WO2019004437A1 - 予測装置、予測方法、予測プログラム、学習モデル入力データ生成装置および学習モデル入力データ生成プログラム - Google Patents

予測装置、予測方法、予測プログラム、学習モデル入力データ生成装置および学習モデル入力データ生成プログラム Download PDF

Info

Publication number
WO2019004437A1
WO2019004437A1 PCT/JP2018/024835 JP2018024835W WO2019004437A1 WO 2019004437 A1 WO2019004437 A1 WO 2019004437A1 JP 2018024835 W JP2018024835 W JP 2018024835W WO 2019004437 A1 WO2019004437 A1 WO 2019004437A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning model
target compound
prediction
activity
learning
Prior art date
Application number
PCT/JP2018/024835
Other languages
English (en)
French (fr)
Inventor
芳広 植沢
Original Assignee
学校法人 明治薬科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018122565A external-priority patent/JP7201981B2/ja
Application filed by 学校法人 明治薬科大学 filed Critical 学校法人 明治薬科大学
Priority to EP18824219.2A priority Critical patent/EP3627404B1/en
Priority to CN201880044194.1A priority patent/CN110809800B/zh
Publication of WO2019004437A1 publication Critical patent/WO2019004437A1/ja
Priority to US16/698,129 priority patent/US20200098450A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Definitions

  • One aspect of the present invention relates to a prediction device, a prediction method and a prediction program that use a learning model, and a learning model input data generation device and a learning model input data generation program.
  • the difference in physiological activity among chemical substances can be considered to be derived from the chemical structure.
  • the Quantitative Structure-Activity Relationship (QSAR) prediction model is a mathematical model that expresses the rules established between chemical structure and physiological activity, and constructs a quantitative structure-activity relationship prediction model. Thus, even if the chemical activity is unknown, the activity can be predicted without experiment (see Patent Documents 1 to 4).
  • One aspect of the present invention has been made in view of the above problems, and an object thereof is to provide a novel technique for suitably predicting the activity of a target compound based on the structure of the target compound.
  • a prediction device is a prediction device that predicts the activity of the target compound based on the structure of the target compound, and the structure of the target compound is estimated by a virtual camera.
  • the prediction method is a prediction method for predicting the activity of the target compound based on the structure of the target compound, and a computer generates a virtual camera for the structural model of the target compound using a virtual camera.
  • a learning model input data generation device is a learning model input data generation device generating input data of a learning model, wherein the learning model is a relative model of a target compound by a virtual camera.
  • a learning model that uses multiple captured images captured from multiple directions as input, and outputs predicted information on the activity of the target compound, and a plurality of them relative to the structural model of the target compound with a virtual camera
  • a generation unit that generates a plurality of captured images by imaging from the direction of.
  • the activity of a target compound can be suitably predicted based on the structure of the target compound.
  • FIG. 1 is a functional block diagram showing an example of a schematic configuration of a prediction device 100 according to an embodiment of the present invention.
  • the prediction device 100 includes an input unit 110, an output unit 111, an operation unit 112, and a main control unit 120.
  • the main control unit 120 includes a generation unit 121, a learning unit 122, a prediction unit 123, and a learning model 124.
  • the prediction device 100 is a prediction device that predicts the activity of a target compound based on the structure of the target compound.
  • the prediction apparatus 100 predicts the activity of the target compound using the learning model 124 based on the data indicating the structure of the target compound input from the input unit 110, and the output unit 111 outputs the result.
  • the prediction device 100 performs learning of the learning model 124 based on the data indicating the structure of the reference compound input from the input unit 110 and the data indicating the activity of the reference compound.
  • a compound serving as a source of information to be learned in the learning model 124 is referred to as a reference compound
  • a compound whose activity is predicted by the learning model 124 is referred to as a target compound.
  • the prediction device 100 also functions as a learning model input data generation device that generates input data to be input to the learning model 124.
  • a prediction device is configured by a learning model input data generation device including the input unit 110 and the generation unit 121, and a learning model device including the learning unit 122, the prediction unit 123, and the learning model 124. You may
  • the input unit 110 receives input of data indicating the structure of the target compound or data indicating the structure of the reference compound and data indicating the activity of the reference compound to the prediction device 100.
  • the input unit 110 receives the input of the data described above by reading a data file stored in a storage medium or receiving data from another device via a wired or wireless network.
  • the structure, origin, physical properties and the like of the compound used as the target compound and the reference compound are not particularly limited, and may be, for example, a natural compound, a synthetic compound, a polymer compound, a low molecular weight compound and the like.
  • the data indicating the structure of the compound may be obtained from a public database such as PubChem (http://pubchem.ncbi.nlm.nih.gov) or may be newly created.
  • the format of data indicating the structure of a compound is not particularly limited, and may be, for example, a known data format such as SDF format.
  • a plurality of data indicating a three-dimensional structure may be generated for one compound.
  • various three-dimensional structures may be generated by rotating rotatable functional groups in the molecule for each molecule, taking into consideration the degree of freedom of bonding between atoms in an aqueous solution or the like.
  • molecular dynamics (MD) simulation may generate various three-dimensional structures in consideration of molecular vibrations caused by thermal energy. As a result, more images can be generated by the generation unit 121 described later, and prediction with higher accuracy can be performed.
  • Data indicating the activity of the reference compound may be obtained from a public database such as, for example, PubChem (http://pubchem.ncbi.nlm.nih.gov), or may be experimentally obtained. Good.
  • the format of the data indicating the activity of the reference compound is not particularly limited, but may be data indicating the binary value of whether or not it has the desired activity, or data indicating a value selected from a plurality of category values. It may be present, or it may be data indicating a continuous variable.
  • the desired activity is not particularly limited, and may be various activities such as pharmaceutical activity, physiological activity, biochemical activity, toxicity and the like.
  • the output unit 111 outputs the prediction result of the activity of the target compound by the prediction unit 123.
  • the output unit 111 may output the prediction result as image data or character data to the display device, or a data file including image data, character data, or binary data indicating the prediction result. It may be output, and image data, text data or binary data indicating the prediction result may be transmitted to another device via a wired or wireless network.
  • Operation unit 112 receives a user's operation on prediction device 100.
  • the operation unit 112 may be, for example, a keyboard, a mouse, a trackball, a touch pad (including a touch panel), an optical sensor, a microphone for voice input, and the like.
  • the main control unit 120 is configured by one or more computers.
  • the plurality of computers may be wired or wirelessly connected to each other, and may share the function of the main control unit 120.
  • the learning model 124 is a learning model for performing machine learning, and a plurality of captured images in which a structural model of a target compound is captured from a plurality of directions by a virtual camera is input, and prediction information of activity of the target compound is output.
  • the learning model is preferably a learning model, and it is more preferable to use a learning model that performs deep learning, and for example, a convolutional neural network such as AlexNet, CaffeNet, GoogLeNet, VGG net, etc. can be used.
  • the prediction information of the activity of the target compound is not particularly limited, but information showing the probability that the target compound has the desired activity, and information showing the prediction result of whether the target compound has the desired activity or not It may be a score or the like corresponding to the possibility that the target compound has the desired activity.
  • the learning model 124 may be a combination of a plurality of learning models. That is, the learning model 124 receives a plurality of captured images in which the structural model of the target compound is captured from a plurality of directions by the virtual camera, and receives the first learning model that outputs the feature vector and the feature vector. It may be combined with a second learning model that outputs prediction information of the activity of the target compound.
  • the first learning model any learning model may be used as long as it is a learning model having a plurality of captured images obtained by imaging the structural model of the target compound from a plurality of directions. preferable.
  • the second learning model a learning model that performs deep learning may be used, or a learning model that does not perform deep learning may be used.
  • the generation unit 121 generates a plurality of captured images (snapshots) by capturing images from a plurality of directions relative to the structural model of the target compound or the reference compound using the virtual camera.
  • FIG. 2 is a schematic view schematically illustrating an example of image generation in the present embodiment. As illustrated in FIG. 2, the generation unit 121 rotates the structural model 10 of the target compound disposed in the virtual space, and relatively captures an image from a plurality of directions with the virtual camera to generate a captured image (see FIG. a) to (c)). Note that the generating unit 121 may capture an image from a plurality of directions relative to the structural model 10 by moving the virtual camera instead of rotating the structural model 10.
  • captured image is also referred to as a snapshot, and means an image obtained by capturing a structural model arranged in a virtual space with a virtual camera, and it may be an image having the same content as the image. For example, an image directly calculated from coordinate data without including a structural model is included.
  • Generation of a structural model and imaging with a virtual camera can be performed using known software (eg, Jmol (http://jmol.sourceforge.net/), VMD (http://jmol.sourceforge.net/), which enables three-dimensional display of molecular structures and imaging with a virtual camera.
  • Jmol http://jmol.sourceforge.net/
  • VMD http://jmol.sourceforge.net/
  • UCSF Chimera http://www.cgl.ucsf.edu/chimera/
  • Rasmol http://www.umass.edu/microbio/ rasmol /
  • PyMOL http: // www. pymol. org /
  • an image file of a captured image to be generated may be input as, for example, a set of RGB three-color dots, and two-dimensional plane position information and three types of color information may be digitized.
  • the size of the captured image generated by the generation unit 121 is not particularly limited, and may be appropriately adjusted according to the size of the target compound and the reference compound, and for example, 128 pixels ⁇ 128 pixels, 256 pixels ⁇ 256 pixels, 512 The size can be set to pixel ⁇ 512 pixels or 1024 pixels ⁇ 1024 pixels.
  • the color depth is not particularly limited, and may be, for example, in the range of 1 to 64 bpp, but preferably in the range of 8 to 32 bpp.
  • FIG. 3 is a schematic diagram for explaining an example of image generation in the present embodiment in detail.
  • the structural model 20 is displayed in Ball and Stick.
  • Ball and Stick display is a display which shows an atom by a sphere and a bond by a bar.
  • the present embodiment is not limited to this, and the structural model may be represented by a Wireframe display showing bonding only, a Spacefill display filling space with atoms, a Surface display showing the surface of a molecule in contact with an aqueous solution, and a protein structure schematically. You may display by the Ribbons display etc. which are shown to.
  • the structural model 20 includes an atom 21, a bond 22 and a hydrogen atom 23.
  • the atom 21 shows atoms other than a hydrogen atom.
  • hydrogen atoms 23 may not be included in structural model 20.
  • the color of the atom 21 varies depending on the type of the atom, but is not limited to this, the color of the atom 21 may be the same, and the types of atoms are appropriately grouped The color of the atom 21 may be different depending on the group to which the atom belongs.
  • the radius of the atom 21 is not particularly limited.
  • the upper limit of the radius is 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less of Van der Waals radius
  • the lower limit of the radius can be 0.1% or more, 0.3% or more, 0.7% or more, 1% or more of the Van der Waals radius, but can be 0 or less. It is preferable to be in the range of 1% to 30%, more preferably in the range of 0.1% to 10%, and particularly preferably in the range of 0.1% to 3%.
  • the thickness of the bond 22 is not particularly limited, and for example, the upper limit of the thickness is not more than 300 m angstroms, not more than 200 m angstroms, not more than 100 m angstroms, not more than 50 m
  • the lower limit of the thickness can be 1 milliangstrom or more, 2 milliangstroms or more, 5 milliangstroms or more, 10 milliangstroms or more, but 1 milliangstrom or more, 200 milliangstroms or less Is preferable, and it is more preferable that the thickness be 2 or more and 100 or less. It is particularly preferable that the number be 2 or more and 30 or less.
  • the generation unit 121 images the structural model 20 while rotating the virtual camera relative to the structural model 20 about at least one axis.
  • the axis is not particularly limited, but can be, for example, one or more axes selected from the X axis, Y axis, and Z axis of the virtual space in which the structural model 20 is disposed.
  • (b) of FIG. 3 shows a captured image obtained by rotating the structural model 20 by 45 degrees around the X axis shown in (a) of FIG. 3
  • (c) of FIG. 3 shows the structural model 20 shows a captured image captured by rotating 45 degrees around the Y axis shown in (a) of FIG. 3
  • (d) of FIG. 3 shows X of the structural model 20 shown in (a) of FIG. 3.
  • the captured image imaged by rotating 45 degrees centering around Z axis orthogonal to an axis and a Y-axis is shown.
  • the rotation angle is not particularly limited, and any angle in the range of 1 degree to 180 degrees, preferably any angle in the range of 1 degree to 90 degrees, more preferably any angle of 1 degree to 45 degrees
  • the imaging may be performed for each angle, and the rotation angle may be changed for each imaging, for example, imaging can be performed every 30 degrees, every 45 degrees, or every 90 degrees.
  • the learning unit 122 causes the learning model 124 to learn the correspondence between each captured image of the reference compound generated by the generation unit 121 and the activity of the reference compound by a known method.
  • the learning unit 122 causes the learning model 124 to learn the correspondence between each captured image of the reference compound generated by the generation unit 121 and the activity of the reference compound using a known deep learning algorithm.
  • the learning unit 122 may use, for example, a known deep learning framework such as Digits (NVIDIA).
  • the prediction unit 123 uses the learning model 124 in which the correspondence between each captured image of the target compound generated by the generation unit 121 and the activity of the target compound is learned, and the target is obtained from each captured image of the target compound generated by the generation unit 121. Predict the activity of the compound.
  • the prediction unit 123 may use, for example, a known deep learning framework such as Digits (NVIDIA).
  • the prediction unit 123 detects each image of the target compound.
  • the representative compound has the desired activity by acquiring representative values (for example, median, average value, total) of each output value of the learning model 124 when the image is input, and comparing the representative values with a threshold value. It can be predicted whether or not
  • An arbitrary value can be used as the threshold, but it is preferable to use the threshold calculated by ROC analysis of the output value when each captured image of the reference compound is input to the learning model 124 that has already been learned. .
  • FIG. 4 is a flowchart illustrating an example of the flow of learning processing according to an embodiment of the present invention.
  • the generation unit 121 acquires data indicating the structure of the reference compound and data indicating the activity of the reference compound via the input unit 110 (step S1). ).
  • the generation unit 121 generates a structural model of the unprocessed reference compound based on the data indicating the structure of the unprocessed reference compound among the data input in step S1 (step S2).
  • the generation unit 121 images a plurality of directions relative to the structural model of the reference compound generated in step S2 by the virtual camera, and generates a plurality of captured images (step S3).
  • the generation unit 121 captures a plurality of virtual cameras by imaging the structural model while relatively rotating the virtual camera about at least one axis with respect to the structural model generated in step S2. Generate a captured image. If the above processing is completed for all reference compounds included in the data input in step S1 (yes in step S4), the process proceeds to step S5, and if not completed (no in step S4) , And return to step S2.
  • the learning unit 122 corresponds the correspondence between each captured image of the reference compound generated in step S3 and the activity of the reference compound input in step S1 by a known machine learning algorithm (in particular, deep learning algorithm).
  • the learning model 124 (step S5).
  • Step S5 can be suitably performed.
  • teacher data of a reference compound corresponding to each captured image may be linked.
  • the prediction device 100 is a learned model in which the learning model 124 is a plurality of captured images in which the structural model of the compound is captured from a plurality of directions by the virtual camera and the prediction information of the activity of the compound is output. It can be done.
  • FIG. 5 is a flowchart for explaining an example of the flow of prediction processing according to an embodiment of the present invention.
  • the generation unit 121 acquires data indicating the structure of the target compound via the input unit 110 (step S11). Subsequently, the generation unit 121 generates a structural model of the unprocessed target compound based on the data indicating the structure of the unprocessed target compound among the data input in step S11 (step S12). Subsequently, the generation unit 121 images a plurality of directions relative to the structural model of the target compound generated in step S12 by the virtual camera to generate a plurality of photographed images (step S13).
  • step S3 the generation unit 121 captures a plurality of virtual cameras by imaging the structural model while relatively rotating the virtual camera about at least one axis with respect to the structural model generated in step S12. Generate a captured image. If the above process is completed for all target compounds included in the data input in step S11 (yes in step S14), the process proceeds to step S15, and if not completed (no in step S14) , And return to step S12.
  • the prediction unit 123 inputs each captured image of the target compound generated in step S13 to the learning model 124, and acquires an output from the learning model 124.
  • the prediction unit 123 determines the learning model 124 when each captured image of one target compound is input. The median value of the output values from is acquired (step S15). Then, the prediction unit 123 predicts whether or not the target compound has a desired activity by comparing the median obtained in step S15 with the threshold (step S16). If steps S15 to S16 have been completed for all target compounds included in the data input in step S11 (yes in step S17), the prediction process is ended, and if not completed (no in step S17) The process returns to step S15.
  • the prediction device 100 can predict whether the target compound has a desired activity.
  • the input to the learning model 124 is an image
  • enantiomers can be identified.
  • the captured image includes information for identifying the enantiomer
  • the information is also used for pattern recognition by the learning model 124, and the enantiomer is It becomes distinguishable. This embodiment is very useful because cases having different physiological activities between enantiomers are universal.
  • the learning model 124 by using a learning model that performs deep learning in the learning model 124, it is possible to cope with biased data. That is, even if the ratio of the presence or absence of the desired activity of the input reference compound is, for example, an extreme ratio such as 1 to 10, good accuracy can be obtained. On the other hand, in the conventional method, a model with the best accuracy can be constructed with the ratio of presence / absence of activity in the data being about 1: 1, but it is difficult to handle biased data. This embodiment is very useful because toxicity and the like show only some compounds show activity.
  • the input to the learning model 124 is a captured image obtained by imaging the structural model from a plurality of directions, whereby data including information comprehensively indicating the structure of the target compound is input to the learning model
  • the activity of the subject compound can be suitably predicted.
  • the information input to the learning model 124 more comprehensively indicates the structure of the target compound by using the structural model as a captured image captured while relatively rotating the virtual camera about one or more axes.
  • the data including H can be input into a learning model, and the activity of the target compound can be predicted more suitably.
  • the color of the atom in the structural model different depending on the type of atom, it is possible to include information on the type of atom in the captured image. By this, the activity can be suitably predicted.
  • the prediction unit 123 predicts whether or not the target compound of the captured image has a desired activity for each of the captured images using the learning model 124, and integrates the results.
  • the activity of the subject compound is predicted, the present invention is not limited thereto.
  • the learning unit 122 causes the learning model 124 to learn the correspondence between data in which each captured image of the reference compound is integrated and the activity of the reference compound, and the prediction unit 123 causes the learning model 124 to calculate the target compound. Data in which each captured image is integrated may be input to predict the activity of the target compound.
  • the prediction unit 123 predicts the activity of the target compound by comparing the representative value of each output value of the learning model 124 with a threshold, but the present invention is not limited to this.
  • the learning unit 122 causes another learning model to learn the correspondence between the output value of the learning model 124 when each captured image of the reference compound is input and the activity of the reference compound, and the prediction unit 123 performs learning
  • the activity of the target compound may be predicted by inputting each output value of the model 124 to the other learning model.
  • a plurality of captured images obtained by imaging the structural model of the target compound relatively from a plurality of directions by the virtual camera are input to the learning model, and the target compound is The point is to predict activity, and other aspects can take various aspects.
  • the control block (main control unit 120, particularly generation unit 121, learning unit 122, and prediction unit 123) of prediction device 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. And may be realized by software.
  • the prediction device 100 includes a computer that executes instructions of a program that is software that implements each function.
  • the computer includes, for example, at least one processor (control device) and at least one computer readable storage medium storing the program.
  • the processor reads the program from the recording medium and executes the program to achieve the object of the present invention.
  • a CPU Central Processing Unit
  • the above-mentioned recording medium a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used besides “a non-temporary tangible medium”, for example, a ROM (Read Only Memory).
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the prediction device (100) is a prediction device that predicts the activity of the target compound based on the structure of the target compound, and is a structural model (10, 20) of the target compound by a virtual camera.
  • the target compound is generated from the plurality of captured images generated by the generation unit using the generation unit (121) configured to generate a plurality of captured images by imaging from a plurality of directions relatively to the target image and the learning model (124) And a prediction unit (123) for predicting the activity of According to the above configuration, based on the structure of the target compound, the activity of the target compound can be suitably predicted without selecting a combination of descriptors.
  • the input to the learning model is an image, which makes it possible to distinguish enantiomers.
  • At least the prediction unit may be a learning model that performs machine learning, and may use a learning model that receives the plurality of captured images. According to the above configuration, the activity of the target compound can be suitably predicted.
  • the generation unit is configured to rotate the virtual camera relative to the structural model while rotating the virtual camera around at least one axis. May be imaged. According to the above configuration, since a captured image comprehensively showing the structure of the target compound can be generated, the activity can be suitably predicted.
  • the color of the atom (21) of the target compound may be different depending on the type of the atom. According to the above configuration, since a captured image including information indicating the type of atom of the target compound can be generated, the activity can be suitably predicted.
  • the prediction method according to aspect 5 of the present invention is a prediction method for predicting the activity of the target compound based on the structure of the target compound, and a computer is a relative to the structural model of the target compound by a virtual camera. Generating a plurality of captured images by imaging from a plurality of directions, and predicting the activity of the target compound from the plurality of captured images generated in the generating step using a learning model by a computer And. According to the above-mentioned composition, an effect equivalent to the above-mentioned mode 1 is produced.
  • the prediction device may be realized by a computer, and in this case, the computer is realized as each part (software element) included in the prediction device to realize the prediction device by the computer.
  • the prediction program of the prediction device and the computer readable recording medium recording the same also fall within the scope of the present invention.
  • the learning model input data generation device (100) is a learning model input data generation device for generating input data of a learning model, wherein the learning model is a structure model of a target compound by a virtual camera.
  • a learning model (124) which receives as input a plurality of captured images captured from a plurality of directions relatively and outputs prediction information of the activity of the target compound, and outputs a structure model of the target compound by a virtual camera.
  • a generation unit (121) is provided which generates a plurality of captured images by imaging relatively from a plurality of directions. According to the above-mentioned composition, an effect equivalent to the above-mentioned mode 1 is produced.
  • the learning model input data generation device may be realized by a computer, and in this case, the computer is operated as each unit (software element) included in the learning model input data generation device.
  • a learning model input data generation program of a learning model input data generation device for realizing a learning model input data generation device by a computer, and a computer readable recording medium recording the same also fall within the scope of the present invention.
  • Example 1 Data for learning based on 7320 types of compounds published on the Tox21 DataChallenge 2014 site (https://tripod.nih.gov/tox21/challenge/data.jsp) and 543 types of data that do not overlap with the compounds for learning data
  • One embodiment of the present invention was practiced using compound based test data.
  • the desired activity to be predicted was mitochondrial membrane potential disrupting activity.
  • a structural model of the compound is generated based on the SDF file, and each structural model is centered on each of the X axis, Y axis, and Z axis.
  • a program (learning model input data generation program) for generating 512 captured images (snapshot, size: 512 ⁇ 512, 24 bpp) captured by rotating in 45-degree increments was created. The program was executed, an SDF file of learning data was input, and a captured image of each compound was generated.
  • the captured image of each compound was stored in a predetermined folder depending on whether or not the compound had mitochondrial membrane potential disrupting activity, and unaltered AlexNet (University of Toronto) was learned using Digits (NVIDIA) .
  • Digits NVIDIA
  • the prediction performance was confirmed by the external verification method.
  • the program was executed, an SDF file of test data was input, and a captured image of each compound was generated.
  • the captured image of each compound was input into learned AlexNet, the median value of the output value was acquired, and ROC analysis was performed.
  • FIG. 6 the area under the ROC curve (AUC) was 0.909, which was a high value of 0.9 or more.
  • AUC area under the ROC curve
  • Example 3 A total of 4337 compounds (SDF file format) and AMES for each compound obtained from the appendix of the document (Derivation and Validation of Toxicogenes for Mutagenicity Prediction. J. Med. Chem. 2005, 48, 312-320.)
  • One aspect of the present invention was carried out using test results (positive or negative).
  • the desired activity to be predicted was mutagenic (AMES test result). In detail, it tested in the following procedures.
  • a total of 4337 compounds were divided into a compound group for learning of a prediction model (4137 compounds) and a compound group for external verification of prediction results (200 compounds). Then, using Jmol (http://jmol.sourceforge.net/), a structural model of the compound is generated based on the SDF file of the compound group for learning, and for each structural model, the X axis, Y axis, Executes a program (learning model input data generation program) that generates 512 captured images (snapshot, size: 512 ⁇ 512, 24 bpp) captured by rotating each Z axis at 45 ° increments. The captured image of was generated.
  • Jmol http://jmol.sourceforge.net/
  • the captured image of each compound is stored in a predetermined folder according to whether the result of the AMES test of the compound was positive or negative, and unaltered AlexNet (University of Toronto) is learned using Digits (NVIDIA).
  • the prediction performance was confirmed by an external verification method.
  • the program was executed, an SDF file of a compound group for external verification was input, and a captured image of each compound was generated.
  • the captured image of each compound was input to learned AlexNet, and the average value of the positive probability prediction results of 512 images per molecule was calculated. That is, the average positive probability value for each compound was calculated for 200 molecules.
  • ROC analysis was performed using the experimental result (positive or negative) of the AMES test acquired from the said literature, and the positive probability average value for every calculated compound. The results are shown in FIG. As shown in FIG. 8, the area under the ROC curve (AUC) was 0.857.
  • the ROC-AUC value (0.857) obtained by the present example is a pan that the method is good even when compared with a general machine learning QSAR discrimination model using currently used descriptors. It shows that it has the conversion performance.
  • a recent paper in which the prediction result of QSAR analysis of AMES test is evaluated by ROC-AUC value (Benchmark Data Set for Silico Prediction of Ames Mutagenicity, J. Chem. Inf. Model., 2009, 49 (9 In pp. 2077-2081, In silico Prediction of Chemical Ames Mutagenicity, J. Chem. Inf. Model., 2012, 52 (11), pp 2840-2847), the best value of 0.86 is reported.
  • the present invention can be used to predict the toxicity, activity and the like of a compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

対象化合物の構造に基づいて、対象化合物の活性を好適に予測する。予測装置(100)は、仮想カメラによって対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部(121)と、学習モデル(124)を用いて前記生成部が生成した前記複数の撮像画像から前記対象化合物の活性を予測する予測部(123)と、を備えている。

Description

予測装置、予測方法、予測プログラム、学習モデル入力データ生成装置および学習モデル入力データ生成プログラム
 本発明の一態様は、学習モデルを利用する予測装置、予測方法および予測プログラム、ならびに、学習モデル入力データ生成装置および学習モデル入力データ生成プログラムに関する。
 化学物質毎の生理活性の相違は、化学構造に由来すると考えることができる。定量的構造活性相関(QSAR:Quantitative Structure-Activity Relationship)予測モデルは、化学構造と生理活性の間に成立するルールを数学的モデルとして表現したものであり、定量的構造活性相関予測モデルを構築することによって、生理活性が未知の化学物質であっても実験をせずにその活性を予測することができる(特許文献1~4参照)。
 従来の定量的構造活性相関モデルの構築法においては、まず、下記表1に示すように、化学構造を化学構造記述子と呼ばれる多様な数値群に変換する。その後、化学構造記述子から統計解析または機械学習によって数学的モデルを構築する。化学構造記述子は、通常、専用のソフトウェアを用いて数百から数千種類を計算する。化学構造記述子の組合せは、定量的構造活性相関予測モデルの汎化性能の高さに直結し、例えば、人の手によって選択される。
Figure JPOXMLDOC01-appb-T000001
 また、より優れた定量的構造活性相関予測モデルの構築を競う国際的な活性予測コンペティション(Tox21DataChallenge2014)が知られている。
米国特許第7702467号明細書 米国特許第7751988号明細書 米国特許出願公開第2004/0009536号明細書 米国特許出願公開第2004/0199334号明細書
 従来技術では、上述したように、予測の精度を向上させるために、化学構造記述子の組合せを注意深く選定する必要がある。化学構造記述子の組合せを選定することなく、予測の精度を向上させることができれば、非常に有用である。
 本発明の一態様は、上記課題に鑑みてなされたものであり、対象化合物の構造に基づいて、対象化合物の活性を好適に予測するための新規な技術を提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る予測装置は、対象化合物の構造に基づいて、前記対象化合物の活性を予測する予測装置であって、仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部と、学習モデルを用いて前記生成部が生成した前記複数の撮像画像から前記対象化合物の活性を予測する予測部と、を備えている。
 また、本発明の一態様に係る予測方法は、対象化合物の構造に基づいて、前記対象化合物の活性を予測する予測方法であって、コンピュータが、仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成ステップと、コンピュータが、学習モデルを用いて前記生成ステップにおいて生成された前記複数の撮像画像から前記対象化合物の活性を予測する予測ステップと、を包含する。
 また、本発明の一態様に係る学習モデル入力データ生成装置は、学習モデルの入力データを生成する学習モデル入力データ生成装置であって、前記学習モデルは、仮想カメラによって対象化合物の構造モデルが相対的に複数の方向から撮像された複数の撮像画像を入力とし、当該対象化合物の活性の予測情報を出力とする学習モデルであり、仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部を備えている。
 本発明の一態様によれば、対象化合物の構造に基づいて、対象化合物の活性を好適に予測することができる。
本発明の一実施形態に係る予測装置の概略構成の一例を示す機能ブロック図である。 本発明の一実施形態における画像生成の一例を概略的に説明する模式図である。 本発明の一実施形態における画像生成の一例を詳細に説明する模式図である。 本発明の一実施形態における学習処理の流れの一例を説明するフローチャートである。 本発明の一実施形態における予測処理の流れの一例を説明するフローチャートである。 本発明の一実施形態における予測結果の一例を示すグラフである。 本発明の一実施形態における予測結果の一例を示すグラフである。 本発明の一実施形態における予測結果の一例を示すグラフである。
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。図1は、本発明の一実施形態に係る予測装置100の概略構成の一例を示す機能ブロック図である。予測装置100は、入力部110、出力部111、操作部112および主制御部120を備えている。主制御部120は、生成部121、学習部122、予測部123および学習モデル124を備えている。
 予測装置100は、対象化合物の構造に基づいて、対象化合物の活性を予測する予測装置である。一態様において、予測装置100は、入力部110から入力された対象化合物の構造を示すデータに基づいて、学習モデル124を用いて対象化合物の活性を予測し、その結果を出力部111が出力する。また、一態様において、予測装置100は、入力部110から入力された参照化合物の構造を示すデータおよび参照化合物の活性を示すデータに基づいて、学習モデル124の学習を行う。なお、本明細書において、学習モデル124に学習させる情報の源となる化合物を参照化合物とし、学習モデル124によって活性を予測する化合物を対象化合物とする。
 また、一態様において、予測装置100は、学習モデル124に入力する入力データを生成する学習モデル入力データ生成装置としても機能する。さらに、一変形例において入力部110および生成部121を備えた学習モデル入力データ生成装置と、学習部122、予測部123および学習モデル124を備えた学習モデル装置とによって、予測装置を構成するようにしてもよい。
 (入力部)
 入力部110は、予測装置100に対する、対象化合物の構造を示すデータ、または、参照化合物の構造を示すデータおよび参照化合物の活性を示すデータの入力を受け付けるものである。入力部110は、記憶媒体に記憶されたデータファイルを読み込むこと、または、有線または無線のネットワークを介して他の装置からデータを受信することによって、上述したデータの入力を受け付ける。
 (化合物の構造を示すデータ)
 対象化合物および参照化合物として用いる化合物の構造、由来、物性等は特に限定されず、例えば、天然化合物、合成化合物、高分子化合物、低分子化合物等であり得る。化合物の構造を示すデータは、PubChem(http://pubchem.ncbi.nlm.nih.gov)のような公開データベースから取得してもよいし、新たに作成したものであってもよい。化合物の構造を示すデータの形式は特に限定されず、例えば、SDF形式等の公知のデータ形式であり得る。
 化合物の構造を示すデータを作成する場合、例えば、二次元化学構造から三次元構造を生成する公知のソフトウェア(例えば、Corina(http://www.mn-am.com/products/corina)等)を用いることができる。三次元構造を生成する際の種々の条件(例えば、真空中であるか水溶液中であるか、温度条件、pH等)は特に限定されず、例えば、特定の条件(例えば、真空中で最も安定)を満たす三次元構造を示すデータを作成してもよい。また、公知のドッキングアルゴリズム(例えば、DOCK等)により、所望のタンパク質と結合状態となる三次元構造を推定し、当該三次元構造を示すデータを作成してもよい。これにより、より高度な予測を行うことができる。
 また、一態様において、1つの化合物に対し、三次元構造を示すデータを複数生成してもよい。例えば、水溶液中などにおける原子間の結合の自由度を考慮し、一分子毎に分子内の回転可能な官能基を回転させることによって多様な三次元構造を生成してもよい。また、分子動力学(MD)シミュレーションによって熱エネルギーによる分子振動を考慮して多様な三次元構造を生成してもよい。これにより、後述する生成部121によってより多くの画像を生成することができ、より精度の高い予測を行うことができる。
 (化合物の活性を示すデータ)
 参照化合物の活性を示すデータは、例えば、PubChem(http://pubchem.ncbi.nlm.nih.gov)のような公開データベースから取得してもよいし、実験的に求めたものであってもよい。参照化合物の活性を示すデータの形式は、特に限定されないが、所望の活性を有するか否かの二値を示すデータであってもよいし、複数のカテゴリー値から選択される値を示すデータであってもよいし、連続変数を示すデータであってもよい。
 所望の活性は、特に限定されず、薬学的な活性、生理学的な活性、生化学的な活性、毒性等、様々な活性であり得る。
 (出力部)
 出力部111は、予測部123による対象化合物の活性の予測結果を出力するものである。例えば、一態様において、出力部111は、予測結果を画像データまたは文字データとして表示装置に出力するものであってもよいし、予測結果を示す画像データ、文字データまたはバイナリデータを含むデータファイルを出力するものであってもよいし、予測結果を示す画像データ、文字データまたはバイナリデータを、有線または無線のネットワークを介して他の装置に送信するものであってもよい。
 (操作部)
 操作部112は、予測装置100に対するユーザの操作を受け付ける。操作部112は、例えば、キーボード、マウス、トラックボール、タッチパッド(タッチパネルを含む)、光学センサ、音声入力のためのマイク等であり得る。
 (主制御部)
 主制御部120は、一つ以上のコンピュータによって構成されている。主制御部120が複数のコンピュータによって構成されている場合、複数のコンピュータは互いに有線または無線接続されており、主制御部120の機能を分担するものであってもよい。
 (学習モデル)
 学習モデル124としては、機械学習を行う学習モデルであって、仮想カメラによって対象化合物の構造モデルが複数の方向から撮像された複数の撮像画像を入力とし、当該対象化合物の活性の予測情報を出力とする学習モデルであることが好ましく、深層学習(Deep Learning)を行う学習モデルを用いることがより好ましく、例えば、AlexNet、CaffeNet、GoogLeNet、VGG net等の畳み込みニューラルネットワークを用いることができる。
 対象化合物の活性の予測情報としては、特に限定されないが、対象化合物が所望の活性を有している確率を示す情報、対象化合物が所望の活性を有しているか否かの予測結果を示す情報、対象化合物が所望の活性を有している可能性に対応するスコア等であり得る。
 また、一態様において、学習モデル124は、複数の学習モデルの組み合わせであってもよい。すなわち、学習モデル124は、仮想カメラによって対象化合物の構造モデルが複数の方向から撮像された複数の撮像画像を入力とし、特徴ベクトルを出力する第1の学習モデルと、特徴ベクトルを入力とし、当該対象化合物の活性の予測情報を出力とする第2の学習モデルとを組み合わせたものであってもよい。この場合、第1の学習モデルとしては、対象化合物の構造モデルが複数の方向から撮像された複数の撮像画像を入力とする学習モデルであればよいが、深層学習を行う学習モデルを用いることが好ましい。また、第2の学習モデルとしては、深層学習を行う学習モデルを用いてもよいし、深層学習を行わない学習モデル等を用いてもよい。
 (生成部)
 生成部121は、仮想カメラによって対象化合物または参照化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像(スナップショット)を生成する。図2は、本実施形態における画像生成の一例を概略的に説明する模式図である。図2に示すように、生成部121は、仮想空間に配置した対象化合物の構造モデル10を回転させ、仮想カメラによって相対的に複数の方向から撮像して撮像画像を生成する(図2の(a)~(c)に示す画像)。なお、生成部121は、構造モデル10を回転させる代わりに、仮想カメラを移動させることによって、構造モデル10に対して相対的に複数の方向から撮像してもよい。なお、本明細書において「撮像画像」とは、スナップショットとも称され、仮想空間に配置した構造モデルを仮想カメラによって撮像して得られる画像を意味し、当該画像と同一の内容の画像であれば、構造モデルを構築せずに座標データから直接算出した画像も含まれる。
 構造モデルの生成および仮想カメラによる撮像は、分子構造の三次元的な表示および仮想カメラによる撮像が可能な公知のソフトウェア(例えば、Jmol(http://jmol.sourceforge.net/)、VMD(http://www.ks.uiuc.edu/Research/vmd/)、UCSF Chimera(http://www.cgl.ucsf.edu/chimera/)、Rasmol(http://www.umass.edu/microbio/rasmol/)、PyMOL(http://www.pymol.org/)等)を用いることができる。
 一態様において、生成する撮像画像の画像ファイルは、例えば、RGB三色のドットの集合として入力され、二次元平面の位置情報と3種の色情報が数値化されているものであり得る。生成部121が生成する撮像画像のサイズは特に限定されず、対象化合物および参照化合物の大きさ等に応じて適宜調整すればよいが、例えば、128画素×128画素、256画素×256画素、512画素×512画素、1024画素×1024画素といったサイズとすることができる。また、色深度は、特に限定されず、例えば、1~64bppの範囲とすることができるが、好ましくは、8~32bppの範囲であり得る。
 図3は、本実施形態における画像生成の一例を詳細に説明する模式図である。図3では、構造モデル20を、Ball and Stick表示している。なお、Ball and Stick表示とは、原子を球で、結合を棒で示す表示である。ただし、本実施形態はこれに限定されず、構造モデルを、結合のみによって示すWireframe表示、原子によって空間を充填するSpacefill表示、水溶液に接する分子の表面を表示するSurface表示、タンパク質の構造を模式的に示すRibbons表示等によって表示してもよい。
 図3の(a)に示すように、構造モデル20には、原子21、結合22および水素原子23が含まれている。なお、原子21は、水素原子以外の原子を示す。一態様において、水素原子23は、構造モデル20に含めなくともよい。構造モデル20では、原子21の色は、当該原子の種類に応じて異なっているが、これに限定されず、原子21の色は同一であってもよいし、原子の種類を適宜グループ分けし、原子21の色は、当該原子が属するグループに応じて異なっているようにしてもよい。
 また、原子21の半径は特に限定されず、例えば、半径の上限を、Van der Waals半径の50%以下、40%以下、30%以下、20%以下、10%以下、5%以下、3%以下、1%以下とすることができ、半径の下限を、Van der Waals半径の0.1%以上、0.3%以上、0.7%以上、1%以上とすることができるが、0.1%以上30%以下とすることが好ましく、0.1%以上10%以下とすることがより好ましく、0.1%以上3%以下とすることが特に好ましい。
 また、結合22の太さは特に限定されず、例えば、太さの上限を、300ミリオングストローム以下、200ミリオングストローム以下、100ミリオングストローム以下、50ミリオングストローム以下、30ミリオングストローム以下、20ミリオングストローム以下とすることができ、太さの下限を、1ミリオングストローム以上、2ミリオングストローム以上、5ミリオングストローム以上、10ミリオングストローム以上とすることができるが、1ミリオングストローム以上、200ミリオングストローム以下とすることが好ましく、2ミリオングストローム以上、100ミリオングストローム以下とすることがより好ましく、2ミリオングストローム以上、30ミリオングストローム以下とすることが特に好ましい。
 そして、一態様において、生成部121は、仮想カメラを、構造モデル20に対して少なくとも1つの軸を中心に相対的に回転させながら構造モデル20を撮像する。軸としては、特に限定されないが、例えば、構造モデル20が配置された仮想空間のX軸、Y軸およびZ軸から選択される1つ以上の軸とすることができる。例えば、図3の(b)は、構造モデル20を、図3の(a)に示すX軸を中心に45度回転させて撮像した撮像画像を示し、図3の(c)は、構造モデル20を、図3の(a)に示すY軸を中心に45度回転させて撮像した撮像画像を示し、図3の(d)は、構造モデル20を、図3の(a)に示すX軸およびY軸に直交するZ軸を中心に45度回転させて撮像した撮像画像を示す。
 なお、回転角度は、特に限定されず、1度~180度の範囲の任意の角度、好ましくは、1度~90度の範囲の任意の角度、より好ましくは、1度~45度の任意の角度毎に撮像すればよく、撮像毎に回転角度を変更してもよいか、例えば、30度毎、45度毎、90度毎に撮像することができる。複数の軸を中心に回転させる場合には、各軸について取り得る角度を網羅するように撮像する。すなわち、X軸およびY軸を中心に90度毎に撮像する場合には、1化合物あたりの撮像画像数は4×4=16枚となる。また、X軸、Y軸およびZ軸を中心に45度毎に撮像する場合には、1化合物あたりの撮像画像数は8×8×8=512枚となる。このように網羅的に撮像することにより、あらゆる方向から視認した構造モデル20のスナップショットを撮影することができる。
 (学習部)
 学習部122は、公知の方法により、生成部121が生成した参照化合物の各撮像画像と当該参照化合物の活性との対応を学習モデル124に学習させる。一態様において、学習部122は、公知の深層学習アルゴリズムを用いて、学習モデル124に、生成部121が生成した参照化合物の各撮像画像と当該参照化合物の活性との対応を学習させる。学習部122は、例えば、Digits(NVIDIA社)等の公知の深層学習フレームワークを利用してもよい。
 (予測部)
 予測部123は、生成部121が生成した対象化合物の各撮像画像と当該対象化合物の活性との対応を学習した学習モデル124を用いて、生成部121が生成した対象化合物の各撮像画像から対象化合物の活性を予測する。予測部123は、例えば、Digits(NVIDIA社)等の公知の深層学習フレームワークを利用してもよい。
 一態様において、対象化合物の各撮像画像を入力したときの学習モデル124の出力が、対象化合物が所望の活性を有する確率を示す値である場合には、予測部123は、対象化合物の各撮像画像を入力したときの学習モデル124の各出力値の代表値(例えば、中央値、平均値、合計)を取得し、当該代表値を閾値と比較することにより、対象化合物が所望の活性を有しているか否かを予測することができる。
 閾値としては、任意の値を用いることができるが、学習済みの学習モデル124に対し、参照化合物の各撮像画像を入力したときの出力値をROC解析することによって算出した閾値を用いることが好ましい。
 (学習処理)
 図4は、本発明の一実施形態における学習処理の流れの一例を説明するフローチャートである。まず、操作部112による操作等により学習処理が開始されると、生成部121は、入力部110を介して、参照化合物の構造を示すデータおよび参照化合物の活性を示すデータを取得する(ステップS1)。続いて、生成部121は、ステップS1において入力されたデータのうち、未処理の参照化合物の構造を示すデータに基づいて、未処理の参照化合物の構造モデルを生成する(ステップS2)。続いて、生成部121は、仮想カメラによって、ステップS2において生成した参照化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する(ステップS3)。一態様において、生成部121は、ステップS3において、仮想カメラを、ステップS2において生成した構造モデルに対して少なくとも1つの軸を中心に相対的に回転させながら構造モデルを撮像することにより、複数の撮像画像を生成する。以上の処理が、ステップS1において入力されたデータに含まれる全ての参照化合物について完了した場合(ステップS4のyes)には、ステップS5に進み、完了していない場合(ステップS4のno)には、ステップS2に戻る。
 次に、学習部122が、公知の機械学習アルゴリズム(特に、深層学習アルゴリズム)によって、ステップS3において生成した参照化合物の各撮像画像と、ステップS1において入力された当該参照化合物の活性との対応を、学習モデル124に学習させる(ステップS5)。なお、学習部122が、Digitsを利用している場合、予め参照化合物に割り振った教師データ(例えば、所望の活性有り=1、無し=0)毎に異なるフォルダに撮像画像を格納することにより、ステップS5を好適に実行することができる。また、各撮像画像に対応する参照化合物の教師データを紐付けてもよい。ステップS5が、ステップS1において入力されたデータに含まれる全ての参照化合物について完了した場合(ステップS6のyes)には、学習処理を終了し、完了していない場合(ステップS6のno)には、ステップS5に戻る。
 以上により、予測装置100は、学習モデル124を、仮想カメラによって化合物の構造モデルが複数の方向から撮像された複数の撮像画像を入力とし、当該化合物の活性の予測情報を出力とする学習済みモデルとすることができる。
 (予測処理)
 図5は、本発明の一実施形態における予測処理の流れの一例を説明するフローチャートである。まず、操作部112による操作等により予測処理が開始されると、生成部121は、入力部110を介して、対象化合物の構造を示すデータを取得する(ステップS11)。続いて、生成部121は、ステップS11において入力されたデータのうち、未処理の対象化合物の構造を示すデータに基づいて、未処理の対象化合物の構造モデルを生成する(ステップS12)。続いて、生成部121は、仮想カメラによって、ステップS12において生成した対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する(ステップS13)。一態様において、生成部121は、ステップS3において、仮想カメラを、ステップS12において生成した構造モデルに対して少なくとも1つの軸を中心に相対的に回転させながら構造モデルを撮像することにより、複数の撮像画像を生成する。以上の処理が、ステップS11において入力されたデータに含まれる全ての対象化合物について完了した場合(ステップS14のyes)には、ステップS15に進み、完了していない場合(ステップS14のno)には、ステップS12に戻る。
 次に、予測部123が、学習モデル124に対して、ステップS13において生成した対象化合物の各撮像画像を入力し、学習モデル124からの出力を取得する。一実施形態において、学習モデル124からの出力が、対象化合物が所望の活性を有する確率を示す値である場合、予測部123は、1つの対象化合物の各撮像画像を入力したときの学習モデル124からの出力値の中央値を取得する(ステップS15)。そして、予測部123は、ステップS15において取得した中央値と、閾値とを比較することにより、対象化合物が所望の活性を有しているか否かを予測する(ステップS16)。ステップS15~S16が、ステップS11において入力されたデータに含まれる全ての対象化合物について完了した場合(ステップS17のyes)には、予測処理を終了し、完了していない場合(ステップS17のno)には、ステップS15に戻る。
 以上により、予測装置100は、対象化合物が所望の活性を有しているか否かを予測することができる。
 (本実施形態の効果)
 本実施形態によれば、多数の化合物について、実験することなく、薬効、毒性、酵素阻害活性等の活性を予測することができる。
 特に、本実施形態によれば、学習モデル124に対する入力が画像であることによって、鏡像異性体を識別可能となる。記述子を使用する従来法では、記述子では鏡像異性体間で同じ値を取るため、多様な化合物を使用する場合に鏡像異性体間の活性差を表現することが困難である。これに対し、本実施形態によれば、撮像画像には、鏡像異性体を識別するための情報が含まれているために、当該情報も学習モデル124によるパターン認識に使用され、鏡像異性体を識別可能となる。鏡像異性体間で異なる生理活性を有する事例は普遍的であるので、本実施形態は非常に有用である。
 また、学習モデル124において、深層学習を行う学習モデルを用いることにより、偏ったデータに対応可能である。すなわち、入力する参照化合物の所望の活性の有無の比率が、例えば、1対10のような極端な比率であっても良好な精度を得ることができる。一方、従来法では、データにおける活性の有無の比率が1:1程度で最も良好な精度のモデルが構築できるが、偏りのあるデータの取扱いは困難である。毒性等は、一部の化合物のみが活性を示すため、本実施形態は非常に有用である。
 また、本実施形態によれば、学習モデル124に対する入力が、構造モデルを複数の方向から撮像した撮像画像であることによって、対象化合物の構造を網羅的に示す情報を含むデータを学習モデルに入力することができ、対象化合物の活性を好適に予測することができる。特に、学習モデル124に対する入力が、構造モデルを、一つ以上の軸を中心に仮想カメラを相対的に回転させながら撮像した撮像画像とすることによって、対象化合物の構造をより網羅的に示す情報を含むデータを学習モデルに入力することができ、対象化合物の活性をより好適に予測することができる。
 また、構造モデルにおける原子および結合のサイズを上述したように規定することにより、外側の原子または結合によって内側の原子または結合が隠されることを抑制し、撮像画像に内側の原子または結合に関する情報を含ませることができる。これにより、活性を好適に予測することができる。
 また、構造モデルにおける原子の色を、原子の種類によって異ならせることにより、撮像画像に原子の種類に関する情報を含ませることができる。これにより、活性を好適に予測することができる。
 〔変形例〕
 上述した実施形態では、予測部123は、学習モデル124を用いて、各撮像画像の夫々について、当該撮像画像の対象化合物が所望の活性を有するか否かを予測し、その結果を統合して、対象化合物の活性を予測しているが、本発明はこれに限定されない。例えば、学習部122は、学習モデル124に、参照化合物の各撮像画像を一体化したデータと、当該参照化合物の活性との対応を学習させ、予測部123は、学習モデル124に、対象化合物の各撮像画像を一体化したデータを入力し、当該対象化合物の活性を予測するようにしてもよい。
 また、上述した実施形態では、予測部123が、学習モデル124の各出力値の代表値を閾値と比較することにより、対象化合物の活性を予測しているが、本発明はこれに限定されない。例えば、学習部122は、別の学習モデルに、参照化合物の各撮像画像を入力したときの学習モデル124の出力値と、当該参照化合物の活性との対応を学習させ、予測部123は、学習モデル124の各出力値を当該別の学習モデルに入力することにより、当該対象化合物の活性を予測するようにしてもよい。
 以上のように、本発明は、一態様において、仮想カメラによって対象化合物の構造モデルを相対的に複数の方向から撮像した複数の撮像画像を学習モデルに入力し、その出力に基づいて対象化合物の活性を予測することをポイントとするものであり、その他の構成については様々な態様を取り得る。
 〔ソフトウェアによる実現例〕
 予測装置100の制御ブロック(主制御部120、特に生成部121、学習部122および予測部123)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、予測装置100は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る予測装置(100)は、対象化合物の構造に基づいて、前記対象化合物の活性を予測する予測装置であって、仮想カメラによって前記対象化合物の構造モデル(10、20)に対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部(121)と、学習モデル(124)を用いて前記生成部が生成した前記複数の撮像画像から前記対象化合物の活性を予測する予測部(123)と、を備えている。上記の構成によれば、対象化合物の構造に基づいて、記述子の組み合わせを選択することなく、対象化合物の活性を好適に予測することができる。また、学習モデルに対する入力が画像であることによって、鏡像異性体を識別可能となる。
 本発明の態様2に係る予測装置は、上記態様1において、前記予測部は、少なくとも、機械学習を行う学習モデルであって、前記複数の撮像画像を入力とする学習モデルを用いてもよい。上記の構成によれば、対象化合物の活性を好適に予測することができる。
 本発明の態様3に係る予測装置は、上記態様1または2において、前記生成部は、前記仮想カメラを、前記構造モデルに対して少なくとも1つの軸を中心に相対的に回転させながら前記構造モデルを撮像してもよい。上記の構成によれば、対象化合物の構造を網羅的に示す撮像画像を生成することができるため、活性を好適に予測することができる。
 本発明の態様4に係る予測装置は、上記態様1~3において、前記構造モデルでは、前記対象化合物の原子(21)の色は、当該原子の種類に応じて異なってもよい。上記の構成によれば、対象化合物の原子の種類を示す情報を含む撮像画像を生成することができるため、活性を好適に予測することができる。
 本発明の態様5に係る予測方法は、対象化合物の構造に基づいて、前記対象化合物の活性を予測する予測方法であって、コンピュータが、仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成ステップと、コンピュータが、学習モデルを用いて前記生成ステップにおいて生成された前記複数の撮像画像から前記対象化合物の活性を予測する予測ステップと、を包含する。上記の構成によれば、上記態様1と同等の効果を奏する。
 本発明の各態様に係る予測装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記予測装置が備える各部(ソフトウェア要素)として動作させることにより上記予測装置をコンピュータにて実現させる予測装置の予測プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明の態様7に係る学習モデル入力データ生成装置(100)は、学習モデルの入力データを生成する学習モデル入力データ生成装置であって、前記学習モデルは、仮想カメラによって対象化合物の構造モデルが相対的に複数の方向から撮像された複数の撮像画像を入力とし、当該対象化合物の活性の予測情報を出力とする学習モデル(124)であり、仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部(121)を備えている。上記の構成によれば、上記態様1と同等の効果を奏する。
 本発明の各態様に係る学習モデル入力データ生成装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記学習モデル入力データ生成装置が備える各部(ソフトウェア要素)として動作させることにより上記学習モデル入力データ生成装置をコンピュータにて実現させる学習モデル入力データ生成装置の学習モデル入力データ生成プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 〔実施例1〕
 Tox21DataChallenge2014のサイト(https://tripod.nih.gov/tox21/challenge/data.jsp)において公開された7320種類の化合物に基づく学習用データ、および、学習用データの化合物とは重複しない543種類の化合物に基づくテスト用データを用いて、本発明の一態様を実施した。予測対象の所望の活性は、ミトコンドリア膜電位攪乱活性とした。
 まず、Jmol(http://jmol.sourceforge.net/)を利用し、SDFファイルに基づいて化合物の構造モデルを生成し、各構造モデルに対し、X軸、Y軸、Z軸それぞれを中心に45度刻みで回転させて撮像した512枚の撮像画像(スナップショット、サイズ:512×512、24bpp)を生成するプログラム(学習モデル入力データ生成プログラム)を作成した。当該プログラムを実行し、学習用データのSDFファイルを入力し、各化合物についての撮像画像を生成した。各化合物の撮像画像は、当該化合物がミトコンドリア膜電位攪乱活性を有するか否かに応じた所定のフォルダに格納し、Digits(NVIDIA社)を用いて未改変のAlexNet(トロント大学)を学習させた。学習では、Digitsの設定を、学習率=0.001、epoch=1とした。epochは、1つの学習用データを繰り返して学習させる回数を示す。
 さらに、テスト用データを用いて、外部検証法によって予測性能を確認した。具体的には、前記プログラムを実行し、テスト用データのSDFファイルを入力し、各化合物についての撮像画像を生成した。各化合物の撮像画像を、学習済みのAlexNetに入力し、出力値の中央値を取得し、ROC解析を行った。その結果を図6に示す。図6に示すように、ROC曲線下面積(AUC)は、0.909であり、0.9以上の高値となった。なお、ここで用いたデータセットは2014年にNIHによって開催された「Tox21 data challenge 2014」に使用されたものと同一であり、AlexNetを調整していないにもかかわらず、上記のAUC値はコンペティションの上位10位と同等の成績となった。
 〔実施例2〕
 Digitsの設定を、学習率=0.0001、epoch=8に変更した以外は実施例1と同様に、本発明の一態様を実施した。その結果、図7に示すように、ROC_AUC値は、実施例1の0.909から0.92122に向上した。AlexNetを調整していないにもかかわらず、上記のAUC値は「Tox21 data challenge 2014」の上位10位以内の成績となった。
 〔実施例3〕
 文献(Derivation and Validation of Toxicophores for Mutagenicity Prediction. J. Med. Chem. 2005, 48, 312-320.)の付録資料から取得した、総計4337化合物の立体構造(SDFファイル形式)と、各化合物に対するAMES試験結果(陽性又は陰性)とを用いて、本発明の一態様を実施した。予測対象の所望の活性は、変異原性(AMES試験結果)とした。詳細には、以下の手順で試験を行った。
 まず、総計4337化合物を、予測モデルの学習用の化合物群(4137化合物)と、予測結果の外部検証用の化合物群(200化合物)とに分割した。そして、Jmol(http://jmol.sourceforge.net/)を利用し、学習用の化合物群のSDFファイルに基づいて化合物の構造モデルを生成し、各構造モデルに対し、X軸、Y軸、Z軸それぞれを中心に45度刻みで回転させて撮像した512枚の撮像画像(スナップショット、サイズ:512×512、24bpp)を生成するプログラム(学習モデル入力データ生成プログラム)を実行し、各化合物についての撮像画像を生成した。各化合物の撮像画像は、当該化合物のAMES試験の結果が陽性であったか陰性であったかに応じた所定のフォルダに格納し、Digits(NVIDIA社)を用いて未改変のAlexNet(トロント大学)を学習させた。学習では、Digitsの設定を、学習率=0.001、epoch=10とした。
 続いて、外部検証法によって予測性能を確認した。具体的には、前記プログラムを実行し、外部検証用の化合物群のSDFファイルを入力し、各化合物についての撮像画像を生成した。各化合物の撮像画像を、学習済みのAlexNetに入力し、1分子当たり512画像の陽性確率予測結果の平均値を算出した。すなわち、200分子に対して化合物毎の陽性確率平均値を算出した。そして、上記文献から取得したAMES試験の実験結果(陽性または陰性)と、算出した化合物毎の陽性確率平均値を用いて、ROC解析を行った。その結果を図8に示す。図8に示すように、ROC曲線下面積(AUC)は、0.857であった。
 本実施例によって得られたROC-AUC値(0.857)は、現在使用されている記述子を用いた、一般的な機械学習によるQSAR識別モデルと比較しても、本方法が良好な汎化性能を有していることを示している。例えば、AMES試験のQSAR解析による予測結果を、ROC-AUC値によって評価している近年の論文(Benchmark Data Set for in Silico Prediction of Ames Mutagenicity, J. Chem. Inf. Model., 2009, 49 (9), pp 2077-2081、In silico Prediction of Chemical Ames Mutagenicity, J. Chem. Inf. Model., 2012, 52 (11), pp 2840-2847)では、最良値として0.86が報告されている。当該論文では、検証は5分割交差検証で行われており、5分割交差検証は外部検証と比較して過学習を引き起こす可能性が高く、一般に外部検証よりも良好な結果を与えることを考慮すれば、実施例3で得られたAUC値は、上記論文の最良値に匹敵している。
 本発明は、化合物の毒性や活性等を予測するために利用することができる。
 10、20:構造モデル   21:原子   22:結合   23:水素原子
 100:予測装置(学習モデル入力データ生成装置)   121:生成部
 122:学習部   123:予測部   124:学習モデル

Claims (8)

  1.  対象化合物の構造に基づいて、前記対象化合物の活性を予測する予測装置であって、
     仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部と、
     学習モデルを用いて前記生成部が生成した前記複数の撮像画像から前記対象化合物の活性を予測する予測部と、を備えていることを特徴とする予測装置。
  2.  前記予測部は、少なくとも、機械学習を行う学習モデルであって、前記複数の撮像画像を入力とする学習モデルを用いることを特徴とする請求項1に記載の予測装置。
  3.  前記生成部は、前記仮想カメラを、前記構造モデルに対して少なくとも1つの軸を中心に相対的に回転させながら前記構造モデルを撮像することを特徴とする請求項1または2に記載の予測装置。
  4.  前記構造モデルでは、前記対象化合物の原子の色は、当該原子の種類に応じて異なることを特徴とする請求項1~3の何れか一項に記載の予測装置。
  5.  対象化合物の構造に基づいて、前記対象化合物の活性を予測する予測方法であって、
     コンピュータが、仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成ステップと、
     コンピュータが、学習モデルを用いて前記生成ステップにおいて生成された前記複数の撮像画像から前記対象化合物の活性を予測する予測ステップと、を包含することを特徴とする予測方法。
  6.  請求項1~4の何れか一項に記載の予測装置としてコンピュータを機能させるための予測プログラムであって、上記生成部および上記予測部としてコンピュータを機能させるための予測プログラム。
  7.  学習モデルの入力データを生成する学習モデル入力データ生成装置であって、
     前記学習モデルは、仮想カメラによって対象化合物の構造モデルが相対的に複数の方向から撮像された複数の撮像画像を入力とし、当該対象化合物の活性の予測情報を出力とする学習モデルであり、
     仮想カメラによって前記対象化合物の構造モデルに対して相対的に複数の方向から撮像して複数の撮像画像を生成する生成部を備えていることを特徴とする学習モデル入力データ生成装置。
  8.  請求項7に記載の学習モデル入力データ生成装置としてコンピュータを機能させるための学習モデル入力データ生成プログラムであって、上記生成部としてコンピュータを機能させるための学習モデル入力データ生成プログラム。
PCT/JP2018/024835 2017-06-30 2018-06-29 予測装置、予測方法、予測プログラム、学習モデル入力データ生成装置および学習モデル入力データ生成プログラム WO2019004437A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18824219.2A EP3627404B1 (en) 2017-06-30 2018-06-29 Chemical compound activity predicting device, predicting method and program
CN201880044194.1A CN110809800B (zh) 2017-06-30 2018-06-29 预测装置、预测方法、预测程序、学习模型输入数据生成装置和学习模型输入数据生成程序
US16/698,129 US20200098450A1 (en) 2017-06-30 2019-11-27 Predicting device, predicting method, predicting program, learning model input data generating device, and learning model input data generating program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-129823 2017-06-30
JP2017129823 2017-06-30
JP2018122565A JP7201981B2 (ja) 2017-06-30 2018-06-28 予測装置、予測方法および予測プログラム
JP2018-122565 2018-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/698,129 Continuation US20200098450A1 (en) 2017-06-30 2019-11-27 Predicting device, predicting method, predicting program, learning model input data generating device, and learning model input data generating program

Publications (1)

Publication Number Publication Date
WO2019004437A1 true WO2019004437A1 (ja) 2019-01-03

Family

ID=64741584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024835 WO2019004437A1 (ja) 2017-06-30 2018-06-29 予測装置、予測方法、予測プログラム、学習モデル入力データ生成装置および学習モデル入力データ生成プログラム

Country Status (1)

Country Link
WO (1) WO2019004437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229973A1 (ja) * 2020-05-14 2021-11-18 コニカミノルタ株式会社 情報処理装置、プログラム及び情報処理方法
CN114846508A (zh) * 2019-12-16 2022-08-02 富士胶片株式会社 图像分析装置、图像分析方法及程序

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526281A (en) * 1993-05-21 1996-06-11 Arris Pharmaceutical Corporation Machine-learning approach to modeling biological activity for molecular design and to modeling other characteristics
US20040009536A1 (en) 2001-07-30 2004-01-15 George Grass System and method for predicting adme/tox characteristics of a compound
US20040199334A1 (en) 2001-04-06 2004-10-07 Istvan Kovesdi Method for generating a quantitative structure property activity relationship
US7702467B2 (en) 2004-06-29 2010-04-20 Numerate, Inc. Molecular property modeling using ranking
US7751988B2 (en) 2003-10-14 2010-07-06 Verseon Lead molecule cross-reaction prediction and optimization system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526281A (en) * 1993-05-21 1996-06-11 Arris Pharmaceutical Corporation Machine-learning approach to modeling biological activity for molecular design and to modeling other characteristics
US20040199334A1 (en) 2001-04-06 2004-10-07 Istvan Kovesdi Method for generating a quantitative structure property activity relationship
US20040009536A1 (en) 2001-07-30 2004-01-15 George Grass System and method for predicting adme/tox characteristics of a compound
US7751988B2 (en) 2003-10-14 2010-07-06 Verseon Lead molecule cross-reaction prediction and optimization system
US7702467B2 (en) 2004-06-29 2010-04-20 Numerate, Inc. Molecular property modeling using ranking

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Benchmark Data Set for in Silico Prediction of Ames Mutagenicity", J. CHEM. INF. MODEL., vol. 49, no. 9, 2009, pages 2077 - 2081
"Derivation and Verification of Toxicophores for Mutagenicity Prediction", J. MED. CHEM., vol. 48, 2005, pages 312 - 320
"In silico Prediction of Chemical Ames Mutagenicity", J. CHEM. INF. MODEL., vol. 52, no. 11, 2012, pages 2840 - 2847
MA, J. S.: "Deep neural nets as a method for quantitative structure-activity relationships", JOURNAL OF CHEMICAL INFORMATION AND MODELING, vol. 55, 30 January 2015 (2015-01-30), pages 263 - 274, XP055568997 *
NETZEVA, T. I.: "Current status of methods for defining the applicability domain of (quantitative) Structure-Activity Relationships", THE REPORT AND RECOMMENDATIONS OF ECVAM WORKSHOP, vol. 52, 2005, pages 1 - 19, XP055569006 *
See also references of EP3627404A4 *
TONG, W. D.: "Evaluation of quantitative structure- activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor", JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, vol. 38, 20 May 1998 (1998-05-20), pages 669 - 677, XP055569001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846508A (zh) * 2019-12-16 2022-08-02 富士胶片株式会社 图像分析装置、图像分析方法及程序
WO2021229973A1 (ja) * 2020-05-14 2021-11-18 コニカミノルタ株式会社 情報処理装置、プログラム及び情報処理方法

Similar Documents

Publication Publication Date Title
JP7201981B2 (ja) 予測装置、予測方法および予測プログラム
Xiong et al. Transferable two-stream convolutional neural network for human action recognition
JP7085062B2 (ja) 画像セグメンテーション方法、装置、コンピュータ機器およびコンピュータプログラム
AU2018250385B2 (en) Motor task analysis system and method
Siena et al. Utilising the intel realsense camera for measuring health outcomes in clinical research
US11747898B2 (en) Method and apparatus with gaze estimation
Cheng et al. Recognizing human group action by layered model with multiple cues
Lockhart et al. The benefits of personalized smartphone-based activity recognition models
JP2018116599A (ja) 情報処理装置、情報処理方法およびプログラム
CN113939844A (zh) 基于多分辨率特征融合的用于在显微镜图像上检测组织病变的计算机辅助诊断系统
Coroiu et al. Interchangeability of kinect and orbbec sensors for gesture recognition
WO2019004437A1 (ja) 予測装置、予測方法、予測プログラム、学習モデル入力データ生成装置および学習モデル入力データ生成プログラム
CN109215785A (zh) 用于姿势稳定性评估的方法和系统
EP4191540A1 (en) 3d data system and 3d data generation method
Jin et al. Attention guided deep features for accurate body mass index estimation
Büsch et al. Towards recognition of human actions in collaborative tasks with robots: extending action recognition with tool recognition methods
JP2022100238A (ja) 人の姿勢に基づきマルチカメラシステムを較正する方法及び機器
WO2021173826A1 (en) Systems and methods for screening and staging of pneumoconiosis
US20230027320A1 (en) Movement Disorder Diagnostics from Video Data Using Body Landmark Tracking
JP7446338B2 (ja) 顔と手との関連度の検出方法、装置、機器及び記憶媒体
Yu et al. A survey of sensor modalities for human activity recognition
Azhar et al. Real-time dynamic and multi-view gait-based gender classification using lower-body joints
Paul et al. EchoTrace: A 2D Echocardiography Deep Learning Approach for Left Ventricular Ejection Fraction Prediction
Cortés et al. Asymmetry Level in Cleft Lip Children Using Dendrite Morphological Neural Network
KR20200057813A (ko) 복수 개의 낱알을 식별하는 방법 및 그 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824219

Country of ref document: EP

Effective date: 20191219