WO2019004645A1 - Biosignal measuring bioelectrode based on nanoporous permeable membrane having high specific surface area, and method for manufacturing same - Google Patents

Biosignal measuring bioelectrode based on nanoporous permeable membrane having high specific surface area, and method for manufacturing same Download PDF

Info

Publication number
WO2019004645A1
WO2019004645A1 PCT/KR2018/006891 KR2018006891W WO2019004645A1 WO 2019004645 A1 WO2019004645 A1 WO 2019004645A1 KR 2018006891 W KR2018006891 W KR 2018006891W WO 2019004645 A1 WO2019004645 A1 WO 2019004645A1
Authority
WO
WIPO (PCT)
Prior art keywords
permeable membrane
pdms
pdms device
bioelectrode
nanoporous permeable
Prior art date
Application number
PCT/KR2018/006891
Other languages
French (fr)
Korean (ko)
Inventor
이광호
김지훈
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to US16/642,822 priority Critical patent/US20200289017A1/en
Publication of WO2019004645A1 publication Critical patent/WO2019004645A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/041Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0214Capacitive electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes

Definitions

  • the present invention relates to a bioelectrode capable of measuring a living body signal based on a porous nanotransflective film having a high specific surface area and having improved capacitance, conductivity, flexibility, and biocompatibility, and a method of manufacturing the same.
  • the bioelectrode is a bioelectrode that is inserted into a living body to exchange electrical signals with the body organs and perform electrical interaction with the bioelectrode.
  • the bioelectrode has conductivity similar to that of a conventional metal electrode, but is excellent in flexibility and biocompatibility, There is an advantage that there is no reaction and no immune response.
  • a bioelectrode is an electrode for measuring and signaling a human body. It is used for the purpose of interacting with tissues and cells by exchanging electrical signals with organs and tissues by attaching them to the body or inserting them into a living body. Because bioelectrodes perform elaborate interactions in the living environment, they require low resistivity, low rejection and good biocompatibility and low mechanical strength to interact with living tissue in order to mediate microscopic electrical signals of living organisms . Conventional metal bioelectrodes have a disadvantage in that an immune response is induced by the inadequate biocompatibility of a metal in contact with living tissues and the efficiency of the bioelectrode is lowered. The bio-incompatibility of the metal means high mechanical strength and ions released from the metal.
  • the biocompatibility of the metal causes the immune cells to gather around the inserted bioelectrode and causes an inflammatory response at the interface of the organ or tissue to which the bioelectrode is attached.
  • the inflammatory reaction hinders signal transmission between the bioelectrode and the organ or tissue and separates the cells from the bioelectrode, so that the resistivity and noise are increased.
  • conventional metal-based bioelectrodes have mechanical incompatibility due to long-term or tissue movement due to high mechanical strength. The mechanical incompatibility causes a gap between the bioelectrode and the organ or tissue, and the transmission efficiency of the bio-signal due to the gap is reduced.
  • many disadvantages of the metal-based bioelectrodes have not been solved. Therefore, research on bioelectrodes of new materials has been actively conducted.
  • the present inventors have made efforts to develop a variable capacitance bioelectrode based on a porous nano-permeable membrane having a high specific surface area and capable of long-time attachment to a living body surface and implantation in the body for diagnosing and measuring bio-signals.
  • a nanoporous permeable membrane of polyurethane material having excellent biocompatibility and containing a large number of nano-pores is attached to the device (substrate), and patterning for vital signal transmission is performed, followed by gold coating to form a conductive polymer biomolecule electrode .
  • the conductive polymer bioelectrode has a low resistivity value at all positions; Porous nanotransflective membranes with high specific surface area ensured by the laminated nanofibers are flexible and have very good conductivity properties and are not deteriorated in mechanical deformation; It is possible to replace the conventional metal-based bioelectrode because the biocompatibility is excellent and the cell can be cultured. Thus, the present invention has been completed.
  • a conductive polymer bioelectrode comprising a PDMS device, a nanoporous permeable membrane, a patterning for vital signal transmission, and a gold coating layer.
  • Another object of the present invention is to provide a method for manufacturing the conductive polymer bioelectrode.
  • a polydimethylsiloxane (PDMS) device having an intaglio groove to which a nanoporous permeable membrane is attached and having a thickness of 250-350 mu m; A nanoporous permeable membrane having a thickness of 50 to 200 ⁇ adhered to a depressed groove of the PDMS device; Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And a gold (Au) coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 ⁇ .
  • PDMS polydimethylsiloxane
  • the nanoporous permeable membrane of the conductive polymer bioelectrode includes a plurality of pores having a diameter of 0.1 to 10 ⁇ m, prepared by electrospun biocompatible polymer material to have a thickness of 50 to 200 ⁇ m And it is excellent in biocompatibility to enable cell culture.
  • the electrospinning is performed under the conditions of a voltage of 10-20 kV, a radiation rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a radiation distance of 20-40 cm, followeded by spinning 4-6 ml of an electrical spinning solution containing the biocompatible polymer substance in an atmosphere at a temperature of 25-35 ° C.
  • a method of manufacturing a PDMS device comprising the steps of: a) preparing a 3D substrate for a PDMS device comprising an intaglio groove for attaching a nanoporous transmissive film; b) a second step of fabricating a PDMS device including an intaglio groove for attaching a nanoporous permeable membrane using the 3D substrate; c) a third step of preparing a nanoporous permeable membrane using electrospinning; d) attaching the nanoporous permeable membrane to the indented groove formed in the PDMS device using a PDMS solution; e) performing a patterning process for transmitting a biological signal to the PDMS device having the nanoporous permeable membrane attached thereto; And f) performing a gold coating on the PDMS device on which the biological signal transmission patterning is performed.
  • the present invention relates to a bioelectrode having improved conductivity, flexibility, and biocompatibility, and a method of manufacturing the same. More particularly, the present invention relates to a nanoporous permeable membrane based on a PDMS device having a low mechanical strength and excellent biocompatibility based on a biocompatible polymer substance having a large number of voids and having a surface area, The present invention relates to a conductive polymer bioelectrode having conductivity similar to that of a metal material bioelectrode but having a high biocompatibility and a low rejection. Accordingly, the conductive polymer bioelectrode of the present invention is expected to be able to replace the bioelectrode of a metal material, which is deteriorated in bio-signal transmission efficiency due to high bio-incompatibility.
  • Panel 1 shows a view of a 3D substrate and a PDMS device for a PDMS device comprising an intaglio groove for depositing a nanoporous transmissive film.
  • Panel A shows a view of a 3D substrate for a PDMS device with a square shaped nano-porous transmembrane attachment recess.
  • Panel B shows a PDMS device with an indentation groove for various shapes of nano-permeable membrane attachment made from a 3D substrate for a PDMS device.
  • FIG. 2 shows a 3D substrate for a PDMS device including an angular depression for attaching a square-shaped nanoporous transmission film manufactured using 3D printing.
  • FIG. 3 shows a PDMS device including a rectangular-shaped nano-porous film for affixed depressions formed by curing a PDMS solution in a 3D substrate for a PDMS device.
  • Figure 4 shows an optical microscope picture of a PDMS device with a nanoporous permeable membrane.
  • Panel A shows a cross-sectional photograph of a PDMS device with a nanoporous permeable membrane imaged using a 10X optical microscope.
  • Panel B shows a cross-sectional photograph of a PDMS device with a nanoporous permeable membrane imaged using a 50X optical microscope.
  • FIG. 5 is a photograph of a nano-porous film attached to a PDMS device using a Field Emission Scanning Electron Microscope (FESEM).
  • FESEM Field Emission Scanning Electron Microscope
  • FIG. 6 shows a conductive polymer bioelectrode prepared by performing gold coating on a PDMS device having a nanoporous permeable membrane attached thereto.
  • Panel A shows a conductive polymer bioelectrode;
  • Panel B shows a photograph of a gold-coated nanoporous permeable membrane portion of a conductive polymer bioelectrode, taken using FESEM;
  • Panel C shows photographs of the gold coated PDMS device portion of the conductive polymer bioelectrode, taken using FESEM.
  • FIG. 7 shows the result of measuring the surface resistivity of the conductive polymer bioelectrode.
  • the surface resistivity was measured five times for the gold coated nanoporous permeable membrane and the gold coated PDMS device, and the average value was calculated.
  • FIG. 8 shows physical changes of the conductive polymer bioelectrode before and after the mechanical deformation (bending) observed using the FESEM. The bending was performed more than 5 times.
  • the gold coated PDMS device and the nanoporous permeable membrane were photographed with FESEM to observe the gold coating deformation, morphology change of the nanofiber, and pore change.
  • FIG. 9 shows physical changes of the conductive polymer bioelectrode before and after the mechanical deformation observed using an atomic force microscope (AFM).
  • Panel A shows the results of the gold-coated nanoporous permeable membrane before mechanical deformation
  • Panel B shows the results of the gold-coated nanoporous permeable membrane after mechanical deformation.
  • FIG. 11 shows the results of observing cell viability using a Live & Dead solution after 5 days of incubation of EpH4-Ras cells and C6 cells in a nanoporous permeable membrane of a conductive bioelectrode.
  • the present invention relates to a polydimethylsiloxane (PDMS) device having an intaglio groove to which a nanoporous permeable membrane is attached and having a thickness of 250-350 mu m; A nanoporous permeable membrane having a thickness of 50 to 200 ⁇ adhered to a depressed groove of the PDMS device; Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And
  • PDMS polydimethylsiloxane
  • a gold (Au) coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 mu m.
  • a polydimethylsiloxane (PDMS) device having an intaglio groove to which a nanoporous permeable membrane is attached and having a thickness of 250-350 mu m; A nanoporous permeable membrane having a thickness of 50 to 200 ⁇ adhered to a depressed groove of the PDMS device; Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And a gold coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 ⁇ .
  • PDMS polydimethylsiloxane
  • the bioelectrode of the present invention refers to an electrode that is inserted into a living body to exchange electrical signals with organs or tissues, or to perform electrical interaction. Since the bioelectrode is inserted into a living body, it is preferable that the biocompatibility is high.
  • the degree of biocompatibility can be determined according to the degree of immunological rejection that occurs when the bioelectrode is inserted.
  • the immunological rejection reaction mainly refers to an inflammatory reaction. Therefore, when the biocompatibility is excellent, the inflammatory reaction due to the insertion of the bioelectrode is reduced.
  • the immune cells are collected into organs or tissues to which the bioelectrode is attached, and peripheral cells are killed by the inflammation substances secreted from the immune cells, and the tissue becomes thick.
  • the tissue becomes thickened, the resistivity increases, so that the bioelectric signal can not be effectively transmitted.
  • the inflammatory response can be caused by various intracellular substances secreted from the death of the cell. Therefore, there is a method of evaluating the cytotoxicity of the bioelectrode by a method of determining the biocompatibility of the bioelectrode.
  • cell culture using a bioelectrode was attempted to evaluate the biocompatibility of a bioelectrode.
  • the bioelectrode of the present invention includes a nanoporous permeable membrane prepared using a polymer material having excellent biocompatibility. Since the permeable membrane contains nano-sized pores, the cell culture solution can be stored, and cell culture can be performed. The biocompatibility can be evaluated by comparing the number of living cells and the number of dead cells through staining after cell culture.
  • Conventional metal-based bioelectrodes mainly use platinum, platinum alloy or gold. The metal material has good conductivity, but releases excessive metal ions and has a high mechanical strength, which induces an inflammatory reaction, and thus has a disadvantage that the delivery rate of a biological signal decreases over time.
  • the bioelectrode of the present invention is manufactured by using polydimethylsiloxane (PDMS) rather than a metal material.
  • PDMS is a kind of silicon, which is a polymer material having inactive characteristics and has a low cost, excellent thermal stability and biocompatibility, and thus is widely used in human tissue engineering research.
  • Bioelectrodes attached in vivo may undergo mechanical deformation such as bending or bending due to organ and tissue movements.
  • the bioelectrode made of a metal material having a high mechanical strength is deformed by the mechanical deformation, or the inflammation reaction (foreign body reaction, foreign body reaction) by the foreign body is induced, Performance may be degraded.
  • the PDMS of the present invention has a merit that the PDMS of the present invention is not deformed by external physical force and maintains its shape because of its low mechanical strength, and can be appropriately processed according to the appearance of organ or tissue, It is possible to improve the transmission efficiency of the antenna.
  • the PDMS device of the present invention has a thickness of 250-350 ⁇ .
  • the PDMS device has a thickness of 275 to 325 ⁇ ⁇ . More preferably, the thickness of the PDMS device is 300 mu m.
  • the thickness is 250 ⁇ or less, separation of the PDMS device from the 3D substrate is difficult due to too high mechanical strength when the PDMS device is manufactured using the 3D substrate.
  • the PDMS is low in conductivity since it is used as an electrode as a polymer material.
  • a PDMS-based bioelectrode having excellent conductivity is manufactured by using a nanoporous permeable membrane made of a nanofiber bundle and a gold (Au) coating.
  • the PDMS device includes an intaglio groove to which the nanoporous permeable membrane can be attached.
  • the PDMS device has a concave groove with a depth of 100 - 200 ⁇ for attaching the nanoporous permeable membrane in an area of 25-50% of the total area.
  • the area of the engraved groove is equal to the area of the nano-porous membrane. If the area of the depressed grooves is less than 25% of the area of the PDMS device, flexibility, surface area, and biocompatibility of the nanoporous permeable membrane are improved, and the area of the depressed grooves is less than 50% %, The mechanical strength is too low and the workability of the bioelectrode may be deteriorated.
  • the nanoporous permeable membrane can be fabricated as a permeable membrane having nano-sized pores formed by stacking polymeric materials having excellent biocompatibility in the form of nanofibers using an electrospinning method.
  • the polymeric material is preferably a material having good moldability, low hardness and mechanical strength, good chemical resistance, no heat resistance, and excellent biocompatibility.
  • the biocompatible polymer material may be selected from the group consisting of polyurethane, polyacetal, polyamide, polyamide elastomer, polyester, but are not limited to, polyester elastomer, polystyrene, polypropylene, polyacrylonitrile, poly (methymethacrylate), polyolefin, polysulfone, polyvinyl chloride (poly (vinyl chloride)), silicon (silicon), and polyethylene (polyethylene).
  • the biocompatible polymer material is polyurethane.
  • the electrospinning method means that the polymer solution having a viscosity is radiated into a fiber form instantaneously using an electrostatic force.
  • a laminated membrane in the form of nanofibers can be manufactured.
  • the membrane can have pores depending on the shape of the nanofiber, and the pores can store a physiologically active substance, a drug for cell activation and the like, and research on the material of the nanofiltration drug delivery system is under way.
  • the nanoporous permeable membrane is a permeable membrane having a thickness of 50-200 ⁇ produced by electrospinning the biocompatible polymer material and includes a plurality of pores having a diameter of 0.1-10 ⁇ .
  • the nanoporous permeable membrane is a 100-175 ⁇ m thick permeable membrane produced by electrospinning the biocompatible polymer material and includes a plurality of pores having a diameter of 0.1-10 ⁇ m. More preferably, the nanoporous permeable membrane is a 150 ⁇ thick permeable membrane prepared by electrospinning the biocompatible polymer material, and includes a plurality of pores having a diameter of 0.1 to 10 ⁇ .
  • the nanoporous permeable membrane is attached to the intaglio groove of the PDMS device. According to an embodiment of the present invention, the concave grooves have a depth of 100-200 ⁇ . Therefore, when the thickness of the nanoporous permeable membrane is less than 50 ⁇ or more than 200 ⁇ , the height of the PDMS device is not matched with the thickness of the PDMS device.
  • the electrospinning is performed under the conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a radiation distance of 20-40 cm, And 4-6 ml of an electric discharge solution containing the biocompatible polymer substance is spun in an atmosphere at a temperature of 25-35 ° C.
  • the electrospinning is carried out under conditions of a voltage of 12.5-17.5 kV, a radial velocity of 0.075-0.2 ml / h, a diameter of the injection needle of 22-27 G, a range of 25-35 cm and a humidity of 25-35% Of the biocompatible polymer substance in an atmosphere of 5 ml of the solution. More preferably, the electrospinning is carried out under the conditions of a voltage of 15 kV, a spinning rate of 0.1 ml / h, a diameter of the injection needle of 25 G, and a radiation distance of 30 cm at an atmosphere of 30% Spinning is carried out by spraying 5 ml.
  • the nanoporous permeable membrane of the present invention comprises a plurality of pores having a diameter of 0.1-10 mu m. Therefore, the nanoporous permeable membrane can store the liquid by the capillary phenomenon.
  • the liquid may be a cell culture medium, a buffer solution, a cell active substance in solution, or a cytostatic substance on a solution, and is preferably a cell culture medium.
  • the nanoporous permeable membrane is capable of cell culture.
  • the PDMS device is located at the lowest layer;
  • the nanoporous permeable membrane having a thickness similar to the depth of the engraved groove is attached to the intaglio groove of the PDMS device so that the PDMS device and the nanoporous permeable membrane are flattened;
  • Patterning for transmitting biological signals is formed on the PDMS device and the nanoporous permeable membrane;
  • a uniform gold coating layer is positioned on the PDMS device, the nanoporous permeable membrane, and the bio signal transmission patterning.
  • the patterning for vital signal transmission may be composed of a plurality of electrodes in accordance with the use of the biomedical electrode.
  • the gold coating layer is formed on the PDMS device, the nanoporous permeable membrane, and the patterning for vital signal transmission, thereby improving the conductivity of the conductive polymer bioelectrode.
  • the gold coating layer is uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 mu m. If the thickness of the gold coating layer is less than 0.1 ⁇ , it is difficult to form a coating layer. If the thickness of the gold coating layer exceeds 10 ⁇ , the coating layer may be broken due to mechanical deformation, The pores of the porous permeable membrane may be clogged and the surface area may be reduced.
  • the present invention provides a method for producing a conductive polymer bioelectrode comprising the steps of:
  • Step 1 Nanoporous Permeable membrane For attachment Grooved groove Included PDMS For device 3D board manufacturing
  • a 3D substrate for a PDMS device of the present invention can be prepared by the following steps:
  • the dissolution time is increased, and the 3D substrate for the PDMS device is heated to 80 ° C If the support wax is dissolved in an excess oven, there is a disadvantage that the dissolved wax is burnt and the substrate is uneven.
  • the 3D substrate for the PDMS device when the 3D substrate for the PDMS device is immersed in the cooking oil of less than 50 ⁇ and the ultrasonic cleaning is performed in the step d), it takes more time to remove the dissolved support wax, The removal efficiency of the dissolved support wax is not improved even when ultrasonic cleaning is performed after immersing in a cooking oil exceeding 70 ⁇ .
  • Step 2 Nanoporous Permeable membrane For attachment Grooved groove Included PDMS Device Produce
  • a PDMS device of the present invention can be manufactured according to the following steps:
  • the time for curing in the 3D substrate for the PDMS device becomes longer and the PDMS solution and the curing agent It is difficult to remove the bubbles by using the desiccator if the mixing ratio exceeds 10: 2 by weight (PDMS solution: curing agent).
  • Step 3 Nano-porosity using electrospinning Permeable membrane Produce
  • the nanoporous permeable membrane of the present invention is produced by the electrospinning method through the following steps:
  • the polyurethane electric furnace solution is applied under the conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a radiation distance of 20-40 cm, a humidity of 20-40% Lt; [deg.] ≫ C in a total of 4-6 ml to prepare a nanoporous permeable membrane having a thickness of 150-250 [mu] m.
  • the diameter of the nanofibers produced by electrospinning is highly dependent on the spinning conditions.
  • the viscosity of the electrospinning solution is the largest determinant, and a coarse fiber can be produced if the viscosity of the solution is high.
  • the diameter of the nanofibers is proportional to the square of the concentration of the electrospinning solution.
  • pores are formed by the gaps between the fibers. Since the size of the void is proportional to the diameter of the nanofiber, when the diameter of the nanofiber is reduced, a gap between the fibers becomes smaller, so that a void having a smaller diameter is formed. When the diameter of the nanofiber is increased, This large pore is formed.
  • the pores are related to the ability to flow across the membrane, and the degree of storage of the solution depends on the size of the pores.
  • Fibers may be formed and the jet may be emitted into a granular form rather than a fiber to form nanopores.
  • polyurethane is added and mixed in an amount of more than 20 parts by weight based on 100 parts by weight of the dimethylformamide solution to prepare an electrolytic solution, the viscosity of the spinning solution is too high and the nanofibers having a large diameter are radiated The number of pores formed per unit area is reduced and the pore size is increased, so that the amount of the solution that can be stored is reduced.
  • the electrospinning is carried out under conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of an injection needle of 20-30 G, a radiation distance of 20-40 cm , And a total of 4-6 ml is spun in an atmosphere having a humidity of 20-40% and a temperature of 25-35 ° C.
  • the electrospinning is carried out under the conditions of a voltage of 15 kV, a spinning rate of 0.1 ml / h, a diameter of the injection needle of 25 G, a spinning distance of 30 cm, an atmosphere of 30% Lt; / RTI > These conditions are the optimum electrospinning conditions for producing a nanoporous permeable membrane having a plurality of voids with a thickness of 150-250 ⁇ m and a diameter of 0.1-10 ⁇ m.
  • Step 4 PDMS To device Nanoporous Permeable membrane Attaching step
  • the nanoporous permeable membrane prepared above is attached to the PDMS device manufactured in the above step.
  • a PDMS solution is prepared, and only a small amount of the PDMS solution is applied to the depressed groove of the PDMS device, and then the nanoporous permeable membrane is attached.
  • the PDMS solution is absorbed by the nanoporous permeable membrane due to capillary phenomenon and hardened, so that voids of the permeable membrane disappear. Therefore, only a very small amount of the PDMS solution is used.
  • an electrode is provided so that an electrical signal for transferring the biological signal to the living body or an electrical signal transmitted from the living body can be moved by performing patterning for the biological signal on the PDMS device having the nanoporous permeable membrane attached thereto.
  • a uniform gold coating layer is formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 ⁇ m.
  • the gold coating layer is made of gold (Au) having excellent biocompatibility. Since the gold coating layer is uniformly formed with a thickness of 0.1-10 ⁇ , it is possible to maintain the voids of the nano-porous permeable membrane without blocking while improving conductivity.
  • a 3D substrate for PDMS device fabrication was designed using a 3D design program Inventor (Autodesk, USA) (Fig. 1).
  • the overall shape of the 3D substrate for fabricating the PDMS device is designed in various shapes such as a square, a triangle, a circle, and a pentagon.
  • the 3D substrate for fabricating the PDMS device includes a PDMS device forming unit (embossed shape) in which a PDMS device is formed when the PDMS device is manufactured by pouring a PDMS solution onto the 3D substrate, and a nano-porous And an intaglio groove forming portion for attaching a permeable membrane (see Panel A in Fig. 1).
  • a rectangular PDMS device 3D substrate to which the polyurethane nanoporous transmission layer of Panel A is attached may be formed with a PDMS device having a thickness of 250-350 mu m and a width of 5 cm and a length of 5 cm, A negative electrode groove for attaching a nano-porous porous membrane having a depression shape with a depth of 100 to 200 mu m and a length of 2 to 2.5 cm and a length of 2 to 2.5 cm may be formed.
  • the 3D substrate for PDMS device fabrication was manufactured by using a 3D printer (PROJET 3510 HD) with photocurable principle and VISIJET M3 crystal, which is one kind of ultraviolet (UV) curing plastic, was used as a main material.
  • Support VISIJET S300 one of the wax materials having both fusibility and non-toxicity, was used. 1, a VISIJET M3 crystal solution was laminated according to the design of Panel A to prepare a 3D substrate for PDMS device fabrication. In order to remove the Support VISIJET S300, an incubation was performed in an oven at 70 ° C for 1 hour. The 3D substrate for PDMS device fabrication, in which Support VISIJET S300 was dissolved through the incubation, was immersed in an ultrasonic washing machine filled with cooking oil at 60 ° C for 1 hour, and then subjected to a first washing process, followed by soaking in EZ Rinse solution for 10 minutes Was carried out.
  • the 3D substrate for PDMS device fabrication in which the primary and secondary cleaning processes were sequentially performed, was subjected to final tertiary cleaning using distilled water and then dried.
  • Figure 2 shows a 3D substrate for fabricating a PDMS device fabricated by the above method.
  • the 3D substrate for fabricating the PDMS device comprises a PDMS device forming unit for forming a PDMS device, which is a depressed portion, and a depressed groove forming unit for attaching a nano-porous permeable film, to which a polyurethane nanoporous permeable membrane is attached.
  • a PDMS reaction solution was prepared to prepare the PDMS device of the present invention.
  • the PDMS solution and the curing agent were mixed at a ratio of 10: 1, and the bubbles were sufficiently removed using a desiccator.
  • 3 ml of the PDMS reaction solution in which the bubbles were removed was coated on the 3D substrate for fabricating the PDMS device, and then heat-treated in a 45 ° C laboratory oven for 24 hours to cure.
  • the cured PDMS device was detached from the 3D substrate for PDMS device fabrication.
  • Fig. 3 shows a PDMS device manufactured by the above method.
  • the PDMS device comprises a PDMS substrate portion and an intaglio groove for attaching a nano-porous permeable membrane to which a polyurethane nanoporous permeable membrane is bonded.
  • the PDMS device has a thickness of 250-350 ⁇ ⁇ and a length and a length of 5 cm.
  • the intaglio grooves for attaching the nanoporous permeable membrane in the PDMS device have a depth of 100 - 200 ⁇ m and a length of 2 - 2.5 cm.
  • the present invention attaches nanofibers to the PDMS device to produce a bioelectrode having improved conductivity and biocompatibility.
  • the polymer material for the preparation of the nanofibers was selected from polyurethane having excellent biocompatibility and a polyurethane nanoporous permeable membrane was prepared by electrospinning. To this solution, 15 parts by weight of polyurethane was added to 100 parts by weight of a dimethylformamide solution and mixed for 24 hours to prepare a polyurethane electrodeposition solution.
  • a polyurethane nanoporous permeable membrane was prepared by electrospinning a total of 5 ml of polyurethane electrodeposition solution.
  • the thickness of the polyurethane nanoporous permeable membrane prepared in the electrospinning condition was similar to the depth (100 ⁇ 200 um) of the concave groove for attachment of the nanoporous permeable membrane.
  • the thickness of the polyurethane nanoporous permeable membrane (150 to 250 mu m) is judged to be an appropriate thickness considering the intaglio grooves for attaching the nanoporous permeable membrane. In order to prepare the permeable membrane of the above thickness by electrospinning, It is judged that it is preferable to use the amount of use.
  • the prepared polyurethane nanoporous permeable membrane was cut so that the length and width of the polyurethane nanoporous permeable membrane were 2 to 2.5 cm so as to fit the intaglio groove for attachment of the nanoporous permeable membrane, and then the uncured pure PDMS solution was spread on the permeable membrane attachment portion, A polyurethane nanoporous permeable membrane was attached.
  • the PDMS device PU-PDMS device
  • Figure 4 shows an optical micrograph of a polyurethane nanoporous permeable membrane attached to a PDMS device.
  • FIG. 5 shows a field emission scanning electron microscope (FESEM) observation result for a PDMS device to which a polyurethane nanoporous permeable membrane has been successfully attached.
  • FESEM field emission scanning electron microscope
  • a gold (Au) coating was applied to the PU-PDMS device to prepare a conductive polymeric bioelectrode having conductivity.
  • Gold is safe for human body because it has excellent biocompatibility and non-toxic properties.
  • a conducting polymeric bioelectrode capable of transmitting an excellent signal was fabricated by coating gold with 0.1-10 ⁇ m thickness.
  • Panel A of FIG. 6 shows a conductive polymer bioelectrode (gold-coated PU-PDMS device) of the present invention. It can be confirmed that the gold coating is thin and the coating layer is uniformly formed on the surface.
  • FIG. 6 shows the result of FESEM observation of the gold-coated polyurethane nanoporous permeable membrane portion of the conductive polymer bioelectrode. According to panel B of FIG. 6, it was confirmed that the polyurethane nanoporous permeable membrane was well coated with gold, but the shape and porosity of the nanofiber were well maintained.
  • Panel C of FIG. 6 shows the result of FESEM observation of the PDMS device portion of the conductive polymer bioelectrode. It was confirmed that the PDMS portion of the conductive polymer bioelectrode was uniformly coated with gold as in the PU nanoporous permeable membrane portion of the conductive polymer bioelectrode.
  • FIG. 7 shows the results of measuring the surface resistivity of the nanoporous permeable membrane part and the PDMS device part of the conductive polymer bioelectrode.
  • the PU nanoporous permeable membrane was found to have an average resistivity of 0.157?
  • the bioelectrode is injected into the body in various forms. Therefore, the bioelectrode to be inserted into the living body should be free from changes in the porosity of the PDMS device gold coating, the porosity of the gold-coated permeable membrane, and the continuity of the nanofibers even under the application of mechanical pressure.
  • the surface of the conductive polymeric bioelectrode and the conducting polymeric bioelectrode, which were bent several times, were observed using an FESEM and an atomic force microscope (AFM).
  • FESEM atomic force microscope
  • FIG. 8 shows the results of observing the surface state of the conducting polymeric bioelectrode, which has not undergone the bending process (mechanical deformation) using the FESEM, and the conducting polymeric bioelectrode, which has been subjected to the bending process 5 to 7 times. Experimental results showed that the morphology of the nanoporous permeable membrane and the gold coating state did not change.
  • FIG. 9 shows the result of comparing the surface states of the conductive polymer bioelectrode, which has not undergone the bending process, and the conductive polymer bioelectrode, which has undergone the bending process several times, using an atomic force microscope (AFM) .
  • FESEM atomic force microscope
  • the human body consists of more than 70% water and maintains a constant temperature of 36.5 °C. Therefore, in order to confirm the durability of the conductive polymer bioelectrode according to the present invention, the physical properties and conductivity of the electrode were observed with time after immersing the bioelectrode in the third distilled water maintained at a temperature of 36.5 ° C.
  • FIG. 10 is a graph showing the results of measurement of the permeability of the nanoporous permeable membrane of the present invention by using a scanning electron microscope (SEM) after immersing the conductive polymer bioelectrode of the present invention in the third distilled water maintained at 36.5 ° C for 7 days, 14 days, 21 days, Shows the result of shooting the shape.
  • SEM scanning electron microscope
  • the resistivity of the surface was measured by immersion under the same conditions as described above (see FIG. 10). As a result of the measurement, it was confirmed that the immersed conductive polymer bioelectrode had a resistance value of 0.31-0.84? And an average resistance value of 0.59 ?. Therefore, the conductive polymer bioelectrode was similar to the first resistance value of 0.58? Despite being immersed in the third distilled water maintained at a temperature of 36.5 ⁇ ⁇ for 28 days.
  • EpH4-Ras cells treated with cancer gene Ras and C6 cells one type of fibroblasts, were cultured in rat epithelial cells on a nano-porous membrane for 5 days, and Live / Dead solution (The LIVE / DEAD ( R) Cell Imaging Kit (Thermo Fisher Scientific)) to determine cell viability (see FIG. 11).
  • Live / Dead solution The LIVE / DEAD ( R) Cell Imaging Kit (Thermo Fisher Scientific)
  • the present invention relates to a bioelectrode for bio signal measurement based on a porous nanofiltration membrane having a high specific surface area and a method for manufacturing the bioelectrode and a method for manufacturing the bioelectrode, which can replace a metal electrode of a metal material, .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Nonwoven Fabrics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a bioelectrode having improved conductivity, flexibility, and biocompatibility, and a method for manufacturing the same. Particularly, the present invention relates to a conductive polymer bioelectrode comprising a biocompatible polymer substance-based nanoporous permeable membrane having a plurality of pores and an improved surface area, a biosignal transferring pattern layer, and a gold coating layer, based on a PDMS device having low mechanical strength and excellent biocompatibility, whereby the conductive polymer bioelectrode is similar in conductivity to that of a conventional metallic bioelectrode and shows excellent biocompatibility, with the incurrence of a low rejection response. Therefore, it is expected that the conductive polymer bioelectrode of the present invention can replace a metallic bioelectrode, which has poor biosignal transfer efficiency due to the high bioincompatibility thereof.

Description

높은 비표면적을 가지는 다공성 나노투과막 기반의 생체신호 측정용 생체전극 및 그의 제조방법Porous nanoporous membrane-based bioelectrode for bio signal measurement having high specific surface area and method for manufacturing the same
본 발명은 높은 비표면적을 가지는 다공성 나노투과막을 토대로 생체신호 계측이 가능하며, 가변 용량성과 전도성, 유연성 및 생체적합성이 향상된 생체전극 및 그의 제조방법에 관한 것이다. 상세하게는 상기 생체전극은 신체기관과 전기적인 신호를 주고받으며 세포와 전기적 상호작용을 수행하기 위하여 생체에 삽입되는 생체전극으로 종래의 금속재질의 전극과 유사한 전도성이 있으면서도 유연성 및 생체적합성이 뛰어나 거부반응 및 면역반응이 없는 장점이 있다. The present invention relates to a bioelectrode capable of measuring a living body signal based on a porous nanotransflective film having a high specific surface area and having improved capacitance, conductivity, flexibility, and biocompatibility, and a method of manufacturing the same. Specifically, the bioelectrode is a bioelectrode that is inserted into a living body to exchange electrical signals with the body organs and perform electrical interaction with the bioelectrode. The bioelectrode has conductivity similar to that of a conventional metal electrode, but is excellent in flexibility and biocompatibility, There is an advantage that there is no reaction and no immune response.
생체전극이란 인체의 신호 계측 및 신호를 인가하기 위한 전극으로 체외에 부착 또는 생체 내에 삽입하여 신체 기관 및 조직과 전기적인 신호를 주고받고 조직 및 세포와 전기적으로 상호작용을 하는 목적으로 사용한다. 생체전극은 생체 환경 내에서 정교한 상호작용을 수행하기 때문에 생체의 미세한 전기적 신호를 매개할 수 있는 낮은 비저항, 거부반응이 적고 생체조직과의 안정적인 상호작용이 가능한 우수한 생체적합성 및 낮은 기계적 강도가 필요하다. 종래의 금속소재 생체전극은 생체 조직과 접촉함에서 금속이 가지는 생체 부적합성에 의해 면역반응이 유도되어 생체전극의 효율이 저하되는 단점이 있다. 상기 금속의 생체 부적합성은 높은 기계적 강도 및 금속에서 방출되는 이온을 의미한다. 상기 금속의 생체 부적합 특성은 삽입된 생체전극 주위로 면역세포들이 모여들게 하고 상기 생체전극이 부착된 장기 또는 조직의 계면에서 염증반응(inflammatory response)이 일어나게 한다. 상기 염증반응은 생체전극과 장기 또는 조직 사이의 신호전달을 방해하고 상기 생체전극으로부터 세포들을 분리시키므로 비저항 및 노이즈가 증가된다. 또한 종래의 금속 기반의 생체전극은 높은 기계적 강도로 인해 장기 또는 조직의 움직임에 따른 기계적 부적합성이 발생한다. 상기 기계적 부적합성은 생체전극과 장기 또는 조직 사이의 간극을 발생시키고 이로 인한 생체신호의 전달효율이 저하된다. 현재까지도 상기와 같은 금속 기반 생체전극이 여러 단점을 해결되지 못하고 있으며 이로 인해 새로운 소재의 생체전극에 대해 연구가 활발히 진행되고 있다. A bioelectrode is an electrode for measuring and signaling a human body. It is used for the purpose of interacting with tissues and cells by exchanging electrical signals with organs and tissues by attaching them to the body or inserting them into a living body. Because bioelectrodes perform elaborate interactions in the living environment, they require low resistivity, low rejection and good biocompatibility and low mechanical strength to interact with living tissue in order to mediate microscopic electrical signals of living organisms . Conventional metal bioelectrodes have a disadvantage in that an immune response is induced by the inadequate biocompatibility of a metal in contact with living tissues and the efficiency of the bioelectrode is lowered. The bio-incompatibility of the metal means high mechanical strength and ions released from the metal. The biocompatibility of the metal causes the immune cells to gather around the inserted bioelectrode and causes an inflammatory response at the interface of the organ or tissue to which the bioelectrode is attached. The inflammatory reaction hinders signal transmission between the bioelectrode and the organ or tissue and separates the cells from the bioelectrode, so that the resistivity and noise are increased. In addition, conventional metal-based bioelectrodes have mechanical incompatibility due to long-term or tissue movement due to high mechanical strength. The mechanical incompatibility causes a gap between the bioelectrode and the organ or tissue, and the transmission efficiency of the bio-signal due to the gap is reduced. Until now, many disadvantages of the metal-based bioelectrodes have not been solved. Therefore, research on bioelectrodes of new materials has been actively conducted.
본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. The patent documents and references cited herein are hereby incorporated by reference to the same extent as if each reference was individually and clearly identified by reference.
본 발명자들은 상기 문제점을 해결하기 위하여 생체 신호의 진단과 계측을 위해 생체 표면에 장시간 부착 및 체내 이식이 가능하며 높은 비표면적을 가지는 다공성 나노투과막 기반의 가변용량성 생체전극을 개발하기 위하여 노력한 결과 디바이스(기판)에 생체적합성이 뛰어나며 다수의 나노공극(nano-pore)을 포함하고 있는 폴리우레탄 재질의 나노다공성 투과막을 부착시키고 생체신호 전달용 패터닝을 수행한 후 금코팅을 수행하여 전도성 고분자 생체전극을 제조하였다. 본 발명자들은 상기 제조한 전도성 고분자 생체전극이 모든 위치에서 낮은 비저항값을 가지며; 적층된 나노섬유들에 의해서 확보된 높은 비표면적에 의한 다공성 나노투과막은 유연하면서, 전도성이 매우 우수한 특성을 가지고 있으며, 기계적 변형에도 전도성이 저하되지 않으며; 생체적합성이 우수하여 세포배양이 가능하므로 종래의 금속기반 생체전극을 대체할 수 있다는 것을 실험적으로 확인하여 본 발명을 완성하였다. The present inventors have made efforts to develop a variable capacitance bioelectrode based on a porous nano-permeable membrane having a high specific surface area and capable of long-time attachment to a living body surface and implantation in the body for diagnosing and measuring bio-signals. A nanoporous permeable membrane of polyurethane material having excellent biocompatibility and containing a large number of nano-pores is attached to the device (substrate), and patterning for vital signal transmission is performed, followed by gold coating to form a conductive polymer biomolecule electrode . The present inventors have found that the conductive polymer bioelectrode has a low resistivity value at all positions; Porous nanotransflective membranes with high specific surface area ensured by the laminated nanofibers are flexible and have very good conductivity properties and are not deteriorated in mechanical deformation; It is possible to replace the conventional metal-based bioelectrode because the biocompatibility is excellent and the cell can be cultured. Thus, the present invention has been completed.
따라서 본 발명의 목적은 PDMS 디바이스, 나노다공성 투과막, 생체신호전달용 패터닝 및 금코팅층을 포함하는 전도성 고분자 생체전극을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a conductive polymer bioelectrode comprising a PDMS device, a nanoporous permeable membrane, a patterning for vital signal transmission, and a gold coating layer.
본 발명의 다른 목적은 상기 전도성 고분자 생체전극의 제조방법을 제공하는데 있다. Another object of the present invention is to provide a method for manufacturing the conductive polymer bioelectrode.
본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention will be described in more detail with reference to the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 나노다공성 투과막이 부착되는 음각홈을 가지며 두께가 250-350㎛인 폴리디메틸실록세인(polydimethylsiloxane, PDMS) 디바이스; 상기 PDMS 디바이스의 음각홈에 부착되는 두께 50-200㎛의 나노다공성 투과막; 상기 PDMS 디바이스와 상기 나노다공성 투과막위에 형성되는 생체신호전달용 패터닝(patterning); 및 상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝위에 0.1-10㎛의 두께로 균일하게 형성된 금(Au)코팅층;을 포함하는 전도성 고분자 생체전극을 제공한다. According to one aspect of the present invention, there is provided a polydimethylsiloxane (PDMS) device having an intaglio groove to which a nanoporous permeable membrane is attached and having a thickness of 250-350 mu m; A nanoporous permeable membrane having a thickness of 50 to 200 탆 adhered to a depressed groove of the PDMS device; Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And a gold (Au) coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 탆.
본 발명의 일 구현예에 따르면, 상기 전도성 고분자 생체전극의 나노다공성 투과막은 생체적합성 고분자 물질을 전기방사하여 두께 50-200㎛로 제조하며 직경이 0.1-10㎛인 다수의 공극(pore)을 포함하고 있어 세포배양이 가능할 정도로 생체적합성이 우수하다.According to an embodiment of the present invention, the nanoporous permeable membrane of the conductive polymer bioelectrode includes a plurality of pores having a diameter of 0.1 to 10 μm, prepared by electrospun biocompatible polymer material to have a thickness of 50 to 200 μm And it is excellent in biocompatibility to enable cell culture.
본 발명의 다른 구현예에 따르면, 상기 전기방사는 전압 10-20kV, 방사속도 0.05-0.3㎖/h, 주사바늘의 직경 20-30G, 방사거리 20-40㎝의 조건으로 습도 20-40% 및 온도 25-35°C의 분위기하에서 상기 생체적합성 고분자 물질을 포함하는 전기방사용액 4-6㎖을 방사하여 수행한다.According to another embodiment of the present invention, the electrospinning is performed under the conditions of a voltage of 10-20 kV, a radiation rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a radiation distance of 20-40 cm, Followed by spinning 4-6 ml of an electrical spinning solution containing the biocompatible polymer substance in an atmosphere at a temperature of 25-35 ° C.
본 발명의 다른 양태에 따르면, 본 발명은 a) 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스용 3D 기판을 제조하는 제 1 단계; b) 상기 3D 기판을 이용하여 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스를 제조하는 제 2 단계; c) 전기방사를 이용하여 나노다공성 투과막을 제조하는 제 3 단계; d) 상기 PDMS 디바이스에 형성된 음각홈에 PDMS 용액을 이용하여 상기 나노다공성 투과막을 부착시키는 제 4 단계; e) 상기 나노다공성 투과막이 부착된 PDMS 디바이스에 생체신호전달용 패터닝을 수행하는 제 5 단계; 및 f) 상기 생체신호전달용 패터닝이 수행된 PDMS 디바이스에 금코팅을 수행하는 제 6 단계;를 포함하는 전도성 고분자 생체전극의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a method of manufacturing a PDMS device, comprising the steps of: a) preparing a 3D substrate for a PDMS device comprising an intaglio groove for attaching a nanoporous transmissive film; b) a second step of fabricating a PDMS device including an intaglio groove for attaching a nanoporous permeable membrane using the 3D substrate; c) a third step of preparing a nanoporous permeable membrane using electrospinning; d) attaching the nanoporous permeable membrane to the indented groove formed in the PDMS device using a PDMS solution; e) performing a patterning process for transmitting a biological signal to the PDMS device having the nanoporous permeable membrane attached thereto; And f) performing a gold coating on the PDMS device on which the biological signal transmission patterning is performed.
본 발명은 전도성, 유연성 및 생체적합성이 향상된 생체전극 및 그의 제조방법에 관한 것이다. 상세하게는, 낮은 기계적 강도 및 우수한 생체적합성을 가진 PDMS 디바이스를 기반으로 다수의 공극을 가지며 표면적이 향상된 생체적합성 고분자 물질 기반의 나노다공성 투과막, 생체신호전달용 패터닝 및 금 코팅층을 포함하여 종래의 금속소재 생체전극과 유사한 전도도를 가지면서도 생체 적합성이 뛰어나 거부반응이 적은 전도성 고분자 생체전극에 관한 것이다. 따라서 본 발명의 전도성 고분자 생체전극은 높은 생체부적합성으로 인하여 생체신호 전달 효율이 저하되는 금속소재의 생체전극을 대체할 수 있을 것으로 기대된다.The present invention relates to a bioelectrode having improved conductivity, flexibility, and biocompatibility, and a method of manufacturing the same. More particularly, the present invention relates to a nanoporous permeable membrane based on a PDMS device having a low mechanical strength and excellent biocompatibility based on a biocompatible polymer substance having a large number of voids and having a surface area, The present invention relates to a conductive polymer bioelectrode having conductivity similar to that of a metal material bioelectrode but having a high biocompatibility and a low rejection. Accordingly, the conductive polymer bioelectrode of the present invention is expected to be able to replace the bioelectrode of a metal material, which is deteriorated in bio-signal transmission efficiency due to high bio-incompatibility.
도 1 은 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스용 3D 기판 및 PDMS 디바이스의 도면을 보여준다. 패널 A는 사각형 모양의 나노다공성 투과막 부착용 음각홈이 포함된 PDMS 디바이스용 3D 기판의 도면을 보여준다. 패널 B는 PDMS 디바이스용 3D 기판으로 제조된 다양한 모양의 나노투과막 부착용 음각홈이 포함된 PDMS 디바이스를 보여준다.1 shows a view of a 3D substrate and a PDMS device for a PDMS device comprising an intaglio groove for depositing a nanoporous transmissive film. Panel A shows a view of a 3D substrate for a PDMS device with a square shaped nano-porous transmembrane attachment recess. Panel B shows a PDMS device with an indentation groove for various shapes of nano-permeable membrane attachment made from a 3D substrate for a PDMS device.
도 2 는 3D 프린팅을 이용하여 제조된 사각형 모양의 나노다공성 투과막 부착용 음각홈이 포함된 PDMS 디바이스용 3D 기판을 보여준다.FIG. 2 shows a 3D substrate for a PDMS device including an angular depression for attaching a square-shaped nanoporous transmission film manufactured using 3D printing.
도 3 은 PDMS 디바이스용 3D 기판에서 PDMS 용액을 경화시켜 제조한 사각형 모양의 나노다공성 투과막 부착용 음각홈이 포함된 PDMS 디바이스를 보여준다.FIG. 3 shows a PDMS device including a rectangular-shaped nano-porous film for affixed depressions formed by curing a PDMS solution in a 3D substrate for a PDMS device.
도 4 는 나노다공성 투과막이 부착된 PDMS 디바이스의 광학현미경 사진을 보여준다. 패널 A는 10X 광학현미경을 이용하여 촬영한 나노다공성 투과막이 부착된 PDMS 디바이스의 단면 사진을 보여주며 패널 B는 50X 광학현미경을 이용하여 촬영한 나노다공성 투과막이 부착된 PDMS 디바이스의 단면 사진을 보여준다.Figure 4 shows an optical microscope picture of a PDMS device with a nanoporous permeable membrane. Panel A shows a cross-sectional photograph of a PDMS device with a nanoporous permeable membrane imaged using a 10X optical microscope. Panel B shows a cross-sectional photograph of a PDMS device with a nanoporous permeable membrane imaged using a 50X optical microscope.
도 5 는 PDMS 디바이스에 부착된 나노다공성 투과막을 전계 방출형 주사전자현미경(Field Emission Scanning Electron Microscope, FESEM)을 이용하여 촬영한 사진을 보여준다.FIG. 5 is a photograph of a nano-porous film attached to a PDMS device using a Field Emission Scanning Electron Microscope (FESEM).
도 6 은 나노다공성 투과막이 부착된 PDMS 디바이스에 금코팅을 수행하여 제조한 전도성 고분자 생체전극을 보여준다. 패널 A는 전도성 고분자 생체전극을 보여주며; 패널 B는 전도성 고분자 생체전극의 금 코팅된 나노다공성 투과막 부분을 FESEM을 이용하여 촬영한 사진을 보여주며; 패널 C는 전도성 고분자 생체전극의 금코팅된 PDMS 디바이스 부분을 FESEM을 이용하여 촬영한 사진을 보여준다.FIG. 6 shows a conductive polymer bioelectrode prepared by performing gold coating on a PDMS device having a nanoporous permeable membrane attached thereto. Panel A shows a conductive polymer bioelectrode; Panel B shows a photograph of a gold-coated nanoporous permeable membrane portion of a conductive polymer bioelectrode, taken using FESEM; Panel C shows photographs of the gold coated PDMS device portion of the conductive polymer bioelectrode, taken using FESEM.
도 7 은 전도성 고분자 생체전극의 표면 비저항 측정결과를 보여준다. 표면 비저항은 금 코팅된 나노다공성 투과막 부분과 금 코팅된 PDMS 디바이스 부분에 대하여 5회 반복실시한 후 평균값을 산출하였다.7 shows the result of measuring the surface resistivity of the conductive polymer bioelectrode. The surface resistivity was measured five times for the gold coated nanoporous permeable membrane and the gold coated PDMS device, and the average value was calculated.
도 8은 FESEM을 이용하여 관찰한 기계적 변형(구부림)을 수행하기 전과 후의 전도성 고분자 생체전극의 물리적 변화 결과를 보여준다. 상기 구부림은 5회 이상 수행하였으며 금 코팅된 PDMS 디바이스 및 나노다공성 투과막 부분을 FESEM으로 촬영하여 금 코팅의 변형, 나노섬유의 형태변화 및 공극의 변화를 관찰하였다. FIG. 8 shows physical changes of the conductive polymer bioelectrode before and after the mechanical deformation (bending) observed using the FESEM. The bending was performed more than 5 times. The gold coated PDMS device and the nanoporous permeable membrane were photographed with FESEM to observe the gold coating deformation, morphology change of the nanofiber, and pore change.
도 9 는 원자간력현미경(Atomic Force Microscope, AFM)을 이용하여 관찰한 기계적 변형을 수행하기 전과 후의 전도성 고분자 생체전극의 물리적 변화 결과를 보여준다. 패널 A는 기계적 변형 전의 금 코팅된 나노다공성 투과막 부분의 촬영 결과를 보여주며 패널 B는 기계적 변형 후의 금 코팅된 나노다공성 투과막 부분의 촬영 결과를 보여준다.FIG. 9 shows physical changes of the conductive polymer bioelectrode before and after the mechanical deformation observed using an atomic force microscope (AFM). Panel A shows the results of the gold-coated nanoporous permeable membrane before mechanical deformation, and Panel B shows the results of the gold-coated nanoporous permeable membrane after mechanical deformation.
도 10 은 전도성 고분자 생체전극을 36.5°C의 3차 증류수에 0, 7, 14, 21, 28일간 침지한 후 FESEM을 이용하여 나노다공성 투과막을 변화를 관찰하고 상기 나노투과막의 표면 비저항을 측정한 결과를 보여준다. 10 shows the results of observing changes in the nanoporous permeable membrane using FESEM after immersing the conductive polymer bioelectrode in the third distilled water at 36.5 ° C for 0, 7, 14, 21, and 28 days and measuring the surface resistivity of the nanofiltrated membrane Show the results.
도 11 은 전도성 생체전극의 나노다공성 투과막에 EpH4-Ras 세포와 C6 세포를 5일간 배양한 후 Live&Dead 용액을 이용하여 세포의 생존률을 관찰한 결과를 보여준다.FIG. 11 shows the results of observing cell viability using a Live & Dead solution after 5 days of incubation of EpH4-Ras cells and C6 cells in a nanoporous permeable membrane of a conductive bioelectrode.
본 발명은 나노다공성 투과막이 부착되는 음각홈을 가지며 두께가 250-350㎛인 폴리디메틸실록세인(polydimethylsiloxane, PDMS) 디바이스; 상기 PDMS 디바이스의 음각홈에 부착되는 두께 50-200㎛의 나노다공성 투과막; 상기 PDMS 디바이스와 상기 나노다공성 투과막위에 형성되는 생체신호전달용 패터닝(patterning); 및The present invention relates to a polydimethylsiloxane (PDMS) device having an intaglio groove to which a nanoporous permeable membrane is attached and having a thickness of 250-350 mu m; A nanoporous permeable membrane having a thickness of 50 to 200 탆 adhered to a depressed groove of the PDMS device; Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And
상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝위에 0.1-10㎛의 두께로 균일하게 형성된 금(Au) 코팅층;을 포함하는 전도성 고분자 생체전극을 제공한다.And a gold (Au) coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 mu m.
본 발명의 일 양태에 따르면, 본 발명은 나노다공성 투과막이 부착되는 음각홈을 가지며 두께가 250-350㎛인 폴리디메틸실록세인(polydimethylsiloxane, PDMS) 디바이스; 상기 PDMS 디바이스의 음각홈에 부착되는 두께 50-200㎛의 나노다공성 투과막; 상기 PDMS 디바이스와 상기 나노다공성 투과막위에 형성되는 생체신호전달용 패터닝(patterning); 및 상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝 위에 0.1-10㎛의 두께로 균일하게 형성된 금코팅층;을 포함하는 전도성 고분자 생체전극을 제공한다. According to one aspect of the present invention, there is provided a polydimethylsiloxane (PDMS) device having an intaglio groove to which a nanoporous permeable membrane is attached and having a thickness of 250-350 mu m; A nanoporous permeable membrane having a thickness of 50 to 200 탆 adhered to a depressed groove of the PDMS device; Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And a gold coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 탆.
본 발명의 생체전극은 생체 내에 삽입되어 장기 또는 조직과 전기적인 신호를 주고받거나 전기적 상호작용을 수행하는 전극을 의미한다. 상기 생체전극은 생체 내에 삽입되므로 생체적합성이 높은 것이 바람직하다. 상기 생체적합성의 정도는 상기 생체전극이 삽입되었을 발생하는 면역학적 거부반응의 정도에 따라 판단할 수 있다. 상기 면역학적 거부반응은 주로 염증반응을 의미한다. 따라서 상기 생체적합성이 뛰어나면 상기 생체전극의 삽입으로 인한 염증반응이 적게 일어난다. 상기 염증반응이 발생하면 상기 생체전극이 부착된 장기 또는 조직으로 면역세포들이 모이게 되고 상기 면역세포들에서 분비된 염증물질들에 의해 주위 세포가 죽어 조직이 두꺼워지게 된다. 상기 조직이 두꺼워지면 비저항이 증가하므로 상기 생체전기신호를 효과적으로 전달 할 수 없게 된다. 상기 염증반응은 세포의 죽음으로부터 분비되는 여러 가지 세포내 물질들에 의해 일어날 수 있다. 따라서 상기 생체전극의 생체적합성을 판단하는 방법으로 상기 생체전극의 세포독성을 평가하는 방법이 있다. 본 발명에서는 생체전극의 생체 적합성을 평가하기 위하여 생체전극을 이용한 세포배양을 시도하였다. 본 발명의 생체전극은 생체적합성이 뛰어난 고분자 물질을 이용하여 제조한 나노다공성 투과막을 포함하고 있다. 상기 투과막은 나노사이즈의 공극(pore)을 포함하고 있어 세포배양액을 보관 할 수 있으므로 세포배양이 가능한 장점이 있다. 상기 세포배양 후 염색을 통해 살아있는 세포의 수와 죽은 세포의 수를 비교하면 상기 생체적합성을 평가 할 수 있다. 종래의 금속소재 기반 생체전극은 주로 백금, 백금합금 또는 금을 사용되었다. 상기 금속소재는 전도성은 좋으나 과도한 금속이온을 방출하며 높은 기계적 강도를 가지고 있어 염증반응을 유도하므로 시간이 지남에 따라 생체신호의 전달률이 저하되는 단점이 있다. 본 발명의 일 구현예에 따르면, 본 발명의 생체전극은 금속소재가 아닌 폴리디메틸실록세인(polydimethylsiloxane, PDMS)를 이용하여 디바이스를 제조한다. 상기 PDMS는 실리콘의 일종으로 불활성 특성을 가지는 고분자물질이며 가격이 낮고 우수한 열안정성 및 생체적합성을 가지고 있어서 인체조직공학연구에 많이 사용된다. 생체 내에 부착된 생체전극은 장기 및 조직의 움직임으로 인해 휨 또는 구부림과 같은 기계적 변형이 일어날 수 있다. 상기에서 설명한 바와 같이 기계적 강도가 높은 금속소재로 제조된 생체전극은 기계적 변형에 의해 전극의 부착정도가 변화하거나 이물질에 의한 염증반응(이물반응, 異物反應, foreign body reaction)이 유도되어 생체전극으로서의 성능이 저하될 수 있다. 이에 반하여 본 발명의 PDMS는 기계적 강도가 낮아 외부의 물리적인 힘에 의해 변형되지 않고 그 형태를 유지하는 장점이 있으며 가공성이 좋아 부착이 예상되는 장기 또는 조직의 외관에 따라 적절히 가공될 수 있으므로 생체신호의 전달효율을 향상 시킬 수 있는 장점이 있다. 본 발명의 일 구현예에 따르면, 본 발명의 PDMS 디바이스는 두께가 250-350㎛이다. 바람직하게는 상기 PDMS 디바이스는 두께가 275-325㎛이다. 보다 바람직하게는 상기 PDMS 디바이스는 두께가 300㎛이다. 상기 두께가 250㎛이하이면 3D 기판을 이용하여 상기 PDMS 디바이스를 제조 시 기계적 강도가 너무 맞아 상기 3D 기판과의 분리가 어렵고 상기 두께가 350㎛를 넘으면 기계적 강도가 증가하여 생체적합성이 저하될 수 있다. 상기 PDMS는 고분자 물질로서 전극으로 사용되기에 전도성이 낮다. 본 발명에서는 나노섬유다발로 이루어진 나노다공성 투과막 및 금(Au)코팅을 이용하여 고탄성 특성을 유지하면서도 우수한 전도도를 가지는 PDMS 기반 생체전극을 제조한다. 이를 위하여 상기 PDMS 디바이스는 상기 나노다공성 투과막이 부착될 수 있는 음각홈을 포함한다. 본 발명의 일 구현예에 따르면, 상기 PDMS 디바이스는 전체 면적의 25-50%가 상기 나노다공성 투과막의 부착을 위한 깊이 100-200㎛의 음각홈이다. 상기 음각홈에는 상기 나노다공성 투과막이 부착되기 때문에 상기 음각홈의 면적은 나노다공성 투과막의 면적과 동일하다. 상기 음각홈의 면적이 상기 PDMS 디바이스 면적의 25% 미만이면 상기 나노다공성 투과막의 부착으로 인한 유연성 향상효과, 표면적 향상효과 및 생체적합성 향상효과가 미미하며 상기 음각홈의 면적이 상기 PDMS 디바이스 면적의 50%를 초과하면 기계적 강도가 너무 낮아 생체전극의 가공성이 저하 될 수 있다. 상기 나노다공성 투과막은 전기방사방법을 이용하여 생체적합성이 뛰어난 고분자 물질을 나노섬유의 형태로 적층하고 이들로 인해 형성된 나노사이즈의 공극(pore)을 가지는 투과막으로 제조될 수 있다. 상기 고분자물질은 성형성이 좋으며 경도 및 기계적 강도가 낮고 내화학성이 좋으며 내열성이 없고 생체적합성이 우수한 물질이 바람직하다. 본 발명의 일 구현예에 따르면, 상기 생체적합성 고분자 물질은 폴리우레탄(polyurethane), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리아미드 엘라스토머(polyamide elastomer), 폴리에스터(polyester), 폴리에스터 엘라스토머(polyester elastomer), 폴리스티렌(polystyrene), 폴리프로필렌(polypropylene), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(poly(methymethacrylate)), 폴리올레핀(polyolefin), 폴리설폰(polysulfone), 폴리비닐클로라이드(poly(vinyl chloride)), 실리콘(silicon), 및 폴리에틸렌(polyethylene)으로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물 일 수 있다. 바람직하게는 상기 생체적합성 고분자 물질은 폴리우레탄이다. 상기 전기방사방법은 점도를 가진 고분자 용액을 정전기력을 이용하여 순간적으로 섬유형태로 방사하는 것을 의미하며 상기 전기방사를 수행하면 나노섬유의 형태로 적층된 막(membrane)을 제조할 수 있다. 상기 막은 나노섬유의 형태에 따라 공극을 가질 수 있으며 상기 공극으로 인해 생리활성물질, 세포활성용 약물 등을 보관할 수 있어 나노 약물 전달체의 재료서 연구가 진행되고 있다. 본 발명의 일 구현예에 따르면, 상기 나노다공성 투과막은 상기 생체적합성 고분자물질을 전기방사하여 제조한 두께 50-200㎛의 투과막이며 직경이 0.1-10㎛인 다수의 공극(pore)을 포함한다. 바람직하게는 상기 나노다공성 투과막은 상기 생체적합성 고분자물질을 전기방사하여 제조한 두께 100-175㎛의 투과막이며 직경이 0.1-10㎛인 다수의 공극(pore)을 포함한다. 보다 바람직하게는 상기 나노다공성 투과막은 상기 생체적합성 고분자물질을 전기방사하여 제조한 두께 150㎛의 투과막이며 직경이 0.1-10㎛인 다수의 공극(pore)을 포함한다. 상기 나노다공성 투과막은 PDMS 디바이스의 음각홈에 부착된다. 본 발명의 일 실시예에 따르면, 상기 음각홈은 100-200㎛의 깊이를 가진다. 따라서 상기 나노다공성 투과막의 두께가 50㎛미만이거나 200㎛을 초과하면 상기 PDMS 디바이스와 높이가 맞지 않아 균일한 금코팅이 불가능하므로 생체신호전달 효율이 저하되는 단점이 있다. The bioelectrode of the present invention refers to an electrode that is inserted into a living body to exchange electrical signals with organs or tissues, or to perform electrical interaction. Since the bioelectrode is inserted into a living body, it is preferable that the biocompatibility is high. The degree of biocompatibility can be determined according to the degree of immunological rejection that occurs when the bioelectrode is inserted. The immunological rejection reaction mainly refers to an inflammatory reaction. Therefore, when the biocompatibility is excellent, the inflammatory reaction due to the insertion of the bioelectrode is reduced. When the inflammatory reaction occurs, the immune cells are collected into organs or tissues to which the bioelectrode is attached, and peripheral cells are killed by the inflammation substances secreted from the immune cells, and the tissue becomes thick. When the tissue is thickened, the resistivity increases, so that the bioelectric signal can not be effectively transmitted. The inflammatory response can be caused by various intracellular substances secreted from the death of the cell. Therefore, there is a method of evaluating the cytotoxicity of the bioelectrode by a method of determining the biocompatibility of the bioelectrode. In the present invention, cell culture using a bioelectrode was attempted to evaluate the biocompatibility of a bioelectrode. The bioelectrode of the present invention includes a nanoporous permeable membrane prepared using a polymer material having excellent biocompatibility. Since the permeable membrane contains nano-sized pores, the cell culture solution can be stored, and cell culture can be performed. The biocompatibility can be evaluated by comparing the number of living cells and the number of dead cells through staining after cell culture. Conventional metal-based bioelectrodes mainly use platinum, platinum alloy or gold. The metal material has good conductivity, but releases excessive metal ions and has a high mechanical strength, which induces an inflammatory reaction, and thus has a disadvantage that the delivery rate of a biological signal decreases over time. According to one embodiment of the present invention, the bioelectrode of the present invention is manufactured by using polydimethylsiloxane (PDMS) rather than a metal material. PDMS is a kind of silicon, which is a polymer material having inactive characteristics and has a low cost, excellent thermal stability and biocompatibility, and thus is widely used in human tissue engineering research. Bioelectrodes attached in vivo may undergo mechanical deformation such as bending or bending due to organ and tissue movements. As described above, the bioelectrode made of a metal material having a high mechanical strength is deformed by the mechanical deformation, or the inflammation reaction (foreign body reaction, foreign body reaction) by the foreign body is induced, Performance may be degraded. On the other hand, the PDMS of the present invention has a merit that the PDMS of the present invention is not deformed by external physical force and maintains its shape because of its low mechanical strength, and can be appropriately processed according to the appearance of organ or tissue, It is possible to improve the transmission efficiency of the antenna. According to an embodiment of the present invention, the PDMS device of the present invention has a thickness of 250-350 탆. Preferably, the PDMS device has a thickness of 275 to 325 占 퐉. More preferably, the thickness of the PDMS device is 300 mu m. When the thickness is 250 탆 or less, separation of the PDMS device from the 3D substrate is difficult due to too high mechanical strength when the PDMS device is manufactured using the 3D substrate. If the thickness exceeds 350 탆, the mechanical strength may increase and the biocompatibility may be deteriorated . The PDMS is low in conductivity since it is used as an electrode as a polymer material. In the present invention, a PDMS-based bioelectrode having excellent conductivity is manufactured by using a nanoporous permeable membrane made of a nanofiber bundle and a gold (Au) coating. To this end, the PDMS device includes an intaglio groove to which the nanoporous permeable membrane can be attached. According to an embodiment of the present invention, the PDMS device has a concave groove with a depth of 100 - 200 탆 for attaching the nanoporous permeable membrane in an area of 25-50% of the total area. Since the nano-porous membrane is attached to the engraved groove, the area of the engraved groove is equal to the area of the nano-porous membrane. If the area of the depressed grooves is less than 25% of the area of the PDMS device, flexibility, surface area, and biocompatibility of the nanoporous permeable membrane are improved, and the area of the depressed grooves is less than 50% %, The mechanical strength is too low and the workability of the bioelectrode may be deteriorated. The nanoporous permeable membrane can be fabricated as a permeable membrane having nano-sized pores formed by stacking polymeric materials having excellent biocompatibility in the form of nanofibers using an electrospinning method. The polymeric material is preferably a material having good moldability, low hardness and mechanical strength, good chemical resistance, no heat resistance, and excellent biocompatibility. According to an embodiment of the present invention, the biocompatible polymer material may be selected from the group consisting of polyurethane, polyacetal, polyamide, polyamide elastomer, polyester, but are not limited to, polyester elastomer, polystyrene, polypropylene, polyacrylonitrile, poly (methymethacrylate), polyolefin, polysulfone, polyvinyl chloride (poly (vinyl chloride)), silicon (silicon), and polyethylene (polyethylene). Preferably, the biocompatible polymer material is polyurethane. The electrospinning method means that the polymer solution having a viscosity is radiated into a fiber form instantaneously using an electrostatic force. When the electrospinning is performed, a laminated membrane in the form of nanofibers can be manufactured. The membrane can have pores depending on the shape of the nanofiber, and the pores can store a physiologically active substance, a drug for cell activation and the like, and research on the material of the nanofiltration drug delivery system is under way. According to an embodiment of the present invention, the nanoporous permeable membrane is a permeable membrane having a thickness of 50-200 탆 produced by electrospinning the biocompatible polymer material and includes a plurality of pores having a diameter of 0.1-10 탆 . Preferably, the nanoporous permeable membrane is a 100-175 μm thick permeable membrane produced by electrospinning the biocompatible polymer material and includes a plurality of pores having a diameter of 0.1-10 μm. More preferably, the nanoporous permeable membrane is a 150 탆 thick permeable membrane prepared by electrospinning the biocompatible polymer material, and includes a plurality of pores having a diameter of 0.1 to 10 탆. The nanoporous permeable membrane is attached to the intaglio groove of the PDMS device. According to an embodiment of the present invention, the concave grooves have a depth of 100-200 탆. Therefore, when the thickness of the nanoporous permeable membrane is less than 50 탆 or more than 200 탆, the height of the PDMS device is not matched with the thickness of the PDMS device.
본 발명의 일 구현예에 따르면, 상기 전기방사는 전압 10-20kV, 방사속도 0.05-0.3㎖/h, 주사바늘의 직경 20-30G, 방사거리 20-40㎝의 조건으로 습도 20-40% 및 온도 25-35°C의 분위기에서 상기 생체적합성 고분자물질을 포함하는 전기방사용액 4-6㎖을 방사하여 수행한다. 바람직하게는 상기 전기방사는 전압 12.5-17.5kV, 방사속도 0.075-0.2㎖/h, 주사바늘의 직경 22-27G, 방사거리 25-35㎝의 조건으로 습도 25-35% 및 온도 27.5-32.5℃의 분위기에서 상기 생체적합성 고분자물질을 포함하는 전기방사용액 5㎖을 방사하여 수행한다. 보다 바람직하게는 상기 전기방사는 전압 15kV, 방사속도 0.1㎖/h, 주사바늘의 직경 25G, 방사거리 30㎝의 조건으로 습도 30% 및 온도 30℃의 분위기에서 상기 생체적합성 고분자물질을 포함하는 전기방사용액 5㎖을 방사하여 수행한다. 상기 전기방사의 조건을 벗어나 나노다공성 투과막을 제조하면 상기 PDMS 디바이스의 음각홈의 두께와 상이한 두께를 가진 투과막이 제조되므로 상기 PDMS 디바이스에 부착시 높이가 맞지 않아 균일한 금코팅이 불가능하게 된다. 본 발명의 일 구현예에 따르면, 본 발명의 나노다공성 투과막은 직경이 0.1-10㎛인 다수의 공극(pore)을 포함한다. 따라서 상기 나노다공성 투과막은 모세관현상에 의해 액체를 보관할 수 있다. 상기 액체는 세포배양액, 완충용액, 용액상의 세포활성물질 또는 용액상의 세포보호물질일 수 있으며 바람직하게는 세포배양액이다. 본 발명의 일 실시예에 따르면, 상기 나노다공성 투과막은 세포배양이 가능하다. According to an embodiment of the present invention, the electrospinning is performed under the conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a radiation distance of 20-40 cm, And 4-6 ml of an electric discharge solution containing the biocompatible polymer substance is spun in an atmosphere at a temperature of 25-35 ° C. Preferably, the electrospinning is carried out under conditions of a voltage of 12.5-17.5 kV, a radial velocity of 0.075-0.2 ml / h, a diameter of the injection needle of 22-27 G, a range of 25-35 cm and a humidity of 25-35% Of the biocompatible polymer substance in an atmosphere of 5 ml of the solution. More preferably, the electrospinning is carried out under the conditions of a voltage of 15 kV, a spinning rate of 0.1 ml / h, a diameter of the injection needle of 25 G, and a radiation distance of 30 cm at an atmosphere of 30% Spinning is carried out by spraying 5 ml. If the nanoporous permeable membrane is manufactured outside the conditions of the electrospinning, a permeable membrane having a thickness different from that of the intaglio groove of the PDMS device is manufactured. Therefore, when the PDMS device is attached to the PDMS device, the height is not matched. According to one embodiment of the present invention, the nanoporous permeable membrane of the present invention comprises a plurality of pores having a diameter of 0.1-10 mu m. Therefore, the nanoporous permeable membrane can store the liquid by the capillary phenomenon. The liquid may be a cell culture medium, a buffer solution, a cell active substance in solution, or a cytostatic substance on a solution, and is preferably a cell culture medium. According to one embodiment of the present invention, the nanoporous permeable membrane is capable of cell culture.
본 발명의 전도성 고분자 생체전극은 가장 아래층에 상기 PDMS 디바이스가 위치하고; 상기 PDMS 디바이스의 음각홈에 상기 음각홈의 깊이와 유사한 두께의 상기 나노다공성 투과막이 부착되어 PDMS 디바이스와 상기 나노다공성 투과막이 평평하게 되며; 상기 PDMS 디바이스 및 상기 나노다공성 투과막위에 생체신호전달용 패터닝이 형성되며; 상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝위에 균일한 금 코팅층이 위치한다. 상기 생체신호전달용 패터닝은 생체전극의 용도에 맞게 다수의 전극으로 구성될 수 있다. 상기 금 코팅층은 PDMS 디바이스, 나노다공성 투과막, 및 생체신호전달용 패터닝 위에 도포되어 제조되므로 상기 전도성 고분자 생체전극의 전도성을 향상시킨다. 본 발명의 일 구현예에 따르면, 상기 금 코팅층은 상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝위에 0.1-10㎛의 두께로 균일하게 형성된다. 상기 금 코팅층의 두께가 0.1㎛이하이면 코팅층을 형성하기 어려우며 작은 충격에도 코팅층이 벗겨져 전도성이 저하 될 수 있으며 상기 금 코팅층의 두께가 10㎛를 초과하면 기계적 변형에 의해 상기 코팅층이 파괴될 수 있고 나노다공성 투과막의 공극이 막혀 표면적이 줄어들 수 있다.In the conductive polymer bioelectrode of the present invention, the PDMS device is located at the lowest layer; The nanoporous permeable membrane having a thickness similar to the depth of the engraved groove is attached to the intaglio groove of the PDMS device so that the PDMS device and the nanoporous permeable membrane are flattened; Patterning for transmitting biological signals is formed on the PDMS device and the nanoporous permeable membrane; A uniform gold coating layer is positioned on the PDMS device, the nanoporous permeable membrane, and the bio signal transmission patterning. The patterning for vital signal transmission may be composed of a plurality of electrodes in accordance with the use of the biomedical electrode. The gold coating layer is formed on the PDMS device, the nanoporous permeable membrane, and the patterning for vital signal transmission, thereby improving the conductivity of the conductive polymer bioelectrode. According to an embodiment of the present invention, the gold coating layer is uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 mu m. If the thickness of the gold coating layer is less than 0.1 탆, it is difficult to form a coating layer. If the thickness of the gold coating layer exceeds 10 탆, the coating layer may be broken due to mechanical deformation, The pores of the porous permeable membrane may be clogged and the surface area may be reduced.
본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 전도성 고분자 생체전극의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for producing a conductive polymer bioelectrode comprising the steps of:
a) 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스용 3D 기판을 제조하는 제 1 단계;a) a first step of producing a 3D substrate for a PDMS device comprising an intaglio groove for attaching a nanoporous permeable membrane;
b) 상기 3D 기판을 이용하여 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스를 제조하는 제 2 단계;b) a second step of fabricating a PDMS device including an intaglio groove for attaching a nanoporous permeable membrane using the 3D substrate;
c) 전기방사를 이용하여 나노다공성 투과막을 제조하는 제 3 단계;c) a third step of preparing a nanoporous permeable membrane using electrospinning;
d) 상기 PDMS 디바이스에 형성된 음각홈에 PDMS용액을 이용하여 상기 나노다공성 투과막을 부착시키는 제 4 단계; d) attaching the nanoporous permeable membrane to the indented groove formed in the PDMS device using a PDMS solution;
e) 상기 나노다공성 투과막이 부착된 PDMS 디바이스에 생체신호전달용 패터닝을 수행하는 제 5 단계; 및e) performing a patterning process for transmitting a biological signal to the PDMS device having the nanoporous permeable membrane attached thereto; And
f) 상기 생체신호전달용 패터닝이 수행된 PDMS 디바이스에 금코팅을 수행하는 제 6 단계;f) performing a gold coating on the PDMS device on which the bio signal transmission patterning is performed;
제 1 단계Step 1 : 나노다공성 : Nanoporous 투과막Permeable membrane 부착용  For attachment 음각홈을Grooved groove 포함하는  Included PDMSPDMS 디바이스용For device 3D 기판의 제조 3D board manufacturing
본 발명의 일 구현예에 따르면, 본 발명의 PDMS 디바이스용 3D 기판은 다음의 단계에 따라 제조될 수 있다:According to one embodiment of the present invention, a 3D substrate for a PDMS device of the present invention can be prepared by the following steps:
a) 두께 250-350㎛이며 나노다공성 투과막이 부착될 수 있는 깊이 100-200㎛의 음각홈을 가진 PDMS 디바이스를 제작하기 위한 3D 기판을 디자인하는 단계;a) designing a 3D substrate for fabricating a PDMS device having a thickness of 250-350 [micro] m and having an intaglio groove with a depth of 100-200 [mu] m at which a nanoporous permeable membrane can be adhered;
b) UV 경화성 플라스틱과 융해성 서포트 왁스를 혼합하여 3D 프린팅용 잉크를 제조한 후 3D 프린터를 이용하여 상기 3D 프린팅용 잉크를 적층하여 PDMS 디바이스용 3D 기판을 제조하는 단계;b) preparing an ink for 3D printing by mixing the UV curable plastic and the melting support wax, and then laminating the ink for 3D printing using a 3D printer to manufacture a 3D substrate for a PDMS device;
c) 상기 PDMS 디바이스용 3D 기판을 60-80℃ 오븐에서 0.5-2시간 동안 두어 상기 서포트 왁스를 용해시키는 단계;c) dissolving the support wax by placing the 3D substrate for the PDMS device in a 60-80 DEG C oven for 0.5-2 hours;
d) 상기 서포트 왁스가 용해된 PDMS 디바이스용 3D 기판을 50-70℃ 식용유에 침지한 후 초음파 세척을 수행하는 단계;d) immersing the 3D substrate for the PDMS device in which the support wax is dissolved in 50-70 캜 cooking oil, followed by ultrasonic cleaning;
e) 상기 초음파 세척을 수행한 PDMS 디바이스용 3D 기판을 EZ 린스 용액에 5-20분간 침지하여 세척하는 단계; 및e) immersing the 3D substrate for the PDMS device subjected to the ultrasonic cleaning in an EZ rinse solution for 5-20 minutes and washing; And
f) 상기 EZ 린스 용액으로 세척된 PDMS 디바이스용 3D 기판을 증류수를 이용하여 세척하고 건조하는 단계.f) washing and drying the 3D substrate for the PDMS device washed with the EZ rinse solution using distilled water.
본 발명의 일 실시예에 따르면, 상기 단계 c)에서 상기 PDMS 디바이스용 3D 기판을 60℃ 미만의 오븐에서 상기 서포트 왁스를 용해시키면 용해시간이 늘어나는 단점이 있으며 상기 PDMS 디바이스용 3D 기판을 80℃를 초과한 오븐에서 상기 서포트 왁스를 용해시키면 용해된 왁스가 타서 기판에 얼룩이 생기는 단점이 있다.According to an embodiment of the present invention, when the support wax is dissolved in an oven of less than 60 ° C in the 3D substrate for the PDMS device in the step c), the dissolution time is increased, and the 3D substrate for the PDMS device is heated to 80 ° C If the support wax is dissolved in an excess oven, there is a disadvantage that the dissolved wax is burnt and the substrate is uneven.
본 발명의 다른 실시예에 따르면, 상기 단계 d)에서 상기 PDMS 디바이스용 3D 기판을 50℃ 미만의 식용유에 침지한 후 초음파 세척을 수행하면 용해된 서포트 왁스의 제거에 시간이 더 소요되며 상기 PDMS 디바이스용 3D 기판은 70℃를 초과하는 식용유에 침지한 후 초음파 세척을 수행하더라도 용해된 서포트 왁스의 제거효율이 향상되지 않는다.According to another embodiment of the present invention, when the 3D substrate for the PDMS device is immersed in the cooking oil of less than 50 캜 and the ultrasonic cleaning is performed in the step d), it takes more time to remove the dissolved support wax, The removal efficiency of the dissolved support wax is not improved even when ultrasonic cleaning is performed after immersing in a cooking oil exceeding 70 캜.
제 2 단계Step 2 : 나노다공성 : Nanoporous 투과막Permeable membrane 부착용  For attachment 음각홈을Grooved groove 포함하는  Included PDMSPDMS 디바이스의Device 제조 Produce
본 발명의 일 구현예에 따르면, 본 발명의 PDMS 디바이스는 다음의 단계에 따라 제조될 수 있다:According to one embodiment of the present invention, a PDMS device of the present invention can be manufactured according to the following steps:
a) PDMS 용액과 경화제를 10:0.5-10:2(PDMS 용액 : 경화제)의 중량비로 혼합하고 데시게이터를 이용하여 기포를 제거하여 PDMS 반응용액을 제조하는 단계;a) mixing the PDMS solution and the curing agent in a weight ratio of 10: 0.5 to 10: 2 (PDMS solution: curing agent) and removing bubbles using a desiccator to prepare a PDMS reaction solution;
b) 상기 PDMS 반응용액을 건조된 PDMS 디바이스용 3D 기판에 도포하고 40-50℃ 오븐에서 22-26시간 동안 열처리하여 PDMS 디바이스를 제조하는 단계; 및b) applying the PDMS reaction solution to a 3D substrate for a dried PDMS device and heat treating the PDMS device in a 40-50 ° C oven for 22-26 hours to produce a PDMS device; And
c) 상기 PDMS 디바이스를 상기 3D 기판으로부터 제거하는 단계 ;c) removing the PDMS device from the 3D substrate;
본 발명의 일 실시예에 따르면, 상기 PDMS 용액과 경화제를 10:0.5(PDMS 용액 : 경화제)의 중량비 미만으로 혼합하면 상기 PDMS 디바이스용 3D 기판에서 경화시 시간이 더 소용되며 상기 PDMS 용액과 경화제를 10:2(PDMS 용액 : 경화제)의 중량비를 초과하여 혼합하면 데시게이터를 이용한 기포제거가 어렵다.According to an embodiment of the present invention, when the PDMS solution and the curing agent are mixed at less than the weight ratio of 10: 0.5 (PDMS solution: curing agent), the time for curing in the 3D substrate for the PDMS device becomes longer and the PDMS solution and the curing agent It is difficult to remove the bubbles by using the desiccator if the mixing ratio exceeds 10: 2 by weight (PDMS solution: curing agent).
본 발명의 다른 실시예에 따르면, 상기 PDMS 반응용액을 상기 PDMS 디바이스용 3D 기판에 도포하고 40℃ 미만의 오븐에서 열처리하면 경화시간이 더 소요되며 상기 PDMS 반응용액을 상기 PDMS 디바이스용 3D 기판에 도포하고 50℃를 초과하여 오븐에서 열처리하더라도 경화되는 시간은 동일하다.According to another embodiment of the present invention, when the PDMS reaction solution is coated on the 3D substrate for the PDMS device and heat treatment is performed in an oven at 40 ° C or less, the PDMS reaction solution is applied to the 3D substrate for the PDMS device Lt; RTI ID = 0.0 > 50 C < / RTI >
제 3 단계Step 3 : 전기방사를 이용한 나노다공성 : Nano-porosity using electrospinning 투과막의Permeable membrane 제조 Produce
본 발명의 일 구현예에 따르면, 본 발명의 나노다공성 투과막은 다음의 단계를 통하여 전기방사방법으로 제조된다:According to one embodiment of the present invention, the nanoporous permeable membrane of the present invention is produced by the electrospinning method through the following steps:
a) 디메틸폼아마이드(dimethylformamide)용액 100중량부에 대하여 폴리우레탄(polyurethane)을 10-20 중량부로 첨가하고 22-26시간 동안 혼합하여 폴리우레탄 전기방사용액을 제조하는 단계; 및a) adding 10 to 20 parts by weight of polyurethane to 100 parts by weight of a dimethylformamide solution, and mixing the solution for 22 to 26 hours to prepare a polyurethane electrodeposition solution; And
b) 상기 폴리우레탄 전기방사용액을 전압 10-20kV, 방사속도 0.05-0.3㎖/h, 주사바늘의 직경 20-30G, 방사거리 20-40㎝의 조건으로 습도 20-40% 및 온도 25-35℃의 분위기하에서 총 4-6㎖을 방사하여 두께가 150-250㎛인 나노다공성 투과막을 제조하는 단계.b) The polyurethane electric furnace solution is applied under the conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a radiation distance of 20-40 cm, a humidity of 20-40% Lt; [deg.] ≫ C in a total of 4-6 ml to prepare a nanoporous permeable membrane having a thickness of 150-250 [mu] m.
전기방사에 의해 제조된 나노섬유의 직경은 방사조건에 의해 크게 좌우된다. 특히 전기방사 용액의 점도는 가장 큰 결정변수로서 용액의 점도가 높으면 굵은 섬유를 제조할 수 있다. 일반적으로 상기 나노섬유의 직경은 전기방사 용액의 농도의 제곱에 비례한다. 상기 나노섬유가 적층되어 섬유상의 막(membrane)을 형성하면 상기 섬유들 사이의 간극에 의한 공극(pore)이 형성된다. 상기 공극의 크기는 나노섬유의 직경에 비례하므로 상기 나노섬유의 직경이 작아지면 섬유사이의 간극이 작아지므로 직경이 작은 공극이 형성되고 상기 나노섬유의 직경이 커지면 반대로 섬유사이의 간극이 커지므로 직경이 큰 공극이 형성된다. 상기 공극은 막을 가로질러 흐를 수 있는 능력에 관한 것으로 공극의 크기에 따라 용액의 보관정도가 달라진다. The diameter of the nanofibers produced by electrospinning is highly dependent on the spinning conditions. In particular, the viscosity of the electrospinning solution is the largest determinant, and a coarse fiber can be produced if the viscosity of the solution is high. Generally, the diameter of the nanofibers is proportional to the square of the concentration of the electrospinning solution. When the nanofibers are laminated to form a fibrous membrane, pores are formed by the gaps between the fibers. Since the size of the void is proportional to the diameter of the nanofiber, when the diameter of the nanofiber is reduced, a gap between the fibers becomes smaller, so that a void having a smaller diameter is formed. When the diameter of the nanofiber is increased, This large pore is formed. The pores are related to the ability to flow across the membrane, and the degree of storage of the solution depends on the size of the pores.
본 발명의 일 실시예에 따르면, 상기 디메틸폼아마이드(dimethylformamide)용액 100중량부에 대하여 폴리우레탄(polyurethane)을 10 중량부 미만으로 첨가하고 혼합하여 전기방사용액을 제조하면 점도가 낮아 직경이 작은 나노섬유가 형성되며 Jet가 섬유(fiber)상이 아닌 구슬(granular)상으로 방사되어 나노다공이 형성되지 않을 수 있다. 또한 상기 디메틸폼아마이드(dimethylformamide)용액 100중량부에 대하여 폴리우레탄(polyurethane)을 20 중량부를 초과하여 첨가하고 혼합하여 전기방사용액을 제조하면 방사용액의 점도가 너무 높아 직경이 큰 나노섬유가 방사되므로 단위 면적당 형성되는 다공의 수가 적어지고 다공의 크기가 커지므로 보관할 수 있는 용액의 양이 줄어드는 단점이 있다. According to an embodiment of the present invention, when polyurethane is added in an amount of less than 10 parts by weight based on 100 parts by weight of the dimethylformamide solution and an electric discharge solution is prepared, Fibers may be formed and the jet may be emitted into a granular form rather than a fiber to form nanopores. When polyurethane is added and mixed in an amount of more than 20 parts by weight based on 100 parts by weight of the dimethylformamide solution to prepare an electrolytic solution, the viscosity of the spinning solution is too high and the nanofibers having a large diameter are radiated The number of pores formed per unit area is reduced and the pore size is increased, so that the amount of the solution that can be stored is reduced.
본 발명의 다른 실시예에 따르면, 상기 전기방사는 상기 폴리우레탄 전기방사용액을 전압 10-20kV, 방사속도 0.05-0.3㎖/h, 주사바늘의 직경 20-30G, 방사거리 20-40㎝의 조건으로 습도 20-40% 및 온도 25-35℃의 분위기에서 총 4-6㎖을 방사한다. 바람직하게는 상기 전기방사는 상기 폴리우레탄 전기방사용액을 전압 15kV, 방사속도 0.1㎖/h, 주사바늘의 직경 25G, 방사거리 30㎝의 조건으로 습도 30% 및 온도 30℃의 분위기에서 총 5㎖을 방사한다. 상기 조건들은 두께가 150-250㎛이며 직경이 0.1-10㎛인 다수의 공극을 가지는 나노다공성 투과막을 제조하는 데 최적의 전기방사조건이다. According to another embodiment of the present invention, the electrospinning is carried out under conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of an injection needle of 20-30 G, a radiation distance of 20-40 cm , And a total of 4-6 ml is spun in an atmosphere having a humidity of 20-40% and a temperature of 25-35 ° C. Preferably, the electrospinning is carried out under the conditions of a voltage of 15 kV, a spinning rate of 0.1 ml / h, a diameter of the injection needle of 25 G, a spinning distance of 30 cm, an atmosphere of 30% Lt; / RTI > These conditions are the optimum electrospinning conditions for producing a nanoporous permeable membrane having a plurality of voids with a thickness of 150-250 μm and a diameter of 0.1-10 μm.
제 4 단계Step 4 : : PDMSPDMS 디바이스에To device 나노다공성  Nanoporous 투과막을Permeable membrane 부착시키는 단계 Attaching step
상기 단계에서 제조한 PDMS 디바이스에 상기 제조한 나노다공성 투과막을 부착시킨다. 이를 위하여 PDMS 용액을 준비하고 상기 PDMS 디바이스의 음각홈에 극소량만을 도포한 후 상기 나노다공성 투과막을 부착시킨다. 과량의 PDMS 용액을 사용하면 상기 PDMS 용액이 모세관 현상에 의해 상기 나노다공성 투과막에 흡수되어 경화되므로 투과막의 공극을 사라지게 된다. 따라서 상기 PDMS 용액은 극소량만을 사용한다. The nanoporous permeable membrane prepared above is attached to the PDMS device manufactured in the above step. To this end, a PDMS solution is prepared, and only a small amount of the PDMS solution is applied to the depressed groove of the PDMS device, and then the nanoporous permeable membrane is attached. When an excessive amount of the PDMS solution is used, the PDMS solution is absorbed by the nanoporous permeable membrane due to capillary phenomenon and hardened, so that voids of the permeable membrane disappear. Therefore, only a very small amount of the PDMS solution is used.
제 5Fifth -- 6 단계Step 6 : 생체신호전달용 : For vital signal transmission 패터닝Patterning  And 금코팅Gold coating
본 발명의 일 구현예에 따르면, 상기 나노다공성 투과막이 부착된 PDMS 디바이스에 생체신호용 패터닝을 수행하여 생체에 전달하는 전기적 신호 또는 생체로부터 전달받는 전기적 신호가 이동 할 수 있도록 전극을 설치한다.According to an embodiment of the present invention, an electrode is provided so that an electrical signal for transferring the biological signal to the living body or an electrical signal transmitted from the living body can be moved by performing patterning for the biological signal on the PDMS device having the nanoporous permeable membrane attached thereto.
본 발명의 다른 일 구현예에 따르면, 상기 생체신호전달용 패터닝이 끝나면 상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝위에 0.1-10㎛의 두께로 균일하게 금코팅층을 형성한다. 상기 금코팅층은 생체적합성이 뛰어난 금(Au)으로 구성되어 있으며 0.1-10㎛의 두께로 균일하게 형성되기 때문에 전도성을 향상시키면서도 상기 나노다공성 투과막의 공극을 막지 않고 그대로 유지할 수 있는 장점이 있다. According to another embodiment of the present invention, when patterning for bio-signal transmission is completed, a uniform gold coating layer is formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning layer to a thickness of 0.1-10 μm. The gold coating layer is made of gold (Au) having excellent biocompatibility. Since the gold coating layer is uniformly formed with a thickness of 0.1-10 탆, it is possible to maintain the voids of the nano-porous permeable membrane without blocking while improving conductivity.
실시예Example
실시예Example 1)  One) PDMSPDMS 디바이스device 제작용 3D 기판의 제조 Fabrication of 3D substrate for fabrication
PDMS(Polydimethylsiloxane) 디바이스를 제작하기 위해 3차원 설계 프로그램인 Inventor (Autodesk, USA) 프로그램을 이용하여 PDMS 디바이스 제작용 3D 기판을 설계하였다(도 1). 상기 PDMS 디바이스 제작용 3D 기판의 전체적인 외형은 사각형, 삼각형, 원형, 오각형 등의 다양한 형태로 디자인하였다. 상기 PDMS 디바이스 제작용 3D 기판은 PDMS 용액을 상기 3D 기판에 부어 PDMS 디바이스의 제조 시 PDMS 디바이스가 형성되는 PDMS 디바이스 형성부(양각형태) 및 폴리우레탄 나노다공성 투과막이 부착될 수 있는 일정 크기의 나노다공성 투과막 부착용 음각홈 형성부를 포함하도록 디자인하였다(도 1의 패널 A 참조). 도 1 패널 A의 폴리우레탄 나노다공성 투과막이 부착되는 직사각형 모양의 PDMS 디바이스용 3D 기판은 두께가 250-350㎛이며 가로 및 세로의 길이가 5cm인 PDMS 디바이스가 형성될 수 있으며 상기 PDMS 디바이스의 내부에 깊이가 100-200㎛이며 가로 및 세로의 길이가 2-2.5㎝인 음각형태의 나노다공성 투과막 부착용 음극홈이 형성될 수 있다. 상기 PDMS 디바이스 제작용 3D 기판은 광경화성 원리가 적용된 3D 프린터(PROJET 3510 HD)를 이용하여 제작하였으며 주재료로서 자외선(ultraviolet, UV)경화 플라스틱의 한 종류인 VISIJET M3 crystal을 사용하였고 서포트(support)재료로서 융해성 및 비독성을 가지고 있는 왁스재료 중 하나인 Support VISIJET S300을 사용하였다. 도 1 패널 A의 설계에 따라 VISIJET M3 crystal 용액을 적층하여 PDMS 디바이스 제작용 3D 기판을 제조하였으며 상기 Support VISIJET S300을 제거하기 위하여 70℃의 실험용 오븐(oven)에서 1시간 동안 인큐베이션을 수행하였다. 상기 인큐베이션을 통해 Support VISIJET S300이 용해된 PDMS 디바이스 제작용 3D 기판은 60℃의 식용유로 채워진 초음파 세척기에 담가 1시간 동안 초음파 세척을 수행하는 1차 세척과정을 수행한 후 EZ Rinse 용액에 담가 10분 동안 세척하는 2차 세척과정을 수행하였다. 상기 1차 및 2차 세척과정이 순차적으로 수행된 PDMS 디바이스 제작용 3D 기판은 증류수를 이용하여 마지막 3차 세척과정을 수행한 후 건조하였다. 도 2는 상기 방법을 통해 제조된 PDMS 디바이스 제작용 3D 기판을 보여준다. 상기 PDMS 디바이스 제작용 3D 기판은 음각부분인 PDMS 디바이스를 형성하는 PDMS 디바이스 형성부와 양각부분인 폴리우레탄 나노다공성 투과막이 부착되는 나노다공성 투과막 부착용 음각홈 형성부로 구성된다.In order to fabricate a PDMS (Polydimethylsiloxane) device, a 3D substrate for PDMS device fabrication was designed using a 3D design program Inventor (Autodesk, USA) (Fig. 1). The overall shape of the 3D substrate for fabricating the PDMS device is designed in various shapes such as a square, a triangle, a circle, and a pentagon. The 3D substrate for fabricating the PDMS device includes a PDMS device forming unit (embossed shape) in which a PDMS device is formed when the PDMS device is manufactured by pouring a PDMS solution onto the 3D substrate, and a nano-porous And an intaglio groove forming portion for attaching a permeable membrane (see Panel A in Fig. 1). 1, a rectangular PDMS device 3D substrate to which the polyurethane nanoporous transmission layer of Panel A is attached may be formed with a PDMS device having a thickness of 250-350 mu m and a width of 5 cm and a length of 5 cm, A negative electrode groove for attaching a nano-porous porous membrane having a depression shape with a depth of 100 to 200 mu m and a length of 2 to 2.5 cm and a length of 2 to 2.5 cm may be formed. The 3D substrate for PDMS device fabrication was manufactured by using a 3D printer (PROJET 3510 HD) with photocurable principle and VISIJET M3 crystal, which is one kind of ultraviolet (UV) curing plastic, was used as a main material. , Support VISIJET S300, one of the wax materials having both fusibility and non-toxicity, was used. 1, a VISIJET M3 crystal solution was laminated according to the design of Panel A to prepare a 3D substrate for PDMS device fabrication. In order to remove the Support VISIJET S300, an incubation was performed in an oven at 70 ° C for 1 hour. The 3D substrate for PDMS device fabrication, in which Support VISIJET S300 was dissolved through the incubation, was immersed in an ultrasonic washing machine filled with cooking oil at 60 ° C for 1 hour, and then subjected to a first washing process, followed by soaking in EZ Rinse solution for 10 minutes Was carried out. The 3D substrate for PDMS device fabrication, in which the primary and secondary cleaning processes were sequentially performed, was subjected to final tertiary cleaning using distilled water and then dried. Figure 2 shows a 3D substrate for fabricating a PDMS device fabricated by the above method. The 3D substrate for fabricating the PDMS device comprises a PDMS device forming unit for forming a PDMS device, which is a depressed portion, and a depressed groove forming unit for attaching a nano-porous permeable film, to which a polyurethane nanoporous permeable membrane is attached.
실시예Example 2)  2) PDMSPDMS 디바이스의Device 제조 Produce
본 발명의 PDMS 디바이스를 제작하기 위해 PDMS 반응용액을 제조하였다. 상기 PDMS 반응용액은 PDMS 용액과 경화제를 10:1의 비율로 혼합한 후 데시게이터(desiccator)를 사용하여 기포를 충분히 제거하였다. 상기 제조된 PDMS 디바이스 제작용 3D 기판에 상기 기포를 제거한 PDMS 반응용액 3㎖를 도포한 후 45℃ 실험용 오븐에서 24시간 동안 열처리를 수행하여 경화시켰다. 상기 경화된 PDMS 디바이스를 상기 PDMS 디바이스 제작용 3D 기판으로부터 탈착시켰다. 도 3은 상기의 방법으로 제조된 PDMS 디바이스를 보여준다. 상기 PDMS 디바이스는 PDMS 기판부와 폴리우레탄 나노다공성 투과막이 접착되는 나노다공성 투과막 부착용 음각홈으로 구성된다. 상기 PDMS 디바이스는 두께가 250-350㎛이며 가로 및 세로의 길이가 5cm이다. 상기 PDMS 디바이스 내부에 존재하는 나노다공성 투과막 부착용 음각홈은 깊이가 100-200㎛이며 가로 및 세로의 길이가 2-2.5㎝이다. A PDMS reaction solution was prepared to prepare the PDMS device of the present invention. In the PDMS reaction solution, the PDMS solution and the curing agent were mixed at a ratio of 10: 1, and the bubbles were sufficiently removed using a desiccator. 3 ml of the PDMS reaction solution in which the bubbles were removed was coated on the 3D substrate for fabricating the PDMS device, and then heat-treated in a 45 ° C laboratory oven for 24 hours to cure. The cured PDMS device was detached from the 3D substrate for PDMS device fabrication. Fig. 3 shows a PDMS device manufactured by the above method. The PDMS device comprises a PDMS substrate portion and an intaglio groove for attaching a nano-porous permeable membrane to which a polyurethane nanoporous permeable membrane is bonded. The PDMS device has a thickness of 250-350 占 퐉 and a length and a length of 5 cm. The intaglio grooves for attaching the nanoporous permeable membrane in the PDMS device have a depth of 100 - 200 μm and a length of 2 - 2.5 cm.
실시예Example 3) 폴리우레탄 나노다공성  3) Polyurethane nanoporous 투과막의Permeable membrane 제조 Produce
본 발명은 상기 PDMS 디바이스에 나노섬유를 부착하여 전도성 및 생체적합성이 향상된 생체전극을 제조하였다. 상기 나노섬유의 제조를 위한 고분자물질은 생체적합성이 우수한 폴리우레탄(polyurethane)을 선택하였으며 전기방사방법을 이용하여 폴리우레탄 나노다공성 투과막을 제조하였다. 이를 위하여 디메틸폼아마이드 (dimethylformamide)용액 100중량부에 대하여 폴리우레탄 15중량부를 첨가하고 24시간 동안 혼합하여 폴리우레탄 전기방사용액을 제조하였다. 전압 15kV; 방사속도 0.1㎖/h; 주사바늘의 직경 25G; 방사거리 30cm의 방사조건; 및 습도 30%; 및 온도 30℃;의 분위기로 총 5㎖의 폴리우레탄 전기방사용액을 전기방사하여 폴리우레탄 나노다공성 투과막을 제조하였다. 상기 전기방사조건으로 제조한 폴리우레탄 나노다공성 투과막의 두께는 상기 나노다공성 투과막 부착용 음각홈의 깊이(100~200um)와 유사하였다. 상기 폴리우레탄 나노다공성 투과막의 두께 (150~250㎛)는 상기 나노다공성 투과막 부착용 음각홈을 고려하면 적절한 두께로 판단되며 상기 두께의 투과막을 전기방사로 제조하려면 상기 조건에서 5ml의 폴리우레탄 전기방사용액을 이용하는 것이 바람직한 것으로 판단된다. The present invention attaches nanofibers to the PDMS device to produce a bioelectrode having improved conductivity and biocompatibility. The polymer material for the preparation of the nanofibers was selected from polyurethane having excellent biocompatibility and a polyurethane nanoporous permeable membrane was prepared by electrospinning. To this solution, 15 parts by weight of polyurethane was added to 100 parts by weight of a dimethylformamide solution and mixed for 24 hours to prepare a polyurethane electrodeposition solution. Voltage 15kV; Spinning rate 0.1 ml / h; Diameter of injection needle 25G; Radiation condition of radiation distance of 30cm; And humidity 30%; And a temperature of 30 ° C .; a polyurethane nanoporous permeable membrane was prepared by electrospinning a total of 5 ml of polyurethane electrodeposition solution. The thickness of the polyurethane nanoporous permeable membrane prepared in the electrospinning condition was similar to the depth (100 ~ 200 um) of the concave groove for attachment of the nanoporous permeable membrane. The thickness of the polyurethane nanoporous permeable membrane (150 to 250 mu m) is judged to be an appropriate thickness considering the intaglio grooves for attaching the nanoporous permeable membrane. In order to prepare the permeable membrane of the above thickness by electrospinning, It is judged that it is preferable to use the amount of use.
실시예Example 4) 폴리우레탄 나노다공성  4) Polyurethane nanoporous 투과막의Permeable membrane 부착 Attach
상기 제조한 폴리우레탄 나노다공성 투과막을 상기 나노다공성 투과막 부착용 음각홈에 맞도록 가로 및 세로의 길이가 2-2.5cm가 되도록 자른 후 경화되지 않은 순수한 PDMS 용액을 상기 투과막 부착부에 펴 바르고 그 위에 폴리우레탄 나노다공성 투과막을 부착하였다. 상기 폴리우레탄 나노다공성 투과막이 부착된 PDMS 디바이스(PU-PDMS 디바이스)는 45℃ 실험용 오븐에 넣어 1시간 동안 경화시켰다. 도 4는 PDMS 디바이스에 부착된 폴리우레탄 나노다공성 투과막에 대한 광학 현미경 사진을 보여준다. 실험결과, 폴리우레탄 나노다공성 투과막이 PDMS 디바이스에 알맞은 두께로 부착되어 있는 것을 확인할 수 있었다. 부착 시에, 경화되지 않은 순수한 PDMS 용액을 대량으로 사용하게 되면 PDMS 용액이 투과막의 공극으로 확산되고 경화되어 공극을 메우게 되므로 확산되지 않을 만큼의 극소량만을 도포하였다. 도 5는 폴리우레탄 나노다공성 투과막이 성공적으로 부착된 PDMS 디바이스에 대한 전계방출형 주사전자현미경(Field Emission Scanning Electron Microscope, FESEM)관찰 결과를 보여준다. 도 5에 의하면 상기 PU-PDMS 디바이스는 PDMS용액이 폴리우레탄 나노다공성 투과막에 확산되지 않고 올바르게 부착되어 있으며 이로 인해 나노다공성 투과막의 다공성이 잘 유지되었다. The prepared polyurethane nanoporous permeable membrane was cut so that the length and width of the polyurethane nanoporous permeable membrane were 2 to 2.5 cm so as to fit the intaglio groove for attachment of the nanoporous permeable membrane, and then the uncured pure PDMS solution was spread on the permeable membrane attachment portion, A polyurethane nanoporous permeable membrane was attached. The PDMS device (PU-PDMS device) with the polyurethane nanoporous permeable membrane was placed in a 45 ° C laboratory oven and cured for 1 hour. Figure 4 shows an optical micrograph of a polyurethane nanoporous permeable membrane attached to a PDMS device. As a result, it was confirmed that the polyurethane nanoporous permeable membrane was attached to the PDMS device at a proper thickness. When a large amount of the uncured pure PDMS solution is used at the time of attachment, the PDMS solution is diffused into the pores of the permeable membrane and cured to seal the pores, so that only a very small amount of the PDMS solution is not spread. FIG. 5 shows a field emission scanning electron microscope (FESEM) observation result for a PDMS device to which a polyurethane nanoporous permeable membrane has been successfully attached. According to FIG. 5, the PU-PDMS device correctly adheres the PDMS solution without being diffused into the polyurethane nanoporous permeable membrane, thereby maintaining the porosity of the nanoporous permeable membrane.
실시예Example 5) 전도성 고분자 생체전극의 제조 5) Fabrication of conductive polymer biomedical electrode
상기 제조된 PU-PDMS 디바이스에 금(Au) 코팅을 수행하여 전도성이 부가된 전도성 고분자 생체전극을 제조하였다. 금은 생체적합성이 우수하며 무독성의 특성을 가지고 있기 때문에 인체에 안전하다. 생체 신호를 전달하기 위한 패터닝을 실시한 후 0.1-10um 두께로 금을 코팅하여 우수한 신호를 전달할 수 있는 전도성 고분자 생체전극을 제작하였다. 도 6의 패널 A는 본 발명의 전도성 고분자 생체전극(금이 코팅된 PU-PDMS 디바이스)를 보여준다. 상기 금 코팅은 코팅층이 얇고 표면에 균일하게 형성되어 있는 것을 확인할 수 있다. 도 6의 패널 B는 전도성 고분자 생체전극의 금이 코팅된 폴리우레탄 나노다공성 투과막 부분을 FESEM으로 관찰한 결과를 보여준다. 도 6의 패널 B에 의하면 상기 폴리우레탄 나노다공성 투과막은 금으로 코팅되었음에도 나노섬유의 형태 및 다공성이 잘 유지되어 있는 것이 확인되었다. 도 6의 패널 C는 전도성 고분자 생체전극의 PDMS 디바이스 부분에 대하여 FESEM으로 관찰한 결과를 보여준다. 상기 전도성 고분자 생체전극의 PDMS 부분도 상기 전도성 고분자 생체전극의 PU 나노다공성 투과막 부분과 같이 금이 균일하게 코팅되어 있는 것이 확인되었다.A gold (Au) coating was applied to the PU-PDMS device to prepare a conductive polymeric bioelectrode having conductivity. Gold is safe for human body because it has excellent biocompatibility and non-toxic properties. After conducting patterning to transmit the vital signal, a conducting polymeric bioelectrode capable of transmitting an excellent signal was fabricated by coating gold with 0.1-10 μm thickness. Panel A of FIG. 6 shows a conductive polymer bioelectrode (gold-coated PU-PDMS device) of the present invention. It can be confirmed that the gold coating is thin and the coating layer is uniformly formed on the surface. 6 shows the result of FESEM observation of the gold-coated polyurethane nanoporous permeable membrane portion of the conductive polymer bioelectrode. According to panel B of FIG. 6, it was confirmed that the polyurethane nanoporous permeable membrane was well coated with gold, but the shape and porosity of the nanofiber were well maintained. Panel C of FIG. 6 shows the result of FESEM observation of the PDMS device portion of the conductive polymer bioelectrode. It was confirmed that the PDMS portion of the conductive polymer bioelectrode was uniformly coated with gold as in the PU nanoporous permeable membrane portion of the conductive polymer bioelectrode.
실험예Experimental Example 1) 전도성 고분자 생체전극의 전도성 1) Conductivity of conductive polymer bioelectrode
본 발명의 전도성 고분자 생체전극이 가지는 전도성을 평가하기 위하여 표면 저항측정기를 이용하여 나노다공성 투과막 부분과 PDMS 디바이스 부분의 표면 비저항을 측정하였다. 도 7은 상기 전도성 고분자 생체전극의 나노다공성 투과막 부분과 PDMS 디바이스 부분의 표면 비저항을 측정한 결과를 보여준다. PU 나노다공성 투과막의 경우 6개의 각각 다른 위치에서 비저항을 측정한 결과, 평균 0.157Ω의 비저항을 가지는 것이 확인되었으며; PDMS 디바이스의 경우 5개의 각각 다른 위치에서 비저항을 측정한 결과, 평균 0.067Ω의 비저항을 가지는 것이 확인되어; 전도성 고분자 생체전극의 모든 부분에서 우수한 전도성을 가지는 것이 확인되었다.In order to evaluate the conductivity of the conductive polymer bioelectrode of the present invention, the surface resistivity of the nanoporous permeable membrane portion and the PDMS device portion was measured using a surface resistance meter. FIG. 7 shows the results of measuring the surface resistivity of the nanoporous permeable membrane part and the PDMS device part of the conductive polymer bioelectrode. The PU nanoporous permeable membrane was found to have an average resistivity of 0.157? As a result of measuring the resistivity at six different positions; As a result of measuring the resistivity at five different positions in the PDMS device, it was confirmed that it had an average resistivity of 0.067?; It has been confirmed that the conductive polymer has excellent conductivity at all portions of the bioelectrode.
실험예Experimental Example 2) 전도성 고분자 생체전극의 물리적 변형에 대한 내구성 2) Durability against physical deformation of conductive polymer bioelectrode
생체전극은 다양한 형태로 체내에 투입된다. 따라서 생체 내에 삽입되는 생체전극은 기계적 압력에 가해지는 상황에서도 PDMS 디바이스 금 코팅 상태 및 금 코팅된 투과막의 다공성 및 나노섬유의 연속성에 변화가 없어야 한다. 이를 확인하기 위하여 수차례 구부림을 수행한 전도성 고분자 생체전극과 구부림을 수행하지 않은 전도성 고분자 생체전극의 표면을 FESEM 및 원자간력현미경(Atomic Force Microscope, AFM)을 이용하여 관찰하였다. 도 8은 FESEM을 이용하여 구부림 과정(기계적 변형)을 수행하지 않은 전도성 고분자 생체전극과 5-7차례의 구부림 과정을 수행한 전도성 고분자 생체전극의 표면 상태를 관찰한 결과를 보여준다. 실험결과 나노다공성 투과막의 형태 및 금 코팅 상태에는 변화가 없는 것이 확인되었으며 PDMS 디바이스 부분 역시 형태 및 금 코팅 상태의 변화가 없는 것으로 확인되었다. 도 9는 원자간력현미경(Atomic Force Microscope, AFM)을 이용하여 구부림 과정을 수행하지 않은 전도성 고분자 생체전극과 수차례의 구부림 과정을 수행한 전도성 고분자 생체전극의 표면 상태를 비교분석한 결과를 보여준다. 실험결과 FESEM의 결과와 같이, 나노다공성 투과막의 형태 및 금 코팅 수준에 변화가 없는 것이 확인되었으며 PDMS 디바이스 부분 역시 형태 및 금 코팅 수준의 변화가 없는 것으로 확인되었다. The bioelectrode is injected into the body in various forms. Therefore, the bioelectrode to be inserted into the living body should be free from changes in the porosity of the PDMS device gold coating, the porosity of the gold-coated permeable membrane, and the continuity of the nanofibers even under the application of mechanical pressure. In order to confirm this, the surface of the conductive polymeric bioelectrode and the conducting polymeric bioelectrode, which were bent several times, were observed using an FESEM and an atomic force microscope (AFM). FIG. 8 shows the results of observing the surface state of the conducting polymeric bioelectrode, which has not undergone the bending process (mechanical deformation) using the FESEM, and the conducting polymeric bioelectrode, which has been subjected to the bending process 5 to 7 times. Experimental results showed that the morphology of the nanoporous permeable membrane and the gold coating state did not change. FIG. 9 shows the result of comparing the surface states of the conductive polymer bioelectrode, which has not undergone the bending process, and the conductive polymer bioelectrode, which has undergone the bending process several times, using an atomic force microscope (AFM) . As a result of FESEM, it was confirmed that there was no change in the morphology and gold coating level of the nanoporous permeable membrane, and the PDMS device part was also found to have no change in morphology and gold coating level.
실험예Experimental Example 3) 전도성 고분자 생체전극의  3) Conductive polymeric bioelectrode 생체내In vivo 환경에 대한 내구성 Durability to the environment
인간의 몸은 70%이상의 물로 이루어져 있으며 36.5℃의 일정한 온도를 유지한다. 따라서 본 발명의 전도성 고분자 생체전극의 생체내 환경에 대한 내구성을 확인하기 위하여 36.5℃의 온도가 유지되는 3차 증류수에 상기 생체전극을 침지한 후 시간에 따른 전극의 물성 및 전도성 변화를 확인하였다. The human body consists of more than 70% water and maintains a constant temperature of 36.5 ℃. Therefore, in order to confirm the durability of the conductive polymer bioelectrode according to the present invention, the physical properties and conductivity of the electrode were observed with time after immersing the bioelectrode in the third distilled water maintained at a temperature of 36.5 ° C.
도 10은 본 발명의 전도성 고분자 생체전극을 36.5℃의 온도가 유지되는 3차 증류수에 7일, 14일, 21일, 및 28일간 침지한 후 주사전자현미경(SEM)을 이용하여 나노다공성 투과막의 형상을 촬영한 결과를 보여준다. 실험결과, 상기 3차 증류수에 28일간 침지한 전도성 고분자 생체전극의 나노다공성 투과막은 상기 3차 증류수에 침지하지 않은 나노다공성 투과막과 금 코팅층의 상태, 나노섬유의 형태 및 나노섬유의 연속성에 있어서 차이가 없는 것으로 확인되었다. 10 is a graph showing the results of measurement of the permeability of the nanoporous permeable membrane of the present invention by using a scanning electron microscope (SEM) after immersing the conductive polymer bioelectrode of the present invention in the third distilled water maintained at 36.5 ° C for 7 days, 14 days, 21 days, Shows the result of shooting the shape. As a result of the experiment, it was found that the nanoporous permeable membrane of the conductive polymer bioelectrode immersed in the third distilled water for 28 days has the following properties: the state of the nanoporous permeable membrane and the gold coating layer not immersed in the third distilled water, the shape of the nanofiber, There was no difference.
생체내 조건에서 전도성 고분자 생체전극의 전도성이 유지되는지 확인하기 위하여 상기와 동일한 조건의 침지하여 표면의 비저항을 측정하였다(도 10 참조). 측정결과 상기 침지된 전도성 고분자 생체전극은 0.31-0.84Ω의 저항값을 가지는 것이 확인되었으며 평균 0.59Ω의 저항값을 가지는 것이 확인되었다. 따라서 상기 전도성 고분자 생체전극은 36.5℃의 온도가 유지되는 3차 증류수에서 28일간 침지하였음에도 불구하고 1일차 저항값인 0.58Ω와 유사한 것으로 보아 생체내 조건에서 전도성이 우수하게 유지되는 것으로 확인되었다.To confirm that the conductivity of the conductive polymer bioelectrode was maintained in vivo, the resistivity of the surface was measured by immersion under the same conditions as described above (see FIG. 10). As a result of the measurement, it was confirmed that the immersed conductive polymer bioelectrode had a resistance value of 0.31-0.84? And an average resistance value of 0.59 ?. Therefore, the conductive polymer bioelectrode was similar to the first resistance value of 0.58? Despite being immersed in the third distilled water maintained at a temperature of 36.5 占 폚 for 28 days.
실험예Experimental Example 4) 전도성 고분자 생체전극의 생체적합성 4) Biocompatibility of conductive polymer bioelectrode
전도성 고분자 생체전극의 생체적합성을 확인하기 위하여 나노다공성 투과막상에서 쥐의 상피세포에 암 유전자인 Ras를 처리한 EpH4-Ras 세포와 섬유아세포의 한 종류인 C6 세포를 5일간 배양하고 Live/Dead 용액(The LIVE/DEAD® Cell Imaging Kit, Thermo Fisher Scientific)을 처리하여 세포의 생존율을 확인하였다(도 11 참조). 상기 Live/Dead 용액을 이용하면 세포막을 유지하고 있는 살아있는 세포와 세포막을 유지하지 못하는 죽은 세포를 구분할 수 있다. 상기 Live/Dead 용액을 배양된 세포에 첨가한 후 FITC 및 Texas RED 필터가 장착된 형광현미경을 이용하여 관찰하면 살아있는 세포는 전체적인 녹색형광(FITC, ex/em=488nm/515nm)으로 염색되어 나타나며 죽은 세포는 핵의 해체로 인해 노출된 DNA에 의해 붉은 형광(Texas RED, ex/em=570nm/602nm)이 염색되어 나타난다. 실험결과 나노다공성 투과막상에서 배양된 EpH4-Ras 세포 또는 C6 세포는 성공적으로 살아남아 죽은 세포의 수 보다 살아있는 세포의 수가 더 많은 것이 확인되었다(도 11 참조). 따라서 본 발명의 전도성 고분자 생체전극은 세포배양이 가능할 정도로 우수한 생체적합성을 가진다는 것을 확인 하였다.To confirm the biocompatibility of the conductive polymer bioelectrode, EpH4-Ras cells treated with cancer gene Ras and C6 cells, one type of fibroblasts, were cultured in rat epithelial cells on a nano-porous membrane for 5 days, and Live / Dead solution (The LIVE / DEAD ( R) Cell Imaging Kit (Thermo Fisher Scientific)) to determine cell viability (see FIG. 11). By using the Live / Dead solution, it is possible to distinguish living cells that retain cell membranes from dead cells that do not retain cell membranes. When the live / dead solution was added to the cultured cells and observed using a fluorescence microscope equipped with FITC and Texas RED filters, living cells were stained with a whole green fluorescence (FITC, ex / em = 488 nm / 515 nm) Cells are stained with red fluorescence (Texas RED, ex / em = 570nm / 602nm) by exposed DNA due to nuclear decay. Experimental results show that the EpH4-Ras cells or C6 cells cultured on the nanoporous permeable membrane have survived to a higher number of living cells than the number of dead cells (see FIG. 11). Therefore, it has been confirmed that the conductive polymer bioelectrode of the present invention has excellent biocompatibility to enable cell culture.
본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. The specific embodiments described herein are representative of preferred embodiments or examples of the present invention, and thus the scope of the present invention is not limited thereto. It will be apparent to those skilled in the art that modifications and other uses of the invention do not depart from the scope of the invention described in the claims.
본 발명은 높은 비표면적을 가지는 다공성 나노투과막 기반의 생체신호 측정용 생체전극 및 그의 제조방법에 관한 것으로서, 높은 생체부적합성으로 인하여 생체신호 전달 효율이 저하되는 금속소재의 생체전극을 대체할 수 있을 것으로 기대된다.The present invention relates to a bioelectrode for bio signal measurement based on a porous nanofiltration membrane having a high specific surface area and a method for manufacturing the bioelectrode and a method for manufacturing the bioelectrode, which can replace a metal electrode of a metal material, .

Claims (10)

  1. 나노다공성 투과막이 부착되는 음각홈을 가지며 두께가 250-350㎛인 폴리디메틸실록세인(polydimethylsiloxane, PDMS) 디바이스;A polydimethylsiloxane (PDMS) device having an intaglio groove with a nanoporous permeable membrane and having a thickness of 250-350 占 퐉;
    상기 PDMS 디바이스의 음각홈에 부착되는 두께 50-200㎛의 나노다공성 투과막;A nanoporous permeable membrane having a thickness of 50 to 200 탆 adhered to a depressed groove of the PDMS device;
    상기 PDMS 디바이스와 상기 나노다공성 투과막위에 형성되는 생체신호전달용 패터닝(patterning); 및Patterning for transmission of a living body signal formed on the PDMS device and the nanoporous permeable membrane; And
    상기 PDMS 디바이스, 상기 나노다공성 투과막 및 상기 생체신호전달용 패터닝위에 0.1-10㎛의 두께로 균일하게 형성된 금(Au) 코팅층;A gold (Au) coating layer uniformly formed on the PDMS device, the nanoporous permeable membrane, and the bio-signal transmission patterning to a thickness of 0.1-10 mu m;
    을 포함하는 전도성 고분자 생체전극.And a conductive polymer.
  2. 제 1 항에 있어서, 상기 PDMS 디바이스는 전체 면적의 25-50%가 상기 나노다공성 투과막의 부착을 위한 깊이 100-200㎛의 음각홈인 것을 특징으로 하는 전도성 고분자 생체전극.The conductive polymer biomolecule according to claim 1, wherein the PDMS device is an intaglio groove having a depth of 100 to 200 mu m for attaching the nanoporous permeable membrane.
  3. 제 1 항에 있어서, 상기 나노다공성 투과막은 생체적합성 고분자물질을 전기방사를 이용하여 제조한 두께 50-200㎛의 투과막이며 직경이 0.1-10㎛인 다수의 공극(pore)을 포함하는 것을 특징으로 하는 전도성 고분자 생체전극.The nanoporous permeable membrane according to claim 1, wherein the nanoporous permeable membrane is a permeable membrane having a thickness of 50 to 200 탆 produced by electrospinning a biocompatible polymer material and includes a plurality of pores having a diameter of 0.1 to 10 탆 Wherein the conductive polymer is a biomolecule.
  4. 제 3 항에 있어서, 상기 생체적합성 고분자 물질은 폴리우레탄(polyurethane), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리아미드 엘라스토머(polyamide elastomer), 폴리에스터(polyester), 폴리에스터 엘라스토머(polyester elastomer), 폴리스티렌(polystyrene), 폴리프로필렌(polypropylene), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(poly(methymethacrylate)), 폴리올레핀(polyolefin), 폴리설폰(polysulfone), 폴리비닐클로라이드(poly(vinyl chloride)), 실리콘(silicon), 및 폴리에틸렌(polyethylene)으로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 전도성 고분자 생체전극.The biocompatible polymeric material of claim 3, wherein the biocompatible polymeric material is selected from the group consisting of polyurethane, polyacetal, polyamide, polyamide elastomer, polyester, polyester elastomer, ), Polystyrene, polypropylene, polyacrylonitrile, poly (methymethacrylate), polyolefin, polysulfone, poly (vinyl chloride) vinyl chloride, silicon, and polyethylene. 2. The conductive polymer biomolecule according to claim 1,
  5. 제 3 항에 있어서, 상기 전기방사는 전압 10-20kV, 방사속도 0.05-0.3㎖/h, 주사바늘의 직경 20-30G, 방사거리 20-40㎝의 조건으로 습도 20-40% 및 온도 25-35℃의 분위기하에서 상기 생체적합성 고분자물질을 포함하는 전기방사용액 4-6㎖을 방사하는 것을 특징으로 하는 전도성 고분자 생체전극.4. The method according to claim 3, wherein the electrospinning is performed under the conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G and a radiation distance of 20-40 cm, And 4-6 ml of an electric discharge solution containing the biocompatible polymer substance is spun in an atmosphere at 35 캜.
  6. 제 1 항에 있어서, 상기 나노다공성 투과막은 세포배양이 가능한 것을 특징으로 하는 전도성 고분자 생체전극.The conductive polymer biomolecule according to claim 1, wherein the nanoporous permeable membrane is capable of cell culture.
  7. a) 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스용 3D 기판을 제조하는 제 1 단계;a) a first step of producing a 3D substrate for a PDMS device comprising an intaglio groove for attaching a nanoporous permeable membrane;
    b) 상기 3D 기판을 이용하여 나노다공성 투과막 부착용 음각홈을 포함하는 PDMS 디바이스를 제조하는 제 2 단계;b) a second step of fabricating a PDMS device including an intaglio groove for attaching a nanoporous permeable membrane using the 3D substrate;
    c) 전기방사를 이용하여 나노다공성 투과막을 제조하는 제 3 단계;c) a third step of preparing a nanoporous permeable membrane using electrospinning;
    d) 상기 PDMS 디바이스에 형성된 음각홈에 PDMS용액을 이용하여 상기 나노다공성 투과막을 부착시키는 제 4 단계; d) attaching the nanoporous permeable membrane to the indented groove formed in the PDMS device using a PDMS solution;
    e) 상기 나노다공성 투과막이 부착된 PDMS 디바이스에 생체신호전달용 패터닝을 수행하는 제 5 단계; 및e) performing a patterning process for transmitting a biological signal to the PDMS device having the nanoporous permeable membrane attached thereto; And
    f) 상기 생체신호전달용 패터닝이 수행된 PDMS 디바이스에 금코팅을 수행하는 제 6 단계;f) performing a gold coating on the PDMS device on which the bio signal transmission patterning is performed;
    를 포함하는 전도성 고분자 생체전극의 제조방법.Wherein the conductive polymer is a polymer electrolyte.
  8. 제 7 항에 있어서, 상기 제 1 단계는8. The method of claim 7, wherein the first step
    a) 두께 250-350㎛이며 세포배양용 나노다공성 투과막이 부착될 수 있는 깊이 100-200㎛의 음각홈을 가진 PDMS 디바이스를 제작하기 위한 3D 기판을 디자인하는 단계;a) designing a 3D substrate for fabricating a PDMS device having a thickness of 250-350 占 퐉 and having an intaglio groove with a depth of 100-200 占 퐉 to which a nanoporous permeable membrane for cell culture can be adhered;
    b) UV 경화성 플라스틱과 융해성 서포트 왁스를 혼합하여 3D 프린팅용 잉크를 제조한 후 3D 프린터를 이용하여 상기 3D 프린팅용 잉크를 적층하여 PDMS 디바이스용 3D 기판을 제조하는 단계;b) preparing an ink for 3D printing by mixing the UV curable plastic and the melting support wax, and then laminating the ink for 3D printing using a 3D printer to manufacture a 3D substrate for a PDMS device;
    c) 상기 PDMS 디바이스용 3D 기판을 60-80℃ 오븐에서 0.5-2시간 동안 두어 상기 서포트 왁스를 용해시키는 단계;c) dissolving the support wax by placing the 3D substrate for the PDMS device in a 60-80 DEG C oven for 0.5-2 hours;
    d) 상기 서포트 왁스가 용해된 PDMS 디바이스용 3D 기판을 50-70℃ 식용유에 침지한 후 초음파 세척을 수행하는 단계;d) immersing the 3D substrate for the PDMS device in which the support wax is dissolved in 50-70 캜 cooking oil, followed by ultrasonic cleaning;
    e) 상기 초음파 세척을 수행한 PDMS 디바이스용 3D 기판을 EZ 린스 용액에 5-20분간 침지하여 세척하는 단계; 및e) immersing the 3D substrate for the PDMS device subjected to the ultrasonic cleaning in an EZ rinse solution for 5-20 minutes and washing; And
    f) 상기 EZ 린스 용액으로 세척된 PDMS 디바이스용 3D 기판을 증류수를 이용하여 세척하고 건조하는 단계;f) washing and drying the 3D substrate for the PDMS device cleaned with the EZ rinse solution using distilled water;
    를 포함하는 것을 특징으로 하는 전도성 고분자 생체전극의 제조방법.Wherein the polymer electrolyte membrane comprises a polymer electrolyte.
  9. 제 7 항에 있어서, 상기 제 2 단계는8. The method of claim 7, wherein the second step comprises:
    a) PDMS 용액과 경화제를 10:0.5-10:2(PDMS 용액 : 경화제)의 중량비로 혼합하고 데시게이터를 이용하여 기포를 제거하여 PDMS 반응용액을 제조하는 단계;a) mixing the PDMS solution and the curing agent in a weight ratio of 10: 0.5 to 10: 2 (PDMS solution: curing agent) and removing bubbles using a desiccator to prepare a PDMS reaction solution;
    b) 상기 PDMS 반응용액을 건조된 PDMS 디바이스용 3D 기판에 도포하고 40-50℃ 오븐에서 22-26시간 동안 열처리하여 PDMS 디바이스를 제조하는 단계; 및b) applying the PDMS reaction solution to a 3D substrate for a dried PDMS device and heat treating the PDMS device in a 40-50 ° C oven for 22-26 hours to produce a PDMS device; And
    c) 상기 PDMS 디바이스를 상기 3D 기판으로부터 제거하는 단계 ;c) removing the PDMS device from the 3D substrate;
    를 포함하는 것을 특징으로 하는 전도성 고분자 생체전극의 제조방법.Wherein the polymer electrolyte membrane comprises a polymer electrolyte.
  10. 제 7 항에 있어서, 상기 제 3 단계는 8. The method of claim 7, wherein the third step comprises:
    a) 디메틸폼아마이드(dimethylformamide)용액 100중량부에 대하여 폴리우레탄(polyurethane)을 10-20 중량부로 첨가하고 22-26시간 동안 혼합하여 폴리우레탄 전기방사용액을 제조하는 단계; 및a) adding 10 to 20 parts by weight of polyurethane to 100 parts by weight of a dimethylformamide solution, and mixing the solution for 22 to 26 hours to prepare a polyurethane electrodeposition solution; And
    b) 상기 폴리우레탄 전기방사용액을 전압 10-20kV, 방사속도 0.05-0.3㎖/h, 주사바늘의 직경은 20-30G, 방사거리는 20-40㎝의 조건으로 습도 20-40% 및 온도 25-35℃의 분위기하에서 총 4-6㎖을 방사하여 두께가 150-250㎛인 나노다공성 투과막을 제조하는 단계;b) The polyurethane electrospinning solution was applied under the conditions of a voltage of 10-20 kV, a spinning rate of 0.05-0.3 ml / h, a diameter of the injection needle of 20-30 G, a spinning distance of 20-40 cm, a humidity of 20-40% Spinning a total of 4-6 ml in an atmosphere at 35 캜 to produce a nanoporous permeable membrane having a thickness of 150-250 탆;
    를 포함하는 것을 특징으로 하는 전도성 고분자 생체전극의 제조방법.Wherein the polymer electrolyte membrane comprises a polymer electrolyte.
PCT/KR2018/006891 2017-06-29 2018-06-19 Biosignal measuring bioelectrode based on nanoporous permeable membrane having high specific surface area, and method for manufacturing same WO2019004645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/642,822 US20200289017A1 (en) 2017-06-29 2018-06-19 Bio-Electrode For Measuring Bio-Signal And Producing Electrical Activity Based On Nano-Porous Permeable Membrane Having High Specific Surface Area And Method Of Manufacturing The Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170082367A KR101943307B1 (en) 2017-06-29 2017-06-29 Flexible Bioelectrode based on Nanoporous Membrane with High Specific Surface Area for Bio-signal Acquisition And Manufacturing Method Thereof
KR10-2017-0082367 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004645A1 true WO2019004645A1 (en) 2019-01-03

Family

ID=64741697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006891 WO2019004645A1 (en) 2017-06-29 2018-06-19 Biosignal measuring bioelectrode based on nanoporous permeable membrane having high specific surface area, and method for manufacturing same

Country Status (3)

Country Link
US (1) US20200289017A1 (en)
KR (1) KR101943307B1 (en)
WO (1) WO2019004645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3906964A1 (en) * 2020-05-08 2021-11-10 Heraeus Deutschland GmbH & Co KG Recessed electrodes for flexible substrates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102404887B1 (en) * 2020-09-28 2022-06-07 재단법인대구경북과학기술원 Nanofiber mesh bioelectrode using conductive material and manufacturing method thereof
CN115862952A (en) * 2021-09-23 2023-03-28 深圳先进技术研究院 Flexible dry electrode and preparation method thereof
CN114544721A (en) * 2022-02-24 2022-05-27 中山大学 Flexible micro-nano electrode sensor and preparation method thereof
CN114858877B (en) * 2022-04-18 2023-06-16 武汉大学 Super-soft self-supporting nano-mesh electrode and preparation method and application thereof
CN114855328A (en) * 2022-05-26 2022-08-05 之江实验室 Breathable stretchable conductive yarn and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080012120A (en) * 2006-08-01 2008-02-11 고려대학교 산학협력단 Method for forming a fine electrode using polydimethylsiloxane and fine electrode formed by the same
KR20100048648A (en) * 2008-10-31 2010-05-11 재단법인 서울테크노파크 Pdms patterning method using lift-off techinque and open area patterning method by the techique
KR20140082380A (en) * 2012-12-24 2014-07-02 고려대학교 산학협력단 adhesive capacitive electrode and preparing method for thereof
KR101636778B1 (en) * 2015-02-05 2016-07-06 부산대학교 산학협력단 Preparation method of biodegradable nanofiber sheet for tissue regeneration, and nanofiber sheet prepared by the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186093B1 (en) * 2011-03-29 2012-09-27 경희대학교 산학협력단 Fibrous 3-dimensional scaffold for tissue regeneration and method for manufacturing the same
KR101355678B1 (en) * 2012-08-16 2014-01-28 금오공과대학교 산학협력단 Medical backing film of nanofiber sheet and preparation method thereof
KR101450859B1 (en) 2012-10-10 2014-10-15 한국과학기술연구원 Nerve electrode provided with a antiinflammatory drug and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080012120A (en) * 2006-08-01 2008-02-11 고려대학교 산학협력단 Method for forming a fine electrode using polydimethylsiloxane and fine electrode formed by the same
KR20100048648A (en) * 2008-10-31 2010-05-11 재단법인 서울테크노파크 Pdms patterning method using lift-off techinque and open area patterning method by the techique
KR20140082380A (en) * 2012-12-24 2014-07-02 고려대학교 산학협력단 adhesive capacitive electrode and preparing method for thereof
KR101636778B1 (en) * 2015-02-05 2016-07-06 부산대학교 산학협력단 Preparation method of biodegradable nanofiber sheet for tissue regeneration, and nanofiber sheet prepared by the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3D SYSTEMS, INC.: "Material Handling and Post Processing Guide", - 1 January 2012 (2012-01-01), Retrieved from the Internet <URL:http://infocenter.3dsystems.com/product-library/system/files/legacy/3DSCentral%20-%20Legacy%20Products/ProJet&203500%20Series/Costumer/Post-Processing%20the%20Parts/2216_VisiJet%C2%AE%20X%20Build%20Material%20Post%20Processing%20Guide-Rev_A.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3906964A1 (en) * 2020-05-08 2021-11-10 Heraeus Deutschland GmbH & Co KG Recessed electrodes for flexible substrates

Also Published As

Publication number Publication date
KR101943307B1 (en) 2019-01-29
US20200289017A1 (en) 2020-09-17
KR20190002044A (en) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2019004645A1 (en) Biosignal measuring bioelectrode based on nanoporous permeable membrane having high specific surface area, and method for manufacturing same
Han et al. Bio-functional electrospun nanomaterials: From topology design to biological applications
EP2371528B1 (en) Method for attaching nanofiber sheet
US20170072105A1 (en) Electrospinning with sacrificial template for patterning fibrous constructs
WO2017171341A2 (en) Hydrophilic polyurethane nanofiber and method for manufacturing same
WO2012134086A2 (en) Three-dimensional nanofiber scaffold for tissue repair and preparation method thereof
JP2010168722A (en) Nanofiber sheet
Wallin et al. A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications
Zou et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors
CN108295310A (en) A kind of conductivity type tissue engineering bracket and its preparation method and application
WO2017204564A1 (en) Yarn for cell culture scaffold, ply yarn comprising same, and fabric comprising same ply yarn
WO2006044832A2 (en) Device for tissue engineering
CN110823968A (en) Sweat sensor and preparation method thereof
CN108525013A (en) A kind of preparation method of tissue-engineering graft constructed of the surface with micron-nano topological geometry
EP3722807B1 (en) Microfluidic device for measuring cell impedance and transepithelial electrical resistance
WO2017082270A1 (en) Conductive film
Chen et al. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension
WO2019022393A2 (en) Three-dimensional cell culturing microchip having nanoporous permeable membrane attached thereto and fabrication method therefor
CN110742597B (en) Method for preparing TPU/PDMS three-dimensional porous nerve electrode
Wang et al. In vivo feasibility test using transparent carbon nanotube‐coated polydimethylsiloxane sheet at brain tissue and sciatic nerve
WO2020204544A2 (en) Nanofiber mesh bioelectrode and manufacturing method therefor
WO2021215789A1 (en) Membrane for cell culture and method for manufacturing same
Zhao et al. Highly sensitive and omnidirectionally stretchable bioelectrode arrays for in vivo neural interfacing
WO2021080365A1 (en) Violacein-polymer composite nanofibrous membrane having antimicrobial efficacy against methicillin-resistant staphylococcus aureus, and manufacturing method therefor
Choi et al. High aspect ratio SU-8 structures for 3-D culturing of neurons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824139

Country of ref document: EP

Kind code of ref document: A1