WO2019004371A1 - Method for synthesizing organic zinc compound - Google Patents

Method for synthesizing organic zinc compound Download PDF

Info

Publication number
WO2019004371A1
WO2019004371A1 PCT/JP2018/024644 JP2018024644W WO2019004371A1 WO 2019004371 A1 WO2019004371 A1 WO 2019004371A1 JP 2018024644 W JP2018024644 W JP 2018024644W WO 2019004371 A1 WO2019004371 A1 WO 2019004371A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
sodium
organic
reaction
Prior art date
Application number
PCT/JP2018/024644
Other languages
French (fr)
Japanese (ja)
Inventor
村上吉明
福島美幸
高井和彦
浅子壮美
Original Assignee
株式会社神鋼環境ソリューション
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション, 国立大学法人岡山大学 filed Critical 株式会社神鋼環境ソリューション
Priority to JP2018548232A priority Critical patent/JP6449527B1/en
Publication of WO2019004371A1 publication Critical patent/WO2019004371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/06Zinc compounds

Definitions

  • the present invention relates to a process for the synthesis of organozinc compounds.
  • Organic zinc compounds are used as important intermediates in organic synthesis reactions of functional materials such as pharmaceuticals and agricultural chemicals and electronic materials, and intermediates thereof.
  • functional materials such as pharmaceuticals and agricultural chemicals and electronic materials, and intermediates thereof.
  • Negishi coupling is known in which the organic zinc compound and the organic halide are coupled in the presence of a palladium catalyst or the like.
  • the synthesis of the organozinc compound is carried out by an oxidative addition method in which an organic halide (RX) is directly reacted with metallic zinc (Zn), an organolithium compound (R-Li) or a Grignard reagent (R-MgBr, etc.) R- metal exchange method of reacting a MgX) to zinc halides and zinc chloride (ZnX 2) are known (e.g., see non-Patent Document 1).
  • an aryl halide is reacted with zinc and lithium chloride in the presence of a cobalt catalyst coordinated with xanthophos to obtain an arylzinc compound (for example, non-patent literature) 2).
  • the oxidative addition method is by the following reaction (RX + Zn ⁇ R-ZnX).
  • RX + Zn ⁇ R-ZnX the oxidative addition method
  • functional groups that can be used as organic halides, such as the inability to convert organic chlorides and the like to organic zinc compounds.
  • activated zinc it is necessary to prepare activated zinc in advance by causing zinc chloride to act as a reducing agent such as lithium metal, potassium metal, etc. in THF under argon atmosphere.
  • activated zinc is very expensive and has problems such as increased cost.
  • n BuLi n-butyllithium
  • t BuLi t-butyllithium
  • n BuLi and t BuLi are expensive reagents, there are problems such as an increase in cost. Furthermore, n BuLi and t BuLi are designated as Class 3 dangerous materials under the Fire Service Law, so there is a problem that equipment and facilities suitable for handling are required.
  • a Grignard reagent is obtained by reacting an organic halide and metal magnesium in an anhydrous solvent such as ether
  • the Grignard reagent is an active reagent which exhibits strong basicity, so oxygen, dioxide Reacts quickly with carbon and water. Therefore, it is necessary to strictly control the preparation and storage of the Grignard reagent so that air and moisture do not enter.
  • n BuLi or t BuLi also necessary to manage the same in the case of using the activated zinc.
  • an organic bromide is suitably used as an organic halide, in which case the following two-step reaction (first step: R-Br + Mg ⁇ R-MgBr, second step: R- Proceed with MgBr + ZnCl 2 ⁇ R-ZnX).
  • first step: R-Br + Mg ⁇ R-MgBr second step: R- Proceed with MgBr + ZnCl 2 ⁇ R-ZnX.
  • bromine is in limited use in areas where it is mined, has high toxicity, has human persistence, etc., and therefore its use is decreasing. For this reason, the amount of circulation decreases, and it tends to be difficult to obtain the desired organic bromide.
  • organozinc compound obtained after the reaction with zinc chloride is mixed not only with the desired organozinc chloride (R-ZnCl) but also with the by-product organozinc bromide (R-ZnBr).
  • organozinc chloride R-ZnCl
  • R-ZnBr organozinc bromide
  • the present inventors reacted a dispersion obtained by dispersing an organic halide and sodium in a dispersion solvent in a reaction solvent to obtain an organic sodium compound, and subsequently obtained It has been found that the organic zinc compound can be efficiently synthesized by reacting the selected organic sodium compound with zinc chloride. Such synthetic methods do not require difficult-to-handle and toxic reagents, and can synthesize organozinc compounds under mild conditions. In addition, the organic zinc compound can be inexpensively synthesized with a small number of steps without requiring complicated and expensive synthetic treatment steps, waste treatment steps and the like. The present inventors have completed the present invention based on these findings.
  • the present invention relates to a method for synthesizing an organozinc compound, the characteristic feature of which is that, in a reaction solvent, a compound of the general formula I (R 1 -X 1 ) [wherein R 1 is sodium and It is an aliphatic hydrocarbon group which may have a substituent which does not react, an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic hydrocarbon group, or an aromatic heterocyclic group, and X 1 is And a dispersion in which sodium is dispersed in a dispersion solvent are reacted with a compound represented by the general formula II (R 1 -Na) [wherein, R 1 is a general formula An organosodium compound shown in R 1 of I is obtained, and the obtained organosodium compound is reacted with zinc chloride to obtain a compound represented by the general formula III (R 1 -Zn-X 2 ) [wherein wherein, R 1 is the same as R 1 in formula I, X 2 has Cl
  • this configuration it is possible to provide a method for synthesizing an organozinc compound capable of stably and efficiently synthesizing an organozinc compound from an organohalide via an organosodium compound.
  • a dispersion in which sodium is easy to handle and dispersed in a dispersion solvent a complicated chemical method is not required under mild conditions, and the number of steps is simple and short.
  • the organic zinc compounds can be synthesized inexpensively, which is very advantageous economically and industrially.
  • an organosodium compound can be efficiently obtained without inducing a side reaction such as a wurtz reaction in which organic halides are coupled to each other.
  • the organozinc compound synthesized by the method for synthesizing the organozinc compound of the present configuration can be suitably used for Negishi coupling and the like. Therefore, the synthesis method of the organozinc compound of this configuration can be used in various technical fields such as synthesis of functional materials such as medicines and pesticides and electronic materials.
  • X 1 is a chlorine atom.
  • the dispersion in which the sodium is dispersed in the dispersion solvent has a yield of phenyl sodium relative to the chlorobenzene added when the reaction is carried out with a reaction solvent at a concentration of at least 2.1 molar equivalents relative to chlorobenzene. It has an activity of 99.0% or more.
  • the organic zinc compound can be synthesized more efficiently by using a dispersion in which highly active sodium is dispersed in a dispersion solvent.
  • the molar ratio of the organic halide: the dispersion of the sodium dispersed in the dispersion solvent: the zinc chloride is 1: 2 or more and 3 or less when X 2 in the general formula III is Cl: 1.
  • X 2 in the general formula III is R 1 , it is in the range of 1: 2 to 3: 1.
  • the organic zinc compound is synthesized with higher efficiency and high purity by optimizing the use amount of the organic halide, the dispersion in which sodium is dispersed in the dispersion solvent, and zinc chloride.
  • Example 1 It is a figure which summarizes the synthetic conditions and the result of Example 1 which examined the synthesis method of the organozinc compound concerning this embodiment. It is a figure which summarizes the synthetic
  • a dispersion obtained by dispersing sodium in an organic halide represented by the general formula I (R 1 -X 1 ) in a dispersion solvent is reacted in a reaction solvent, An organosodium compound of formula II (R 1 -Na) is obtained (step 1). Subsequently, the obtained organosodium compound is reacted with zinc chloride to obtain an organozinc compound represented by the general formula III (R 1 -Zn-X 2 ) (Step 2).
  • Step 1 a dispersion in which an organic halide represented by the general formula I (R 1 -X 1 ) and sodium are dispersed in a dispersion solvent is reacted in a reaction solvent to obtain a compound represented by general formula II (R 1 -Na) It is a process of obtaining the organic sodium compound shown.
  • the organic halide represented by the general formula I (R 1 -X 1 ) is an organic compound containing a covalently bonded halogen atom, and is a starting compound in the method of synthesizing the organozinc compound according to the embodiment of the present invention.
  • R 1 is an aliphatic hydrocarbon group which may have a substituent which does not react with sodium, an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic group A group hydrocarbon group or an aromatic heterocyclic group.
  • R 1 has a substituent having reactivity with sodium, it is not preferable because a dispersion obtained by dispersing the substituent and sodium in a dispersion solvent reacts to induce a side reaction. Therefore, when a compound having a substituent having reactivity with sodium as R 1 is used as a starting compound, it is necessary to protect the substituent with a suitable protecting group or the like.
  • the aliphatic hydrocarbon group may be linear or branched or saturated or unsaturated. Moreover, there is no restriction
  • alkyl group methyl group, ethyl group, propyl group, butyl group, methyl group, ethyl group, propyl group, isopropyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group Group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, s-pentyl group, 2-methylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, isohexyl group, neohexyl group T-Hexyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 1-propylpropyl, n-heptyl, iso
  • alkenyl group examples include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like, but are not limited thereto.
  • alkynyl group examples include, but are not limited to, ethynyl group, propynyl group, butynyl group, pentynyl group, heptynyl group, octynyl group and the like.
  • the aliphatic hydrocarbon group may have a substituent.
  • the substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other.
  • an aliphatic hydrocarbon group the thing similar to the thing shown above is shown below as an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. And the same as the
  • the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, and specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group and the like. It is not limited to these.
  • the cycloalkoxy group is preferably a cyclopropoxy group having a carbon number of 3 to 10, and examples thereof include a cyclobutoxy group, a cyclopentyloxy group and a cyclohexyloxy group.
  • the aryloxy group is preferably an aryloxy group having a carbon number of 6 to 20.
  • the aralkyloxy group is preferably an aralkyloxy group having 7 to 11 carbon atoms, and specific examples thereof include a benzyloxy group and a phenethyloxy group.
  • the alicyclic heterocyclic oxy group and the aromatic heterocyclic oxy group include an alicyclic heterocyclic group and an aromatic heterocyclic group which are shown below as a heterocyclic part.
  • the alkylthio group is preferably an alkylthio group having 1 to 20 carbon atoms, and examples thereof include, but not limited to, methylthio, ethylthio, propylthio, butylthio, pentylthio, hexylthio and the like.
  • the cycloalkylthio group is exemplified by a cycloalkylthio group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopropylthio group, a cyclobutylthio group, a cyclopentylthio group and a cyclohexylthio group. It is not limited.
  • the arylthio group is preferably an arylthio group having a carbon number of 6 to 20. Specific examples thereof include, but are not limited to, a phenylthio group, a naphthylthio group and the like.
  • the aralkylthio group is preferably, for example, an aralkylthio group having 7 to 11 carbon atoms, and specific examples thereof include, but are not limited to, a benzylthio group, a phenethylthio group and the like.
  • the alicyclic heterocyclic thio group and the aromatic heterocyclic thio group include an alicyclic heterocyclic group and an aromatic heterocyclic group which are shown below as a heterocyclic part.
  • the alicyclic hydrocarbon group is not particularly limited in the number of ring members, regardless of whether the bond between the ring constituting atoms is saturated or unsaturated. In addition, those having a ring assembly such as a fused ring or a spiro ring as well as a single ring are included.
  • the alicyclic hydrocarbon group is not limited thereto, but is preferably a cycloalkyl group having 3 to 10 carbon atoms, particularly preferably 3 to 7 carbon atoms, and a cycloalkenyl group, preferably a carbon atom Several 4 to 10, particularly preferably 4 to 7 cycloalkenyl groups are exemplified.
  • cycloalkyl group examples include, but are not limited to, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like.
  • cycloalkenyl groups include, but are not limited to, cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, cyclooctenyl group and the like.
  • the alicyclic hydrocarbon group may have a substituent.
  • the substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group.
  • the alicyclic heterocyclic group is a non-aromatic heterocyclic group having one or more hetero atoms as ring-constituting atoms.
  • a ring assembly such as a fused ring or a spiro ring are also included.
  • the bonds between the ring-constituting atoms are either saturated or unsaturated, and the number of ring members is not particularly limited.
  • the hetero atom is not particularly limited as long as it does not react with sodium as a ring member atom.
  • the number of heteroatoms is not particularly limited, and there is no limitation on the position of heteroatoms.
  • a hetero atom Preferably, an oxygen atom, a nitrogen atom, a sulfur atom etc.
  • it has a plurality of hetero atoms it may be the same type of atoms or different types of atoms.
  • a nitrogen-containing alicyclic heterocyclic group such as a monocyclic 4-membered azetidinyl group, a 5-membered cyclic pyrrolidinyl group, a 6-membered cyclic piperidyl group, a piperazinyl group, etc.
  • Oxygen-containing alicyclic heterocyclic groups such as three-membered cyclic oxiranyl ring, four-membered oxetanyl group, five-membered tetrahydrofuryl group, six-membered tetrahydropyranyl group, etc., single ring Sulfur-containing alicyclic heterocyclic group such as 5-membered cyclic tetrahydrothiophenyl group, nitrogen-containing oxygen alicyclic heterocyclic group such as monocyclic 6-membered cyclic morpholinyl group, monocyclic 6-membered ring Although nitrogen-containing sulfur alicyclic heterocyclic group etc., such as a thiomorpholinyl group, etc. are mentioned, it does not limit to these.
  • the alicyclic heterocyclic ring may have a substituent.
  • the substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group.
  • the aromatic hydrocarbon group is not particularly limited as long as it has an aromatic ring.
  • those having a ring assembly such as a fused ring or a spiro ring are also included.
  • the number of ring members is also not particularly limited.
  • aromatic hydrocarbon groups having preferably 6 to 22 and particularly preferably 6 to 14 carbon atoms can be mentioned.
  • aromatic hydrocarbon group monocyclic 6-membered ring phenyl group, etc., bicyclic naphthyl group, pentalenyl group, indenyl group, azulenyl group etc., tricyclic biphenylenyl group, indasenyl group, acenaphthyrenyl group, fluorenyl group Group, phenalenyl group, phenanthryl group, anthryl group etc., tetracyclic fluorantenyl, aceanthrenyl group, triphenylenyl group, pyrenyl group, naphthacenyl group etc., pentacyclic perylenyl group, tetraphenylenyl etc., hexacyclic Examples thereof include pentacenyl group of the formula, heptacyclic rubicenyl group, coronenyl group, heptacenyl group and the like, but not limited thereto. Particularly preferred
  • the aromatic hydrocarbon group may have a substituent.
  • the substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group. Particularly preferred is an alkyl group such as a normal nonyl group.
  • the aromatic heterocyclic group is an aromatic heterocyclic group having one or more hetero atoms as ring-constituting atoms. In addition to single rings, those having a ring assembly such as a fused ring or a spiro ring are also included.
  • the number of ring members is also not particularly limited.
  • the hetero atom is not particularly limited as long as it does not react with sodium as a ring member atom.
  • the number of heteroatoms is not particularly limited, and there is no limitation on the position of heteroatoms.
  • a hetero atom Preferably, an oxygen atom, a nitrogen atom, a sulfur atom etc. are illustrated.
  • an aromatic heterocyclic group in which the number of carbon atoms is preferably 1 to 5, particularly preferably 3 to 5, and the number of hetero atoms is preferably 1 to 4, particularly preferably 1 to 3 is It can be mentioned.
  • it when it has a plurality of hetero atoms, it may be the same type of atoms or different types of atoms.
  • a nitrogen-containing aromatic ring such as a 5-membered cyclic pyrrolyl group, pyrazolyl group, pyridyl group, imidazolyl group, etc., a 6-membered cyclic pyrazinyl group, pyrimidinyl group, pyridazinyl group, etc.
  • oxygen-containing aromatic heterocyclic group such as 5-membered cyclic furyl group
  • oxygen-containing aromatic heterocyclic group such as 5-membered cyclic thienyl group
  • 5-membered cyclic oxazolyl group isoxazolyl group
  • nitrogen-containing oxygen aromatic heterocyclic groups such as frazanyl groups
  • nitrogen-containing sulfur aromatic heterocyclic groups such as 5-membered cyclic thiazolyl groups and isothiazolyl groups, but are not limited thereto.
  • bicyclic indolizinyl group isoindolyl group, indolyl group, indazolyl group, indazolyl group, purinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxalinyl group, quinazolinyl group, cinnorinyl And nitrogen-containing aromatic heterocyclic groups such as tricyclic carbazolyl group, carbazolyl group, carborinyl group, phenathridinyl group, acridinyl group, perimidinyl group, phenanthrolinyl group, phenazinyl group, etc., bicyclic benzofuranyl group, isobenzofuranyl group A sulfur-containing aromatic heterocyclic group such as an oxygen-containing aromatic heterocyclic group such as a nyl group and a benzopyranyl group, a bicyclic
  • the aromatic heterocyclic group may have a substituent.
  • the substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group.
  • X 1 is a halogen atom, specifically, a chlorine atom, a bromine atom, an iodine atom or a fluorine atom, preferably a chlorine atom.
  • the economic advantage is further obtained by using cheap organic chlorides as starting compounds.
  • there are no problems such as uneven distribution of the origin of the raw material of the raw material, which is a problem in the preparation of Grignard reagents, and difficulty in obtaining the raw material, which is a problem.
  • organic halides which are the starting compounds, those commercially available may be used, or those produced by methods known in the art may be used.
  • a dispersion in which sodium is dispersed in a dispersion solvent is a dispersion of sodium as fine particles in an insoluble solvent, or sodium as a liquid It is dispersed in an insoluble solvent in the state.
  • Examples of sodium include metallic sodium and alloys containing metallic sodium.
  • the average particle size of the fine particles is preferably less than 10 ⁇ m, and particularly preferably less than 5 ⁇ m. The average particle size was represented by the diameter of a sphere having a projected area equivalent to the projected area obtained by image analysis of a photomicrograph.
  • a solvent known in the art can be used as long as sodium can be dispersed as fine particles or sodium can be dispersed in a liquid state in an insoluble solvent and the reaction between the starting compound organic halide and SD is not inhibited.
  • solvents known in the art can be used as long as they do not inhibit the reaction of the starting compound organic halide with SD.
  • ether solvents paraffin solvents such as normal paraffin type and cyclo paraffin types, aromatic solvents, amine solvents, heterocyclic compound solvents can be used.
  • a cyclic ether solvent is preferable, and tetrahydrofuran (hereinafter sometimes abbreviated as “THF”) can be preferably used.
  • THF tetrahydrofuran
  • the paraffin solvents cyclohexane, normal hexane, normal decane and the like are particularly preferable.
  • aromatic solvent xylene, toluene, benzene and the like are preferable, and a halogenated aromatic solvent such as chlorobenzene and fluorobenzene can be used.
  • Ethylenediamine etc. can be preferably used as an amine solvent.
  • Tetrahydrothiophene etc. can be utilized as a heterocyclic compound solvent.
  • only 1 type may be used for these, and it can also be used as a mixed solvent combining 2 or more types.
  • the above-mentioned dispersion solvent and reaction solvent may be of the same type or different types.
  • the reaction temperature in step 1 is not particularly limited when a paraffinic solvent is used as the solvent, and can be appropriately set according to the type and amount of the starting compound organic halide, SD and the reaction solvent, the reaction pressure, etc. .
  • the reaction temperature is preferably set to a temperature that does not exceed the boiling point of the reaction solvent.
  • the reaction temperature can be set at a high temperature because the pressure is higher than the boiling point under atmospheric pressure.
  • the reaction can also be carried out at room temperature, preferably 0 to 100 ° C., particularly preferably 20 to 80 ° C., more preferably room temperature to 50 ° C. Although there is no need to provide temperature control means for special heating or cooling, etc., temperature control means may be provided if necessary.
  • the reaction time of step 1 is also not particularly limited, and may be appropriately set according to the type and amount of the starting compound organic halide, SD, and the reaction solvent, the reaction pressure, the reaction temperature, and the like. Usually, it is carried out for 15 minutes to 24 hours, preferably for 20 minutes to 6 hours.
  • the step 1 is suitable to be carried out under atmospheric pressure and normal pressure conditions since reagents such as SD and reaction solvents can be stably handled under the atmosphere.
  • reagents such as SD and reaction solvents
  • phenyl sodium which is a preferable example of R 1 -Na to be produced, is highly active and is protonated by moisture when air is mixed in even a little, it is filled with argon gas, nitrogen gas, etc. as necessary. You may carry out under inert gas atmosphere.
  • the organosodium compound represented by the general formula II (R 1 -Na) obtained by the step 1 is obtained by substituting the halogen atom of the organic halide represented by the general formula I (R 1 -X 1 ) which is a starting compound with sodium It is.
  • R 1 is the same as R 1 of the general formula I as described above, Na is sodium atom.
  • the obtained organic sodium compound may be purified by purification means known in the art such as column chromatography, distillation, recrystallization and the like.
  • the organic halide which is the unreacted and remaining starting compound may be recovered, and may be configured to be subjected to the reaction of Step 1 again.
  • the reaction may be performed in an inert gas atmosphere filled with argon gas, nitrogen gas or the like as in the production.
  • Step 2 the organosodium compound represented by the general formula II (R 1 -Na) obtained by step 1 is reacted with zinc chloride (ZnCl 2 ) to obtain the final target compound of general formula III (R 1 -Zn-X) 2 ) a step of obtaining the organozinc compound shown in 2 ).
  • Zinc chloride may be used alone or as a complex having N, N, N ', N'-tetramethylethylenediamine (hereinafter abbreviated as "TMEDA") coordinated.
  • TMEDA N, N, N ', N'-tetramethylethylenediamine
  • Step 2 may be carried out by adding zinc chloride to the reaction product obtained by step 1, or after purifying the reaction product obtained by step 1 by a purification means known in the art, a reaction solvent It may be done by the addition of zinc chloride in the presence of As the reaction solvent, the same one as in Step 1 can be used.
  • the reaction temperature in step 2 is not particularly limited when a paraffinic solvent is used as the solvent, and can be appropriately set according to the type and amount of organic sodium compound, SD and reaction solvent, reaction pressure and the like. Specifically, the reaction temperature is preferably set to a temperature that does not exceed the boiling point of the reaction solvent. The reaction temperature can be set at a high temperature because the pressure is higher than the boiling point under atmospheric pressure. The reaction can also be carried out at room temperature, preferably 0 to 100 ° C., particularly preferably 20 to 80 ° C., more preferably room temperature to 50 ° C. Although there is no need to provide temperature control means for special heating or cooling, etc., temperature control means may be provided if necessary.
  • the reaction time of Step 2 is also not particularly limited, and may be appropriately set according to the type and amount of the organic sodium compound, SD, and the reaction solvent, the reaction pressure, the reaction temperature, and the like. Usually, it is carried out for 5 minutes to 2 hours, preferably 10 minutes to 1 hour.
  • Step 2 can handle zinc chloride and reagents such as a reaction solvent stably in the atmosphere, it is suitable to be performed under atmospheric pressure. However, it may be carried out under an inert gas atmosphere filled with argon gas, nitrogen gas or the like, as necessary, such as the type of organic sodium compound.
  • step 2 an organozinc compound represented by the general formula III (R 1 -Zn-X 2 ) of the desired final target compound can be obtained.
  • step 2 a reaction of R 1 -Na + ZnCl 2 ⁇ R 1 -Zn-Cl + NaCl or 2R 1 -Na + ZnCl 2 ⁇ R 1 -Zn-R 1 + 2NaCl occurs and R 1 -Zn- Cl 2 or R 1 -Zn-R 1 can be obtained.
  • organozinc compound represented by the general formula III (R 1 -Zn-X 2 ) synthesized here sodium of the organosodium compound represented by the general formula II (R 1 -Na) is substituted with zinc chloride or zinc It is done.
  • R 1 is the same as R 1 of the general formula I (R 1 -X 1) and the general formula II (R 1 -Na). If the general formula III (R 1 -Zn-X 2 ) in X 2 is Cl, X 2 is zinc chloride derived.
  • the amounts of SD and zinc chloride used in the method of synthesizing the organozinc compound according to the present embodiment can be appropriately set according to the types and amounts of the starting compound and the reaction solvent.
  • the molar ratio of the starting compound substance organic halide: SD: zinc chloride is 1: 2 to 3: 1.
  • the reaction is carried out.
  • the molar ratio of the starting compound substance organic halide: SD: zinc chloride is 1: 2 or more and 3 or less: 1.
  • the organozinc compound can be synthesized with high efficiency and high purity.
  • the amount of substance of SD means the amount of substance in terms of alkali metal contained in SD.
  • the organozinc compound finally synthesized in the method for synthesizing the organozinc compound according to the present embodiment may be purified by a purification means known in the art such as recrystallization.
  • a purification means known in the art such as recrystallization.
  • it may be configured to recover the organic halide and the organic sodium compound and the like remaining unreacted and to be used again for the synthesis of the organic zinc compound.
  • the organozinc compound can be stably and efficiently synthesized by using SD.
  • SD which is easy to handle
  • the organozinc compound can be easily and inexpensively synthesized in a short time with a small number of steps, under mild conditions, without the need for complicated chemical methods, so that the economy is economical.
  • Sodium is a technology with excellent sustainability because it is widely distributed on the earth.
  • the reaction temperature is low at room temperature, and the reaction is required to be carried out at a high temperature such as the melting point (98 ° C.) of metallic sodium.
  • the Wurtz reaction in which organic halides are coupled is induced, the organic sodium compound can not be synthesized efficiently, and the yield of the organic zinc compound is lowered.
  • the reaction can be allowed to proceed under mild conditions, so that the organosodium compound can be efficiently obtained without inducing a side reaction such as Wurtz reaction, As a result, the organozinc compound can be synthesized in high yield and high purity.
  • the organozinc compound synthesized by the method for synthesizing the organozinc compound of the present embodiment can be suitably used for Negishi coupling and the like. Therefore, the synthesis method of the organozinc compound of the present invention can be used in various technical fields such as synthesis of functional materials such as medicines and pesticides and electronic materials.
  • Example 1 Examination of Synthesis Conditions of Organosodium Compound (Aryl Sodium) and Synthesis Conditions of Organozinc Compound
  • 4- n nonylphenyl sodium 2 as an organosodium compound under the synthesis conditions summarized in FIG. while considering the synthesis, by utilizing the obtained 4-n-nonylphenyl sodium 2 was examined the synthesis of an organic zinc compound 4- normal (n) nonylphenyl zinc chloride 4.
  • the obtained product 3 was measured by 1 H NMR, and the deuterium ratio to the product 3 (D ratio (%)) was calculated.
  • the unreacted 1-chloro-4- n nonylbenzene 1 is measured by GC to calculate the unreacted ratio (%), and the 1-chloro-4- n nonylbenzene 1 is coupled with Wurtz
  • the formation of coupling product (Ar-Ar) was measured by 1 H NMR to calculate the Ar-Ar production rate (%).
  • Example 2 Examination of Synthesis Conditions of Organosodium Compound (Aryl Sodium) -2
  • the synthesis of phenyl sodium 2 as an organosodium compound was examined under the synthesis conditions summarized in FIG.
  • 1.0 molar equivalent of the starting compound, benzene 1 and Y molar equivalent of SD were added and reacted at room temperature for 30 minutes to synthesize phenyl sodium 2.
  • 4- n nonylphenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst.
  • 4- n nonylphenyl zinc chloride 3 in the presence of palladium catalyst bis (triphenylphosphine) palladium (II) dichloride (PdCl 2 (PPh 3 ) 2 10 mol% (relative to 2-bromonaphthalene)) 1.0
  • the reaction was carried out with a molar equivalent of 2-bromonaphthalene 4 at 70 ° C. for 3 hours.
  • 2- (4- n nonylphenyl) naphthalene 5 was obtained.
  • Example 4 Examination of synthesis conditions of organozinc compound and application to Negishi coupling-2
  • an organozinc compound is synthesized under the synthesis conditions summarized in FIG. 4 following Example 3, and it is examined whether the resulting organozinc compound can be used for Negishi coupling using a palladium catalyst. did.
  • PEPPSI-IPr was used as a palladium catalyst.
  • 4-methylphenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst.
  • 4-Methylphenyl zinc chloride 3 is 1.0 molar equivalent (0.5 mmol) of THF / NMP (0.6 ml / 0.3 ml) in the presence of 1 mol% (relative to 2-chloronaphthalene) of palladium catalyst PEPPSI-IPr
  • the reaction was carried out with 2-chloronaphthalene 4 at 70 ° C. for 3 hours.
  • 2- (4-methylphenyl) naphthalene 5 was obtained.
  • Example 5 Examination of synthesis conditions of organozinc compound and application to Negishi coupling-3
  • the synthesis conditions of phenyl zinc chloride 3 as an organozinc compound were examined under the examination conditions summarized in FIG. 5 following Examples 3 and 4.
  • the starting compounds 1.25 molar equivalents of chlorobenzene 1 and 2.9 molar equivalents of SD, were added to 1 ml of hexane and reacted at room temperature for 20 minutes to synthesize phenyl sodium 2.
  • To the obtained phenyl sodium 2 1.25 molar equivalent of zinc chloride TMEDA was added and reacted at room temperature for 15 minutes to obtain phenyl zinc chloride 3.
  • Phenyl zinc chloride 3 was reacted with 1.0 molar equivalent of 2-bromopyridine 4 at 70 ° C. for 3 hours in the presence of 10 mol% PdCl 2 (PPh 3 ) 2 . As a result, as shown in FIG. 5, 2-phenylpyridine 5 was obtained.
  • Example 6 Investigation of synthesis conditions of organozinc compound and application to Negishi coupling-4
  • an organozinc compound is synthesized under the study conditions following Examples 3 to 5 and summarized in FIGS. 6A to 6C (Experiment Nos. 1 to 18), and the resulting organozinc compound uses a palladium catalyst. It was examined whether it could be used for Negishi coupling.
  • PEPPSI registered trademark
  • IPr CL was used as a palladium catalyst.
  • Experiment No. 1 Add 1.2 molar equivalents (0.6 mmol) of the starting compound, 4-chlorotoluene, which is organic chloride 1, and 2.5 molar equivalents of SD in 1.2 ml of hexane, and react at 30 ° C. for 30 minutes to obtain organic sodium compound 2 4-methylphenyl sodium was synthesized. To the obtained 4-methylphenyl sodium was added 1.2 molar equivalent of zinc chloride-TMEDA, and the mixture was reacted in hexane at 25 ° C. for 30 minutes to obtain organic zinc compound 3, 4-methylphenyl zinc chloride. Subsequently, it was examined whether the obtained 4-methylphenyl zinc chloride could be used for Negishi coupling using a palladium catalyst.
  • Experiment number 2 Organosodium compound obtained by reaction with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chlorotoluene as organic chloride 1 in 1.2 ml of hexane After 2), an organozinc compound 3 was synthesized. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • Experiment number 3 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-tert-butyl-2-chlorobenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organozinc compound 3 was synthesized via the prepared organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 5 hours.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.25 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 4-chloronaphthalene at 70 ° C. for 24 hours. As a result, as shown in FIG. 6A, the coupling product 5, 2- (2-tert-butylphenyl) naphthalene was obtained in an isolated yield of 88%.
  • Experiment number 4 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in the above Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chloro-m-xylene as organic chloride 1 in 1.2 ml of hexane
  • An organozinc compound 3 was synthesized via the organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 3 hours.
  • Experiment number 5 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in the above Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chloro-m-xylene as organic chloride 1 in 1.2 ml of hexane
  • An organozinc compound 3 was synthesized via the organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • Experiment number 7 Organosodium compound obtained by reaction with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 4-chlorotoluene as organic chloride 1 in 1.2 ml of hexane After 2), an organozinc compound 3 was synthesized. The reaction temperature was 30 ° C., and the reaction time was 30 minutes. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • Experiment number 9 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1,3-diisopropyl-2-chlorobenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organozinc compound 3 was synthesized via the prepared organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 3 hours.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • the mixture was reacted with 2-naphthalene, which is 4), at 70 ° C. for 5 hours.
  • 2-naphthalene which is 4
  • FIG. 6A coupling product 5, 2- (2,6-diisopropylphenyl) naphthalene was obtained in 96% isolated yield.
  • Experiment number 10 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1,3-diisopropyl-2-chlorobenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organozinc compound 3 was synthesized via the prepared organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 3 hours.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 1-naphthalene, which is 4 at 70 ° C. for 24 hours. As a result, as shown in FIG. 6A, coupling product 5, 1- (2,6-diisopropylphenyl) naphthalene was obtained in 92% isolated yield.
  • Experiment number 11 Obtained by reacting with 2.4 molar equivalents of SD in the same manner as in the above Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chloro-m-xylene as organic chloride 1 in 1.2 ml of hexane
  • An organozinc compound 3 was synthesized via the organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • Experiment number 12 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organozinc compound 3 was synthesized via the prepared organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 1 hour.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • the mixture was reacted with 4-chloronaphthalene at 70 ° C. for 3 hours.
  • FIG. 6B coupling product 5, 2- [3- (dimethylamino) phenyl] naphthalene was obtained in 96% isolated yield.
  • Experiment number 13 Organic sodium obtained by reaction with 7.6 molar equivalents of SD in the same manner as in Experiment No. 1 above using 3.6 molar equivalents of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane
  • the organic zinc compound 3 was synthesized via the compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 1 hour.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.25 mmol) of organic chloride in the presence of 3 mol% of PEPPSI (registered trademark) -IPr CL .
  • Experiment No. 14 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organozinc compound 3 was synthesized via the prepared organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 1 hour.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was made to react with 2-thiophene which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, coupling product 5, 2- [3- (dimethylamino) phenyl] thiophene was obtained in an isolated yield of 85%.
  • Experiment number 15 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organozinc compound 3 was synthesized via the prepared organosodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 1 hour.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with N-tert-butoxycarbonyl-6-chloroindole which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, 6- [3- (dimethylamino) phenyl] indole as a coupling product 5 was obtained in an isolated yield of 93%.
  • Experiment number 16 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-2-methoxybenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organic zinc compound 3 was synthesized via the organic sodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 1 hour.
  • organic zinc compound 3 is dissolved in THF (0.3 ml) / NMP (0.6 ml) in the presence of 2 mol% of PEPPSI (registered trademark) -IPr CL in an amount of 1 molar equivalent (0.5 mmol) of organic chloride It was reacted with 4-chloro-1- (trimethylsilyl) -1-pentyne at 70 ° C. for 24 hours.
  • FIG. 6B coupling product 5, 4- (2-methoxyphenyl) -1- (trimethylsilyl) -1-pentyne was obtained in 92% NMR yield and 87% isolated yield.
  • Experiment number 17 Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-2-methoxybenzene as organic chloride 1 in 1.2 ml of hexane.
  • the organic zinc compound 3 was synthesized via the organic sodium compound 2.
  • the reaction temperature was 30 ° C., and the reaction time was 1 hour.
  • organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • the organosodium compound 2 is obtained by reaction with 2.5 molar equivalents of SD as in Example 1 above, using 0.6 mmol of 1-chloropentane as organic chloride 1 in 2.4 mL of hexane.
  • the organozinc compound 3 was synthesized. The reaction temperature was 0 ° C., and the reaction time was 20 minutes. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL .
  • the present invention can be suitably used as a synthesis method of an organozinc compound, and all technical fields utilizing the organozinc compound synthesized by such a synthesis method, in particular, as an intermediate of a coupling reaction, and a pharmaceutical, an agricultural chemical or an electron It is particularly useful in the field of material production.

Abstract

The purpose of the present invention is to realize a technique for efficiently synthesizing an organic zinc compound without using a toxic reagent and the like that are difficult to handle, and to do so with a small number of steps. This method for synthesizing an organic zinc compound includes a step in which, in a reaction solvent, an organic halide represented by general formula I (R1-X1) and a dispersion where sodium is dispersed in a dispersion solvent are reacted to obtain an organic sodium compound represented by general formula II (R1-Na), and the obtained organic sodium compound and zinc chloride are reacted to obtain an organic zinc compound represented by general formula III (R1-Zn-X2).

Description

有機亜鉛化合物の合成方法Method of synthesizing organozinc compound
 本発明は、有機亜鉛化合物の合成方法に関する。 The present invention relates to a process for the synthesis of organozinc compounds.
 有機亜鉛化合物は、医農薬及び電子材料、並びに、それらの中間体等の機能性材料の有機合成反応において重要な中間体として使用されている。例えば、炭素-炭素結合を形成するカップリング反応において、当該有機亜鉛化合物と有機ハロゲン化物とをパラジウム触媒等の存在下でカップリングさせる根岸カップリング等が知られている。 Organic zinc compounds are used as important intermediates in organic synthesis reactions of functional materials such as pharmaceuticals and agricultural chemicals and electronic materials, and intermediates thereof. For example, in the coupling reaction for forming a carbon-carbon bond, Negishi coupling is known in which the organic zinc compound and the organic halide are coupled in the presence of a palladium catalyst or the like.
 有機亜鉛化合物の合成は、有機ハロゲン化物(R-X)と金属亜鉛(Zn)とを直接的に反応させる酸化的付加法、有機リチウム化合物(R-Li)又はグリニャール試薬(R-MgBr等のR-MgX)を塩化亜鉛等のハロゲン化亜鉛(ZnX2)に反応させる金属交換法等が知られている(例えば、非特許文献1を参照)。 The synthesis of the organozinc compound is carried out by an oxidative addition method in which an organic halide (RX) is directly reacted with metallic zinc (Zn), an organolithium compound (R-Li) or a Grignard reagent (R-MgBr, etc.) R- metal exchange method of reacting a MgX) to zinc halides and zinc chloride (ZnX 2) are known (e.g., see non-Patent Document 1).
 また、別の合成方法として、ハロゲン化アリールを、キサントホスを配位させたコバルト触媒の存在下で亜鉛、塩化リチウムと反応させてアリール亜鉛化合物を得る方法が知られている(例えば、非特許文献2を参照)。 In addition, as another synthetic method, a method is known in which an aryl halide is reacted with zinc and lithium chloride in the presence of a cobalt catalyst coordinated with xanthophos to obtain an arylzinc compound (for example, non-patent literature) 2).
 酸化的付加法は、次の反応(R-X + Zn→R-ZnX)によるものである。しかしながら、一般的な亜鉛粉末を使用する場合には、有機塩化物等を有機亜鉛化合物に変換することができない等、有機ハロゲン化物として利用できる官能基に制限があった。活性化亜鉛を使用する場合にも、アルゴン雰囲気下THF中で塩化亜鉛に金属リチウムや金属ナトリウム、金属カリウム等を還元剤として作用させて予め活性化亜鉛を調製することが必要となる。ただし、活性化亜鉛は非常に高価であり、コストが増加する等の問題がある。 The oxidative addition method is by the following reaction (RX + Zn → R-ZnX). However, when general zinc powder is used, there is a limitation on functional groups that can be used as organic halides, such as the inability to convert organic chlorides and the like to organic zinc compounds. Even when activated zinc is used, it is necessary to prepare activated zinc in advance by causing zinc chloride to act as a reducing agent such as lithium metal, potassium metal, etc. in THF under argon atmosphere. However, activated zinc is very expensive and has problems such as increased cost.
 金属交換法において、有機リチウム化合物を使用する場合には、有機ヨウ化物等の有機ハロゲン化物にn-ブチルリチウム(以下、「nBuLi」と略する)やt-ブチルリチウム(以下、「tBuLi」と略する)を作用させてリチウム-ハロゲン交換反応により予め有機リチウム化合物を調製することが必要となる。つまり、次の二段階反応(1段階目:R-I + nBuLiまたはtBuLi→R-Li、2段階目:R-Li + ZnCl2→R-ZnCl)によるものである。しかしながら、nBuLi、tBuLiは高価な試薬であることからコストが増加する等の問題がある。更に、nBuLi、tBuLiは消防法で第3類危険物に指定されていることから、取り扱いに適した装置や設備等が必要となるとの問題もある。 In the case of using an organolithium compound in the transmetallation method, organic halides such as organic iodide and the like, n-butyllithium (hereinafter, abbreviated as “ n BuLi”) and t-butyllithium (hereinafter, “ t BuLi” It is necessary to prepare the organolithium compound in advance by the lithium-halogen exchange reaction under the action of That is, it is due to the following two-step reaction (first step: RI + n BuLi or t BuLi → R-Li, second step: R-Li + ZnCl 2 → R-ZnCl). However, since n BuLi and t BuLi are expensive reagents, there are problems such as an increase in cost. Furthermore, n BuLi and t BuLi are designated as Class 3 dangerous materials under the Fire Service Law, so there is a problem that equipment and facilities suitable for handling are required.
 また、グリニャール試薬は、エーテル等の無水溶媒中で有機ハロゲン化物と金属マグネシウムを反応させることで得られるものであるが、グリニャール試薬は、強塩基性を示す活性な試薬であるため、酸素、二酸化炭素、水と速やかに反応する。そのため、グリニャール試薬の調製及び保管は空気や水分が入らないように厳密に管理することが必要となる。なお、nBuLiやtBuLi、活性化亜鉛を使用する場合においても同様の管理が必要となる。グリニャール試薬の調製に際しては、有機ハロゲン化物として有機臭化物が好適に使用され、その場合には、次の二段階反応(1段階目:R-Br + Mg→R-MgBr、2段階目:R-MgBr+ ZnCl2→R-ZnX)により進行する。しかしながら、臭素は採掘される地域が限定されるうえ、毒性が高く、人体残留性等を有するため、使用が減少している。そのため、流通量が減少し、目的とする有機臭化物の入手が困難となる傾向にある。また、塩化亜鉛との反応後に得られる有機亜鉛化合物が、所望の有機亜鉛クロリド(R-ZnCl)だけでなく、副生成物の有機亜鉛ブロミド(R-ZnBr)が混入するとの問題点もある。一方、グリニャール試薬の調製に際して、有機臭化物に代えて有機塩化物を使用した場合には、1段階目の金属マグネシウムとの反応が進行しなくなるとの問題点もある。 Moreover, although a Grignard reagent is obtained by reacting an organic halide and metal magnesium in an anhydrous solvent such as ether, the Grignard reagent is an active reagent which exhibits strong basicity, so oxygen, dioxide Reacts quickly with carbon and water. Therefore, it is necessary to strictly control the preparation and storage of the Grignard reagent so that air and moisture do not enter. Incidentally, n BuLi or t BuLi, also necessary to manage the same in the case of using the activated zinc. In the preparation of a Grignard reagent, an organic bromide is suitably used as an organic halide, in which case the following two-step reaction (first step: R-Br + Mg → R-MgBr, second step: R- Proceed with MgBr + ZnCl 2 → R-ZnX). However, bromine is in limited use in areas where it is mined, has high toxicity, has human persistence, etc., and therefore its use is decreasing. For this reason, the amount of circulation decreases, and it tends to be difficult to obtain the desired organic bromide. There is also a problem that the organozinc compound obtained after the reaction with zinc chloride is mixed not only with the desired organozinc chloride (R-ZnCl) but also with the by-product organozinc bromide (R-ZnBr). On the other hand, when an organic chloride is used instead of the organic bromide in the preparation of the Grignard reagent, there is also a problem that the reaction with the first step magnesium metal does not proceed.
 コバルト触媒を利用する方法では、触媒が必須なこと、また、合成したアリール亜鉛化合物に触媒が混入してしまうため、分離操作が必要になり工程数が増加するという問題がある。 In the method of using a cobalt catalyst, there is a problem that the catalyst is essential and the separation operation becomes necessary and the number of processes increases because the catalyst is mixed in the synthesized aryl zinc compound.
 そこで、取扱いが困難で毒性のある試薬類を使用せずに、少ない工程数で有機亜鉛化合物を効率よく合成できる技術の構築が求められていた。 Therefore, it has been desired to construct a technology capable of efficiently synthesizing an organozinc compound in a small number of steps without using reagents that are difficult to handle and have toxicity.
 本発明者らは、上記課題を解決すべく研究を重ねた結果、反応溶媒中で有機ハロゲン化物とナトリウムを分散溶媒に分散させた分散体を反応させて有機ナトリウム化合物を得、続いて、得られた有機ナトリウム化合物と塩化亜鉛を反応させることにより、有機亜鉛化合物を効率よく合成できることを見出した。かかる合成方法は、取扱いが困難で毒性のある試薬類を必要とせず、温和な条件下で有機亜鉛化合物を合成することができる。また、煩雑で高価な合成処理工程や廃棄処理工程等を必要とせず、少ない工程数で有機亜鉛化合物を安価に合成することができる。本発明者らは、これらの知見に基づき本発明を完成するに至った。 As a result of repeated researches to solve the above problems, the present inventors reacted a dispersion obtained by dispersing an organic halide and sodium in a dispersion solvent in a reaction solvent to obtain an organic sodium compound, and subsequently obtained It has been found that the organic zinc compound can be efficiently synthesized by reacting the selected organic sodium compound with zinc chloride. Such synthetic methods do not require difficult-to-handle and toxic reagents, and can synthesize organozinc compounds under mild conditions. In addition, the organic zinc compound can be inexpensively synthesized with a small number of steps without requiring complicated and expensive synthetic treatment steps, waste treatment steps and the like. The present inventors have completed the present invention based on these findings.
 すなわち、本発明は、有機亜鉛化合物の合成方法に関するものであり、その特徴構成は、反応溶媒中で、一般式I(R1-X1)〔ここで、式中、R1は、ナトリウムと反応しない置換基を有していてもよい脂肪族炭化水素基、脂環式炭化水素基、脂環式複素環基、芳香族炭化水素基、又は、芳香族複素環基であり、X1は、ハロゲン原子である〕に示す有機ハロゲン化物とナトリウムを分散溶媒に分散させた分散体とを反応させて、一般式II(R1-Na)〔ここで、式中、R1は、一般式IのR1と同様である〕に示す有機ナトリウム化合物を得て、得られた前記有機ナトリウム化合物と塩化亜鉛とを反応させて、一般式III(R1-Zn-X2)〔ここで、式中、R1は、一般式IのR1と同様であり、X2はCl、又は、R1である〕に示す有機亜鉛化合物を得る工程、を有する、点にある。 That is, the present invention relates to a method for synthesizing an organozinc compound, the characteristic feature of which is that, in a reaction solvent, a compound of the general formula I (R 1 -X 1 ) [wherein R 1 is sodium and It is an aliphatic hydrocarbon group which may have a substituent which does not react, an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic hydrocarbon group, or an aromatic heterocyclic group, and X 1 is And a dispersion in which sodium is dispersed in a dispersion solvent are reacted with a compound represented by the general formula II (R 1 -Na) [wherein, R 1 is a general formula An organosodium compound shown in R 1 of I is obtained, and the obtained organosodium compound is reacted with zinc chloride to obtain a compound represented by the general formula III (R 1 -Zn-X 2 ) [wherein wherein, R 1 is the same as R 1 in formula I, X 2 has Cl, or, to obtain an organic zinc compound shown in which R 1 is], the There is a point.
 本構成によれば、有機ハロゲン化物から有機ナトリウム化合物を経て、有機亜鉛化合物を安定的かつ効率的に合成することができる有機亜鉛化合物の合成方法を提供することができる。本構成によれば、取り扱いが容易なナトリウムを分散溶媒に分散させた分散体を使用することにより、温和な条件下で、煩雑な化学的手法を必要とせず、少ない工程数で簡便かつ短時間に有機亜鉛化合物を安価に合成することができるので、経済的かつ工業的にも非常に有利である。また、温和な条件下で反応が進行するため、有機ハロゲン化物同士がカップリングするウルツ反応等の副反応を誘発することなく、効率的に有機ナトリウム化合物を得ることができ、ひいては、有機亜鉛化合物を高収率かつ高純度に合成することができる。また、ナトリウムは、地球上に極めて広く分布していることから、サステナビリティーにも優れた技術である。更に、本構成の有機亜鉛化合物の合成方法で合成された有機亜鉛化合物は、根岸カップリング等に好適に利用することができる。したがって、本構成の有機亜鉛化合物の合成方法は、医農薬及び電子材料等の機能性材料の合成等、様々な技術分野において利用することができる。 According to this configuration, it is possible to provide a method for synthesizing an organozinc compound capable of stably and efficiently synthesizing an organozinc compound from an organohalide via an organosodium compound. According to this configuration, by using a dispersion in which sodium is easy to handle and dispersed in a dispersion solvent, a complicated chemical method is not required under mild conditions, and the number of steps is simple and short. The organic zinc compounds can be synthesized inexpensively, which is very advantageous economically and industrially. In addition, since the reaction proceeds under mild conditions, an organosodium compound can be efficiently obtained without inducing a side reaction such as a wurtz reaction in which organic halides are coupled to each other. Can be synthesized in high yield and high purity. In addition, sodium is a technology with excellent sustainability because it is widely distributed on the earth. Furthermore, the organozinc compound synthesized by the method for synthesizing the organozinc compound of the present configuration can be suitably used for Negishi coupling and the like. Therefore, the synthesis method of the organozinc compound of this configuration can be used in various technical fields such as synthesis of functional materials such as medicines and pesticides and electronic materials.
 他の特徴構成は、前記X1は、塩素原子である、点にある。 Another feature is that X 1 is a chlorine atom.
 本構成によれば、出発化合物として安価な有機塩化物を使用することにより経済的に更に有利となる。また、グリニャール試薬の調製に際して汎用される有機臭化物において問題とされる、原料である臭素の産地の偏在や入手の困難性等の問題もなく、工業化に際しての高負荷な廃棄処理施設の必要性等の問題もない。 According to this configuration, the use of inexpensive organic chloride as a starting compound is economically more advantageous. In addition, there are no problems such as the uneven distribution of the origin of the raw material of the raw material, which is a problem in the preparation of Grignard reagents, and the difficulty of obtaining the raw materials, and the need for a high load disposal facility at industrialization. There is no problem.
 他の特徴構成は、前記ナトリウムを分散溶媒に分散させた分散体は、反応溶媒中で、クロロベンゼンに対して2.1モル当量以上で反応させた場合に、添加した前記クロロベンゼンに対するフェニルナトリウムの収率が99.0%以上となる活性を有する、点にある。 Another feature of the present invention is that the dispersion in which the sodium is dispersed in the dispersion solvent has a yield of phenyl sodium relative to the chlorobenzene added when the reaction is carried out with a reaction solvent at a concentration of at least 2.1 molar equivalents relative to chlorobenzene. It has an activity of 99.0% or more.
 本構成によれば、高活性なナトリウムを分散溶媒に分散させた分散体を使用することにより、更に効率的に有機亜鉛化合物を合成することができる。 According to this configuration, the organic zinc compound can be synthesized more efficiently by using a dispersion in which highly active sodium is dispersed in a dispersion solvent.
 他の特徴構成は、前記有機ハロゲン化物:前記ナトリウムを分散溶媒に分散させた分散体:前記塩化亜鉛のモル比は、一般式IIIのX2がClである場合は1:2以上3以下:1、一般式IIIのX2がR1である場合は1:2以上3以下:1未満である、点にある。 Another feature is that the molar ratio of the organic halide: the dispersion of the sodium dispersed in the dispersion solvent: the zinc chloride is 1: 2 or more and 3 or less when X 2 in the general formula III is Cl: 1. When X 2 in the general formula III is R 1 , it is in the range of 1: 2 to 3: 1.
 本構成によれば、有機ハロゲン化物、ナトリウムを分散溶媒に分散させた分散体、及び、塩化亜鉛の使用量の最適化を図ることにより、有機亜鉛化合物を更に高効率かつ高純度に合成することができる。 According to this configuration, the organic zinc compound is synthesized with higher efficiency and high purity by optimizing the use amount of the organic halide, the dispersion in which sodium is dispersed in the dispersion solvent, and zinc chloride. Can.
本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例1の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic conditions and the result of Example 1 which examined the synthesis method of the organozinc compound concerning this embodiment. 本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例2の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic | combination conditions and the result of Example 2 which examined the synthesis | combining method of the organozinc compound which concerns on this embodiment. 本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例3の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic | combination conditions and the result of Example 3 which examined the synthesis | combining method of the organozinc compound which concerns on this embodiment. 本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例4の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic | combination conditions and the result of Example 4 which examined the synthesis | combining method of the organozinc compound which concerns on this embodiment. 本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例5の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic | combination conditions and result of Example 5 which examined the synthesis | combining method of the organozinc compound which concerns on this embodiment. 本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例6の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic conditions and the result of Example 6 which examined the synthesis method of the organozinc compound concerning this embodiment. 本実施形態に係る有機亜鉛化合物の合成方法の検討を行った実施例6の合成条件及び結果を要約する図である。It is a figure which summarizes the synthetic conditions and the result of Example 6 which examined the synthesis method of the organozinc compound concerning this embodiment. 図6A及び図6Bのa,bを説明する図である。It is a figure explaining a of FIG. 6A and FIG. 6B, and b.
 以下、本発明の実施形態に係る有機亜鉛化合物の合成方法について詳細に説明する。ただし、本発明は、後述する実施形態に限定されるものではない。 Hereinafter, the synthesis method of the organozinc compound according to the embodiment of the present invention will be described in detail. However, the present invention is not limited to the embodiments described later.
 本実施形態に係る有機亜鉛化合物の合成方法は、反応溶媒中で、一般式I(R1-X1)に示す有機ハロゲン化物とナトリウムを分散溶媒に分散させた分散体を反応させて、一般式II(R1-Na)に示す有機ナトリウム化合物を得る(工程1)。続いて、得られた有機ナトリウム化合物と塩化亜鉛を反応させて、一般式III(R1-Zn-X2)に示す有機亜鉛化合物を得る(工程2)ものである。 In the method of synthesizing the organozinc compound according to this embodiment, a dispersion obtained by dispersing sodium in an organic halide represented by the general formula I (R 1 -X 1 ) in a dispersion solvent is reacted in a reaction solvent, An organosodium compound of formula II (R 1 -Na) is obtained (step 1). Subsequently, the obtained organosodium compound is reacted with zinc chloride to obtain an organozinc compound represented by the general formula III (R 1 -Zn-X 2 ) (Step 2).
(工程1)
 工程1は、反応溶媒中で、一般式I(R1-X1)に示す有機ハロゲン化物とナトリウムを分散溶媒に分散させた分散体を反応させて、一般式II(R1-Na)に示す有機ナトリウム化合物を得る工程である。一般式I(R1-X1)に示す有機ハロゲン化物は、共有結合したハロゲン原子を含む有機化合物であり、本発明の実施形態に係る有機亜鉛化合物の合成方法おいて、出発化合物となる。
(Step 1)
In step 1, a dispersion in which an organic halide represented by the general formula I (R 1 -X 1 ) and sodium are dispersed in a dispersion solvent is reacted in a reaction solvent to obtain a compound represented by general formula II (R 1 -Na) It is a process of obtaining the organic sodium compound shown. The organic halide represented by the general formula I (R 1 -X 1 ) is an organic compound containing a covalently bonded halogen atom, and is a starting compound in the method of synthesizing the organozinc compound according to the embodiment of the present invention.
 一般式I(R1-X1)において、R1は、ナトリウムと反応しない置換基を有していてもよい脂肪族炭化水素基、脂環式炭化水素基、脂環式複素環基、芳香族炭化水素基、又は、芳香族複素環基である。ナトリウムと反応性を有する置換基を有すると、当該置換基とナトリウムを分散溶媒に分散させた分散体が反応し、副反応を誘発するため好ましくない。したがって、R1としてナトリウムと反応性を有する置換基を有する化合物を出発化合物とする場合には、当該置換基を適切な保護基等で保護することが必要となる。 In the general formula I (R 1 -X 1 ), R 1 is an aliphatic hydrocarbon group which may have a substituent which does not react with sodium, an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic group A group hydrocarbon group or an aromatic heterocyclic group. When it has a substituent having reactivity with sodium, it is not preferable because a dispersion obtained by dispersing the substituent and sodium in a dispersion solvent reacts to induce a side reaction. Therefore, when a compound having a substituent having reactivity with sodium as R 1 is used as a starting compound, it is necessary to protect the substituent with a suitable protecting group or the like.
 脂肪族炭化水素基は、直鎖及び分枝の別を問わず、飽和及び不飽和の別も問わない。また、その鎖長についても特に制限はない。置換基を有する場合、当該置換基は、ナトリウムと反応しないものである限り特に制限はない。また、置換基の数及び導入位置についても特に制限はない。脂肪族炭化水素基としては、これらに限定するものではないが、好ましくは炭素原子数1~20個、特に好ましくは炭素原子数3~20個のアルキル基、アルケニル基、アルキニル基が例示される。具体的には、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、s-ペンチル基、2-メチルブチル基、1-エチルプロピル基、2-エチルプロピル基、n-ヘキシル基、イソヘキシル基、ネオヘキシル基、t-ヘキシル基、2,2-ジメチルブチル基、2-メチルペンチル基、3-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1-プロピルプロピル基、n-ヘプチル基、イソヘプチル基、s-ヘプチル基、t-ヘプチル基、2,2-ジメチルペンチル基、3,3-ジメチルペンチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1-プロピルブチル基、2-プロピルブチル基、n-オクチル基、イソオクチル基、t-オクチル基、ネオオクチル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、3-プロピルペンチル基、n-ノニル基、イソノニル基、t-ノニル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、5-メチルオクチル基、6-メチルオクチル基、n-デシル基、イソデシル基、t-デシル基、1-メチルノニル基、2-メチルノニル基、3-メチルノニル基、4-メチルノニル基、5-メチルノニル基、6-メチルノニル基、7-メチルノニル基等が挙げられるが、これらに限定するものではない。アルケニル基としては、エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等が挙げられるが、これらに限定するものではない。アルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘプチニル基、オクチニル基等が挙げられるが、これらに限定するものではない。 The aliphatic hydrocarbon group may be linear or branched or saturated or unsaturated. Moreover, there is no restriction | limiting in particular also about the chain length. When it has a substituent, the substituent is not particularly limited as long as it does not react with sodium. Further, the number of substituents and the introduction position are not particularly limited. Examples of the aliphatic hydrocarbon group include, but are not limited to, an alkyl group having 1 to 20 carbon atoms, particularly preferably an alkyl group having 3 to 20 carbon atoms, an alkenyl group and an alkynyl group. . Specifically, as the alkyl group, methyl group, ethyl group, propyl group, butyl group, methyl group, ethyl group, propyl group, isopropyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group Group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, s-pentyl group, 2-methylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, isohexyl group, neohexyl group T-Hexyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 1-propylpropyl, n-heptyl, isoheptyl, s-heptyl group, t-heptyl group, 2,2-dimethylpentyl group, 3,3-dimethylpentyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 1-ethyl pentyl 2-ethylpentyl group, 3-ethylpentyl group, 1-propylbutyl group, 2-propylbutyl group, n-octyl group, isooctyl group, t-octyl group, neooctyl group, 2,2-dimethylhexyl group, 3 , 3-dimethylhexyl group, 4,4-dimethylhexyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 1-propylpentyl group, 2-propylpentyl group, 3-propylpentyl group, n-nonyl group, isononyl group, t-nonyl group, 1-methyloctyl group Group, 2-methyloctyl group, 3-methyloctyl group, 4-methyloctyl group, 5-methyloctyl group, 6-methyloctyl group, n-decyl group, isodecyl group, t-decyl group, 1-methylnonyl group, 2-Methylnonyl , 3-methylnonyl group, 4-methylnonyl group, 5-methylnonyl group, 6-methylnonyl group, 7-methylnonyl but group, and the like, not limited thereto. Examples of the alkenyl group include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like, but are not limited thereto. Examples of the alkynyl group include, but are not limited to, ethynyl group, propynyl group, butynyl group, pentynyl group, heptynyl group, octynyl group and the like.
 脂肪族炭化水素基は、置換基を有していてもよい。置換基は、1個又は複数個を有していてよく、複数個の置換基を有する場合には、互いに同一又は異なっていてもよい。置換基としては、置換基を有してもよい脂肪族炭化水素基、脂環式炭化水素基、脂環式複素環基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、脂環式複素環オキシ基、芳香族複素環オキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アラルキルチオ基は、脂環式複素環チオ基、芳香族複素環チオ基、アルキルアミノ基、シクロアルキルアミノ基、アリールアミノ基、アラルキルアミノ基、脂環式複素環アミノ基、芳香族複素環アミノ基、アシル基等が例示されるが、これらに限定するものではない。なお、脂肪族炭化水素基は上記で示されるものと同様なものを、脂環式炭化水素基、脂環式複素環基、芳香族炭化水素基、芳香族複素環基としては、下記で示されるものと同様なものが挙げられる。 The aliphatic hydrocarbon group may have a substituent. The substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. As a substituent, an aliphatic hydrocarbon group which may have a substituent, an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkoxy group, cycloalkoxy Group, aryloxy group, aralkyloxy group, alicyclic heterocyclic oxy group, aromatic heterocyclic oxy group, alkylthio group, cycloalkylthio group, arylthio group and aralkylthio group are alicyclic heterocyclic thio group, aromatic Examples thereof include, but are not limited to, heterocyclic thio group, alkylamino group, cycloalkylamino group, arylamino group, aralkylamino group, alicyclic heterocyclic amino group, aromatic heterocyclic amino group, acyl group and the like. It is not a thing. In addition, as an aliphatic hydrocarbon group, the thing similar to the thing shown above is shown below as an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. And the same as the
 アルコキシ基は、好ましくは炭素原子数1~10個のアルコキシ基が例示され、具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられるが、これらに限定するものではない。シクロアルコキシ基は、好ましくは炭素原子数3~10個のシクロプロポキシ基が例示され、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基が挙げられる。アリールオキシ基は、好ましくは炭素原子数6~20個のアリールオキシ基が例示され、具体的には、フェニルオキシ基、ナフチルオキシ基等が挙げられるが、これらに限定するものではない。アラルキルオキシ基は、好ましくは炭素原子数7~11個のアラルキルオキシ基が例示され、具体的には、ベンジルオキシ基、及び、フェネチルオキシ基が挙げられる。脂環式複素環オキシ基、及び、芳香族複素環オキシ基は、複素環部として下記で示される脂環式複素環基及び芳香族複素環基が挙げられる。 The alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, and specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group and the like. It is not limited to these. The cycloalkoxy group is preferably a cyclopropoxy group having a carbon number of 3 to 10, and examples thereof include a cyclobutoxy group, a cyclopentyloxy group and a cyclohexyloxy group. The aryloxy group is preferably an aryloxy group having a carbon number of 6 to 20. Specific examples thereof include, but are not limited to, a phenyloxy group, a naphthyloxy group and the like. The aralkyloxy group is preferably an aralkyloxy group having 7 to 11 carbon atoms, and specific examples thereof include a benzyloxy group and a phenethyloxy group. The alicyclic heterocyclic oxy group and the aromatic heterocyclic oxy group include an alicyclic heterocyclic group and an aromatic heterocyclic group which are shown below as a heterocyclic part.
 アルキルチオ基は、好ましくは炭素原子数1~20個のアルキルチオ基が例示され、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基等が挙げられるが、これらに限定するものではない。シクロアルキルチオ基は、炭素原子数3~10個のシクロアルキルチオ基が例示され、具体的には、シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基等が挙げられるが、これらに限定するものではない。アリールチオ基は、好ましくは炭素原子数6~20個のアリールチオ基が例示され、具体的には、フェニルチオ基、ナフチルチオ基等が挙げられるが、これらに限定するものではない。アラルキルチオ基は、好ましくは炭素原子数7~11個のアラルキルチオ基が例示され、具体的には、ベンジルチオ基、フェネチルチオ基等が挙げられるが、これらに限定するものではない。脂環式複素環チオ基、及び、芳香族複素環チオ基は、複素環部として下記で示される脂環式複素環基及び芳香族複素環基が挙げられる。 The alkylthio group is preferably an alkylthio group having 1 to 20 carbon atoms, and examples thereof include, but not limited to, methylthio, ethylthio, propylthio, butylthio, pentylthio, hexylthio and the like. . The cycloalkylthio group is exemplified by a cycloalkylthio group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopropylthio group, a cyclobutylthio group, a cyclopentylthio group and a cyclohexylthio group. It is not limited. The arylthio group is preferably an arylthio group having a carbon number of 6 to 20. Specific examples thereof include, but are not limited to, a phenylthio group, a naphthylthio group and the like. The aralkylthio group is preferably, for example, an aralkylthio group having 7 to 11 carbon atoms, and specific examples thereof include, but are not limited to, a benzylthio group, a phenethylthio group and the like. The alicyclic heterocyclic thio group and the aromatic heterocyclic thio group include an alicyclic heterocyclic group and an aromatic heterocyclic group which are shown below as a heterocyclic part.
 脂環式炭化水素基は、環構成原子間の結合は飽和及び不飽和の別は問わず、環員数についても特に制限はない。また、単環だけでなく、縮合環やスピロ環等の環集合を持つものも含まれる。脂環式炭化水素基としては、これらに制限するものではないが、好ましくは炭素原子数3~10個、特に好ましくは3~7個のシクロアルキル基、及び、シクロアルケニル基、好ましくは炭素原子数4~10個、特に好ましくは4~7個のシクロアルケニル基等が例示される。具体的には、シクロアルキル基として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられるが、これらに限定するものではない。シクロアルケニル基としては、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基等が挙げられるが、これらに限定するものではない。 The alicyclic hydrocarbon group is not particularly limited in the number of ring members, regardless of whether the bond between the ring constituting atoms is saturated or unsaturated. In addition, those having a ring assembly such as a fused ring or a spiro ring as well as a single ring are included. The alicyclic hydrocarbon group is not limited thereto, but is preferably a cycloalkyl group having 3 to 10 carbon atoms, particularly preferably 3 to 7 carbon atoms, and a cycloalkenyl group, preferably a carbon atom Several 4 to 10, particularly preferably 4 to 7 cycloalkenyl groups are exemplified. Specific examples of the cycloalkyl group include, but are not limited to, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like. Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, cyclooctenyl group and the like.
 脂環式炭化水素基は、置換基を有していてもよい。置換基は、1個又は複数個を有していてよく、複数個の置換基を有する場合には、互いに同一又は異なっていてもよい。また、置換基の位置についても特に制限はない。置換基は、脂肪族炭化水素基の置換基として例示したものと、同様のものが挙げられる。 The alicyclic hydrocarbon group may have a substituent. The substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group.
 脂環式複素環基は、環構成原子として1個又は複数個のヘテロ原子を有する非芳香族複素環基である。単環だけでなく、縮合環やスピロ環等の環集合を持つものも含まれる。環構成原子間の結合は飽和及び不飽和の別は問わず、環員数についても特に制限はない。ヘテロ原子は、環構成原子としてナトリウムと反応しないものである限り特に制限はない。ヘテロ原子の数は特に制限はなく、ヘテロ原子の位置についても制限はない。ヘテロ原子としては、好ましくは、酸素原子、窒素原子、硫黄原子等が例示される。例えば、炭素原子数が、好ましくは2~7個、特に好ましくは、2~5個、ヘテロ原子数が、好ましくは1~5個、特に好ましくは1~3個である脂環式複素環基が挙げられる。なお、複数個のヘテロ原子を有する場合には、同一種類の原子であっても異なる種類の原子であってもよい。脂環式複素環基としては、単環の四員環式のアゼチジニル基、五員環式のピロリジニル基、六員環式のピペリジル基、ピペラジニル基等の含窒素脂環式複素環基、単環の三員環式のオキシラニル基、四員環式のオキセタニル基、五員環式のテトラヒドロフリル基、六員環式のテトラヒドロピラニル基等の含酸素脂環式複素環基、単環の五員環式のテトラヒドロチオフェニル基等の含硫黄脂環式複素環基、単環の六員環式のモルホリニル基等の含窒素酸素脂環式複素環基、単環の六員環式のチオモルホリニル基等の含窒素硫黄脂環式複素環基等が挙げられるが、これらに限定するものではない。 The alicyclic heterocyclic group is a non-aromatic heterocyclic group having one or more hetero atoms as ring-constituting atoms. In addition to single rings, those having a ring assembly such as a fused ring or a spiro ring are also included. The bonds between the ring-constituting atoms are either saturated or unsaturated, and the number of ring members is not particularly limited. The hetero atom is not particularly limited as long as it does not react with sodium as a ring member atom. The number of heteroatoms is not particularly limited, and there is no limitation on the position of heteroatoms. As a hetero atom, Preferably, an oxygen atom, a nitrogen atom, a sulfur atom etc. are illustrated. For example, an alicyclic heterocyclic group having preferably 2 to 7 carbon atoms, particularly preferably 2 to 5 carbon atoms, and preferably 1 to 5 hetero atoms, particularly preferably 1 to 3 heteroatoms. Can be mentioned. In addition, when it has a plurality of hetero atoms, it may be the same type of atoms or different types of atoms. As the alicyclic heterocyclic group, a nitrogen-containing alicyclic heterocyclic group such as a monocyclic 4-membered azetidinyl group, a 5-membered cyclic pyrrolidinyl group, a 6-membered cyclic piperidyl group, a piperazinyl group, etc. Oxygen-containing alicyclic heterocyclic groups such as three-membered cyclic oxiranyl ring, four-membered oxetanyl group, five-membered tetrahydrofuryl group, six-membered tetrahydropyranyl group, etc., single ring Sulfur-containing alicyclic heterocyclic group such as 5-membered cyclic tetrahydrothiophenyl group, nitrogen-containing oxygen alicyclic heterocyclic group such as monocyclic 6-membered cyclic morpholinyl group, monocyclic 6-membered ring Although nitrogen-containing sulfur alicyclic heterocyclic group etc., such as a thiomorpholinyl group, etc. are mentioned, it does not limit to these.
 脂環式複素環は、置換基を有していてもよい。置換基は、1個又は複数個を有していてよく、複数個の置換基を有する場合には、互いに同一又は異なっていてもよい。また、置換基の位置についても特に制限はない。置換基は、脂肪族炭化水素基の置換基として例示したものと、同様のものが挙げられる。 The alicyclic heterocyclic ring may have a substituent. The substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group.
 芳香族炭化水素基は、芳香環を有する限り特に制限はない。単環だけでなく、縮合環やスピロ環等の環集合を持つものも含まれる。環員数についても特に制限はない。例えば、炭素原子数が、好ましくは6~22個、特に好ましくは、6~14個である芳香族炭化水素基が挙げられる。芳香族炭化水素基としては、単環式の六員環フェニル基等、二環式のナフチル基、ペンタレニル基、インデニル基、アズレニル基等、三環式のビフェニレニル基、インダセニル基、アセナフチレニル基、フルオレニル基、フェナレニル基、フェナントリル基、アントリル基等、四環式のフルオランテニル、アセアントリレニル基、トリフェニレニル基、ピレニル基、ナフタセニル基等、五環式のペリレニル基、テトラフェニレニル等、六環式のペンタセニル基等、七環式のルビセニル基、コロネニル基、ヘプタセニル基等が挙げられるが、これらに限定するものではない。特に好ましくは、フェニル基である。 The aromatic hydrocarbon group is not particularly limited as long as it has an aromatic ring. In addition to single rings, those having a ring assembly such as a fused ring or a spiro ring are also included. The number of ring members is also not particularly limited. For example, aromatic hydrocarbon groups having preferably 6 to 22 and particularly preferably 6 to 14 carbon atoms can be mentioned. As the aromatic hydrocarbon group, monocyclic 6-membered ring phenyl group, etc., bicyclic naphthyl group, pentalenyl group, indenyl group, azulenyl group etc., tricyclic biphenylenyl group, indasenyl group, acenaphthyrenyl group, fluorenyl group Group, phenalenyl group, phenanthryl group, anthryl group etc., tetracyclic fluorantenyl, aceanthrenyl group, triphenylenyl group, pyrenyl group, naphthacenyl group etc., pentacyclic perylenyl group, tetraphenylenyl etc., hexacyclic Examples thereof include pentacenyl group of the formula, heptacyclic rubicenyl group, coronenyl group, heptacenyl group and the like, but not limited thereto. Particularly preferred is a phenyl group.
 芳香族炭化水素基は、置換基を有していてもよい。置換基は、1個又は複数個を有していてよく、複数個の置換基を有する場合には、互いに同一又は異なっていてもよい。また、置換基の位置についても特に制限はない。置換基は、脂肪族炭化水素基の置換基として例示したものと、同様のものが挙げられる。特に好ましくは、ノルマルノニル基等のアルキル基である。 The aromatic hydrocarbon group may have a substituent. The substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group. Particularly preferred is an alkyl group such as a normal nonyl group.
 芳香族複素環基は、環構成原子として1個又は複数個のヘテロ原子を有する芳香族複素環基である。単環だけでなく、縮合環やスピロ環等の環集合を持つものも含まれる。環員数についても特に制限はない。ヘテロ原子は、環構成原子としてナトリウムと反応しないものである限り特に制限はない。ヘテロ原子の数は特に制限はなく、ヘテロ原子の位置についても制限はない。ヘテロ原子としては、好ましくは、酸素原子、窒素原子、硫黄原子等が例示される。例えば、炭素原子数が、好ましくは1~5個、特に好ましくは、3~5個、ヘテロ原子数が、好ましくは1~4個、特に好ましくは1~3個である芳香族複素環基が挙げられる。なお、複数個のヘテロ原子を有する場合には、同一種類の原子であっても異なる種類の原子であってもよい。 The aromatic heterocyclic group is an aromatic heterocyclic group having one or more hetero atoms as ring-constituting atoms. In addition to single rings, those having a ring assembly such as a fused ring or a spiro ring are also included. The number of ring members is also not particularly limited. The hetero atom is not particularly limited as long as it does not react with sodium as a ring member atom. The number of heteroatoms is not particularly limited, and there is no limitation on the position of heteroatoms. As a hetero atom, Preferably, an oxygen atom, a nitrogen atom, a sulfur atom etc. are illustrated. For example, an aromatic heterocyclic group in which the number of carbon atoms is preferably 1 to 5, particularly preferably 3 to 5, and the number of hetero atoms is preferably 1 to 4, particularly preferably 1 to 3 is It can be mentioned. In addition, when it has a plurality of hetero atoms, it may be the same type of atoms or different types of atoms.
 例えば、単環式の芳香族複素環基としては、五員環式のピロリル基、ピラゾリル基、ピリジル基、イミダゾリル基等、六員環式のピラジニル基、ピリミジニル基、ピリダジニル基等の含窒素芳香族複素環基、五員環式のフリル基等の含酸素芳香族複素環基、五員環式のチエニル基等の含酸素芳香族複素環基、五員環式のオキサゾリル基、イソオキサゾリル基、フラザニル基等の含窒素酸素芳香族複素環基、五員環式のチアゾリル基、イソチアゾリル基等の含窒素硫黄芳香族複素環基等が挙げられるが、これらに限定するものではない。 For example, as a monocyclic aromatic heterocyclic group, a nitrogen-containing aromatic ring such as a 5-membered cyclic pyrrolyl group, pyrazolyl group, pyridyl group, imidazolyl group, etc., a 6-membered cyclic pyrazinyl group, pyrimidinyl group, pyridazinyl group, etc. -Containing heterocyclic group, oxygen-containing aromatic heterocyclic group such as 5-membered cyclic furyl group, oxygen-containing aromatic heterocyclic group such as 5-membered cyclic thienyl group, 5-membered cyclic oxazolyl group, isoxazolyl group, Examples thereof include nitrogen-containing oxygen aromatic heterocyclic groups such as frazanyl groups, and nitrogen-containing sulfur aromatic heterocyclic groups such as 5-membered cyclic thiazolyl groups and isothiazolyl groups, but are not limited thereto.
 多環式の芳香族複素環基としては、二環式のインドリジニル基、イソインドリル基、インドリル基、インダゾリル基、プリニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基等、三環式のカルバゾリル基、カルボリニル基、フェナトリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基等の含窒素芳香族複素環基、二環式のベンゾフラニル基、イソベンゾフラニル基、ベンゾピラニル基等の含酸素芳香族複素環基、二環式のベンゾチエニル基等、三環式のチアントレニル基等の含硫黄芳香族複素環基、二環式のベンゾオキサゾリル基、ベンゾイソオキサゾリル基等の含窒素酸素芳香族複素環基、二環式のベンゾチアゾリル基、ベンゾイソチアゾリル基、三環式のフェノチアジニル基等の含窒素硫黄芳香族複素環基、三環式のフェノキサチイニル基等の含酸素硫黄芳香族複素環基等が挙げられるが、これらに限定するものではない。 As the polycyclic aromatic heterocyclic group, bicyclic indolizinyl group, isoindolyl group, indolyl group, indazolyl group, indazolyl group, purinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxalinyl group, quinazolinyl group, cinnorinyl And nitrogen-containing aromatic heterocyclic groups such as tricyclic carbazolyl group, carbazolyl group, carborinyl group, phenathridinyl group, acridinyl group, perimidinyl group, phenanthrolinyl group, phenazinyl group, etc., bicyclic benzofuranyl group, isobenzofuranyl group A sulfur-containing aromatic heterocyclic group such as an oxygen-containing aromatic heterocyclic group such as a nyl group and a benzopyranyl group, a bicyclic benzothienyl group and the like, a tricyclic thianthrenyl group and the like, and a bicyclic benzoxazolyl group Nitrogen-containing oxygen aromatic heterocyclic group such as benzoisoxazolyl group, bicyclic benzothiazolyl group Nitrogen-containing sulfur aromatic heterocyclic groups such as benzoisothiazolyl group and tricyclic phenothiazinyl group, and oxygen-containing sulfur aromatic heterocyclic groups such as tricyclic phenoxatyinyl group, etc. It is not limited to
 芳香族複素環基は、置換基を有していてもよい。置換基は、1個又は複数個を有していてよく、複数個の置換基を有する場合には、互いに同一又は異なっていてもよい。また、置換基の位置についても特に制限はない。置換基は、脂肪族炭化水素基の置換基として例示したものと、同様のものが挙げられる。 The aromatic heterocyclic group may have a substituent. The substituents may have one or more, and when having a plurality of substituents, they may be the same or different from each other. There is also no particular restriction on the position of the substituent. Examples of the substituent include the same as those exemplified as the substituent of the aliphatic hydrocarbon group.
 X1は、ハロゲン原子であり、具体的には、塩素原子、臭素原子、ヨウ素原子、又は、フッ素原子であるが、好ましくは、塩素原子である。出発化合物として安価な有機塩化物を使用することにより経済的に更に有利となる。また、グリニャール試薬の調製に際して汎用される有機臭化物において問題となるような、原料である臭素の産地の偏在や入手の困難性等の問題もなく、工業化に際しての高負荷な廃棄処理施設の必要性等の問題もない。 X 1 is a halogen atom, specifically, a chlorine atom, a bromine atom, an iodine atom or a fluorine atom, preferably a chlorine atom. The economic advantage is further obtained by using cheap organic chlorides as starting compounds. In addition, there are no problems such as uneven distribution of the origin of the raw material of the raw material, which is a problem in the preparation of Grignard reagents, and difficulty in obtaining the raw material, which is a problem. There is no problem of
 出発化合物である有機ハロゲン化物は、市販されているものを使用してもよいし、当該技術分野で公知の方法により製造されたものを使用してよい。 As the organic halides which are the starting compounds, those commercially available may be used, or those produced by methods known in the art may be used.
 ナトリウムを分散溶媒に分散させた分散体(以下、Sodium Dispersionの略号である「SD」と略する場合がある。)は、ナトリウムを微粒子として不溶性溶媒に分散させたもの、又は、ナトリウムを液体の状態で不溶性溶媒に分散させたものである。ナトリウムとしては、金属ナトリウムのほか、金属ナトリウムを含む合金などが挙げられる。微粒子の平均粒子径として、好ましくは、10μm未満であり、特に好ましくは、5μm未満のものを使用することができる。平均粒子径は、顕微鏡写真の画像解析によって得られた投影面積と同等の投影面積を有する球の径で表した。 A dispersion in which sodium is dispersed in a dispersion solvent (hereinafter sometimes abbreviated as “SD” which is an abbreviation of Sodium Dispersion) is a dispersion of sodium as fine particles in an insoluble solvent, or sodium as a liquid It is dispersed in an insoluble solvent in the state. Examples of sodium include metallic sodium and alloys containing metallic sodium. The average particle size of the fine particles is preferably less than 10 μm, and particularly preferably less than 5 μm. The average particle size was represented by the diameter of a sphere having a projected area equivalent to the projected area obtained by image analysis of a photomicrograph.
 分散溶媒としては、ナトリウムを微粒子として分散、又はナトリウムを液体の状態で不溶性溶媒に分散でき、かつ、出発化合物である有機ハロゲン化物とSDとの反応を阻害しない限り、当該技術分野で公知の溶媒を使用することができる。例えば、例えば、キシレン、トルエン等の芳香族系溶媒や、ノルマルデカン等のノルマルパラフィン系溶媒、テトラヒドロチオフェン等の複素環化合物溶媒、又はそれらの混合溶媒等が挙げられる。 As a dispersion solvent, a solvent known in the art can be used as long as sodium can be dispersed as fine particles or sodium can be dispersed in a liquid state in an insoluble solvent and the reaction between the starting compound organic halide and SD is not inhibited. Can be used. Examples thereof include aromatic solvents such as xylene and toluene, normal paraffin solvents such as normal decane, heterocyclic compound solvents such as tetrahydrothiophene, and mixed solvents thereof.
 SDは、クロロベンゼンに対して2.1モル当量以上で反応溶媒中で反応させた場合に、添加したクロロベンゼンに対するフェニルナトリウムの収率が99.0%以上となる活性を有するものを使用することが好ましい(図2の反応図参照)。このような高活性なSDを使用することにより、更に効率的に有機亜鉛化合物を合成することができる。SDの活性を高く維持するためには、好ましくは、ガラスバイアル等のガスバリア性の高い容器に保管することが好ましい。しかしながら、ガスバリア性の低い容器に保管することを排除するものではなく、その場合には、SDの製造後、速やかに、例えば数週間内、好ましくは3週間内に使用する。 As SD, it is preferable to use one having an activity such that the yield of phenyl sodium is 99.0% or more to chlorobenzene added when the reaction is carried out in a reaction solvent at 2.1 molar equivalents or more with respect to chlorobenzene (FIG. 2) See the reaction diagram of By using such highly active SD, organozinc compounds can be synthesized more efficiently. In order to maintain the activity of SD high, it is preferable to store in a container with high gas barrier properties such as a glass vial. However, storage in a container with low gas barrier properties is not excluded, and in that case, it is used immediately, for example, within several weeks, preferably within 3 weeks after production of SD.
 工程1の反応溶媒としては、出発化合物である有機ハロゲン化物とSDとの反応を阻害しない限り、当該技術分野で公知の溶媒を使用することができる。例えば、エーテル系溶媒、ノルマルパラフィン系やシクロパラフィン系等のパラフィン系溶媒、芳香族系溶媒、アミン系溶媒、複素環化合物溶媒を使用することができる。エーテル系溶媒としては、環状エーテル溶媒が好ましく、テトラヒドロフラン(以下、「THF」と略する場合がある)等を好ましく使用することができる。パラフィン系溶媒としては、シクロヘキサン、ノルマルヘキサン、及び、ノルマルデカン等が特に好ましい。芳香族系溶媒としては、キシレン、トルエン及びベンゼン等が好ましく、クロロベンゼンやフルオロベンゼン等のハロゲン化芳香族系溶媒を利用することができる。アミン系溶媒としては、エチレンジアミン等を好ましく使用することができる。複素環化合物溶媒としては、テトラヒドロチオフェン等を利用することができる。また、これらは1種類のみを使用してもよいし、2種以上を併用し混合溶媒として使用することもできる。ここで、前述の分散溶媒と反応溶媒とは同一の種類のものを使用してもよいし、異なる種類のものを使用してもよい。 As the reaction solvent in step 1, solvents known in the art can be used as long as they do not inhibit the reaction of the starting compound organic halide with SD. For example, ether solvents, paraffin solvents such as normal paraffin type and cyclo paraffin types, aromatic solvents, amine solvents, heterocyclic compound solvents can be used. As the ether solvent, a cyclic ether solvent is preferable, and tetrahydrofuran (hereinafter sometimes abbreviated as “THF”) can be preferably used. As the paraffin solvents, cyclohexane, normal hexane, normal decane and the like are particularly preferable. As the aromatic solvent, xylene, toluene, benzene and the like are preferable, and a halogenated aromatic solvent such as chlorobenzene and fluorobenzene can be used. Ethylenediamine etc. can be preferably used as an amine solvent. Tetrahydrothiophene etc. can be utilized as a heterocyclic compound solvent. Moreover, only 1 type may be used for these, and it can also be used as a mixed solvent combining 2 or more types. Here, the above-mentioned dispersion solvent and reaction solvent may be of the same type or different types.
 工程1の反応温度は、溶媒としてパラフィン系溶媒を使用する場合は特に限定されず、出発化合物である有機ハロゲン化物、SD及び反応溶媒の種類や量、並びに反応圧力等により適宜設定することができる。具体的には、反応温度は、反応溶媒の沸点を越えない温度に設定することが好ましい。加圧下では大気圧下での沸点よりも高くなるため反応温度を高い温度で設定することができる。反応は、室温で行うこともでき、好ましくは0~100℃であり、特に好ましくは20~80℃、更に好ましくは室温~50℃である。特段の加熱や冷却等のための温度制御手段を設ける必要はないが、必要に応じて、温度制御手段を設けても良い。一方、パラフィン系以外の溶媒を使用する場合は、工程1の反応で生成するR1-Naの好適例であるフェニルナトリウム等と溶媒との反応を防止するため、低温、好ましくは0℃付近で行うとよい。ここで、有機ハロゲン化物と等モル当量のTHFを添加することで、ビフェニルの生成を効果的に抑制できると共に、良好な反応速度を維持することができる。したがって、反応溶媒の種類及び添加量を適切に制御することで、効率的に目的化合物を合成することができる。 The reaction temperature in step 1 is not particularly limited when a paraffinic solvent is used as the solvent, and can be appropriately set according to the type and amount of the starting compound organic halide, SD and the reaction solvent, the reaction pressure, etc. . Specifically, the reaction temperature is preferably set to a temperature that does not exceed the boiling point of the reaction solvent. The reaction temperature can be set at a high temperature because the pressure is higher than the boiling point under atmospheric pressure. The reaction can also be carried out at room temperature, preferably 0 to 100 ° C., particularly preferably 20 to 80 ° C., more preferably room temperature to 50 ° C. Although there is no need to provide temperature control means for special heating or cooling, etc., temperature control means may be provided if necessary. On the other hand, when a solvent other than paraffinic solvent is used, low temperature, preferably around 0 ° C., to prevent reaction of the solvent with phenyl sodium etc. which is a suitable example of R 1 -Na produced in the reaction of Step 1. Good to do. Here, by adding the organic halide and equimolar equivalent of THF, it is possible to effectively suppress the formation of biphenyl and maintain a good reaction rate. Therefore, the target compound can be efficiently synthesized by appropriately controlling the type and addition amount of the reaction solvent.
 工程1の反応時間についても、特に限定されず、出発化合物である有機ハロゲン化物、SD、及び反応溶媒の種類や量、並びに反応圧力や反応温度等に応じて適宜設定すればよい。通常は、15分間~24時間、好ましくは20分間~6時間で行われる。 The reaction time of step 1 is also not particularly limited, and may be appropriately set according to the type and amount of the starting compound organic halide, SD, and the reaction solvent, the reaction pressure, the reaction temperature, and the like. Usually, it is carried out for 15 minutes to 24 hours, preferably for 20 minutes to 6 hours.
 工程1は、SD、及び、反応溶媒等の試薬類は大気下で安定して扱うことができることから、大気下の常圧条件下で行うことに適している。しかしながら、生成するR1-Naの好適例であるフェニルナトリウム等は高活性であり少しでも空気が混入すると水分によりプロトン化されることから、必要に応じて、アルゴンガスや窒素ガス等を充填した不活性ガス雰囲気下で行ってもよい。 The step 1 is suitable to be carried out under atmospheric pressure and normal pressure conditions since reagents such as SD and reaction solvents can be stably handled under the atmosphere. However, since phenyl sodium, which is a preferable example of R 1 -Na to be produced, is highly active and is protonated by moisture when air is mixed in even a little, it is filled with argon gas, nitrogen gas, etc. as necessary. You may carry out under inert gas atmosphere.
 工程1によって得られる一般式II(R1-Na)に示す有機ナトリウム化合物は、出発化合物である一般式I(R1-X1)に示す有機ハロゲン化物のハロゲン原子がナトリウムに置換されたものである。したがって、一般式II(R1-Na)において、R1は、上記した一般式IのR1と同様であり、Naは、ナトリウム原子である。得られた有機ナトリウム化合物は、カラムクロマトグラフィー、蒸留、再結晶等、当該技術分野で公知の精製手段により精製してもよい。また、未反応で残存した出発化合物である有機ハロゲン化物を回収し、再度、工程1の反応に供するように構成してもよい。また、生成時と同様にアルゴンガスや窒素ガスなどを充填した不活性ガス雰囲気下で行ってもよい。 The organosodium compound represented by the general formula II (R 1 -Na) obtained by the step 1 is obtained by substituting the halogen atom of the organic halide represented by the general formula I (R 1 -X 1 ) which is a starting compound with sodium It is. Thus, in the general formula II (R 1 -Na), R 1 is the same as R 1 of the general formula I as described above, Na is sodium atom. The obtained organic sodium compound may be purified by purification means known in the art such as column chromatography, distillation, recrystallization and the like. In addition, the organic halide which is the unreacted and remaining starting compound may be recovered, and may be configured to be subjected to the reaction of Step 1 again. The reaction may be performed in an inert gas atmosphere filled with argon gas, nitrogen gas or the like as in the production.
(工程2)
 工程2は、工程1によって得られた一般式II(R1-Na)に示す有機ナトリウム化合物と塩化亜鉛(ZnCl2)を反応させて、最終目的化合物の一般式III(R1-Zn-X2)に示す有機亜鉛化合物を得る工程である。
(Step 2)
In step 2, the organosodium compound represented by the general formula II (R 1 -Na) obtained by step 1 is reacted with zinc chloride (ZnCl 2 ) to obtain the final target compound of general formula III (R 1 -Zn-X) 2 ) a step of obtaining the organozinc compound shown in 2 ).
 塩化亜鉛は単体として使用してもよいし、N,N,N',N'-テトラメチルエチレンジアミン(以下、「TMEDA」と略する)を配位させた錯体として使用してもよい。TMEDAと錯体を形成することにより塩化亜鉛は空気中で吸湿分解せず安定であり、取り扱いや保管にも有利である。 Zinc chloride may be used alone or as a complex having N, N, N ', N'-tetramethylethylenediamine (hereinafter abbreviated as "TMEDA") coordinated. By forming a complex with TMEDA, zinc chloride is stable without being hygroscopically decomposed in air, and is advantageous for handling and storage.
 工程2は、工程1によって得られた反応物に塩化亜鉛を添加することにより行ってもよいし、工程1によって得られた反応物を当該技術分野で公知の精製手段により精製した後、反応溶媒の存在下で塩化亜鉛を添加することによって行ってもよい。反応溶媒としては、工程1と同様のものを使用することができる。 Step 2 may be carried out by adding zinc chloride to the reaction product obtained by step 1, or after purifying the reaction product obtained by step 1 by a purification means known in the art, a reaction solvent It may be done by the addition of zinc chloride in the presence of As the reaction solvent, the same one as in Step 1 can be used.
 工程2の反応温度は、溶媒としてパラフィン系溶媒を使用する場合は特に限定されず、有機ナトリウム化合物、SD及び反応溶媒の種類や量、並びに反応圧力等により適宜設定することができる。具体的には、反応温度は、反応溶媒の沸点を越えない温度に設定することが好ましい。加圧下では大気圧下での沸点よりも高くなるため反応温度を高い温度で設定することができる。反応は、室温で行うこともでき、好ましくは0~100℃であり、特に好ましくは20~80℃、更に好ましくは室温~50℃である。特段の加熱や冷却等のための温度制御手段を設ける必要はないが、必要に応じて、温度制御手段を設けても良い。一方、パラフィン系以外の溶媒を使用する場合は、工程1の反応で生成するR1-Naの好適例であるフェニルナトリウム等と溶媒との反応を防止するため、低温、好ましくは0℃付近で行うとよい。 The reaction temperature in step 2 is not particularly limited when a paraffinic solvent is used as the solvent, and can be appropriately set according to the type and amount of organic sodium compound, SD and reaction solvent, reaction pressure and the like. Specifically, the reaction temperature is preferably set to a temperature that does not exceed the boiling point of the reaction solvent. The reaction temperature can be set at a high temperature because the pressure is higher than the boiling point under atmospheric pressure. The reaction can also be carried out at room temperature, preferably 0 to 100 ° C., particularly preferably 20 to 80 ° C., more preferably room temperature to 50 ° C. Although there is no need to provide temperature control means for special heating or cooling, etc., temperature control means may be provided if necessary. On the other hand, when a solvent other than paraffinic solvent is used, low temperature, preferably around 0 ° C., to prevent reaction of the solvent with phenyl sodium etc. which is a suitable example of R 1 -Na produced in the reaction of Step 1. Good to do.
 工程2の反応時間についても、特に限定されず、有機ナトリウム化合物、SD、及び反応溶媒の種類や量、並びに反応圧力や反応温度等に応じて適宜設定すればよい。通常は、5分~2時間、好ましくは10分~1時間で行われる。 The reaction time of Step 2 is also not particularly limited, and may be appropriately set according to the type and amount of the organic sodium compound, SD, and the reaction solvent, the reaction pressure, the reaction temperature, and the like. Usually, it is carried out for 5 minutes to 2 hours, preferably 10 minutes to 1 hour.
 また、工程2は、塩化亜鉛、及び、反応溶媒等の試薬類は大気下で安定して扱うことができることから、大気下の常圧条件下で行うことに適している。しかしながら、有機ナトリウム化合物の種類等の必要に応じて、アルゴンガスや窒素ガス等を充填した不活性ガス雰囲気下で行ってもよい。 In addition, since Step 2 can handle zinc chloride and reagents such as a reaction solvent stably in the atmosphere, it is suitable to be performed under atmospheric pressure. However, it may be carried out under an inert gas atmosphere filled with argon gas, nitrogen gas or the like, as necessary, such as the type of organic sodium compound.
 工程2の反応によって、所望の最終目的化合物の一般式III(R1-Zn-X2)に示す有機亜鉛化合物を得ることができる。工程2において、R1-Na + ZnCl2 → R1-Zn-Cl + NaCl、又は、2R1-Na + ZnCl2 → R1-Zn-R1+ 2NaClの反応が起こり、R1-Zn-Cl 、又は、R1-Zn-R1を得ることができる。ここで合成される一般式III(R1-Zn-X2)に示す有機亜鉛化合物は、一般式II(R1-Na)に示す有機ナトリウム化合物のナトリウムが、亜鉛クロリド、又は、亜鉛に置換されたものである。したがって、一般式III(R1-Zn-X2)において、R1は、上記した一般式I(R1-X1)及び一般式II(R1-Na)のR1と同様である。一般式III(R1-Zn-X2)においてX2がClの場合、X2は塩化亜鉛由来である。 By the reaction of step 2, an organozinc compound represented by the general formula III (R 1 -Zn-X 2 ) of the desired final target compound can be obtained. In step 2, a reaction of R 1 -Na + ZnCl 2 → R 1 -Zn-Cl + NaCl or 2R 1 -Na + ZnCl 2 → R 1 -Zn-R 1 + 2NaCl occurs and R 1 -Zn- Cl 2 or R 1 -Zn-R 1 can be obtained. In the organozinc compound represented by the general formula III (R 1 -Zn-X 2 ) synthesized here, sodium of the organosodium compound represented by the general formula II (R 1 -Na) is substituted with zinc chloride or zinc It is done. Thus, in the general formula III (R 1 -Zn-X 2 ), R 1 is the same as R 1 of the general formula I (R 1 -X 1) and the general formula II (R 1 -Na). If the general formula III (R 1 -Zn-X 2 ) in X 2 is Cl, X 2 is zinc chloride derived.
 本実施形態に係る有機亜鉛化合物の合成方法においてSD及び塩化亜鉛の使用量は、出発化合物、及び反応溶媒の種類や量に応じて適宜設定することができる。好ましくは、一般式III(R1-ZnX2)のX2がClの場合、出発化合物物質である有機ハロゲン化物:SD:塩化亜鉛のモル比は、1:2以上3以下:1となる量で反応させることが好ましい。一方、一般式III(R1-ZnX2)のX2がR1の場合、出発化合物物質である有機ハロゲン化物:SD:塩化亜鉛のモル比は、1:2以上3以下:1未満となる量で反応させることが好ましく、より好ましくは1:2以上3以下:0.3以上0.5未満で反応させることが好ましい。この量で反応させることにより、有機亜鉛化合物を高効率かつ高純度に合成することができる。ここで、SDの物質量は、SD中に含まれるアルカリ金属換算での物質量を意味する。 The amounts of SD and zinc chloride used in the method of synthesizing the organozinc compound according to the present embodiment can be appropriately set according to the types and amounts of the starting compound and the reaction solvent. Preferably, when X 2 in the general formula III (R 1 -ZnX 2 ) is Cl, the molar ratio of the starting compound substance organic halide: SD: zinc chloride is 1: 2 to 3: 1. Preferably, the reaction is carried out. On the other hand, when X 2 in the general formula III (R 1 -ZnX 2 ) is R 1 , the molar ratio of the starting compound substance organic halide: SD: zinc chloride is 1: 2 or more and 3 or less: 1. It is preferable to make it react by quantity, It is more preferable to make it react by more than 1: 2: 3: 0.3 or more and less than 0.5. By reacting in this amount, the organozinc compound can be synthesized with high efficiency and high purity. Here, the amount of substance of SD means the amount of substance in terms of alkali metal contained in SD.
 本実施形態に係る有機亜鉛化合物の合成方法において最終的に合成された有機亜鉛化合物は、再結晶等の当該技術分野で公知の精製手段により精製してもよい。また、未反応で残存した有機ハロゲン化物及び有機ナトリウム化合物等を回収し、再度、当該有機亜鉛化合物の合成のために利用するように構成してもよい。 The organozinc compound finally synthesized in the method for synthesizing the organozinc compound according to the present embodiment may be purified by a purification means known in the art such as recrystallization. In addition, it may be configured to recover the organic halide and the organic sodium compound and the like remaining unreacted and to be used again for the synthesis of the organic zinc compound.
 本実施形態に係る有機亜鉛化合物の合成方法は、SDを利用することにより安定的かつ効率的に有機亜鉛化合物を合成することができる。取り扱いが容易なSDを使用することにより、温和な条件下で、煩雑な化学的手法を必要とせず、少ない工程数で簡便かつ短時間に有機亜鉛化合物を安価に合成することができるので、経済的かつ工業的にも非常に有利である。ナトリウムは、地球上に極めて広く分布していることから、サステナビリティーにも優れた技術である。一方、固体の金属ナトリウムを使用した場合には、反応温度が室温では効率が悪く、金属ナトリウムの融点(98℃)以上等の高温で反応を行うことが必要となる。このような高温で反応を行うことで、有機ハロゲン化物同士がカップリングするウルツ反応が誘発され、有機ナトリウム化合物を効率よく合成することができず、有機亜鉛化合物の収率が低下する。これに対して、SDを使用することにより、温和な条件下で反応を進行させることができるので、ウルツ反応等の副反応を誘発することなく、効率的に有機ナトリウム化合物を得ることができ、ひいては、有機亜鉛化合物を高収率かつ高純度に合成することができる。 In the method of synthesizing the organozinc compound according to this embodiment, the organozinc compound can be stably and efficiently synthesized by using SD. By using SD which is easy to handle, the organozinc compound can be easily and inexpensively synthesized in a short time with a small number of steps, under mild conditions, without the need for complicated chemical methods, so that the economy is economical. And industrially very advantageous. Sodium is a technology with excellent sustainability because it is widely distributed on the earth. On the other hand, when solid metallic sodium is used, the reaction temperature is low at room temperature, and the reaction is required to be carried out at a high temperature such as the melting point (98 ° C.) of metallic sodium. By conducting the reaction at such a high temperature, the Wurtz reaction in which organic halides are coupled is induced, the organic sodium compound can not be synthesized efficiently, and the yield of the organic zinc compound is lowered. On the other hand, by using SD, the reaction can be allowed to proceed under mild conditions, so that the organosodium compound can be efficiently obtained without inducing a side reaction such as Wurtz reaction, As a result, the organozinc compound can be synthesized in high yield and high purity.
 本実施形態の有機亜鉛化合物の合成方法で合成された有機亜鉛化合物は、根岸カップリング等に好適に利用することができる。したがって、本発明の有機亜鉛化合物の合成方法は、医農薬及び電子材料等の機能性材料の合成等、様々な技術分野において利用することができる。 The organozinc compound synthesized by the method for synthesizing the organozinc compound of the present embodiment can be suitably used for Negishi coupling and the like. Therefore, the synthesis method of the organozinc compound of the present invention can be used in various technical fields such as synthesis of functional materials such as medicines and pesticides and electronic materials.
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、以下の実施例におけるSDとしては、金属ナトリウムを微粒子としてノルマルパラフィン油に分散させた分散体を使用し、SDの物質量は、SDに含まれる金属ナトリウム換算での数値である。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. As SD in the following examples, a dispersion in which metallic sodium is dispersed as fine particles in normal paraffin oil is used, and the substance mass of SD is a numerical value in terms of metallic sodium contained in SD.
(実施例1)有機ナトリウム化合物(アリールナトリウム)合成条件、及び、有機亜鉛化合物の合成条件の検討
 本実施例では、図1に要約する合成条件により、有機ナトリウム化合物として4- nノニルフェニルナトリウム2の合成を検討すると共に、得られた4-nノニルフェニルナトリウム2を利用して、有機亜鉛化合物である4-ノルマル(n)ノニルフェニル亜鉛クロリド4の合成を検討した。
Example 1 Examination of Synthesis Conditions of Organosodium Compound (Aryl Sodium) and Synthesis Conditions of Organozinc Compound In this example, 4- n nonylphenyl sodium 2 as an organosodium compound under the synthesis conditions summarized in FIG. while considering the synthesis, by utilizing the obtained 4-n-nonylphenyl sodium 2 was examined the synthesis of an organic zinc compound 4- normal (n) nonylphenyl zinc chloride 4.
実験番号1
 シクロヘキサン0.5ml中に、出発化合物である0.25mmolの1-クロロ-4-nノニルベンゼン1と2.5モル当量のSDを添加し、室温で20分間反応させ、4- nノニルフェニルナトリウム2を合成した。なお、モル当量は、出発物質である化合物である4- nノニル-クロロベンゼン1に対するモル当量である。
Experiment No. 1
In cyclohexane 0.5 ml, was added to the SD 1-chloro-4-n-nonyl benzene 1 and 2.5 molar equivalents of 0.25mmol the starting compound, allowed to react for 20 minutes at room temperature, was synthesized 4-n-nonylphenyl sodium 2 . The molar equivalent is a molar equivalent to 4- n nonyl-chlorobenzene 1 which is a compound which is a starting material.
実験番号2
 ヘキサン1ml中に、出発化合物である0.5mmolの4-nノニル-クロロベンゼン1と2.5モル当量のSDを添加し、25℃で20分間反応させ、4-nノニルフェニルナトリウム2を合成した。
Experiment number 2
In 1 ml of hexane, 0.5 mmol of 4- n nonyl-chlorobenzene 1 as a starting compound and 2.5 molar equivalents of SD were added and reacted at 25 ° C. for 20 minutes to synthesize 4- n nonylphenyl sodium 2.
実験番号3
 ヘキサン0.5ml中に、出発化合物である0.25mmolの4-nノニル-クロロベンゼン1と2.5モル当量のSDを添加し、25℃で20分間反応させ、4-nノニルフェニルナトリウム2を合成した。4- nノニルフェニルナトリウム2に1.0モル当量の塩化亜鉛,TMEDAを添加し、25℃で15分間反応させ、4-nノニルフェニル亜鉛クロリド4を得た。
Experiment number 3
In 0.5 ml of hexane, 0.25 mmol of 4- n nonyl-chlorobenzene 1 as a starting compound and 2.5 molar equivalents of SD were added and reacted at 25 ° C. for 20 minutes to synthesize 4- n nonylphenyl sodium 2. A 1.0 molar equivalent of zinc chloride, TMEDA was added to 4- n nonylphenyl sodium 2 and reacted at 25 ° C. for 15 minutes to obtain 4- n nonylphenyl zinc chloride 4.
 合成された4- nノニルフェニルナトリウム2の評価は、4- nノニルフェニルナトリウム2を重水でクエンチし、クエンチ後の生成物3をガスクロマトグラフィー(以下「GC」と略する)により測定することにより行った。これは、4- nノニルフェニルナトリウム2のナトリウムが重水素により置換されることを利用するものである。収率として、反応系に添加した1-クロロ-4- nノニルベンゼン1から理論的に生成することができる生成物3に対する、実際に取得できた生成物3の割合(%)を算出した。しかしながら、GCにより測定した生成物3には、重水素化されたものだけなく、水素化されたものも含まれる。そのため、得られた生成物3を1H NMRにより測定し、生成物3に対する重水素率(D比(%))を算出した。また、未反応で残存した1-クロロ-4- nノニルベンゼン1をGCで測定し、未反応率(%)を算出すると共に、1-クロロ-4- nノニルベンゼン1同士がカップリングするウルツ反応が誘発されている否かを評価するため、カップリング生成物(Ar-Ar)の生成を1H NMRで測定し、Ar-Ar生成率(%)を算出した。 Evaluation of the synthesized 4-n-nonylphenyl sodium 2 4- n-nonylphenyl sodium 2 quenched with deuterium oxide, be determined by the product 3 gas chromatography after quenching (hereinafter abbreviated as "GC") Went by. This utilizes the fact that sodium of 4- n nonylphenyl sodium 2 is substituted by deuterium. As the yield, the ratio (%) of the product 3 which could actually be obtained to the product 3 which can be theoretically generated from 1-chloro-4- n nonylbenzene 1 added to the reaction system was calculated. However, the product 3 measured by GC includes not only deuterated ones but also hydrogenated ones. Therefore, the obtained product 3 was measured by 1 H NMR, and the deuterium ratio to the product 3 (D ratio (%)) was calculated. In addition, the unreacted 1-chloro-4- n nonylbenzene 1 is measured by GC to calculate the unreacted ratio (%), and the 1-chloro-4- n nonylbenzene 1 is coupled with Wurtz In order to evaluate whether or not the reaction was induced, the formation of coupling product (Ar-Ar) was measured by 1 H NMR to calculate the Ar-Ar production rate (%).
 合成された4-nノニルフェニル亜鉛クロリド4の評価は、上記と同様に、重水でクエンチし、クエンチ後の生成物5をGC及び1HNMRにより測定することにより行った。 The evaluation of the synthesized 4- n nonylphenyl zinc chloride 4 was carried out by quenching with heavy water and measuring the product 5 after quenching by GC and 1 H NMR in the same manner as described above.
 結果を図1に示す。図1に示す通り、実験番号1では、水素化されたものも含む生成物3(有機ナトリウム化合物)の収率は98%であり、重水素化率は93%であった。したがって、生成物3の実際の収率は91%であった。一方、未反応で残存した1-クロロ-4- nノニルベンゼン1は極微量であり、また、ウルツ反応に伴うカップリング生成物の生成率は1%であった。実験番号2では、水素化されたものも含む生成物3の収率は93%であり、重水素化率は96%であった。したがって、生成物3の実際の収率は89%であった。これにより、SDを使用することにより、アリールナトリウム等の有機ナトリウム化合物を高収率及び高純度に合成でき、副反応であるウルツ反応の誘発をも効果的に抑制できることが理解できる。 The results are shown in FIG. As shown in FIG. 1, in Experiment No. 1, the yield of the product 3 (organosodium compound) including the hydrogenated one was 98%, and the deuteration ratio was 93%. Thus, the actual yield of product 3 was 91%. On the other hand, the amount of unreacted 1-chloro-4- n nonylbenzene 1 remaining was extremely small, and the rate of formation of the coupling product associated with the Wurtz reaction was 1%. In Experiment No. 2, the yield of the product 3 including the hydrogenated one was 93%, and the deuteration ratio was 96%. Thus, the actual yield of product 3 was 89%. Thereby, it can be understood that by using SD, organosodium compounds such as aryl sodium can be synthesized in high yield and high purity, and induction of the Wurtz reaction which is a side reaction can be effectively suppressed.
 また、実験番号3では、水素化されたものも含む生成物5(有機亜鉛化合物)の収率は90%であり、重水素化率は94%であった。したがって、生成物5の実際の収率は85%であった。これにより、4-nノニル-クロロベンゼン1から4- nノニルフェニルナトリウム2を経て、高収率に4- nノニルフェニル亜鉛クロリド4の合成を行うことができた。 In Experiment No. 3, the yield of the product 5 (organozinc compound) including the hydrogenated one was 90%, and the deuteration ratio was 94%. Thus, the actual yield of product 5 was 85%. Thus, 4-n-nonyl - chlorobenzene 1 through 4-n-nonylphenyl sodium 2, it was possible to carry out the synthesis of high yield 4-n-nonylphenyl zinc chloride 4.
(実施例2)有機ナトリウム化合物(アリールナトリウム)合成条件の検討-2
 本実施例では、図2に要約する合成条件により、有機ナトリウム化合物としてフェニルナトリウム2の合成を検討した。ヘキサン0.5ml中に、出発化合物である1.0モル当量のハロゲン化ベンゼン1とYモル当量のSDを添加し、室温で30分間反応させ、フェニルナトリウム2を合成した。
Example 2 Examination of Synthesis Conditions of Organosodium Compound (Aryl Sodium) -2
In this example, the synthesis of phenyl sodium 2 as an organosodium compound was examined under the synthesis conditions summarized in FIG. In 0.5 ml of hexane, 1.0 molar equivalent of the starting compound, benzene 1 and Y molar equivalent of SD were added and reacted at room temperature for 30 minutes to synthesize phenyl sodium 2.
 合成されたフェニルナトリウム2の評価は、1.0モル当量の2,2,6,6-テトラメチルピペリジド3と室温で30分間反応させ、得られたナトリウム2,2,6,6-テトラメチルピペリジド4をフルオレンと反応させ、重水でクエンチし、クエンチ後の生成物を1H NMRで測定することにより行った。収率として、反応系に添加したハロゲン化ベンゼン1から理論的に生成することができるナトリウム2,2,6,6-テトラメチルピペリジド4に対する、実際に取得できたナトリウム2,2,6,6-テトラメチルピペリジド4の割合(%)を算出した。また、ハロゲン化ベンゼン1同士がカップリングするウルツ反応が誘発されているか否かを評価するため、カップリング生成物(Ph-Ph)の生成を1H NMRで測定し、Ph-Ph生成率(%)を算出した。 The evaluation of the synthesized phenyl sodium 2 was carried out by reacting it with 1.0 molar equivalent of 2,2,6,6-tetramethylpiperidide 3 for 30 minutes at room temperature and obtaining sodium 2,2,6,6-tetramethyl obtained. Piperidide 4 was reacted with fluorene, quenched with heavy water, and the product after quenching was determined by 1 H NMR. As the yield, sodium 2,2,6 actually obtained for sodium 2,2,6,6-tetramethylpiperidide 4 which can be theoretically generated from halogenated benzene 1 added to the reaction system The proportion (%) of 6, 6-tetramethylpiperidide 4 was calculated. In addition, in order to evaluate whether or not the Wurtz reaction in which halogenated benzenes 1 are coupled is induced, the formation of the coupling product (Ph-Ph) is measured by 1 H NMR, and the Ph-Ph formation rate ( %) Was calculated.
 結果を図2に示す。図2に示す通り、出発化合物としてブロモベンゼン1を使用した場合にはSDを2.2モル当量以上で反応させると99%以上の高収率でフェニルナトリウム2を合成できることが理解できる。また、出発化合物としてクロロベンゼン1を使用した場合にはSDを2.1モル当量以上で反応させると99%以上の高収率でフェニルナトリウム2を合成できることが理解できる。一方、SDが2.0モル当量未満となると、副反応であるウルツ反応を誘発することも判明した。 The results are shown in FIG. As shown in FIG. 2, when bromobenzene 1 is used as the starting compound, it can be understood that phenyl sodium 2 can be synthesized with a high yield of 99% or more when SD is reacted at 2.2 molar equivalents or more. Further, when chlorobenzene 1 is used as a starting compound, it can be understood that phenyl sodium 2 can be synthesized with a high yield of 99% or more by reacting SD at 2.1 molar equivalents or more. On the other hand, it was also found that when the SD is less than 2.0 molar equivalents, it induces the Wurtz reaction which is a side reaction.
(実施例3)有機亜鉛化合物の合成条件の検討及び根岸カップリングへの応用-1
 本実施例では、図3に要約する合成条件により、有機亜鉛化合物を合成し、得られた有機亜鉛化合物がパラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。ここで、パラジウム触媒として、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(PdCl2(PPh3)2)を使用した。
(Example 3) Investigation of synthesis conditions of organozinc compound and application to Negishi coupling-1
In this example, an organozinc compound was synthesized under the synthesis conditions summarized in FIG. 3, and it was examined whether the resulting organozinc compound could be used for Negishi coupling using a palladium catalyst. Here, bis (triphenylphosphine) palladium (II) dichloride (PdCl 2 (PPh 3 ) 2 ) was used as a palladium catalyst.
実験番号1
 有機亜鉛化合物として4- nノニルフェニル亜鉛クロリド3の合成を検討した。ヘキサン1ml中に、出発化合物である1.2モル当量の4- nノニル-クロロベンゼン1と2.8モル当量のSDを添加し、室温で15分間反応させ、4- nノニルフェニルナトリウム2を合成した。得られた4-nノニルフェニルナトリウム2に1.2モル当量の塩化亜鉛・TMEDAを添加し、室温で15分間反応させ、4- nノニルフェニル亜鉛クロリド3を得た。
Experiment No. 1
The synthesis of 4- n nonylphenyl zinc chloride 3 as an organozinc compound was studied. The starting compound, 1.2 molar equivalents of 4- n nonyl-chlorobenzene 1 and 2.8 molar equivalents of SD were added to 1 ml of hexane and reacted at room temperature for 15 minutes to synthesize 4- n nonylphenyl sodium 2. To the obtained 4- n nonylphenyl sodium 2 was added 1.2 molar equivalent of zinc chloride TMEDA, and reacted at room temperature for 15 minutes to obtain 4- n nonylphenyl zinc chloride 3.
 続いて、得られた4- nノニルフェニル亜鉛クロリド3が、パラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。4- nノニルフェニル亜鉛クロリド3を、パラジウム触媒であるビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(PdCl2(PPh3)210モル%(2-ブロモナフタレンに対し))の存在下で1.0モル当量の2-ブロモナフタレン4と70℃で3時間反応させた。その結果、図3に示す通り、2-(4- nノニルフェニル)ナフタレン5が得られた。 Subsequently, it was examined whether the obtained 4- n nonylphenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst. 4- n nonylphenyl zinc chloride 3 in the presence of palladium catalyst bis (triphenylphosphine) palladium (II) dichloride (PdCl 2 (PPh 3 ) 2 10 mol% (relative to 2-bromonaphthalene)) 1.0 The reaction was carried out with a molar equivalent of 2-bromonaphthalene 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 3, 2- (4- n nonylphenyl) naphthalene 5 was obtained.
 合成された2-(4- nノニルフェニル)ナフタレン5の評価は、1H NMRでの測定により行った。収率は、反応系に添加した2-ブロモナフタレン4から理論的に生成することができる、2-(4- nノニルフェニル)ナフタレン5に対する、実際に取得できた、2-(4-nノニルフェニル)ナフタレン5の割合を百分率で示すことで算出した。収率は96%となった。これにより、4- nノニル-クロロベンゼン1から4- nノニルフェニルナトリウム2を経て、高収率に4- nノニルフェニル亜鉛クロリド3の合成を行うことができた。また、4- nノニルフェニル亜鉛クロリド3を用いた根岸カップリングが効率よく進行し、その結果、2-(4- nノニルフェニル)ナフタレン5が高収率で得られることが理解できる。 The evaluation of the synthesized 2- (4- n nonylphenyl) naphthalene 5 was performed by measurement by 1 H NMR. The yield can be theoretically generated from 2-bromonaphthalene 4 was added to the reaction system, for 2- (4-n-nonylphenyl) naphthalene 5, was actually obtained, 2- (4-n-nonyl It calculated by showing the ratio of phenyl) naphthalene 5 as a percentage. The yield was 96%. Thus, 4-n-nonyl - through from chlorobenzene 1 4-n-nonylphenyl sodium 2, it was possible to carry out the synthesis of 4-n-nonylphenyl zinc chloride 3 in high yield. Also, it can be understood that Negishi coupling with 4- n nonylphenylzinc chloride proceeds efficiently, and as a result, 2- (4- n nonylphenyl) naphthalene 5 is obtained in high yield.
実験番号2
 有機亜鉛化合物として4-メチルフェニル亜鉛クロリド3の合成を検討した。ヘキサン1.2ml中に、出発化合物である1.2モル当量の4-メチル-クロロベンゼン1と2.6モル当量のSDを添加し、25℃で1時間反応させ、4-メチルフェニルナトリウム2を合成した。得られた4-メチルフェニルナトリウム2に1.2モル当量の塩化亜鉛・TMEDAを添加し、25℃で30分間反応させ、4-メチルフェニル亜鉛クロリド3を得た。
Experiment number 2
The synthesis of 4-methylphenyl zinc chloride 3 as an organozinc compound was studied. The starting compounds, 1.2 molar equivalents of 4-methyl-chlorobenzene 1 and 2.6 molar equivalents of SD, were added to 1.2 ml of hexane and reacted at 25 ° C. for 1 hour to synthesize 4-methylphenyl sodium 2. 1.2 molar equivalents of zinc chloride TMEDA was added to the obtained 4-methylphenyl sodium 2 and reacted at 25 ° C. for 30 minutes to obtain 4-methylphenyl zinc chloride 3.
 続いて、得られた4-メチルフェニル亜鉛クロリド3が、パラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。4-メチルフェニル亜鉛クロリド3を、パラジウム触媒であるビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(PdCl2(PPh3)25モル%(2-ブロモナフタレンに対し)の存在下で1.0モル当量(0.5 mmol)の2-ブロモナフタレン4と70℃で3時間反応させた。その結果、図3に示す通り、2-(4-メチルフェニル)ナフタレン5が得られた。 Subsequently, it was examined whether the obtained 4-methylphenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst. 1.0 molar equivalent of 4-methylphenyl zinc chloride 3 in the presence of 5 mol% (relative to 2-bromonaphthalene) of palladium catalyst bis (triphenylphosphine) palladium (II) dichloride (PdCl 2 (PPh 3 ) 2 The mixture was reacted with (0.5 mmol) of 2-bromonaphthalene 4 for 3 hours at 70 ° C. As a result, 2- (4-methylphenyl) naphthalene 5 was obtained as shown in FIG.
 合成された2-(4-メチルフェニル)ナフタレン5の評価は、1H NMRでの測定により行った。収率は、反応系に添加した2-ブロモナフタレン4から理論的に生成することができる、2-(4-メチルフェニル)ナフタレン5に対する、実際に取得できた、2-(4-メチルフェニル)ナフタレン5の割合を百分率で示すことで算出した。収率は94%となった。なお、単離収率は87%であった。これにより、4-メチル-クロロベンゼン1から4-メチルフェニルナトリウム2を経て、高収率に4-メチルフェニル亜鉛クロリド3の合成を行うことができた。また、4-メチルフェニル亜鉛クロリド3を用いた根岸カップリングが効率よく進行し、その結果、2-(4-メチルフェニル)ナフタレン5が高収率で得られることが理解できる。 The evaluation of the synthesized 2- (4-methylphenyl) naphthalene 5 was performed by measurement by 1 H NMR. The yield could actually be obtained for 2- (4-methylphenyl) naphthalene 5, which can theoretically be generated from 2-bromonaphthalene 4 added to the reaction system, 2- (4-methylphenyl) It calculated by showing the ratio of naphthalene 5 as a percentage. The yield was 94%. The isolated yield was 87%. Thus, 4-methylphenylzinc chloride 3 could be synthesized in high yield via 4-methyl-chlorobenzene 1 to 4-methylphenyl sodium 2. Also, it can be understood that Negishi coupling with 4-methylphenyl zinc chloride 3 proceeds efficiently, and as a result, 2- (4-methylphenyl) naphthalene 5 is obtained in high yield.
(実施例4)有機亜鉛化合物の合成条件の検討及び根岸カップリングへの応用-2
 本実施例では、実施例3に続き、図4に要約する合成条件により、有機亜鉛化合物を合成し、得られた有機亜鉛化合物がパラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。ここで、パラジウム触媒として、PEPPSI-IPrを使用した。
(Example 4) Examination of synthesis conditions of organozinc compound and application to Negishi coupling-2
In this example, an organozinc compound is synthesized under the synthesis conditions summarized in FIG. 4 following Example 3, and it is examined whether the resulting organozinc compound can be used for Negishi coupling using a palladium catalyst. did. Here, PEPPSI-IPr was used as a palladium catalyst.
実験番号1
 有機亜鉛化合物として4-メチルフェニル亜鉛クロリド3の合成を検討した。ヘキサン1.2ml中に、出発化合物である1.2モル当量の4-メチル-クロロベンゼン1と2.6モル当量のSDを添加し、25℃で1時間反応させ、4-メチルフェニルナトリウム2を合成した。得られた4-メチルフェニルナトリウム2に1.2モル当量の塩化亜鉛・TMEDAを添加し、25℃で30分間反応させ、4-メチルフェニル亜鉛クロリド3を得た。
Experiment No. 1
The synthesis of 4-methylphenyl zinc chloride 3 as an organozinc compound was studied. The starting compounds, 1.2 molar equivalents of 4-methyl-chlorobenzene 1 and 2.6 molar equivalents of SD, were added to 1.2 ml of hexane and reacted at 25 ° C. for 1 hour to synthesize 4-methylphenyl sodium 2. 1.2 molar equivalents of zinc chloride TMEDA was added to the obtained 4-methylphenyl sodium 2 and reacted at 25 ° C. for 30 minutes to obtain 4-methylphenyl zinc chloride 3.
 続いて、得られた4-メチルフェニル亜鉛クロリド3が、パラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。4-メチルフェニル亜鉛クロリド3を、パラジウム触媒であるPEPPSI-IPr 1モル%(2-クロロナフタレンに対し)の存在下、THF/NMP(0.6ml/0.3ml)で1.0モル当量(0.5 mmol)の2-クロロナフタレン4と70℃で3時間反応させた。その結果、図4に示す通り、2-(4-メチルフェニル)ナフタレン5が得られた。 Subsequently, it was examined whether the obtained 4-methylphenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst. 4-Methylphenyl zinc chloride 3 is 1.0 molar equivalent (0.5 mmol) of THF / NMP (0.6 ml / 0.3 ml) in the presence of 1 mol% (relative to 2-chloronaphthalene) of palladium catalyst PEPPSI-IPr The reaction was carried out with 2-chloronaphthalene 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 4, 2- (4-methylphenyl) naphthalene 5 was obtained.
 合成された2-(4-メチルフェニル)ナフタレン5の評価は、1H NMRでの測定により行った。収率は、反応系に添加した2-クロロナフタレン4から理論的に生成することができる、2-(4-メチルフェニル)ナフタレン5に対する、実際に取得できた、2-(4-メチルフェニル)ナフタレン5の割合を百分率で示すことで算出した。収率は99%となった。なお、単離収率は95%であった。これにより、4-メチル-クロロベンゼン1から4-メチルフェニルナトリウム2を経て、高収率に4-メチルフェニル亜鉛クロリド3の合成を行うことができた。また、4-メチルフェニル亜鉛クロリド3を用いた根岸カップリングが効率よく進行し、その結果、2-(4-メチルフェニル)ナフタレン5が高収率で得られることが理解できる。 The evaluation of the synthesized 2- (4-methylphenyl) naphthalene 5 was performed by measurement by 1 H NMR. The yield could actually be obtained for 2- (4-methylphenyl) naphthalene 5, which could theoretically be generated from 2-chloronaphthalene 4 added to the reaction system, 2- (4-methylphenyl) It calculated by showing the ratio of naphthalene 5 as a percentage. The yield was 99%. The isolated yield was 95%. Thus, 4-methylphenylzinc chloride 3 could be synthesized in high yield via 4-methyl-chlorobenzene 1 to 4-methylphenyl sodium 2. Also, it can be understood that Negishi coupling with 4-methylphenyl zinc chloride 3 proceeds efficiently, and as a result, 2- (4-methylphenyl) naphthalene 5 is obtained in high yield.
実験番号2
 有機亜鉛化合物として2,6-ジメチルフェニル亜鉛クロリド3の合成を検討した。ヘキサン1.2ml中に、出発化合物である1.2モル当量の2,6-ジメチル-クロロベンゼン1と2.6モル当量のSDを添加し、25℃で1時間反応させ、2,6-ジメチルフェニルナトリウム2を合成した。得られた2,6-ジメチルフェニルナトリウム2に1.2モル当量の塩化亜鉛・TMEDAを添加し、25℃で30分間反応させ、2,6-ジメチルフェニル亜鉛クロリド3を得た。
Experiment number 2
The synthesis of 2,6-dimethylphenyl zinc chloride 3 as an organozinc compound was studied. In 1.2 ml of hexane, 1.2 molar equivalents of 2,6-dimethyl-chlorobenzene 1 as a starting compound and 2.6 molar equivalents of SD are added and reacted at 25 ° C. for 1 hour to synthesize 2,6-dimethylphenyl sodium 2 did. To the obtained 2,6-dimethylphenyl sodium 2, 1.2 molar equivalent of zinc chloride TMEDA was added, and reacted at 25 ° C. for 30 minutes to obtain 2,6-dimethylphenyl zinc chloride 3.
 続いて、得られた2,6-ジメチルフェニル亜鉛クロリド3が、パラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。2,6-ジメチルフェニル亜鉛クロリド3を、パラジウム触媒であるPEPPSI-IPr 1.0モル%(2-クロロナフタレンに対し)の存在下、THF/NMP(0.6ml/0.3ml)で1モル当量(0.5 mmol)の2-クロロナフタレン4と70℃で3時間反応させた。その結果、図4に示す通り、2-(2,6-ジメチルフェニル)ナフタレン5が得られた。 Subsequently, it was examined whether the obtained 2,6-dimethylphenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst. One molar equivalent (0.5 mmol) of 2,6-dimethylphenyl zinc chloride 3 in THF / NMP (0.6 ml / 0.3 ml) in the presence of 1.0 mol% (relative to 2-chloronaphthalene) of PEPPSI-IPr which is a palladium catalyst The reaction was carried out with 2-chloronaphthalene 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 4, 2- (2,6-dimethylphenyl) naphthalene 5 was obtained.
 合成された2-(2,6-ジメチルフェニル)ナフタレン5の評価は、1H NMRでの測定により行った。収率は、反応系に添加した2-クロロナフタレン4から理論的に生成することができる、2-(2,6-ジメチルフェニル)ナフタレン5に対する、実際に取得できた、2-(2,6-ジメチルフェニル)ナフタレン5の割合を百分率で示すことで算出した。収率は96%となった。これにより、2,6-ジメチル-クロロベンゼン1から2,6-ジメチルフェニルナトリウム2を経て、高収率に2,6-ジメチルフェニル亜鉛クロリド3の合成を行うことができた。また、2,6-ジメチルフェニル亜鉛クロリド3を用いた根岸カップリングが効率よく進行し、その結果、2-(2,6-ジメチルフェニル)ナフタレン5が高収率で得られることが理解できる。 The evaluation of the synthesized 2- (2,6-dimethylphenyl) naphthalene 5 was performed by measurement by 1 H NMR. The yield was actually obtained 2- (2, 6) for 2- (2, 6-dimethylphenyl) naphthalene 5, which can theoretically be generated from 2-chloronaphthalene 4 added to the reaction system It was calculated by showing the ratio of -dimethylphenyl) naphthalene 5 as a percentage. The yield was 96%. As a result, via 2,6-dimethyl-chlorobenzene 1 to 2,6-dimethylphenyl sodium 2, synthesis of 2,6-dimethylphenyl zinc chloride 3 could be performed in high yield. In addition, it can be understood that Negishi coupling with 2,6-dimethylphenyl zinc chloride 3 proceeds efficiently, and as a result, 2- (2,6-dimethylphenyl) naphthalene 5 is obtained in high yield.
(実施例5)有機亜鉛化合物の合成条件の検討及び根岸カップリングへの応用-3
 本実施例では、実施例3及び4に続き、図5に要約する検討条件により、有機亜鉛化合物としてフェニル亜鉛クロリド3の合成条件を検討した。ヘキサン1ml中に、出発化合物である1.25モル当量のクロロベンゼン1と2.9モル当量のSDを添加し、室温で20分間反応させ、フェニルナトリウム2を合成した。得られたフェニルナトリウム2に1.25モル当量の塩化亜鉛・TMEDAを添加し、室温で15分間反応させ、フェニル亜鉛クロリド3を得た。
(Example 5) Examination of synthesis conditions of organozinc compound and application to Negishi coupling-3
In this example, the synthesis conditions of phenyl zinc chloride 3 as an organozinc compound were examined under the examination conditions summarized in FIG. 5 following Examples 3 and 4. The starting compounds, 1.25 molar equivalents of chlorobenzene 1 and 2.9 molar equivalents of SD, were added to 1 ml of hexane and reacted at room temperature for 20 minutes to synthesize phenyl sodium 2. To the obtained phenyl sodium 2, 1.25 molar equivalent of zinc chloride TMEDA was added and reacted at room temperature for 15 minutes to obtain phenyl zinc chloride 3.
 続いて、得られたフェニル亜鉛クロリド3が、パラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。フェニル亜鉛クロリド3を、10モル%PdCl2(PPh3)2の存在下で1.0モル当量の2-ブロモピリジン4と70℃で3時間反応させた。その結果、図5に示す通り、2-フェニルピリジン5が得られた。 Subsequently, it was examined whether the obtained phenyl zinc chloride 3 could be used for Negishi coupling using a palladium catalyst. Phenyl zinc chloride 3 was reacted with 1.0 molar equivalent of 2-bromopyridine 4 at 70 ° C. for 3 hours in the presence of 10 mol% PdCl 2 (PPh 3 ) 2 . As a result, as shown in FIG. 5, 2-phenylpyridine 5 was obtained.
 合成された2-フェニルピリジン5の評価は、1H NMRでの測定により行った。収率は、反応系に添加した2-ブロモピリジン4から理論的に生成することができる2-フェニルピリジン5に対する、実際に取得できた、2-フェニルピリジン5の割合を百分率で示すことで算出した。収率は68%となった。これにより、クロロベンゼン1からフェニルナトリウム2を経て、高収率にフェニル亜鉛クロリド3の合成を行うことができた。また、フェニル亜鉛クロリド3を用いた根岸カップリングが効率よく進行し、その結果、2-フェニルピリジン5が高収率で得られることが理解できる。 Evaluation of the synthesized 2-phenylpyridine 5 was performed by measurement by 1 H NMR. The yield is calculated by showing the ratio of 2-phenylpyridine 5 actually obtained to 2-phenylpyridine 5 which can be theoretically generated from 2-bromopyridine 4 added to the reaction system as a percentage. did. The yield was 68%. As a result, synthesis of phenylzinc chloride 3 could be carried out with high yield through chlorobenzene 1 to phenyl sodium 2. In addition, it can be understood that Negishi coupling using phenyl zinc chloride 3 proceeds efficiently, and as a result, 2-phenylpyridine 5 is obtained in high yield.
(実施例6)有機亜鉛化合物の合成条件の検討及び根岸カップリングへの応用-4
 本実施例では、実施例3~5に続き、図6A~図6C(実験番号1~18)に要約する検討条件により、有機亜鉛化合物を合成し、得られた有機亜鉛化合物がパラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。ここで、パラジウム触媒として、PEPPSI(登録商標)-IPrCLを使用した。
(Example 6) Investigation of synthesis conditions of organozinc compound and application to Negishi coupling-4
In this example, an organozinc compound is synthesized under the study conditions following Examples 3 to 5 and summarized in FIGS. 6A to 6C (Experiment Nos. 1 to 18), and the resulting organozinc compound uses a palladium catalyst. It was examined whether it could be used for Negishi coupling. Here, PEPPSI (registered trademark) -IPr CL was used as a palladium catalyst.
実験番号1
 1.2 mlのヘキサン中に出発化合物である1.2モル当量(0.6 mmol)の有機塩化物1である4-クロロトルエンと2.5モル当量のSDを添加し、30℃で30分間反応させ、有機ナトリウム化合物2である4-メチルフェニルナトリウムを合成した。得られた4-メチルフェニルナトリウムに1.2モル当量の塩化亜鉛・TMEDAを添加し、ヘキサン中で25℃で30分間反応させ、有機亜鉛化合物3である4-メチルフェニル亜鉛クロリドを得た。続いて、得られた4-メチルフェニル亜鉛クロリドが、パラジウム触媒を使用した根岸カップリングに利用できるか否かを検討した。THF(0.6 ml)/NMP(0.3 ml)中で、4-メチルフェニル亜鉛クロリドを、1モル%のパラジウム触媒であるPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-クロロナフタレンと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である2-(4-メチルフェニル)ナフタレンを単離収率95%で得た。
Experiment No. 1
Add 1.2 molar equivalents (0.6 mmol) of the starting compound, 4-chlorotoluene, which is organic chloride 1, and 2.5 molar equivalents of SD in 1.2 ml of hexane, and react at 30 ° C. for 30 minutes to obtain organic sodium compound 2 4-methylphenyl sodium was synthesized. To the obtained 4-methylphenyl sodium was added 1.2 molar equivalent of zinc chloride-TMEDA, and the mixture was reacted in hexane at 25 ° C. for 30 minutes to obtain organic zinc compound 3, 4-methylphenyl zinc chloride. Subsequently, it was examined whether the obtained 4-methylphenyl zinc chloride could be used for Negishi coupling using a palladium catalyst. In THF (0.6 ml) / NMP ( 0.3 ml), 4- methyl-phenyl zinc chloride, 1 mol% of a palladium catalyst PEPPSI 1 molar equivalent in the presence of (R) -iPr CL of (0.5 mmol) The reaction was carried out at 70 ° C. for 3 hours with 2-chloronaphthalene which is an organic chloride 4. As a result, as shown in FIG. 6A, coupling product 5, 2- (4-methylphenyl) naphthalene was obtained in 95% isolated yield.
実験番号2
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の2-クロロトルエンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-クロロナフタレンと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である2-(2-メチルフェニル)ナフタレンを単離収率96%で得た。
Experiment number 2
Organosodium compound obtained by reaction with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chlorotoluene as organic chloride 1 in 1.2 ml of hexane After 2), an organozinc compound 3 was synthesized. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . The mixture was reacted with 4-chloronaphthalene at 70 ° C. for 3 hours. As a result, as shown in FIG. 6A, 2- (2-methylphenyl) naphthalene as a coupling product 5 was obtained in 96% isolated yield.
実験番号3
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1-tert-ブチル-2-クロロベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は5時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.25 mmol)の有機塩化物4である2-クロロナフタレンと70℃で24時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である2-(2- tert-ブチルフェニル)ナフタレンを単離収率88%で得た。
Experiment number 3
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-tert-butyl-2-chlorobenzene as organic chloride 1 in 1.2 ml of hexane. The organozinc compound 3 was synthesized via the prepared organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 5 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.25 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 4-chloronaphthalene at 70 ° C. for 24 hours. As a result, as shown in FIG. 6A, the coupling product 5, 2- (2-tert-butylphenyl) naphthalene was obtained in an isolated yield of 88%.
実験番号4
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の2-クロロ-m-キシレンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は3時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)当量の有機塩化物4である2-クロロナフタレンと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である2-(2,6-ジメチルフェニル)ナフタレンを単離収率92%で得た。
Experiment number 4
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in the above Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chloro-m-xylene as organic chloride 1 in 1.2 ml of hexane An organozinc compound 3 was synthesized via the organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, in THF (0.6 ml) / NMP ( 0.3 ml), the organic zinc compound 3, 1 mol% of PEPPSI (TM) 1 molar equivalent in the presence of -IPr CL (0.5 mmol) equivalents of the organic chloride The reaction was carried out at 70 ° C. for 3 hours with 2-chloronaphthalene which is the substance 4. As a result, as shown in FIG. 6A, coupling product 5, 2- (2,6-dimethylphenyl) naphthalene was obtained in 92% isolated yield.
実験番号5
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の2-クロロ-m-キシレンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は3時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である1-クロロナフタレンと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である1-(2,6-ジメチルフェニル)ナフタレンを単離収率93%で得た。
Experiment number 5
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in the above Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chloro-m-xylene as organic chloride 1 in 1.2 ml of hexane An organozinc compound 3 was synthesized via the organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 1-chloronaphthalene which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6A, 1- (2,6-dimethylphenyl) naphthalene as a coupling product 5 was obtained in an isolated yield of 93%.
実験番号6
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の4-クロロトルエンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は30分間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である1-クロロ-4-メトキシベンゼンと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である4-メトキシ-4'-メチル-1,1'-ビフェニルを単離収率95%で得た。
Experiment number 6
Organosodium compound obtained by reaction with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 4-chlorotoluene as organic chloride 1 in 1.2 ml of hexane After 2), an organozinc compound 3 was synthesized. The reaction temperature was 30 ° C., and the reaction time was 30 minutes. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 1-chloro-4-methoxybenzene which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6A, 4-methoxy-4′-methyl-1,1′-biphenyl as a coupling product 5 was obtained in 95% isolated yield.
実験番号7
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の4-クロロトルエンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は30分間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である4-クロロ安息香酸メチルと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である4-メトキシカルボニル-4'-メチル-1,1'-ビフェニルを単離収率94%で得た。
Experiment number 7
Organosodium compound obtained by reaction with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 4-chlorotoluene as organic chloride 1 in 1.2 ml of hexane After 2), an organozinc compound 3 was synthesized. The reaction temperature was 30 ° C., and the reaction time was 30 minutes. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with methyl 4-chlorobenzoate which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6A, 4-methoxycarbonyl-4′-methyl-1,1′-biphenyl as a coupling product 5 was obtained in 94% isolated yield.
実験番号8
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の4-クロロトルエンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は30分間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-クロロピリジンと70℃で3時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である2-(4-メチルフェニル)ピリジンを単離収率95%で得た。
Experiment No. 8
Organosodium compound obtained by reaction with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 4-chlorotoluene as organic chloride 1 in 1.2 ml of hexane After 2), an organozinc compound 3 was synthesized. The reaction temperature was 30 ° C., and the reaction time was 30 minutes. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . The mixture was reacted with 4-chloropyridine at 70 ° C. for 3 hours. As a result, as shown in FIG. 6A, 2- (4-methylphenyl) pyridine which is a coupling product 5 was obtained in 95% isolated yield.
実験番号9
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1,3-ジイソプロピル-2-クロロベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は3時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-ナフタレンと70℃で5時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である2-(2,6-ジイソプロピルフェニル)ナフタレンを単離収率96%で得た。
Experiment number 9
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1,3-diisopropyl-2-chlorobenzene as organic chloride 1 in 1.2 ml of hexane. The organozinc compound 3 was synthesized via the prepared organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . The mixture was reacted with 2-naphthalene, which is 4), at 70 ° C. for 5 hours. As a result, as shown in FIG. 6A, coupling product 5, 2- (2,6-diisopropylphenyl) naphthalene was obtained in 96% isolated yield.
実験番号10
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1,3-ジイソプロピル-2-クロロベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は3時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である1-ナフタレンと70℃で24時間反応させた。その結果、図6Aに示す通り、カップリング生成物5である1-(2,6-ジイソプロピルフェニル)ナフタレンを単離収率92%で得た。
Experiment number 10
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1,3-diisopropyl-2-chlorobenzene as organic chloride 1 in 1.2 ml of hexane. The organozinc compound 3 was synthesized via the prepared organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 1-naphthalene, which is 4 at 70 ° C. for 24 hours. As a result, as shown in FIG. 6A, coupling product 5, 1- (2,6-diisopropylphenyl) naphthalene was obtained in 92% isolated yield.
実験番号11
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の2-クロロ-m-キシレンを用いて、上記実験番号1と同様に2.4モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は3時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である1,2-ジクロロベンゼンと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である1-クロロ-2',6'-ジメチル-1,1'-ビフェニルを単離収率70%で得た。
Experiment number 11
Obtained by reacting with 2.4 molar equivalents of SD in the same manner as in the above Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 2-chloro-m-xylene as organic chloride 1 in 1.2 ml of hexane An organozinc compound 3 was synthesized via the organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 3 hours. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . The mixture was reacted with 1, 2-dichlorobenzene which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, coupling product 5, 1-chloro-2 ′, 6′-dimethyl-1,1′-biphenyl was obtained in 70% isolated yield.
実験番号12
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1-クロロ-3-ジメチルアミノベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-クロロナフタレンと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である2-[3-(ジメチルアミノ)フェニル]ナフタレンを単離収率96%で得た。
Experiment number 12
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane. The organozinc compound 3 was synthesized via the prepared organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . The mixture was reacted with 4-chloronaphthalene at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, coupling product 5, 2- [3- (dimethylamino) phenyl] naphthalene was obtained in 96% isolated yield.
実験番号13
 1.2 mlのヘキサン中で、有機塩化物1として3.6モル当量の1-クロロ-3-ジメチルアミノベンゼンを用いて、上記実験番号1と同様に7.6モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、3モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.25 mmol)の有機塩化物4である1,3,5-トリクロロベンゼンと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である1,3,5-トリ[3-(ジメチルアミノ)フェニル]ベンゼンを単離収率90%で得た。
Experiment number 13
Organic sodium obtained by reaction with 7.6 molar equivalents of SD in the same manner as in Experiment No. 1 above using 3.6 molar equivalents of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane The organic zinc compound 3 was synthesized via the compound 2. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.25 mmol) of organic chloride in the presence of 3 mol% of PEPPSI (registered trademark) -IPr CL . The reaction was carried out at 70 ° C. for 3 hours with 4, 1, 3, 5-trichlorobenzene. As a result, as shown in FIG. 6B, coupling product 5, 1,3,5-tri [3- (dimethylamino) phenyl] benzene was obtained in 90% isolated yield.
実験番号14
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1-クロロ-3-ジメチルアミノベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-チオフェンと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である2-[3-(ジメチルアミノ)フェニル]チオフェンを単離収率85%で得た。
Experiment No. 14
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane. The organozinc compound 3 was synthesized via the prepared organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was made to react with 2-thiophene which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, coupling product 5, 2- [3- (dimethylamino) phenyl] thiophene was obtained in an isolated yield of 85%.
実験番号15
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1-クロロ-3-ジメチルアミノベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4であるN-tert-ブトキシカルボニル-6-クロロインドールと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である6-[3-(ジメチルアミノ)フェニル]インドールを単離収率93%で得た。
Experiment number 15
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-3-dimethylaminobenzene as organic chloride 1 in 1.2 ml of hexane. The organozinc compound 3 was synthesized via the prepared organosodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with N-tert-butoxycarbonyl-6-chloroindole which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, 6- [3- (dimethylamino) phenyl] indole as a coupling product 5 was obtained in an isolated yield of 93%.
実験番号16
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1-クロロ-2-メトキシベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.3 ml)/NMP(0.6 ml)中で、有機亜鉛化合物3を、2モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である4-クロロ-1-(トリメチルシリル)-1ペンチンと70℃で24時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である4-(2-メトキシフェニル)-1-(トリメチルシリル)-1-ペンチンをNMR収率92%で、単離収率87%で得た。
Experiment number 16
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-2-methoxybenzene as organic chloride 1 in 1.2 ml of hexane. The organic zinc compound 3 was synthesized via the organic sodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organic zinc compound 3 is dissolved in THF (0.3 ml) / NMP (0.6 ml) in the presence of 2 mol% of PEPPSI (registered trademark) -IPr CL in an amount of 1 molar equivalent (0.5 mmol) of organic chloride It was reacted with 4-chloro-1- (trimethylsilyl) -1-pentyne at 70 ° C. for 24 hours. As a result, as shown in FIG. 6B, coupling product 5, 4- (2-methoxyphenyl) -1- (trimethylsilyl) -1-pentyne was obtained in 92% NMR yield and 87% isolated yield. The
実験番号17
 1.2 mlのヘキサン中で、有機塩化物1として1.2モル当量(0.6 mmol)の1-クロロ-2-メトキシベンゼンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は30℃、反応時間は1時間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である2-クロロナフタレンと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である2-(2-メトキシフェニル)ナフタレンを単離収率97%で得た。
Experiment number 17
Obtained by reacting with 2.5 molar equivalents of SD in the same manner as in Experiment No. 1 using 1.2 molar equivalents (0.6 mmol) of 1-chloro-2-methoxybenzene as organic chloride 1 in 1.2 ml of hexane. The organic zinc compound 3 was synthesized via the organic sodium compound 2. The reaction temperature was 30 ° C., and the reaction time was 1 hour. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . The mixture was reacted with 4-chloronaphthalene at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, coupling product 5, 2- (2-methoxyphenyl) naphthalene was obtained in 97% isolated yield.
実験番号18
 2.4mL中のヘキサン中で、有機塩化物1として0.6 mmolの1-クロロペンタンを用いて、上記実験番号1と同様に2.5モル当量のSDと反応させて得られた有機ナトリウム化合物2を経て、有機亜鉛化合物3を合成した。なお、反応温度は0℃、反応時間は20分間であった。続いて、THF(0.6 ml)/NMP(0.3 ml)中で、有機亜鉛化合物3を、1モル%のPEPPSI(登録商標)-IPrCLの存在下で1モル当量(0.5 mmol)の有機塩化物4である1-クロロイソキノリンと70℃で3時間反応させた。その結果、図6Bに示す通り、カップリング生成物5である1-ペンチルイソキノリンを単離収率86%で得た。
Experiment number 18
The organosodium compound 2 is obtained by reaction with 2.5 molar equivalents of SD as in Example 1 above, using 0.6 mmol of 1-chloropentane as organic chloride 1 in 2.4 mL of hexane. The organozinc compound 3 was synthesized. The reaction temperature was 0 ° C., and the reaction time was 20 minutes. Subsequently, organozinc compound 3 is dissolved in THF (0.6 ml) / NMP (0.3 ml) in an amount of 1 molar equivalent (0.5 mmol) of organic chloride in the presence of 1 mol% of PEPPSI.RTM.-IPr CL . It was reacted with 1-chloroisoquinoline which is 4 at 70 ° C. for 3 hours. As a result, as shown in FIG. 6B, 1-pentylisoquinoline which is a coupling product 5 was obtained in 86% isolated yield.
 本発明は、有機亜鉛化合物の合成方法、及び、かかる合成方法により合成される有機亜鉛化合物を利用する全ての技術分野、特には、カップリング反応の中間体として好適に利用でき、医農薬や電子材料の製造分野において特に有用である。 The present invention can be suitably used as a synthesis method of an organozinc compound, and all technical fields utilizing the organozinc compound synthesized by such a synthesis method, in particular, as an intermediate of a coupling reaction, and a pharmaceutical, an agricultural chemical or an electron It is particularly useful in the field of material production.

Claims (4)

  1.  有機亜鉛化合物の合成方法であって、
     反応溶媒中で、一般式I(R1-X1
    〔ここで、式中、R1は、ナトリウムと反応しない置換基を有していてもよい脂肪族炭化水素基、脂環式炭化水素基、脂環式複素環基、芳香族炭化水素基、又は、芳香族複素環基であり、X1は、ハロゲン原子である〕に示す有機ハロゲン化物とナトリウムを分散溶媒に分散させた分散体とを反応させて、
    一般式II(R1-Na)
    〔ここで、式中、R1は、一般式IのR1と同様である〕に示す有機ナトリウム化合物を得て、
     得られた前記有機ナトリウム化合物と塩化亜鉛とを反応させて、
    一般式III(R1-Zn-X2
    〔ここで、式中、R1は、一般式IのR1と同様であり、X2はCl、又は、R1である〕に示す有機亜鉛化合物を得る工程、を有する、有機亜鉛化合物の合成方法。
    A method of synthesizing an organozinc compound, comprising
    In the reaction solvent, the general formula I (R 1 -X 1 )
    [Wherein, R 1 represents an aliphatic hydrocarbon group which may have a substituent which does not react with sodium, an alicyclic hydrocarbon group, an alicyclic heterocyclic group, an aromatic hydrocarbon group, Or an aromatic heterocyclic group, wherein X 1 is a halogen atom] and a reaction in which sodium is dispersed in a dispersion solvent is reacted with
    General Formula II (R 1 -Na)
    [Here, in the formula, R 1 is the same as R 1 in formula I] to obtain an organic sodium compound shown,
    The obtained organic sodium compound is reacted with zinc chloride to obtain
    General formula III (R 1 -Zn-X 2 )
    [Wherein in the formula, R 1 is the same as R 1 in formula I, X 2 is Cl, or, wherein R 1 is] to obtain an organic zinc compound shown having, organic zinc compounds Synthetic method.
  2.  前記X1は、塩素原子である請求項1に記載の有機亜鉛化合物の合成方法。 The method for synthesizing an organozinc compound according to claim 1, wherein the X 1 is a chlorine atom.
  3.  前記ナトリウムを分散溶媒に分散させた分散体は、反応溶媒中で、クロロベンゼンに対して2.1モル当量以上で反応させた場合に、添加した前記クロロベンゼンに対するフェニルナトリウムの収率が99.0%以上となる活性を有する、請求項1又は2に記載の有機亜鉛化合物の合成方法。 The dispersion in which the sodium is dispersed in the dispersion solvent has an activity such that the yield of phenyl sodium is 99.0% or more with respect to the chlorobenzene added when the reaction is carried out in a reaction solvent at 2.1 molar equivalent or more relative to chlorobenzene. The synthesis | combining method of the organozinc compound of Claim 1 or 2 which has these.
  4.  前記有機ハロゲン化物:前記ナトリウムを分散溶媒に分散させた分散体:前記塩化亜鉛のモル比は、一般式IIIのX2がClである場合は1:2以上3以下:1、一般式IIIのX2がR1である場合は1:2以上3以下:1未満である請求項1~3の何れか一項に記載の有機亜鉛化合物の合成方法。 The molar ratio of the organic halide: the dispersion of the sodium dispersed in the dispersion solvent: the zinc chloride in the general formula III when X 2 is Cl is from 1: 2 to 3: 1, and the general formula III The method for synthesizing an organozinc compound according to any one of claims 1 to 3, wherein when X 2 is R 1 , it is 1: 2 or more and 3 or less: 1.
PCT/JP2018/024644 2017-06-29 2018-06-28 Method for synthesizing organic zinc compound WO2019004371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018548232A JP6449527B1 (en) 2017-06-29 2018-06-28 Method for synthesizing organozinc compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-127858 2017-06-29
JP2017127858 2017-06-29
JP2017247538 2017-12-25
JP2017-247538 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019004371A1 true WO2019004371A1 (en) 2019-01-03

Family

ID=64742162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024644 WO2019004371A1 (en) 2017-06-29 2018-06-28 Method for synthesizing organic zinc compound

Country Status (2)

Country Link
JP (1) JP6449527B1 (en)
WO (1) WO2019004371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142854A1 (en) * 2018-01-17 2019-07-25 株式会社神鋼環境ソリューション Synthesis method for boronic acid ester compound, and sodium salt of boronic acid ester compound and synthesis method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188422A (en) * 1988-09-21 1990-07-24 E I Du Pont De Nemours & Co Preparation of sodium cyanide
JP2011521872A (en) * 2008-05-21 2011-07-28 アルケマ フランス Hydrocyanic acid containing bioresource carbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188422A (en) * 1988-09-21 1990-07-24 E I Du Pont De Nemours & Co Preparation of sodium cyanide
JP2011521872A (en) * 2008-05-21 2011-07-28 アルケマ フランス Hydrocyanic acid containing bioresource carbon

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALVAREZ, E. ET AL.: "Cyclopentadienyl Zincates: Synthesis and X-ray Studies of Sodium and Potassium Salts of the [Zn(C5H5)3]- and [Zn2 (C5H5) 5]- Ions", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 46, no. 8, 5 January 2007 (2007-01-05), pages 1296 - 1299 *
FISCHER, B. ET AL.: "Structural Investigations of Benzocyclopentadienylzinc Compounds. Crystal Structure of the Bis(tetrahydrofuran) Complex of Difluorenylzinc", ORGANOMETALLICS, vol. 8, no. 3, 1988, pages 667 - 672, XP055677522 *
HO, J. Z. ET AL.: "Synthesis of a 14C-labeled FPTase inhibitor via a Pd-catalyzed cyanation with Zn (14 CN ) 2 and via bromo [14C] acetic acid", JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, vol. 51, no. 12, 7 October 2008 (2008-10-07), pages 399 - 403 *
IZMER, V. V. ET AL.: "Palladium-Catalyzed Pathways to Aryl-Substituted Indenes: Efficient Synthesis of Ligands and the Respective ansa-Zirconocenes", ORGANOMETALLICS, vol. 25, no. 5, 2006, pages 1217 - 1229, XP002432930, DOI: 10.1021/om050937e *
LI, F. ET AL.: "Electron Transfer through Surface-Grown, Ferrocene-Capped Oligophenylene Molecular Wires (5-50 A) on n-Si(111) Photoelectrodes", LANGMUIR, vol. 31, no. 28, 8 July 2015 (2015-07-08), pages 7712 - 7716, XP055677524 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142854A1 (en) * 2018-01-17 2019-07-25 株式会社神鋼環境ソリューション Synthesis method for boronic acid ester compound, and sodium salt of boronic acid ester compound and synthesis method therefor

Also Published As

Publication number Publication date
JP6449527B1 (en) 2019-01-09
JPWO2019004371A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
Card et al. Arene-metal complexes. 13. Reaction of substituted (benzene) tricarbonylchromium complexes with n-butyllithium
Stasch Synthesis, structure, and reactivity of a dimeric zinc (I) compound stabilized by a sterically demanding diiminophosphinate ligand
Hinz et al. Synthesis of Heavy Cyclodipnictadiphosphanes [ClE (μ-P-Ter)] 2 [E= P, As, Sb, or Bi; Ter= 2, 6-bis (2, 4, 6-trimethylphenyl) phenyl]
Allen Jr et al. Synthesis of functional bisphosphonates via new palladium-catalyzed bis-hydrophosphorylation reactions
JP6449527B1 (en) Method for synthesizing organozinc compounds
WO2019225742A1 (en) Method for coupling organic compounds
JP7039624B2 (en) Method for synthesizing boronic acid ester compound, sodium salt of boronic acid ester compound and method for synthesizing it
WO2020246545A1 (en) Method for coupling organic sodium compound and organic chloride
Levashov et al. Lewis acid promoted direct synthesis of tetraalkynylstannanes
Vaheesar et al. Formation of phosphorus heterocycles using a cationic electrophilic phosphinidene complex
US20210388004A1 (en) Method for synthesizing aromatic sodium compound
JP2019119693A (en) Synthesis method of organoboron compound
Toudic et al. Regioselective synthesis and metallation of tributylstannylfluoropyrazines. Application to the synthesis of some new fluorinated liquid crystals diazines. Part 34
WO2018139470A1 (en) Method for synthesizing sodium 2,2,6,6-tetramethylpiperidide compound
EP3466927A1 (en) Method for coupling of halogenated pyridine compound with halogenated aromatic compound
WO2019131898A1 (en) Method for synthesizing organic magnesium compound, method for synthesizing organic boric acid compound, and coupling method
JP6403083B2 (en) Method for synthesizing sodium 2,2,6,6-tetramethylpiperidides
JP2021120361A (en) Method for synthesizing carboxylic acid compound
WO2020175631A1 (en) Method for reducing unsaturated hydrocarbon compound
Nishida et al. Reactions of Highly Branched Perfluoroolefins with (Pentafluorophenyl) trimethylsilane: Characterization of the Unique Structural Properties of Perfluorinated Super‐Congested Systems
Gilbertson et al. An unusually robust triple bond: synthesis, structure and reactivity of 3-alkynylcyclopropenes
Giumanini et al. Bromine-lithium exchange of p-bromi-N, N-dimethylaniline with n-butyllithium
Schwenk Seeing the Light: Synthesis of Luminescent Rhodacyclopentadienes and Investigations of their Optical Properties and Catalytic Activity
Shavrina et al. [Difluoro (pyridinyl) methyl] phosphonates
JP3848270B2 (en) Novel polymer containing 9-oxo-9-phosphafluorene-2,7-diyl group in the main chain, production method thereof and use thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548232

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825539

Country of ref document: EP

Kind code of ref document: A1