WO2019004325A1 - Lens array and method for manufacturing lens array - Google Patents

Lens array and method for manufacturing lens array Download PDF

Info

Publication number
WO2019004325A1
WO2019004325A1 PCT/JP2018/024470 JP2018024470W WO2019004325A1 WO 2019004325 A1 WO2019004325 A1 WO 2019004325A1 JP 2018024470 W JP2018024470 W JP 2018024470W WO 2019004325 A1 WO2019004325 A1 WO 2019004325A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
lens
sunlight
light incident
lenses
Prior art date
Application number
PCT/JP2018/024470
Other languages
French (fr)
Japanese (ja)
Inventor
綾 洋一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2019004325A1 publication Critical patent/WO2019004325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a lens array in which a plurality of lenses, each of which condenses sunlight, is arranged, and a method of manufacturing the lens array.
  • Patent Document 1 discloses a solar cell module having high conversion efficiency (power generation efficiency) by curving the light receiving surface of the solar cell in a concave shape and reducing the reflection of light on the surface of the solar cell. There is.
  • the light incident surface on which the sunlight of the condenser lens is incident is exposed to the atmosphere, and dust such as dust adheres thereto.
  • dust adheres to the light incident surface the sunlight incident on the condenser lens decreases, leading to a reduction in conversion efficiency.
  • the light incident surface is a flat surface, and this flatness is considered to wash away (clean) dust attached to the light incident surface due to rain or the like.
  • this indication aims at providing the manufacturing method of the lens array by which the cleaning effect was improved rather than before, and the lens array concerned.
  • a lens array is a lens array in which a plurality of lenses are arranged in an array, and each of the plurality of lenses condenses sunlight.
  • the lens array has a light incident surface on which sunlight is incident, and a light emitting surface located on the opposite side of the light incident surface and from which the sunlight incident on the light incident surface is emitted.
  • the light incident surface is formed with a concave portion recessed on the light emitting surface side across a plurality of lenses.
  • a plurality of lenses are arranged in an array, and each of the plurality of lenses collects sunlight. It is a method.
  • the lens array manufacturing method includes an injection step of filling the molten resin into the mold, and a cooling step of cooling the filled resin, and in the cooling step, the lens is cooled by controlling the cooling rate of the mold.
  • a recessed portion is formed across a plurality of lenses in a light incident surface of the array on which the sunlight is incident.
  • FIG. 1 is a schematic diagram which shows the external appearance of the solar cell module which concerns on embodiment.
  • FIG. 2 is a schematic cross-sectional view of the solar cell module according to the embodiment, taken along line 2-2 of FIG.
  • FIG. 3 is a schematic cross-sectional view of the first lens array according to the embodiment.
  • FIG. 4 is an example of a measurement result showing the shape of the first lens array according to the embodiment.
  • FIG. 5 is a view for explaining the dust removal by the recess of the first lens array according to the embodiment.
  • FIG. 6 is a flowchart showing a method of manufacturing the first lens array according to the embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Further, in the drawings, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions may be omitted or simplified.
  • coordinate axes may be shown.
  • the minus side of the Z axis represents the mounting surface side of the solar cell module, and the plus side of the Z axis represents the light incident surface side of sunlight.
  • the X axis and the Y axis are axes orthogonal to each other on a plane perpendicular to the Z axis.
  • plane view means viewing from the light incident surface side (viewing from the Z-axis direction).
  • cross-sectional view means that the solar cell module cut at a plane including the cutting line is viewed from the side perpendicular to the plane cut.
  • cross sectional view means that the cross section is viewed from the X axis direction side doing.
  • the term indicating the relationship between elements such as orthogonal, the term indicating the shape of an element such as a square, and the expression “abbreviation” are not expressions expressing only a strict meaning, The expression is meant to include substantially the same range, for example, a difference of several percent.
  • FIG. 1 is a schematic view of a solar cell module 10 according to the present embodiment.
  • the solar cell module 10 is a concentrating solar cell module that condenses sunlight by a lens (optical system).
  • FIG. 2 is a schematic cross-sectional view of the solar cell module 10 according to the present embodiment, taken along line 2-2 of FIG.
  • the solar cell module 10 includes a first lens array 20, a second lens array 30, a resin plate 40 which is one of holding members, a power generation element 50, and an electrode 60.
  • Line 2-2 in FIG. 1 is a cutting line which is parallel to the Y-axis direction and cuts the center of the solar cell module 10 in the X-axis direction.
  • the first lens array 20 is a primary condensing lens array configured by arranging a plurality of first lenses 21 having a positive refractive index in an array (two-dimensional). .
  • the first lens 21 condenses sunlight on a second lens 31 of a second lens array 30 described later.
  • the first lens array 20 is an example of a lens array, and the first lens 21 is an example of a lens.
  • the first lens array 20 may be configured by arranging the first lenses 21 in a one-dimensional manner as one form of an array.
  • the first lens array 20 is configured by arranging the 25 first lenses 21 in an array, but the number of the first lenses 21 constituting the first lens array 20 Is not particularly limited. Moreover, the shape in planar view of the 1st lens 21 is not specifically limited. Although FIG. 1 shows an example in which the shape of the first lens 21 is square, the first lens 21 may be rectangular or hexagonal.
  • the first lens 21 has a square shape with a side of 22 mm. That is, the first lens array 20 has a square shape with one side of 110 mm.
  • the thickness (length in the Z-axis direction) of the first lens 21 is, for example, 7.5 mm or more and 10 mm or less. Note that one side of the first lens may be smaller than 22 mm, and for example, may be 10 mm or more and 20 mm or less.
  • the first lens array 20 is a light incident surface 21a (surface on the Z axis plus side) on which sunlight is incident and a surface on the opposite side to the light incident surface 21a, and the sunlight is It has the light emission surface 21b (surface by the side of Z-axis minus) to radiate
  • a convex lens in which the convex portion 24 is formed on the light emitting surface 21 b side is used as each of the first lenses 21, for example.
  • the convex portion 24 is formed so as to protrude in a direction in which sunlight is emitted (a direction from the Z-axis plus side to the Z-axis minus side). That is, the first lens array 20 has a convex shape that protrudes on the second lens array 30 side for each first lens 21.
  • the light incident surface 21a is recessed toward the light emission surface 21b.
  • the first lens array 20 according to the present embodiment is characterized in that the recess is formed. Below, the dent currently formed in the ight-incidence surface 21a is demonstrated.
  • FIG. 3 is a schematic cross-sectional view of the first lens array 20 according to the present embodiment, and specifically, only the first lens array 20 in the schematic cross-sectional view of the solar cell module 10 shown in FIG. It is the cross-sectional schematic diagram which showed.
  • FIG. 3 in order to demonstrate the recessed part 22 and the separate recessed part 23, the 1st lens array 20 shown in FIG.
  • the scale in the thickness direction (Z-axis direction) of the first lens array 20 is shown exaggeratingly more than the first lens array 20 shown in FIG. 2.
  • the light incident surface 21 a has a recess 22 and an individual recess 23.
  • the two-dot chain line in FIG. 3 is a straight line connecting outer edges forming the outer shape of the first lens array 20 in a plan view, and is a straight line parallel to the Y axis.
  • the broken line in FIG. 3 has shown the external shape of the recessed part 22.
  • FIG. The broken line is formed, for example, by connecting the outer edge and the boundary portion of the adjacent first lenses 21. That is, the area surrounded by the dashed-two dotted line and the broken line is the recess 22.
  • the recess 22 is a recess formed over the plurality of first lenses 21.
  • the recess 22 is formed across the five first lenses 21.
  • the depth (the length in the Z-axis direction) of the concave portion 22 increases as it goes from the outer edge of the first lens array 20 to the center in a plan view of the first lens array 20. That is, the concave portion 22 is formed over the entire 25 first lenses 21 constituting the first lens array 20, and the depth is maximized at the center of the first lens array 20 in plan view.
  • the maximum depth may be a depth that does not disturb the focusing characteristics of the first lens array 20 (in other words, does not substantially affect the focusing characteristics).
  • the maximum depth of the recess 22 is 20 ⁇ m or less.
  • the maximum depth of the recess 22 is the distance from the two-dotted chain line in FIG. 3 to the position of the recess 22 farthest away from the two-dot chain line (see depth L1 in FIG. 3).
  • the shape of the recess 22 is arc-shaped in a cross-sectional view when viewed from a direction orthogonal to the direction (for example, the Z-axis direction) in which sunlight is incident.
  • FIG. 3 shows a schematic cross-sectional view of the solar cell module 10 shown in FIG. 1 cut along a plane (YZ plane) parallel to the Z-axis including the line 2-2.
  • a schematic cross-sectional view cut along a plane (XZ plane) parallel to the Z-axis including a cutting line (cutting line extending in the X-axis direction) orthogonal to the 2-2 line also has the shape shown in FIG. That is, the outer shape of the recess 22 is arc-shaped. That is, the recess 22 is a dome-shaped recess.
  • the individual recess 23 is a recess formed from the recess 22 toward the light emitting surface 21 b side (in other words, the protrusion 24 side) for each of the plurality of first lenses 21.
  • the individual recess 23 is a recess formed on the protrusion 24 of the first lens 21 in one-to-one correspondence.
  • the individual concave portions 23 are formed in one-to-one correspondence with each of the plurality of first lenses 21.
  • the depth of the individual recesses 23 increases toward the center of the first lens 21 (in other words, the center of the projection 24 in plan view). That is, the depth of the individual recess 23 is maximum at the center of the first lens 21.
  • the maximum depth may be a depth that does not disturb the focusing characteristic of the first lens array 20.
  • the maximum depth of the individual recesses 23 is such a depth that does not disturb the light collection characteristic of the first lens array 20 at the total depth of the depths of the recesses 22 and the individual recesses 23. It is good.
  • the maximum depth of the individual recesses 23 is 10 ⁇ m or less.
  • the maximum depth of the individual recess 23 is a distance from the broken line to the position of the individual recess 23 which is most distant from the broken line (see depth L2 in FIG. 3).
  • FIG. 3 shows a schematic cross-sectional view of the solar cell module 10 shown in FIG. 1 cut along a plane (YZ plane) parallel to the Z-axis including the line 2-2.
  • a schematic cross-sectional view cut along a plane (XZ plane) parallel to the Z-axis including a cutting line (cutting line extending in the X-axis direction) orthogonal to the 2-2 line also has the shape shown in FIG. That is, the outer shape of the individual recess 23 is arc-shaped. That is, the individual recess 23 is a dome-shaped recess.
  • FIG. 4 is an example of a measurement result showing the shape of the first lens array 20 according to the present embodiment. More specifically, it is a measurement result indicating the shape of the light incident surface 21 a of the first lens array 20, that is, the shapes of the recess 22 and the individual recess 23.
  • the horizontal axis indicates the measured position of the first lens array 20 in the Y-axis direction. That is, the length of the first lens array 20 measured is about 111400 ⁇ m (about 111 mm).
  • the vertical axis indicates the position of the first lens array 20 in the Z-axis direction.
  • the recess 22 and the five individual recesses 23 are formed in the first lens array 20. Further, the maximum value of the sum of the depth of the recess 22 and the depth of the individual recess 23 is 18.90 ⁇ m, and the maximum depth of the recess 22 is about 10 ⁇ m. Further, the position of maximum depth is approximately 58000 ⁇ m (approximately 58 mm), and is located approximately at the center in a cross sectional view.
  • the material of the first lens array 20 may be a transparent resin. It is for contributing to weight reduction of the solar cell module 10.
  • the first lens array 20 is manufactured by injection molding acrylic resin (PMMA) or the like. The method of manufacturing the first lens array 20 will be described later.
  • the second lens array 30 a plurality of second lenses 31 having a convex shape protruding from the power generation element 50 side to the first lens 21 side (Z-axis negative side to Z-axis positive side) are arranged in an array.
  • the secondary condensing lens array configured as described above is disposed on the light emission direction side of the first lens array 20.
  • the second lens array 30 includes a base portion 32 as a support substrate extending in the XY plane in FIG. 2 and a second portion formed on the light incident surface side (Z-axis plus side) of the base portion 32. And a lens 31.
  • the optical axis of the second lens 31 coincides with the optical axis of the first lens 21.
  • “matching” is not limited to the case of perfect matching, but includes substantially matching. For example, even if the two values have a few percent error, they can be considered to match.
  • the base portion 32 has a plate shape, and the second lenses 31 are arranged in an array on the surface of the base portion 32 in one-to-one correspondence with the first lenses 21 of the first lens array 20. Further, the second lens 31 and the base portion 32 are integrally molded.
  • the material of the second lens array 30 may be transparent resin. It is for contributing to weight reduction of the solar cell module 10 by using resin.
  • the second lens array 30 is manufactured by extrusion molding or injection molding of an acrylic resin.
  • the first lens array 20 and the second lens array 30 may be formed of the same material.
  • the holding member is described as a transparent resin plate 40 made of acrylic resin, but the material and shape of the holding member are not particularly limited, and glass (including transparent amorphous) Or transparent crystals may be used.
  • the resin plate 40 is an example of a holding member for holding the power generation element 50, and is, for example, a flat member.
  • the resin plate 40 is fixed to the base 32 (for example, a recess formed in the base 32) of the second lens array 30 by an adhesive of silicone resin.
  • the power generation element 50 mounted on the resin plate 40 may be aligned with the focal point of the second lens 31 when disposed on the base portion 32 of the second lens array 30.
  • a concave portion for aligning the resin plate 40 is formed in the base portion 32, and when the resin plate 40 is inserted into the concave portion, the position of the focal point of the second lens 31 and the position of the power generating element 50; Should match.
  • the power generating element 50 can be disposed at the focal point of the second lens 31 simply by inserting the resin plate 40 in which the power generating element 50 is fixed in the recess. Process can be shortened.
  • the power generation element 50 is disposed on the focal position of the second lens 31 and the optical axis (which substantially coincides with the optical axis of the first lens 21) by the positioning concave portion formed in the base portion 32. , And at equal intervals along the X-axis direction and the Y-axis direction.
  • the holding member is formed of a transparent material. Therefore, even when the power generation element 50 is fixed to the surface (surface on the Z axis minus side) opposite to the second lens array 30 of the resin plate 40, the power generation element 50 is condensed. It can receive sunlight.
  • the distance between the first lens array 20 and the power generation element 50 is determined by the focusing characteristics of the first lens array 20 and the second lens array 30, but is about 31 mm as an example.
  • the power generation element 50 has a function of converting the light energy of the emitted sunlight into electric energy.
  • the power generation element 50 is composed of a thin film of a GaAs-based material, a GaN-based material, and a Si-based material. When light is irradiated to these thin films, a photocurrent is generated, so that it is possible to supply an electrical energy to an external circuit (not shown).
  • the power generation element 50 it is preferable to use a thin film made of a GaAs-based material having an energy conversion efficiency of 40% or more.
  • the light receiving area of the power generation element 50 is, for example, approximately 1 mm 2 .
  • An electrode 60 for extracting the photocurrent generated in the power generation element 50 to an external circuit is formed on the light emitting surface side (Z axis minus side) of the second lens array 30.
  • the electrode 60 for example, a Cu foil, an Al foil, or a Ni foil can be used.
  • a printed board (including a flexible board) on which the power generation element 50 and the electrode 60 are mounted by surface mounting is combined with the first lens array 20 and the second lens array 30. It may be manufactured by
  • An outer frame 70 and a support member 71 are disposed between the first lens array 20 and the second lens array 30.
  • the support member 71 supports the first lens array 20 with respect to the second lens array 30, and maintains the distance between the first lens array 20 and the second lens array 30.
  • the outer frame 70 and the support member 71 are each integrally formed with the second lens array 30.
  • the support member 71 includes a support portion 71a and a tip portion 71b.
  • the outer frame 70 and the tip end portion 71 b of the support member 71 are in contact with the light emitting surface 21 b of the first lens array 20 to support the first lens array 20.
  • the portion of the tip portion 71 b in contact with the first lens array 20 is, for example, substantially spherical.
  • the width (thickness) of the tip portion 71b on the first lens array 20 side with respect to the width (thickness) of the support member 71 is thin (thin). Thereby, interference of the support member 71 with the sunlight emitted from the first lens 21 can be suppressed.
  • the solar cell module 10 configured as described above is lightweight because the first lens array 20, the second lens array 30, and the resin plate 40 are made of acrylic resin.
  • the solar cell module 10 directs the sunlight to direct the light incident surface 21a of the solar cell module 10 to the sunlight side regardless of the time (in other words, to make the sunlight incident vertically on the light incident surface 21a) It may be mounted and used in a tracking device (not shown).
  • a plurality of solar cell modules 10 may be mounted and used in an apparatus for tracking sunlight. Thereby, it is possible to receive sunlight perpendicular to the light incident surface 21a in many hours of the day.
  • the solar cell module 10 is lightweight, the intensity required for the device for tracking sunlight can be reduced. That is, with the solar cell module 10 according to the present embodiment, the cost of incidental equipment such as a device for tracking sunlight can be reduced. Furthermore, the apparatus for tracking sunlight is a solar cell module with less energy than when the first lens array, the second lens array, and the resin plate are formed of a material heavier than acrylic resin such as glass. The ten light incident surfaces 21a can be moved toward sunlight. That is, the power generation efficiency of the solar cell module 10 can be improved with less energy.
  • FIG. 5 is a view for explaining the dust removal by the recess of the first lens array 20 according to the present embodiment.
  • the straight arrows in FIG. 5 indicate the flow (air flow) of the wind 80.
  • FIG. 5 shows an example in which the wind 80 is blowing in a direction parallel to the Y-axis direction with respect to the light incident surface 21a of the first lens array 20 as an example.
  • the dust 90 is an object that prevents sunlight from being incident on the light incident surface 21a, and is, for example, dust.
  • the wind 80 blows, the wind 80 is disturbed by the depressions (specifically, the concave portions 22 and the individual concave portions 23) formed on the light incident surface 21a of the first lens array 20.
  • the flow of wind 81 is formed.
  • the wind 81 is a flow of wind toward the light incident surface 21a (flow of wind from the Z-axis plus side to the Z-axis negative side) and a flow of wind toward the direction away from the light incident surface 21a (Z It is formed from the flow of the wind which goes to the Z-axis plus side from the axis minus side).
  • the dust 90 attached to the light incident surface 21a is removed.
  • the first lens array 20 In order to exhibit such a dust removal effect, it is necessary for the first lens array 20 to have at least a recess 22 for disturbing the wind 80, and the maximum depth of the recess 22 is 5 ⁇ m or more. It is desirable to have. Furthermore, the effect of dust removal is improved by forming the individual recesses 23.
  • the conventional first lens array has a flat light incident surface, the disturbed wind as shown in FIG. 5 does not occur even when the wind is blown. That is, in the conventional first lens array, the cleaning effect of dust by wind was low.
  • the first lens array 20 according to the present embodiment is also effective for floating dust 91. Specifically, when the floating dust 91 falls toward the light incident surface 21a, the wind 81 is generated so that the dust 91 is blown off before it adheres to the light incident surface 21a. Can. That is, with the first lens array 20 according to the present embodiment, adhesion of the dust 91 to the light incident surface 21a can be suppressed.
  • the light incident surface of the first lens array is cleaned by rain or the like.
  • the attached dust is washed away by water droplets such as rain.
  • the depth of the concave portions 22 and the individual concave portions 23 formed is as small as 20 ⁇ m or less and 10 ⁇ m or less, while suppressing the influence on the cleaning effect due to rain or the like.
  • the cleaning effect of the wind 80 can be enhanced.
  • the recess should be large.
  • FIG. 6 is a flowchart showing a method of manufacturing the first lens array 20 according to the present embodiment. Below, the method to manufacture the 1st lens array 20 by injection molding is demonstrated.
  • a heating step of heating a mold used for injection molding is performed (S10).
  • the mold is attached to an injection molding machine and heated by a heater or the like of the injection molding machine.
  • the temperature of the heated mold is appropriately determined depending on the resin material and the like used, and is about 300 ° C. as an example.
  • an injection step of filling the molten resin (hereinafter also referred to as molten resin) in a mold is performed (S20). That is, the molten resin is injected into the heated cavity space of the mold.
  • the melted resin is a resin material for forming the first lens array 20, and in the present embodiment, the melted acrylic resin is injected.
  • a pressure holding step of holding the molten resin is performed (S30). The pressure holding step is performed to suppress the backflow of the molten resin in the mold cavity space, that is, to make the molten resin flow into the mold cavity space.
  • a cooling step of cooling the molten resin is performed (S40).
  • the held resin is cooled until it solidifies.
  • the temperature to solidify is suitably determined by the resin material etc. to be used, it is 90 degrees C or less as an example.
  • the method of manufacturing the first lens array 20 according to the present embodiment is characterized in the cooling step.
  • the cooling step in addition to the heater being turned off, the mold, that is, the resin filled in the mold is cooled by circulating a coolant. That is, in addition to natural cooling due to the heater being turned off, forced cooling by circulating the coolant is performed.
  • the cooling time can be shortened.
  • the cooling time in the case of natural cooling alone is about 10 minutes
  • the cooling time in the case of natural cooling and forced cooling is about 3 minutes.
  • the cooling step when the cooling time is long (for example, 10 minutes), a flat surface is formed on the light incident surface of the first lens array. Further, in the cooling step, when the cooling time is short (for example, 3 minutes), the light incident surface of the first lens array is greatly affected by the contraction of the resin at the time of cooling, whereby a recess is formed. For example, the shorter the cooling time, the higher the maximum depth of the recesses formed in the first lens array (depths L1 and L2 in FIG. 3). That is, in the cooling step, the shape of the light incident surface of the first lens array can be controlled by controlling the cooling rate of the mold.
  • the cooling time is set shorter than in the conventional case in order to form a recess in the light incident surface 21a.
  • forced cooling with a coolant is performed. That is, the speed of cooling the mold is controlled to be faster than in the past.
  • both the concave portions 22 and the individual concave portions 23 shown in FIG. 3 are formed. That is, both the recesses 22 and the individual recesses 23 can be formed by simple control such as adjusting the cooling rate of the mold in the cooling step.
  • the above-mentioned cooling time is the time required to cool the square first lens array 20 having a side of 110 mm.
  • the cooling time may be appropriately determined by the size of the first lens array 20. Further, the cooling time may be shorter than 3 minutes, but in consideration of the influence on the light collecting characteristic of the first lens array 20, it may be about 3 minutes.
  • the step of taking out the first lens array 20 which is a resin molded article from the mold is performed (S50).
  • the recesses 22 and the individual recesses 23 shown in FIG. 3 are formed. That is, the recesses 22 and the individual recesses 23 are not formed by physical processing such as cutting, but are formed by the cooling conditions at the time of injection molding.
  • the concave portions 22 and the individual concave portions 23 are formed on the light incident surface 21 a of the first lens array 20 by shortening the cooling time in the cooling step (in other words, increasing the cooling speed).
  • the first lens array 20 includes the first lens array 20 in which the plurality of first lenses 21 (an example of the lenses) for condensing sunlight are disposed. It is an example of a lens array, and the first lens array 20 has a light incident surface 21a on which sunlight is incident, and a light emission surface 21b opposite to the light incident surface 21a and from which sunlight is emitted. And the recessed part 22 dented in the light-projection surface 21b side is formed in the light-incidence surface 21a over several 1st lenses 21. As shown in FIG.
  • the recess 22 is formed on the light incident surface 21 a of the first lens array 20, so that the wind 80 is disturbed by the recess 22 when the wind 80 blows on the light incident surface 21 a. Then, the dust 90 attached to the light incident surface 21 a can be removed by the disturbed wind 81.
  • the light exit surface of the first lens array is a flat surface, and the disturbed wind 81 has not occurred. That is, the dust removal ability by the wind 80 was low.
  • the cleaning effect can be improved as compared to the related art. Moreover, since it can suppress that the dust 91 which floats on the light-incidence surface 21a adheres by the wind 81, the fall of the electric power generation efficiency by adhesion of the dust 91 can be suppressed.
  • the depth of the concave portion 22 increases as it goes from the outer edge (peripheral edge) of the first lens array 20 to the center when the first lens array 20 is viewed from the light incident surface 21 a side.
  • the external shape of the recessed part 22 is circular arc shape in the cross sectional view at the time of seeing from the direction orthogonal to the direction into which sunlight injects.
  • the first lens array 20 having the arc-shaped concave portion 22 can be realized.
  • the maximum depth L1 of the recess 22 is 20 ⁇ m or less.
  • each of the plurality of first lenses 21 has a convex portion 24 (an example of an individual convex portion) that protrudes toward the direction in which sunlight is emitted on the light emission surface 21 b side of the first lens 21.
  • the light incident surface 21 a is further formed with an individual recess 23 recessed toward the convex portion 24 corresponding to the first lens 21 for each of the plurality of first lenses 21.
  • the height of the recess is increased by providing the individual recesses 23 as compared with the case where only the recesses 22 are provided, so that the cleaning effect can be further improved.
  • the maximum depth L2 of the individual recess 23 is 10 ⁇ m or less.
  • the effect of cleaning the light incident surface 21 a can be further improved while suppressing the influence on the light collection characteristic of the first lens array 20.
  • each of the plurality of first lenses 21 is a convex lens.
  • the first lens array 20 can be realized.
  • the first lens array 20 is formed of acrylic resin.
  • the cost and weight of the first lens array 20 can be reduced.
  • the method of manufacturing the first lens array 20 in which the first lenses 21 for condensing sunlight are arranged in an array includes an injection step (S20) of filling a molten resin into a mold, and a cooling step (S40) of cooling the filled molten resin (melted resin). Then, in the cooling step, depressions (for example, recesses 22 and individual recesses 23) are formed in the light incident surface 21a on which the sunlight of the first lens array 20 is incident by controlling the speed at which the mold is cooled.
  • the recesses (for example, the recesses 22 and the individual recesses 23) can be formed by a simple method of controlling the cooling speed of the mold in the cooling step.
  • the recess can be formed more easily than in the case of forming the recess by cutting or the like.
  • the first lens array 20 in which the plurality of first lenses 21 are arranged in an array can be integrally manufactured by resin molding.
  • the solar cell module 10 is easily manufactured by combining the first lens array 20 with the printed circuit board on which the power generation element 50 is mounted by surface mounting so as to correspond to the arrayed arrangement of one lens 21. be able to.
  • the mold is cooled by the cooling liquid.
  • the mold can be cooled by a simple method using a coolant. Further, the cooling time can be easily adjusted by adjusting the temperature or the like of the coolant.
  • embodiments can be realized by various combinations of the embodiments that can be conceived by those skilled in the art, or by combining components and functions of the embodiments within the scope of the present disclosure. Forms are also included in the present disclosure.
  • the first lens is described as an example of a convex lens, but the present invention is not limited to this.
  • the first lens may be a lens formed by injection molding.
  • the first lens may be a spherical lens, an aspheric lens, a Fresnel lens, or the like.
  • the Fresnel surface may be on the light emitting surface side of the first lens. That is, it is preferable that asperities are formed on the light emitting surface of the first lens.
  • the solar cell module has been described in the above embodiment as an example including the first lens array and the second lens array, the present invention is not limited to this.
  • the solar cell module may not have the second lens array.
  • the said embodiment demonstrated the example in which the recessed part and the separate recessed part were formed in the light-incidence surface, it is not limited to this. At least a recess may be formed on the light incident surface. That is, the individual concave portions may not be formed on the light incident surface.
  • a crevice and an individual crevice were dome shape depression
  • the shapes of the recesses and the individual recesses may be triangular or other shapes in cross section.
  • the recesses and the individual recesses may be conical.
  • the depth of the recess when the size of one side of the first lens array is 110 mm is 20 ⁇ m or less
  • the depth of the recess corresponds to the size of the first lens array Can change.
  • the depth of the recess may increase as the size of the first lens array increases. That is, the maximum depth of the recess may be determined according to the size of the first lens array.
  • the depth of the individual recess is 10 ⁇ m or less when the size of one side of the first lens is 22 mm, but the depth of the individual recess is the size of the first lens It may change accordingly. For example, as the size of the first lens increases, the depth of the individual recesses may increase. That is, the maximum depth of the individual recesses may be determined according to the size of the first lens.
  • the lens array and the method of manufacturing the lens array according to the present disclosure can be applied to a lens array for collecting light.
  • it is effective for the lens array for condensing used for a solar cell module.
  • solar cell module 20 first lens array (lens array) 21 First lens (lens) 21a light incident surface 21b light emitting surface 22 concave portion 23 individual concave portion 24 convex portion (individual convex portion) Reference Signs List 30 second lens array 31 second lens 32 base portion 40 resin plate 50 power generation element 60 electrode 70 outer frame 71 support member 71 a support portion 71 b tip portion 80, 81 wind 90, 91 dust

Abstract

A lens array (20) according to the present disclosure includes a plurality of lenses (21), each of which collects sunlight. The lens array (20) includes a light incident surface (21a) whereon sunlight is incident, and a light emission surface (21b) located opposite the light incident surface (21a) and emitting the sunlight entering through the light emission surface (21a). The light incident surface (21a) has a recess (22) that is recessed toward the light emission surface (21b) across the plurality of lenses (21).

Description

レンズアレイ及びレンズアレイの製造方法Lens array and method of manufacturing lens array
 本開示は、それぞれが太陽光を集光する複数のレンズが配列されたレンズアレイ、及び、当該レンズアレイの製造方法に関する。 The present disclosure relates to a lens array in which a plurality of lenses, each of which condenses sunlight, is arranged, and a method of manufacturing the lens array.
 従来、光エネルギーを電気エネルギーに変換する光電変換装置として、太陽電池モジュールの開発が進められている。太陽電池モジュールは、無尽蔵の太陽光を直接電気に変換できることから、また、化石燃料による発電と比べて環境負荷が小さくクリーンであることから、新しいエネルギー源として期待されている。 Conventionally, development of a solar cell module has been advanced as a photoelectric conversion device that converts light energy into electric energy. Solar cell modules are expected as new energy sources because they can convert inexhaustible sunlight directly into electricity, and because they have less environmental impact and are cleaner than fossil fuel power generation.
 近年、太陽電池セル(発電素子)の使用量が少ない集光型の太陽電池モジュールが注目されている。集光型の太陽電池モジュールでは、集光レンズ(レンズアレイ)により集光された太陽光が太陽電池セルに入射される。 BACKGROUND ART In recent years, a concentrating solar cell module with a small amount of use of solar cells (power generation element) has attracted attention. In the concentrating solar cell module, the sunlight collected by the condensing lens (lens array) is incident on the solar cell.
 特許文献1には、太陽電池セルの受光面を凹形状に湾曲させ、太陽電池セル表面での光の反射を低減することで、高い変換効率(発電効率)を有する太陽電池モジュールが開示されている。 Patent Document 1 discloses a solar cell module having high conversion efficiency (power generation efficiency) by curving the light receiving surface of the solar cell in a concave shape and reducing the reflection of light on the surface of the solar cell. There is.
特開2007-48910号公報JP 2007-48910 A
 ところで、集光レンズの太陽光が入射する光入射面は、大気中に露出しており、塵埃などのゴミなどが付着する。光入射面にゴミが付着すると、集光レンズに入射する太陽光が減少し、変換効率の低下につながる。特許文献1に記載の太陽電池モジュールでは、光入射面は平坦な面であり、この平坦性が雨などにより光入射面に付着したゴミを洗い流す(洗浄する)と考えられている。 By the way, the light incident surface on which the sunlight of the condenser lens is incident is exposed to the atmosphere, and dust such as dust adheres thereto. When dust adheres to the light incident surface, the sunlight incident on the condenser lens decreases, leading to a reduction in conversion efficiency. In the solar cell module described in Patent Document 1, the light incident surface is a flat surface, and this flatness is considered to wash away (clean) dust attached to the light incident surface due to rain or the like.
 しかしながら、特許文献1に記載の太陽電池モジュールでは、雨が降らないと洗浄効果が発現しないので、洗浄効果の向上が望まれる。 However, in the solar cell module described in Patent Document 1, since the cleaning effect does not appear unless it rains, improvement of the cleaning effect is desired.
 そこで、本開示は、従来よりも洗浄効果が向上されたレンズアレイ及び当該レンズアレイの製造方法を提供することを目的とする。 Then, this indication aims at providing the manufacturing method of the lens array by which the cleaning effect was improved rather than before, and the lens array concerned.
 上記目的を達成するために、本開示の一態様に係るレンズアレイは、複数のレンズがアレイ状に配置され、複数のレンズのそれぞれが太陽光を集光するレンズアレイである。レンズアレイは、太陽光が入射される光入射面と、光入射面の反対側に位置し光入射面に入射された太陽光が出射される光出射面とを有する。光入射面には、複数のレンズにわたって光出射面側に凹んだ凹部が形成されている。 In order to achieve the above object, a lens array according to an aspect of the present disclosure is a lens array in which a plurality of lenses are arranged in an array, and each of the plurality of lenses condenses sunlight. The lens array has a light incident surface on which sunlight is incident, and a light emitting surface located on the opposite side of the light incident surface and from which the sunlight incident on the light incident surface is emitted. The light incident surface is formed with a concave portion recessed on the light emitting surface side across a plurality of lenses.
 また、上記目的を達成するために、本開示の一態様に係るレンズアレイの製造方法は、複数のレンズがアレイ状に配列され、複数のレンズのそれぞれが太陽光を集光するレンズアレイの製造方法である。レンズアレイの製造方法は、溶融した樹脂を金型に充填する射出工程と、充填された樹脂を冷却する冷却工程と、を含み、冷却工程では、金型を冷却する速度を制御することによりレンズアレイの前記太陽光が入射する光入射面に複数のレンズにわたって凹んだ凹部を形成する。 Further, in order to achieve the above object, according to a method of manufacturing a lens array according to an aspect of the present disclosure, a plurality of lenses are arranged in an array, and each of the plurality of lenses collects sunlight. It is a method. The lens array manufacturing method includes an injection step of filling the molten resin into the mold, and a cooling step of cooling the filled resin, and in the cooling step, the lens is cooled by controlling the cooling rate of the mold. A recessed portion is formed across a plurality of lenses in a light incident surface of the array on which the sunlight is incident.
 本開示によれば、従来よりも洗浄効果が向上されたレンズアレイを提供することができる。 According to the present disclosure, it is possible to provide a lens array in which the cleaning effect is improved as compared to the prior art.
図1は、実施の形態に係る太陽電池モジュールの外観を示す模式図である。FIG. 1: is a schematic diagram which shows the external appearance of the solar cell module which concerns on embodiment. 図2は、図1の2-2線における、実施の形態に係る太陽電池モジュールの断面模式図である。FIG. 2 is a schematic cross-sectional view of the solar cell module according to the embodiment, taken along line 2-2 of FIG. 図3は、実施の形態に係る第一のレンズアレイの断面模式図である。FIG. 3 is a schematic cross-sectional view of the first lens array according to the embodiment. 図4は、実施の形態に係る第一のレンズアレイの形状を示す測定結果の一例である。FIG. 4 is an example of a measurement result showing the shape of the first lens array according to the embodiment. 図5は、実施の形態に係る第一のレンズアレイの凹みによるゴミ除去を説明するための図である。FIG. 5 is a view for explaining the dust removal by the recess of the first lens array according to the embodiment. 図6は、実施の形態に係る第一のレンズアレイの製造方法を示すフローチャートである。FIG. 6 is a flowchart showing a method of manufacturing the first lens array according to the embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, the detailed description may be omitted if necessary. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 It is to be noted that the inventors provide the attached drawings and the following description so that those skilled in the art can fully understand the present disclosure, and intend to limit the subject matter described in the claims by these. Absent.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Further, in the drawings, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions may be omitted or simplified.
 また、以下の実施の形態で説明に用いられる図面においては座標軸が示される場合がある。Z軸のマイナス側が太陽電池モジュールの設置面側、Z軸のプラス側が太陽光の光入射面側を表している。また、X軸及びY軸は、Z軸に垂直な平面上において、互いに直交する軸である。例えば、以下の実施の形態において、「平面視」とは、光入射面側から見る(Z軸方向から見る)ことを意味する。また、例えば、以下の実施の形態において、「断面視」とは、切断線を含む面で切断された太陽電池モジュールを切断された面に対して垂直方向側から見ることを意味している。例えば、太陽電池モジュールがY軸とZ軸とで規定された平面(切断線で切断された面の一例)で切断された場合、断面視とは当該断面をX軸方向側から見ることを意味している。 Further, in the drawings used for the description in the following embodiments, coordinate axes may be shown. The minus side of the Z axis represents the mounting surface side of the solar cell module, and the plus side of the Z axis represents the light incident surface side of sunlight. The X axis and the Y axis are axes orthogonal to each other on a plane perpendicular to the Z axis. For example, in the following embodiment, “plan view” means viewing from the light incident surface side (viewing from the Z-axis direction). Also, for example, in the following embodiment, “cross-sectional view” means that the solar cell module cut at a plane including the cutting line is viewed from the side perpendicular to the plane cut. For example, when the solar cell module is cut along a plane defined by the Y axis and the Z axis (an example of a plane cut by a cutting line), cross sectional view means that the cross section is viewed from the X axis direction side doing.
 また、本明細書において、直交などの要素間の関係性を示す用語、及び、正方形などの要素の形状を示す用語、並びに、「略」の表現は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Further, in the present specification, the term indicating the relationship between elements such as orthogonal, the term indicating the shape of an element such as a square, and the expression “abbreviation” are not expressions expressing only a strict meaning, The expression is meant to include substantially the same range, for example, a difference of several percent.
 (実施の形態)
 以下、本実施の形態に係る第一のレンズアレイ20を備える太陽電池モジュール10について、図1~図6を参照しながら説明する。
Embodiment
Hereinafter, a solar cell module 10 including the first lens array 20 according to the present embodiment will be described with reference to FIGS. 1 to 6.
 [1.太陽電池モジュールの全体構成]
 まずは、本実施の形態に係る太陽電池モジュール10の構成について、図1~図4を参照しながら説明する。
[1. Overall configuration of solar cell module]
First, the configuration of a solar cell module 10 according to the present embodiment will be described with reference to FIGS. 1 to 4.
 図1は、本実施の形態に係る太陽電池モジュール10の模式図である。太陽電池モジュール10は、太陽光をレンズ(光学系)により集光する集光型の太陽電池モジュールである。 FIG. 1 is a schematic view of a solar cell module 10 according to the present embodiment. The solar cell module 10 is a concentrating solar cell module that condenses sunlight by a lens (optical system).
 図2は、図1の2-2線における、本実施の形態に係る太陽電池モジュール10の断面模式図である。太陽電池モジュール10は、第一のレンズアレイ20と、第二のレンズアレイ30と、保持部材の一つである樹脂板40と、発電素子50と、電極60とを備える。なお、図1中の2-2線は、Y軸方向に平行であり、かつ太陽電池モジュール10のX軸方向における中央を切断する切断線である。 FIG. 2 is a schematic cross-sectional view of the solar cell module 10 according to the present embodiment, taken along line 2-2 of FIG. The solar cell module 10 includes a first lens array 20, a second lens array 30, a resin plate 40 which is one of holding members, a power generation element 50, and an electrode 60. Line 2-2 in FIG. 1 is a cutting line which is parallel to the Y-axis direction and cuts the center of the solar cell module 10 in the X-axis direction.
 [1-1.第一のレンズアレイ]
 まず、第一のレンズアレイ20について、図1~図4を参照しながら説明する。
[1-1. First lens array]
First, the first lens array 20 will be described with reference to FIGS. 1 to 4.
 図1に示すように、第一のレンズアレイ20は、正の屈折率を有する複数の第一のレンズ21がアレイ状(二次元状)に配置されて構成された一次集光レンズアレイである。第一のレンズ21は、太陽光を後述する第二のレンズアレイ30の第二のレンズ31に集光する。なお、第一のレンズアレイ20はレンズアレイの一例であり、第一のレンズ21はレンズの一例である。なお、第一のレンズアレイ20は、第一のレンズ21をアレイ状の一形態として一次元状に配列して構成してもよい。 As shown in FIG. 1, the first lens array 20 is a primary condensing lens array configured by arranging a plurality of first lenses 21 having a positive refractive index in an array (two-dimensional). . The first lens 21 condenses sunlight on a second lens 31 of a second lens array 30 described later. The first lens array 20 is an example of a lens array, and the first lens 21 is an example of a lens. The first lens array 20 may be configured by arranging the first lenses 21 in a one-dimensional manner as one form of an array.
 本実施の形態では、第一のレンズアレイ20は、25個の第一のレンズ21がアレイ状に配置されて構成されるが、第一のレンズアレイ20を構成する第一のレンズ21の数は特に限定されない。また、第一のレンズ21の平面視における形状は、特に限定されない。図1では、第一のレンズ21の形状は正方形状である例について示しているが、第一のレンズ21は長方形状、又は、六角形状であってもよい。 In the present embodiment, the first lens array 20 is configured by arranging the 25 first lenses 21 in an array, but the number of the first lenses 21 constituting the first lens array 20 Is not particularly limited. Moreover, the shape in planar view of the 1st lens 21 is not specifically limited. Although FIG. 1 shows an example in which the shape of the first lens 21 is square, the first lens 21 may be rectangular or hexagonal.
 なお、本実施の形態では、第一のレンズ21は、一辺が22mmの正方形状である。つまり、第一のレンズアレイ20は、一辺が110mmの正方形状である。また、第一のレンズ21の厚み(Z軸方向の長さ)は、例えば、7.5mm以上10mm以下である。なお、第一のレンズの一辺は22mmより小さくてもよく、例えば、10mm以上20mm以下で構成することもできる。 In the present embodiment, the first lens 21 has a square shape with a side of 22 mm. That is, the first lens array 20 has a square shape with one side of 110 mm. The thickness (length in the Z-axis direction) of the first lens 21 is, for example, 7.5 mm or more and 10 mm or less. Note that one side of the first lens may be smaller than 22 mm, and for example, may be 10 mm or more and 20 mm or less.
 図2に示すように、第一のレンズアレイ20は、太陽光が入射する光入射面21a(Z軸プラス側の面)と、光入射面21aと反対側の面であり、当該太陽光が出射する光出射面21b(Z軸マイナス側の面)とを有する。また、本実施の形態では、第一のレンズ21のそれぞれは、例えば、光出射面21b側に凸部24が形成されている凸レンズが用いられる。例えば、凸部24は、複数の第一のレンズ21のそれぞれにおいて、太陽光が出射される方向(Z軸プラス側からZ軸マイナス側に向かう方向)に向けて突出して形成されている。すなわち、第一のレンズアレイ20は、第二のレンズアレイ30側に第一のレンズ21ごとに突出した凸形状を有する。 As shown in FIG. 2, the first lens array 20 is a light incident surface 21a (surface on the Z axis plus side) on which sunlight is incident and a surface on the opposite side to the light incident surface 21a, and the sunlight is It has the light emission surface 21b (surface by the side of Z-axis minus) to radiate | emit. Further, in the present embodiment, as each of the first lenses 21, for example, a convex lens in which the convex portion 24 is formed on the light emitting surface 21 b side is used. For example, in each of the plurality of first lenses 21, the convex portion 24 is formed so as to protrude in a direction in which sunlight is emitted (a direction from the Z-axis plus side to the Z-axis minus side). That is, the first lens array 20 has a convex shape that protrudes on the second lens array 30 side for each first lens 21.
 また、光入射面21aは、光出射面21b側に向けて凹んでいる。本実施の形態に係る第一のレンズアレイ20は、当該凹みが形成されていることに特徴を有する。以下では、光入射面21aに形成されている凹みについて説明する。 The light incident surface 21a is recessed toward the light emission surface 21b. The first lens array 20 according to the present embodiment is characterized in that the recess is formed. Below, the dent currently formed in the ight-incidence surface 21a is demonstrated.
 図3は、本実施の形態に係る第一のレンズアレイ20の断面模式図であり、具体的には、図2に示す太陽電池モジュール10の断面模式図のうち、第一のレンズアレイ20のみを示した断面模式図である。なお、図3では、凹部22及び個別凹部23の説明のため、図2に示す第一のレンズアレイ20とは縮尺等が異なるように模式的に図示している。例えば、図3では、第一のレンズアレイ20の厚み方向(Z軸方向)の縮尺を、図2に示す第一のレンズアレイ20より誇張して図示している。 FIG. 3 is a schematic cross-sectional view of the first lens array 20 according to the present embodiment, and specifically, only the first lens array 20 in the schematic cross-sectional view of the solar cell module 10 shown in FIG. It is the cross-sectional schematic diagram which showed. In addition, in FIG. 3, in order to demonstrate the recessed part 22 and the separate recessed part 23, the 1st lens array 20 shown in FIG. For example, in FIG. 3, the scale in the thickness direction (Z-axis direction) of the first lens array 20 is shown exaggeratingly more than the first lens array 20 shown in FIG. 2.
 図3に示すように、光入射面21aは、凹部22及び個別凹部23を有する。なお、図3中の二点鎖線は、平面視における第一のレンズアレイ20の外形を形成する外縁同士を結んだ直線であり、Y軸と平行な直線である。また、図3中の破線は、凹部22の外形を示している。破線は、例えば、外縁と、隣り合う第一のレンズ21の境界部とを結んで形成される。つまり、二点鎖線と破線とで囲まれる領域が、凹部22である。 As shown in FIG. 3, the light incident surface 21 a has a recess 22 and an individual recess 23. The two-dot chain line in FIG. 3 is a straight line connecting outer edges forming the outer shape of the first lens array 20 in a plan view, and is a straight line parallel to the Y axis. Moreover, the broken line in FIG. 3 has shown the external shape of the recessed part 22. FIG. The broken line is formed, for example, by connecting the outer edge and the boundary portion of the adjacent first lenses 21. That is, the area surrounded by the dashed-two dotted line and the broken line is the recess 22.
 凹部22は、複数の第一のレンズ21にわたって形成される凹みである。図3では、凹部22は、五つの第一のレンズ21にわたって形成されている。例えば、凹部22は、第一のレンズアレイ20の平面視において第一のレンズアレイ20の外縁から中心に向かうにつれ、深さ(Z軸方向の長さ)が増す。つまり、凹部22は、第一のレンズアレイ20を構成する25個の第一のレンズ21の全体にわたって形成されており、平面視における第一のレンズアレイ20の中心において、深さが最大となる。最大深さは、第一のレンズアレイ20の集光特性を乱さない(言い換えると、集光特性に実質的に影響を及ぼさない)程度の深さであるとよい。例えば、凹部22の最大深さは、20μm以下である。 The recess 22 is a recess formed over the plurality of first lenses 21. In FIG. 3, the recess 22 is formed across the five first lenses 21. For example, the depth (the length in the Z-axis direction) of the concave portion 22 increases as it goes from the outer edge of the first lens array 20 to the center in a plan view of the first lens array 20. That is, the concave portion 22 is formed over the entire 25 first lenses 21 constituting the first lens array 20, and the depth is maximized at the center of the first lens array 20 in plan view. . The maximum depth may be a depth that does not disturb the focusing characteristics of the first lens array 20 (in other words, does not substantially affect the focusing characteristics). For example, the maximum depth of the recess 22 is 20 μm or less.
 なお、凹部22の最大深さとは、図3中の二点鎖線を基準とし、当該二点鎖線から最も距離が遠ざかる凹部22の位置までの距離を示す(図3の深さL1参照)。 The maximum depth of the recess 22 is the distance from the two-dotted chain line in FIG. 3 to the position of the recess 22 farthest away from the two-dot chain line (see depth L1 in FIG. 3).
 凹部22の形状は、太陽光が入射する方向(例えば、Z軸方向)と直交する方向から見た場合の断面視において、円弧状である。また、図3では、図1に示す太陽電池モジュール10を2-2線を含むZ軸に平行な平面(YZ平面)で切断した断面模式図を示しているが、例えば、太陽電池モジュール10を2-2線と直交する切断線(X軸方向に伸びる切断線)を含むZ軸に平行な平面(XZ平面)で切断した模式断面図も、図3に示す形状となる。つまり、凹部22の外形は、円弧状である。すなわち、凹部22は、ドーム状の凹みである。 The shape of the recess 22 is arc-shaped in a cross-sectional view when viewed from a direction orthogonal to the direction (for example, the Z-axis direction) in which sunlight is incident. Further, FIG. 3 shows a schematic cross-sectional view of the solar cell module 10 shown in FIG. 1 cut along a plane (YZ plane) parallel to the Z-axis including the line 2-2. A schematic cross-sectional view cut along a plane (XZ plane) parallel to the Z-axis including a cutting line (cutting line extending in the X-axis direction) orthogonal to the 2-2 line also has the shape shown in FIG. That is, the outer shape of the recess 22 is arc-shaped. That is, the recess 22 is a dome-shaped recess.
 次に、個別凹部23について説明する。個別凹部23は、複数の第一のレンズ21ごとに、凹部22からさらに光出射面21b側(言い換えると、凸部24側)に向けて形成された凹みである。 Next, the individual recesses 23 will be described. The individual recess 23 is a recess formed from the recess 22 toward the light emitting surface 21 b side (in other words, the protrusion 24 side) for each of the plurality of first lenses 21.
 個別凹部23は、第一のレンズ21の凸部24に1対1に対応して形成される凹みである。本実施の形態では、複数の第一のレンズ21のそれぞれに一つの凸部24が形成されているので、個別凹部23は、複数の第一のレンズ21ごとに1対1で形成される。例えば、個別凹部23は、第一のレンズアレイ20の平面視において、第一のレンズ21の中心(言い換えると、平面視における凸部24の中心)に向かうにつれ、深さが増す。つまり、個別凹部23は、第一のレンズ21の中心において、深さが最大となる。最大深さは、第一のレンズアレイ20の集光特性を乱さない程度の深さであるとよい。より詳しくは、個別凹部23の最大深さは、凹部22の深さと個別凹部23の深さとを合計した深さにおいて、第一のレンズアレイ20の集光特性を乱さない程度の深さであるとよい。例えば、個別凹部23の最大深さは、10μm以下である。 The individual recess 23 is a recess formed on the protrusion 24 of the first lens 21 in one-to-one correspondence. In the present embodiment, since one convex portion 24 is formed in each of the plurality of first lenses 21, the individual concave portions 23 are formed in one-to-one correspondence with each of the plurality of first lenses 21. For example, in the plan view of the first lens array 20, the depth of the individual recesses 23 increases toward the center of the first lens 21 (in other words, the center of the projection 24 in plan view). That is, the depth of the individual recess 23 is maximum at the center of the first lens 21. The maximum depth may be a depth that does not disturb the focusing characteristic of the first lens array 20. More specifically, the maximum depth of the individual recesses 23 is such a depth that does not disturb the light collection characteristic of the first lens array 20 at the total depth of the depths of the recesses 22 and the individual recesses 23. It is good. For example, the maximum depth of the individual recesses 23 is 10 μm or less.
 なお、個別凹部23の最大深さとは、凹部22の外形を示す破線を基準とし、当該破線から最も距離が遠ざかる個別凹部23の位置までの距離を示す(図3の深さL2参照)。 The maximum depth of the individual recess 23 is a distance from the broken line to the position of the individual recess 23 which is most distant from the broken line (see depth L2 in FIG. 3).
 個別凹部23の形状は、太陽光が入射する方向と直交する方向から見た場合の断面視において、円弧状である。また、図3では、図1に示す太陽電池モジュール10を2-2線を含むZ軸に平行な平面(YZ平面)で切断した断面模式図を示しているが、例えば、太陽電池モジュール10を2-2線と直交する切断線(X軸方向に伸びる切断線)を含むZ軸に平行な平面(XZ平面)で切断した模式断面図も、図3に示す形状となる。つまり、個別凹部23の外形は、円弧状である。すなわち、個別凹部23は、ドーム状の凹みである。 The shape of the individual recess 23 is arc-shaped in a cross-sectional view when viewed from the direction orthogonal to the direction in which the sunlight is incident. Further, FIG. 3 shows a schematic cross-sectional view of the solar cell module 10 shown in FIG. 1 cut along a plane (YZ plane) parallel to the Z-axis including the line 2-2. A schematic cross-sectional view cut along a plane (XZ plane) parallel to the Z-axis including a cutting line (cutting line extending in the X-axis direction) orthogonal to the 2-2 line also has the shape shown in FIG. That is, the outer shape of the individual recess 23 is arc-shaped. That is, the individual recess 23 is a dome-shaped recess.
 ここで、製作した第一のレンズアレイ20の凹部22及び個別凹部23の測定結果を、図4を参照しながら説明する。 Here, the measurement results of the concave portions 22 and the individual concave portions 23 of the manufactured first lens array 20 will be described with reference to FIG.
 図4は、本実施の形態に係る第一のレンズアレイ20の形状を示す測定結果の一例である。より具体的には、第一のレンズアレイ20の光入射面21aの形状、すなわち凹部22及び個別凹部23の形状を示す測定結果である。図4では、横軸が測定した第一のレンズアレイ20におけるY軸方向の位置を示す。つまり、測定した第一のレンズアレイ20の長さは、およそ111400μm(およそ111mm)である。また、縦軸は、第一のレンズアレイ20のZ軸方向における位置を示す。 FIG. 4 is an example of a measurement result showing the shape of the first lens array 20 according to the present embodiment. More specifically, it is a measurement result indicating the shape of the light incident surface 21 a of the first lens array 20, that is, the shapes of the recess 22 and the individual recess 23. In FIG. 4, the horizontal axis indicates the measured position of the first lens array 20 in the Y-axis direction. That is, the length of the first lens array 20 measured is about 111400 μm (about 111 mm). The vertical axis indicates the position of the first lens array 20 in the Z-axis direction.
 図4の破線に示すように、第一のレンズアレイ20に凹部22及び五つの個別凹部23が形成されていることがわかる。また、凹部22の深さと個別凹部23の深さの和の最大値は18.90μmであり、凹部22の最大深さは約10μmである。また、最大深さとなる位置は、およそ58000μm(およそ58mm)であり、断面視において略中央に位置している。 As shown by the broken line in FIG. 4, it can be seen that the recess 22 and the five individual recesses 23 are formed in the first lens array 20. Further, the maximum value of the sum of the depth of the recess 22 and the depth of the individual recess 23 is 18.90 μm, and the maximum depth of the recess 22 is about 10 μm. Further, the position of maximum depth is approximately 58000 μm (approximately 58 mm), and is located approximately at the center in a cross sectional view.
 第一のレンズアレイ20の材質は、透明な樹脂であるとよい。太陽電池モジュール10の軽量化に寄与するためである。具体的に、第一のレンズアレイ20は、アクリル樹脂(PMMA)を射出成型することなどにより作製される。なお、第一のレンズアレイ20の製造方法については、後述する。 The material of the first lens array 20 may be a transparent resin. It is for contributing to weight reduction of the solar cell module 10. Specifically, the first lens array 20 is manufactured by injection molding acrylic resin (PMMA) or the like. The method of manufacturing the first lens array 20 will be described later.
 [1-2.第二のレンズアレイ]
 次に、第二のレンズアレイ30について、図2を参照しながら説明する。
[1-2. Second lens array]
Next, the second lens array 30 will be described with reference to FIG.
 第二のレンズアレイ30は、発電素子50側から第一のレンズ21側(Z軸マイナス側からZ軸プラス側)に突出した凸形状を有する複数の第二のレンズ31がアレイ状に配置されて構成された二次集光レンズアレイであり、第一のレンズアレイ20の光出射方向側に配置される。また、第二のレンズアレイ30は、図2中のX-Y平面に広がる支持基板としてのベース部32と、ベース部32の光入射面側(Z軸プラス側)に形成された第二のレンズ31とを有する。第二のレンズ31の光軸は、第一のレンズ21の光軸と一致する。なお、「一致する」とは、完全に一致する場合に限定されず、実質的に一致することも含まれる。例えば、二つの値に数%の誤差があっても、これらは一致するとみなされ得る。 In the second lens array 30, a plurality of second lenses 31 having a convex shape protruding from the power generation element 50 side to the first lens 21 side (Z-axis negative side to Z-axis positive side) are arranged in an array. The secondary condensing lens array configured as described above is disposed on the light emission direction side of the first lens array 20. Further, the second lens array 30 includes a base portion 32 as a support substrate extending in the XY plane in FIG. 2 and a second portion formed on the light incident surface side (Z-axis plus side) of the base portion 32. And a lens 31. The optical axis of the second lens 31 coincides with the optical axis of the first lens 21. Note that "matching" is not limited to the case of perfect matching, but includes substantially matching. For example, even if the two values have a few percent error, they can be considered to match.
 ベース部32は板状であり、第一のレンズアレイ20の第一のレンズ21に1対1に対応して第二のレンズ31がベース部32の表面にアレイ状に配置されている。また、第二のレンズ31とベース部32とは、一体に成型される。 The base portion 32 has a plate shape, and the second lenses 31 are arranged in an array on the surface of the base portion 32 in one-to-one correspondence with the first lenses 21 of the first lens array 20. Further, the second lens 31 and the base portion 32 are integrally molded.
 第二のレンズアレイ30の材質は、透明な樹脂であるとよい。樹脂を用いることで、太陽電池モジュール10の軽量化に寄与するためである。具体的に、第二のレンズアレイ30は、アクリル樹脂を押し出し成型、又は、射出成型することにより作製される。なお、第一のレンズアレイ20と第二のレンズアレイ30とは、同一の材料で形成されてもよい。 The material of the second lens array 30 may be transparent resin. It is for contributing to weight reduction of the solar cell module 10 by using resin. Specifically, the second lens array 30 is manufactured by extrusion molding or injection molding of an acrylic resin. The first lens array 20 and the second lens array 30 may be formed of the same material.
 [1-3.発電モジュール]
 次に、光電変換を行う発電素子50と、発電素子50を保持する保持部材とからなる発電モジュールについて、図2を参照しながら説明する。なお、本実施の形態では保持部材をアクリル樹脂で作製された透明な樹脂板40として説明するが、保持部材の材質や形状は特に限定されるものではなく、ガラス(透明な非晶質を含む)又は透明な結晶でも構わない。
[1-3. Power generation module]
Next, a power generation module including the power generation element 50 that performs photoelectric conversion and the holding member that holds the power generation element 50 will be described with reference to FIG. In the present embodiment, the holding member is described as a transparent resin plate 40 made of acrylic resin, but the material and shape of the holding member are not particularly limited, and glass (including transparent amorphous) Or transparent crystals may be used.
 樹脂板40は、発電素子50を保持する保持部材の一例であり、例えば平板状の部材である。樹脂板40は、シリコーン系樹脂の接着剤で第二のレンズアレイ30のベース部32(例えば、ベース部32に形成されている凹部)に固定されている。 The resin plate 40 is an example of a holding member for holding the power generation element 50, and is, for example, a flat member. The resin plate 40 is fixed to the base 32 (for example, a recess formed in the base 32) of the second lens array 30 by an adhesive of silicone resin.
 樹脂板40に搭載される発電素子50は、第二のレンズアレイ30のベース部32に配置されたときに、第二のレンズ31の焦点に位置が合うとよい。例えば、ベース部32に樹脂板40の位置合わせ用の凹部が形成されており、当該凹部に樹脂板40が挿入されたときに、第二のレンズ31の焦点の位置と発電素子50の位置とが一致するとよい。ベース部32に凹部が形成されていると、当該凹部に発電素子50を固定した樹脂板40を挿入するだけで、第二のレンズ31の焦点に発電素子50を配置することができるので、製造のプロセスが短縮できる。即ち、ベース部32に形成された位置合わせ用の凹部によって、発電素子50は第二のレンズ31の焦点位置及び光軸(第一のレンズ21の光軸と実質的に一致)上に配置され、X軸方向及びY軸方向に沿って等間隔に配置される。 The power generation element 50 mounted on the resin plate 40 may be aligned with the focal point of the second lens 31 when disposed on the base portion 32 of the second lens array 30. For example, a concave portion for aligning the resin plate 40 is formed in the base portion 32, and when the resin plate 40 is inserted into the concave portion, the position of the focal point of the second lens 31 and the position of the power generating element 50; Should match. When the recess is formed in the base portion 32, the power generating element 50 can be disposed at the focal point of the second lens 31 simply by inserting the resin plate 40 in which the power generating element 50 is fixed in the recess. Process can be shortened. That is, the power generation element 50 is disposed on the focal position of the second lens 31 and the optical axis (which substantially coincides with the optical axis of the first lens 21) by the positioning concave portion formed in the base portion 32. , And at equal intervals along the X-axis direction and the Y-axis direction.
 なお、保持部材は、透明な材料で形成される。これにより、発電素子50が樹脂板40の第二のレンズアレイ30とは逆側の面(Z軸マイナス側の面)に固定されている場合であっても、発電素子50は集光された太陽光を受光できる。 The holding member is formed of a transparent material. Thereby, even when the power generation element 50 is fixed to the surface (surface on the Z axis minus side) opposite to the second lens array 30 of the resin plate 40, the power generation element 50 is condensed. It can receive sunlight.
 なお、第一のレンズアレイ20と発電素子50との距離は、第一のレンズアレイ20及び第二のレンズアレイ30の集光特性により決定されるが、一例として、31mm程度である。 The distance between the first lens array 20 and the power generation element 50 is determined by the focusing characteristics of the first lens array 20 and the second lens array 30, but is about 31 mm as an example.
 発電素子50は、照射された太陽光の光エネルギーを電気エネルギーに変換する機能を有する。発電素子50は、GaAs系材料、GaN系材料、Si系材料の薄膜から構成されている。これらの薄膜に光を照射すると光電流が発生するので、外部回路(図示しない)に電気エネルギーを供給することが可能となる。発電素子50には、エネルギー変換効率が40%以上のGaAs系材料からなる薄膜を用いることが好ましい。なお、発電素子50の受光面積は、例えば、略1mmである。 The power generation element 50 has a function of converting the light energy of the emitted sunlight into electric energy. The power generation element 50 is composed of a thin film of a GaAs-based material, a GaN-based material, and a Si-based material. When light is irradiated to these thin films, a photocurrent is generated, so that it is possible to supply an electrical energy to an external circuit (not shown). For the power generation element 50, it is preferable to use a thin film made of a GaAs-based material having an energy conversion efficiency of 40% or more. The light receiving area of the power generation element 50 is, for example, approximately 1 mm 2 .
 第二のレンズアレイ30の光出射面側(Z軸マイナス側)には、発電素子50に発生した光電流を外部回路へ取り出すための電極60が形成されている。電極60としては、例えば、Cu箔、Al箔、Ni箔を使用することができる。 An electrode 60 for extracting the photocurrent generated in the power generation element 50 to an external circuit is formed on the light emitting surface side (Z axis minus side) of the second lens array 30. As the electrode 60, for example, a Cu foil, an Al foil, or a Ni foil can be used.
 なお、太陽電池モジュール10は、発電素子50と電極60とが表面実装により実装されたプリント基板(フレキシブル基板を含む)と、第一のレンズアレイ20及び第二のレンズアレイ30とが組合せられることより製作されてもよい。 In the solar cell module 10, a printed board (including a flexible board) on which the power generation element 50 and the electrode 60 are mounted by surface mounting is combined with the first lens array 20 and the second lens array 30. It may be manufactured by
 [1-4.外枠など]
 次に、外枠などの部材について、図2を参照しながら説明する。
[1-4. Outer frame etc]
Next, members such as an outer frame will be described with reference to FIG.
 第一のレンズアレイ20と第二のレンズアレイ30との間には、外枠70と、支承部材71とが配置されている。支承部材71は、第二のレンズアレイ30に対し第一のレンズアレイ20を支え持ち、第一のレンズアレイ20と第二のレンズアレイ30との間隔を維持する部材である。本実施の形態の場合、外枠70と支承部材71とはそれぞれ、第二のレンズアレイ30と一体で形成されている。支承部材71は、支持部71aと先端部71bとからなる。外枠70と支承部材71の先端部71bとはそれぞれ、第一のレンズアレイ20の光出射面21bに接触して第一のレンズアレイ20を支持している。先端部71bにおける第一のレンズアレイ20と接触する部分は、例えば略球状である。支承部材71の幅(厚さ)に対して第一のレンズアレイ20側にある先端部71bの幅(厚さ)は細い(薄い)。これにより、第一のレンズ21から出射する太陽光に支承部材71が干渉することを抑制できる。 An outer frame 70 and a support member 71 are disposed between the first lens array 20 and the second lens array 30. The support member 71 supports the first lens array 20 with respect to the second lens array 30, and maintains the distance between the first lens array 20 and the second lens array 30. In the case of the present embodiment, the outer frame 70 and the support member 71 are each integrally formed with the second lens array 30. The support member 71 includes a support portion 71a and a tip portion 71b. The outer frame 70 and the tip end portion 71 b of the support member 71 are in contact with the light emitting surface 21 b of the first lens array 20 to support the first lens array 20. The portion of the tip portion 71 b in contact with the first lens array 20 is, for example, substantially spherical. The width (thickness) of the tip portion 71b on the first lens array 20 side with respect to the width (thickness) of the support member 71 is thin (thin). Thereby, interference of the support member 71 with the sunlight emitted from the first lens 21 can be suppressed.
 上記のように構成された太陽電池モジュール10は、第一のレンズアレイ20、第二のレンズアレイ30、及び、樹脂板40がアクリル樹脂により構成されるので、軽量である。例えば、太陽電池モジュール10は、時刻によらず太陽電池モジュール10の光入射面21aを太陽光側に向ける(言い換えると、光入射面21aに太陽光を垂直に入射させる)ために、太陽光を追尾する装置(図示せず)に搭載されて使用される場合がある。具体的には、太陽電池モジュール10は、太陽光を追尾する装置に複数搭載されて使用される場合がある。これにより、光入射面21aに対し垂直に太陽光を受光することが日中の多くの時間で可能となる。 The solar cell module 10 configured as described above is lightweight because the first lens array 20, the second lens array 30, and the resin plate 40 are made of acrylic resin. For example, the solar cell module 10 directs the sunlight to direct the light incident surface 21a of the solar cell module 10 to the sunlight side regardless of the time (in other words, to make the sunlight incident vertically on the light incident surface 21a) It may be mounted and used in a tracking device (not shown). Specifically, a plurality of solar cell modules 10 may be mounted and used in an apparatus for tracking sunlight. Thereby, it is possible to receive sunlight perpendicular to the light incident surface 21a in many hours of the day.
 この場合において、太陽電池モジュール10が軽量であるので、太陽光を追尾する装置に必要とされる強度を下げることができる。つまり、本実施の形態に係る太陽電池モジュール10であれば、太陽光を追尾する装置などの付帯設備のコストを低減することができる。さらに、太陽光を追尾する装置は、第一のレンズアレイ、第二のレンズアレイ、及び樹脂板がガラスなどのアクリル樹脂より重い材料で形成されている場合に比べ、より少ないエネルギーで太陽電池モジュール10の光入射面21aを太陽光に向けて動かすことができる。つまり、より少ないエネルギーで、太陽電池モジュール10の発電効率を向上させることができる。 In this case, since the solar cell module 10 is lightweight, the intensity required for the device for tracking sunlight can be reduced. That is, with the solar cell module 10 according to the present embodiment, the cost of incidental equipment such as a device for tracking sunlight can be reduced. Furthermore, the apparatus for tracking sunlight is a solar cell module with less energy than when the first lens array, the second lens array, and the resin plate are formed of a material heavier than acrylic resin such as glass. The ten light incident surfaces 21a can be moved toward sunlight. That is, the power generation efficiency of the solar cell module 10 can be improved with less energy.
 [2.ゴミ除去の様子]
 続いて、上述した第一のレンズアレイ20を備える太陽電池モジュール10のゴミ除去について、図5を参照しながら説明する。
[2. State of dust removal]
Subsequently, dust removal of the solar cell module 10 including the first lens array 20 described above will be described with reference to FIG.
 図5は、本実施の形態に係る第一のレンズアレイ20の凹みによるゴミ除去を説明するための図である。図5中の直線の矢印は、風80の流れ(気流)を示している。図5では、一例として、第一のレンズアレイ20の光入射面21aに対してY軸方向と平行な方向に風80が吹いている例を示している。なお、ゴミ90とは、太陽光が光入射面21aに入射することを妨げる物体であり、例えば、塵埃などである。 FIG. 5 is a view for explaining the dust removal by the recess of the first lens array 20 according to the present embodiment. The straight arrows in FIG. 5 indicate the flow (air flow) of the wind 80. FIG. 5 shows an example in which the wind 80 is blowing in a direction parallel to the Y-axis direction with respect to the light incident surface 21a of the first lens array 20 as an example. The dust 90 is an object that prevents sunlight from being incident on the light incident surface 21a, and is, for example, dust.
 図5に示すように、風80が吹くと、第一のレンズアレイ20の光入射面21aに形成された凹み(具体的には、凹部22及び個別凹部23)により、当該風80がかく乱され、風81の流れが形成される。具体的には、風81は、光入射面21aに向かう風の流れ(Z軸プラス側からZ軸マイナス側に向かう風の流れ)と、光入射面21aから遠ざかる方向に向かう風の流れ(Z軸マイナス側からZ軸プラス側に向かう風の流れ)とから形成される。この風81の流れにより、光入射面21aに付着しているゴミ90が除去される。このようなゴミ除去の効果を奏するには、第一のレンズアレイ20に少なくとも風80をかく乱するための凹部22が形成されていることが必要であり、凹部22の最大深さは5μm以上であることが望ましい。さらに、個別凹部23が形成されることで、ゴミ除去の効果が向上する。 As shown in FIG. 5, when the wind 80 blows, the wind 80 is disturbed by the depressions (specifically, the concave portions 22 and the individual concave portions 23) formed on the light incident surface 21a of the first lens array 20. , The flow of wind 81 is formed. Specifically, the wind 81 is a flow of wind toward the light incident surface 21a (flow of wind from the Z-axis plus side to the Z-axis negative side) and a flow of wind toward the direction away from the light incident surface 21a (Z It is formed from the flow of the wind which goes to the Z-axis plus side from the axis minus side). By the flow of the wind 81, the dust 90 attached to the light incident surface 21a is removed. In order to exhibit such a dust removal effect, it is necessary for the first lens array 20 to have at least a recess 22 for disturbing the wind 80, and the maximum depth of the recess 22 is 5 μm or more. It is desirable to have. Furthermore, the effect of dust removal is improved by forming the individual recesses 23.
 なお、従来の第一のレンズアレイは、光入射面が平坦な面であるので、風が吹いても図5に示すようなかく乱された風は生じていなかった。つまり、従来の第一のレンズアレイでは、風によるゴミの洗浄効果は低かった。 In addition, since the conventional first lens array has a flat light incident surface, the disturbed wind as shown in FIG. 5 does not occur even when the wind is blown. That is, in the conventional first lens array, the cleaning effect of dust by wind was low.
 また、さらに、本実施の形態に係る第一のレンズアレイ20であれば、浮遊しているゴミ91に対しても、効果がある。具体的には、浮遊しているゴミ91が光入射面21aに向けて落ちてきたときに、風81が発生していることで、ゴミ91が光入射面21aに付着する前に、吹き飛ばすことができる。つまり、本実施の形態に係る第一のレンズアレイ20であれば、光入射面21aにゴミ91が付着すること自体を抑制することができる。 Furthermore, the first lens array 20 according to the present embodiment is also effective for floating dust 91. Specifically, when the floating dust 91 falls toward the light incident surface 21a, the wind 81 is generated so that the dust 91 is blown off before it adheres to the light incident surface 21a. Can. That is, with the first lens array 20 according to the present embodiment, adhesion of the dust 91 to the light incident surface 21a can be suppressed.
 なお、第一のレンズアレイの光入射面は、雨などにより洗浄される。例えば、光入射面に塵埃などのゴミが付着していた場合、雨などの水滴により、付着していたゴミが洗い流される。本実施の形態に係る第一のレンズアレイ20は、形成されている凹部22及び個別凹部23の深さが20μm以下及び10μm以下と小さいことで、雨などによる洗浄効果への影響を抑えつつ、風80による洗浄効果を高めることができる。 The light incident surface of the first lens array is cleaned by rain or the like. For example, when dust such as dust is attached to the light incident surface, the attached dust is washed away by water droplets such as rain. In the first lens array 20 according to the present embodiment, the depth of the concave portions 22 and the individual concave portions 23 formed is as small as 20 μm or less and 10 μm or less, while suppressing the influence on the cleaning effect due to rain or the like. The cleaning effect of the wind 80 can be enhanced.
 なお、光入射面21aに付着しているゴミ90除去の観点から、凹みは大きい方がよい。 From the viewpoint of removing the dust 90 attached to the light incident surface 21a, the recess should be large.
 [3.第一のレンズアレイの製造方法]
 次に、上述した第一のレンズアレイ20の製造方法について、図6を参照しながら説明する。
[3. Method of Manufacturing First Lens Array]
Next, a method of manufacturing the above-described first lens array 20 will be described with reference to FIG.
 図6は、本実施の形態に係る第一のレンズアレイ20の製造方法を示すフローチャートである。以下では、射出成型により第一のレンズアレイ20を製造する方法について説明する。 FIG. 6 is a flowchart showing a method of manufacturing the first lens array 20 according to the present embodiment. Below, the method to manufacture the 1st lens array 20 by injection molding is demonstrated.
 まず、射出成型に用いられる金型を加熱する加熱工程が行われる(S10)。例えば、金型は、射出成型機に取り付けられ、射出成型機が有するヒータなどにより加熱される。加熱された金型の温度は使用する樹脂材料などにより適宜決定されるが、一例として、300℃程度である。 First, a heating step of heating a mold used for injection molding is performed (S10). For example, the mold is attached to an injection molding machine and heated by a heater or the like of the injection molding machine. The temperature of the heated mold is appropriately determined depending on the resin material and the like used, and is about 300 ° C. as an example.
 次に、金型に溶融した樹脂(以下、溶融樹脂とも記載する。)を充填する射出工程が行われる(S20)。すなわち、溶融樹脂が加熱された金型のキャビティ空間に注入される。溶融した樹脂とは、第一のレンズアレイ20を形成するための樹脂材料であり、本実施の形態では、溶融したアクリル系樹脂が注入される。そして、溶融樹脂が金型に充填されると、溶融樹脂を保圧する保圧工程が行われる(S30)。保圧工程は、金型キャビティ空間内の溶融樹脂が逆流することを抑制する、つまり溶融樹脂を金型キャビティ空間内にいきわたらせるために行われる。 Next, an injection step of filling the molten resin (hereinafter also referred to as molten resin) in a mold is performed (S20). That is, the molten resin is injected into the heated cavity space of the mold. The melted resin is a resin material for forming the first lens array 20, and in the present embodiment, the melted acrylic resin is injected. Then, when the molten resin is filled in the mold, a pressure holding step of holding the molten resin is performed (S30). The pressure holding step is performed to suppress the backflow of the molten resin in the mold cavity space, that is, to make the molten resin flow into the mold cavity space.
 次に、溶融樹脂を冷却する冷却工程が行われる(S40)。冷却工程では、保圧された樹脂が固化するまで冷却される。固化する温度は使用する樹脂材料などにより適宜決定されるが、一例として、90℃以下である。 Next, a cooling step of cooling the molten resin is performed (S40). In the cooling step, the held resin is cooled until it solidifies. Although the temperature to solidify is suitably determined by the resin material etc. to be used, it is 90 degrees C or less as an example.
 本実施の形態に係る第一のレンズアレイ20の製造方法は、冷却工程に特徴を有する。冷却工程では、ヒータがOFFされることに加えて、冷却液を循環させることで金型、つまり金型に充填された樹脂を冷やしている。すなわち、ヒータがOFFされることによる自然冷却に加えて、冷却液を循環させることによる強制冷却が行われる。これにより、冷却時間を短縮することができる。例えば、自然冷却のみである場合の冷却時間はおよそ10分であるのに対し、自然冷却及び強制冷却である場合の冷却時間はおよそ3分である。 The method of manufacturing the first lens array 20 according to the present embodiment is characterized in the cooling step. In the cooling step, in addition to the heater being turned off, the mold, that is, the resin filled in the mold is cooled by circulating a coolant. That is, in addition to natural cooling due to the heater being turned off, forced cooling by circulating the coolant is performed. Thereby, the cooling time can be shortened. For example, the cooling time in the case of natural cooling alone is about 10 minutes, while the cooling time in the case of natural cooling and forced cooling is about 3 minutes.
 冷却工程において、冷却時間が長い(例えば、10分)と、第一のレンズアレイの光入射面には、平坦な面が形成される。また、冷却工程において、冷却時間が短い(例えば、3分)と、第一のレンズアレイの光入射面には、冷却時における樹脂の収縮の影響を大きく受けることにより凹みが形成される。例えば、冷却時間が短いほど、第一のレンズアレイに形成される凹みの最大深さ(図3における深さL1及びL2)は高くなる。すなわち、冷却工程において、金型を冷却する速度を制御することにより、第一のレンズアレイの光入射面の形状を制御できる。 In the cooling step, when the cooling time is long (for example, 10 minutes), a flat surface is formed on the light incident surface of the first lens array. Further, in the cooling step, when the cooling time is short (for example, 3 minutes), the light incident surface of the first lens array is greatly affected by the contraction of the resin at the time of cooling, whereby a recess is formed. For example, the shorter the cooling time, the higher the maximum depth of the recesses formed in the first lens array (depths L1 and L2 in FIG. 3). That is, in the cooling step, the shape of the light incident surface of the first lens array can be controlled by controlling the cooling rate of the mold.
 従来であれば、光入射面を平坦な面とするために時間をかけて冷却していた。つまり、自然冷却により冷却していた。 In the prior art, it took time to cool in order to make the light incident surface flat. That is, it cooled by natural cooling.
 一方、本実施の形態では、光入射面21aに凹みを形成するために、冷却時間を従来よりも短く設定している。具体的には、自然冷却に加えて冷却液による強制冷却が行われる。つまり、金型を冷却する速度が従来よりも速くなるように制御される。なお、冷却工程において冷却する速度を速くすることで、図3に示す凹部22及び個別凹部23の両方が形成される。つまり、冷却工程において金型を冷却する速度を調整するといった簡単な制御で、凹部22及び個別凹部23の両方を形成することができる。 On the other hand, in the present embodiment, the cooling time is set shorter than in the conventional case in order to form a recess in the light incident surface 21a. Specifically, in addition to natural cooling, forced cooling with a coolant is performed. That is, the speed of cooling the mold is controlled to be faster than in the past. Note that, by increasing the cooling speed in the cooling step, both the concave portions 22 and the individual concave portions 23 shown in FIG. 3 are formed. That is, both the recesses 22 and the individual recesses 23 can be formed by simple control such as adjusting the cooling rate of the mold in the cooling step.
 なお、上記の冷却時間は、一辺が110mmの正方形状の第一のレンズアレイ20を冷却するのに要する時間である。冷却時間は、第一のレンズアレイ20のサイズにより適宜決定されればよい。また、冷却時間を3分より短くすることも可能であるが、第一のレンズアレイ20の集光特性への影響を考慮し、3分程度とするとよい。 The above-mentioned cooling time is the time required to cool the square first lens array 20 having a side of 110 mm. The cooling time may be appropriately determined by the size of the first lens array 20. Further, the cooling time may be shorter than 3 minutes, but in consideration of the influence on the light collecting characteristic of the first lens array 20, it may be about 3 minutes.
 冷却工程により温度が90℃以下となり樹脂が固化すると、金型から樹脂成型品である第一のレンズアレイ20を取り出す取り出し工程が行われる(S50)。ステップS50で取り出された第一のレンズアレイ20には、図3に示す凹部22及び個別凹部23が形成されている。つまり、凹部22及び個別凹部23は、切削などの物理的な加工により形成されるわけではなく、射出成型時の冷却条件により形成される。具体的には、冷却工程における冷却時間を短くする(言い換えると、冷却する速度を速くする)ことで、第一のレンズアレイ20の光入射面21aに凹部22及び個別凹部23が形成される。 When the temperature becomes 90 ° C. or less in the cooling step and the resin solidifies, the step of taking out the first lens array 20 which is a resin molded article from the mold is performed (S50). In the first lens array 20 taken out in step S50, the recesses 22 and the individual recesses 23 shown in FIG. 3 are formed. That is, the recesses 22 and the individual recesses 23 are not formed by physical processing such as cutting, but are formed by the cooling conditions at the time of injection molding. Specifically, the concave portions 22 and the individual concave portions 23 are formed on the light incident surface 21 a of the first lens array 20 by shortening the cooling time in the cooling step (in other words, increasing the cooling speed).
 [4.効果など]
 以上のように、本実施の形態に係る第一のレンズアレイ20は、それぞれが太陽光を集光する複数の第一のレンズ21(レンズの一例)が配置された第一のレンズアレイ20(レンズアレイの一例)であって、第一のレンズアレイ20は、太陽光が入射する光入射面21aと、光入射面21aの反対側であり太陽光が出射する光出射面21bとを有する。そして、光入射面21aには、複数の第一のレンズ21にわたって光出射面21b側に凹んだ凹部22が形成されている。
[4. Effect etc]
As described above, the first lens array 20 according to the present embodiment includes the first lens array 20 in which the plurality of first lenses 21 (an example of the lenses) for condensing sunlight are disposed. It is an example of a lens array, and the first lens array 20 has a light incident surface 21a on which sunlight is incident, and a light emission surface 21b opposite to the light incident surface 21a and from which sunlight is emitted. And the recessed part 22 dented in the light-projection surface 21b side is formed in the light-incidence surface 21a over several 1st lenses 21. As shown in FIG.
 これにより、第一のレンズアレイ20の光入射面21aに凹部22が形成されていることで、光入射面21aに風80が吹いた場合に、当該凹部22で風80がかく乱される。そして、かく乱された風81により、光入射面21aに付着しているゴミ90を除去することができる。 As a result, the recess 22 is formed on the light incident surface 21 a of the first lens array 20, so that the wind 80 is disturbed by the recess 22 when the wind 80 blows on the light incident surface 21 a. Then, the dust 90 attached to the light incident surface 21 a can be removed by the disturbed wind 81.
 従来では、第一のレンズアレイの光出射面は平坦な面であり、かく乱された風81は生じていなかった。つまり、風80によるゴミの除去能力は低かった。 Conventionally, the light exit surface of the first lens array is a flat surface, and the disturbed wind 81 has not occurred. That is, the dust removal ability by the wind 80 was low.
 よって、本実施の形態に係る第一のレンズアレイ20であれば、従来よりも洗浄効果を向上させることができる。また、風81により、光入射面21aに浮遊しているゴミ91が付着することを抑制できるので、ゴミ91の付着による発電効率の低下を抑制することができる。 Therefore, with the first lens array 20 according to the present embodiment, the cleaning effect can be improved as compared to the related art. Moreover, since it can suppress that the dust 91 which floats on the light-incidence surface 21a adheres by the wind 81, the fall of the electric power generation efficiency by adhesion of the dust 91 can be suppressed.
 また、凹部22は、第一のレンズアレイ20を光入射面21a側から見た場合における第一のレンズアレイ20の外縁(周縁)から中心に向かうにつれ、深さが増す。 Further, the depth of the concave portion 22 increases as it goes from the outer edge (peripheral edge) of the first lens array 20 to the center when the first lens array 20 is viewed from the light incident surface 21 a side.
 これにより、第一のレンズアレイ20の中心に向かうにつれ風80によるゴミ90の除去能力が向上する。 Thereby, the removal capability of the dust 90 by the wind 80 is improved as it goes to the center of the first lens array 20.
 また、凹部22の外形は、太陽光が入射する方向と直交する方向から見た場合の断面視において、円弧状である。 Moreover, the external shape of the recessed part 22 is circular arc shape in the cross sectional view at the time of seeing from the direction orthogonal to the direction into which sunlight injects.
 これにより、円弧状の凹部22を有する第一のレンズアレイ20を実現できる。 Thereby, the first lens array 20 having the arc-shaped concave portion 22 can be realized.
 また、凹部22の最大深さL1は、20μm以下である。 Further, the maximum depth L1 of the recess 22 is 20 μm or less.
 これにより、第一のレンズアレイ20の集光特性への影響を抑制しつつ、光入射面21aの洗浄効果を従来よりも向上させることができる。 This makes it possible to improve the cleaning effect of the light incident surface 21a more than the conventional one while suppressing the influence on the light collection characteristic of the first lens array 20.
 また、複数の第一のレンズ21のそれぞれは、第一のレンズ21の光出射面21b側において太陽光が出射される方向に向けて突出する凸部24(個別凸部の一例)を有する。そして、光入射面21aには、さらに、複数の第一のレンズ21ごとに当該第一のレンズ21に対応する凸部24に向けて凹んだ個別凹部23が形成されている。 Further, each of the plurality of first lenses 21 has a convex portion 24 (an example of an individual convex portion) that protrudes toward the direction in which sunlight is emitted on the light emission surface 21 b side of the first lens 21. The light incident surface 21 a is further formed with an individual recess 23 recessed toward the convex portion 24 corresponding to the first lens 21 for each of the plurality of first lenses 21.
 これにより、個別凹部23を有することで凹部22のみであった場合に比べ凹みの高さが高くなるので、さらに洗浄効果を向上させることができる。 As a result, the height of the recess is increased by providing the individual recesses 23 as compared with the case where only the recesses 22 are provided, so that the cleaning effect can be further improved.
 また、個別凹部23の最大深さL2は、10μm以下である。 Further, the maximum depth L2 of the individual recess 23 is 10 μm or less.
 これにより、第一のレンズアレイ20の集光特性への影響を抑制しつつ、光入射面21aの洗浄効果をさらに向上させることができる。 As a result, the effect of cleaning the light incident surface 21 a can be further improved while suppressing the influence on the light collection characteristic of the first lens array 20.
 また、複数の第一のレンズ21のそれぞれは、凸レンズである。 In addition, each of the plurality of first lenses 21 is a convex lens.
 これにより、第一のレンズ21として凸レンズを用いて、第一のレンズアレイ20が実現できる。 Thus, using a convex lens as the first lens 21, the first lens array 20 can be realized.
 また、第一のレンズアレイ20は、アクリル樹脂で形成されている。 The first lens array 20 is formed of acrylic resin.
 これにより、第一のレンズアレイ20を低コスト化及び軽量化できる。 As a result, the cost and weight of the first lens array 20 can be reduced.
 また、以上のように、本実施の形態に係る第一のレンズアレイ20の製造方法は、太陽光を集光する第一のレンズ21がアレイ状に配列された第一のレンズアレイ20の製造方法であって、溶融した樹脂を金型に充填する射出工程(S20)と、充填された溶融樹脂(溶融された樹脂)を冷却する冷却工程(S40)とを含む。そして、冷却工程では、金型を冷却する速度を制御することにより第一のレンズアレイ20の太陽光が入射する光入射面21aに凹み(例えば、凹部22及び個別凹部23)を形成する。 In addition, as described above, in the method of manufacturing the first lens array 20 according to the present embodiment, the method of manufacturing the first lens array 20 in which the first lenses 21 for condensing sunlight are arranged in an array. The method includes an injection step (S20) of filling a molten resin into a mold, and a cooling step (S40) of cooling the filled molten resin (melted resin). Then, in the cooling step, depressions (for example, recesses 22 and individual recesses 23) are formed in the light incident surface 21a on which the sunlight of the first lens array 20 is incident by controlling the speed at which the mold is cooled.
 これにより、冷却工程において金型を冷却する速度を制御するといった簡易な方法で、凹み(例えば、凹部22及び個別凹部23)を形成することができる。例えば、切削加工などにより凹みを形成する場合に比べ、容易に凹みを形成できる。 Thus, the recesses (for example, the recesses 22 and the individual recesses 23) can be formed by a simple method of controlling the cooling speed of the mold in the cooling step. For example, the recess can be formed more easily than in the case of forming the recess by cutting or the like.
 また、第一のレンズアレイ20の製造方法では、複数の第一のレンズ21がアレイ状に配列された第一のレンズアレイ20を樹脂成型により一体的に作製することができるので、複数の第一のレンズ21のアレイ状の配列と対応するように、発電素子50が表面実装により実装されたプリント基板と第一のレンズアレイ20とを組合せることにより、容易に太陽電池モジュール10を製造することができる。 Further, in the method of manufacturing the first lens array 20, the first lens array 20 in which the plurality of first lenses 21 are arranged in an array can be integrally manufactured by resin molding. The solar cell module 10 is easily manufactured by combining the first lens array 20 with the printed circuit board on which the power generation element 50 is mounted by surface mounting so as to correspond to the arrayed arrangement of one lens 21. be able to.
 また、冷却工程では、冷却液により金型を冷却する。 In the cooling step, the mold is cooled by the cooling liquid.
 これにより、冷却液を用いるといった簡易な方法で、金型を冷却することができる。また、冷却液の温度などを調整することにより、容易に冷却時間を調整することができる。 Thereby, the mold can be cooled by a simple method using a coolant. Further, the cooling time can be easily adjusted by adjusting the temperature or the like of the coolant.
 (その他の実施の形態)
 以上、実施の態様に係るレンズアレイ及び当該レンズアレイの製造方法について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。
(Other embodiments)
As mentioned above, although the lens array which concerns on an aspect, and the manufacturing method of the said lens array were demonstrated based on embodiment, this indication is not limited to this embodiment.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, among the components described in the attached drawings and the detailed description, not only components essential for solving the problem but also components not essential for solving the problem in order to exemplify the above-mentioned technology May also be included. Therefore, the fact that those non-essential components are described in the attached drawings and the detailed description should not immediately mean that those non-essential components are essential.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の主旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, the embodiments can be realized by various combinations of the embodiments that can be conceived by those skilled in the art, or by combining components and functions of the embodiments within the scope of the present disclosure. Forms are also included in the present disclosure.
 上記実施の形態では、第一のレンズは、凸レンズである例について説明したが、これに限定されない。例えば、第一のレンズは、射出成型によって形成されるレンズであればよい。例えば、第一のレンズは、球面レンズ、非球面レンズ、フレネルレンズなどであってもよい。例えば、第一のレンズがフレネルレンズである場合、フレネル面は第一のレンズの光出射面側であるとよい。つまり、第一のレンズの光出射面に凹凸が形成されるとよい。 In the above embodiment, the first lens is described as an example of a convex lens, but the present invention is not limited to this. For example, the first lens may be a lens formed by injection molding. For example, the first lens may be a spherical lens, an aspheric lens, a Fresnel lens, or the like. For example, when the first lens is a Fresnel lens, the Fresnel surface may be on the light emitting surface side of the first lens. That is, it is preferable that asperities are formed on the light emitting surface of the first lens.
 上記実施の形態では、太陽電池モジュールは、第一のレンズアレイ及び第二のレンズアレイを備える例について説明したが、これに限定されない。太陽電池モジュールは、第二のレンズアレイは、備えていなくてもよい。 Although the solar cell module has been described in the above embodiment as an example including the first lens array and the second lens array, the present invention is not limited to this. The solar cell module may not have the second lens array.
 上記実施の形態では、光入射面には、凹部と個別凹部とが形成されている例について説明したが、これに限定されない。光入射面には、少なくとも凹部が形成されていればよい。すなわち、光入射面には、個別凹部が形成されていなくてもよい。 Although the said embodiment demonstrated the example in which the recessed part and the separate recessed part were formed in the light-incidence surface, it is not limited to this. At least a recess may be formed on the light incident surface. That is, the individual concave portions may not be formed on the light incident surface.
 上記実施の形態では、凹部及び個別凹部はドーム状の凹みであることについて説明したが、これに限定されない。例えば、凹部及び個別凹部の形状は、断面視において、三角形状であってもよいし、その他の形状でもよい。例えば、凹部は及び個別凹部は、錘状であってもよい。 Although the above-mentioned embodiment explained that a crevice and an individual crevice were dome shape depression, it is not limited to this. For example, the shapes of the recesses and the individual recesses may be triangular or other shapes in cross section. For example, the recesses and the individual recesses may be conical.
 上記実施の形態では、第一のレンズアレイの一辺のサイズが110mmであるときの凹部の深さが20μm以下である例について説明したが、凹部の深さは第一のレンズアレイのサイズに応じて変化し得る。例えば、第一のレンズアレイのサイズが大きくなるにつれ、凹部の深さが増してもよい。すなわち、凹部の最大深さは、第一のレンズアレイのサイズに応じて決定されてもよい。 In the above embodiment, an example in which the depth of the recess when the size of one side of the first lens array is 110 mm is 20 μm or less has been described, but the depth of the recess corresponds to the size of the first lens array Can change. For example, the depth of the recess may increase as the size of the first lens array increases. That is, the maximum depth of the recess may be determined according to the size of the first lens array.
 上記実施の形態では、第一のレンズの1辺のサイズが22mmであるときの個別凹部の深さが10μm以下である例について説明したが、個別凹部の深さは第一のレンズのサイズに応じて変化し得る。例えば、第一のレンズのサイズが大きくなるにつれ、個別凹部の深さが増してもよい。すなわち、個別凹部の最大深さは、第一のレンズのサイズに応じて決定されてもよい。 In the above embodiment, an example is described in which the depth of the individual recess is 10 μm or less when the size of one side of the first lens is 22 mm, but the depth of the individual recess is the size of the first lens It may change accordingly. For example, as the size of the first lens increases, the depth of the individual recesses may increase. That is, the maximum depth of the individual recesses may be determined according to the size of the first lens.
 本開示に係るレンズアレイ及びレンズアレイの製造方法は、集光用のレンズアレイに適用可能である。特に、太陽電池モジュールに用いる集光用のレンズアレイに有効である。 The lens array and the method of manufacturing the lens array according to the present disclosure can be applied to a lens array for collecting light. In particular, it is effective for the lens array for condensing used for a solar cell module.
 10  太陽電池モジュール
 20  第一のレンズアレイ(レンズアレイ)
 21  第一のレンズ(レンズ)
 21a  光入射面
 21b  光出射面
 22  凹部
 23  個別凹部
 24  凸部(個別凸部)
 30  第二のレンズアレイ
 31  第二のレンズ
 32  ベース部
 40  樹脂板
 50  発電素子
 60  電極
 70  外枠
 71  支承部材
 71a  支持部
 71b  先端部
 80、81  風
 90、91  ゴミ
10 solar cell module 20 first lens array (lens array)
21 First lens (lens)
21a light incident surface 21b light emitting surface 22 concave portion 23 individual concave portion 24 convex portion (individual convex portion)
Reference Signs List 30 second lens array 31 second lens 32 base portion 40 resin plate 50 power generation element 60 electrode 70 outer frame 71 support member 71 a support portion 71 b tip portion 80, 81 wind 90, 91 dust

Claims (10)

  1.  複数のレンズがアレイ状に配置され、前記複数のレンズのそれぞれが太陽光を集光するレンズアレイであって、
     前記太陽光が入射される光入射面と、
     前記光入射面の反対側に位置し前記光入射面に入射された前記太陽光が出射される光出射面と、を有し、
     前記光入射面には、前記複数のレンズにわたって前記光出射面側に凹んだ凹部が形成されている、
    レンズアレイ。
    A plurality of lenses are arranged in an array, and each of the plurality of lenses is a lens array for collecting sunlight,
    A light incident surface on which the sunlight is incident;
    A light emitting surface located opposite to the light incident surface and from which the sunlight incident on the light incident surface is emitted;
    The light incident surface is formed with a concave portion recessed on the light emitting surface side across the plurality of lenses.
    Lens array.
  2.  前記凹部は、前記レンズアレイを前記光入射面側から見た場合における前記レンズアレイの周縁から中心に向かうにつれ、深さが増す、
    請求項1に記載のレンズアレイ。
    The concave portion increases in depth as it goes from the periphery to the center of the lens array when the lens array is viewed from the light incident surface side.
    The lens array according to claim 1.
  3.  前記凹部は、前記太陽光が入射する方向と直交する方向から見た場合の断面視において、円弧状を有する、
    請求項1又は2に記載のレンズアレイ。
    The concave portion has an arc shape in a cross sectional view when viewed from a direction orthogonal to the direction in which the sunlight is incident.
    The lens array according to claim 1.
  4.  前記凹部の最大深さは、20μm以下である、
    請求項1~3のいずれか1項に記載のレンズアレイ。
    The maximum depth of the recess is 20 μm or less.
    The lens array according to any one of claims 1 to 3.
  5.  前記複数のレンズのそれぞれは、
      前記光出射面側において前記太陽光が出射される方向に向けて突出する個別凸部を有し、
      前記光入射面において前記個別凸部に向けて凹んだ個別凹部を有する、
    請求項1~4のいずれか1項に記載のレンズアレイ。
    Each of the plurality of lenses is
    It has an individual convex portion that protrudes toward the direction in which the sunlight is emitted on the light emitting surface side,
    It has an individual recess recessed toward the individual convex portion on the light incident surface,
    The lens array according to any one of claims 1 to 4.
  6.  前記個別凹部の最大深さは、10μm以下である、
    請求項5に記載のレンズアレイ。
    The maximum depth of the individual recess is 10 μm or less.
    The lens array according to claim 5.
  7.  前記複数のレンズのそれぞれは、凸レンズである、
    請求項5又は6に記載のレンズアレイ。
    Each of the plurality of lenses is a convex lens,
    A lens array according to claim 5 or 6.
  8.  前記レンズアレイは、アクリル樹脂で形成されている、
    請求項1~7のいずれか1項に記載のレンズアレイ。
    The lens array is formed of acrylic resin,
    The lens array according to any one of claims 1 to 7.
  9.  複数のレンズがアレイ状に配列され前記複数のレンズのそれぞれが太陽光を集光するレンズアレイの製造方法であって、
     溶融した樹脂を金型に充填する射出工程と、
     充填された前記樹脂を冷却する冷却工程と、を含み、
     前記冷却工程では、前記金型を冷却する速度を制御することにより前記レンズアレイの前記太陽光が入射される光入射面に前記複数のレンズにわたって凹んだ凹部を形成する、
    レンズアレイの製造方法。
    A manufacturing method of a lens array in which a plurality of lenses are arranged in an array and each of the plurality of lenses condenses sunlight,
    An injection process of filling the molten resin into a mold;
    Cooling the filled resin;
    In the cooling step, a concave portion is formed over the plurality of lenses on a light incident surface of the lens array on which the sunlight is incident by controlling a cooling rate of the mold.
    Method of manufacturing lens array.
  10.  前記冷却工程では、冷却液により前記金型を冷却する、
    請求項9に記載のレンズアレイの製造方法。
    In the cooling step, the mold is cooled by a cooling liquid.
    The manufacturing method of the lens array of Claim 9.
PCT/JP2018/024470 2017-06-29 2018-06-27 Lens array and method for manufacturing lens array WO2019004325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127726 2017-06-29
JP2017-127726 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004325A1 true WO2019004325A1 (en) 2019-01-03

Family

ID=64741645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024470 WO2019004325A1 (en) 2017-06-29 2018-06-27 Lens array and method for manufacturing lens array

Country Status (1)

Country Link
WO (1) WO2019004325A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084955A (en) * 2006-09-26 2008-04-10 Sharp Corp Condensing type solarlight power generation unit and condensing type solarlight power generator
JP2009257732A (en) * 2008-12-26 2009-11-05 Nippon Tokushu Kogaku Jushi Kk Solar system
US20120056081A1 (en) * 2010-09-07 2012-03-08 Glint Photonics, Inc. Light-Tracking Optical Device and Application to Light Concentration
JP2014029450A (en) * 2011-09-30 2014-02-13 Daikin Ind Ltd Light condensing film, solar battery module, and transfer mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084955A (en) * 2006-09-26 2008-04-10 Sharp Corp Condensing type solarlight power generation unit and condensing type solarlight power generator
JP2009257732A (en) * 2008-12-26 2009-11-05 Nippon Tokushu Kogaku Jushi Kk Solar system
US20120056081A1 (en) * 2010-09-07 2012-03-08 Glint Photonics, Inc. Light-Tracking Optical Device and Application to Light Concentration
JP2014029450A (en) * 2011-09-30 2014-02-13 Daikin Ind Ltd Light condensing film, solar battery module, and transfer mold

Similar Documents

Publication Publication Date Title
JP2006313810A (en) Light condensing solar power generator
JP6507915B2 (en) Concentrated solar power generation unit, concentrated solar power generation module, concentrated solar power generation panel, concentrated solar power generation apparatus
JP2013539067A (en) Surface structure, Fresnel lens and tool for forming the surface structure
CN103165717A (en) Concentrating photovoltaic module comprising small Fresnel lens array
JP2013172104A (en) Light condensing type photovoltaic power generation module and manufacturing method of the same
WO2012160994A1 (en) Concentrator solar cell and method for manufacturing same
US20210367554A1 (en) Fresnel lens for concentrator photovoltaic apparatus, concentrator photovoltaic system, and method of manufacturing fresnel lens for concentrator photovoltaic apparatus
JP2009257732A (en) Solar system
WO2019004325A1 (en) Lens array and method for manufacturing lens array
CN103331999A (en) Array high concentrating photovoltaic cell printed steel mesh with positioning function
KR200459976Y1 (en) Cover of panel for focusing of solar cell
US20090126780A1 (en) Solar Cell and Method of Manufacturing a Transparent Cover Plate
US10014427B2 (en) Solar cell module
CN202183404U (en) Spotlight photovoltaic glass used for solar power photovoltaic cell
CN202178725U (en) Condensing ultra-white pattern glass used for solar photovoltaic cell
WO2011124036A1 (en) Method for improving solar energy condensation efficiency in solar energy condensation electric power facility
JP2019012825A (en) Solar cell module
JP2014220268A (en) Condensed photovoltaic power generator and condenser lens member
KR20210056720A (en) embossingCover of panel for solar cell
US9343605B2 (en) Photovoltaic equipment
CN104354458A (en) Array type high power concentrating solar energy battery printing steel mesh with positioning function
US20110048500A1 (en) Photovoltaic concentration module and device
JP2020181166A (en) Lens array, and solar cell module
RU2436193C1 (en) Photovoltaic concentrator module
KR20120003754A (en) Solar photovoltaic generation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP