WO2019004328A1 - Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material - Google Patents

Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material Download PDF

Info

Publication number
WO2019004328A1
WO2019004328A1 PCT/JP2018/024478 JP2018024478W WO2019004328A1 WO 2019004328 A1 WO2019004328 A1 WO 2019004328A1 JP 2018024478 W JP2018024478 W JP 2018024478W WO 2019004328 A1 WO2019004328 A1 WO 2019004328A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
metal material
amine
production example
clay mineral
Prior art date
Application number
PCT/JP2018/024478
Other languages
French (fr)
Japanese (ja)
Inventor
睦 柳
小見山 忍
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN201880034796.9A priority Critical patent/CN110662823A/en
Priority to EP18824041.0A priority patent/EP3647396A1/en
Publication of WO2019004328A1 publication Critical patent/WO2019004328A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M109/00Lubricating compositions characterised by the base-material being a compound of unknown or incompletely defined constitution
    • C10M109/02Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M113/00Lubricating compositions characterised by the thickening agent being an inorganic material
    • C10M113/16Inorganic material treated with organic compounds, e.g. coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Definitions

  • the present invention relates to a lubricant useful for plastic processing of a metal material, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and a method of plastically working a metal material using the lubricant
  • the present invention relates to a method of manufacturing a shaped and processed metal material.
  • the present invention uses a novel lubricant capable of suppressing seizing due to friction between metal materials, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and the lubricant.
  • An object of the present invention is to provide a method of plastically working a metal material and a method of manufacturing a shaped metal material.
  • the present inventors have included smectite clay minerals in which predetermined cationized primary, secondary or tertiary amines are inserted between layers.
  • a lubricant is brought into contact with a metal material (plastic working material to be worked) before plastic working to form a lubricating film on the surface of the metal material, and then plastic working is performed using a die, It has been found that seizure due to friction between a metal material and a mold can be suppressed, and the present invention has been completed.
  • the present invention (1) comprises a smectite clay mineral and an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, and the ammonium ion is inserted between the layers of the smectite clay mineral.
  • the primary amine or secondary amine or tertiary amine has at least one long chain alkyl group having 8 or more carbon atoms in the main chain, and the carbon number in the main chain of the long chain alkyl group Is a lubricant (excluding those containing lithium borate), the total of which is 16 or more.
  • the present invention (2) is a smectite clay mineral, an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, graphite, graphene, graphene oxide, fullerene, carbon nanotube, diamond like carbon At least the ammonium ion is inserted between the layers of the smectite clay mineral, and includes at least one inorganic solid particle selected from (DLC), onion like carbon, molybdenum disulfide, and tungsten disulfide;
  • the amine or secondary amine or tertiary amine has one or more long chain alkyl groups having 8 or more carbon atoms in the main chain, and the total number of carbon atoms in the main chain of the long chain alkyl group is 16 or more There is a lubricant.
  • the invention (3) is the lubricant according to the invention (1) or (2), which is solid.
  • the present invention (4) is a metal material having a film of the lubricant according to the invention (1) or (2).
  • the present invention (5) is a metal material to which the lubricant according to the invention (3) is attached.
  • the present invention (6) comprises the step of bringing the lubricant according to the invention (1) or (2) into contact with at least one of the two metal materials causing friction to form a lubricating film. It is a plastic working method of metal material.
  • the present invention (7) is a method for plastically working a metal material, comprising the step of adhering the lubricant according to the invention (3) onto at least one of the two metal materials causing friction.
  • the present invention (8) comprises the steps of bringing the lubricant according to the invention (1) or (2) into contact with at least one surface of two metal materials causing friction to form a lubricating film; And a step of contacting two metal members to perform plastic working, and a method of producing a formed metal member.
  • the present invention (9) comprises the steps of adhering the lubricant of the invention (3) onto at least one of the two metal materials causing friction, and contacting the two metal materials for plastic working. It is a manufacturing method of forming processing metal material including the process to perform.
  • a novel lubricant capable of suppressing seizure due to friction between metal materials, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and the lubricant are used. It is possible to provide a method of plastically working a metal material and a method of manufacturing a shaped metal material.
  • the lubricant contains a smectite clay mineral, and an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, and the above ammonium in the interlayer of the smectite clay mineral Including those in which ions are inserted.
  • the lubricant does not contain lithium borate.
  • This lubricant may be composed only of smectite clay mineral and the above ammonium ion, or may contain smectite clay mineral and other components in addition to the above ammonium ion.
  • the lubricant contains a smectite clay mineral, an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, and inorganic solid particles, and is a smectite-based lubricant.
  • the thing containing at least the said ammonium ion inserted between the layers of a clay mineral is included.
  • the lubricant may or may not further contain lithium borate.
  • This lubricant may be composed only of smectite clay mineral and the above ammonium ion and inorganic solid particle, or contains smectite clay mineral and other components in addition to the above ammonium ion and inorganic solid particle. May be These lubricants may be solid lubricants or may be liquid lubricants containing a liquid medium. The friction between the metal materials is caused by depositing such a lubricant on at least one surface of two metal materials causing the friction or forming a film of the lubricant on the surface. It is possible to suppress burn-in due to
  • the smectite clay mineral is not particularly limited. Specifically, natural products such as montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, sauconite and synthetic products thereof can be mentioned. These smectite clay minerals may be used alone or in combination of two or more.
  • smectite clay minerals which are raw materials, usually, Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Ba 2+ , Fe 2+ , Al 3+, etc.
  • ions are present, cations other than these (except for the ammonium ion described later) may be present.
  • the ammonium ion is obtained by cationizing a primary amine or a secondary amine or a tertiary amine.
  • a primary amine or secondary amine or tertiary amine an alkyl group having 8 or more carbon atoms in its main chain (hereinafter such alkyl group may be referred to as a long chain alkyl group) may be used. It is not particularly limited as long as it has one or more and the total number of carbon atoms contained in the main chain of all long chain alkyl groups is 16 or more. That is, a compound represented by the following formula (1) [hereinafter referred to as a compound (1).
  • R 1 is a long chain alkyl group
  • R 2 is a hydrogen atom or an alkyl group
  • R 3 is a hydrogen atom or an alkyl group.
  • the alkyl groups of R 2 and R 3 may be, independently and independently, an alkyl group having 1 to 22 carbon atoms in the main chain, or an alkyl group having 8 to 22 carbon atoms in the main chain. Good.
  • the total number of carbons contained in the main chain of all long chain alkyl groups bonded to N is 16 or more.
  • R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain
  • R 2 and R 3 are hydrogen atoms.
  • the carbon number of the main chain of the long chain alkyl group is not particularly limited as long as it is 16 or more, but is preferably 22 or less.
  • primary amines include, but are not limited to, compounds such as n-palmitylamine and n-stearylamine.
  • R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain
  • R 2 is an alkyl group having 1 or more carbon atoms in the main chain
  • 3 is a hydrogen atom
  • R 1 is a long chain alkyl group having 8 or more carbon atoms in the main chain
  • R 2 is a long chain alkyl group having 8 or more carbon atoms in the main chain
  • R 3 is It is a hydrogen atom.
  • the total carbon number of the main chain of the long chain alkyl group is not particularly limited as long as it is 16 or more, but preferably 36 or less.
  • secondary amines include, but are not limited to, compounds such as N, N-di-n-stearylamine and Nn-stearyl-N-methylamine.
  • R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain
  • R 2 and R 3 are alkyl groups having 1 or more carbon atoms in the main chain.
  • R 1 is a long chain alkyl group having 8 or more carbon atoms in the main chain
  • R 2 and / or R 3 is a long chain alkyl group having 8 or more carbon atoms in the main chain.
  • the total carbon number of the main chain of the long chain alkyl group is not particularly limited as long as it is 16 or more, but preferably 36 or less.
  • tertiary amines include N, N-di-n-octyl-N-methylamine, N, N-di-n-decyl-N-methylamine, N, N-di-n-lauryl-N -Methylamine, N, N-di-n-myristyl-N-methylamine, N, N-di-n-stearyl-N-methylamine, N, N-dimethyl-Nn-palmitylamine, N, N-Dimethyl-Nn-stearylamine, N, N-Dimethyl-Nn-behenylamine, N, N, N-tri-n-octylamine, N, N, N-tri-n-decylamine, N Examples include, but are not limited to, compounds such as N, N-tri-n-dodecylamine.
  • the long-chain alkyl group in the compound (1) is not limited to linear and may be branched as long as the carbon number of the main chain is 8 or more.
  • Examples of compounds having one or more branched long-chain alkyl groups and having a total of 16 or more carbon atoms in the main chain of the long-chain alkyl group include, for example, diisononylamine, tris (7-methyloctyl) Examples include, but are not limited to, amines, bis (2,4-diethyloctyl) amines, bis (10-methylundecyl) amines and the like.
  • ammonium ion which cationized said various amines may be used individually by 1 type, and may be used combining 2 or more types.
  • Inorganic solid particles examples include graphite, graphene, graphene oxide, fullerene, carbon nanotube, onion like carbon, diamond like carbon (DLC), molybdenum disulfide, tungsten disulfide and the like. These inorganic solid particles may be used alone or in combination of two or more.
  • liquid medium examples include water or a mixed solvent of water and a water-miscible solvent (the proportion of water is, for example, 60% by mass or more based on the total mass of the mixed solvent).
  • the water-miscible solvent is not particularly limited as long as it does not separate after mixing with water, and examples thereof include alcohols such as methanol and ethanol.
  • the other components include organic polymers (for example, acrylic resins, amide resins, epoxy resins, epoxy resins, phenol resins, urethane resins and polymaleic acid resins), water-soluble inorganic salts (for example, sulfuric acid) Coatings such as salts, silicates, borates, molybdates, vanadates, tungstates, etc., water-soluble organic salts (eg, malate, succinate, citrate, tartrate, etc.)
  • Antirust additives such as phosphites, zirconium compounds, tungstates, vanadates, silicates, borates, carbonates, amines, benzotriazoles, chelate compounds, etc .; hydroxyethyl cellulose, carboxy Methyl cellulose, polyacrylamide, sodium polyacrylate, polyvinyl pyrrolidone, polyvinyl alcohol, mica and talc Clay minerals, viscosity modifiers such as fine
  • the content of the inorganic solid particles is not particularly limited, but the solid content ratio of the inorganic solid particles in the entire lubricant is preferably 0.01 to It is in the range of 10% by mass, more preferably in the range of 0.05 to 5% by mass.
  • the lubricant of the present invention is a liquid lubricant
  • the content of the liquid medium contained in the liquid lubricant is not particularly limited, and a method of bringing a lubricant into contact with the surface of a metal material, a lubricant film to be formed It is set appropriately in consideration of the film thickness of the
  • the lubricant can be produced, for example, as follows.
  • the compound (1) is dispersed in deionized water heated to a temperature above the melting point of the compound (1), and then an acid for cationizing the compound (1) is added and mixed to adjust the pH to a predetermined range. Adjust to prepare an aqueous solution of a cationized amine. Next, this aqueous solution and a dispersion in which the smectite clay mineral is dispersed in the above liquid medium are mixed while maintaining the pH in a predetermined range.
  • the cation present in the interlayer of the smectite clay mineral is ion-exchanged with the cationized compound (1), and the smectite clay mineral in which the cationized compound (1) is inserted between the layers is included.
  • Liquid lubricants can be produced. When two or more amines are used in combination, the two or more amines are dispersed in deionized water heated to a temperature higher than the melting point of the amine having a high melting point temperature, and then the liquid lubricant is used as described above. Can be manufactured.
  • the pH is not particularly limited as long as it is 6.0 or less, and is preferably 4.5 or less.
  • the value of pH is a value measured using the existing pH meter or pH test paper at the above-mentioned temperature at which deionized water is heated.
  • the acid used to cationize the compound (1) is not particularly limited, and, for example, inorganic acids such as nitric acid and phosphoric acid; such as maleic acid, succinic acid, malic acid, tartaric acid, and citric acid Organic acids and the like can be mentioned, but non-halogen acids are preferable.
  • d means the distance between layers of the smectite clay mineral
  • means the determined diffraction angle
  • means the wavelength of the K ⁇ ray.
  • the addition timing of the inorganic solid particles and other components is not particularly limited, and, for example, an aqueous solution of the above amine or the above smectite clay mineral is dispersed It may be added to the dispersion liquid, or it may be added to a mixture obtained by mixing the aqueous solution of the amine and the dispersion liquid in which the smectite clay mineral is dispersed. It is preferable to add it.
  • a solid lubricant can be produced by evaporating or distilling off the liquid medium contained in the above-mentioned liquid lubricant.
  • the liquid lubricant and solid lubricant may be pulverized using a pulverizer.
  • a liquid medium may be added to the produced solid lubricant to produce a liquid lubricant.
  • a metal material having a lubricant film comprises a contacting step of bringing the liquid lubricant into contact with the surface of the metal material, and a drying step of drying the contacted liquid lubricant. It can be manufactured by carrying out. Examples of the method of contacting the liquid lubricant include known methods such as immersion method, flow coating method, and spray method.
  • the contact conditions in the contact step that is, the contact time and the contact temperature are not particularly limited as long as they can produce a lubricating film.
  • Drying of the liquid lubricant is carried out by evaporating the liquid medium in the lubricant to 15 wt% or less, preferably 3 wt% or less.
  • the drying method include known methods such as natural drying, heat drying and air drying.
  • the adhesion amount of the lubricant film thus formed is preferably in the range of 0.5 to 40 g / m 2 , more preferably in the range of 0.5 to 30 g / m 2 , and 2 It is particularly preferable to be in the range of ⁇ 20 g / m 2 .
  • the metal material to which the solid lubricant adheres can be manufactured by performing a deposition step of depositing the solid lubricant on the surface of the metal material.
  • Examples of the method of depositing the solid lubricant include known methods such as electrostatic application, fluid immersion, and spraying.
  • the deposition conditions in the deposition step, ie, the deposition temperature are not particularly limited.
  • the adhesion amount of the solid lubricant is preferably in the range of 0.5 to 40 g / m 2 , more preferably in the range of 0.5 to 30 g / m 2 , and more preferably 2 to 20 g / m 2 It is particularly preferred to be within the range.
  • At least one cleaning treatment selected from the group consisting of alkaline degreasing and acid washing may be performed.
  • the purpose of the cleaning is to remove oxide scale and various stains (such as oil) grown by annealing or the like. Before and / or after these treatments, water washing may or may not be performed.
  • the metal material may be subjected to chemical conversion treatment, base treatment, and the like.
  • the chemical conversion treatment include iron phosphate conversion treatment, zinc phosphate conversion treatment, zinc calcium phosphate conversion treatment, iron oxalate conversion treatment, aluminum fluoride conversion treatment, zircon oxide conversion treatment, and the like.
  • the surface treatment for example, a method of bringing a surface treatment agent containing an alkali metal salt such as boric acid, silicic acid, sulfuric acid, phosphoric acid, tungstic acid or the like into contact on the surface of a metal material and drying;
  • a surface treatment agent containing an alkali metal salt such as boric acid, silicic acid, sulfuric acid, phosphoric acid, tungstic acid or the like
  • Other than the lubricants of the present invention eg, zinc phosphate, zinc oxide, titanium dioxide, mica, molybdenum disulfide, tungsten disulfide, tin disulfide, graphite fluoride, graphite, boron nitride
  • the metal material is not particularly limited, and examples thereof include iron, iron alloys (eg, steel, stainless steel), copper, copper alloys, aluminum, aluminum alloys, titanium, titanium alloys and the like.
  • the metal material is a sliding member, a member in contact with the sliding member, a rotary motion member, a cylinder, a piston, a workpiece for plastic working, a mold member for plastic working, and the like.
  • the plastic working method of the metal material and the manufacturing method of the forming metal material >>>
  • plastic processing of the metal material can be efficiently performed.
  • a liquid lubricant is brought into contact with at least one surface of two metal materials (work material for plastic working and mold member for plastic working) which generate friction, and a lubricating film is formed.
  • Including the steps of The formation of the lubricating coating can be carried out by carrying out the above-mentioned contacting step and drying step.
  • the formation of the lubricating coating may be performed on the surface on which the two metal materials (the workpiece for plastic working and the surface of the plastic working mold member) come in contact with each other.
  • the plastic working method of the metal material is a step of adhering a solid lubricant on the surface of at least one of two metal materials (work material for plastic working and mold member for plastic working) causing friction.
  • the deposition of the solid lubricant can be carried out by carrying out the above-mentioned deposition step.
  • the adhesion of the solid lubricant may be performed on the surface with which two metal materials (workpiece for plastic working and mold member for plastic working) come in contact with each other.
  • processing such as the above-mentioned cleaning treatment, chemical conversion treatment, or surface treatment may be performed.
  • the step of plastically working by bringing two metal materials into contact with each other produces a metal material molded into a desired shape.
  • the plastic working method is not particularly limited, and examples thereof include known methods such as extrusion, wire drawing, drawing, drawing, bending, bonding, shearing, and sizing.
  • n-palmitylamine [number of long-chain alkyl groups (hereinafter simply referred to as "Num”): 1, total number of carbon atoms in the main chain of long-chain alkyl groups (hereinafter simply referred to as "tot") : 16] 13.9 g (1.0 molar equivalent of CEC) is dispersed in 200 g of deionized water heated above the melting point temperature of the amine, and then brought to a pH of 3.3 using 10 wt% tartaric acid An aqueous solution of cationized amine was prepared by adjustment. The dispersion was added while the pH of the prepared aqueous solution was maintained at 3.3, and further stirred for 1 hour.
  • the stirred mixture was suction filtered using 5 C filter paper, and then the solid content was recovered.
  • the collected matter was dried at 60 ° C. overnight and then ground in an agate mortar to produce a solid lubricant.
  • the CEC value was measured based on the Schollenberger method.
  • Production Example 8 A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 1.6 molar equivalent of CEC, and the pH was adjusted to 3.6.
  • a mixed solution was prepared by mixing 0.5 g of graphene (1 wt% of montmorillonite) as inorganic solid particles in this aqueous solution for 30 minutes. While maintaining the pH of the prepared mixture, the dispersion was added and further stirred for 1 hour. Subsequently, the stirred mixture was suction filtered using 5 C filter paper, and then the solid content was recovered. The collected matter was dried at 60 ° C. overnight and then ground in an agate mortar to produce a solid lubricant.
  • Production Example 18 An aqueous solution of a cationized amine was prepared in the same manner as in Production Example 17 except that the pH was adjusted to 3.7. The dispersion was added while maintaining the pH of the prepared aqueous solution, and after further stirring for 1 hour, 0.5 g of graphene as inorganic solid particles was mixed for 30 minutes to prepare a mixed solution. Subsequently, the mixture was suction filtered using a 5 C filter paper, and then the solid content was recovered. The collected matter was dried at 60 ° C. overnight and then ground in an agate mortar to produce a solid lubricant.
  • Production Example 19 A solid lubricant was produced in the same manner as in Production Example 17 except that graphene was replaced with carbon nanotubes and the pH was adjusted to 4.0.
  • Production Example 20 A solid lubricant was produced in the same manner as in Production Example 18 except that graphene was replaced with carbon nanotubes and the pH was adjusted to 4.1.
  • Production Example 21 A solid lubricant was produced in the same manner as in Production Example 17 except that graphene was replaced by molybdenum disulfide and the pH was adjusted to 3.7.
  • Production Example 22 A solid lubricant was produced in the same manner as in Production Example 18 except that graphene was replaced by molybdenum disulfide and the pH was adjusted to 4.0.
  • composition composition 7.5% by weight organically modified smectite clay mineral (powder)
  • Binder potassium tetraborate 2.0% by weight
  • Dispersing agent carboxymethylcellulose 0.5% by weight 90.0% by weight of deionized water
  • test piece was immersed in the liquid lubricant prepared using the solid lubricant of Production Examples 1 to 32 or the liquid lubricant of Production Example 33 at 60 ° C. for 1 minute. After immersion, it was dried at 100 ° C. for 30 minutes to prepare test pieces (Examples 1 to 18 and 20 to 28 and Comparative Examples 1 to 8) on which a lubricating coating was formed.
  • test pieces Examples 1 to 18 and 20 to 28 and Comparative Examples 1 to 8
  • a test piece (Example 19) on which a lubricating film was formed was the same as above except that the above-mentioned drying temperature was changed to 25 ° C. Made.
  • the adhesion amount of each lubricating film on the test pieces of Examples 1 to 28 and Comparative Examples 1 to 8 is shown in Table 1.
  • the adhesion amount of the lubricant film was determined by the weight difference before and after film formation.
  • the adhesion amount of the lubricating film was adjusted by changing the solid content ratio in the liquid lubricant.

Abstract

[Problem] To provide a novel lubricant which is capable of suppressing seizing of metal materials due to friction between the metal materials. [Solution] The above-mentioned problem is able to be solved by a lubricant which contains a smectite clay mineral and ammonium ions obtained by cationizing a primary amine, a secondary amine or a tertiary amine, and wherein: the ammonium ions are intercalated between layers of the smectite clay mineral; the primary amine, the secondary amine or the tertiary amine contains one or more long-chain alkyl groups, each of which has 8 or more carbon atoms in the main chain; and the total number of carbon atoms in the main chains of the long-chain alkyl groups is 16 or more.

Description

潤滑剤、金属材、金属材の塑性加工方法及び成形加工金属材の製造方法Lubricant, metal material, plastic working method of metal material and manufacturing method of shaped metal material
 本発明は、金属材の塑性加工に有用な潤滑剤、該潤滑剤の被膜を有する金属材、該潤滑剤が付着した金属材、並びに、該潤滑剤を用いた、金属材の塑性加工方法及び成形加工金属材の製造方法に関するものである。 The present invention relates to a lubricant useful for plastic processing of a metal material, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and a method of plastically working a metal material using the lubricant The present invention relates to a method of manufacturing a shaped and processed metal material.
 塑性加工や摩擦運動の際、金属材同士(例えば、機械部品同士、金型と成形加工用金属材等)の摩擦が生じ、その摩擦によって金属材に悪影響を及ぼすため、摩擦を低減するための潤滑剤が種々開発されている。例えば、特許文献1には、層状粘土鉱物の層間に陽イオン性の有機化合物を坦持した有機変性粘土鉱物を、固形分比で5~95質量%の範囲で含有する金属材料の塑性加工用潤滑剤が開示されている。 The friction between metal materials (for example, machine parts, molds and metal materials for forming process) occurs during plastic working and friction movement, and the friction adversely affects the metal materials, so the friction is reduced. Various lubricants have been developed. For example, in Patent Document 1, for plastic processing of a metal material containing an organically modified clay mineral carrying a cationic organic compound between layers of a layered clay mineral in a solid content ratio in a range of 5 to 95% by mass Lubricants are disclosed.
国際公開第2012/086564号International Publication No. 2012/086564
 本発明は、金属材同士の摩擦による焼付きを抑制することができる新規潤滑剤、該潤滑剤の被膜を有する金属材、該潤滑剤が付着した金属材、並びに、該潤滑剤を用いた、金属材の塑性加工方法及び成形加工金属材の製造方法を提供することを目的とする。 The present invention uses a novel lubricant capable of suppressing seizing due to friction between metal materials, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and the lubricant. An object of the present invention is to provide a method of plastically working a metal material and a method of manufacturing a shaped metal material.
 本発明者らは上記課題を解決するために鋭意検討した結果、カチオン化した所定の、第1級アミン又は第2級アミン又は第3級アミンが層間に挿入された、スメクタイト系粘土鉱物を含む潤滑剤を、塑性加工前の金属材(塑性加工用被加工材)に接触させて、該金属材の表面上に潤滑被膜を形成させた後、金型を用いて塑性加工を行ったところ、金属材と金型との摩擦による焼付きを抑制することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have included smectite clay minerals in which predetermined cationized primary, secondary or tertiary amines are inserted between layers. A lubricant is brought into contact with a metal material (plastic working material to be worked) before plastic working to form a lubricating film on the surface of the metal material, and then plastic working is performed using a die, It has been found that seizure due to friction between a metal material and a mold can be suppressed, and the present invention has been completed.
 本発明(1)は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンとを含み、前記スメクタイト系粘土鉱物の層間に前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤(但し、ホウ酸リチウムを含むものを除く)である。
 本発明(2)は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンと、グラファイト、グラフェン、酸化グラフェン、フラーレン、カーボンナノチューブ、ダイヤモンドライクカーボン(DLC)、オニオンライクカーボン、二硫化モリブデン、及び二硫化タングステンから選ばれる1種以上の無機固体粒子とを含み、前記スメクタイト系粘土鉱物の層間に少なくとも前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤である。
 本発明(3)は、固体である、前記発明(1)又は(2)の潤滑剤である。
 本発明(4)は、前記発明(1)又は(2)の潤滑剤の被膜を有する金属材である。
 本発明(5)は、前記発明(3)の潤滑剤が付着した金属材である。
 本発明(6)は、前記発明(1)又は(2)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程を含む、金属材の塑性加工方法である。
 本発明(7)は、前記発明(3)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程を含む、金属材の塑性加工方法である。
 本発明(8)は、前記発明(1)又は(2)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法である。
 本発明(9)は、前記発明(3)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法である。
The present invention (1) comprises a smectite clay mineral and an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, and the ammonium ion is inserted between the layers of the smectite clay mineral. The primary amine or secondary amine or tertiary amine has at least one long chain alkyl group having 8 or more carbon atoms in the main chain, and the carbon number in the main chain of the long chain alkyl group Is a lubricant (excluding those containing lithium borate), the total of which is 16 or more.
The present invention (2) is a smectite clay mineral, an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, graphite, graphene, graphene oxide, fullerene, carbon nanotube, diamond like carbon At least the ammonium ion is inserted between the layers of the smectite clay mineral, and includes at least one inorganic solid particle selected from (DLC), onion like carbon, molybdenum disulfide, and tungsten disulfide; The amine or secondary amine or tertiary amine has one or more long chain alkyl groups having 8 or more carbon atoms in the main chain, and the total number of carbon atoms in the main chain of the long chain alkyl group is 16 or more There is a lubricant.
The invention (3) is the lubricant according to the invention (1) or (2), which is solid.
The present invention (4) is a metal material having a film of the lubricant according to the invention (1) or (2).
The present invention (5) is a metal material to which the lubricant according to the invention (3) is attached.
The present invention (6) comprises the step of bringing the lubricant according to the invention (1) or (2) into contact with at least one of the two metal materials causing friction to form a lubricating film. It is a plastic working method of metal material.
The present invention (7) is a method for plastically working a metal material, comprising the step of adhering the lubricant according to the invention (3) onto at least one of the two metal materials causing friction.
The present invention (8) comprises the steps of bringing the lubricant according to the invention (1) or (2) into contact with at least one surface of two metal materials causing friction to form a lubricating film; And a step of contacting two metal members to perform plastic working, and a method of producing a formed metal member.
The present invention (9) comprises the steps of adhering the lubricant of the invention (3) onto at least one of the two metal materials causing friction, and contacting the two metal materials for plastic working. It is a manufacturing method of forming processing metal material including the process to perform.
 本発明によれば、金属材同士の摩擦による焼付きを抑制することができる新規潤滑剤、該潤滑剤の被膜を有する金属材、該潤滑剤が付着した金属材、並びに、該潤滑剤を用いた、金属材の塑性加工方法及び成形加工金属材の製造方法を提供することができる。 According to the present invention, a novel lubricant capable of suppressing seizure due to friction between metal materials, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and the lubricant are used. It is possible to provide a method of plastically working a metal material and a method of manufacturing a shaped metal material.
加工性能評価試験を行った試験片の、焼付き程度の評価基準を示す図である。It is a figure which shows the evaluation criteria of a burning degree of the test piece which did the processing performance evaluation test.
 以下、本発明の内容を詳細に説明するが、本発明はこれには何ら限定されない。 Hereinafter, the contents of the present invention will be described in detail, but the present invention is not limited thereto.
<<<潤滑剤>>>
 本発明の実施形態において、潤滑剤は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンとを含み、スメクタイト系粘土鉱物の層間に上記アンモニウムイオンが挿入されたものを含む。なお、この潤滑剤は、ホウ酸リチウムを含まないものである。この潤滑剤は、スメクタイト系粘土鉱物と上記アンモニウムイオンのみからなるものであってもよいし、スメクタイト系粘土鉱物と上記アンモニウムイオン以外に他の成分を含むものであってもよい。
 また、本発明の実施形態において、潤滑剤は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンと、無機固体粒子とを含み、スメクタイト系粘土鉱物の層間に少なくとも上記アンモニウムイオンが挿入されたものを含む。なお、この潤滑剤は、ホウ酸リチウムを更に含んでいてもよいし、含まれていなくてもよい。この潤滑剤は、スメクタイト系粘土鉱物と上記アンモニウムイオンと無機固体粒子のみからなるものであってもよいし、スメクタイト系粘土鉱物と上記アンモニウムイオンと無機固体粒子以外に他の成分を含むものであってもよい。
 これらの潤滑剤は、固体潤滑剤であってもよいし、更に液体媒体を含む液体潤滑剤であってもよい。
 このような潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させたり、該表面上に上記潤滑剤の被膜を形成させたりすることにより、金属材同士の摩擦による焼付きを抑制することが可能となる。
<<< Lubricant >>>
In an embodiment of the present invention, the lubricant contains a smectite clay mineral, and an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, and the above ammonium in the interlayer of the smectite clay mineral Including those in which ions are inserted. The lubricant does not contain lithium borate. This lubricant may be composed only of smectite clay mineral and the above ammonium ion, or may contain smectite clay mineral and other components in addition to the above ammonium ion.
In the embodiment of the present invention, the lubricant contains a smectite clay mineral, an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, and inorganic solid particles, and is a smectite-based lubricant. The thing containing at least the said ammonium ion inserted between the layers of a clay mineral is included. The lubricant may or may not further contain lithium borate. This lubricant may be composed only of smectite clay mineral and the above ammonium ion and inorganic solid particle, or contains smectite clay mineral and other components in addition to the above ammonium ion and inorganic solid particle. May be
These lubricants may be solid lubricants or may be liquid lubricants containing a liquid medium.
The friction between the metal materials is caused by depositing such a lubricant on at least one surface of two metal materials causing the friction or forming a film of the lubricant on the surface. It is possible to suppress burn-in due to
<<成分>>
<スメクタイト系粘土鉱物>
 スメクタイト系粘土鉱物は、特に制限されるものではない。具体的には、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト等の天然品及びこれらの合成品を挙げることができる。これらのスメクタイト系粘土鉱物は、1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
<< ingredients >>
<Smectite clay mineral>
The smectite clay mineral is not particularly limited. Specifically, natural products such as montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, sauconite and synthetic products thereof can be mentioned. These smectite clay minerals may be used alone or in combination of two or more.
 原料となるスメクタイト系粘土鉱物の層間には、通常、Li、K、Na、NH 、H,Ca2+、Mg2+、Ba2+、Fe2+、Al3+等の陽イオンが存在しているが、これら以外の陽イオン(但し、後述のアンモニウムイオンは除く)が存在していてもよい。 Among layers of smectite clay minerals, which are raw materials, usually, Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Ba 2+ , Fe 2+ , Al 3+, etc. Although ions are present, cations other than these (except for the ammonium ion described later) may be present.
<アンモニウムイオン>
 上記アンモニウムイオンは、第1級アミン又は第2級アミン又は第3級アミンをカチオン化させることにより得られる。第1級アミン又は第2級アミン又は第3級アミンとしては、主鎖の炭素数が8以上であるアルキル基(以下、このようなアルキル基を長鎖アルキル基と称する場合がある。)を1以上有し、且つ、全ての長鎖アルキル基の主鎖に含まれる炭素数の合計が16以上のものであれば特に制限されるものではない。すなわち、下式(1)で表される化合物[以下、化合物(1)と称する。]において、少なくともRは長鎖アルキル基であり、Rは水素原子又はアルキル基であり、Rは水素原子又はアルキル基である。なお、R及びRのアルキル基は、別個独立に、主鎖の炭素数が1~22のアルキル基であってもよく、主鎖の炭素数が8~22のアルキル基であってもよい。また、化合物(1)において、Nに結合する全ての長鎖アルキル基の主鎖にそれぞれ含まれる炭素数の合計は16以上である。
<Ammonium ion>
The ammonium ion is obtained by cationizing a primary amine or a secondary amine or a tertiary amine. As the primary amine or secondary amine or tertiary amine, an alkyl group having 8 or more carbon atoms in its main chain (hereinafter such alkyl group may be referred to as a long chain alkyl group) may be used. It is not particularly limited as long as it has one or more and the total number of carbon atoms contained in the main chain of all long chain alkyl groups is 16 or more. That is, a compound represented by the following formula (1) [hereinafter referred to as a compound (1). In the above, at least R 1 is a long chain alkyl group, R 2 is a hydrogen atom or an alkyl group, and R 3 is a hydrogen atom or an alkyl group. The alkyl groups of R 2 and R 3 may be, independently and independently, an alkyl group having 1 to 22 carbon atoms in the main chain, or an alkyl group having 8 to 22 carbon atoms in the main chain. Good. In the compound (1), the total number of carbons contained in the main chain of all long chain alkyl groups bonded to N is 16 or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 具体的には、第1級アミンの場合、化合物(1)において、Rは主鎖の炭素数が16以上の長鎖アルキル基であり、R及びRは水素原子である。なお、第1級アミンの場合、長鎖アルキル基の主鎖の炭素数は、16以上であれば特に限定されないが、好ましくは22以下である。 Specifically, in the case of a primary amine, in the compound (1), R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain, and R 2 and R 3 are hydrogen atoms. In the case of a primary amine, the carbon number of the main chain of the long chain alkyl group is not particularly limited as long as it is 16 or more, but is preferably 22 or less.
 第1級アミンとしては、例えば、n-パルミチルアミン、n-ステアリルアミン等の化合物が挙げられるが、これらに限定されるものではない。 Examples of primary amines include, but are not limited to, compounds such as n-palmitylamine and n-stearylamine.
 第2級アミンの場合、化合物(1)において、Rは主鎖の炭素数が16以上の長鎖アルキル基であり、Rは主鎖の炭素数が1以上のアルキル基であり、Rは水素原子である;又は、Rは主鎖の炭素数が8以上の長鎖アルキル基であり、Rは主鎖の炭素数が8以上の長鎖アルキル基であり、Rは水素原子である。なお、第2級アミンの場合、長鎖アルキル基の主鎖の炭素数の合計は、16以上であれば特に限定されないが、好ましくは36以下である。 In the case of the secondary amine, in the compound (1), R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain, R 2 is an alkyl group having 1 or more carbon atoms in the main chain, 3 is a hydrogen atom; or R 1 is a long chain alkyl group having 8 or more carbon atoms in the main chain, R 2 is a long chain alkyl group having 8 or more carbon atoms in the main chain, and R 3 is It is a hydrogen atom. In the case of a secondary amine, the total carbon number of the main chain of the long chain alkyl group is not particularly limited as long as it is 16 or more, but preferably 36 or less.
 第2級アミンとしては、例えば、N,N-ジ-n-ステアリルアミン、N-n-ステアリル-N-メチルアミン等の化合物が挙げられるが、これらに限定されるものではない。 Examples of secondary amines include, but are not limited to, compounds such as N, N-di-n-stearylamine and Nn-stearyl-N-methylamine.
 第3級アミンの場合、化合物(1)において、Rは主鎖の炭素数が16以上の長鎖アルキル基であり、R及びRは主鎖の炭素数が1以上のアルキル基である;又は、Rは主鎖の炭素数が8以上の長鎖アルキル基であり、R及び/若しくはRは主鎖の炭素数が8以上の長鎖アルキル基である。なお、第3級アミンの場合、長鎖アルキル基の主鎖の炭素数の合計は、16以上であれば特に限定されないが、好ましくは36以下である。 In the case of a tertiary amine, in compound (1), R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain, and R 2 and R 3 are alkyl groups having 1 or more carbon atoms in the main chain. Or R 1 is a long chain alkyl group having 8 or more carbon atoms in the main chain, and R 2 and / or R 3 is a long chain alkyl group having 8 or more carbon atoms in the main chain. In the case of a tertiary amine, the total carbon number of the main chain of the long chain alkyl group is not particularly limited as long as it is 16 or more, but preferably 36 or less.
 第3級アミンとしては、例えば、N,N-ジ-n-オクチル-N-メチルアミン、N,N-ジ-n-デシル-N-メチルアミン、N,N-ジ-n-ラウリル-N-メチルアミン、N,N-ジ-n-ミリスチル-N-メチルアミン、N,N-ジ-n-ステアリル-N-メチルアミン、N,N-ジメチル-N-n-パルミチルアミン、N,N-ジメチル-N-n-ステアリルアミン、N,N-ジメチル-N-n-ベヘニルアミン、N,N,N-トリ-n-オクチルアミン、N,N,N-トリ-n-デシルアミン、N,N,N-トリ-n-ドデシルアミン等の化合物が挙げられるが、これらに限定されるものではない。 Examples of tertiary amines include N, N-di-n-octyl-N-methylamine, N, N-di-n-decyl-N-methylamine, N, N-di-n-lauryl-N -Methylamine, N, N-di-n-myristyl-N-methylamine, N, N-di-n-stearyl-N-methylamine, N, N-dimethyl-Nn-palmitylamine, N, N-Dimethyl-Nn-stearylamine, N, N-Dimethyl-Nn-behenylamine, N, N, N-tri-n-octylamine, N, N, N-tri-n-decylamine, N Examples include, but are not limited to, compounds such as N, N-tri-n-dodecylamine.
 ここで、化合物(1)における長鎖アルキル基は、主鎖の炭素数が8以上であれば、直鎖状に限定されず、分枝鎖状であってもよい。分枝鎖状の長鎖アルキル基を1以上有し、且つ、長鎖アルキル基の主鎖の炭素数の合計が16以上である化合物としては、例えば、ジイソノニルアミン、トリス(7-メチルオクチル)アミン、ビス(2,4-ジエチルオクチル)アミン、ビス(10-メチルウンデシル)アミン等が挙げられるが、これらに限定されるものではない。 Here, the long-chain alkyl group in the compound (1) is not limited to linear and may be branched as long as the carbon number of the main chain is 8 or more. Examples of compounds having one or more branched long-chain alkyl groups and having a total of 16 or more carbon atoms in the main chain of the long-chain alkyl group include, for example, diisononylamine, tris (7-methyloctyl) Examples include, but are not limited to, amines, bis (2,4-diethyloctyl) amines, bis (10-methylundecyl) amines and the like.
 なお、上記各種アミンをカチオン化したアンモニウムイオンは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, the ammonium ion which cationized said various amines may be used individually by 1 type, and may be used combining 2 or more types.
<無機固体粒子>
 上記無機固体粒子としては、グラファイト、グラフェン、酸化グラフェン、フラーレン、カーボンナノチューブ、オニオンライクカーボン、ダイヤモンドライクカーボン(DLC)、二硫化モリブデン、二硫化タングステン等を挙げることができる。これらの無機固体粒子は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。無機固体粒子を含む本実施形態の潤滑剤を金属材の表面上に接触させることにより得られる、該潤滑剤が付着した金属材又は該潤滑剤を表面上に接触させることにより形成した潤滑被膜を有する金属材に対して、高温(200℃以上;金属材の温度)条件下で塑性加工や摩擦運動を行っても、該金属材の表面における焼付けをより抑制することが可能となる。
<Inorganic solid particles>
Examples of the inorganic solid particles include graphite, graphene, graphene oxide, fullerene, carbon nanotube, onion like carbon, diamond like carbon (DLC), molybdenum disulfide, tungsten disulfide and the like. These inorganic solid particles may be used alone or in combination of two or more. A metal material to which the lubricant adheres, or a lubricating film formed by contacting the lubricant on the surface, which is obtained by bringing the lubricant of the present embodiment containing inorganic solid particles into contact with the surface of the metal material Even if plastic working or friction movement is performed on the metal material having the high temperature (200 ° C. or more; temperature of the metal material), it is possible to further suppress baking on the surface of the metal material.
<液体媒体>
 液体媒体としては、例えば、水、又は、水と水混和性溶媒の混合溶媒(水の割合は、例えば、混合溶媒の全質量に対して60質量%以上のもの)を挙げることができる。水混和性溶媒としては、水と混合した後、相分離しないものであれば特に限定されるものではないが、例えば、メタノール、エタノール等のアルコール類が挙げられる。
<Liquid medium>
Examples of the liquid medium include water or a mixed solvent of water and a water-miscible solvent (the proportion of water is, for example, 60% by mass or more based on the total mass of the mixed solvent). The water-miscible solvent is not particularly limited as long as it does not separate after mixing with water, and examples thereof include alcohols such as methanol and ethanol.
<他の成分>
 上記他の成分としては、例えば、有機高分子(例えば、アクリル系樹脂、アミド系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂及びポリマレイン酸系樹脂等)、水溶性無機塩類(例えば、硫酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩等)、水溶性有機塩(例えば、リンゴ酸塩、コハク酸塩、クエン酸塩、酒石酸塩等)等の被膜形成成分;亜リン酸塩、ジルコニウム化合物、タングステン酸塩、バナジン酸塩、ケイ酸塩、ホウ酸塩、炭酸塩、アミン類、ベンゾトリアゾール類、キレート化合物等の防錆添加剤;ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリビニルアルコール、マイカやタルク等の粘土鉱物、微粉シリカ等の粘度調整剤;非イオン性界面活性剤、陰イオン界面活性剤、両性界面活性剤、陽イオン性界面活性剤、水溶性高分子等の分散剤;石けん類(ステアリン酸ナトリウム、ステアリン酸カリウム、オレイン酸ナトリウム)、金属石けん類(ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸亜鉛、パルミチン酸カルシウム)、ワックス類(ポリエチレンワックス、ポリプロピレンワックス、カルナバロウ、ミツロウ、パラフィンワックス、マイクロクリスタリンワックス)、脂肪酸アマイド(エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、N,N’-ジステアリルアジピン酸アマイド、エチレンビスオレイン酸アマイド、エチレンビスエルカ酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジオレイルアジピン酸アマイド)等の潤滑成分;植物油、鉱物油、合成油等の油類;等が挙げられる。これらの成分は、本発明の潤滑剤に1種含有させてもよいし、2種以上を組み合わせて含有させてもよい。
 なお、水溶性とは、25℃、100gの水に1g以上溶解する性質を意味する。
<Other ingredients>
Examples of the other components include organic polymers (for example, acrylic resins, amide resins, epoxy resins, epoxy resins, phenol resins, urethane resins and polymaleic acid resins), water-soluble inorganic salts (for example, sulfuric acid) Coatings such as salts, silicates, borates, molybdates, vanadates, tungstates, etc., water-soluble organic salts (eg, malate, succinate, citrate, tartrate, etc.) Forming components: Antirust additives such as phosphites, zirconium compounds, tungstates, vanadates, silicates, borates, carbonates, amines, benzotriazoles, chelate compounds, etc .; hydroxyethyl cellulose, carboxy Methyl cellulose, polyacrylamide, sodium polyacrylate, polyvinyl pyrrolidone, polyvinyl alcohol, mica and talc Clay minerals, viscosity modifiers such as finely divided silica; nonionic surfactants, anionic surfactants, amphoteric surfactants, cationic surfactants, dispersants such as water-soluble polymers, etc .; Sodium acid, potassium stearate, sodium oleate), metal soaps (calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, zinc stearate, calcium palmitate), waxes (polyethylene wax, Polypropylene wax, carnauba wax, beeswax, paraffin wax, microcrystalline wax), fatty acid amide (ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bis behenic acid amide, N, N'- disteari Lubricating components such as adipic acid amide, ethylene bis oleic acid amide, ethylene bis erucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl adipate amide); oils such as vegetable oil, mineral oil, synthetic oil And the like. One of these components may be contained in the lubricant of the present invention, or two or more thereof may be contained in combination.
In addition, water solubility means the property to melt | dissolve 1 g or more in 25 degreeC and 100 g of water.
<<含有量>>
 潤滑剤に含まれる、上記スメクタイト系粘土鉱物の質量(A)と、上記アンモニウムイオンのアミン換算質量(アンモニウムイオンの原料である化合物(1)の総質量:B)との比(B/A)は、特に制限されるものではないが、0.1~1.0の範囲内であることが好ましく、0.25~0.65の範囲内であることがより好ましい。また、本発明の潤滑剤に上記無機固体粒子が含まれている場合、無機固体粒子の含有量は特に限定されないが、潤滑剤全体における無機固体粒子の固形分割合として、好ましくは0.01~10質量%の範囲内であり、より好ましくは0.05~5質量%の範囲内である。
<< Contents >>
The ratio (B M ) of the mass (A M ) of the smectite clay mineral to the amine equivalent mass of the above ammonium ion (total mass of the compound (1) which is a raw material of ammonium ion: B M ) contained in the lubricant There is no particular limitation on / A M ), which is preferably in the range of 0.1 to 1.0, and more preferably in the range of 0.25 to 0.65. Moreover, when the inorganic solid particles are contained in the lubricant of the present invention, the content of the inorganic solid particles is not particularly limited, but the solid content ratio of the inorganic solid particles in the entire lubricant is preferably 0.01 to It is in the range of 10% by mass, more preferably in the range of 0.05 to 5% by mass.
 なお、本発明の潤滑剤が液体潤滑剤である場合、液体潤滑剤に含まれる液体媒体の含有量は、特に制限されず、金属材の表面上に潤滑剤を接触させる方法、形成させる潤滑被膜の膜厚等を考慮して適宜設定される。 When the lubricant of the present invention is a liquid lubricant, the content of the liquid medium contained in the liquid lubricant is not particularly limited, and a method of bringing a lubricant into contact with the surface of a metal material, a lubricant film to be formed It is set appropriately in consideration of the film thickness of the
<<潤滑剤の製造方法>>
 上記潤滑剤は、例えば、以下のように製造することができる。化合物(1)を該化合物(1)の融点温度以上に加熱した脱イオン水に分散させた後、該化合物(1)をカチオン化するための酸を加えて混合し、pHを所定の範囲に調整して、カチオン化したアミンの水溶液を調製する。次に、この水溶液と、上記液体媒体にスメクタイト系粘土鉱物を分散させた分散液とを、所定の範囲のpHに維持したまま混合する。この混合により、スメクタイト系粘土鉱物の層間に存在する陽イオンと、カチオン化した化合物(1)とがイオン交換されて、カチオン化した化合物(1)が層間に挿入されたスメクタイト系粘土鉱物を含む液体潤滑剤を製造することができる。なお、2種以上のアミンを組み合わせて用いる場合には、融点温度が高いアミンの融点温度以上に加熱した脱イオン水に、2種以上のアミンを分散させた後、上記と同様に液体潤滑剤を製造することができる。また、pHは、6.0以下であれば特に限定されるものではなく、4.5以下であることが好ましい。pHの値は、既存のpHメーターあるいはpH試験紙を用いて、脱イオン水を加熱した上記温度にて測定した値である。化合物(1)をカチオン化するために使用する酸としては、特に限定されるものではなく、例えば、硝酸、リン酸等の無機酸;マレイン酸、コハク酸、リンゴ酸、酒石酸、クエン酸等の有機酸;等を挙げることができるが、非ハロゲン系の酸であることが好ましい。
<< Method of producing lubricants >>
The lubricant can be produced, for example, as follows. The compound (1) is dispersed in deionized water heated to a temperature above the melting point of the compound (1), and then an acid for cationizing the compound (1) is added and mixed to adjust the pH to a predetermined range. Adjust to prepare an aqueous solution of a cationized amine. Next, this aqueous solution and a dispersion in which the smectite clay mineral is dispersed in the above liquid medium are mixed while maintaining the pH in a predetermined range. By this mixing, the cation present in the interlayer of the smectite clay mineral is ion-exchanged with the cationized compound (1), and the smectite clay mineral in which the cationized compound (1) is inserted between the layers is included. Liquid lubricants can be produced. When two or more amines are used in combination, the two or more amines are dispersed in deionized water heated to a temperature higher than the melting point of the amine having a high melting point temperature, and then the liquid lubricant is used as described above. Can be manufactured. The pH is not particularly limited as long as it is 6.0 or less, and is preferably 4.5 or less. The value of pH is a value measured using the existing pH meter or pH test paper at the above-mentioned temperature at which deionized water is heated. The acid used to cationize the compound (1) is not particularly limited, and, for example, inorganic acids such as nitric acid and phosphoric acid; such as maleic acid, succinic acid, malic acid, tartaric acid, and citric acid Organic acids and the like can be mentioned, but non-halogen acids are preferable.
 なお、スメクタイト系粘土鉱物の層間に存在する陽イオンと、化合物(1)をカチオン化したアンモニウムイオンとのイオン交換が行われると、スメクタイト系粘土鉱物の層間の間隔が増大する。従って、上記アンモニウムイオンが、スメクタイト系粘土鉱物の層間に挿入されたことは、該アンモニウムイオンの挿入前後の、スメクタイト系粘土鉱物の層間の間隔を測定することにより、容易に確認することができる。なお、層間の間隔は、例えば、Cu管球を用いた定方位法によるX線回折で回折パターンを測定し、その回折パターンから底面反射(d001)面の回折角を求めて、ブラッグの式(2d・sinθ=λ)からスメクタイト系粘土鉱物の層間の間隔を求めることができる。なお、ブラッグの式における、「d」はスメクタイト系粘土鉱物の層間の間隔を、「θ」は求めた回折角を、「λ」はKα線の波長を、それぞれ意味する。 In addition, when the ion exchange with the cation which exists in the interlayer of a smectite clay mineral and the ammonium ion which cationized compound (1) is performed, the space | interval of the interlayer of a smectite clay mineral will increase. Therefore, the fact that the ammonium ion is inserted between the layers of the smectite clay mineral can be easily confirmed by measuring the distance between the layers of the smectite clay mineral before and after the insertion of the ammonium ion. As for the distance between layers, for example, the diffraction pattern is measured by X-ray diffraction according to the orientation method using a Cu tube, the diffraction angle of the bottom reflection (d001) plane is determined from the diffraction pattern, and Bragg's equation ( The interlayer spacing of the smectite clay mineral can be determined from 2d · sin θ = λ). In the Bragg's equation, “d” means the distance between layers of the smectite clay mineral, “θ” means the determined diffraction angle, and “λ” means the wavelength of the Kα ray.
 無機固体粒子や他の成分を含む潤滑剤を製造する場合、無機固体粒子や他の成分の添加タイミングは特に制限されるものではなく、例えば、上記アミンの水溶液又は上記スメクタイト系粘土鉱物を分散させた分散液に添加してもよいし、上記アミンの水溶液と、上記スメクタイト系粘土鉱物を分散させた分散液とを混合させた混合物にこれらを添加してもよいが、上記アミンの水溶液に予め添加しておくことが好ましい。 When manufacturing a lubricant containing inorganic solid particles and other components, the addition timing of the inorganic solid particles and other components is not particularly limited, and, for example, an aqueous solution of the above amine or the above smectite clay mineral is dispersed It may be added to the dispersion liquid, or it may be added to a mixture obtained by mixing the aqueous solution of the amine and the dispersion liquid in which the smectite clay mineral is dispersed. It is preferable to add it.
 また、上記液体潤滑剤に含まれる液体媒体を、蒸発させたり、減圧留去したりすることにより、固体潤滑剤を製造することができる。なお、液体潤滑剤や固体潤滑剤は、粉砕機を用いて粉砕してもよい。また、製造した固体潤滑剤に液体媒体を加えて液体潤滑剤を製造してもよい。 Also, a solid lubricant can be produced by evaporating or distilling off the liquid medium contained in the above-mentioned liquid lubricant. The liquid lubricant and solid lubricant may be pulverized using a pulverizer. Alternatively, a liquid medium may be added to the produced solid lubricant to produce a liquid lubricant.
<<潤滑剤の用途>>
 摺動運動、回転運動、ピストン運動等の運動、又は線材、管材、棒材、ブロック材等の塑性加工で生じる金属材同士の摩擦は、金属材の焼付きをもたらすため、金属材の焼付きを抑制できる本発明の潤滑剤は、摩擦が生じる金属材に対して有用である。
<< Usage of Lubricant >>
The friction between metal materials caused by sliding movement, rotational movement, movement such as piston movement or plastic working of wire, tube, bar, block etc. causes seizing of metal material, so seizing of metal material The lubricant of the present invention which can suppress the above is useful for metal materials where friction occurs.
<<<潤滑剤の被膜を有する金属材、潤滑剤が付着した金属材>>>
 潤滑剤の被膜(以下、潤滑被膜と称する場合がある。)を有する金属材は、金属材の表面上に液体潤滑剤を接触させる接触工程と、接触させた液体潤滑剤を乾燥させる乾燥工程とを実施することにより製造することができる。液体潤滑剤の接触方法としては、例えば、浸漬法、フローコート法、スプレー法等の公知の方法を挙げることができる。接触工程における接触条件、すなわち、接触時間及び接触温度は、潤滑被膜を製造できる条件であれば特に制限されるものではない。液体潤滑剤の乾燥は、潤滑剤中の液体媒体を、15重量%以下、好ましくは3重量%以下になるまで蒸発させることにより行なわれる。乾燥方法としては、例えば、自然乾燥、加熱乾燥、風乾等の公知の方法を挙げることができる。
<<< Metal material with coating of lubricant, metal material with lubricant attached >>>
A metal material having a lubricant film (hereinafter sometimes referred to as a lubricant film) comprises a contacting step of bringing the liquid lubricant into contact with the surface of the metal material, and a drying step of drying the contacted liquid lubricant. It can be manufactured by carrying out. Examples of the method of contacting the liquid lubricant include known methods such as immersion method, flow coating method, and spray method. The contact conditions in the contact step, that is, the contact time and the contact temperature are not particularly limited as long as they can produce a lubricating film. Drying of the liquid lubricant is carried out by evaporating the liquid medium in the lubricant to 15 wt% or less, preferably 3 wt% or less. Examples of the drying method include known methods such as natural drying, heat drying and air drying.
 このようにして形成させた潤滑被膜の付着量は、0.5~40g/mの範囲内であることが好ましく、0.5~30g/mの範囲内であることがより好ましく、2~20g/mの範囲内であることが特に好ましい。潤滑被膜の付着量を0.5~40g/mの範囲内とすることで、優れた潤滑性を有するだけでなく、耐焼付き性、耐カス詰まり性等の性能を向上させることができる。 The adhesion amount of the lubricant film thus formed is preferably in the range of 0.5 to 40 g / m 2 , more preferably in the range of 0.5 to 30 g / m 2 , and 2 It is particularly preferable to be in the range of ̃20 g / m 2 . By setting the adhesion amount of the lubricant film in the range of 0.5 to 40 g / m 2 , not only excellent lubricity but also performances such as seizure resistance and clogging resistance can be improved.
 固体潤滑剤が付着した金属材は、金属材の表面上に固体潤滑剤を付着させる付着工程を実施することにより製造することができる。固体潤滑剤の付着方法としては、例えば、静電塗布、流動浸漬、散布等の公知の方法を挙げることができる。付着工程における付着条件、すなわち、付着温度は特に制限されるものではない。 The metal material to which the solid lubricant adheres can be manufactured by performing a deposition step of depositing the solid lubricant on the surface of the metal material. Examples of the method of depositing the solid lubricant include known methods such as electrostatic application, fluid immersion, and spraying. The deposition conditions in the deposition step, ie, the deposition temperature, are not particularly limited.
 固体潤滑剤の付着量は、0.5~40g/mの範囲内であることが好ましく、0.5~30g/mの範囲内であることがより好ましく、2~20g/mの範囲内であることが特に好ましい。固体潤滑剤の付着量を0.5~40g/mの範囲内とすることで、優れた潤滑性を有するだけでなく、耐焼付き性、耐カス詰まり性等の性能を向上させることができる。 The adhesion amount of the solid lubricant is preferably in the range of 0.5 to 40 g / m 2 , more preferably in the range of 0.5 to 30 g / m 2 , and more preferably 2 to 20 g / m 2 It is particularly preferred to be within the range. By setting the adhesion amount of the solid lubricant in the range of 0.5 to 40 g / m 2 , it is possible to improve not only the excellent lubricity but also the performances such as seizure resistance and debris clogging resistance. .
 なお、潤滑被膜を有する金属材の製造方法又は固体潤滑剤が付着した金属材の製造方法において、接触工程又は付着工程の前に、金属材に対して、ショットブラスト、サンドブラスト、ウェットブラスト、ピーリング、アルカリ脱脂及び酸洗浄よりなる群から選ばれる少なくとも一種類の清浄化処理を行ってもよい。ここでの清浄化とは、焼鈍等により成長した酸化スケールや各種汚れ(油等)を除去することを目的とするものである。また、これらの処理の前及び/又は後に、水洗を行ってもよいし、行わなくともよい。 In the method of manufacturing a metal material having a lubricant film or the method of manufacturing a metal material to which a solid lubricant adheres, shot blasting, sand blasting, wet blasting, peeling on the metal material before the contact step or the adhesion step. At least one cleaning treatment selected from the group consisting of alkaline degreasing and acid washing may be performed. Here, the purpose of the cleaning is to remove oxide scale and various stains (such as oil) grown by annealing or the like. Before and / or after these treatments, water washing may or may not be performed.
 また、接触工程又は付着工程の前に、必要に応じて、金属材に対して化成処理や下地処理等を施しても構わない。化成処理としては、例えば、リン酸鉄化成処理、リン酸亜鉛化成処理、リン酸亜鉛カルシウム化成処理、シュウ酸鉄化成処理、フッ化アルミニウム化成処理、酸化ジルコン化成処理等を挙げることができる。下地処理としては、例えば、ホウ酸、ケイ酸、硫酸、リン酸、タングステン酸等のアルカリ金属塩を含む下地処理剤を、金属材の表面上に接触させて乾燥させる方法;ブラスト等の投射法により、本発明の潤滑剤以外の、公知の固形潤滑剤(例えば、リン酸亜鉛、酸化亜鉛、二酸化チタン、雲母、二硫化モリブデン、二硫化タングステン、二硫化錫、フッ化黒鉛、黒鉛、窒化ホウ素、水酸化カルシウム、炭酸カルシウム、石灰、硫酸カルシウム、硫酸バリウム等)をメカニカルにコーティングする方法;等を挙げることができる。 In addition, before the contacting step or the attaching step, if necessary, the metal material may be subjected to chemical conversion treatment, base treatment, and the like. Examples of the chemical conversion treatment include iron phosphate conversion treatment, zinc phosphate conversion treatment, zinc calcium phosphate conversion treatment, iron oxalate conversion treatment, aluminum fluoride conversion treatment, zircon oxide conversion treatment, and the like. As the surface treatment, for example, a method of bringing a surface treatment agent containing an alkali metal salt such as boric acid, silicic acid, sulfuric acid, phosphoric acid, tungstic acid or the like into contact on the surface of a metal material and drying; Other than the lubricants of the present invention (eg, zinc phosphate, zinc oxide, titanium dioxide, mica, molybdenum disulfide, tungsten disulfide, tin disulfide, graphite fluoride, graphite, boron nitride) A method of mechanically coating calcium hydroxide, calcium carbonate, lime, calcium sulfate, barium sulfate etc .; and the like.
 金属材としては、特に限定されないが、鉄、鉄合金(例えば、鋼、ステンレス)、銅、銅合金、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。金属材は、摺動部材、該摺動部材に接触する部材、回転運動部材、シリンダー、ピストン、塑性加工用被加工材、塑性加工用金型部材等である。 The metal material is not particularly limited, and examples thereof include iron, iron alloys (eg, steel, stainless steel), copper, copper alloys, aluminum, aluminum alloys, titanium, titanium alloys and the like. The metal material is a sliding member, a member in contact with the sliding member, a rotary motion member, a cylinder, a piston, a workpiece for plastic working, a mold member for plastic working, and the like.
<<<金属材の塑性加工方法及び成形加工金属材の製造方法>>>
 上記潤滑剤を用いることにより、金属材の塑性加工を効率よく行なうことができる。金属材の塑性加工方法は、摩擦を生じさせる2つの金属材(塑性加工用被加工材及び塑性加工用金型部材)のうち少なくとも1方の表面上に、液体潤滑剤を接触させて潤滑被膜を形成させる工程を含む。該潤滑被膜の形成は、上述の接触工程と乾燥工程とを実施することにより行うことができる。なお、潤滑被膜の形成は、2つの金属材(塑性加工用被加工材、及び塑性加工用金型部材の表面)が接触する面上に、それぞれ行ってもよい。
<<< The plastic working method of the metal material and the manufacturing method of the forming metal material >>>
By using the above-mentioned lubricant, plastic processing of the metal material can be efficiently performed. In the plastic working method of the metal material, a liquid lubricant is brought into contact with at least one surface of two metal materials (work material for plastic working and mold member for plastic working) which generate friction, and a lubricating film is formed. Including the steps of The formation of the lubricating coating can be carried out by carrying out the above-mentioned contacting step and drying step. The formation of the lubricating coating may be performed on the surface on which the two metal materials (the workpiece for plastic working and the surface of the plastic working mold member) come in contact with each other.
 また、金属材の塑性加工方法は、摩擦を生じさせる2つの金属材(塑性加工用被加工材及び塑性加工用金型部材)のうち少なくとも1方の表面上に、固体潤滑剤を付着させる工程を含む。固体潤滑剤の付着は、上述の付着工程を実施することにより行うことができる。なお、固体潤滑剤の付着は、2つの金属材(塑性加工用被加工材、及び塑性加工用金型部材)が接触する面上に、それぞれ行ってもよい。 Further, the plastic working method of the metal material is a step of adhering a solid lubricant on the surface of at least one of two metal materials (work material for plastic working and mold member for plastic working) causing friction. including. The deposition of the solid lubricant can be carried out by carrying out the above-mentioned deposition step. The adhesion of the solid lubricant may be performed on the surface with which two metal materials (workpiece for plastic working and mold member for plastic working) come in contact with each other.
 なお、潤滑被膜の形成又は固体潤滑剤の付着の前に、上記清浄化処理、化成処理、下地処理等の処理を行ってもよい。 In addition, before formation of a lubricating film or adhesion of a solid lubricant, processing such as the above-mentioned cleaning treatment, chemical conversion treatment, or surface treatment may be performed.
 上述のように、潤滑被膜の形成又は固体潤滑剤の付着を行った後、2つの金属材を接触させて塑性加工を行う工程を実施することにより、所望の形状に成形加工した金属材を製造することができる。塑性加工方法としては特に限定されないが、例えば、押し出し加工、伸線加工、引き抜き加工、絞り加工、曲げ加工、接合加工、せん断加工、サイジング加工等の公知の方法が挙げられる。 As described above, after forming a lubricating film or depositing a solid lubricant, the step of plastically working by bringing two metal materials into contact with each other produces a metal material molded into a desired shape. can do. The plastic working method is not particularly limited, and examples thereof include known methods such as extrusion, wire drawing, drawing, drawing, bending, bonding, shearing, and sizing.
 以下、本発明の実施例を比較例と共に挙げることによって、本発明をその効果と共に更に具体的に説明する。なお、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be more specifically described along with the effects thereof by listing examples of the present invention together with comparative examples. The present invention is not limited by these examples.
I.潤滑剤の製造
 潤滑剤の製造例を以下に示す。
(製造例1)
 脱イオン水950gにモンモリロナイト(交換性陽イオン=Na+、CEC(陽イオン交換容量:Cation Exchange Capacity)値=115meq/100g)50gを添加し、ホモジナイザーで1時間撹拌して分散液を作製した。次にn-パルミチルアミン[長鎖アルキル基の数(以下、単に「Num」と称する):1、長鎖アルキル基の主鎖の炭素数の合計数(以下、単に「Tot」と称する):16]13.9g(CECの1.0モル当量分)を、該アミンの融点温度以上に加熱した脱イオン水200gに分散させた後、10wt%の酒石酸を用いてpHを3.3に調整することにより、カチオン化したアミンの水溶液を調製した。調製した水溶液のpHを3.3に維持させながら、分散液を添加し、1時間更に撹拌した。続いて、攪拌混合物を、5Cのろ紙を用いて吸引ろ過した後、固形分を回収した。回収物を60℃で一晩乾燥させた後、メノウ乳鉢で粉砕し、固体潤滑剤を製造した。なお、CEC値は、Schollenberger法に基づいて測定した。
I. Production of Lubricant An example of production of a lubricant is shown below.
(Production Example 1)
To 950 g of deionized water was added 50 g of montmorillonite (exchangeable cation = Na +, CEC (Cation Exchange Capacity) value = 115 meq / 100 g), and the mixture was stirred for 1 hour with a homogenizer to prepare a dispersion. Next, n-palmitylamine [number of long-chain alkyl groups (hereinafter simply referred to as "Num"): 1, total number of carbon atoms in the main chain of long-chain alkyl groups (hereinafter simply referred to as "tot") : 16] 13.9 g (1.0 molar equivalent of CEC) is dispersed in 200 g of deionized water heated above the melting point temperature of the amine, and then brought to a pH of 3.3 using 10 wt% tartaric acid An aqueous solution of cationized amine was prepared by adjustment. The dispersion was added while the pH of the prepared aqueous solution was maintained at 3.3, and further stirred for 1 hour. Subsequently, the stirred mixture was suction filtered using 5 C filter paper, and then the solid content was recovered. The collected matter was dried at 60 ° C. overnight and then ground in an agate mortar to produce a solid lubricant. The CEC value was measured based on the Schollenberger method.
(製造例2)
 n-パルミチルアミン(CECの1.0モル当量分)をn-ステアリルアミン(CECの1.0モル当量分、Num=1、Tot=18)に代え、pHを4.1に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 2)
The pH was adjusted to 4.1 by replacing n-palmitylamine (1.0 molar equivalent of CEC) with n-stearylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 18) In the same manner as in Production Example 1, a solid lubricant was produced.
(製造例3)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジメチル-N-n-パルミチルアミン(CECの1.0モル当量分、Num=1、Tot=16)に代え、pHを3.2に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 3)
replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-palmitylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 16), A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.2.
(製造例4)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジメチル-N-n-ステアリルアミン(CECの1.0モル当量分、Num=1、Tot=18)に代え、pHを3.2に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 4)
The pH of n-palmitylamine (1.0 molar equivalent of CEC) is replaced with N, N-dimethyl-Nn-stearylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 18), Was adjusted to 3.2, a solid lubricant was produced in the same manner as in Production Example 1.
(製造例5)
 CECの1.0モル当量分をCECの0.8モル当量分に代え、pHを3.2に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 5)
A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 0.8 molar equivalent of CEC, and the pH was adjusted to 3.2.
(製造例6)
 CECの1.0モル当量分をCECの1.2モル当量分に代え、pHを3.8に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 6)
A solid lubricant was produced in the same manner as in Production Example 4 except that 1.0 molar equivalent of CEC was replaced with 1.2 molar equivalent of CEC and the pH was adjusted to 3.8.
(製造例7)
 CECの1.0モル当量分をCECの1.4モル当量分に代え、pHを4.0に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 7)
A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 1.4 molar equivalent of CEC, and the pH was adjusted to 4.0.
(製造例8)
 CECの1.0モル当量分をCECの1.6モル当量分に代え、pHを3.6に調整した他は、製造例4と同様に固体潤滑剤を製造した。
Production Example 8
A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 1.6 molar equivalent of CEC, and the pH was adjusted to 3.6.
(製造例9)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジメチル-N-n-ベヘニルアミン(CECの1.0モル当量分、Num=1、Tot=22)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 9
n-Palmitylamine (1.0 molar equivalent of CEC) is replaced with N, N-dimethyl-Nn-behenylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 22), pH Was adjusted to 3.7, a solid lubricant was produced in the same manner as in Production Example 1.
(製造例10)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジ-n-オクチル-N-メチルアミン(CECの1.0モル当量分、Num=2、Tot=16)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 10
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-octyl-N-methylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 16) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.7.
(製造例11)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジ-n-ラウリル-N-メチルアミン(CECの1.0モル当量、Num=2、Tot=24)に代え、pHを3.9に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 11)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-lauryl-N-methylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 24), A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.9.
(製造例12)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジ-n-ステアリル-N-メチルアミン(CECの1.0モル当量、Num=2、Tot=36)に代え、pHを3.5に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 12
replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-stearyl-N-methylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 36), A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.5.
(製造例13)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N,N-トリ-n-オクチルアミン(CECの1.0モル当量、Num=3、Tot=24)に代え、pHを4.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 13
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N, N-tri-n-octylamine (1.0 molar equivalent of CEC, Num = 3, Tot = 24), and adjust the pH to A solid lubricant was produced in the same manner as in Production Example 1 except that it was adjusted to 4.0.
(製造例14)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N,N-トリ-n-デシルアミン(CECの1.0モル当量、Num=3、Tot=30)に代え、pHを3.8に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 14
n-Palmitylamine (1.0 molar equivalent of CEC) was replaced with N, N, N-tri-n-decylamine (1.0 molar equivalent of CEC, Num = 3, Tot = 30), pH 3 A solid lubricant was produced in the same manner as in Production Example 1 except that the preparation was adjusted to .8.
(製造例15)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N,N-トリ-n-ドデシルアミン(CECの1.0モル当量、Num=3、Tot=36)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 15
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N, N-tri-n-dodecylamine (1.0 molar equivalent of CEC, Num = 3, Tot = 36), and adjust the pH to A solid lubricant was produced in the same manner as in Production Example 1 except that the ratio was adjusted to 3.7.
(製造例16)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジ-n-ステアリルアミン(CECの1.0モル当量、Num=2、Tot=36)に代え、pHを4.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 16
4. Change the pH of the n-palmitylamine (1.0 molar equivalent of CEC) to N, N-di-n-stearylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 36); A solid lubricant was produced in the same manner as in Production Example 1 except that the concentration was adjusted to 0.
(製造例17)
 脱イオン水950gにモンモリロナイト(交換性陽イオン=Na+、CEC値=115meq/100g)50gを添加し、ホモジナイザーで1時間撹拌して分散液を作製した。次にN,N-ジ-n-ステアリルアミン(CECの1.0モル当量分、Num=2、Tot=36)を、該アミンの融点温度以上に加熱した脱イオン水200gに分散させた後、10wt%の酒石酸を用いてpHを3.3に調整することにより、カチオン化したアミンの水溶液を調製した。次いでこの水溶液に無機固体粒子としてグラフェン0.5g(モンモリロナイトの1wt%)を30分かけて混合することにより混合液を調製した。調製した混合液のpHを維持させながら、分散液を添加し、1時間更に撹拌した。続いて、攪拌混合物を、5Cのろ紙を用いて吸引ろ過した後、固形分を回収した。回収物を60℃で一晩乾燥させた後、メノウ乳鉢で粉砕し、固体潤滑剤を製造した。
Production Example 17
To 950 g of deionized water was added 50 g of montmorillonite (exchangeable cation = Na +, CEC value = 115 meq / 100 g), and the mixture was stirred for 1 hour with a homogenizer to prepare a dispersion. Then, after dispersing N, N-di-n-stearylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 36) in 200 g of deionized water heated above the melting point temperature of the amine An aqueous solution of a cationized amine was prepared by adjusting the pH to 3.3 with 10 wt% tartaric acid. Then, a mixed solution was prepared by mixing 0.5 g of graphene (1 wt% of montmorillonite) as inorganic solid particles in this aqueous solution for 30 minutes. While maintaining the pH of the prepared mixture, the dispersion was added and further stirred for 1 hour. Subsequently, the stirred mixture was suction filtered using 5 C filter paper, and then the solid content was recovered. The collected matter was dried at 60 ° C. overnight and then ground in an agate mortar to produce a solid lubricant.
(製造例18)
 pHを3.7に調整する以外は製造例17と同様にカチオン化したアミンの水溶液を調製した。調製した水溶液のpHを維持させながら、分散液を添加し、1時間更に撹拌した後、無機固体粒子としてグラフェン0.5gを30分かけて混合し、混合液を調製した。続いて、混合液を、5Cのろ紙を用いて吸引ろ過した後、固形分を回収した。回収物を60℃で一晩乾燥させた後、メノウ乳鉢で粉砕し、固体潤滑剤を製造した。
Production Example 18
An aqueous solution of a cationized amine was prepared in the same manner as in Production Example 17 except that the pH was adjusted to 3.7. The dispersion was added while maintaining the pH of the prepared aqueous solution, and after further stirring for 1 hour, 0.5 g of graphene as inorganic solid particles was mixed for 30 minutes to prepare a mixed solution. Subsequently, the mixture was suction filtered using a 5 C filter paper, and then the solid content was recovered. The collected matter was dried at 60 ° C. overnight and then ground in an agate mortar to produce a solid lubricant.
(製造例19)
 グラフェンをカーボンナノチューブに代え、pHを4.0に調整した他は、製造例17と同様に固体潤滑剤を製造した。
Production Example 19
A solid lubricant was produced in the same manner as in Production Example 17 except that graphene was replaced with carbon nanotubes and the pH was adjusted to 4.0.
(製造例20)
 グラフェンをカーボンナノチューブに代え、pHを4.1に調整した他は、製造例18と同様に固体潤滑剤を製造した。
Production Example 20
A solid lubricant was produced in the same manner as in Production Example 18 except that graphene was replaced with carbon nanotubes and the pH was adjusted to 4.1.
(製造例21)
 グラフェンを二硫化モリブデンに代え、pHを3.7に調整した他は、製造例17と同様に固体潤滑剤を製造した。
Production Example 21
A solid lubricant was produced in the same manner as in Production Example 17 except that graphene was replaced by molybdenum disulfide and the pH was adjusted to 3.7.
(製造例22)
 グラフェンを二硫化モリブデンに代え、pHを4.0に調整した他は、製造例18と同様に固体潤滑剤を製造した。
Production Example 22
A solid lubricant was produced in the same manner as in Production Example 18 except that graphene was replaced by molybdenum disulfide and the pH was adjusted to 4.0.
(製造例23)
 モンモリロナイトを天然ヘクトライト(交換性陽イオン=Na+、CEC値=97meq/100g)に、n-パルミチルアミンをN,N-ジ-n-ステアリルアミン24.1g(CECの1.0モル当量分)にそれぞれ代え、pHを2.8に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 23
Montmorillonite to natural hectorite (exchangeable cation = Na +, CEC value = 97 meq / 100 g), n-palmitylamine to 24. 1 g of N, N-di-n-stearylamine (1.0 molar equivalent of CEC) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 2.8, respectively.
(製造例24)
 モンモリロナイトを合成ヘクトライト(交換性陽イオン=Na+;CEC値=79meq/100g)に、n-パルミチルアミンをN,N-ジ-n-ステアリルアミン29.9g(CECの1.0モル当量)にそれぞれ代え、pHを2.9に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 24)
Synthesis of montmorillonite to hectorite (exchangeable cation = Na +; CEC value = 79 meq / 100 g), N-palmitylamine 29.9 g of N, N-di-n-stearylamine (1.0 molar equivalent of CEC) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 2.9.
(製造例25)
 n-パルミチルアミン(CECの1.0モル当量分)をn-オクチルアミン(CECの1.0モル当量、Num=1、Tot=8)に代え、pHを3.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 25
n-Palmitylamine (1.0 molar equivalent of CEC) was replaced with n-octylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 8), and the pH was adjusted to 3.0 except Then, a solid lubricant was produced in the same manner as in Production Example 1.
(製造例26)
 n-パルミチルアミン(CECの1.0モル当量分)をn-ラウリルアミン(CECの1.0モル当量、Num=1、Tot=12)に代え、pHを3.4に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 26
n-Palmitylamine (1.0 molar equivalent of CEC) was replaced with n-laurylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 12), and the pH was adjusted to 3.4 Then, a solid lubricant was produced in the same manner as in Production Example 1.
(製造例27)
 n-パルミチルアミン(CECの1.0モル当量分)をn-ミリスチルアミン(CECの1.0モル当量、Num=1、Tot=14)に代え、pHを4.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 27
Except that n-palmitylamine (1.0 molar equivalent of CEC) was replaced with n-myristylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 14) to adjust the pH to 4.0 Then, a solid lubricant was produced in the same manner as in Production Example 1.
(製造例28)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジメチル-N-n-オクチルアミン(CECの1.0モル当量、Num=1、Tot=8)に代え、pHを3.6に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 28
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-octylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 8), A solid lubricant was produced in the same manner as in Production Example 1 except that the preparation was adjusted to 3.6.
(製造例29)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジメチル-N-n-ラウリルアミン(CECの1.0モル当量、Num=1、Tot=12)に代え、pHを3.8に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 29
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-laurylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 12), and adjust the pH to A solid lubricant was produced in the same manner as in Production Example 1 except that the preparation was adjusted to 3.8.
(製造例30)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジメチル-N-n-ミリスチルアミン(CECの1.0モル当量、Num=1、Tot=14)に代え、pHを3.9に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 30)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-myristylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 14), and adjust the pH to A solid lubricant was produced in the same manner as in Production Example 1 except that the preparation was adjusted to 3.9.
(製造例31)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N-ジ-n-ヘキシル-N-メチルアミン(CECの1.0モル当量、Num=0、Tot=0)に代え、pHを3.6に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 31
replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-hexyl-N-methylamine (1.0 molar equivalent of CEC, Num = 0, Tot = 0), A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.6.
(製造例32)
 n-パルミチルアミン(CECの1.0モル当量分)をN,N,N-トリ-n-ヘキシルアミン(CECの1.0モル当量、Num=0、Tot=0)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
Production Example 32
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N, N-tri-n-hexylamine (1.0 molar equivalent of CEC, Num = 0, Tot = 0), and adjust the pH to A solid lubricant was produced in the same manner as in Production Example 1 except that the ratio was adjusted to 3.7.
(製造例33)
 脱イオン水950gにモンモリロナイト50gを添加し、ホモジナイザーで1時間撹拌して分散液を作製した。次にN,N-ジ-n-ステアリルアミン(CECの1.0モル当量分)を、該アミンの融点温度以上に加熱した脱イオン水200gに分散させた後、10wt%の酒石酸を用いてpHを4.0に調整することにより、カチオン化したアミンの水溶液を調製した。調製した水溶液のpHを維持させながら、分散液を添加し、1時間更に撹拌して、スラリー体を製造した。このスラリー体91.0重量部に、バインダーとして1.6重量部の四ホウ酸カリウム、分散剤として0.5重量部のカルボキシメチルセルロース、6.9重量部の脱イオン水をそれぞれ加えて、液体潤滑剤を製造した。
Production Example 33
50 g of montmorillonite was added to 950 g of deionized water, and the mixture was stirred for 1 hour with a homogenizer to prepare a dispersion. Next, N, N-di-n-stearylamine (1.0 molar equivalent of CEC) is dispersed in 200 g of deionized water heated to a temperature above the melting point temperature of the amine, and then 10 wt% of tartaric acid is used. An aqueous solution of cationized amine was prepared by adjusting the pH to 4.0. The dispersion was added while maintaining the pH of the prepared aqueous solution, and the mixture was further stirred for 1 hour to produce a slurry. To 91.0 parts by weight of the slurry, 1.6 parts by weight of potassium tetraborate as a binder, 0.5 parts by weight of carboxymethylcellulose as a dispersant, and 6.9 parts by weight of deionized water A lubricant was produced.
II.液体潤滑剤の調製方法
 製造例1~32の各固体潤滑剤を用い、下記の配合組成で各液体潤滑剤を調製した。
 (配合組成)
   有機変性スメクタイト系粘土鉱物(粉末) 7.5重量%
   バインダー:四ホウ酸カリウム 2.0重量%
   分散剤:カルボキシメチルセルロース 0.5重量%
   脱イオン水 90.0重量%
II. Preparation Method of Liquid Lubricant Each liquid lubricant was prepared using each solid lubricant of Production Examples 1 to 32 with the following composition.
(Composition composition)
7.5% by weight organically modified smectite clay mineral (powder)
Binder: potassium tetraborate 2.0% by weight
Dispersing agent: carboxymethylcellulose 0.5% by weight
90.0% by weight of deionized water
III.加工性能評価 
<潤滑被膜を形成した試験片の製造>
 試験片として、直径14mmφ、高さ32mmの円柱状鋼材(S10C)を用い、以下の処理工程を実施した。
(処理工程)
 アルカリ脱脂剤[ファインクリーナーE6400(日本パーカライジング(株)製)を濃度20g/Lとなるように水に混合した水溶液]に、試験片を60℃で10分間浸漬して、アルカリ脱脂を行った。次に、水道水に試験片を1分間浸漬した後、脱イオン水に試験片を1分間浸漬した。続いて、製造例1~32の固体潤滑剤を用いて調製した液体潤滑剤、又は、製造例33の液体潤滑剤に、試験片を60℃で1分間浸漬した。浸漬後、100℃で30分間乾燥し、潤滑被膜を形成した試験片(実施例1~18及び20~28並びに比較例1~8)を作製した。なお、製造例16の固体潤滑剤を用いて調製した液体潤滑剤については、上記乾燥温度を25℃に変えた他は、上記と同様に、潤滑被膜を形成した試験片(実施例19)を作製した。
 実施例1~28及び比較例1~8の試験片における各潤滑被膜の付着量を表1に示す。潤滑被膜の付着量は被膜形成前後の重量差により求めた。なお、潤滑被膜の付着量は、液体潤滑剤における固形分比率を変更することで調整した。
III. Machining performance evaluation
<Manufacture of a test piece on which a lubricating film is formed>
The following processing steps were performed using a cylindrical steel material (S10C) having a diameter of 14 mm and a height of 32 mm as a test piece.
(Processing process)
The test piece was immersed for 10 minutes at 60 ° C. in an alkaline degreaser [an aqueous solution prepared by mixing Fine Cleaner E 6400 (manufactured by Nippon Parkerizing Co., Ltd.) in water to a concentration of 20 g / L] for alkaline degreasing. Next, the test piece was immersed in tap water for 1 minute, and then immersed in deionized water for 1 minute. Subsequently, the test piece was immersed in the liquid lubricant prepared using the solid lubricant of Production Examples 1 to 32 or the liquid lubricant of Production Example 33 at 60 ° C. for 1 minute. After immersion, it was dried at 100 ° C. for 30 minutes to prepare test pieces (Examples 1 to 18 and 20 to 28 and Comparative Examples 1 to 8) on which a lubricating coating was formed. With respect to the liquid lubricant prepared using the solid lubricant of Production Example 16, a test piece (Example 19) on which a lubricating film was formed was the same as above except that the above-mentioned drying temperature was changed to 25 ° C. Made.
The adhesion amount of each lubricating film on the test pieces of Examples 1 to 28 and Comparative Examples 1 to 8 is shown in Table 1. The adhesion amount of the lubricant film was determined by the weight difference before and after film formation. In addition, the adhesion amount of the lubricating film was adjusted by changing the solid content ratio in the liquid lubricant.
<加工性能評価試験>
 加工性能評価は、参考文献(高橋昭紀・広瀬仁俊・小見山忍・王志剛:第62回塑性加工連合会講演論文集,(2011),89-90)に開示されている据込み-ボールしごき形摩擦試験法に基づいて実施した。なお、据込み加工は据込み率45%で実施し、実施例1~28及び比較例1~8の試験片を樽状の形状に加工した。樽状の試験片において張り出した側面部分を対象に、3個のボール状金型(直径10mmのSUJ-2ベアリングボール)を用いてしごき加工(強加工)を行なった。
 各試験片の加工性能評価は、表面積拡大が大きいしごき加工後半部の焼付き程度を確認し、図1に示す評価基準に従って実施した。その結果を表1に示す。なお、「△」以上を合格とした。
<Processing performance evaluation test>
Machining performance evaluation can be found in the reference (Akishi Takahashi, Hitoshi Hirose, Shinobu Omiyama, Shigo Wang: 62nd Proceedings of the Japan Joint Conference on Plastic Processing, (2011), 89-90). It carried out based on the friction test method. Upsetting was performed at an upsetting rate of 45%, and the test pieces of Examples 1 to 28 and Comparative Examples 1 to 8 were processed into a barrel shape. An ironing process (strong processing) was performed using three ball molds (SUJ-2 bearing balls with a diameter of 10 mm) on the side portions of the barrel-shaped test pieces that were overhanging.
The processing performance of each test piece was evaluated according to the evaluation standard shown in FIG. The results are shown in Table 1. In addition, "と し た" or more was taken as a pass.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
IV.潤滑性能評価
<潤滑被膜を形成した試験片の製造>
 試験片として、直径14mmφ、高さ32mmの円柱状鋼材(S10C)の代わりに、70mm×150mm(厚み0.8mm)の冷延鋼板(SPCC)を用いて、加工性能評価に記載の処理工程を実施し、潤滑被膜を形成した試験片(実施例29~54及び比較例9~16)を作製した。なお、実施例44の試験片は100℃で乾燥したものであり、実施例45の試験片は25℃で乾燥したものである。また、潤滑被膜の付着量はそれぞれ4g/mであった。
IV. Lubrication performance evaluation <Manufacturing of test pieces having a lubricating film formed>
Using the cold-rolled steel plate (SPCC) of 70 mm × 150 mm (thickness 0.8 mm) instead of the cylindrical steel material (S10C) of 14 mmφ in diameter and 32 mm in height as a test piece, The test pieces (Examples 29 to 54 and Comparative Examples 9 to 16) on which a lubricant film was formed were produced. The test piece of Example 44 was dried at 100 ° C., and the test piece of Example 45 was dried at 25 ° C. Moreover, the adhesion amount of the lubricating film was 4 g / m 2 respectively.
<潤滑性能評価試験>
 実施例29~54及び比較例9~16の試験片に対して摩擦摩耗試験機による摺動試験を行った。摺動試験は、バウデン試験にて行った。より具体的には、潤滑被膜を形成させた面に対して、SUJ2鋼球(10mmφ)に1kgの荷重をかけて10mm/sの速度で試験片を往復運動させた。なお、往復運動は1cm間隔で実施した。また、本試験は、25℃の条件下にて実施した。各試験片の潤滑性能評価は、往復運動5回目の動摩擦係数値を測定し、以下の評価基準に従って評価した。なお、「△」以上を合格とした。
(評価基準)
○:動摩擦係数が0.15未満
△:動摩擦係数が0.15以上0.2未満
×:動摩擦係数が0.2以上
<Lubrication performance evaluation test>
The sliding test by the friction and wear tester was performed on the test pieces of Examples 29 to 54 and Comparative Examples 9 to 16. The sliding test was performed by the Bowden test. More specifically, a load of 1 kg was applied to a SUJ2 steel ball (10 mmφ) against the surface on which the lubricating coating was formed, and the test piece was reciprocated at a speed of 10 mm / s. In addition, the reciprocating motion was implemented at 1 cm intervals. Moreover, this test was implemented on 25 degreeC conditions. The lubricating performance evaluation of each test piece measured the dynamic friction coefficient value of the 5th reciprocation, and evaluated it according to the following evaluation criteria. In addition, "と し た" or more was taken as a pass.
(Evaluation criteria)
○: Dynamic coefficient of friction is less than 0.15 Δ: Dynamic coefficient of friction is 0.15 or more and less than 0.2 ×: Dynamic coefficient of friction is 0.2 or more
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
V.耐食性能評価
<潤滑被膜を形成した試験片の製造>
 試験片として、直径14mmφ、高さ32mmの円柱状鋼材(S10C)の代わりに、直径25mmφ、高さ30mmの円柱状鋼材(S45C)を用いて、加工性能評価に記載の処理工程を実施し、潤滑被膜を形成した試験片(実施例55~80及び比較例17~24)を作製した。なお、実施例70の試験片は100℃で乾燥したものであり、実施例71の試験片は、25℃で乾燥したものである。また、潤滑被膜の付着量はそれぞれ4g/mであった。
V. Corrosion resistance evaluation <Manufacturing of test pieces having a lubricant film formed>
Using the cylindrical steel material (S45C) having a diameter of 25 mmφ and a height of 30 mm instead of the cylindrical steel material (S10C) having a diameter of 14 mmφ and a height of 32 mm as the test piece, the treatment process described in the processing performance evaluation is performed. Test pieces (Examples 55 to 80 and Comparative Examples 17 to 24) on which a lubricant film was formed were produced. The test piece of Example 70 was dried at 100 ° C., and the test piece of Example 71 was dried at 25 ° C. Moreover, the adhesion amount of the lubricating film was 4 g / m 2 respectively.
<耐食性能評価試験>
 実施例55~80及び比較例17~24の試験片に対して、据込み加工を実施した。据込み加工は、200トンクランクプレスを用いて、各試験片を鏡面仕上げの平面金型(SKD11)で挟み込み、圧縮率が約50%となるように圧力をかけて実施した(加工速度は30ストローク/分)。
 据込み加工した試験片の耐食性能評価は、据込み加工した試験片を10日間室内で放置した後、加工面を観察し、発錆の有無を確認することにより実施した。発錆が認められないものを○、発錆が認められたものを×と評価した。その結果を表3に示す。
<Corrosion resistance evaluation test>
Upset processing was performed on the test pieces of Examples 55 to 80 and Comparative Examples 17 to 24. Upset processing was carried out using a 200 ton crank press, sandwiching each test piece with a mirror-finished flat mold (SKD11) and applying pressure so that the compression ratio was about 50% (processing speed is 30) Strokes per minute).
The corrosion resistance evaluation of the upset processed test piece was carried out by leaving the upset processed test piece in the room for 10 days and observing the processed surface to confirm the presence or absence of rusting. Those with no rusting were evaluated as ○, and those with rusting were evaluated as x. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンとを含み、前記スメクタイト系粘土鉱物の層間に前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤(但し、ホウ酸リチウムを含むものを除く)。 The smectite clay mineral and an ammonium ion cationized with a primary amine or a secondary amine or a tertiary amine, wherein the ammonium ion is inserted between layers of the smectite clay mineral, and the primary amine Alternatively, the secondary amine or tertiary amine has one or more long chain alkyl groups having 8 or more carbon atoms in the main chain, and the total number of carbon atoms in the main chain of the long chain alkyl group is 16 or more. , Lubricants (except those containing lithium borate).
  2.  スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンと、グラファイト、グラフェン、酸化グラフェン、フラーレン、カーボンナノチューブ、ダイヤモンドライクカーボン(DLC)、オニオンライクカーボン、二硫化モリブデン、及び二硫化タングステンから選ばれる1種以上の無機固体粒子とを含み、前記スメクタイト系粘土鉱物の層間に少なくとも前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤。 Smectite clay mineral, ammonium ion cationized with primary amine or secondary amine or tertiary amine, graphite, graphene, graphene oxide, fullerene, carbon nanotube, diamond like carbon (DLC), onion like carbon And at least the ammonium ion is inserted between the layers of the smectite clay mineral, and at least the primary amine or the secondary amine or the inorganic solid particles selected from the group consisting of molybdenum disulfide, and tungsten disulfide. The tertiary amine is a lubricant having one or more long chain alkyl groups whose main chain carbon number is 8 or more, and the total carbon number of the main chain long chain alkyl group is 16 or more.
  3.  固体である、請求項1又は2に記載の潤滑剤。 The lubricant according to claim 1 or 2, which is solid.
  4.  請求項1又は2に記載された潤滑剤の被膜を有する金属材。 A metal material having a coating of the lubricant according to claim 1 or 2.
  5.  請求項3に記載された潤滑剤が付着した金属材。 A metal material to which the lubricant according to claim 3 is attached.
  6.  請求項1又は2に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程を含む、金属材の塑性加工方法。 A method of plastic working a metal material, comprising the step of bringing a lubricant according to claim 1 into contact with at least one of two metal materials causing friction to form a lubricating film.
  7.  請求項3に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程を含む、金属材の塑性加工方法。 A method of plastic working a metal material, comprising the step of depositing the lubricant according to claim 3 on at least one surface of the two metal materials causing friction.
  8.  請求項1又は2に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法。 A process of causing a lubricant according to claim 1 or 2 to contact on at least one surface of two metal materials causing friction to form a lubricating film, and contacting two metal materials to perform plastic processing And B. a method of producing a formed and processed metal material.
  9.  請求項3に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法。 4. A step of depositing the lubricant according to claim 3 on at least one surface of two metal materials causing friction, and a step of contacting two metal materials to perform plastic working. Method of manufacturing formed metal material.
PCT/JP2018/024478 2017-06-29 2018-06-28 Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material WO2019004328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880034796.9A CN110662823A (en) 2017-06-29 2018-06-28 Lubricant, metal material, method for plastic working of metal material, and method for producing formed metal material
EP18824041.0A EP3647396A1 (en) 2017-06-29 2018-06-28 Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017128071A JP2019011416A (en) 2017-06-29 2017-06-29 Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material
JP2017-128071 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004328A1 true WO2019004328A1 (en) 2019-01-03

Family

ID=64741679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024478 WO2019004328A1 (en) 2017-06-29 2018-06-28 Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material

Country Status (4)

Country Link
EP (1) EP3647396A1 (en)
JP (1) JP2019011416A (en)
CN (1) CN110662823A (en)
WO (1) WO2019004328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373247A (en) * 2019-07-18 2019-10-25 南京理工大学 Functional graphene/montmorillonite/boric acid lanthanide composite material lube oil additive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805982B (en) * 2022-04-18 2023-08-18 嘉应学院 Luminescent material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271682A (en) * 1992-02-06 1993-10-19 Lonza Ag Mandrel lubricant for production of seamless tube
JP2006152274A (en) * 2004-10-27 2006-06-15 Toyota Industries Corp Slide member and method for manufacturing slide member
WO2012086564A1 (en) 2010-12-20 2012-06-28 日本パーカライジング株式会社 Lubricant for plastic processing of metal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271682A (en) * 1992-02-06 1993-10-19 Lonza Ag Mandrel lubricant for production of seamless tube
JP2006152274A (en) * 2004-10-27 2006-06-15 Toyota Industries Corp Slide member and method for manufacturing slide member
WO2012086564A1 (en) 2010-12-20 2012-06-28 日本パーカライジング株式会社 Lubricant for plastic processing of metal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373247A (en) * 2019-07-18 2019-10-25 南京理工大学 Functional graphene/montmorillonite/boric acid lanthanide composite material lube oil additive
CN110373247B (en) * 2019-07-18 2021-09-21 南京理工大学 Functional graphene/montmorillonite/lanthanum borate composite lubricating oil additive

Also Published As

Publication number Publication date
EP3647396A1 (en) 2020-05-06
JP2019011416A (en) 2019-01-24
CN110662823A (en) 2020-01-07

Similar Documents

Publication Publication Date Title
JP5450892B2 (en) Lubricating coating agent for plastic working and method for producing the same
CN103261384B (en) Lubricant for plastic processing of metal material
JP5682021B2 (en) Metallic material with poor crystallinity and excellent moisture absorption, corrosion resistance and workability Water-based lubricant for plastic working and metal material with its lubricating film formed
JP5457452B2 (en) Water-based lubricant for plastic working with excellent corrosion resistance and metal material with excellent plastic workability
JP3684363B2 (en) Aqueous composition for protective film formation
KR101817456B1 (en) Steel wire rod having lubricating coating film that has excellent corrosion resistance and workability
US20090178454A1 (en) Particles coated with metallic soap and products and preparation process using them, and lubricating coating forming agent and lubricating coating
CN107709610B (en) Aqueous lubricating coating agent for metal material, surface-treated metal material, and method for forming lubricating coating for metal material
JP6243515B2 (en) Water-based lubricating film treatment agent and metal material with excellent corrosion resistance and workability
WO2019004328A1 (en) Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material
KR101811165B1 (en) Steel wire rod having coating film that has excellent corrosion resistance and workability and method for producing same
JP6694769B2 (en) Steel wire rod with excellent corrosion resistance and appearance after processing
JP7036481B2 (en) A method for forming the lubricating film on the surface of a lubricant composition and a metal processing material for forming a lubricating film containing hemimorphite, and a metal processing material provided with the lubricating film.
WO2017057385A1 (en) Steel wire with excellent corrosion resistance and appearance after processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824041

Country of ref document: EP

Effective date: 20200129