때문이다. 대부분의 전이는 다발성, 전신성으로 발생한다.About 40-50% of patients with colorectal cancer (CRC) develop recurrence and metastasis. The main cause of death in patients with colorectal cancer and other malignant tumors is not the malignant tumor itself, but the metastasis of malignant tumors. Most metastases are multiple, systemic.
대량 염기 서열 분석 자료에 따르면 대장암 환자(CRC)의 80 % 이상이 선종성 용종증 종양 억제 유전자(Adenomatous polyposis coli, APC)의 돌연변이를 가지고 있다. APC(Adenomatous polyposis coli) 단백질은 베타카테닌 (β- catenin) 파괴 복합체의 중요한 골격 단백질이다. 이 때문에, APC 유전자 돌연변이 세포 내에서는 활성 베타카테닌(β- catenin)이 Wnt-독립적으로(Wnt-independent) 축적됨으로써 장의 종양 형성을 개시한다고 알려져 있다. According to large-scale sequencing data, more than 80% of patients with colorectal cancer (CRC) have mutations in the adenomatous polyposis coli (APC). The APC (Adenomatous polyposis coli) protein is an important skeletal protein of the beta-catenin breakdown complex. For this reason, it is known that the active beta-catenin (Wnt-independent) accumulates in APC gene mutant cells to initiate intestinal tumor formation.
최근 연구에 의하면, APC 유전자 돌연변이에 의해 시작된 장 종양 형성은 핵산의 염기가 산화적 DNA 손상 되었을 때 수선에 중요한 역할을 하는 DNA 글리코실화효소(DNA Glycosylase)의 돌연변이의 획득 또는 유전에 의해 촉진된다고 알려져 있다. 이는 활성 산소종 (reactive oxygen species, ROS) 수준의 상승이 APC 돌연변이 유발성 장내 종양 형성에 관여한다는 것을 보여준다. Recent studies have shown that intestinal tumorigenesis initiated by APC gene mutation is facilitated by the acquisition or genetic mutation of DNA Glycosylase, an enzyme that plays an important role in repair when the nucleotide base is oxidatively damaged have. This indicates that elevated levels of reactive oxygen species (ROS) are involved in APC mutagenic intestinal tumorigenesis.
퍼록시레독신(Peroxiredoxin, Prx)은 생체 내에서 과산화수소 및 알킬 하이드로퍼록사이드의 제거 효소 (peroxidase)로 알려져 있다. (Chae, H. Z. et al., Proc. Nat. Acad. Sci. 91: 7017-7021, 1994). 퍼록시레독신(Peroxiredoxin, Prx)은 포유류에서는 타입 I~VI Prx 동종효소(isozymes)로 구분되며 조직의 다양한 부분에서 관찰된다(Rhee, SG et al., IUBMB Life 52:35~41, 2001). Peroxiredoxin (Prx) is known in vivo as a peroxidase of hydrogen peroxide and alkylhydroperoxides. (Chae, H. Z. et al., Proc. Nat. Acad Sci. 91: 7017-7021, 1994). Peroxiredoxin (Prx) is classified as type I to VI Prx isozymes in mammals and is observed in various parts of the tissue (Rhee, SG et al., IUBMB Life 52: 35-41, 2001) .
퍼록시레독신(Peroxiredoxin, Prx)은 세포 내에서 강한 항산화 활성을 나타낸다고 알려져 있다. Prx 타입 VI를 제외한 대부분의 퍼록시레독신 동종효소들은 전자 공여자(electron donor)로서 티오레독신(thioredoxin)을 이용한다. 그래서 티오레독신(thioredoxin) 퍼록시다제(Peroxidase)로서 알려져 있다.Peroxiredoxin (Prx) is known to exhibit strong antioxidant activity in cells. Most of the peroxidase isoenzymes except Prx type VI use thioredoxin as electron donor. Therefore, it is known as thioredoxin peroxidase.
Prx family는 2-Cys와 1-Cys(Cysteine) 소그룹(subfamily)로 나누어진 6개의 동종효소(isozymes)로 구성된다. 2-Cys 소그룹(subfamily) 효소는 박테리아부터 사람까지 광범위하게 보존되는 티오레독신(thioredoxin)-의존성 과산화효소이다. 2-Cys Prx 중에서, 세포질 PrxI 및 PrxII 동종효소(isozymes)는 다양한 암 유형에서 과발현되고 막 수용체 - 매개 신호 전달에서 중요한 조절 역할을 하는 것으로 알려져 있다. The Prx family consists of six isozymes divided into 2-Cys and 1-Cys (Cysteine) subfamilies. The 2-Cys subfamily enzyme is a thioredoxin-dependent peroxidase that is extensively conserved from bacteria to humans. Among 2-Cys Prx, cytoplasmic PrxI and PrxII isozymes are over-expressed in a variety of cancer types and are known to play important regulatory roles in membrane receptor-mediated signal transduction.
포유류의 2-Cys Prx 효소는 티오레독신(thioredoxin)-티오레독신 리덕테이즈(thioredoxin reductase)로 구성된 전자-수송 시스템(electron-conveying system)으로부터 전자를 제공받아, NADPH (nicotinamide adenine dinucleotide phosphate) 존재 하에서 H 2O 2(과산화수소)를 물로의 환원시킨다. The mammalian 2-Cys Prx enzyme is electron-donated from an electron-conveying system consisting of thioredoxin-thioredoxin reductase, and is activated by nicotinamide adenine dinucleotide phosphate (NADPH) In the presence of H 2 O 2 (hydrogen peroxide) is reduced to water.
H 2O 2는 단백질 키나아제 또는 단백질 티로신 포스파타아제(Protein Tyrosine Phosphatases)를 포함한 신호 전달 단백질의 가역적 산화를 조절한다. 때문에, H 2O 2는 증식하는 암세포에서 잠재적인 2차 메신저로 기능한다. PrxII는 국소적으로 H 2O 2를 조절한다고 알려져 있다. 따라서 2-Cys Prx 효소인 PrxII는 세포내 ROS 해독 및 신호 전달에서 다각적인 역할을 한다고 생각되고 있다. H 2 O 2 regulates the reversible oxidation of signaling proteins, including protein kinases or protein tyrosine phosphatases. H 2 O 2 thus functions as a potential secondary messenger in proliferating cancer cells. PrxII is known to regulate H 2 O 2 locally. Therefore, PrxII, a 2-Cys Prx enzyme, is thought to play a diverse role in the detoxification and signal transduction of intracellular ROS.
탄키라제(Tankyrase, TNKS)는 폴리(ADP-라이보스)폴리머레이즈 (Poly(ADP-ribose) polymerase)의 한 종류이다. 대장암 세포에서 탄키라제(Tankyrase, TNKS)의 활성은 베타카테닌(β-catenin) 분해를 억제하여 비정상적인 세포 증식을 유발한다. 그래서 탄키라제 억제는 대장암(Colorectal cancer, CRC) 치료를 위한 표적으로 각광받고 있으나, 탄키라제(TNKS)의 직접적인 억제는 광범위한 기질로 인해 다면발현(pleiotropic) 효과 또는 부작용을 유발할 수 있다는 우려가 있다. 또한 대장암 종양 형성에서 탄키라제(Tankyrase, TNKS) 활성을 조절하는 메커니즘은 자세히 알려져 있지 않다.Tankyrase (TNKS) is a kind of poly (ADP-ribose) polymerase (Poly (ADP-ribose) polymerase). The activity of Tankyrase (TNKS) in colorectal cancer cells inhibits β-catenin degradation, leading to abnormal cell proliferation. Thus, the inhibition of tannicase is of interest as a target for the treatment of colorectal cancer (CRC), but the direct inhibition of tannicase (TNK) may cause pleiotropic effects or side effects due to a wide range of substrates . Furthermore, the mechanisms controlling the activity of Tankyrase (TNKS) in colon cancer tumors are not well known.
Axis 억제 단백질 1 (Axis Inhibitor Protein, Axin1) 종양 억제 인자는 베타카테닌(β-catenin) 파괴 복합체를 구성하는 또 다른 골격 단백질이다. APC 돌연변이 세포에서 탄키라제에 의한 Axin1 단백질의 조절 기작은 정확히 밝혀져 있지 않다. 또한 생체 내 산화 환원 시스템의 조절을 통해 탄키라제의 활성을 조절하는 대장암(Colorectal cancer, CRC)의 치료는 지금까지 시도되지 않았다. Axis Inhibitor Protein (Axin1) Tumor suppressor is another skeletal protein that constitutes a beta-catenin breakdown complex. The mechanism of Axin1 protein regulation by tannase in APC mutant cells is not clear. In addition, the treatment of colorectal cancer (CRC), which regulates the activity of tannase by controlling the in vivo redox system, has not been attempted so far.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 APC 돌연변이 세포에서 산화 환원 시스템 및 신호 전달에서 다각적 역할을 하는 퍼록시레독신 2(Peroxiredoxin 2, Prx II)가 탄키라제(Tankyrase, TNKS) 활성을 조절하는 메커니즘을 밝히고, 이로부터 이와 같은 메커니즘에 의해 퍼록시레독신 2의 효소 활성을 억제에 의해 대장암을 억제할 수 있는 새로운 대장암 치료용 약학적 조성물을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, the present inventors have found that peroxiredoxin 2 (Prx II), which plays a diverse role in the redox system and signal transduction in APC mutant cells, is expressed by Tankyrase (TNKS) And to provide a pharmaceutical composition for the treatment of colorectal cancer which is capable of inhibiting colon cancer by inhibiting the enzyme activity of peroxiredoxin 2 by such a mechanism.
상기 과제를 해결하기 위해서, 본 발명의 일 실시예는 퍼록시레독신 2의 효소 활성을 억제하는 물질을 유효 성분으로 포함하는 대장암 치료용 약학적 조성물을 포함한다.In order to solve the above problems, one embodiment of the present invention includes a pharmaceutical composition for treating colon cancer, comprising a substance that inhibits the enzyme activity of peroxiredoxin-2 as an effective ingredient.
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 하기 화학식 1로 표시된다. In the pharmaceutical composition for treating colorectal cancer according to the present invention, the substance inhibiting the enzyme activity of peroxycorticosin 2 is represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018007316-appb-img-000001
Figure PCTKR2018007316-appb-img-000001
(상기 화학식 1에서 R1은 -O-R2 또는 사이클릭화합물 또는 -H로 이루어진 화합물이고, R2는 C1 내지 C8 의 분지 또는 분지가 아닌 알킬기(Alkyl), 또는 치환 또는 비치환 벤질기(benzyl), -CH=CH2 또는 알릴기(Allyl)로 이루어진 그룹에서 선택되는 어느 하나 이상인 것임) (Wherein R1 is -O-R2 or a compound consisting of a cyclic compound or -H, R2 is a C1 to C8 branched or unbranched alkyl group (Alkyl), or a substituted or unsubstituted benzyl group, -CH = CH2 or an allyl group (Allyl).
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 아래 화합물-1 내지 화합물-6으로 이루어진 그룹에서 선택되는 어느 하나 이상인 화합물을 포함할 수 있다. In the pharmaceutical composition for treating colorectal cancer according to the present invention, the substance inhibiting the enzyme activity of peroxiredoxin 2 may include a compound selected from the group consisting of the following compounds-1 to 6 have.
Figure PCTKR2018007316-appb-img-000002
Figure PCTKR2018007316-appb-img-000002
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 베타카테닌(β-catenin) 분해를 증가시키는 것을 특징으로 한다. In the pharmaceutical composition for treating colorectal cancer according to the present invention, the substance inhibiting the enzyme activity of peroxycorticosin 2 is characterized in that β-catenin degradation is increased.
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 탄키라제(Tankyrase, TNKS)에 의한 Axin1의 분해를 감소시키는 것을 특징으로 한다. In the pharmaceutical composition for treating colorectal cancer according to the present invention, the substance that inhibits the enzyme activity of peroxycorticosin 2 is characterized by reducing the degradation of Axin1 by Tankyrase (TNKS).
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 탄키라제(Tankyrase, TNKS)의 산화적 불활성화를 증가시키는 것을 특징으로 한다. In the pharmaceutical composition for treating colorectal cancer according to the present invention, the substance which inhibits the enzyme activity of peroxycorticosin 2 is characterized by increasing oxidative inactivation of Tankyrase (TNKS).
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 탄키라제의 산화적 불활성화는 APC 돌연변이 세포의 세포질에서 일어나는 것을 특징으로 한다. In the pharmaceutical composition for the treatment of colorectal cancer according to the present invention, the oxidative inactivation of the above-mentioned TK occurs in the cytoplasm of APC mutant cells.
본 발명에 의한 대장암 치료용 약학적 조성물에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 퍼록시레독신 2와 탄키라제와의 상호작용을 저해시키는 것을 특징으로 한다. In the pharmaceutical composition for treating colorectal cancer according to the present invention, the substance inhibiting the enzyme activity of peroxycorticosin 2 is characterized by inhibiting the interaction of peroxycorticosin 2 and tannase.
본 발명에 의한 대장암 치료용 약학적 조성물은 퍼록시레독신 2의 효소 활성을 억제하는 물질을 약학적 유효량 함유하는 것을 특징으로 한다. 본 발명의 용어 “약학적 유효량”은 상기 퍼록시레독신 2 단백질 활성 억제하는 물질의 효능 또는 활성을 달성하는데 충분한 양을 의미한다. The pharmaceutical composition for treating colon cancer according to the present invention is characterized by containing a pharmaceutical effective amount of a substance inhibiting the enzymatic activity of peroxiredoxin-2. The term " pharmaceutically effective amount " of the present invention means an amount sufficient to achieve efficacy or activity of the substance inhibiting the peroxycorticin 2 protein activity.
상기 약학적 조성물에 포함되는 약학적으로 허용되는 담체는 제제시 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀루로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일등을 포함할 수 있으나, 이에 한정되는 것은 아니다. The pharmaceutically acceptable carriers to be contained in the pharmaceutical composition are those conventionally used in pharmaceutical preparations such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not.
상기 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. The pharmaceutical composition may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).
상기 약학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질 중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition may be prepared in unit dose form by formulating it with a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Into a multi-dose container. The formulations may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of excipients, powders, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
본 발명의 일 실시형태의 특성, 형태 및 이점은 이하의 설명에 기재되고, 일부는 그 설명으로부터 명확하게 되거나 이러한 예시의 실시형태의 실시에 의해 습득될 수 있다. The nature, form, and advantages of one embodiment of the invention are set forth in the description that follows, and in part will be obvious from the description, or may be learned by practice of the example embodiment thereof.
그 외의 특성, 형태 및 이점은 이하의 설명 및 청구범위로부터 통상기술자에게 충분히 명백하게 되거나 이하 기재된 실시형태를 실시함으로서 습득될 수 있다. Other features, forms, and advantages will be readily apparent to those skilled in the art from the following description and claims, and may be learned by practice of the embodiments described below.
본 발명의 일 실시형태에 따르면 퍼록시레독신 2의 효소 활성을 억제하여 대장암 세포의 산화 환원 시스템을 조절하여 대장 용종을 감소시키고 대장암 치료 또는 예방이 가능한 조성물이 제공될 수 있다. 본 발명의 일 실시형태에 따르면 APC 돌연변이 세포의 세포질에서 PrxII와 탄키라제의 상호작용을 감소시킴으로서 대장 용종을 감소시키고 대장암의 치료 또는 예방이 가능한 약학적 조성물이 제공될 수 있다. 본 발명의 일 실시형태에 따르면 세포 내 산화 환원 시스템 조절에 의한 탄키라제 활성 억제하는 대장암 치료방법이 제공될 수 있다. According to one embodiment of the present invention, it is possible to provide a composition capable of inhibiting the enzyme activity of peroxiredoxin 2 to regulate the redox system of colon cancer cells, thereby reducing the colonic polyps and treating or preventing colon cancer. According to one embodiment of the present invention, a pharmaceutical composition capable of reducing colonic polyps and treating or preventing colon cancer can be provided by reducing the interaction of PrxII and tannase with the cytoplasm of APC mutant cells. According to one embodiment of the present invention, a method for treating cancer-suppressing colorectal cancer can be provided by controlling intracellular redox system.
도 1 및 도 2는 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 유전자형을 확인한 결과이다. FIG. 1 and FIG. 2 show the result of confirming the genotype of a double mutant mouse produced according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 소장의 비용종(non-polyp) 분절 및 용종에서 면역 형광 염색으로 퍼록시레독신 2 단백질 발현을 측정한 결과이다. Figure 3 shows the results of measurement of peroxycorticosin 2 protein expression in immunofluorescent staining in non-polyp segments and polyp of the small intestine according to one embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 장 조직의 현미경 사진이다. Figure 4 is a micrograph of intestinal tissue of a double mutant mouse produced according to one embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 장 조직에서의 용종의 숫자를 측정한 결과이다. FIG. 5 shows the results of measurement of the number of polyps in the intestinal tissues of a double mutant mouse produced according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 소장 및 결장 단면을 헤마톡실린(hematoxylin) 및 에오신(eosin)으로 염색한 결과이다. Figure 6 is a result of staining of the small intestine and colon sections of a double mutant mouse produced according to an embodiment of the present invention with hematoxylin and eosin.
도 7은 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 장 조직의 현미경 사진이다. 7 is a micrograph of the intestinal tissue of a double mutant mouse produced according to one embodiment of the present invention.
도 8는 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 장 조직에서의 용종의 숫자를 측정한 결과이다. FIG. 8 shows the results of measurement of the number of polyps in the intestinal tissues of a double mutant mouse produced according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 장 조직 추출액을 사용한 면역블로팅 수행 결과이다. 9 is a result of immunoblotting using a double-mutant mouse prepared according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 용종 조직에서의 Axin1, 베타카테닌(β-catenin) 및 베타카테닌(β-catenin) 표적 유전자의 발현을 측정한 결과이다. FIG. 10 shows the results of measurement of expression of Axin1, β-catenin and β-catenin target genes in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 용종 조직에서의 Ki-67 대한 면역조직 화학적(Immunohistochemistry)이미지 측정한 결과이다. Fig. 11 shows immunohistochemical image measurement results of Ki-67 in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 용종 조직에서의 안티 브로모유리딘 (anti-BrdU) 항체로 형광 염색한 뒤 증식하는 세포 수를 측정한 결과이다. FIG. 12 shows the results of measurement of the number of cells proliferating after fluorescent staining with an anti-BrdU antibody in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따라 제조된 이중 돌연변이 마우스의 용종 조직에서의 안티 브로모유리딘(anti-BrdU) 항체로 면역 염색 측정한 결과이다. FIG. 13 shows the result of immunostaining with anti-BrdU antibody in the polyp of a double mutant mouse produced according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 제조된 이중 돌연변이 마우스의 용종 조직에서의 세포사멸을 터널(TUNEL) 염색으로 측정한 결과이다. FIG. 14 shows the result of measurement of cell death in a polyp (TUNEL) staining of a polypoid mouse according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따라 세포를 PrxI 및 PrxII에 대해 특이적인 siRNA 세트로 48 시간 동안 감염시키고 베타카테닌(β-catenin)에 대해 면역블로팅(IB) 측정한 결과이다.Figure 15 shows the results of immunoblot (IB) measurements of beta catenin infecting cells with a set of siRNA specific for PrxI and PrxII for 48 hours according to one embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따라 세포를 다른 농도의 PrxII-1 siRNA로 48 시간 동안 감염시키고 베타카테닌(β-catenin)에 대해 면역블로팅(IB) 측정한 결과이다.Figure 16 shows the results of immunoblot (IB) measurement of beta-catenin by infecting cells with different concentrations of PrxII-1 siRNA for 48 hours according to one embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따라 다양한 APC 돌연변이 대장암 세포주들에서 PrxII-1 siRNA로 48 시간 동안 감염시키고 베타카테닌(β-catenin) 및 활성 베타카테인 (active β-catenin )에 대해 면역블로팅(IB) 측정한 결과이다.17 is a graph showing the results of immunization with PrxII-1 siRNA in various APC mutant colorectal cancer cell lines for 48 hours according to one embodiment of the present invention and immunization against beta-catenin and active beta-catenin Blowing (IB) measurements.
도 18 및 도 19는 본 발명의 일 실시예에 따라 APC 돌연변이 대장암 세포주에서 PrxII-1 siRNA로 48 시간 동안 감염시킨 후 다시 PrxII의 활성형태 (WT)와 불활성형태 (CS 또는 C172S)를 발현하는 레트로바이러스로 감염시킨 세포에서 베타카테닌(β-catenin) 및 활성 베타카테인 (active β-catenin )에 대해 면역블로팅(IB) 측정한 결과이다.FIGS. 18 and 19 are graphs showing the expression of PrxII active form (WT) and inactive form (CS or C172S) after infection with PrxII-1 siRNA in APC mutant colorectal cancer cell line for 48 hours according to an embodiment of the present invention (IB) measurements of β-catenin and active β-catenin in retrovirus-infected cells.
도 20은 본 발명의 일 실시예에 따른 APC 돌연변이 대장암 세포에서의 PrxII 의존성 세포 H 2O 2 수준을 측정한 결과이다. FIG. 20 shows the results of measurement of Prx II-dependent cell H 2 O 2 levels in APC mutant colorectal cancer cells according to an embodiment of the present invention.
도 21 내지 도 23은 본 발명의 일 실시예에 따른 대조군과 PrxII-결핍된 SW480 와 HT29 대장암 세포주들에서 프로테아좀(proteasome)과 GSK3β(glycogen synthase kinase-3β) 억제제 (25μM MG132 및 lactacystin 와 2.5μM BIO 및 SB216763)로 1시간 동안 처리하고 베타카테닌(β-catenin) 및 활성 베타카테인 (active β-catenin) 발현 정도를 측정하여 베타카테인 파괴 복합체 (Destruction complex)가 관여함을 보여 주는 결과이다. FIGS. 21-23 are graphs showing the inhibition of proteasome and GSK3 beta (glycogen synthase kinase-3 beta) inhibitors (25 μM MG132 and lactacystin) in the control and PrxII-deficient SW480 and HT29 colon cancer cell lines according to an embodiment of the present invention 2.5 [mu] M BIO and SB216763) for 1 hour and measuring the beta-catenin and active beta-catenin expression levels, indicating that beta-catenin destruction complex is involved Results.
도 24 은 본 발명의 일 실시예에 따른 APC 돌연변이 대장암세포에서 PrxII 결핍이 GSK3β 의 활성화에 영향이 없음을 보여 주는 결과이다. 24 is a graph showing that PrxII deficiency does not affect the activation of GSK3? In APC mutant colorectal cancer cells according to an embodiment of the present invention.
도 25은 본 발명의 일 실시예에 따른 HEK293 세포주에서 PrxII 결핍은 정상적인 Wnt3A 신호자극에는 영향이 없음을 보여주는 결과이다. 25 is a graph showing that PrxII deficiency in the HEK293 cell line according to an embodiment of the present invention does not affect normal Wnt3A signal stimulation.
도 26은 본 발명의 일 실시예에 따른 베타카테닌(β-catenin) / TCF 전사 활성을 측정한 결과이다. 26 shows the results of measurement of β-catenin / TCF transcription activity according to an embodiment of the present invention.
도 27 내지 도 32은 본 발명의 일 실시예에 따른 PrxII 결핍에 의해 HT29 및 SW480 세포에서 다르게 발현된 유전자의 분석 결과이다27 to 32 are results of analysis of genes differentially expressed in HT29 and SW480 cells by PrxII deficiency according to an embodiment of the present invention
도 33은 본 발명의 일 실시예에 따른 ΗΤ29 및 SW480 세포를 대조군 또는 PrxII-1 siRNA로 형질 감염시키고 활성 베타카테닌(β- catenin) 및 Axin1에 대해 면역블로팅 수행한 결과이다. FIG. 33 shows the results of transfecting H. 29 and SW480 cells according to an embodiment of the present invention with a control group or PrxII-1 siRNA and immunoblotting against active beta-catenin and Axin1.
도 34은 본 발명의 일 실시예에 따른 SW480 세포를 대조군 또는 PrxII-1 siRNA로 형질 감염시키고 Axin-1을 면역 침전 (IP)으로 분리한 복합체 결합 단백질들 전부에 대하여 면역블로팅 수행한 결과로 PrxII 결핍이 복합체를 크게 증대함을 보여 주는 결과이다. Figure 34 shows the results of immunoblotting of all of the complex binding proteins obtained by transfecting SW480 cells with the control group or PrxII-1 siRNA and isolating Axin-1 by immunoprecipitation (IP) according to an embodiment of the present invention It is the result that PrxII deficiency greatly increases the complex.
도 35은 본 발명의 일 실시예에 따른 ΗΤ29 세포를 대조군 또는 Axin-1/Axin-2 siRNA들로 형질 감염시키고 활성 베타카테닌(β- catenin) 및 Axin1에 대해 면역블로팅 수행한 결과이다. FIG. 35 shows the results of transfection of HΔ29 cells according to an embodiment of the present invention with control or Axin-1 / Axin-2 siRNAs and immunoblotting against active beta-catenin and Axin1.
도 36은 본 발명의 일 실시예에 따른 ΗΤ29 및 SW480 세포를 대조군 또는 PrxII-1 siRNA로 형질 감염시키고 Axin-1을 면역 침전 한 뒤 유비퀴틴화 및 poly-ADP-risose 화에 대하여 면역블로팅 수행한 결과이다. FIG. 36 shows the results of immunohistochemical staining for transfection of ΗT29 and SW480 cells with a control or PrxII-1 siRNA according to one embodiment of the present invention, immunoprecipitation of Axin-1 followed by immunoblotting for ubiquitination and poly-ADP-risose Results.
도 37 은 본 발명의 일 실시예에 따른 APC 야생형 대장암세포주인 RKO 와 APC 돌연변이 세포주인 ΗΤ29 및 SW480 세포를 대조군 또는 PrxII-1 siRNA로 형질 감염시키고 콜로니 형선 에세이를 수행한 결과이다. FIG. 37 shows the result of transfecting APC wild-type colorectal cancer cell line RKO and APC mutant cell lines, Ht29 and SW480 cells with a control group or PrxII-1 siRNA and performing a colony line assay according to an embodiment of the present invention.
도 38 은 본 발명의 일 실시예에 따른 APC 돌연변이 세포주인 ΗΤ29 및 SW480 세포를 대조군 또는 PrxII-1 siRNA로 형질 감염시키고 이어 활성화된 베타카테인 (S37A)를 발현 시킨 뒤 콜로니 형선 에세이를 수행한 결과이다.38 is a graph showing the results of transfecting the APC mutant cell lines, ΗT29 and SW480 cells, with a control group or PrxII-1 siRNA, followed by expressing the activated beta-catenin (S37A), followed by a colony line assay to be.
도 39 및 도 40은 본 발명의 일 실시예에 따른 HT29 및 RKO 세포를 대조군 또는 PrxII-1 siRNA로 형질 감염시키거나 또는 H 2O 2 로 처리한 후 TNKS1을 면역 침전 (IP)한 뒤 ADP-risose 중합효소 (PARP) 활성을 측정한 결과이다.39 and 40 are then HT29 and RKO cells, the control group or to transfect siRNA into PrxII-1 or H 2 O 2 by immunoprecipitation (IP) and then treated with a TNKS1 according to one embodiment of the present invention ADP- risose polymerase (PARP) activity.
도 41 은 본 발명의 일 실시예에 따른 다양한 APC 야생형 및 돌연변이 대장암 세포주에서 대조군 또는 PrxII-1 siRNA로 형질 감염시키고 TNKS1와 이 효소의 기질인 Axin1 및 TRF1의 발현을 면역블로팅으로 측정한 결과이다.Figure 41 shows the results of transfection with a control or PrxII-1 siRNA in various APC wild-type and mutant colorectal cancer cell lines according to an embodiment of the present invention, and the expression of TNKS1 and Axin1 and TRF1 as substrates of the enzyme by immunoblotting to be.
도 42 은 본 발명의 일 실시예에 따른 다양한 APC 야생형 및 돌연변이 대장암세포주에서 TNKS1 억제제 (XAV939)를 1시간동안 전처리한 후 TNKS1와 이 효소의 기질인 Axin1 및 TRF1의 발현을 면역블로팅으로 측정한 결과이다. FIG. 42 shows the results of pretreatment of TNKS1 inhibitor (XAV939) for 1 hour in various APC wild-type and mutant colorectal cancer cell lines according to an embodiment of the present invention, and then the expression of TNKS1 and the enzymes Axin1 and TRF1 were measured by immunoblotting This is a result.
도 43 은 본 발명의 일 실시예에 따른 다양한 APC 돌연변이 대장암 세포주에서 TNKS1 억제제 (XAV939)를 1시간동안 전처리한 후 세포 증식 정도를 측정한 결과이다. 43 shows the results of measuring the degree of cell proliferation after pretreatment of the TNKS1 inhibitor (XAV939) for 1 hour in various APC mutant colorectal cancer cell lines according to an embodiment of the present invention.
도 44는 본 발명의 일 실시예에 따른 RKO 대장암세포주에서 APC 유전자 발현을 siRNA를 사용하여 결핍한 후 세포 내 H 2O 2수준을 측정한 결과이다.FIG. 44 shows the results of measurement of intracellular H 2 O 2 level after deficiency of APC gene expression using siRNA in RKO colorectal cancer cells according to an embodiment of the present invention.
도 45는 본 발명의 일 실시예에 따른 베타카테인, Axin1, 및 TNKS1 의 수준을 면역블로팅으로 측정한 결과이다. FIG. 45 shows the results of immunoblot measurement of levels of beta-catenin, Axin1, and TNKS1 according to an embodiment of the present invention.
도 46는 본 발명의 일 실시예에 따른 TNKS1의 ADP-ribose 중합효소 활성을 측정한 결과이다. Figure 46 shows the results of measurement of ADP-ribose polymerase activity of TNKS1 according to one embodiment of the present invention.
도 47은 본 발명의 일 실시예에 따른 세포에 다양한 TNKS1 시스테인 단독 돌연변이 효소를 발현하고 anti-TNKS 항체로 면역 침전 후 TNKS1의 ADP-ribose 중합효소 활성을 측정한 결과이다.FIG. 47 shows the results of measurement of ADP-ribose polymerase activity of TNKS1 after immunization with anti-TNKS antibody by expressing various TNKS1 cysteine mutant enzymes in cells according to an embodiment of the present invention.
도 48는 본 발명의 일 실시예에 따른 TNKS1의 PARP 도메인에 대하여 재조합 단백질을 대장균 세포에서 발현 및 정제한 결과이다.48 shows the results of expression and purification of a recombinant protein in E. coli cells against the PARP domain of TNKS1 according to an embodiment of the present invention.
도 49는 본 발명의 일 실시예에 따른 정제된 재조합 TNKS1-PARD 단백질에서 H 2O 2 처리에 의한 Zinc 이온의 발출을 측정한 결과이다. Figure 49 shows the results of measurement of the extraction of Zinc ions by H 2 O 2 treatment in the purified recombinant TNKS1-PARD protein according to an embodiment of the present invention.
도 50는 본 발명의 일 실시예에 따른 세포를 anti-TNKS 항체로 면역 침전 반응 후 표시된 단백질에 대해 면역 블로팅한 결과이다. FIG. 50 is a result of immunoblotting the cells according to an embodiment of the present invention with respect to a protein expressed after immunoprecipitation with an anti-TNKS antibody.
도 51은 본 발명의 일 실시예에 따른 TNKS와 PrxII 단백질 사이의 결합을 검출하기 위한 동시 면역 침전 (co-IP) 결과이다.Figure 51 is a co-immunoprecipitation (co-IP) result for detecting binding between TNKS and PrxII protein according to one embodiment of the present invention.
도 52 및 도 53은 본 발명의 일 실시예에 따른 인시츄 근접 결합분석(in situ proximity ligation assays) 결과이다.Figures 52 and 53 are results of in situ proximity ligation assays according to one embodiment of the present invention.
도 54 및 도 55는 본 발명의 일 실시예에 따라 각각 TNKS 및 Myc-PrxII의 절단 돌연변이 또는 단일 잔기 돌연변이를 사용하여 서로의 상호결합을 분석한 결과이다. Figures 54 and 55 are the results of analyzing the mutual binding of each other using truncation mutations or single residue mutations of TNKS and Myc-PrxII, respectively, according to an embodiment of the present invention.
도 56 및 도 57은 본 발명의 일 실시예에 따른 PrxII의 야생형과 G116V 돌연변이의 세포 내 발현 및 퍼옥시다제의 활성을 측정한 결과이다. Figures 56 and 57 are the results of measurement of intracellular expression and activity of peroxidase of wild-type and G116V mutants of PrxII according to an embodiment of the present invention.
도 58은 본 발명의 일 실시예에 따른 PrxII의 야생형과 G116V 돌연변이를 발현하는 세포에서 TNKS1의 PARP 활성 분석을 수행한 결과이다. Figure 58 shows the results of performing PARP activity analysis of TNKS1 in cells expressing PrxII wild type and G116V mutant according to an embodiment of the present invention.
도 59은 본 발명의 일 실시예에 따른 PrxII의 야생형과 G116V 돌연변이를 발현하는 세포에서 콜로니 형성 에세이를 수행한 결과이다. Figure 59 shows the results of performing a colony forming assay on cells expressing PrxII wild type and G116V mutant according to an embodiment of the present invention.
도 60 및 도 61은 본 발명의 일 실시예에 따른 건강한 개인 및 TCGA(암 유전체 지도, The Cancer Genome Atlas) 코드 데이터베이스에서 가져온 대장 암 환자(CRC, n = 155)의 PrxI 및 PrxII 유전자의 발현 수준을 비교한 결과이다.Figures 60 and 61 show the expression levels of the PrxI and Prxll genes of colon cancer patients (CRC, n = 155) from healthy individuals and the Cancer Genome Atlas (TCGA) code database according to one embodiment of the present invention .
도 62은 본 발명의 일 실시예에 따른 건강한 사람과 대장암 환자의 대장 조직 배열에서 PrxII 면역 염색(immunostaining) 결과이다.Figure 62 shows PrxII immunostaining results in the colon arrangement of healthy human and colorectal cancer patients according to one embodiment of the present invention.
도 63 은 본 발명의 일 실시예에 따른 화합물-6(코노이딘 A)의 PRXI 과 PrxII에 대한 활성 억제반응 결과이다. FIG. 63 shows the results of inhibition of the activity of Compound-6 (conoidine A) against PRXI and PrxII according to an embodiment of the present invention.
도 64 은 본 발명의 일 실시예에 따른 화합물-6(코노이딘 A)를 전처리한 대장암 세포주에서 콜로니 형성 에세이를 수행한 결과이다. FIG. 64 is a result of performing a colony forming assay on a colon cancer cell line pretreated with Compound-6 (a compound of the present invention) (Compound 6) according to an embodiment of the present invention.
도 65 내지 도 66은 본 발명의 일 실시예에 따른 화합물-6(코노이딘 A)을 처리한 대장암 세포주 HT29를 쥐에 이식 (xenograft)한 뒤 종양의 성장을 In vivo luminescence imaging 과 무게를 측정한 결과이다. 65 to 66 are graphs showing the results of xenografting a compound cancer cell line HT29 treated with Compound-6 (chondroitin A) according to an embodiment of the present invention and then measuring the growth of the tumor by in vivo luminescence imaging and weighing This is a result.
도 67은 본 발명의 일 실시예에 따른 PrxII 효소 활성 저해에 의한 대장암 억제 효과를 나타내는 모식도이다. 67 is a schematic diagram showing the effect of inhibiting PrxII enzyme activity according to an embodiment of the present invention to inhibit colon cancer.
도 68은 본 발명의 일 실시예에 따른 APC WT와 APC 돌연변이를 가진 대장암 환자에서 PrxII 유전자의 발현 수준을 측정한 결과이다.68 shows the results of measuring the expression level of PrxII gene in patients with colorectal cancer having APC WT and APC mutations according to an embodiment of the present invention.
도 69는 본 발명의 일 실시예에 따른 PrxII를 화합물-1과 In vitro 상에서 반응시키고 측정한 퍼록시다아제 활성 결과이다. 69 shows results of peroxidase activity measured by reacting PrxII with Compound-1 in vitro in accordance with an embodiment of the present invention.
도 70은 본 발명의 일 실시예에 따른 PrxII를 화합물-2와 In vitro 상에서 반응시키고 측정한 퍼록시다아제 활성 결과이다. FIG. 70 shows the results of peroxidase activity measured by reacting PrxII with Compound-2 in vitro in accordance with an embodiment of the present invention.
도 71은 본 발명의 일 실시예에 따른 PrxII를 화합물-3과 In vitro 상에서 반응시키고 측정한 퍼록시다아제 활성 결과이다. 71 shows the results of peroxidase activity measured by reacting PrxII with Compound-3 in vitro in accordance with an embodiment of the present invention.
도 72는 본 발명의 일 실시예에 따른 PrxII를 화합물-4와 In vitro 상에서 반응시키고 측정한 퍼록시다아제 활성 결과이다. 72 is a result of peroxidase activity measured by reacting PrxII with Compound-4 in vitro in accordance with an embodiment of the present invention.
도 73은 본 발명의 일 실시예에 따른 PrxII를 화합물-5와 In vitro 상에서 반응시키고 측정한 퍼록시다아제 활성 결과이다. FIG. 73 shows the results of peroxidase activity measured by reacting PrxII with Compound-5 in vitro in accordance with an embodiment of the present invention.
도 74와 도 75는 본 발명의 일 실시예에 따른 코노이딘 A와 화합물-1 내지 화합물-5의 RKO 세포 콜로니 배양 실험 결과에 대한 것이다. FIGS. 74 and 75 show results of an experiment for culturing RKO cell colonies of the compound I-1 and the compound-5 according to the present invention.
도 76와 도 77는 본 발명의 일 실시예에 따른 코노이딘 A와 화합물-1 내지 화합물-5의 HT29 세포 콜로니 배양 실험 결과에 대한 것이다. FIGS. 76 and 77 show results of culturing HT29 cell colonies of the compound 1 with compound 1 and compound 5 according to an embodiment of the present invention. FIG.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부되는 도면과 함께 후술하는 실시예들을 참조하면 명확해질 것이다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이하의 실시예에 의하여 한정되는 것은 아니다. Brief Description of the Drawings The advantages and features of the present invention, and how to accomplish it, will become apparent with reference to the embodiments described hereinafter with reference to the accompanying drawings. However, these examples are for further illustrating the present invention, and the scope of the present invention is not limited by the following examples.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a section includes a constituent element, it is understood that it can include other constituent elements, not excluding other constituent elements unless specifically stated otherwise.
본 출원 명세서 사용되는 용어 화합물-1 내지 화합물-6은 하기 표1의 물질을 말한다. As used herein, the terms Compound-1 to Compound-6 refer to the substances listed in Table 1 below.
Figure PCTKR2018007316-appb-img-000003
Figure PCTKR2018007316-appb-img-000003
Figure PCTKR2018007316-appb-img-000004
Figure PCTKR2018007316-appb-img-000004
<실시예 1> 세포 배양&Lt; Example 1 > Cell culture
모든 CRC 및 HEK293 세포는 American Type Culture Collection (Manassas, VA, USA)로부터 제공되었다. SW480, DLD1, CoLo205, Colo741 및 SW620 세포는 10 % 소 태아 혈청(fetal bovine serum)이 보충 된 RPMI 1840 배지에서 계대배양 하였다. All CRC and HEK293 cells were provided from the American Type Culture Collection (Manassas, VA, USA). SW480, DLD1, CoLo205, Colo741 and SW620 cells were subcultured in RPMI 1840 medium supplemented with 10% fetal bovine serum.
HEK293 및 RKO 세포를 10 % FBS 을 첨가한 Dulbecco 's Modified Eagle 's Medium에서 배양하였다. HT29 세포는 10 % FBS 를 첨가한 McCoy 's 5A 배지에서 배양 하였다. Mycoplasma 오염은 mycoplasma detection kit (Biotool, USA)를 사용하여 세포 배양 상등액(supernatants)에서 주기적으로 시험하였다.HEK293 and RKO cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with 10% FBS. HT29 cells were cultured in McCoy 's 5A medium supplemented with 10% FBS. Mycoplasma contamination was periodically tested in cell culture supernatants using mycoplasma detection kit (Biotool, USA).
<실시예 2> 이중 돌연변이 마우스(double-mutant mice) 제조 Example 2: Preparation of double-mutant mice
생체 내에서 PrxII 의 CRC-특이적 기능을 검사하기 위해, PrxI+/-와 PrxII+/- 마우스를 APCMin / + 마우스와 교배시킴으로써 이중 돌연변이 마우스(double-mutant mice)를 만들었다. To examine the CRC-specific function of PrxII in vivo, double-mutant mice were made by crossing PrxI +/- and PrxII +/- mice with APCMin / + mice.
C57BL/6 background (Jackson Laboratory, Bar Harbor, USA)에 따라 PrxI+/- 및 PrxII+/- C57BL / 6 마우스를 APC Min/+ 마우스와 교배하여 무균 시설에서 사육하고 유지하여 APCMin/+;PrxI+/+, APCMin/+;PrxI+/-, APCMin/+;PrxI-/-, APCMin/+;PrxII+/+, APCMin/+; PrxII+/- 및 APCMin/+;PrxII -/- 의 유전자형을 나타내는 복합 돌연변이체를 만들었다. PrxI +/- and PrxII +/- C57BL / 6 mice were crossed with APC Min / + mice according to C57BL / 6 background (Jackson Laboratory, Bar Harbor, USA) and cultivated and maintained in an aseptic facility to obtain APCMin / +; PrxI + / + APCMin / +; PrxI +/-, APCMin / +; PrxI - / -, APCMin / +; PrxII + / +, APCMin / +; A complex mutant showing the genotype of PrxII +/- and APCMin / +; Prx II - / - was constructed.
리터메이트(littermates)들은 특정 프라이머(primer)들과 쥐의 꼬리 DNA의 게놈 PCR에 의해 유전자형이 확인 되었다(genotyped). 리터메이트는 한 배에서 태어난 새끼들을 말한다. : The littermates were genotyped by genomic PCR of specific primers and rat tail DNA. Literate refers to the cubs born on a ship. :
모든 마우스 실험은 이화 여자 대학교의 Institutional Animal Care and Use Committee (IACUC)의 승인을 받아 ARRIVE 가이드 라인을 준수하였다. 동물 실험은 동물 육종과 조직 분석을 분리하여 이중 맹검법(double-blinded)으로 실시되었다. All mouse experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Ewha Womans University and complied with the ARRIVE guidelines. Animal experiments were carried out in a double-blind fashion by separating animal sarcoma and tissue analysis.
종양 이종 이식 모델의 경우, 쥐를 이소플루란 가스(isoflurane gas) (N2O : O2 / 70 % : 30 %)를 흡입하여 마취시킨 후 PBS 200μl에 현탁된 HT29-luc2 세포(2.5x10 5 cells)를 피하 주사하였다. 화합물 1 내지 6 (DMSO 중 286μM)의 복강 내 투여는 세포 주입 6일 후에 시작되었고 매 3일마다 반복되었다. In the tumor xenograft model, mice were anesthetized by inhalation of isoflurane gas (N2O: O2 / 70%: 30%) and HT29-luc2 cells (2.5x10 5 cells) suspended in 200 μl of PBS Lt; / RTI &gt; Intraperitoneal administration of compounds 1 to 6 (286 [mu] M in DMSO) was started 6 days after cell injection and repeated every 3 days.
생물 발광 이미징(bioluminescent imaging)은 IVIS Lumina Series III (Perkin Elmer)로 수행되었다. 각 영상 촬영 세션에 대해 제조사의 프로토콜에 따라 PBS (체중 kg 당 Luciferin 150mg)에 있는 루시페린(luciferin)을 복강 내로 투여 하였다. 통합 마취 매니 폴드(integral anesthetic manifold) 장비에 최대 4마리의 동물을 유지시키고, 루시페린(Luciferin)주입 10분 후에 영상화 하였다. IVIS 이미징 시스템은 쥐의 사진 이미지와 양적 생물 발광 신호(quantitative bioluminescent signal)를 수집 한 다음 서로 겹치게 한다. Bioluminescent imaging was performed with IVIS Lumina Series III (Perkin Elmer). For each imaging session, luciferin in PBS (Luciferin 150 mg / kg body weight) was administered intraperitoneally according to the manufacturer's protocol. Up to four animals were maintained in an integral anesthetic manifold instrument and imaged 10 min after luciferin injection. The IVIS imaging system collects photographic images and quantitative bioluminescent signals of mice and then overlaps them.
<실시예 3> 이중 돌연변이 마우스(double-mutant mice) 유전자형 결정 Example 3 Double-mutant mouse genotype determination
게놈 PCR에 의해 4주에 상기 실시예에서 제조된 이중 돌연변이가 유도된 마우스의 유전자형을 결정하고, 도 1 및 도 2에서 상기 실시예에 의해 제조된 이중 돌연변이 마우스에 대한 유전자형을 결정한 결과를 나타내었다. The genotypes of the double mutation-induced mice prepared in the above Example were determined by genomic PCR at 4 weeks, and the genotypes of the double mutant mice produced by the above-mentioned Examples were determined in FIGS. 1 and 2 .
도 1 내지 도 3에서 상기 실시예에 의해 제조된 이중 돌연변이 마우스는 APC(adenomatous polyposis coli) 절단 돌연변이에 의해 다발성 장종양(multiple intestinal neoplasia, Min)을 발생시키는 것을 확인할 수 있다. 도 1 및 도 2에서 절단된 APC 유전자에 대한 산물은 별표로 표시하였다. In FIGS. 1 to 3, it can be confirmed that the double mutant mouse produced by the above example generates multiple intestinal neoplasia (Min) by mutation of APC (adenomatous polyposis coli) cleavage. The products for the APC gene cleaved in Figures 1 and 2 are indicated by an asterisk.
APC 돌연변이가 이형접합체(heterozygous) 임에도 불구하고, 장 선종성 용종증은 잔류(residual) APC 야생형(wild type, WT) 의 소실에 의해 유발되는 것으로 알려져 있으며, 그 결과로 생긴 선종성 용종증은 인간 대장 암 종양과 유사한 절단된 APC 단백질(truncated APC wild type(WT) copy)을 포함하고 있다고 알려져 있다. Although the APC mutation is heterozygous, it is known that polymorphonuclear polyposis is caused by the disappearance of residual APC wild type (WT), and the resulting adenomatous polyposis is the result of human colon cancer It is known to contain a truncated APC wild type (WT) copy similar to the tumor.
유전자형을 결정하기 위해 사용된 프라이머는 아래와 같다. The primers used to determine the genotype are as follows.
APC Min APC Min
(wild type) 5'-GCCATCCCTTCACGTTAG-3', (wild type) 5'-GCCATCCCTTCACGTTAG-3 ',
(mutant) 5'-TTCTGAGAAAGACAGAAGTTA-3' (mutant) 5'-TTCTGAGAAAGACAGAAGTTA-3 '
(common) 5'-TTCCACTTTGGCATAAGGC - 3'(common) 5'-TTCCACTTTGGCATAAGGC-3 '
PrxI PrxI
forward 5'-CTGGAAACCTGGCAGTGATA-3 ', forward 5'-CTGGAAACCTGGCAGTGATA-3 ',
reverse, 5'-CTGTGACTGATAGAAGATTGGT-3'), reverse, 5'-CTGTGACTGATAGAAGATTGGT-3 '),
PrxII PrxII
forward ,5'-GATGATCTCCGTGGGGCAAACAAA-3', forward, 5'-GATGATCTCCGTGGGGCAAACAAA-3 ',
reverse, 5'-ATGGCCTCCGGCAACGCGCAAATC-3', reverse, 5'-ATGGCCTCCGGCAACGCGCAAATC-3 ',
Neo cassetteNeo cassette
forward, 5'-GCTTGGGTGGAGAGGCTATTCG-3', forward, 5'-GCTTGGGTGGAGAGGCTATTCG-3 ',
reverse, 5'-GTAAAGCACGAGGAAGCGGTCAGC-3'.reverse, 5'-GTAAAGCACGAGGAAGCGGTCAGC-3 '.
<실시예 4> 이중 돌연변이 마우스(double-mutant mice) 선종성 용종 관찰Example 4: Observation of adenomatous polyps in double-mutant mice
주된 마우스에서 작은 창자와 결장을 절제하고, 장의 선종성 용종을 분리하여 입체 현미경을 사용하여 관찰하고 도 4에 나타내었다The small intestine and colon were excised from the main mouse, and the adenomatous polyp of the intestine was separated and observed using a stereoscopic microscope, and is shown in Fig. 4
마우스의 소장 및 결장에서 직경이 0.3 mm를 초과하는 용종의 수를 측정하고 도 5에 나타내었다. 도 5에서 보는 바와 같이 APC Min/+;PrxII -/- 마우스의 소장 및 결장에서 평균적으로 보이는 직경 0.3 mm 초과 용종의 수는 APC Min/+;PrxII +/+ 및 APC Min/+;PrxII +/- 마우스의 용종의 수와 비교하여 약 50 % 감소하였다. The number of polyps having a diameter of more than 0.3 mm in the small intestine and colon of the mouse was measured and shown in Fig. FIG APC Min / +, as shown in 5; PrxII - / - number of the small intestine and colon on average greater than the visible diameter 0.3 mm in polyps of mice APC Min / +; PrxII + / + and APC Min / +; PrxII + / - about 50% as compared to the number of mouse polyps.
APC Min/+;PrxII -/- 생쥐(평균 생존 = 241 일)는 APC Min/+;PrxII +/+ (평균 생존 = 146 일) 및 APC Min/+;PrxII +/-(평균 생존 = 152 일) 보다 훨씬 더 오래 생존했다. APC Min / +; PrxII - / - mice (median survival = 241 days) APC Min / +; PrxII + / + ( median survival = 146 days) and APC Min / +; PrxII +/- (median survival = 152 days ) Survived much longer than.
마우스의 소장과 대장의 조직 검사를 수행하고 그 결과를 도 6에 나타내었다. 도 6 에서 보는 바와 같이 PrxII 결손은 융모 구조를 변화시키지 않았으나 선종성 폴립의 빈도와 크기를 감소시켰다. The histological examination of the small intestine and the large intestine of the mice was carried out, and the results are shown in Fig. As shown in FIG. 6, Prx II deficiency did not change the villi structure but decreased frequency and size of adenomatous polyps.
PrxI 결손 마우스에 대한 장의 선종성 용종을 입체 현미경을 사용하여 관찰하고 그 갯수를 세어 도 7 및 도 8에 나타내었다. APC Min/+;PrxI -/-의 평균 장내 용종의 수는 APC Min/+;PrxI +/+ 및 APC Min/+;PrxI +/- 의 용종의 숫자와 같았다. The adenomatous polyps of the intestine for PrxI-deficient mice were observed using a stereomicroscope and the number of them was counted, as shown in FIGS. 7 and 8. FIG. The average number of intestinal polyps in APC Min / + ; PrxI - / - was equal to the number of APC Min / + ; PrxI + / + and APC Min / + ; PrxI +/- polyps.
이와 같은 결과로부터 PrxII가 생체 내에서 APC 돌연변이에 의해 유도되는 장의 종양 형성을 촉진하는데 비해, PrxI은 APC 돌연변이에 의해 유도되는 장의 종양과 무관하다는 것을 알 수 있었다. These results suggest that PrxII promotes intestinal tumors induced by APC mutations in vivo, whereas PrxI is independent of APC mutation induced intestinal tumors.
<실시예 5> 베타카테닌(β-catenin) 발현 측정 Example 5 Expression of beta-catenin
APC Min/+;PrxII +/+ 및 APC Min/+;PrxII -/- 에서 분리된 용종에서 베타카테닌(β-catenin)과 그 유전자 발현양을 immunoblotting 으로 측정하고 그 결과를 도 9에 나타내었다. The amount of β-catenin and its gene expression in polyps isolated from APC Min / + ; PrxII + / + and APC Min / + ; PrxII - / - was measured by immunoblotting and the results are shown in FIG.
도 9 에서 보는 바와 같이 APC Min/+;PrxII -/- 종양에서의 베타카테닌(β-catenin)과 그 전사 target 인 c-Myc와 Cyclin D1의 발현 수준은 APC Min/+;PrxII +/+의 종양에서의 발현 수준에 비해 현저히 감소했다. 그러나, 베타카테닌(β-catenin) 파괴 복합체(destruction complex)에서 중요한 스캐폴드 단백질인 Axin1의 발현 수준은 종양과 반비례로 APC Min/+;PrxII -/- 마우스에서 발현이 증가하는 양상을 나타내었다. As shown in FIG. 9, the expression levels of β-catenin and its transcriptional targets c-Myc and cyclin D1 in APC Min / + ; PrxII - / - tumors are shown in APC Min / + ; PrxII + / + Lt; RTI ID = 0.0 &gt; tumor &lt; / RTI &gt; However, expression level of Axin1, an important scaffold protein in the β-catenin destruction complex, was increased in APC Min / + ; PrxII - / - mice in inverse proportion to the tumor.
도 10 에서 보는 바와 같이 APC Min/+;PrxII + / + 및 APC Min/+;PrxII -/- 의 사이에서 베타카테닌(β-catenin)과 Axin1의 mRNA 발현양은 변하지 않았기 때문에, PrxII가 생체 내에서 Axin1과 베타카테닌(β-catenin) 의 발현을 단백질 수준에서 조절하고 있다는 것을 알 수 있다. As shown in FIG. 10, since the amount of mRNA expression of β-catenin and Axin1 was not changed between APC Min / + ; PrxII + / + and APC Min / + ; PrxII - / - , PrxII was expressed in vivo It can be seen that the expression of Axin1 and beta-catenin is regulated at the protein level.
<실시예 6> 베타카테닌(β-catenin) 표적 유전자가 CRC 세포의 증식과 생존에 관여하는지 여부 측정Example 6: Measurement of whether beta-catenin target gene is involved in the proliferation and survival of CRC cells
베타카테닌(β-catenin) 표적 유전자가 CRC 세포의 증식과 생존에 관여하는지 여부를 측정하기 위해 증식하는 세포와 죽은 세포를 세었다. To determine whether the β-catenin target gene is involved in the proliferation and survival of CRC cells, proliferating and dead cells were counted.
도 11 및 도 12의 Ki-67 발현 및 BrdU 혼합 검정(BrdU incorporation assays)에서 보는 바와 같이 APC Min/+;PrxII +/+ 및 APC Min/+;PrxII -/- 의 용종에서는 증식하는 세포의 비율이 유사했다. As seen in the Ki-67 expression and BrdU incorporation assays of Figures 11 and 12, the percentage of proliferating cells in the APC Min / + ; PrxII + / + and APC Min / + ; PrxII - / - This was similar.
또한, 도 13에서 BrdU 혼합 검정(BrdU incorporation assays)은 PrxII 결손이 음낭의 장상피 세포의 증식과 이동에 전혀 영향을 미치지 않음을 보여 주었다. Also, in Fig. 13, BrdU incorporation assays showed that PrxII deficiency had no effect on the proliferation and migration of intestinal epithelial cells of the scrotum.
이와는 반대로 도 14에서 APC Min/+;PrxII -/- 의 용종에서 TUNEL 염색으로 측정한 죽은 세포의 수는 APC Min/+;PrxII +/+ 의 용종에서 TUNEL 염색으로 측정한 죽은 세포의 수보다 현저하게 높았다. 이와 같은 결과로부터 PrxII가 APC 돌연변이에 의해 유도된 장 선종성 용종에서 종양 세포의 생존을 촉진한다는 것을 알수 있다.In contrast, the number of dead cells measured by TUNEL staining in polyps of APC Min / + ; PrxII - / - in FIG. 14 was significantly higher than the number of dead cells measured by TUNEL staining in APC Min / + ; PrxII + / + Respectively. These results suggest that PrxII promotes the survival of tumor cells in the adenomatous polyposis induced by APC mutation.
<실시예 7> PrxII에 의한 베타카테닌(β- catenin) 발현 조절 메커니즘 분석 <Example 7> Analysis of regulation mechanism of β-catenin expression by PrxII
PrxII를 과다 발현하는 인간 CRC 세포에서 PrxII에 의한 베타카테닌(β-catenin) 발현 조절 메커니즘을 분석했다. The mechanism of β-catenin expression regulation by PrxII in human CRC cells overexpressing PrxII was analyzed.
도 15에서 보는 바와 같이 APC-돌연변이 CRC 세포인 SW480과 HT29 세포 모두에서 siRNA 분석시 PrxII 발현 감소는 내인성 베타카테닌(β-catenin)의 발현양을 현저하게 감소시켰으며, 절단된 돌연변이 형태의 APC 단백질이 발현되었다. 그러나, SW480과 HT29 세포 모두에서 PrxI 결핍은 베타카테닌(β-catenin) 발현을 변화시키지 않았다. As shown in FIG. 15, in the APC-mutant CRC cells SW480 and HT29 cells, the decrease in expression of PrxII during siRNA analysis markedly decreased the expression of endogenous beta-catenin, and the cut mutant APC protein Lt; / RTI &gt; However, PrxI deficiency did not alter beta-catenin expression in both SW480 and HT29 cells.
또한, 도 16에서 보는 바와 같이 베타카테닌(β-catenin) 발현 감소는 PrxII 결핍의 정도에 비례하며, 이로부터 PrxII 를 엄격하게 knockdown 시키는 것이 베타카테닌(β-catenin) 수준을 감소시키는 데 중요하다는 것을 알 수 있다. In addition, as shown in FIG. 16, the decrease in β-catenin expression is proportional to the degree of PrxII deficiency, which suggests that strict knockdown of PrxII is important for decreasing the β-catenin level Able to know.
도 17에서 보는 바와 같이 PrxII 결핍은 또한 다른 APC-돌연변이 CRC 세포인 SW620, DLD-1 및 CoLo205 에서 총 베타카테닌(β-catenin) 및 활성 베타카테닌(active β-catenin) (비인산화된 형태)의 발현양을 감소시켰다. As shown in Figure 17, PrxII deficiency was also associated with total beta-catenin and active beta-catenin (non-phosphorylated forms) in SWC220, DLD-1 and CoLo205, other APC- mutant CRC cells The amount of expression was decreased.
PrxII siRNA의 부정확한 영향(off-target effects)을 배제하기 위해, PrxII의 siRNA 내성 형태로 HT29 세포를 형질 감염시킴으로써 PrxII를 발현하였다.To exclude off-target effects of PrxII siRNA, PrxII was expressed by transfecting HT29 cells with the siRNA-resistant form of PrxII.
도 18 및 도 19에서 보는 바와 같이 PrxII 야생형(wild type, WT)은 siRNA가 형질 감염된 대조 세포와 비교해 총 베타카테닌(β-catenin) 및 활성 베타카테닌(active β-catenin) 수준을 완벽하게 회복하여 이로부터 베타카테닌(β-catenin) 발현을 조절하는 PrxII의 특정 역할을 확인할 수 있다. As shown in FIGS. 18 and 19, the PrxII wild type (WT) completely restored the total beta-catenin and active beta-catenin levels compared to control cells transfected with siRNA This confirms the specific role of PrxII in regulating β-catenin expression.
반대로, 퍼옥시다제-불활성화 돌연변이(peroxidase-inactive mutants) C172S 및 C51/172S 에서의 PrxII의 발현은 베타카테닌(β-catenin) 발현 수준을 회복시키지 못하여, PrxII의 퍼옥시다아제 활성이 CRC 세포에서 활성 베타카테닌(active β-catenin) 수준을 유지하는데 필요하다는 것을 알 수 있다. 도 20에서 PrxII 결손은 HT29 및 SW480 세포에서 세포 내 H 2O 2양을 증가시켰다. Conversely, expression of PrxII in peroxidase-inactive mutants C172S and C51 / 172S failed to restore the level of beta-catenin expression, suggesting that peroxidase activity of PrxII is active in CRC cells It is necessary to maintain the active beta-catenin level. In Figure 20, PrxII deficiency increased intracellular H 2 O 2 levels in HT29 and SW480 cells.
PrxII 결핍이 베타카테닌(β-catenin) mRNA 수준을 변화시키지 않았음을 확인했기 때문에 카제인 키나아제-1(casein kinase-1)과 GSK -3β(glycogen synthase kinase -3β)에 의한 베타카테닌(β-catenin)의 순차적인 인산화를 나타내는 파괴 복합체(canonical destruction complex)에 의한 베타카테닌(β-catenin) 단백질의 분해를 측정하였다. We found that PrxII deficiency did not alter β-catenin mRNA levels, suggesting that β-catenin (β-catenin) was induced by casein kinase-1 and GSK-3β (glycogen synthase kinase-3β) ) Was sequenced by a canonical destruction complex, which indicates the phosphorylation of the β-catenin protein.
인산화된 베타카테닌(β-catenin)은 β-TrCP(Beta-transducin repeats-containing proteins ) 또는 E3 유비퀴틴 리가아제(ubiquitin E3 ligase)라고도 불리우는 효소에 의해 유비퀴톤화 되어 포로테아좀(proteasome)에 의해 분해된다고 알려져 있으므로, 베타카테닌(β-catenin) 파괴 복합체(canonical destruction complex)가 베타카테닌(β-catenin) 발현의 PrxII-의존성 조절에 관여하는 것인지를 실험하였다. Phosphorylated beta-catenin is ubiquitinated by an enzyme called β-TrCP (Beta-transducin repeats-containing proteins) or E3 ubiquitin E3 ligase and degraded by proteasome , We examined whether the β-catenin destruction complex is involved in PrxII-dependent regulation of β-catenin expression.
도 21 내지 도 23에서 GSK3β(glycogen synthase kinase -3β) 억제제는 활성 베타카테닌(active β-catenin) 발현을 증가 시켰으며, 이것은 구성적 활성화된(constitutively-active) GSK3β(glycogen synthase kinase -3β)가 관여함을 의미한다. 21-23, glycogen synthase kinase-3β (GSK3β) inhibitors increased active β-catenin expression, suggesting that constitutively-active GSK3β (glycogen synthase kinase-3β) .
그러나, 도 24에서 보는 바와 같이 kinase 활성화의 지표가 되는, GSK3β(glycogen synthase kinase -3β)의 티로신 인산화 수준으로부터 PrxII 결손이 GSK3β(glycogen synthase kinase -3β) 활성화를 자극할 가능성이 없다는 것을 알 수 있다. However, as shown in FIG. 24, it can be seen that PrxII deletion is not likely to stimulate GSK3β (glycogen synthase kinase-3β) activation from the tyrosine phosphorylation level of GSK3β (glycogen synthase kinase-3β), which is an index of kinase activation .
또한, 도 25에서 PrxII 결핍이 Wnt 유발(Wnt-induced) 베타카테닌(β-catenin) 안정화에 영향을 미치지 않음을 관찰하였으며, 탈조절된 베타카테닌 시그널링(deregulated β-catenin signaling)에 PrxII가 선택적으로 참여한다는 것을 확인했다. 25, PrxII deficiency did not affect Wnt-induced beta-catenin stabilization, and deregulated beta-catenin signaling showed that PrxII selectively inhibited Wnt-induced beta-catenin stabilization I confirmed that I participated.
도 26에서 감소된 베타카테닌(β-catenin) 발현의 결과로서, PrxII 결손은 TCF-의존성 리포터 발현(TCF-dependent reporter expression)의 현저한 감소를 유도하였다.As a result of reduced beta-catenin expression in Figure 26, PrxII deficiency induced a significant decrease in TCF-dependent reporter expression.
<실시예 8> PrxII 결핌에 의한 베타카테닌(β-catenin) / TCF 의존성 전사 조절<Example 8> Beta-catenin / TCF-dependent transcriptional regulation by PrxII deficiency
mRNA 서열 분석에 의해 HT29 세포에서 베타카테닌(β-catenin) / TCF 의존성 전사를 mRNA 시퀀싱으로 조사하고 그 결과를 도 27, 도 28, 도 29 및 도 30에 나타내었다. β-catenin / TCF-dependent transcription was examined by mRNA sequencing in HT29 cells by mRNA sequencing, and the results are shown in FIGS. 27, 28, 29 and 30.
도 31에서 보는 바와 같이 특히, PrxII 결손에 의해 CCND1, AXIN2 및 BIRC5와 같은 주요 베타카테닌(β-catenin) 표적 유전자가 포함된 CRC 세포에서 발현되는 베타카테닌(β-catenin) 표적 유전자 중 12 개의 유전자가 하향조절(down regulated)되었다 (FDR <0.05). As shown in FIG. 31, in particular, 12 out of the beta-catenin target genes expressed in CRC cells containing a major beta-catenin target gene such as CCND1, AXIN2 and BIRC5 by PrxII deletion Was down regulated (FDR <0.05).
S100A4, MMP7, ID2 및 PTTG1과 같은 다른 전이 및 세포주기 촉진 유전자도 PrxII 결손에 의해 하향 조절되었다. Other metastatic and cell cycle-promoting genes such as S100A4, MMP7, ID2 and PTTG1 were also downregulated by PrxII deficiency.
HT29 세포 외에도, PrxII 결핍은 SW480 세포에서 13 개의 베타카테닌(β-catenin) 표적 유전자를 하향 조절하였으며(FDR <0.05), 도 32에서 그 중 4 개의 유전자 (CCND1, S100A4, ID2, EDN1)가 겹쳐 있음을 알 수 있다. In addition to HT29 cells, PrxII deficiency downregulated 13 β-catenin target genes in SW480 cells (FDR <0.05), and in FIG. 32, four of these genes (CCND1, S100A4, ID2, EDN1) .
SW480 세포에서 몇 가지 다른 유전자의 하향 조절은 베타카테닌(β-catenin) 관련 전사 복합체 또는 베타카테닌(β-catenin) 감소의 2차 효과에 의해 매개 될 수 있다는 것을 의미한다. Down-regulation of several other genes in SW480 cells implies that they can be mediated by a secondary effect of β-catenin-related transcriptional complexes or β-catenin reduction.
이와 같은 결과로부터 PrxII 결손이 CRC 세포의 파괴 복합체를 통해 전사 활성 베타 카테닌(active β-catenin) 의 분해를 촉진한다는 것을 알수 있다. These results suggest that PrxII deficiency accelerates the degradation of transcriptionally active β-catenin through CRC cell-destructive complexes.
<실시예 9> CRC 세포에서 PrxII 결핍에 의한 베타카테닌(β- catenin) &Lt; Example 9 > Beta-catenin due to PrxII deficiency in CRC cells [ of Wnt-독립적(Wnt-independent) 및 Axin1 의존적(Axin1-dependent) 파괴 분석 Wnt-independent and Axin1-dependent breakdown analysis
APC 돌연변이에서 다른 스캐폴드 단백질인 Axin1은 베타카테닌(β-catenin) 파괴에 중요한 역할을 하는 것으로 알려져 있다. APC-돌연변이 CRC 세포에서의 Axin1 과발현은 베타카테닌(β-catenin) 분해를 충분히 유도한다고 알려져 있다. Axin1, another scaffold protein in the APC mutation, is known to play an important role in beta-catenin destruction. Axin1 overexpression in APC-mutant CRC cells is well known to induce β-catenin degradation.
앞서 도 9에서 PrxII 유전자가 제거된 쥐의 장 용종에서 Axin1 발현이 증가된다는 것을 확인한 바 있다. In FIG. 9, it has been confirmed that Axin1 expression is increased in the intestinal polyp of the PrxII gene-deleted rat.
CRC 세포에서 Axin1 및 Axin1과 관련된 파괴 복합체의 양을 측정하였다. 도 33에서 면역 블롯 분석 결과, PrxII 결핍은 HT29 및 SW480 CRC 세포 모두에서 내인성 Axin1 단백질 발현을 증가시켰으며, 이는 활성 베타카테닌 (active β-catenin)발현과 역 상관 관계가 있음을 나타낸다. The amount of destructive complexes associated with Axin1 and Axin1 was measured in CRC cells. Immunoblot analysis in FIG. 33 showed that PrxII deficiency increased endogenous Axin1 protein expression in both HT29 and SW480 CRC cells, indicating an inverse correlation with active beta-catenin expression.
도 34의 공동 면역 침전 실험(co-immunoprecipitation experiment)에서 PrxII 결손이 Axin1 관련 파괴 복합체의 발현을 증가 시켰음을 확인할 수 있다. GSK3β(glycogen synthase kinase -3β) 억제제인 BIO가 처리되었을 때, 인산화 베타카테닌(phospho-β-catenin)은 복합체에서 사라졌다. In the co-immunoprecipitation experiment of Fig. 34, it can be seen that the PrxII deletion increased the expression of Axin1-related destructive complexes. When the glycogen synthase kinase-3β inhibitor, BIO, was treated, the phospho-β-catenin disappeared from the complex.
또한, 도 35에서 Axin1/2의 녹다운(knockdown)은 PrxII 결손 세포의 활성 베타카테닌(active β-catenin) 수치를 대조군 세포 수준으로 회복시켰다.In Fig. 35, the knockdown of Axin1 / 2 restored the active beta-catenin level of PrxII deficient cells to the level of control cells.
이러한 결과는 PrxII가 결손된 CRC 세포에서 Axin이 기능적 파괴 복합체를 형성하여 베타카테닌(β-catenin) 분해를 조절한다는 것을 의미한다. These results indicate that Axin in PrxII-deficient CRC cells forms a functional burst complex that regulates β-catenin degradation.
Axin은 폴리(ADP-라이보스)폴리머레이즈 (poly(ADP-ribose)polymerization, PARsylation) 및 후속 유비퀴틴(ubiquitination)에 의해 분해되기 때문에, HT29 및 SW480 세포에서 Axin1의 상태를 분석 하였다. Since Axin is degraded by poly (ADP-ribose) polymerisation (PARPylation) and subsequent ubiquitination, the status of Axin1 was analyzed in HT29 and SW480 cells.
실제로, 프로테아솜 억제제인 MG132의 처리는 대조군 세포에서 폴리 ADP 라이보실화(PARsylated) 및 유비퀴틴화된 Axin1의 축적을 유도하고, 이로부터 Axin1이 계속 분해된다는 것을 알 수 있다. Indeed, treatment of the proteasome inhibitor MG132 induces the accumulation of poly ADP-lysed PARSylated and ubiquitinated Axin1 in control cells, indicating that Axin1 is continuously degraded.
반대로, 도 36에서 보는 바와 같이 PrxII 결손은 세포 내 총 유비퀴틴화(ubiquitination)에 영향을 주지 않으면서 Axin1의 폴리ADP-라이보실화/유비퀴틴화(PARsylation / ubiquitination)을 억제하였다. Conversely, as shown in Fig. 36, PrxII deficiency inhibited poly ADP-lyvosylation / ubiquitination of Axin1 without affecting intracellular total ubiquitination.
<실시예 10> PrxII 결핍 CRC 세포의 콜로니 형성 능력 측정Example 10: Measurement of colony forming ability of PrxII-deficient CRC cells
Axin1 / 베타카테닌(β-catenin) 경로의 PrxII 의존성 조절 기작의 생물학적 중요성을 평가하기 위하여 CRC 세포에서 콜로니 형성 능력을 조사하였다. To evaluate the biological significance of the PrxII-dependent regulatory mechanism of the Axin1 / beta-catenin pathway, colony forming ability in CRC cells was investigated.
시험관 내 콜로니 형성 능력 분석 결과 도 37에서 APC WT를 발현하는 RKO 세포가 아닌, HT29 및 SW480 세포에서 PrxII 결손이 콜로니 형성을 충분히 억제 함을 알 수 있다. Analysis of in vitro colony forming ability shows that PrxII deficiency in HT29 and SW480 cells, which are not RKO cells expressing APC WT, sufficiently inhibits colony formation in FIG.
도 38에서 활성 베타카테닌(active β-catenin) S37A 돌연변이체의 발현은 PrxII 결손에 의해 손상된 APC 돌연변이체 CRC 세포의 콜로니 형성 능력을 거의 완전히 복구함을 확인할 수 있다. In FIG. 38, it can be seen that the expression of the active beta-catenin S37A mutant almost completely restores the ability of the APC mutant CRC cells to be damaged by the PrxII deletion.
이로부터 PrxII 결손은 Axin1에 의한 베타카테닌(β-catenin) 분해를 유도함으로써 APC 돌연변이의 발암적 표현형을 충분히 역전시킬 수 있음을 알 수 있다. From this, it can be seen that the PrxII deficiency can induce the β-catenin degradation by Axin1, thereby sufficiently reversing the carcinogenic phenotype of the APC mutation.
<실시예 11> PrxII 결핍에 의한 TNKS-Axin1 신호체계조절 분석 Example 11: Regulatory analysis of TNKS-Axin1 signaling by PrxII deficiency
TNKS는 Axin 단백질을 위한 유일한 폴리 ADP 라이보실화 효소이다. PrxII가 TNKS 활성에 필수적인지 여부를 in vitro PARP 분석을 수행하여 확인하였다. TNKS is the only poly ADP ribocylating enzyme for Axin proteins. It was confirmed by in vitro PARP analysis whether PrxII is essential for TNKS activity.
도 39에서 보는 바와 같이 PrxII 결손은 APC- 돌연변이 HT29 및 SW480 세포에서 TNKS 활성의 심각한 손상을 유도하였지만, APC- 기능이 살아 있는 RKO 세포에서는 그렇지 않았다. 도 40에서 보는 바와 같이 이와는 대조적으로, H 2O 2 처리는 SW480 및 RKO 세포 모두에서 TNKS 활성을 억제하였다. As shown in FIG. 39, PrxII deficiency induced severe damage of TNKS activity in APC-mutant HT29 and SW480 cells, but not in APC-functioning RKO cells. In contrast, H 2 O 2 treatment inhibited TNKS activity in both SW480 and RKO cells, as shown in FIG.
이상의 결과로부터 APC 돌연변이에 상관없이 외인성 H 2O 2가 TNKS 활성을 직접 불활성화함을 알 수 있다. From the above results, it can be seen that the exogenous H 2 O 2 directly inactivates the TNKS activity regardless of the APC mutation.
TNKS는 자가 폴리ADP라이보실화(auto PARsylation) 및 분해되는 것으로 알려져 있으므로, CRC 세포 패널에서 기질 단백질과 함께 TNKS 발현양을 측정했다. Because TNKS is known to undergo auto-poly ADP lysylation (auto PARsylation) and degradation, TNK expression levels were measured with the substrate protein in CRC cell panels.
도 41에서 보는 바와 같이, 실험을 실시한 모든 APC- 돌연변이 CRC 세포에서 PrxII 결손은 TNKS 및 Axin1 발현양을 증가시켰지만, RKO 및 Colo741 세포를 포함한 APC- 기능을 유지하는 세포에서는 발현양이 증가하지 않았다. As shown in FIG. 41, in all the APC-mutant CRC cells subjected to the experiment, the PrxII deletion increased the expression level of TNKS and Axin1, but the expression level did not increase in the APC-functioning cells including RKO and Colo741 cells.
더 중요한 것은, PrxII 결손은 핵에서 텔로머라제 조절에 필수적인 다른 TNKS 기질인 TRF1(텔로머릭 반복결합인자 1, telomeric repeat-binding factor 1) 발현 수준에 영향을 미치지 않았다는 것이다. More importantly, PrxII deficiency did not affect the expression level of TRF1 (telomeric repeat-binding factor 1), another TNKS substrate essential for telomerase regulation in the nucleus.
도 42 및 도 43에서, 대조적으로, 특정 억제제인 XAV939를 사용하는 TNKS의 직접 저해는 모든 CRC 세포에서 TNKS와 기질인 Axin1 및 TRF1의 발현 양을 증가시켰고, 결과적으로 HT29 및 SW480 세포의 증식을 억제 하였다. In Figures 42 and 43, by contrast, direct inhibition of TNKS using a specific inhibitor, XAV939, increased the expression of TNKS and substrates Axin1 and TRF1 in all CRC cells and consequently inhibited the proliferation of HT29 and SW480 cells Respectively.
CRC 세포에서 APC와 PrxII 기능 간의 직접적인 상관 관계를 확인하기 위해 RKO 세포에서 APC 녹다운(knockdown)을 수행했다. APC knockdown was performed on RKO cells to confirm a direct correlation between APC and PrxII function in CRC cells.
도 44, 도 45, 및 도 46에서 보는 바와 같이 APC knockdown은 확실히 세포내의 H 2O 2와 베타카테닌(β-catenin)의 발현의 현저한 증가를 유도하고, 결과적으로 TNKS1의 H 2O 2 의존성 불활성화를 가속화시켰다. 또한, APC와 PrxII의 동시 결핍은 베타카테닌(β-catenin) 발현의 감소와 함께 TNKS 및 Axin1 단백질 발현을 증가시켰다. As shown in FIGS. 44, 45 and 46, the APC knockdown definitely induces a marked increase in the expression of H 2 O 2 and β-catenin in the cells, and consequently, the H 2 O 2 -dependent fire of TNKS1 Acceleration of activation. In addition, concurrent deficiency of APC and PrxII increased TNKS and Axin1 protein expression with a decrease in β-catenin expression.
PrxII가 세포질 내 퍼록시데이즈(peroxidase) 이므로, PrxII는 APC 돌연변이 또는 손실에 의해 유도된 산화 스트레스로부터 세포질 내 TNKS를 선택적으로 보호 할 수 있음을 시사한다. Since PrxII is a cytoplasmic peroxidase, PrxII suggests that it can selectively protect intracellular TNKS from oxidative stress induced by APC mutation or loss.
<실시예 12> H2O2 매개된 TNKS의 PARP 활성의 불활성화의 메커니즘 확인Example 12 Confirmation of Inactivation Mechanism of PARP Activity of H2O2-Mediated TNKS
H 2O 2 매개된 TNKS의 PARP 활성의 불활성화의 메커니즘을 확인하기 위하여 TNKS의 PARP 촉매 도메인 내에서 산화 - 민감성 Cys 잔기를 검색하였다. To identify the mechanism of inactivation of the PARP activity of H 2 O 2 -mediated TNKS, the oxidation-sensitive Cys residues in the PARP catalytic domain of TNKS were screened.
다양한 PARP 도메인의 펩타이드 서열을 정렬하여 아연 결합 모티프 3 개를 포함하는 5 개의 Cys 잔기를 발견했고, PARP 계통사이에서 TNKS 이성체에 유일하게 존재한다는 것을 알아냈다. The peptide sequences of the various PARP domains were aligned to reveal five Cys residues containing three zinc binding motifs and found to be unique in the TNKS isoform between the PARP lines.
TNKS1에서 각각의 Cys 잔기를 Ser로 변이시키고 그의 PARP 활성을 조사한 결과, 도 47에서 보는 바와 같이 발견된 5 개의 Cys 잔기중 3 개의 아연 - 배위 Cys 잔기 (C1234, C1242 및 C1245)의 돌연변이는 PARP 활성의 완전한 손실을 초래하였다. The mutation of three zinc-coordinated Cys residues (C1234, C1242 and C1245) of the five Cys residues found in the TNKS1 mutated Cys residues to Ser and examined its PARP activity revealed that PARP activity Resulting in complete loss of
아연 결합 모티프가 산화 조건에서 불안정한지를 시험하기 위해 재조합 TNKS1 PARP 도메인 (1023-1327의 아미노산)을 준비했다. TNKS1 PARP 도메인은 손상되지 않은 폴리ADP라이보실화(PARsylating) 활성을 나타내었으며, 도 48에서 보는 바와 같이 H 2O 2와 함께 배양함으로써 완전히 불활성화 되었다. The recombinant TNKS1 PARP domain (amino acids 1023-1327) was prepared to test if zinc binding motifs were unstable under oxidative conditions. The TNKS1 PARP domain exhibited intact poly ADP lysylating activity and was completely inactivated by incubation with H 2 O 2 as shown in FIG.
아연 결합 단백질은 시스테인 산화에 의해 아연 이온이 튀어 나오고, 방출된 유리 아연 이온은 4-(2-피리딜라조)레조르시놀(4-(2-pyridylazo)resorcinol)을 사용하여 분광 광도계로 측정할 수 있다. The zinc binding protein is produced by cysteine oxidation, and the released zinc ions are measured with a spectrophotometer using 4- (2-pyridylazo) resorcinol. .
상기 방법에 의하여 분광 광도계로 측정한 결과를 도 49에 나타내었다. 도 44B에서 H 2O 2 처리가 아연 이온의 거의 완전한 방출을 유도하여 TNKS1 PARP 단백질의 90 % 이상이 궁극적으로 아연 이온을 잃었음을 알 수 있다. Fig. 49 shows the result of measurement by a spectrophotometer by the above method. In Figure 44B, it can be seen that the H 2 O 2 treatment induced almost complete release of zinc ions, with more than 90% of the TNKS1 PARP protein ultimately losing zinc ions.
이와 같은 결과로부터 TNKS의 아연 결합 모티프가 PARP 활성에 필수적이며 Cys 잔기의 H 2O 2 유도 산화가 PARP 도메인으로부터 아연 이온의 방출을 유도한다는 것을 알 수 있다. These results indicate that the zinc binding motif of TNKS is essential for PARP activity and H 2 O 2 -induced oxidation of the Cys residue induces the release of zinc ions from the PARP domain.
이러한 결과로부터 PrxII에 의해 조절되는 과산화수소(PrxII-regulated H 2O 2)에 의해 TANKS 의 산화 환원이 조절되는 것을 알 수 있다. From these results, it can be seen that the oxidation-reduction of TANKS is controlled by PrxII-regulated H 2 O 2 .
<실시예 13> PrxII와 TNKS 사이의 선택적 결합 조사<Example 13> Selective binding between PrxII and TNKS
PrxII가 어떻게 TNKS를 H 2O 2매개 불활성화로부터 보호하는지를 입증하기 위해 PrxII와 TNKS 사이의 상호 작용을 조사했다. The interaction between PrxII and TNKS was examined to demonstrate how PrxII protects TNKS from H 2 O 2 mediated inactivation.
공동 면역 침전 (Co-immunoprecipitation, IP) 실험 결과를 나타내는 도 50에서 내인성 TNKS가 APC-기능이 있는 RKO 세포가 아닌, APC-돌연변이 HT29 및 SW480 세포에서만 PrxII와 상호 작용한다는 것을 확인할 수 있다. In Figure 50, which shows the results of co-immunoprecipitation (IP) experiments, it can be seen that endogenous TNKS interacts with Prx II only in APC-mutant HT29 and SW480 cells, not in APC-functional RKO cells.
이와는 대조적으로 TNKS는 APC-돌연변이 HT29 및 SW480 세포에서 PrxI와 상호 작용하지 않았으며, 이로부터 TNKS/Axin1/베타카테닌(β-catenin) 경로에서 PrxII의 특정 역할을 확인할 수 있다. In contrast, TNKS did not interact with PrxI in APC-mutant HT29 and SW480 cells, confirming the specific role of PrxII in the TNKS / Axin1 / β-catenin pathway.
TNKS1과 PrxII 사이의 직접적인 상호 작용을 특성화하기 위해, 비 CRC 세포로서 인간 배아 신장 세포 HEK293에서 두 개의 단백질을 과발현시켰다. 그 결과, 도 51에서 보는 바와 같이 co-IP 실험에서 TNKS와 PrxII가 직접 상호 작용함을 확인할 수 있다. To characterize the direct interaction between TNKS1 and PrxII, two proteins were overexpressed in human embryonic kidney cells HEK293 as non-CRC cells. As a result, it can be seen that TNKS and PrxII directly interact in the co-IP experiment as shown in FIG.
보다 명확하게, 도 52 및 도 53에서 in situ 근접 연결 분석(in situ proximity ligation assay, in situ PLA)은 TNKS와 PrxII 사이의 직접적인 상호 작용이 RKO 세포가 아닌 HT29 및 SW480 세포의 세포질에서 일어난다는 것을 시각화했다. 도 52 및 도 53에서 두 단백질의 상호 작용을 나타내는 적색 형광 신호는 PrxII 결핍에 의해 거의 완전히 사라졌다. More specifically, the in situ proximity ligation assay (in situ PLA) in Figures 52 and 53 demonstrates that direct interaction between TNKS and PrxII occurs in the cytoplasm of HT29 and SW480 cells that are not RKO cells Visualized. In Figure 52 and Figure 53, the red fluorescence signal indicative of the interaction of the two proteins almost completely disappeared by PrxII deficiency.
따라서, PrxII에 의한 산화 환원 차폐 TNKS가 단백질 - 단백질 상호 작용에 의해 매우 특이적이며 APC 돌연변이에 의존함을 알 수 있다. Therefore, it can be seen that the redox-shielded TNKS by PrxII is very specific by protein-protein interaction and is dependent on the APC mutation.
TNKS 및 PrxII 돌연변이 유발을 수행하여 분자 상호 작용 지도를 분석하였다. 도 54에서 IP 실험은 절단된 TNKS 돌연변이체가 PrxII와 함께 발현될 때, PrxII가 TNKS의 안키린 반복 클러스터(ankyrin repeat cluster(ARC) 4/5 도메인과 상호 작용 함을 보여 주었다. 이는 PrxII 결합이 ARC 2/3 도메인에 결합하는 Axin1과 중첩되지 않는 다는 것을 입증하였다. TNKS and PrxII mutagenesis were performed to analyze the molecular interaction map. The IP experiment in Figure 54 showed that PrxII interacted with an ankyrin repeat cluster (ARC) 4/5 domain of TNKS when truncated TNKS mutants were expressed with PrxII, It does not overlap Axin1 binding to the 2/3 domain.
TNKS ARC 도메인은 클라이언트 단백질에서 공통 서열(consensus sequence) RXXPXG를 인식하며 특히 6번 위치의 Gly 잔기가 직접 결합에 결정적인 역할을 한다. The TNKS ARC domain recognizes the consensus sequence RXXPXG in the client protein, and the Gly residue at position 6 plays a crucial role in direct binding.
PrxII에서 유사한 헥사펩티드(hexapeptide) 서열을 검색하고 3군데 잠재적 공통 영역을 찾은 뒤 Gly-to-Val 돌연변이를 도입했다. Co-IP 실험 결과를 나타내는 도 55에서 3군데의 돌연변이 사이트 중 G116V 돌연변이만이 PrxII와 TNKS1의 결합을 완전히 소멸시킴을 확인할 수 있다. In PrxII, a similar hexapeptide sequence was searched and three potential common regions were found and a Gly-to-Val mutation was introduced. In Fig. 55 showing the results of the Co-IP experiment, it can be confirmed that only the G116V mutation among the three mutant sites completely destroys the binding of PrxII and TNKS1.
도 56 및 도 57에서 PrxII WT와 G116V 돌연변이체가 동일한 수준의 발현과 퍼옥시다제 활성을 나타냈지만, 도 53에서 보는 바와 같이 PrxII G116V 돌연변이체는 H 2O 2에 의한 TNKS 활성 저해를 막지 못했으며, PrxII WT는 완전히 막았다. 56 and 57, the PrxII WT and G116V mutants exhibited the same level of expression and peroxidase activity. However, as shown in FIG. 53, the PrxII G116V mutant did not prevent the inhibition of TNKS activity by H 2 O 2 , The PrxII WT was completely blocked.
또한, 도 58의 레인 2 및 레인 3에서 Prx-SO 2/3 블롯은 H 2O 2 처리시 내인성 2-Cys Prx가 완전히 과산화되는 반면, C-말단 Myc 태그 (PrxII-Myc)가 있는 외인성 PrxII는 과산화에 내성이 있음을 알 수 있다. The Prx-SO2 / 3 blot in lane 2 and lane 3 of Figure 58 also shows that the endogenous 2-Cys Prx is completely peroxidized during H 2 O 2 treatment whereas the exogenous Prx II (PrxII-Myc) with C-terminal Myc tag Is resistant to peroxidation.
실제로, 재조합 효소를 사용하여 생체 외 2-Cys Prx의 활성을 분석한 결과 도 58에서 보는 바와 같이 야생형 PrxII 효소와는 달리, PrxII-Myc 효소는 과산화의 징후 없이 강력한 과산화 효소 활성을 보였다. Actually, as a result of analysis of the activity of in vitro 2-Cys Prx using a recombinant enzyme, as shown in FIG. 58, unlike wild-type PrxII enzyme, PrxII-Myc enzyme showed strong peroxidase activity without any signs of peroxidation.
PrxII 단백질의 C 말단 변형이 과산화에 대한 저항성을 부여한다는 것이 알려져 있으므로, Myc 태그를 C- 말단에 첨가하면 PrxII에 유사한 구조 변화가 일어날 수 있으며, 이는 과산화 저항성 형태로 전환된다는 것을 예측했다. Since it is known that the C-terminal modification of the PrxII protein confers resistance to peroxidation, the addition of the Myc tag at the C-terminus predicts that similar structural changes may occur in PrxII, which translates into a peroxidation-resistant form.
또한 PrxII-TANKS 상호 작용의 생물학적 중요성을 결정하기 위해 콜로니 형성 분석(colony formation assay) 를 수행하였다. In addition, a colony formation assay was performed to determine the biological significance of the PrxII-TANKS interaction.
도 59에서 PrxII 결핍에 의해 억제된 APC-돌연변이 SW480 세포의 콜로니 형성은 PrxII WT의 이소성 발현에 의해 완전히 회복 되었지만 G116V 돌연변이체는 완전히 회복되지 않았다In FIG. 59, colony formation of APC-mutant SW480 cells inhibited by PrxII deficiency was completely restored by ectopic expression of PrxII WT, but the G116V mutant was not completely recovered
이러한 결과로부터 결합 PrxII가 탄키라제의 H 2O 2를 제거함으로써 탄키라제의 산화적 불활성화를 예방할 수 있으며, 이는 APC-변이 CRC 세포의 생장에 중요하다는 것을 알 수 있다. From these results, it can be seen that binding PrxII can prevent the oxidative inactivation of tannase by removing H 2 O 2 from the tannase, which is important for the growth of APC-mutated CRC cells.
<실시예 14> 사람 대장암 조직에서 PrxII 발현 분석Example 14 Expression of PrxII in Human Colon Cancer Tissue
도 60 에서 보는 바와 같이 TCGA(The Cancer Genome Atlas) 데이터베이스1의 유전자 발현 분석 결과, PrxII 발현이 대장 선암 환자의 종양 표본에서 정상 대장 조직보다 상당히 높았으며, 가장 가까운 동형단백질인 PrxI의 발현은 그러한 차이가 없음이 확인되었다. 도 61에서 모든 종양 단계에서 증가된 PrxII 발현이 관찰되었다.As shown in FIG. 60, PrxII expression was significantly higher in tumor samples of patients with colorectal adenocarcinoma than in normal colon tissues, and the expression of PrxI, the closest homologous protein, . In Figure 61, increased PrxII expression was observed at all tumor stages.
도 62에서 보는 바와 같이 CRC 조직배열(CRC tissue array)를 이용한 면역 조직 화학 검사(immunohistochemistry)에서 정상 조직과 비교했을 때 PrxII 수치가 CRC 조직에서 약 2배 더 높았다. 이러한 결과로부터 특정 PrxII 유도가 CRC 확장을 위한 전제 조건이 될 수 있음을 알 수 있다. As shown in FIG. 62, in the immunohistochemistry using the CRC tissue array, the PrxII level was about two times higher in the CRC tissue than in the normal tissue. From these results, it can be seen that certain PrxII induction can be a prerequisite for CRC expansion.
<실시예 15> 화합물 6(코노이딘 A) 에 의한 PrxII 활성 조절Example 15 Regulation of PrxII Activity by Compound 6 (Conoidine A)
상기 분석을 바탕으로, PrxII 를 저해함에 의한 인간 CRC 치료 가능성을 평가하기 위해 PrxII에 공유 결합하는 것으로 알려져 있는 코노이딘 A(Conoidin A)라고 불리는 화합물 6의 세포 투과성 화합물을 시험하였다. On the basis of the above analysis, it was found that Compound 6, called Conoidin A, which is known to covalently bind to PrxII in order to evaluate the possibility of treating human CRC by inhibiting PrxII Cell permeable compounds were tested.
도 63의 in vitro Prx 분석에서 화합물 6 코노이딘 A가 인간 PrxII 활성을 약 85 % (대조군의 경우 214.9 ± 24.3 nmol min -1, 코노이딘 A 처리의 경우 38.8 ± 17.1 nmol min -1)까지 억제함을 발견했으며, PrxI 활성은 약 50 %까지 억제하였다. In the in vitro Prx assay of Figure 63, compound 6 conoid A suppressed human Prx II activity to about 85% (214.9 ± 24.3 nmol min -1 for control and 38.8 ± 17.1 nmol min -1 for conoidin A treatment) , And PrxI activity was suppressed to about 50%.
이에 비해, PrxI 활성의 초기 속도는 화합물 6 코노이딘 A 에 의해 영향을 받지 않았다(대조군의 경우 263.7 ± 45.4 nmol min -1, 코노이딘 A의 경우 241.7 ± 21 nmol min -1)In contrast, the initial rate of PrxI activity was not affected by compound 6 conoid A (263.7 ± 45.4 nmol min -1 for the control, 241.7 ± 21 nmol min -1 for the conoididin A)
<실시예 16> 화합물 6(코노이딘 A) 처리에 의한 콜로니 형성 분석Example 16 Analysis of Colony Formation by Treatment with Compound 6 (Conoidine A)
도 64에서 콜로니 형성 분석은 화합물 6(코노이딘 A) 처리가 RKO 세포가 아닌 HT29 및 SW480 세포의 증식을 충분히 억제한다는 것을 보여 주었다. 인간 APC 돌연변이 CRC 세포를 선택적으로 표적하기 위한 PrxII 억제의 치료 가능성을 암시하는 것이다. In FIG. 64, colony formation analysis showed that treatment with Compound 6 (conoid A) sufficiently inhibited proliferation of HT29 and SW480 cells that are not RKO cells. Lt; RTI ID = 0.0 &gt; PrxII &lt; / RTI &gt; inhibition to selectively target human APC mutant CRC cells.
화합물 6(코노이딘 A) 를 HT29 유래 종양 이종 이식(tumor xenografts)편을 보유한 쥐에게 복강 내 주사했을 때, 도 65 및 도 66에서 보는 바와 같이 화합물 6(코노이딘 A) 처리는 대조군에 비해 종양 성장을 상당히 지연시켰다.When compound 6 (chondroitin A) was intraperitoneally injected into rats bearing HT29-derived tumor xenografts, treatment with compound 6 (chondroitin A), as shown in Figures 65 and 66, Significantly delayed growth.
이로부터 도 67 의 모식도에서 보는 바와 같이 PrxII 가 인간 CRC에 대한 새로운 표적 치료가 될 수 있으며, 화합물 6(코노이딘 A) 와 같이 PrxII를 억제하는 화합물이 인간 CRC에 대한 새로운 치료약이 될 수 있음을 알 수 있다. From this, it can be seen that PrxII can be a new target treatment for human CRC as shown in the schematic diagram of FIG. 67, and a compound that inhibits PrxII such as Compound 6 (conoid A) can be a new therapeutic drug for human CRC Able to know.
이하 합성예에서 화합물-1 내지 화합물-5의 합성방법을 설명한다. 화합물-6은 코노이딘 A이며 Candia Thamtech Company Limited, Shanghai YuLue Chemical Co., Ltd.등 널리 판매되고 있는 제품이다. Hereinafter, the synthesis method of the compound-1 to the compound-5 will be described in the synthesis examples. Compound-6 is conoidine A and is widely sold, such as Candia Thamtech Company Limited, Shanghai YuLue Chemical Co., Ltd.
<합성예 1 - 2,3-비스(브로모메틸)-6-메톡시퀴녹살린 1,4-다이옥사이드 (2,3-bis(bromomethyl)-6-methoxyquinoxaline 1,4-dioxide)) 합성(화합물-1)>Synthesis Example 1 Synthesis of 2,3-bis (bromomethyl) -6-methoxyquinoxaline 1,4-dioxide (2,3-bis (bromomethyl) -6-methoxyquinoxaline 1,4- -1)>
단계 1 Step 1
Figure PCTKR2018007316-appb-img-000005
Figure PCTKR2018007316-appb-img-000005
4-메톡시-2-나이트로아닐린(4-Methoxy-2-nitroaniline) (1.01g, 5.89 mmol) 을 미리 제조한 20% KOH/ethanol 용액(35ml)에 투입 후 교반한다. 얼음 수조하에서 NaOCl 12% 용액을 약 30ml 적가한 뒤 실온으로 승온하여 출발물질이 사라질 때 까지 교반하여 준다. 4-Methoxy-2-nitroaniline (1.01 g, 5.89 mmol) was added to a previously prepared 20% KOH / ethanol solution (35 ml) and stirred. Approximately 30 ml of a 12% NaOCl solution is added dropwise in an ice water bath, then the temperature is raised to room temperature and stirred until the starting material disappeared.
발생 고체를 필터 한 뒤 차가운 에탄올로 세척한다. 이렇게 얻은 노란 고체는 물:에탄올 = 1:3 용액을 이용하여 재결정 과정을 거친다 (0.65g, 66%).Filter the resulting solids and wash with cold ethanol. The yellow solid thus obtained is subjected to recrystallization using a water: ethanol = 1: 3 solution (0.65 g, 66%).
1H-NMR (400 MHz, CDCl3) δ 7.47 - 6.40 (m, 3H), and 3.90 (s, 3H). 1 H-NMR (400 MHz, CDCl 3)? 7.47-6.40 (m, 3H), and 3.90 (s, 3H).
단계 2 Step 2
Figure PCTKR2018007316-appb-img-000006
Figure PCTKR2018007316-appb-img-000006
6-메톡시벤조[c][1,2,5]옥사디아졸 1-옥사이드(6-Methoxybenzo[c][1,2,5]oxadiazole 1-oxide) (1.00 g, 6.02 mmol)를 트리에틸아민(trimethylamine) (18.06 mmol)과 함께 교반한다. 얼음수조 하에서 피롤리딘(Pyrrolidine) (0.78g, 10.83 mmol), 메틸에틸케톤(methylethylketone) (0.65g, 9.03 mmol)를 적가하여 준다. 6-Methoxybenzo [c] [1,2,5] oxadiazole 1-oxide (1.00 g, 6.02 mmol) was dissolved in triethyl And stirred with trimethylamine (18.06 mmol). Pyrrolidine (0.78 g, 10.83 mmol) and methylethylketone (0.65 g, 9.03 mmol) were added dropwise in an ice bath.
실온 승온 후 약 1시간 후 반응 종결을 확인하였다 (TLC 분석 조건, n-Hexane:EtOAc = 2:1). 반응액을 필터 후 차가운 에탄올로 위시하여 갈색 고체 (1.06 g, 80%)를 얻었다. 이 단계에서는 별도의 정제 없이 다음 단계를 진행하였다.After about 1 hour after the temperature rise, the reaction was completed (TLC analysis, n-hexane: EtOAc = 2: 1). The reaction solution was filtered and then filtered through cold ethanol to obtain a brown solid (1.06 g, 80%). At this stage, the next step was carried out without further purification.
1H-NMR (400 MHz, DMSO-d6) δ 8.36 (d, J = 9.6 Hz, 1H), 7.78 (d, J= 2.0Hz, 1H), 7.49 (dd, J = 9.0, Hz, 3.0Hz, 1H) 3.97 (s, 3H), 2.59 (s, 3H), and 2.56 (s, 3H).J = 9.0 Hz, 3.0 Hz, 1 H-NMR (400 MHz, DMSO-d 6)? 8.36 (d, J = 9.6 Hz, 1H) 1H), 3.97 (s, 3H), 2.59 (s, 3H), and 2.56 (s, 3H).
단계 3 Step 3
Figure PCTKR2018007316-appb-img-000007
Figure PCTKR2018007316-appb-img-000007
6-메톡시-2,3-디메틸퀴녹살린 1,4-다이옥사이드(6-methoxy-2,3-dimethylquinoxaline 1,4-dioxide) (1.00 g, 4.54 mmol)를 1,4-다이옥사이드(1,4-dioxide)에 용해 한 뒤, 브롬(12.71 mmol)를 적가하였다. 6-methoxy-2,3-dimethylquinoxaline 1,4-dioxide (1.00 g, 4.54 mmol) was dissolved in 1,4-dioxane (1,4 -dioxide, bromine (12.71 mmol) was added dropwise.
반응액을 90 °C 까지 승온한 뒤 시작물질의 스팟이 사라질 때 까지 약 2시간 반응하였다. 이때 반응 진행 여부는 TLC 분석을 이용하여 판단하였다 (n-Hexane:EtOAc = 1:2). The reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared. The progress of the reaction was judged by TLC analysis (n-Hexane: EtOAc = 1: 2).
반응 종결 후 NaHCO 3 수용액을 투입 후 에틸 아세테이트(ethyl acetate)로 추출하였다. 이후 유기층을 브린(Brine)을 이용하여 세척 후 MgSO 4 를 이용하여 건조 후 여과, 농축하여 혼합 상태의 생성물을 얻었다. 이 생성물은 MPLC (n-Hexane:EtOAc = 3:1) 를 이용하여 컬럼을 하였고, 화합물-1(1.15 g, 65%)을 얻었다.After completion of the reaction, NaHCO 3 aqueous solution was added thereto and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated to obtain a mixture. This product was subjected to column chromatography using MPLC (n-Hexane: EtOAc = 3: 1) to obtain Compound-1 (1.15 g, 65%).
1H-NMR (400 MHz, DMSO-d 6) δ 8.39 (d, J = 9.6 Hz, 1H), 7.81 (d, J = 2.4 Hz), 7.59 (dd, J = 7.4 Hz, 2.2 Hz), 5.06 (s, 4H), and 4.01 (s, 3H); 13C-NMR (100MHz, DMSO-d 6) δ 162.9, 124.4, 122.2, 99.5, 57.0, 23.5, and 23.4; HRMS (ESI) : m/z 377.9038 [M+H] + (calcd for C 11H 10Br 2N 2O 3 + 378.9170) 1 H-NMR (400 MHz, DMSO-d 6) (d, J = 7.4 Hz, 2.2 Hz), 5.06 (s, 4H), 8.08 (d, J = and 4.01 (s, 3H); 13 C-NMR (100 MHz, DMSO-d 6 )? 162.9, 124.4, 122.2, 99.5, 57.0, 23.5, and 23.4; HRMS (ESI): m / z 377.9038 [M + H] + (calcd for C 11 H 10 Br 2 N 2 O 3 + 378.9170)
<합성예 2 : 2,3-비스(브로모메틸)-6-에톡시퀴녹살린 1,4-다이옥사이드(2,3-bis(bromomethyl)-6-ethoxyquinoxaline 1,4-dioxide)) 합성(화합물-2)>Synthesis Example 2 Synthesis of 2,3-bis (bromomethyl) -6-ethoxyquinoxaline 1,4-dioxide (2,3-bis (bromomethyl) -6-ethoxyquinoxaline 1,4-dioxide) -2)>
단계 1 Step 1
Figure PCTKR2018007316-appb-img-000008
Figure PCTKR2018007316-appb-img-000008
4-아미노-3-니트로페놀(4-Amino-3-nitrophenol)(5.00 g, 32.44 mmol)과 브로모에텐(bromoethane)(5.30g, 48.66 mmol)을 DMF 용매 하에서 교반하며 탄산칼슘(potassium carbonate)(6.73g, 48.66 mmol)를 소분하여 투입한다. 4-Amino-3-nitrophenol (5.00 g, 32.44 mmol) and bromoethane (5.30 g, 48.66 mmol) were stirred in DMF solvent and potassium carbonate (6.73 g, 48.66 mmol).
이후 반응 용기의 온도를 90°C 로 승온하여 출발물질이 사라질 때 까지 약 3시간 반응 관찰하였다(TLC분석 조건, n-Hexane:EtOAc = 3:1). Then, the temperature of the reaction vessel was raised to 90 ° C and the reaction was observed for about 3 hours (TLC analysis condition, n-hexane: EtOAc = 3: 1) until the starting material disappeared.
반응이 종결되면 실온 냉각 후 얼음물에 반응 용액을 투입한다. 발생되는 고체를 필터하여 혼합물 상태의 붉은 고체를 얻었다. 이는 컬럼 (n-Hexane:EtOAc = 10:1)을 통하여 정제하여 4-에톡시-2-니트로아닐린(4-ethoxy-2-nitroaniline) (4.25g, 72%)를 최종적으로 확인하였다. When the reaction is completed, the reaction solution is added to the ice water after cooling at room temperature. The resulting solid was filtered to give a red solid in the form of a mixture. This was purified through a column (n-Hexane: EtOAc = 10: 1) to finally identify 4-ethoxy-2-nitroaniline (4.25 g, 72%).
1H-NMR (400MHz, CDCl3) δ 7.55(bs, 1H), 7.07(d, J=8Hz, 1H), 6.77(d, J=8Hz, 1H), 5.89(bs, 2H), 4.01(m, 2H), and 1.41(t ,J=6.0Hz, 3H). 1 H-NMR (400MHz, CDCl3 ) δ 7.55 (bs, 1H), 7.07 (d, J = 8Hz, 1H), 6.77 (d, J = 8Hz, 1H), 5.89 (bs, 2H), 4.01 (m, 2H), and 1.41 (t, J = 6.0 Hz, 3H).
단계 2 Step 2
Figure PCTKR2018007316-appb-img-000009
Figure PCTKR2018007316-appb-img-000009
4-에톡시-2-니트로아닐린(4-Ethoxy-2-nitroaniline) (2.00 g, 10.98 mmol) 을 미리 제조한 20% KOH/ethanol 용액(60ml)에 투입 후 교반한다. 4-Ethoxy-2-nitroaniline (2.00 g, 10.98 mmol) was added to a previously prepared 20% KOH / ethanol solution (60 ml) and stirred.
얼음 수조하에서 NaOCl 12% 용액을 약 50ml 적가 한 뒤 실온으로 승온하여 출발물질이 사라질 때 까지 교반한다. 발생 고체를 필터 한 뒤 차가운 에탄올로 세척한다. 이렇게 얻은 노란 고체는 물:에탄올 = 1:3 용액을 이용하여 재결정 과정을 거친다 (1.85g, 94%). About 50 ml of a 12% NaOCl solution is added dropwise in an ice water bath, then the temperature is raised to room temperature and stirred until the starting material disappeared. Filter the resulting solids and wash with cold ethanol. The yellow solid thus obtained is subjected to recrystallization (1.85 g, 94%) using a water: ethanol = 1: 3 solution.
1H-NMR (400 MHz, CDCl3) δ 7.49 - 6.34 (m, 3H), 4.08 (m, 2H), and 1.48 (t, J = 8.0 Hz, 3H) 1 H-NMR (400 MHz, CDCl3) δ 7.49 - 6.34 (m, 3H), 4.08 (m, 2H), and 1.48 (t, J = 8.0 Hz, 3H)
단계 3 Step 3
Figure PCTKR2018007316-appb-img-000010
Figure PCTKR2018007316-appb-img-000010
6-에톡시벤조[c][1,2,5]옥사디아졸 1-옥사이드(6-Ethoxybenzo[c][1,2,5]oxadiazole 1-oxide) (1.50 g, 8.33 mmol)를 트리에틸아민(trimethylamine)(2.52g, 24.98 mmol)과 함께 교반한다. 6-Ethoxybenzo [c] [1,2,5] oxadiazole 1-oxide (1.50 g, 8.33 mmol) was dissolved in triethyl And stirred with trimethylamine (2.52 g, 24.98 mmol).
얼음수조 하에서 피롤리딘(Pyrrolidine)(1.08g, 14.99 mmol), 메틸에틸케톤(methylethylketone)(0.90g, 12.49 mmol) 를 적가하여 준다. Pyrrolidine (1.08 g, 14.99 mmol) and methylethylketone (0.90 g, 12.49 mmol) were added dropwise in an ice bath.
실온 승온 후 약 1시간 후 반응 종결을 확인하였다 (TLC 분석 조건, n-Hexane:EtOAc = 2:1). 반응액을 필터 후 차가운 에탄올로 워시하여 갈색 고체 (1.11 g, 57%)를 얻었다. 이 단계에서는 별도의 정제 없이 다음 단계를 진행하였다.After about 1 hour after the temperature rise, the reaction was completed (TLC analysis, n-hexane: EtOAc = 2: 1). The reaction solution was filtered and then washed with cold ethanol to obtain a brown solid (1.11 g, 57%). At this stage, the next step was carried out without further purification.
1H-NMR (400 MHz, DMSO- d6) δ 8.51 (d, J = 9.6 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 9.4, 2.6 Hz, 1H), 4.24 (m, 2H), 2.74 (s, 3H), 2.71 (s, 3H), and 1.51 (t, J = 6.8 Hz, 3H). 1 H-NMR (400 MHz, DMSO- d6) δ 8.51 (d, J = 9.6 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 9.4, 2.6 Hz, 1H) , 4.24 (m, 2H), 2.74 (s, 3H), 2.71 (s, 3H), and 1.51 (t, J = 6.8 Hz, 3H).
단계 4 Step 4
Figure PCTKR2018007316-appb-img-000011
Figure PCTKR2018007316-appb-img-000011
6-에톡시-2,3-디메틸퀴녹살린 1,4-다이옥사이드(6-ethoxy-2,3-dimethylquinoxaline 1,4-dioxide) (1.00 g, 4.27 mmol)를 1,4-다이옥사이드(1,4-dioxide)에 용해 한 뒤, 브롬(12.71 mmol)를 적가하였다. 6-ethoxy-2,3-dimethylquinoxaline 1,4-dioxide (1.00 g, 4.27 mmol) was dissolved in 1,4-dioxane (1,4 -dioxide, bromine (12.71 mmol) was added dropwise.
반응액을 90 °C 까지 승온한 뒤 시작물질의 스팟이 사라질 때 까지 약 2시간 반응하였다. 이 때 반응 진행 여부는 TLC 분석을 이용하여 판단하였다(n-Hexane:EtOAc = 1:2). 반응 종결 후 NaHCO3 수용액을 투입 후 에틸 아세테이트(ethyl acetate) 로 추출하였다. The reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared. The progress of the reaction was judged by TLC analysis (n-Hexane: EtOAc = 1: 2). After completion of the reaction, NaHCO3 aqueous solution was added thereto and extracted with ethyl acetate.
이후 유기층을 브린(Brine)을 이용하여 세척 후 MgSO4 를 이용하여 건조 후 여과, 농축하여 혼합 상태의 생성물을 얻었다. 이 생성물은 MPLC (n-Hexane:EtOAc = 3:1) 를 이용하여 컬럼을 하였고, 화합물-2(0.98 g, 61%)를 얻었다.The organic layer was washed with brine, dried over MgSO4, filtered and concentrated to obtain a product in a mixed state. This product was subjected to column chromatography using MPLC (n-Hexane: EtOAc = 3: 1) to obtain Compound-2 (0.98 g, 61%).
1H-NMR (400 MHz, DMSO-d6) δ 8.52 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 9.6, 2.8 Hz), 4.90 (s, 4H), 4.24 (m, 2H), and 1.52 (t, J = 7.2 Hz, 3H); 13C-NMR (100MHz, DMSO-d 6) δ 163.2, 122.5, 122.1, 101.2, 58.0, 23.9 and 13.9; HRMS (ESI) : m/z 391.9194 [M+H] + (calcd for C 12H 12Br 2N 2O3 + 392.9155) 1 H-NMR (400 MHz, DMSO-d6) δ 8.52 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 9.6, 2.8 Hz), 4.90 (s, 4H), 4.24 (m, 2H), and 1.52 (t, J = 7.2 Hz, 3H); 13 C-NMR (100 MHz, DMSO-d 6 )? 163.2, 122.5, 122.1, 101.2, 58.0, 23.9 and 13.9; HRMS (ESI): m / z 391.9194 [M + H] + (calcd for C 12 H 12 Br 2 N 2 O3 + 392.9155)
<합성예 3 : 2,3-비스(브로모메틸)-6-이소프로폭시퀴녹살린 1,4-다이옥사이드(2,3-bis(bromomethyl)-6-isopropoxyquinoxaline 1,4-dioxide) 합성(화합물-3)>SYNTHESIS EXAMPLE 3 Synthesis of 2,3-bis (bromomethyl) -6-isopropoxyquinoxaline 1,4-dioxide (2,3-bis (bromomethyl) -6-isopropoxyquinoxaline 1,4- -3)>
단계 1 Step 1
Figure PCTKR2018007316-appb-img-000012
Figure PCTKR2018007316-appb-img-000012
4-아미노-3-니트로페놀(4-Amino-3-nitrophenol)(5.00 g, 32.44 mmol)과 2-브로모프로펜(2-bromopropane)(5.98g, 48.66 mmol)을 DMF 용매 에서 교반하며 탄산칼슘(potassium carbonate)(6.73g, 48.66 mmol)를 소분하여 투입한다. 4-Amino-3-nitrophenol (5.00 g, 32.44 mmol) and 2-bromopropane (5.98 g, 48.66 mmol) were stirred in DMF solvent, Potassium carbonate (6.73 g, 48.66 mmol) is added in small portions.
이후 반응 용기의 온도를 90°C 로 승온하여 출발물질이 사라질 때 까지 약 5시간 반응 관찰하였다 (TLC분석 조건, n-Hexane:EtOAc = 3:1). Then, the temperature of the reaction vessel was raised to 90 ° C to observe the reaction for about 5 hours until the starting material disappeared (TLC analysis condition, n-hexane: EtOAc = 3: 1).
반응이 종결되면 실온 냉각 후 얼음물에 반응 용액을 투입한다. 이후 디에틸에테르(diethyl ether)를 이용하여 수층에 스팟이 사라질 때 까지 추출하였다. 유기층은 브린(brine)으로 세척 후 MgSO4를 이용하여 건조 후 농축하여 붉은색 고체를 얻었다. When the reaction is completed, the reaction solution is added to the ice water after cooling at room temperature. The mixture was then extracted with diethyl ether until the spot disappeared in the aqueous layer. The organic layer was washed with brine, dried over MgSO4 and concentrated to obtain a red solid.
이는 컬럼(n-Hexane:EtOAc = 10:1)을 통하여 정제하여 4-이소프로폭시-2-니트로아닐린(4-isopropoxy-2-nitroaniline)(5.90g, 93%)를 최종적으로 확인하였다. This was purified through a column (n-Hexane: EtOAc = 10: 1) to finally identify 4-isopropoxy-2-nitroaniline (5.90 g, 93%).
1H-NMR (400MHz, CDCl3) δ7.51(bs, 1H), 7.04(d ,J=8.0Hz, 1H), 6.75(d ,J=8.0Hz, 1H), 5.88(bs, 2H) ,4.46(m, 1H), and 1.33(d, J=6.0Hz ,6H). 1 H-NMR (400MHz, CDCl3 ) δ7.51 (bs, 1H), 7.04 (d, J = 8.0Hz, 1H), 6.75 (d, J = 8.0Hz, 1H), 5.88 (bs, 2H), 4.46 (m, 1H), and 1.33 (d, J = 6.0 Hz, 6H).
단계 2 Step 2
Figure PCTKR2018007316-appb-img-000013
Figure PCTKR2018007316-appb-img-000013
4-이소프로폭시-2-니트로아닐린(4-Isopropoxy-2-nitroaniline)(2.00 g, 10.19 mmol) 을 미리 제조한 20% KOH/ethanol 용액(60ml)에 투입 후 교반한다. 4-Isopropoxy-2-nitroaniline (2.00 g, 10.19 mmol) was added to a previously prepared 20% KOH / ethanol solution (60 ml) and stirred.
얼음 수조 하에서 NaOCl 12% 용액을 약 50ml 적가한 뒤 실온으로 승온하여 출발물질이 사라질 때 까지 교반하여 준다. 발생 고체를 필터 한 뒤 차가운 에탄올로 세척한다. 이렇게 얻은 노란 고체는 물:에탄올 = 1:3 용액을 이용하여 재결정 과정을 거친다 (1.93g, 97%). About 50 ml of NaOCl 12% solution is added dropwise in an ice water bath, then the temperature is raised to room temperature and stirred until the starting material disappeared. Filter the resulting solids and wash with cold ethanol. The yellow solid thus obtained is subjected to recrystallization (1.93 g, 97%) using a water: ethanol = 1: 3 solution.
1H-NMR (400 MHz, CDCl3) δ 7.48 - 6.34 (m, 3H), 4.60 (m, 1H), and 1.41 (d, J = 6.0 Hz, 6H). 1 H-NMR (400 MHz, CDCl 3)? 7.48-6.34 (m, 3H), 4.60 (m, 1H), and 1.41 (d, J = 6.0 Hz, 6H).
단계 3 Step 3
Figure PCTKR2018007316-appb-img-000014
Figure PCTKR2018007316-appb-img-000014
6-이소프로폭시벤조[c][1,2,5]옥사디아졸 1-옥사이드(6-Isopropoxybenzo[c][1,2,5]oxadiazole 1-oxide)(1.50 g, 7.72 mmol)를 트리에틸아민(trimethylamine)(2.34g, 23.17 mmol)과 함께 교반한다. 6-Isopropoxybenzo [c] [1,2,5] oxadiazole 1-oxide (1.50 g, 7.72 mmol) was dissolved in tri And stirred with trimethylamine (2.34 g, 23.17 mmol).
얼음수조 하에서 피롤리딘(Pyrrolidine)(1.00g, 13.90 mmol), 메틸에틸케톤(methylethylketone)(0.84g, 11.59 mmol)를 적가하여 준다. 실온 승온 후 약 1시간 후 반응 종결을 확인하였다 (TLC 분석 조건, n-Hexane:EtOAc = 2:1). 반응액을 필터 후 차가운 에탄올로 워시하여 갈색 고체 (1.49 g, 78%) 를 얻었다. 이 단계에서는 별도의 정제 없이 다음 단계를 진행하였다.Pyrrolidine (1.00 g, 13.90 mmol) and methylethylketone (0.84 g, 11.59 mmol) were added dropwise in an ice bath. After about 1 hour after the temperature rise, the reaction was completed (TLC analysis, n-hexane: EtOAc = 2: 1). The reaction solution was filtered and washed with cold ethanol to obtain a brown solid (1.49 g, 78%). At this stage, the next step was carried out without further purification.
1H-NMR (400 MHz, DMSO- d6) δ 8.50 (d, J = 9.6 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H), 7.34 (dd, J = 9.4 Hz, 2.6 Hz, 1H) 4.81 (s, 1H), 2.73 (s, 3H), 2.71 (s, 3H), and 1.44 (d, J = 6.0 Hz, 3H). 1 H-NMR (400 MHz, DMSO- d6) δ 8.50 (d, J = 9.6 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H), 7.34 (dd, J = 9.4 Hz, 2.6 Hz, 1H ) 4.81 (s, 1H), 2.73 (s, 3H), 2.71 (s, 3H), and 1.44 (d, J = 6.0 Hz, 3H).
단계 4 Step 4
Figure PCTKR2018007316-appb-img-000015
Figure PCTKR2018007316-appb-img-000015
6-이소프록시-2,3-디메틸퀴녹살린 1,4-다이옥사이드(6-isoproxy-2,3-dimethylquinoxaline 1,4-dioxide) (1.00 g, 4.03 mmol)를 1,4-다이옥사이드(1,4-dioxide)에 용해 한 뒤, 브롬(12.71 mmol)를 적가하였다. 6-isoproxy-2,3-dimethylquinoxaline 1,4-dioxide (1.00 g, 4.03 mmol) was dissolved in 1,4-dioxane (1,4 -dioxide, bromine (12.71 mmol) was added dropwise.
반응액을 90 °C 까지 승온한 뒤 시작물질의 스팟이 사라질 때 까지 약 2시간 반응하였다. 이 때 반응 진행 여부는 TLC 분석을 이용하여 판단하였다 (n-Hexane:EtOAc = 1:2). The reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared. The progress of the reaction was judged by TLC analysis (n-Hexane: EtOAc = 1: 2).
반응 종결 후 NaHCO 3 수용액을 투입 후 에틸 아세테이트로 추출하였다. 이후 유기층을 브린(Brine)을 이용하여 세척 후 MgSO 4 를 이용하여 건조후 여과, 농축하여 혼합 상태의 생성물을 얻었다. 이 생성물은 MPLC (n-Hexane:EtOAc = 3:1) 를 이용하여 컬럼을 하였고, 화합물-3(0.69 g, 42%)을 얻었다.After completion of the reaction, NaHCO 3 aqueous solution was added thereto and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated to obtain a mixture. The product was subjected to column chromatography using MPLC (n-Hexane: EtOAc = 3: 1) to obtain Compound-3 (0.69 g, 42%).
1H-NMR (400 MHz, DMSO-d 6) δ 8.52 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 9.6, 2.8 Hz), 4.90 (s, 4H), 4.24 (m, 2H), and 1.52 (t, J = 7.2 Hz, 3H); 13C-NMR (100MHz, DMSO-d 6) δ 162.9, 122.70, 105.7, 73.0, 23.9 and 21.8; HRMS (ESI) : m/z 405.9351 [M+H] + (calcd for C 13H 14Br 2N 2O3+ 406.9458) 1 H-NMR (400 MHz, DMSO-d 6) δ 8.52 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 9.6, 2.8 Hz), 4.90 (s, 4 H), 4.24 (m, 2 H), and 1.52 (t, J = 7.2 Hz, 3 H); 13 C-NMR (100 MHz, DMSO-d 6 )? 162.9, 122.70, 105.7, 73.0, 23.9 and 21.8; HRMS (ESI): m / z 405.9351 [M + H] + (calcd for C 13 H 14 Br 2 N 2 O3 + 406.9458)
<합성예 4 : 6-(알릴옥시)-2,3-비스(브로모메틸) 퀴녹살린 1,4-다이옥사이드 (6-(allyloxy)-2,3-bis(bromomethyl)quinoxaline 1,4-dioxide) 합성(화합물-4)>Synthesis Example 4: Synthesis of 6- (allyloxy) -2,3-bis (bromomethyl) quinoxaline 1,4-dioxide ) Synthesis (Compound-4) &gt;
단계 1 Step 1
Figure PCTKR2018007316-appb-img-000016
Figure PCTKR2018007316-appb-img-000016
4-아미노-3-니트로페놀(4-Amino-3-nitrophenol)(5.00 g, 32.44 mmol)과 알릴브로마이드(allyl bromide)(5.89g, 48.66 mmol)을 DMF 용매에서 교반하며 탄산칼슘(potassium carbonate)(6.73g, 48.66 mmol)를 소분하여 투입한다. 4-Amino-3-nitrophenol (5.00 g, 32.44 mmol) and allyl bromide (5.89 g, 48.66 mmol) were stirred in DMF solvent and potassium carbonate (6.73 g, 48.66 mmol).
이후 반응 용기의 온도를 90°C 로 승온하여 출발물질이 사라질 때 까지 약 3시간 반응 관찰하였다 (TLC분석 조건, n-Hexane:EtOAc = 3:1). Then, the temperature of the reaction vessel was raised to 90 ° C and the reaction was observed for about 3 hours (TLC analysis condition, n-hexane: EtOAc = 3: 1) until the starting material disappeared.
반응이 종결되면 실온 냉각 후 얼음물에 반응 용액을 투입한다. 이후 diethyl ether를 이용하여 수층에 스팟이 사라질 때 까지 추출하였다. 유기층은 브린(brine)으로 세척 후 MgSO4를 이용하여 건조 후 농축하여 붉은색 고체를 얻었다. When the reaction is completed, the reaction solution is added to the ice water after cooling at room temperature. Then, diethyl ether was added until the spot disappears in the water layer. The organic layer was washed with brine, dried over MgSO4 and concentrated to obtain a red solid.
이는 컬럼 (n-Hexane:EtOAc = 10:1)을 통하여 정제하여 4-(알릴옥시)-2-니트로아닐린(4-(allyloxy)-2-nitroaniline)(4,44g, 71%) 를 최종적으로 확인하였다.This was purified through column (n-Hexane: EtOAc = 10: 1) to give 4- (allyloxy) -2-nitroaniline (4,44 g, 71% Respectively.
1H-NMR (400 MHz, CDCl3) δ7.52(bs, 1H), 7.00(d, J=7.6Hz, 1H) ,6.73(d, J=8.0Hz, 1H), 6.06(m, 1H), 5.60(bs, 2H), 5.47(d, J=16.0Hz, 1H), 5.34(d, J=10.4Hz, 1H), and 4.70(d, J=5.2Hz, 2H). 1 H-NMR (400 MHz, CDCl3) δ7.52 (bs, 1H), 7.00 (d, J = 7.6Hz, 1H), 6.73 (d, J = 8.0Hz, 1H), 6.06 (m, 1H), 5.60 (bs, 2H), 5.47 (d, J = 16.0 Hz, 1H), 5.34 (d, J = 10.4 Hz, 1H), and 4.70 (d, J = 5.2 Hz, 2H).
단계 2:Step 2:
Figure PCTKR2018007316-appb-img-000017
Figure PCTKR2018007316-appb-img-000017
4-알릴옥시-2-니트로아닐린(4-Allyloxy-2-nitroaniline)(2.00 g, 10.30 mmol)을 미리 제조한 20% KOH/ethanol 용액(60ml)에 투입 후 교반한다. 4-Allyloxy-2-nitroaniline (2.00 g, 10.30 mmol) was added to a previously prepared 20% KOH / ethanol solution (60 ml) and stirred.
얼음 수조 하에서 NaOCl 12% 용액을 약 50ml 적가한 뒤 실온으로 승온하여 출발물질이 사라질 때 까지 교반하여 준다. 발생 고체를 필터 한 뒤 차가운 에탄올로 세척한다. 이렇게 얻은 노란 고체는 물:에탄올 = 1:3 용액을 이용하여 재결정 과정을 거친다 (1.96g, 99%). About 50 ml of NaOCl 12% solution is added dropwise in an ice water bath, then the temperature is raised to room temperature and stirred until the starting material disappeared. Filter the resulting solids and wash with cold ethanol. The yellow solid thus obtained is subjected to recrystallization (1.96 g, 99%) using a water: ethanol = 1: 3 solution.
1H-NMR (400 MHz, CDCl3) δ 7.76 - 6.69 (m, 3H), 6.06 (m, 1H). 1 H-NMR (400 MHz, CDCl 3)? 7.76-6.69 (m, 3H), 6.06 (m, 1H).
단계 3:Step 3:
Figure PCTKR2018007316-appb-img-000018
Figure PCTKR2018007316-appb-img-000018
6-(알릴옥시)벤조[c][1,2,5]옥사디아졸 1-옥사이드(6-(Allyloxy)benzo[c][1,2,5]oxadiazole 1-oxide)(1.50 g, 7.81 mmol)를 트리에틸아민(trimethylamine)(2.36g, 23.42 mmol)과 함께 교반한다. 6- (Allyloxy) benzo [c] [1,2,5] oxadiazole 1-oxide (1.50 g, 7.81 mmol) are stirred together with trimethylamine (2.36 g, 23.42 mmol).
얼음수조 하에서 Pyrrolidine (1.01g, 14.05 mmol), methylethylketone (0.84g, 11.71 mmol) 를 적가하여 준다. 실온 승온 후 약 1시간 후 반응 종결을 확인하였다 (TLC 분석 조건, n-Hexane:EtOAc = 2:1). 반응액을 필터 후 차가운 에탄올로 워시하여 갈색 고체 (0.96 g, 50%) 를 얻었다. 이 단계에서는 별도의 정제 없이 다음 단계를 진행하였다.Pyrrolidine (1.01 g, 14.05 mmol) and methylethylketone (0.84 g, 11.71 mmol) were added dropwise in an ice bath. After about 1 hour after the temperature rise, the reaction was completed (TLC analysis, n-hexane: EtOAc = 2: 1). The reaction solution was filtered and washed with cold ethanol to obtain a brown solid (0.96 g, 50%). At this stage, the next step was carried out without further purification.
1H-NMR (400 MHz, DMSO- d6) δ 8.38 (d, J = 9.6 Hz, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.52 (dd, J = 9.4, 2.4 Hz, 1H), 6.10 (m , 1H), 5.57 (dd, J = 17.2, 1.6 Hz, 1H), 5.34 (dd, J = 10.6, 1.6 Hz, 1H), 2.59 (s, 3H), 2.57 (s, 3H). 1 H-NMR (400 MHz, DMSO- d 6)? 8.38 (d, J = 9.6 Hz, 1H), 7.82 , 6.10 (m, IH), 5.57 (dd, J = 17.2, 1.6 Hz, IH), 5.34 (dd, J = 10.6, 1.6 Hz, IH), 2.59 (s, 3H), 2.57 (s, 3H).
단계 4:Step 4:
Figure PCTKR2018007316-appb-img-000019
Figure PCTKR2018007316-appb-img-000019
6-(알릴옥시)-2,3-디메틸퀴녹살린 1,4-다이옥사이드(6-(allyloxy)-2,3-dimethylquinoxaline 1,4-dioxide) (1.00 g, 4.06 mmol)를 1,4-다이옥사이드(1,4-dioxide)에 용해 한 뒤, 브롬(12.71 mmol)를 적가하였다. 6- (allyloxy) -2,3-dimethylquinoxaline 1,4-dioxide (1.00 g, 4.06 mmol) was dissolved in 1,4-dioxane (1,4-dioxide), bromine (12.71 mmol) was added dropwise.
반응액을 90 °C 까지 승온 한 뒤 시작물질의 스팟이 사라질 때 까지 약 2시간 반응하였다. 이때 반응 진행 여부는 TLC 분석을 이용하여 판단하였다(n-Hexane:EtOAc = 1:2). 반응 종결 후 NaHCO 3 수용액을 투입 후 에틸 아세테이트로 추출하였다. 이후 유기층을 브린(Brine)을 이용하여 세척 후 MgSO 4 를 이용하여 건조후 여과, 농축하여 혼합 상태의 생성물을 얻었다. The reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared. The progress of the reaction was judged by TLC analysis (n-Hexane: EtOAc = 1: 2). After completion of the reaction, NaHCO 3 aqueous solution was added thereto and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated to obtain a mixture.
이 생성물은 MPLC (n-Hexane:EtOAc = 3:1) 를 이용하여 컬럼을 하였고, 화합물-4(0.72 g, 44%)을 얻었다.This product was subjected to column chromatography using MPLC (n-Hexane: EtOAc = 3: 1) to obtain Compound-4 (0.72 g, 44%).
1H-NMR (400 MHz, DMSO-d 6) δ 8.25 (d, J = 9.6 Hz, 1H), 7.90 (m, 2H), 5.87 (m, 1H) 5.23~5.17 (m, 2H), 4.92 (s, 4H), and 4.61 (d, J = 4.8 Hz, 2H) ; 13C-NMR (100MHz, DMSO-d 6) δ 167.0, 134.5, 122.3, 122,1, 117.5, 105.0, 70.1, and 23.9 HRMS (ESI) : m/z 403.9194 [M+H] + (calcd for C 13H 12Br 2N 2O3+ 404.9279) 1 H-NMR (400 MHz, DMSO-d 6) δ 8.25 (d, J = 9.6 Hz, 1H), 7.90 (m, 2H), 5.87 (m, 1H) 5.23 ~ 5.17 (m, 2H), 4.92 ( s, 4H), and 4.61 (d, J = 4.8 Hz, 2H); 13 C-NMR (100MHz, DMSO -d 6) δ 167.0, 134.5, 122.3, 122,1, 117.5, 105.0, 70.1, and 23.9 HRMS (ESI): m / z 403.9194 [M + H] + (calcd for C 13 H 12 Br 2 N 2 O 3 + 404.9279)
<합성예 5: 2,3-비스(브로모메틸)-6-(프로프-2-인일옥시)퀴녹살린 1,4-다이옥사이드(2,3-bis(bromomethyl)-6-(prop-2-ynyloxy)quinoxaline 1,4-dioxide(화합물-5)) 합성 >Synthesis Example 5: Preparation of 2,3-bis (bromomethyl) -6- (prop-2-yloxy) -ynyloxy) quinoxaline 1,4-dioxide (Compound-5))>
단계 1:Step 1:
Figure PCTKR2018007316-appb-img-000020
Figure PCTKR2018007316-appb-img-000020
4-아미노-3-니트로페놀(4-Amino-3-nitrophenol)(5.00 g, 32.44 mmol)과 프로파길 브로마이드(propargyl bromide)(5.79g, 48.66 mmol)을 DMF 용매 에서 교반하며 탄산 칼슘(potassium carbonate)(6.73g, 48.66 mmol)를 소분하여 투입한다. 이후 반응 용기의 온도를 90°C 로 승온하여 출발물질이 사라질 때 까지 약 3시간 반응 관찰하였다(TLC분석 조건, n-Hexane:EtOAc = 3:1). 4-Amino-3-nitrophenol (5.00 g, 32.44 mmol) and propargyl bromide (5.79 g, 48.66 mmol) were stirred in a DMF solvent and potassium carbonate ) (6.73 g, 48.66 mmol). Then, the temperature of the reaction vessel was raised to 90 ° C and the reaction was observed for about 3 hours (TLC analysis condition, n-hexane: EtOAc = 3: 1) until the starting material disappeared.
반응이 종결되면 실온 냉각 후 얼음물에 반응 용액을 투입한다. 이후 디에틸에테르(diethyl ether)를 이용하여 수층에 스팟이 사라질 때 까지 추출하였다. 유기층은 브린(brine)으로 세척 후 MgSO4를 이용하여 건조 후 농축하여 붉은색 고체를 얻었다. When the reaction is completed, the reaction solution is added to the ice water after cooling at room temperature. The mixture was then extracted with diethyl ether until the spot disappeared in the aqueous layer. The organic layer was washed with brine, dried over MgSO4 and concentrated to obtain a red solid.
이는 컬럼 (n-Hexane:EtOAc = 10:1)을 통하여 2-니트로-4-(프롭-2-인-1-일옥시)아닐린(2-nitro-4-(prop-2-yn-1-yloxy)aniline)(3.95g ,63%)를 최종적으로 확인하였다.This was obtained via a column (n-Hexane: EtOAc = 10: 1) to give 2-nitro-4- (prop-2-yn- 1-yloxy) yloxy) aniline (3.95 g, 63%) was finally confirmed.
1H-NMR (400 MHz, CDCl3) δ7.69(bs, 1H), 7.13(d, J=8.0Hz, 1H), 6.78(d, J=8.0Hz, 1H), 5.91(bs, 2H), 4.67(d, J=4.0Hz, 2H), and 2.55(t, J=2.0Hz, 1H). 1 H-NMR (400 MHz, CDCl3) δ7.69 (bs, 1H), 7.13 (d, J = 8.0Hz, 1H), 6.78 (d, J = 8.0Hz, 1H), 5.91 (bs, 2H), 4.67 (d, J = 4.0 Hz, 2H), and 2.55 (t, J = 2.0 Hz, 1H).
단계 2:Step 2:
Figure PCTKR2018007316-appb-img-000021
Figure PCTKR2018007316-appb-img-000021
2-니트로-4-(프롭-2-인-1-일옥시)아닐린(2-Nitro-4-(prop-2-yn-1-yloxy) aniline)(2.00 g, 10.41 mmol) 을 미리 제조한 20% KOH/ethanol 용액(60ml)에 투입 후 교반한다. 얼음 수조하에서 NaOCl 12% 용액을 약 50ml 적가 한 뒤 실온으로 승온하여 출발물질이 사라질 때 까지 교반하여 준다. 2-nitro-4- (prop-2-yn-1-yloxy) aniline (2.00 g, 10.41 mmol) Add 20% KOH / ethanol solution (60 ml) and stir. About 50 ml of NaOCl 12% solution is added dropwise in an ice water bath, then the temperature is raised to room temperature and stirred until the starting material disappeared.
발생 고체를 필터 한 뒤 차가운 에탄올로 세척한다. 이렇게 얻은 노란 고체는 물:에탄올 = 1:3 용액을 이용하여 재결정 과정을 거친다 (1.96g, 99%). Filter the resulting solids and wash with cold ethanol. The yellow solid thus obtained is subjected to recrystallization (1.96 g, 99%) using a water: ethanol = 1: 3 solution.
1H-NMR (400 MHz, CDCl3) δ 7.81 - 6.81 (m, 3H), 4.98 (d, J = 2.0 Hz, 2H), and 3.34 (s, 1H). 1 H-NMR (400 MHz, CDCl 3)? 7.81-6.81 (m, 3H), 4.98 (d, J = 2.0 Hz, 2H), and 3.34 (s, 1H).
단계 3:Step 3:
Figure PCTKR2018007316-appb-img-000022
Figure PCTKR2018007316-appb-img-000022
6-(프롭-2-인-1-일옥시)벤조[c][1,2,5]옥사디아졸 1-옥사이드(6-(Prop-2-yn-1-yloxy)benzo[c][1,2,5]oxadiazole 1-oxide) (1.50 g, 7.89 mmol)를 트리에틸아민(trimethylamine)(2.39g, 23.66 mmol)과 함께 교반한다. 6-Prop-2-yn-1-yloxy benzo [c] [1,2,5] oxadiazole 1-oxide [ 1,2,5] oxadiazole 1-oxide (1.50 g, 7.89 mmol) were stirred together with trimethylamine (2.39 g, 23.66 mmol).
얼음수조 하에서 피롤리딘(Pyrrolidine)(1.02g, 14.20 mmol), 메틸에틸케톤(methylethylketone)(0.85g, 11.83 mmol) 를 적가하여 준다. 실온 승온 후 약 1시간 후 반응 종결을 확인하였다(TLC 분석 조건, n-Hexane:EtOAc = 2:1). 반응액을 필터 후 차가운 에탄올로 워시하여 갈색 고체 (0.96 g, 51%) 를 얻었다. 이 단계에서는 별도의 정제 없이 다음 단계를 진행하였다.Pyrrolidine (1.02 g, 14.20 mmol) and methylethylketone (0.85 g, 11.83 mmol) were added dropwise in an ice bath. After about 1 hour after the temperature rise, the reaction was completed (TLC analysis, n-hexane: EtOAc = 2: 1). The reaction solution was filtered and then washed with cold ethanol to obtain a brown solid (0.96 g, 51%). At this stage, the next step was carried out without further purification.
1H-NMR (400 MHz, DMSO- d6) δ 8.38 (d, J = 9.6 Hz, 1H), 7.92 (d, J = 2.4, 1H), 7.51 (dd, J = 9.4, 2.6 Hz, 1H), 5.06 (d, J = 2.4 Hz, 2H), 3.71 (t, J = 2.4 Hz, 1H), 2.59 (s, 1H), 2.57 (s, 1H). 1 H-NMR (400 MHz, DMSO- d6) δ 8.38 (d, J = 9.6 Hz, 1H), 7.92 (d, J = 2.4, 1H), 7.51 (dd, J = 9.4, 2.6 Hz, 1H), (D, J = 2.4 Hz, 2H), 3.71 (t, J = 2.4 Hz, 1H), 2.59 (s, 1H), 2.57 (s, 1H).
단계 4:Step 4:
Figure PCTKR2018007316-appb-img-000023
Figure PCTKR2018007316-appb-img-000023
2,3-디메틸-6-(프롭-2-이닐옥시)퀴녹살린 1,4-다이옥사이드(2,3-dimethyl-6-(prop-2-ynyloxy)quinoxaline 1,4-dioxide) (1.00 g, 4.09 mmol) 화합물을 1,4-(다이옥사이드)1,4-dioxide에 용해 한 뒤, 브롬 (12.71 mmol)를 적가하였다.2,3-dimethyl-6- (prop-2-ynyloxy) quinoxaline 1,4-dioxide (1.00 g, 4.09 mmol) was dissolved in 1,4- (dioxa) 1,4-dioxide and bromine (12.71 mmol) was added dropwise.
반응액을 90 °C 까지 승온 한 뒤 시작물질의 스팟이 사라질 때 까지 약 2시간 반응하였다. 이때 반응 진행 여부는 TLC 분석을 이용하여 판단하였다 (n-Hexane:EtOAc = 1:2). 반응 종결 후 NaHCO 3 수용액을 투입 후 에틸 아세테이트로 추출하였다. The reaction solution was heated to 90 ° C and reacted for about 2 hours until the spot of starting material disappeared. The progress of the reaction was judged by TLC analysis (n-Hexane: EtOAc = 1: 2). After completion of the reaction, NaHCO 3 aqueous solution was added thereto and extracted with ethyl acetate.
이후 유기층을 브린(Brine)을 이용하여 세척 후 MgSO 4 를 이용하여 건조후 여과, 농축하여 혼합 상태의 생성물을 얻었다. 이 생성물은 MPLC (n-Hexane:EtOAc = 3:1) 를 이용하여 컬럼을 하였고, 화합물-5(0.68 g, 41%)를 얻었다.The organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated to obtain a mixture. This product was subjected to column chromatography using MPLC (n-Hexane: EtOAc = 3: 1) to obtain Compound-5 (0.68 g, 41%).
1H-NMR (400 MHz, DMSO-d 6) δ 8.34 (d, J = 9.6 Hz, 1H), 8.06 (m, 2H); 5.00 (s, 4H), 4.86 (d, J = 2.4 Hz, 2H) and 3.51 (t, J = 2.4 Hz, 1H); 13C-NMR (100MHz, DMSO-d 6) δ 164.8, 122.2, 120.6, 106.3, 80.0, 78.8, 58.8 and 23.1; HRMS (ESI) : m/z 401.9038 [M+H] + (calcd for C 13H 10Br 2N 2O3+ 402.9465) 1 H-NMR (400 MHz, DMSO-d 6) δ 8.34 (d, J = 9.6 Hz, 1H), 8.06 (m, 2H); 5.00 (s, 4H), 4.86 (d, J = 2.4 Hz, 2H) and 3.51 (t, J = 2.4 Hz, 1H); 13 C-NMR (100 MHz, DMSO-d 6 )? 164.8, 122.2, 120.6, 106.3, 80.0, 78.8, 58.8 and 23.1; HRMS (ESI): m / z 401.9038 [M + H] + (calcd for C 13 H 10 Br 2 N 2 O3 + 402.9465)
<실시예 17> 화합물-1 내지 화합물-5에 의한 PrxII 활성 조절 분석<Example 17> Control of PrxII activity by Compound-1 to Compound-5
PrxII 를 저해함에 의한 인간 CRC 치료 가능성을 평가하기 위해 화합물-1 내지 화합물-5의 세포 투과성 화합물을 시험하였다. To evaluate the possibility of treating human CRC by inhibiting PrxII, the cytopathic compounds of Compound-1 to Compound-5 were tested.
도 72 내지 도 73의 그래프에서 본 발명의 일 실시예에 의하여 합성된 화합물-1 내지 화합물-5는 PrxII 활성을 크게 억제하는 것을 확인할 수 있다. In the graphs of FIG. 72 to FIG. 73, it can be confirmed that Compound-1 to Compound-5 synthesized according to one embodiment of the present invention significantly inhibits PrxII activity.
<실시예 18> 화합물-1 내지 화합물-5에 의한 콜로니 형성 분석Example 18 Analysis of Colony Formation by Compound-1 to Compound-5
도 74는 RKO 세포에 화합물-1 내지 화합물-5를 처리하고 콜로니 개수를 측정한 것이다. 도 75는 RKO 세포에 화합물-1 내지 화합물-5와 코노이딘 A(Conoidin A, 화합물-6)을 처리하여 배양한 콜로니 형성 분석 결과이다. 74 shows RKO cells treated with Compound-1 to Compound-5 and measuring the number of colonies. 75 shows the result of colony formation analysis in which RKO cells were treated with Compound-1 through Compound-5 and conoidin A (Compound-6).
도 76는 HT29 세포에 화합물-1 내지 화합물-5의 처리 후 콜로니 개수를 측정한 것이다. 도 77는 HT29세포에 화합물-1 내지 화합물-5와 코노이딘 A(Conoidin A,화합물-6)을 처리하여 배양한 콜로니 형성 분석 결과이다. 76 shows the number of colonies after treatment with Compound-1 to Compound-5 in HT29 cells. 77 shows the result of analysis of colony formation in which HT29 cells were treated with Compound-1 to Compound-5 and conoidin A (Compound-6).
화합물-1 내지 화합물-5의 처리 후 RKO 세포가 아닌 HT29 세포의 증식을 충분히 억제한다는 것을 보여 주었다. 이로부터 PrxII 가 인간 CRC에 대한 새로운 표적 치료가 될 수 있으며, 코노이딘 A(화합물-6) 및 화합물-1 내지 화합물-5와 같이 PrxII를 억제하는 화합물이 인간 CRC에 대한 새로운 치료약이 될 수 있음을 알 수 있다. 5 inhibited the proliferation of HT29 cells that were not RKO cells after treatment with Compound-1 to Compound-5. From this, PrxII can be a new target therapy for human CRC, and compounds that inhibit PrxII, such as conoid A (compound-6) and compound-1 through compound-5, can be new therapeutic agents for human CRC .
<참고예 1> 암유전체지도 분석 (The Cancer Genome Atlas, TCGA analysis)&Lt; Reference Example 1 > The Cancer Genome Atlas (TCGA analysis)
대장 암 및 정상 대장 조직 샘플에서 PrxI 및 PrxII의 발현은 암유전체지도 (Cancer Genome Atlas, TCGA) 프로젝트 (https://tcga-data.nci.nih.gov)의 마이크로어레이(microarray) 데이터를 사용하여 측정되었다. Expression of PrxI and PrxII in colorectal cancer and normal colon tissue samples was assessed using microarray data from the Cancer Genome Atlas (TCGA) project (https://tcga-data.nci.nih.gov) Respectively.
설명하자면, Agilent G4502A 마이크로어레이 플랫폼을 사용하여 mRNA 발현 데이터를 생성 한 후 이전에 설명한대로 처리 및 표준화하였다. 유전자 발현 데이터를 분석을 위해 155 개의 대장암 조직 샘플 및 26 개의 정상 대장 조직 샘플이 포함되었다.To illustrate, mRNA expression data was generated using an Agilent G4502A microarray platform and processed and standardized as previously described. For analysis of gene expression data, 155 colon cancer tissue samples and 26 normal colon tissue samples were included.
<참고예 2> 면역블로팅과 면역침강법 (Immunoblotting and immunoprecipitation)&Lt; Reference Example 2 > Immunoblotting and immunoprecipitation [
장 내강(lumen)을 평평한 바늘이 달린 주사기를 사용하여 얼음으로 찬 인산염 완충 식염수(PBS)로 세척하고 세로방향으로 절개하였다. 용종이 없는 장의 절편을 용종과 함께 면역블로팅(immunoblotting) 분석을 하기 위해 절제하였다.The lumen of the intestine was washed with ice-cold phosphate buffered saline (PBS) using a flat needle syringe and longitudinally incised. The polyp-free section of the intestine was resected for immunoblot analysis with the polyp.
조직을 10 % 글리세롤, 1mM EDTA, 2mM EGTA, 1mM DTT, 5mM Na3VO4, 5mM NaF, 1mM AEBSF, 아프로티닌(aprotinin, 5μg / ml), 류 펩틴 (5 μg / ml)을 함유하는 HEPES- 완충 식염수에서 Dounce 균질화기를 사용하여 균질화시켰다. Tissues were suspended in HEPES-buffered saline containing 10% glycerol, 1 mM EDTA, 2 mM EGTA, 1 mM DTT, 5 mM Na3VO4, 5 mM NaF, 1 mM AEBSF, aprotinin, 5 μg / ml, leupeptin Homogenized using a Dounce homogenizer.
배양 된 세포를 얼음으로 차가운 PBS로 1 회 헹구고, 20 mM HEPES (pH 7.0), 1 % Triton X-100, 150 mM NaCl, 10 % 글리세롤, 1 mM EDTA, 2 mM EGTA, 1 mM DTT, 5 mM Na3 VO4, 5 mM NaF, 1 mM AEBSF, 아프로티닌 (5 μg / ml) 및 류 펩틴 (5 μg / ml)를 포함하는 용해 완충액에서 용해한다. The cultured cells were rinsed once with ice cold PBS and resuspended in 20 mM HEPES pH 7.0, 1% Triton X-100, 150 mM NaCl, 10% glycerol, 1 mM EDTA, 2 mM EGTA, 1 mM DTT, 5 mM Na3 VO4, 5 mM NaF, 1 mM AEBSF, aprotinin (5 μg / ml) and leupeptin (5 μg / ml).
조직 균질균(homogenates)및 세포 용해물을 15,000 x g에서 15분 동안 원심 분리하고, 단백질 농도를 브래드포드(Bradford) 분석법(Pierce)에 의해 조사하였다. 단백질 시료를 SDS 시료 완충액과 혼합하고 5 분간 끓였다. Tissue homogenates and cell lysates were centrifuged at 15,000 x g for 15 minutes and protein concentrations were examined by Bradford assay (Pierce). Protein samples were mixed with SDS sample buffer and boiled for 5 minutes.
그 단백질을 SDS-PAGE로 분리한 다음 1 시간 동안 일렉트로블로팅 (electroblotting)하여 나이트로셀룰로오스 막(nitrocellulose Membranes)으로 이동시켰다. 막을 0.05 % (v / v) Tween-20 (TBST)을 함유하는 트리스(Tris) 완충 식염수에서 2시간 동안 5 % 소 혈청 알부민(BSA) 또는 5 % 건조 탈지유로 블로킹 한 후, 실온에서 2시간 동안 블로킹 완충액에서 적절한 일차 항체와 항온 배양하였다. The protein was separated by SDS-PAGE and electroblotted for 1 hour to transfer to nitrocellulose membranes. The membranes were blocked with 5% bovine serum albumin (BSA) or 5% dried skim milk for 2 hours in Tris buffered saline containing 0.05% (v / v) Tween-20 (TBST) And incubated with appropriate primary antibodies in blocking buffer.
다음, TBST로 3회 세척 한 후, 막을 블로킹 완충액 중에서 겨자무과산화효소 접합(horseradish peroxidase-conjugated) 2차 항체(Amersham Biosciences)와 배양했다. 면역 반응성 밴드(The immune-reactive bands)는 화학 발광 키트 (AbFrontier, Korea)로 검출하고 LAS-3000 이미징 시스템(imaging system, Fuji Film, Japan)으로 정량화 하였다. Then, after 3 washes with TBST, the membranes were incubated with horseradish peroxidase-conjugated secondary antibody (Amersham Biosciences) in blocking buffer. The immune-reactive bands were detected with a chemiluminescence kit (AbFrontier, Korea) and quantified with a LAS-3000 imaging system (Fuji Film, Japan).
필요한 경우 67 mM Tris (pH 6.7), 2%SDS 및 100mM 베타 머캡토에탄올(β-mercaptoethanol)에서 37°C로 60분간 흔들어 막을 벗겨낸 다음 적절한 일반항체(pan-antibody)로 재조사한다. If necessary, strip the membrane by shaking in 67 mM Tris (pH 6.7), 2% SDS and 100 mM β-mercaptoethanol for 60 min at 37 ° C and re-assay with appropriate normal antibodies.
면역침강(immunoprecipitation)을 위해, 정제된 세포 용해물 (0.5 ~ 1 mg 단백질)을 30μl의 단백질-A/G Sepharose 4 Fast Flow beads (Amersham Biosciences)로 1시간 동안 미리 제거 하였다. For immunoprecipitation, the purified cell lysate (0.5-1 mg protein) was pre-removed with 30 μl protein-A / G Sepharose 4 Fast Flow beads (Amersham Biosciences) for 1 hour.
상청액(supernatant, 표면에 뜬 배양액)을 3 ug의 적절한 항체와 함께 밤새 배양 한 다음, 다시 3시간동안 4 ℃에서 30 ㎕의 protein-A / G beads와 혼합하여 침전시켰다. The supernatant was incubated overnight with 3 μg of the appropriate antibody and then precipitated again by mixing with 30 μl of protein-A / G beads at 4 ° C for 3 hours.
그 후 그 beads를 1ml의 용해 완충액으로 3회 세척 한 후, 시험 관내 PARP분석 또는 면역블롯팅(immunoblotting)을 수행 하였다. The beads were then washed three times with 1 ml of lysis buffer followed by in vitro PARP analysis or immunoblotting.
<참고예 3> 베타 카테닌/TCF 전사 리포터 분석(β-catenin/TCF transcription reporter assay)REFERENCE EXAMPLE 3 Beta-catenin / TCF transcription reporter assay (β-catenin / TCF transcription reporter assay)
SW480세포를 12-well plates에 넣고, pTOPflash 또는 pFOPflash 플라스미드로 형질감염시켰다. 형질감염 효율을 정상화하기 위해, 세포를 pRL-TK 레닐라 루시퍼레이즈 컨트롤 플라스미드(Renilla Luciferase control plasmid)와 같이 형질 감염시켰다. SW480 cells were plated in 12-well plates and transfected with pTOPflash or pFOPflash plasmids. To normalize the transfection efficiency, cells were transfected with the pRL-TK Renilla Luciferase control plasmid.
형질 감염 후, 세포를 완전배지에서 24시간 동안 배양한 다음, 리포터 용해 완충액(reporter lysis buffer)으로 용해시켰다. 루시퍼레이즈(Luciferase)활성은 듀얼 루시퍼레이즈 리포터 분석(Dual-Luciferase reporter assay, Promega)로 3회 측정 하였다. After transfection, cells were cultured in complete medium for 24 hours and then lysed in reporter lysis buffer. Luciferase activity was measured three times with the Dual-Luciferase reporter assay (Promega).
형질감염 효율의 정상화 후에 대조 siRNA군과 비교하여 접지유도(fold induction)로서 데이터가 보고되었다. 접지유도(fold induction)는 실험 활동과 제어 활동의 비율을 말한다.Data were reported as fold induction as compared to the control siRNA group after normalization of transfection efficiency. Fold induction is the ratio of experimental activity to control activity.
<참고예 4> RNA 서열 분석(RNA Sequence analysis, RNA-Seq analysis)&Lt; Referential Example 4 > RNA Sequence analysis (RNA-Seq analysis)
siRNA-형질감염 된 HT29세포의 4개 시료를 고처리량 mRNA 서열 분석(high-throughput mRNA sequencing)을 위해 준비하였다. 각 샘플에서 1μg의 RNA를 추출하고 TruSeq RNA Library Preparation kit v2 (Illumina)를 사용하여 mRNA 라이브러리(library)(~300 bp의 삽입 크기)를 만들었다. Four samples of siRNA-transfected HT29 cells were prepared for high-throughput mRNA sequencing. One μg of RNA was extracted from each sample and an mRNA library (~300 bp insert size) was generated using the TruSeq RNA Library Preparation kit v2 (Illumina).
쌍극자 전사체 시퀀싱(Paired-end transcriptome sequencing, 101 bp read length)은 Illumina HiSeq 2500에서 수행되었다. 각 샘플에 대한 판독수(The number of reads)는 6,940만에서 7,480만에 이른다. 시퀀싱 데이터는 GEO 데이터베이스에 기탁되었다 (수탁 번호는 GSE81429). Paired-end transcriptome sequencing (101 bp read length) was performed on an Illumina HiSeq 2500. The number of reads for each sample ranges from 69.4 million to 74.8 million. Sequencing data was deposited with the GEO database (accession number is GSE81429).
FastQC와 Fastx-toolkit으로 표준 품질 검사와 트리밍(trimming)을 한 후 MapSplice v2.1.7을 사용하여 RNA 서열 데이터를 인간 게놈 (UCSC의 hg19)에 정렬했다. 판독의 매핑 속도(The mapping rate of reads)는 96.5 - 96.8 % 사이 였고, RSG v1.2.12는 refGene mRNA의 전사체(transcriptome)의 존재량을 추정하는 데 사용되었다. After standard quality checks and trimming with FastQC and Fastx-toolkits, RNA sequence data was aligned with the human genome (hg19 of UCSC) using MapSplice v2.1.7. The mapping rate of reads ranged from 96.5 to 96.8%, and RSG v1.2.12 was used to estimate the abundance of the transcriptome of refGene mRNA.
다르게 발현된 유전자(Differentially expressed genes, DEG)는 0.05의 FDR 컷오프를 갖는 DESeq2를 사용하여 확인되었다Differentially expressed genes (DEG) were identified using DESeq2 with an FDR cutoff of 0.05
<참고예 5> 시험관 내 PARP 분석 (In vitro PARP assay)<Reference Example 5> In vitro PARP assay (in vitro PARP assay)
면역 복합체 결합 구슬(Immunocomplex-bound beads)를 4μCi의 γ-32 [P] -NAD +를 포함하는 40μl의 분석 완충액(50mM Tris-HCl pH 8.0, 4 mM MgCl 2)에서 25°C, 30분 동안 배양했다. 그 반응은 2 × SDS 샘플 완충액을 첨가함으로서 중단된다. 샘플을 끓인 후 SDS 변성 젤(SDS denaturing gel)을 이용하여 분리한다.Immunocomplex-bound beads were incubated in 40 μl of assay buffer (50 mM Tris-HCl pH 8.0, 4 mM MgCl 2) containing 4 μCi of γ-32 [P] -NAD + at 25 ° C for 30 min Lt; / RTI &gt; The reaction is stopped by the addition of 2x SDS sample buffer. The sample is boiled and separated using SDS denaturing gel (SDS denaturing gel).
그 겔은 진공 건조되고 영상판(imaging plate)에서 방사선 촬영되었다. 플레이트에 기록 된 방사능을 판독하고 Fujifilm Bio-imaging Analyzer System (BAS) -3000에 의해 정량화 하였다.The gel was vacuum dried and irradiated on an imaging plate. The radioactivity recorded on the plate was read and quantified by Fujifilm Bio-imaging Analyzer System (BAS) -3000.
<참고예 6> 플라스미드 구축 및 부위-지정 돌연변이(Plasmid construction and site-directed mutagenesis)&Lt; Reference Example 6 > Plasmid construction and site-directed mutagenesis [
인간 탄키라제 1(tankyrase-1, TNKS1)의 전체 상보 DNA(full-length complementary DNA)를 포함하는 플라스미드를 Open Biosystems(mRNA accession number, BC098394)로부터 구입하였다. 탄키라제-1(tankyrase-1)의 전체 서열(sequence)를 전방향 및 역방향 프라이머(NotI and BglII 부위에 각각 밑줄이 그어진, A plasmid containing the full-length complementary DNA of human turkey-1 (TNKS1) was purchased from Open Biosystems (mRNA accession number, BC098394). The entire sequence of the Tankyrase-1 was sequenced by forward and reverse primers (underlined in the NotI and BglII sites, respectively)
5'- ATAAGAATGCGGCCGCGGCGGCGTCGCGTCGCTC-3' 및5'-ATAAGAATGCGGCCGCGGCGGCGTCGCGTCGCTC-3 'and
5'-GAAGATCTCTAGGTCTTCTGCTCTG-3');를 이용하여 PCR-증폭 하였고, p3×FLAG CMV9 벡터에 삽입하여 플래그-표지 탄키라제 1(FLAG-tagged TNKS1)을 생성 하였다. 5'-GAAGATCTCTAGGTCTTCTGCTCTG-3 '), and inserted into p3 × FLAG CMV9 vector to generate flag-tagged TNKS1.
도메인 맵핑 실험을 위해, 다양한 탄키라제 1(tankyrase-1) 단편을 PCR 증폭하고 p3x FLAG CMV9 벡터에 다음의 순방향 및 역방향 프라이머를 사용하여 서브 클로닝 하였다 : For the domain mapping experiments, various tankyrase-1 fragments were PCR amplified and subcloned into the p3x FLAG CMV9 vector using the following forward and reverse primers:
아미노산 잔기 1-158, 5'-ATAAGAATGCGGCCGCGGCGGCGTCGCGTCGCTC-3 ' 및 Amino acid residues 1-158, 5'-ATAAGAATGCGGCCGCGGCGGCGTCGCGTCGCTC-3 'and
5'-GAAGATCTCTAGGCCGCCTCGGGGCTCTC-3'; 5'-GAAGATCTCTAGGCCGCCTCGGGGCTCTC-3 ';
아미노산 잔기 158-595, 5'-ATAAGAATGCGGCCGCCGGAGTTAGCAGCACAGCAC-3 '및 Amino acid residues 158-595, 5'-ATAAGAATGCGGCCGCCGGAGTTAGCAGCACAGCAC-3 'and
5'-GAAGATCTCTACAAAGCAGTCTGACCAAGGG-3';5'-GAAGATCTCTACAAAGCAGTCTGACCAAGGG-3 ';
아미노산 잔기 596-1022, 5'-ATAAGAATGCGGCCGCGCATAGAGCCGCCCTAGCAGG-3 '및 Amino acid residues 596-1022, 5'-ATAAGAATGCGGCCGCGCATAGAGCCGCCCTAGCAGG-3 'and
5'-GAAGATCTCTATCCTTCCTTCCTTTCTGTTCC-3';5'-GAAGATCTCTATCCTTCCTTCCTTTCTGTTCC-3 ';
아미노산 잔기 1023-1327, 5'-ATAAGAATGCGGCCGCAGAAGTTGCTGGTCTTGAC-3 '및 Amino acid residues 1023-1327, 5'-ATAAGAATGCGGCCGCAGAAGTTGCTGGTCTTGAC-3 'and
5'-GAAGATCTCTAGGTCTTCTGCTCTG-3 '5'-GAAGATCTCTAGGTCTTCTGCTCTG-3 '
(밑줄 친 부분은 NotI 및 BglII 부위)GST-TNKS1 (1023-1327)에 대한 대장균 발현 플라스미드는 Chang-Woo Lee (성균관대 학교 의과 대학)로부터 기증받았다. E. coli expression plasmid for GST-TNKS1 (1023-1327) was donated from Chang-Woo Lee (Sungkyunkwan University School of Medicine).
Myc-태그 된 siRNA-내성 PrxII WT, C172S 단일 돌연변이체 및 C51/172S 이중 돌연변이체를 발현하는 레트로 바이러스 벡터 (pQ-CXIX)는 전술 한 바와 같이 제조하였다. 아미노산 치환을 위한 부위별 돌연변이(Site-directed mutagenesis)는 QuikChange kit (Stratagene)을 이용하여 수행하였다. Retroviral vectors (pQ-CXIX) expressing Myc-tagged siRNA-resistant PrxII WT, C172S single mutants and C51 / 172S double mutants were prepared as described above. Site-directed mutagenesis for amino acid substitution was performed using the QuikChange kit (Stratagene).
탄키라제 1(tankyrase-1)에서의 Cys-Ser 치환을 위한 이중 가닥의 프라이머는 다음과 같다 : Double strand primers for Cys-Ser substitution in tankyrase-1 are as follows:
C1163S 돌연변이체의 경우, In the case of the C1163S mutant,
(sense) 5'-GTTGAGGGAGCGGTTCTCCCACCGACAGAAGGAAG-3'; (sense) 5'-GTTGAGGGAGCGGTTCTCCCACCGACAGAAGGAAG-3 ';
C1234S 돌연변이체의 경우, In the case of the C1234S mutant,
(sense) 5'-GGAGGAGGAACAGGCTCCCCTACACACAAGGAC-3'; (sense) 5'-GGAGGAGGAACAGGCTCCCCTACACACAAGGAC-3 ';
C1242S 돌연변이체의 경우, For the C1242S mutant,
(sense) 5'-CACAAGGACAGGTCATCCTATATATGTCACAGAC-3'; (sense) 5'-CACAAGGACAGGTCATCCTATATATGTCACAGAC-3 ';
C1245S 돌연변이체의 경우, For the C1245S mutant,
(sense) 5'-CAGGTCATGCTATATATCTCACAGACAAATGCTCTTC-3'; (sense) 5'-CAGGTCATGCTATATATCTCACAGACAAATGCTCTTC-3 ';
C1252S 돌연변이체의 경우, In the case of the C1252S mutant,
(sense) 5'-GACAAATGCTCTTCTCTAGAGTGACCCTTGGG-3'(sense) 5'-GACAAATGCTCTTCTCTAGAGTGACCCTTGGG-3 '
인간 PrxII에 대한 Gly-Val 치환을 위한 이중 가닥의 프라이머는 다음과 같다 : The double strand primers for Gly-Val substitution for human PrxII are as follows:
G9V 돌연변이체의 경우, (sense) 5'-GCGCGCATCGTAAAGCCAGCCCCTG-3'; For the G9V mutant, (sense) 5'-GCGCGCATCGTAAAGCCAGCCCCTG-3 ';
G23V 돌연변이체의 경우, (sense) 5'-GCGGTGGTTGATGTCGCCTTCAAAG-3'; For the G23V mutant, (sense) 5'-GCGGTGGTTGATGTCGCCTTCAAAG-3 ';
G116V 돌연변이체의 경우, (sense) 5'-CTGAGGATTACGTCGTGCTGAAAAC-3 '.For the G116V mutant, (sense) 5'-CTGAGGATTACGTCGTGCTGAAAAC-3 '.
베타 카테닌 S37A 변이체를 발현하는 레트로 바이러스 pQ 벡터는 이전에 기재된 pBI-EGFP-베타카테닌(S37A) 구조로부터 PCR 서브 클로닝에 의해 제작되었다. 모든 구조 및 돌연변이는 뉴클레오타이드 시퀀싱에 의해 확인되었다.The retroviral pQ vector expressing the beta-catenin S37A variant was constructed by PCR subcloning from the previously described pBI-EGFP-beta-catenin (S37A) structure. All structures and mutations were confirmed by nucleotide sequencing.
<참고예 7> 아연 측정(Zinc determination)<Reference Example 7> Zinc determination
아연 이온은 수용액에서 4-(2-피리디라조)레조르시놀 (4-(2-pyridylazo) resorcinol) (PAR)을 사용하여 관찰된다. Zinc ions are observed in aqueous solution using 4- (2-pyridylazo) resorcinol (PAR).
The glutathione S-transferase (GST)-fused TNKS1 PARP(1023-1327) 단백질을 100μM ZnCl2가 보충 된 LB 배지에서 성장시킨 대장균에서 발현시키고, 제조자 프로토콜(GE Healthcare Life Sciences)에 따라 글루타티온 세파로스 4B 고속 흐름 비즈(Glutathione Sepharose 4B Fast Flow beads)를 사용하는 친화성 크로마토그래피(affinity chromatography)에 의해 정제한다. The glutathione S-transferase (GST) -fused TNKS1 PARP (1023-1327) protein was expressed in Escherichia coli grown in LB medium supplemented with 100 μM ZnCl2 and incubated in Glutathione Sepharose 4B high-speed flow according to the manufacturer's protocol (GE Healthcare Life Sciences) And purified by affinity chromatography using beads (Glutathione Sepharose 4B Fast Flow beads).
GST-TNKS1 PARP 단백질의 순도 (> 99.5 %)를 농도 측정법으로 확인한 후, 결합되지 않은 아연 이온을 제거하기 위해 25mM HEPES (pH 7.0) 및 2mM DTT가 함유 된 Chelex100 처리 완충액에서 광범위하게 투석한다. The purity (> 99.5%) of the GST-TNKS1 PARP protein is determined by the concentration method and dialyzed extensively in Chelex100 treatment buffer containing 25 mM HEPES (pH 7.0) and 2 mM DTT to remove unbound zinc ions.
GST-TANK1 PARP 단백질을 0.1mM PAR을 함유하는 40mM HEPES (pH 7.0) 반응 완충액 200μl에서 30분 동안 500μM H 2O 2와 함께 배양 하였다. PAR2-Zn2+ 복합체의 형성을 UV/VIS 분광 광도계(spectrophotometer, Agilent)로 500nm에서 모니터링 하였다. In the GST-TANK1 the PARP protein 40mM HEPES containing 0.1mM PAR (pH 7.0) 200μl reaction buffer for 30 min and incubated with 500μM H 2 O 2. The formation of the PAR2-Zn2 + complex was monitored at 500 nm with a UV / VIS spectrophotometer (Agilent).
분석에 사용 된 정제된 GST-TNKS1 PARP 단백질의 총 아연 함량은 반응 혼합물에 0.5mM p-클로로머큐리벤조산(p-chloromercuribenzoic acid)를 첨가하여 결정 하였다. The total zinc content of the purified GST-TNKS1 PARP protein used in the assay was determined by adding 0.5 mM p-chloromercuribenzoic acid to the reaction mixture.
<참고예 8> 퍼록시레독신 분석 (Peroxiredoxin assay)<Reference Example 8> Peroxiredoxin assay (Peroxiredoxin assay)
퍼록시레독신 분석(peroxidase assay)은 250μm의 NADPH, 1.5μm의 효모 TR, 3μm의 효모 Trx, 재조합 인간 Prx (PrxI, 4.6μM, PrxII, 16.4μm)를 포함하는 200μl 반응 혼합물 및 1mM EDTA를 함유하는 50mM HEPES (pH 7.0), 200μM H 2O 2에서 수행하였다. The peroxidase assay was performed in a 200 μl reaction mixture containing 250 μM NADPH, 1.5 μM yeast TR, 3 μM yeast Trx, recombinant human Prx (PrxI, 4.6 μM, PrxII, 16.4 μm) and 1 mM EDTA 50mM HEPES (pH 7.0) that was performed at 200μM H 2 O 2.
혼합물(마이너스 H 2O 2)을 화합물 1 내지 6 (100μM)의 존재 또는 부재하에 5분간 예비 배양 한 후, H 2O 2를 첨가하여 반응을 개시 하였다. Agilent UV8453 분광 광도계 (Hewlett Packard, USA)에서 340 nm부근의 흡광도 감소에 따라 NADPH산화가 30°C에서 5분간 모니터링 되었다. 초기 반응 속도는 곡선의 선형 부분을 사용하여 계산되었고 분당 산화 된 NADPH의 양으로 표현되었다. The mixture (minus H 2 O 2 ) was preliminarily incubated for 5 minutes in the presence or absence of compounds 1 to 6 (100 μM), and then H 2 O 2 was added to initiate the reaction. NADPH oxidation was monitored for 5 min at 30 ° C with a decrease in absorbance around 340 nm on an Agilent UV8453 spectrophotometer (Hewlett Packard, USA). The initial reaction rate was calculated using the linear portion of the curve and expressed as the amount of oxidized NADPH per minute.
<참고예 9> 조직학, 면역 조직 화학 염색 및 면역 형광 염색 (Histology, immunohistochemistry, and immunofluorescence staining)<Reference Example 9> Histology, immunohistochemical staining and immunofluorescence staining (Histology, immunohistochemistry, and immunofluorescence staining)
생후 12 주된 수컷 쥐를 이소플루란 가스(isoflurane gas) (N2O : O2 / 70 % : 30 %)의 흡입에 의해 마취시키고, 3.7 % 포름알데히드를 함유하는 헤파린 처리된 식염수로 심장을 관류해 고정(transcardiac perfusion-fixation)시켰다. 12-week-old male rats were anesthetized by inhalation of isoflurane gas (N2O: O2 / 70%: 30%) and perfused the heart with heparinized saline containing 3.7% formaldehyde transcardiac perfusion-fixation).
그런 다음 장을 절제하고 소장과 결장의 두 부분으로 잘랐으며 양쪽 모두 세로로 열고 바깥쪽으로 접었다. 접혀진 장은 회전식 마이크로톰(rotary microtome, Leica RM2255)에 의해 파라핀 삽입 및 절편화되었다. Then the bowel was resected and cut into two parts, small intestine and colon, both opened vertically and folded outward. The folded sheet was paraffin embedded and segmented by a rotary microtome (Leica RM2255).
3개의 연속 조직 절편(Three serial tissue sections, 두께 10μm)을 헤마톡실린과 에오신(hematoxylin and eosin, HE)으로 염색 하였다. 접혀진 장은 즉시 OCT 배지에 묻고, 드라이 아이스로 동결시켰다. 10μm 단면으로 조직을 자르기 위해 냉동조직박절기 cryotome이 사용되었다. Three serial tissue sections (10 μm thick) were stained with hematoxylin and eosin (HE). The folded sheet was immediately buried in the OCT medium and frozen in dry ice. A cryotome of frozen tissue was used to cut the tissue into 10μm sections.
Cryotome은 냉동 조직을 다루는 마이크로톰(microtome)이다. 마이크로톰은 현미경 관찰을 위한 표본을 만들기 위해 시료(試料)를 일정한 두께의 조각으로 자르는 기계를 말한다. Superfrost Plus 슬라이드 (Surgipath Medical Inc. UK)에 놓여져, 상온에서 건조되었으며, 면역 염색(immunostaining)을 위해 해동될 때 까지 -80°C에서 유지되었다. Cryotome is a microtome that deals with frozen tissue. A microtome is a machine that cuts a specimen into pieces of uniform thickness to make a specimen for microscopic observation. Placed on a Superfrost Plus slide (Surgipath Medical Inc. UK), dried at room temperature and held at -80 ° C until thawed for immunostaining.
면역 조직 화학 염색(immunohistochemistry)을 위해 파라핀 절편을 자일렌(xylene)으로 왁스 제거하고 에탄올에서 재수화(rehydrated)하였다. 이어서 항원 검색(Antigen retrieval)은 절편을 시트르산 나트륨 완충액 (pH 6.0)에서 끓여서 수행하였다. For immunohistochemistry, paraffin sections were waxed off with xylene and rehydrated in ethanol. Antigen retrieval was then performed by boiling the sections in sodium citrate buffer (pH 6.0).
조직 절편을 4℃에서 48시간 동안 anti-Ki-67 항체 (1:200 희석) 및 친화성-정제(affinity-purified)된 anti-PrxII 항체 (1 : 500 희석)로 배양 하였다. PBS로 3회 세척 한 후, 절편을 퍼옥시다아제 - 결합 2 차 항체(peroxidase-conjugated secondary antibody)와 함께 배양하고, 3,3'-디아미노벤지딘(3,3'- diaminobenzidine, DAB) 기질 용액으로 염색 하였다. Tissue sections were incubated with anti-Ki-67 antibody (1: 200 dilution) and affinity-purified anti-PrxII antibody (1: 500 dilution) for 48 h at 4 ° C. After washing three times with PBS, the sections were incubated with a peroxidase-conjugated secondary antibody and incubated with a 3,3'-diaminobenzidine (DAB) substrate solution Lt; / RTI &gt;
핵은 헤마톡실린(hematoxylin)으로 더 염색되었다. HistoFAXS 조직 분석 시스템 (HistoFAXS Tissue Analysis System, TissueGnostics, USA)을 사용하여 DAB 염색 이미지를 얻고 정량화 하였다. 면역 형광 염색을 위해, 파라핀 또는 동결 절편을 실온에서 1시간 동안 PBST (0.3 % Triton X-100 in PBS)에서 5 % 정상 토끼 혈청 (Vector Laboratories)으로 차단시켰다. The nuclei were further stained with hematoxylin. DAB staining images were obtained and quantified using HistoFAXS tissue analysis system (HistoFAXS Tissue Analysis System, TissueGnostics, USA). For immunofluorescence staining, paraffin or frozen sections were blocked with 5% normal rabbit serum (Vector Laboratories) in PBST (0.3% Triton X-100 in PBS) for 1 hour at room temperature.
절편들은 1 차 항체 (anti- PrxII 항체의 경우 1 : 500 희석, anti- BrdU 항체의 경우 1 : 100 희석)와 함께 4 ℃에서 밤새 배양 하였다. 여러 번 PBST를 세척한 후, 샘플을 실온에서 2시간 동안 Alexa Fluor 568- conjugated donkey anti-rabbit IgG 항체와 배양하였다. The sections were incubated overnight at 4 ° C with primary antibody (1: 500 dilution for anti-PrxII antibody and 1: 100 dilution for anti-BrdU antibody). After washing the PBST several times, the samples were incubated with Alexa Fluor 568 conjugated donkey anti-rabbit IgG antibody for 2 hours at room temperature.
절편들을 (4',6-디아미디노-2-페닐인돌 (4',6- diamidino -2 phenylindole, DAPI, Sigma-Aldrich)로 30분 동안 대조 염색하고, Vectashield 장착 배지(Vectashield mounting medium)를 사용하여 장착하였다. The sections were counterstained with (4 ', 6-diamidino-2-phenylindole, DAPI, Sigma-Aldrich) for 30 min and Vectashield mounting medium Respectively.
형광 이미지는 아르곤 및 헬륨-네온 레이저 (Carl Zeiss, Germany)가 장착 된 LSM 51 Meta 공초점(confocal) 현미경을 사용하여 100x 배율에서 조직 단면 당 3개의 무작위 장(fields)에서 얻어졌다. Fluorescence images were acquired in three random fields per tissue section at 100x magnification using an LSM 51 Meta confocal microscope equipped with argon and a helium-neon laser (Carl Zeiss, Germany).
<참고예 10> 통계 분석(Statistical analysis)&Lt; Reference Example 10 > Statistical analysis [
달리 명시되지 않는 한, 통계적 유의성(statistical significance, P값)을 결정하기 위해, 데이터는 두 그룹 간의 비교를 위한 the Student's t-test 또는 여러 그룹 (Windows의 경우 SPSS 12.0K, 미국 일리노이, SPSS)은 투키 사후검증(Tukey's honestly significant difference, 또는 Tukey-HSD, 또는 Tukey test)을 사용하여 분산분석(Analysis of Variance, ANOVA)으로 분석되었다. P <0.05경우 통계적으로 의미가 있다고 간주되었다.Unless otherwise specified, the data were analyzed using the Student's t-test for comparison between the two groups, or multiple groups (SPSS 12.0K for Windows, SPSS, Illinois, USA) to determine statistical significance Analysis of Variance (ANOVA) was performed using Tukey's honestly significant difference, or Tukey-HSD, or Tukey test. P <0.05 was considered statistically significant.
<참고예 11> 데이터 가용성(Data availability)<Reference Example 11> Data availability
이 연구 결과를 뒷받침하는 RNA 서열(sequencing) 데이터는 GEO(유전자 발현 옴니버스, Gene Expression Omnibus DB, GEO DB) 데이터베이스 (수탁 번호 : GSE81429)에 기탁되어 있다. RNA sequencing data supporting this study are deposited in the GEO (Gene Expression Omnibus DB, GEO DB) database (accession number: GSE81429).
<시약> <Reagent>
항균제 (mouse monoclonal, B-5-1-2, 1 : 8000, T5168) 및 anti-FLAG 항체 (mouse monoclonal, M2, 1 : 1000, F3165)는 Sigma-Aldrich에서 구입하였다.Antibacterials (mouse monoclonal, B-5-1-2, 1: 8000, T5168) and anti-FLAG antibodies (mouse monoclonal, M2, 1: 1000, F3165) were purchased from Sigma-Aldrich.
β-catenin (rabbit monoclonal, 6B3, 1 : 1000, 9582), Axin1 (rabbit monoclonal, C76H11, 1 : 1000, 2087), pS33 / 37pT41-β-catenin (rabbit polyclonal, 1 : 1000,9561), Axin2 (rabbit monoclonal, 76G6, 1 : 1000, 2151), GSK3β (rabbit monoclonal, 27C10, 1 : 1000, 9315), β-actin (rabbit monoclonal, 13E5, 1 : 1000, 4970) 및 cyclin D1 (rabbit polyclonal , 1 : 1000, 2922)에 대한 항체는 Cell Signaling Technology에서 구입하였다.β-catenin (rabbit monoclonal, 6B3, 1: 1000, 9582), Axin1 (rabbit monoclonal, C76H11, 1: 1000, 2087), pS33 / 37pT41- rabbit monoclonal, 76G6, 1: 1000, 2151), GSK3β (rabbit monoclonal, 27C10, 1: 1000, 9315), β- actin (rabbit monoclonal, 13E5, 1000, 2922) were purchased from Cell Signaling Technology.
c-Myc (rabbit polyclonal, 1:1000, sc-788), 유비퀴틴 (mouse monoclonal, P4D1, 1 : 1000, sc-8017), pY279 / 216-GSK3β (rabbit polyclonal, 1 : 1000, sc-135653 ) 및 tankyrase-1 / 2 (rabbit polyclonal, 1 : 1000, H-350)는 Santa Cruz Biotechnology에서 구입하였다. rabbit polyclonal, 1: 1000, sc-135653), c-Myc (rabbit polyclonal, 1: 1000, sc-788), mouse monoclonal, P4D1, 1: 1000, sc-8017, pY279 / Tankyrase-1/2 (rabbit polyclonal, 1: 1000, H-350) was purchased from Santa Cruz Biotechnology.
anti-active β-catenin (mouse monoclonal, 8E7, 1 : 1000, 05-665) 및 anti-Myc (agmouse monoclonal, 9E10, 1 : 1000, 05-419) 및 anti-APC (mouse monoclonal, FE9, : 1000, ABC202) 항체는 Millipore에서 구입하였다.anti-Myc (agmouse monoclonal, 9E10, 1: 1000, 05-419) and anti-APC (mouse monoclonal, FE9, , ABC202) antibody was purchased from Millipore.
Alexa Fluor 568 접합 당나귀(Alexa Fluor 568-conjugated donkey) anti-rabbit IgG (1 : 200, A-21206) 및 anti-β-TrCP (mouse monoclonal, 1B1D2, 1 : 1000, 37-3400) 항체는 Invitrogen에서 구입하였다.  Alexa Fluor 568-conjugated donkey anti-rabbit IgG (1: 200, A-21206) and anti-β-TrCP (mouse monoclonal, 1B1D2, 1: 1000, 37-3400) antibodies were purchased from Invitrogen Respectively.
Poly (ADP-ribose) 사슬을 검출하는 anti-PAR 항체 (rabbit polyclonal, 1 : 2000, 551813)는 BD Bioscience에서 구입하였다.Anti-PAR antibody (rabbit polyclonal, 1: 2000, 551813), which detects the poly (ADP-ribose) chain, was purchased from BD Bioscience.
anti-Ki-67 항체 (rabbit monoclonal, SP6, 1 : 200, MA5-14520)는 Thermo Fisher Scientific으로부터 구입하였다.Anti-Ki-67 antibody (rabbit monoclonal, SP6, 1: 200, MA5-14520) was purchased from Thermo Fisher Scientific.
이전에 기술 된 바와 같이 PrxI (1 : 3000), PrxII (1 : 3000) 및 Prx-SO 2/3 (1 : 1000)에 대한 토끼 polyclonal 항체를 생산하였다.Produced rabbit polyclonal antibodies to PrxI (1: 3000), PrxII (1: 3000) and Prx-SO2 / 3 (1: 1000) as previously described.
rabbit anti-PrxII 항혈청을 재조합 PrxII 단백질과 agarose gel beads로 affinity-purification 하고 면역 형광(immunofluorescence)및 근접 연결 분석(proximity ligation assays, PLA)에 사용 하였다.Rabbit anti-PrxII antisera were affinity-purified with recombinant PrxII protein and agarose gel beads and used for immunofluorescence and proximity ligation assays (PLA).
Wnt3a는 R & D Biosystems에서 구입하였다.Wnt3a was purchased from R & D Biosystems.
DuoLink in situ fluorescence시약은 Sigma-Aldrich에서 구입하였다.DuoLink in situ fluorescence reagents were purchased from Sigma-Aldrich.
TissueFocus 결장암 조직 Microarray는 OriGene Technologies (Rockville, USA)에서 구입하였다TissueFocus colon cancer microarray was purchased from OriGene Technologies (Rockville, USA)
전술한 본 발명의 실시예는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다. While the present invention has been described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is understandable. Accordingly, the true scope of the present invention should be determined by the appended claims.
본 발명의 일 실시형태에 따르면 퍼록시레독신 2의 효소 활성을 억제하여 대장암 세포의 산화 환원 시스템을 조절하여 대장 용종을 감소시키고 대장암 치료 또는 예방이 가능한 조성물이 제공될 수 있다. According to one embodiment of the present invention, it is possible to provide a composition capable of inhibiting the enzyme activity of peroxiredoxin 2 to regulate the redox system of colon cancer cells, thereby reducing the colonic polyps and treating or preventing colon cancer.
본 발명의 일 실시형태에 따르면 APC 돌연변이 세포의 세포질에서 PrxII와 탄키라제의 상호작용을 감소시킴으로서 대장 용종을 감소시키고 대장암의 치료 또는 예방이 가능한 약학적 조성물이 제공될 수 있다.According to one embodiment of the present invention, a pharmaceutical composition capable of reducing colonic polyps and treating or preventing colon cancer can be provided by reducing the interaction of PrxII and tannase with the cytoplasm of APC mutant cells.

Claims (8)

  1. 퍼록시레독신 2의 효소 활성을 억제하는 물질을 유효 성분으로 포함하는 대장암 치료용 약학적 조성물A pharmaceutical composition for the treatment of colorectal cancer comprising as an active ingredient a substance which inhibits the enzyme activity of peroxiredoxin 2
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 하기 화학식 1로 표시되는 물질로부터 선택되는 어느 하나 이상인 것인 대장암 치료용 약학적 조성물Wherein the substance inhibiting the enzymatic activity of peroxycorticosin 2 is at least one selected from substances represented by the following formula 1:
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018007316-appb-img-000024
    Figure PCTKR2018007316-appb-img-000024
    상기 화학식 1에서In Formula 1,
    R1은 -O-R2 또는 사이클릭화합물 또는 -H로 이루어진 화합물이고, R1 is a compound consisting of -O-R2 or a cyclic compound or -H,
    R2는 C1 내지 C8 이고 분지 또는 분지가 아닌 알킬기(Alkyl), 또는 치환 또는 비치환이면서 방향족 또는 비방향족인 사이클릭화합물, -CH=CH2 또는 알릴기(Allyl)로 이루어진 그룹에서 선택되는 어느 하나 이상인 것임.R2 is any one or more selected from the group consisting of C1 to C8, branched or unbranched alkyl groups (Alkyl), or substituted or unsubstituted aromatic or nonaromatic cyclic compounds, -CH = CH2 or allyl groups .
  3. 제 1 항에 있어서, 상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 아래 화합물-1 내지 화합물-6으로 이루어진 그룹에서 선택되는 어느 하나 이상인 것인 대장암 치료용 약학적 조성물The pharmaceutical composition for the treatment of colorectal cancer according to claim 1, wherein the substance inhibiting the enzyme activity of peroxycorticosin 2 is at least one selected from the group consisting of the following compounds-1 to 6
    Figure PCTKR2018007316-appb-img-000025
    Figure PCTKR2018007316-appb-img-000025
  4. 제 1 항에 있어서, The method according to claim 1,
    상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 베타 카테닌(β-catenin) 분해를 증가시키는 것인 대장암 치료용 약학적 조성물 Wherein the substance inhibiting the enzymatic activity of peroxycorticosin 2 increases beta-catenin degradation.
  5. 제 1 항에 있어서, The method according to claim 1,
    상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 탄키라제에 의한 Axin1의 분해를 감소시키는 것인 조성물 Wherein the substance that inhibits the enzymatic activity of peroxycorticosin 2 reduces the degradation of Axin1 by a &lt; RTI ID = 0.0 &gt;
  6. 제 1 항에 있어서, The method according to claim 1,
    상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 탄키라제(Tankyrase, TNKS)의 산화적 불활성화를 증가시키는 것인 조성물Wherein the substance that inhibits the enzymatic activity of peroxycorticosin 2 increases oxidative inactivation of Tankyrase (TNKS).
  7. 제 5 항에 있어서, 6. The method of claim 5,
    상기 탄키라제(Tankyrase, TNKS)의 산화적 불활성화는 APC 돌연변이 세포의 세포질 내에서 일어나는 것인 조성물Wherein the oxidative inactivation of said Tankyrase (TNKS) occurs in the cytoplasm of APC mutant cells.
  8. 제 1 항에 있어서, The method according to claim 1,
    상기 퍼록시레독신 2의 효소 활성을 억제하는 물질은 APC 돌연변이 세포의 세포질에서 퍼록시레독신 2와 탄키라제(Tankyrase, TNKS)의 상호작용을 감소시키는 조성물The substance that inhibits the enzymatic activity of peroxycorticosin 2 is a composition that reduces the interaction between peroxiredoxin 2 and Tankyrase (TNKS) in the cytoplasm of APC mutant cells
PCT/KR2018/007316 2017-06-27 2018-06-27 Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer WO2019004732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/728,100 US11439640B2 (en) 2017-06-27 2019-12-27 Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0081491 2017-06-27
KR20170081491 2017-06-27
KR10-2018-0074375 2018-06-27
KR1020180074375A KR102108567B1 (en) 2017-06-27 2018-06-27 Pharmaceutical composition for colorectal cancer with inhibiting the activity of Peroxiredoxin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,100 Continuation-In-Part US11439640B2 (en) 2017-06-27 2019-12-27 Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer

Publications (1)

Publication Number Publication Date
WO2019004732A1 true WO2019004732A1 (en) 2019-01-03

Family

ID=64741808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007316 WO2019004732A1 (en) 2017-06-27 2018-06-27 Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer

Country Status (1)

Country Link
WO (1) WO2019004732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177246A1 (en) * 2021-11-04 2023-05-10 Centro Atlántico del Medicamento, SA Fused oxazepines as inhibitors of peroxiredoxins

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HARALDSEN, J. D. ET AL.: "Identification of Conoidin A as a Covalent Inhibitor of Peroxiredoxin II", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 7, no. 15, 2009, pages 3040 - 3048, XP055568504 *
LIU, G. ET AL.: "Optimisation of Conoidin A, a Peroxiredoxin Inhibitor", CHEMMEDCHEM, vol. 5, 2010, pages 41 - 45, XP055568506 *
LU , W. ET AL.: "Peroxiredoxin 2 Is Upregulated in Colorectal Cancer and Contributes to Colorectal Cancer Cells' Survival by Protecting Cells from Oxidative Stress", MOLECULAR AND CELLULAR BIOCHEMISTRY, vol. 387, 2014, pages 261 - 270, XP055568516 *
NGUYEN, J. B. ET AL.: "Peroxiredoxin-1 from the Human Hookworm Ancylostoma Ceylanicum Forms a Stable Oxidized Decamer and Is Covalently Inhibited by Conoidin A", CHEMISTRY & BIOLOGY, vol. 20, no. 8, 2013, pages 991 - 1001, XP055568511 *
PENG, L. L. ET AL.: "Peroxiredoxin 2 Is Associated with Colorectal Cancer Progression and Poor Survival of Patients", ONCOTARGET, vol. 8, no. 9, 24 January 2017 (2017-01-24), pages 15057 - 15070, XP055568515 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177246A1 (en) * 2021-11-04 2023-05-10 Centro Atlántico del Medicamento, SA Fused oxazepines as inhibitors of peroxiredoxins

Similar Documents

Publication Publication Date Title
WO2017034335A1 (en) Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof
WO2010059004A2 (en) Chemical inhibitor of p53-snail binding and pharmaceutical composition for treating cancer disease containing same as its active ingredient
WO2019009682A2 (en) Target-specific crispr mutant
WO2014081229A1 (en) Recombinant adenovirus with increased safety and anticancer activities, and use thereof
WO2016018087A1 (en) Novel biomarker for predicting sensitivity to egfr-targeting agent, and use thereof
WO2014189343A1 (en) Epidithiodioxopiperazine compound or its derivatives, and the use thereof
WO2019004732A1 (en) Pharmaceutical composition comprising substance inhibiting enzymatic activity of peroxiredoxin 2 as effective ingredient for treatment of colorectal cancer
WO2015026172A1 (en) Indole amide compound as inhibitor of necrosis
WO2010011111A4 (en) Composition for control of aging and / or extension of life, containing dapsone as active ingredient
WO2016122058A1 (en) Method for analyzing activity of human phenylalanine hydroxylase using cellular slime molds
KR102108567B1 (en) Pharmaceutical composition for colorectal cancer with inhibiting the activity of Peroxiredoxin
WO2015046783A1 (en) Pharmaceutical composition for treatment of radiation- or drug-resistant cancer comprising hrp-3 inhibitor
WO2022065968A1 (en) Pharmaceutical composition comprising evodiamine as active ingredient for prevention or treatment of non-small cell lung cancer
WO2022014975A1 (en) Bi-1 antagonist and use thereof
WO2022086257A1 (en) Mitochondria comprising anticancer drug and use thereof
WO2022124839A1 (en) Guide rna having maintained on-target activity and reduced off-target activity and use thereof
WO2017048069A1 (en) Novel pyrazoline derivative and use thereof
WO2011090283A2 (en) Composition containing inhibitors of the expression or activity of sh3rf2 for preventing or treating cancer
WO2021167262A1 (en) Nucleoside hydrolase inhibitor, composition comprising same for inhibiting toxicity of pathogenic microorganism, method for inhibiting toxicity of pathogenic microorganism, using same, and a method for screening nucleoside hydrolase inhibitor
WO2014175567A1 (en) Mouse gastric cancer cell line for evaluating efficacy and toxicity of immunotherapy and of therapeutic agent for gastric cancer
WO2011155643A1 (en) Phosphatidylinositol 3-kinases activity regulator including the fifth zinc finger domain of fog2
WO2022225259A1 (en) Anticancer composition inducing cell senescence and cell death
WO2024085603A1 (en) Composition for preventing or treating c-myc-associated diseases through inhibition of expression of ubiquitin-specific protease 47 (usp47), and use thereof
WO2019135477A2 (en) Method of diagnosing tsutsugamushi disease by using multicopy gene
WO2024035085A1 (en) Novel compound, and composition for preventing or treating her2-positive cancer, comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822855

Country of ref document: EP

Kind code of ref document: A1