WO2019004289A1 - Reflective type screen - Google Patents

Reflective type screen Download PDF

Info

Publication number
WO2019004289A1
WO2019004289A1 PCT/JP2018/024394 JP2018024394W WO2019004289A1 WO 2019004289 A1 WO2019004289 A1 WO 2019004289A1 JP 2018024394 W JP2018024394 W JP 2018024394W WO 2019004289 A1 WO2019004289 A1 WO 2019004289A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
uneven surface
reflective screen
light scattering
Prior art date
Application number
PCT/JP2018/024394
Other languages
French (fr)
Japanese (ja)
Inventor
純一 ▲角▼田
澁谷 崇
雄一 ▲桑▼原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2019526983A priority Critical patent/JPWO2019004289A1/en
Priority to CN201890000121.8U priority patent/CN209417512U/en
Publication of WO2019004289A1 publication Critical patent/WO2019004289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43LARTICLES FOR WRITING OR DRAWING UPON; WRITING OR DRAWING AIDS; ACCESSORIES FOR WRITING OR DRAWING
    • B43L1/00Repeatedly-usable boards or tablets for writing or drawing
    • B43L1/04Blackboards
    • B43L1/06Blackboards rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43LARTICLES FOR WRITING OR DRAWING UPON; WRITING OR DRAWING AIDS; ACCESSORIES FOR WRITING OR DRAWING
    • B43L1/00Repeatedly-usable boards or tablets for writing or drawing
    • B43L1/04Blackboards
    • B43L1/10Writing surfaces thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the present invention relates to a reflective screen.
  • the reflective screen described in Patent Document 1 has a glass plate and a layer containing a light diffusing paint or pigment.
  • the glass plate has an uneven surface on the surface, and writing of characters and figures on the uneven surface and erasing of the writing are enabled.
  • a layer containing a light diffusing paint or pigment is formed on the back of the glass plate to reflect light incident on the surface of the glass plate.
  • the hot spot is a phenomenon in which the central portion of the reflective screen appears bright when the image is projected on the reflective screen. This phenomenon occurs when the front of the reflective screen reflects incident light.
  • the present invention has been made in view of the above problems, and its main object is to provide a reflective screen in which the erasability of writing with ink is improved and the occurrence of hot spots is suppressed.
  • the uneven surface is 0.0040 ⁇ Ra / RSm ⁇ 0.010 (1)
  • Ra Arithmetic mean roughness
  • RSm Average length of roughness curvilinear elements
  • Sku A reflective screen is provided which satisfies the kurtosis.
  • a reflective screen in which the erasability of ink writing is improved and the occurrence of hot spots is suppressed.
  • FIG. 1 is a front view of a reflective screen according to one embodiment.
  • FIG. 1 is a top view of a reflective screen according to one embodiment.
  • FIG. 2 is a cross-sectional view of a reflective screen according to one embodiment.
  • FIG. 7 illustrates diffuse reflection and diffuse transmission on a textured surface of a reflective screen according to one embodiment. It is a figure which shows the relationship between Sku and height distribution. It is a figure which shows the relationship between Sku and uneven
  • FIG. 1 is a front view of a reflective screen according to one embodiment.
  • FIG. 2 is a top view of a reflective screen according to one embodiment.
  • P is a projector
  • U1 is a user facing the front of the central portion of the reflective screen 10
  • U2 is a user who observes the reflected light at the same reflection angle as the incident light from the projector P to the reflective screen 10.
  • FIG. 3 is a cross-sectional view of a reflective screen according to one embodiment.
  • the reflective screen 10 has a front surface 21 and a rear surface that is the opposite surface of the front surface 21, and has an uneven surface 23 on the front surface 21. Writing with ink and erasing of the writing are performed on the uneven surface 23. Also, an image is projected from the front to the uneven surface 23.
  • a writing instrument such as a dedicated marker or a printer head is used.
  • a eraser for erasing the written data
  • a solvent etc.
  • a projector P or the like is used to project an image.
  • the ink contains, for example, a dye, a solvent for dissolving the dye, and a release agent.
  • An alcohol etc. are used as a solvent.
  • An oil etc. are used as a mold release agent.
  • the dye is not soluble in the release agent.
  • the writability of the ink is evaluated by both the high-speed writting test and the continuous writting test.
  • the high-speed write-out test writing is performed on the uneven surface 23 by moving the dedicated marker at high speed while touching the uneven surface 23. In order to move at a high speed, discharge of the release agent from the dedicated marker is suppressed, and writing with insufficient release agent is performed. In the high-speed write-off test, it is evaluated whether writing with insufficient release agent can be sufficiently erased by the eraser. Specific test conditions will be described in the section of Examples.
  • the ink is applied in a predetermined range of the concavo-convex surface 23 to repeat writing on the concavo-convex surface 23 and erasing the writing with the eraser 50 times repeatedly.
  • a film of the release agent is likely to be formed on the uneven surface 23.
  • the pigment is incorporated into the film, and the incorporated pigment becomes difficult to remove by the eraser.
  • the degree of color remaining due to the formation of the film of the release agent is evaluated. Specific test conditions will be described in the section of Examples.
  • the reflective screen 10 may be surrounded by a frame (not shown).
  • the frame may be provided with a hanger or a leg, and the leg may be attached with a caster.
  • the reflective screen 10 is used indoors, for example.
  • the use place of the reflective screen 10 is not particularly limited.
  • a reflective screen may be applied to a vehicle or a wall of a building.
  • the reflective screen 10 includes, for example, a transparent member 20, an adhesive layer 30, a light scattering layer 40, and a light reflecting layer 50 in this order from the front side to the rear side.
  • a transparent member 20 for example, a transparent member 20, an adhesive layer 30, a light scattering layer 40, and a light reflecting layer 50 in this order from the front side to the rear side.
  • the transparent member 20 has a first main surface 21 and a second main surface 22 opposed to each other, and has an uneven surface 23 on the first main surface 21. Writing with ink and erasing of the writing are performed on the uneven surface 23. Also, an image is projected from the front to the uneven surface 23.
  • the uneven surface 23 occupies the entire surface of the first main surface 21 in FIGS. 1 to 2, but may occupy only a part of the first main surface 21. In the latter case, the remaining portion of the first main surface 21 may be a smooth surface without irregularities. Further, when the uneven surface 23 is partially formed on the first main surface 21, a plurality of uneven surfaces 23 smaller than the first main surface 21 may be arranged at intervals.
  • the uneven surface 23 may be formed in a rectangular shape in plan view as shown in FIG.
  • the vertical dimension L1 of the uneven surface 23 is, for example, 300 mm or more.
  • the horizontal dimension L2 of the uneven surface 23 is 500 mm or more, for example.
  • the shape in planar view of the uneven surface 23 may be various.
  • the uneven surface 23 satisfies the following formulas (1) and (2). 0.0040 ⁇ Ra / RSm ⁇ 0.010 (1) Sku ⁇ 3.5 (2)
  • Ra Arithmetic mean roughness (unit: ⁇ m)
  • RSm Average length of roughness curve element (unit: ⁇ m)
  • Sku Kurtosis (no unit)
  • Arithmetic mean roughness Ra and mean length RSm of the roughness curvilinear element are measured in accordance with Japanese Industrial Standard (JIS B0601: 2013). Ra and RSm are measured without setting the cutoff value.
  • Ra and RSm are measured with a laser microscope and a rectangular area of 0.26 mm long and 0.26 mm long at a magnification of 50 ⁇ and measured along each of 10 straight lines drawn randomly in the taken image, The average value of the measured values is adopted.
  • Ra represents the height difference of the unevenness
  • RSm represents the period of the unevenness (for example, the period of the convex apex).
  • FIG. 4 is a view showing diffuse reflection and diffuse transmission on the uneven surface of the reflective screen according to one embodiment.
  • the arrow A indicates the incidence of light from the projector P (see FIG. 2) to the uneven surface 23
  • the arrow B indicates the diffuse reflection at the uneven surface 23 of the light incident from the projector P
  • the arrow C indicates the unevenness
  • the diffuse reflection of the light transmitted through the surface 23 at the light scattering layer 40 is shown
  • the arrow D indicates the diffuse transmission at the uneven surface 23 of the light diffusely reflected by the light scattering layer 40.
  • the presence or absence of the hot spot is confirmed, for example, at the position of the user U2 shown in FIG.
  • Ra / RSm of the concavo-convex surface 23 is 0.0040 or more, diffuse reflection and diffuse transmission easily occur on the concavo-convex surface 23 as described above. As a result, the occurrence of hot spots can be suppressed.
  • Ra / RSm of the concavo-convex surface 23 is 0.010 or less, the height difference of the concavities and convexities is not too large compared to the concavo-convex cycle, so the ink written on the concavo-convex surface 23 is easily removed. The insufficient writing of the release agent can be sufficiently erased.
  • Ra of the uneven surface 23 is preferably 0.10 ⁇ m or more. Interference of light can be suppressed as Ra of the uneven surface 23 is 0.10 ⁇ m or more, and glare can be suppressed. Glare is a phenomenon in which a fine spotted pattern due to light and dark of light is seen. Speckled patterns are caused by light interference. Ra of the uneven surface 23 is preferably 2.0 ⁇ m or less.
  • Kurtiss Sku is measured in accordance with the international standard (ISO 25178). Sku measures without setting a cutoff value. In Sku, a rectangular area of 0.26 mm long and 0.26 mm long is photographed by a laser microscope and measured at a magnification of 50 and a mean value of the measured values is adopted.
  • Sku is represented by the following formula (3).
  • Sq represents the root mean square height of the surface
  • A represents the area
  • Z (x, y) represents the height at the surface coordinates (x, y).
  • Sku means kurtosis which is a measure of the sharpness of the surface and represents the sharpness (sharpness) of the height distribution.
  • FIG. 5 is a diagram showing the relationship between Sku and height distribution.
  • FIG. 5A is a view showing an example of the height distribution when Sku is smaller than 3.0.
  • FIG. 5B is a view showing an example of the height distribution when Sku is 3.0.
  • FIG. 5C is a view showing an example of the height distribution when Sku is larger than 3.0.
  • the height distribution is a distribution more discrete from the average value than the Gaussian distribution, and has a flatter shape than the Gaussian distribution.
  • the height distribution is Gaussian.
  • the height distribution is a distribution more concentrated on the average value than the Gaussian distribution, and has a shape sharper than the Gaussian distribution.
  • FIG. 6 is a diagram showing the relationship between Sku and the concavo-convex shape.
  • FIG. 6A shows an example of the concavo-convex shape in the case where Sku is smaller than 3.0.
  • FIG. 6B is a view showing an example of the concavo-convex shape in the case where Sku is larger than 3.0.
  • Sku of the uneven surface 23 is 3.5 or less, since the peaks are flat and there are sufficiently many bumps and depressions, the ink is easily removed, and the color residue due to the formation of the film of the release agent is reduced in the continuous writing out test. it can. Sku of the uneven surface 23 is preferably 2.0 or more.
  • the arithmetic mean roughness Ra of the second main surface 22 of the transparent member 20 is, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less.
  • the transparent member 20 may have a transparent substrate 24 and a covering layer 25 provided on the opposite side of the light scattering layer 40 with respect to the transparent substrate 24.
  • the covering layer 25 forms the uneven surface 23.
  • the covering layer 25 may be omitted, and the transparent substrate 24 may form the uneven surface 23.
  • the transparent substrate 24 is formed of, for example, one selected from glass, polycarbonate resin, acrylic resin, and polyester resin, and is preferably formed of glass from the viewpoint of rigidity and design.
  • the transparent substrate 24 formed of glass is also referred to as a glass substrate 24.
  • the glass substrate 24 is formed of, for example, soda lime glass, aluminosilicate glass, alkali-free glass, borosilicate glass, or the like.
  • the glass substrate 24 may be either untempered glass or tempered glass. Untempered glass is obtained by forming molten glass into a plate and annealing.
  • the tempered glass may be either physically tempered glass or chemically tempered glass.
  • Physically tempered glass is a glass surface strengthened by rapidly cooling a uniformly heated glass plate from a temperature near the softening point and generating a compressive stress on the glass surface by the temperature difference between the glass surface and the inside of the glass. .
  • Chemically strengthened glass is one in which the glass surface is strengthened by generating compressive stress on the glass surface by an ion exchange method or the like.
  • the glass substrate 24 is formed by a float method, a fusion method, or the like.
  • the glass substrate 24 is a flat plate in FIG. 2 but may be a curved plate.
  • gravity forming, press forming or the like is used as bending for bending a flat plate into a curved plate.
  • the glass surface may be physically strengthened by quenching the uniformly heated glass plate from a temperature near the softening point and generating a compressive stress on the glass surface by the temperature difference between the glass surface and the inside of the glass .
  • Chemically strengthened glass can be obtained by generating compressive stress on the glass surface by an ion exchange method or the like after bending.
  • the glass substrate 24 transmits light of an image.
  • the glass substrate 24 is colorless and transparent, but may be colored and transparent.
  • the haze value of the glass substrate 24 is 50% or less. If the haze value of the glass substrate 24 is 50% or less, sufficient transparency can be obtained.
  • the haze value of the glass substrate 24 is usually 1% or less.
  • the haze value is measured in accordance with the Japanese Industrial Standard (JIS K7136), and of the transmitted light passing through the test plate to be measured in the thickness direction, the transmitted light deviated by 2.5 ° or more from the incident light by forward scattering. It is determined as a percentage of As a light source used for measurement of haze value, D65 light source as described in Japanese Industrial Standard (JIS Z8720: 2012) is used.
  • the thickness of the glass substrate 24 is not particularly limited, and is, for example, 0.1 mm to 20 mm.
  • the thickness of the glass substrate 24 is preferably 0.3 mm to 8 mm.
  • the thickness of the glass substrate 24 tends to be thinner than 0.1 mm, and when the thickness of the glass substrate 24 is larger than 20 mm, the weight of the reflective screen 10 is heavy. It may be necessary to reinforce walls and the like.
  • the front surface of the glass substrate 24 has an uneven surface.
  • a general processing method is used, for example, mechanical methods, such as a blast method, and etching methods, such as wet and dry, are used.
  • etching method an aqueous solution in which hydrogen fluoride and ammonium fluoride are mixed, an ammonium hydrogen fluoride aqueous solution, or the like is used as an etching solution for the glass substrate 24, for example.
  • the etching method may be any one of a single step or a plurality of steps such as two steps, but a plurality of steps are preferable from the viewpoint of easily obtaining a desired surface shape, and a two step etching is more preferable from the viewpoint of productivity.
  • the glass substrate 24 etched with an aqueous solution (first etching solution) in which hydrogen fluoride and ammonium fluoride are mixed is washed away, and then an aqueous solution containing hydrofluoric acid (first Etching treatment may be performed again with the etching solution 2), and this two-step etching treatment is preferable.
  • the first etching solution may also contain an organic solvent such as alcohol or glycol for adjusting the solubility of the deposited crystals or dissolving the organic substance.
  • a two-step etching process for example, the following method may be used. 8 to 20 mass% of ammonium hydrogen fluoride as a first etching solution, and 0 to 3 of either a fluorinated alkali metal salt such as sodium hydrogen fluoride (NaHF 2 ) or ammonium hydrogen fluoride (NH 4 F 2 ) Prepare an aqueous solution in which mass% and 15 to 40 mass% of propylene glycol are mixed. Next, a textured surface is formed on the surface by disposing the glass in a stationary or agitated first etching solution. The glass can be left in the first etchant for between 3 and 5 minutes, and conditioned by treatment for longer times to produce a rougher surface roughness.
  • a fluorinated alkali metal salt such as sodium hydrogen fluoride (NaHF 2 ) or ammonium hydrogen fluoride (NH 4 F 2 )
  • a textured surface is formed on the surface by disposing the glass in a stationary or agitated first etching solution
  • an aqueous solution containing 5 to 15% by mass of hydrofluoric acid is prepared as a second etching solution.
  • the second etching solution may further contain 2 to 20% by mass of a mineral acid. Examples of mineral acids include sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid.
  • etching conditions hydrofluoric acid concentration and processing time
  • the transparent substrate 24 has a single-layer structure in the present embodiment, but may have a multilayer structure, for example, laminated glass.
  • a laminated glass has a 1st glass plate, a 2nd glass plate, and the intermediate film which joins a 1st glass plate and a 2nd glass plate.
  • the covering layer 25 covers at least a part of the front surface of the transparent substrate 24 and covers at least the uneven surface of the front surface of the transparent substrate 24.
  • the cover layer 25 has an uneven surface on its front surface that follows the uneven surface of the transparent substrate 24.
  • the covering layer 25 is formed of, for example, at least one selected from a silicone resin, a fluorine resin, and a urethane resin.
  • the covering layer 25 preferably has a lower affinity to the ink than the glass substrate 24. It becomes easy to erase the writing by the ink.
  • the cover layer 25 preferably contains a silicone-based cured product from the viewpoint of the affinity to ink and durability.
  • the silicone-based cured product is obtained, for example, by condensation curing at least one of a curable silicone resin and a curable silicone oligomer.
  • silicone resins and silicone oligomers are molecular weight, and silicone resins of relatively low molecular weight are referred to as silicone oligomers.
  • the silicone oligomer generally refers to one having a molecular weight of about 1,000 to a dimer or trimer. Silicone resins and silicone oligomers are composed of silicon-containing bonding units called M units, D units, T units, and Q units.
  • a curable silicone resin and a curable silicone oligomer are resins having a branched structure mainly composed of T units or Q units, and a resin composed only of T units, a resin composed only of Q units , T units and Q units.
  • the resins may also contain small amounts of M units and D units.
  • the T unit has one silicon atom and one hydrogen atom or monovalent organic group bonded to the silicon atom and another silicon atom. And a unit having three bonded oxygen atoms (or other functional groups capable of bonding to other silicon atoms).
  • Monomers forming the silicon-containing bond units is represented by (R'-) a Si (-Z) 4-a.
  • a is an integer of 0 to 3
  • R ' is a hydrogen atom or a monovalent organic group
  • Z is a hydroxyl group, a chlorine atom or a monovalent functional group capable of binding to another silicon atom.
  • Z is a hydrolyzable group
  • examples of the hydrolyzable group include an alkoxy group, an acyloxy group, and an isocyanate group.
  • T unit as a main constituent unit as a silicon-containing bonding unit
  • one having T units as the main constitutional units means organopolysiloxanes in which the ratio of the number of T units to the total number of M units, D units, T units and Q units is 50% to 100%. More preferably, an organopolysiloxane having a ratio of the number of T units of 70% to 100% is used.
  • D unit and Q unit are preferable as another unit contained in a small amount other than T unit.
  • curable silicone resin and the curable silicone oligomer commercially available compounds can be used.
  • curable silicone resins KR 220 L, KR 220 LP, KR 242 A, KR 251, KR 211, KR 255, KR 300, KR 300, KR 311, KR 262 1-1 manufactured by Shin-Etsu Chemical Co., Ltd. SR2402, AY 42-163, Z6018 manufactured by Toray Dow Corning, etc. can be used. .
  • curable silicone oligomer Shin-Etsu Chemical KC89S, KR515, KR500, X40-9225, X40-9246, X40-9250, KR401N, X40-9227, KR510, KR9218, KR213, KR400, X40-2327, KR401, etc. Can be used. One of these may be used alone, or a plurality of types may be used in combination.
  • the covering layer 25 may contain a fluorine-based compound in addition to the silicone-based cured product in order to improve the erasability of the writing by the ink.
  • the fluorine-based compound a compound containing a C n F 2n + 1 group or C n F 2n O groups are preferred.
  • n is a natural number of 1 or more.
  • the coating layer 25 is formed by applying a coating solution to the glass substrate 24 and curing the applied coating solution.
  • a coating solution known methods can be used. For example, methods such as spray coating, slit coating, die coating, spin coating, dip coating, curtain coating and the like can be used.
  • the coating liquid contains at least one of a curable silicone resin and a curable silicone oligomer, and a solvent.
  • the coating liquid may further contain at least one of a curing catalyst, a fluorine-based compound, a leveling agent, and a pigment, as necessary. It is preferable to carry out heating and / or active energy ray irradiation to accelerate curing.
  • the unevenness shape of the uneven surface 23 can be controlled by controlling the application amount of the coating solution and the solid content concentration (nonvolatile content concentration).
  • the concavo-convex shape of the concavo-convex surface of the glass substrate 24 is the same, the difference in height between the concavo-convex surface 23 of the covering layer 25 decreases as the application amount of the coating liquid increases.
  • the concavo-convex shape of the concavo-convex surface of the glass substrate 24 is the same, the height difference of the concavo-convex surface 23 becomes lower as the solid content concentration of the coating liquid is higher.
  • the coating solution is thinly stretched with a sponge or the like, and then used after wiping off the excess. The amount of coating solution applied can be adjusted by the amount of wiping.
  • the covering layer 25 is preferably formed to have an average layer thickness of 0.1 ⁇ m.
  • the transparent member 20 may further have a base layer 26 between the transparent substrate 24 and the covering layer 25 for improving the adhesion between the transparent substrate 24 and the covering layer 25 as shown in FIG.
  • the transparent member 20 has the covering layer 25 on the side opposite to the light scattering layer 40 with reference to the transparent substrate 24 in the present embodiment, the covering member 25 may not be provided.
  • Writing with the ink or erasing of the writing, projection of an image, or the like may be performed on the uneven surface of the transparent substrate 24.
  • the front surface of the transparent substrate 24 is an uneven surface in the present embodiment, but may be a flat surface. In the latter case, as shown in FIG. 10, the transparent member 20 further includes an uneven layer 27 formed on the flat surface of the transparent substrate 24.
  • a embossing method, an etching method, an imprint method, a coating method, etc. may be used alone or in any combination.
  • the concavo-convex layer 27 is formed by pressing the mold against the resin layer softened by heating and transferring the concavities and convexities of the mold to the resin layer.
  • the uneven surface is formed on the front surface of the resin layer by immersing the resin layer in the etching solution.
  • the concavo-convex layer 27 is formed by sandwiching the transfer material between the transparent substrate 24 and the mold, transferring the concavo-convex pattern of the mold to the transfer material, and solidifying the transfer material.
  • Form Solidification includes light curing and heat curing.
  • the concavo-convex layer 27 is formed by applying a coating liquid containing particles and a binder to the transparent substrate 24 and solidifying the applied coating liquid.
  • a coating method a spray method is mentioned, for example.
  • droplets are applied to the transparent substrate 24 by spraying a coating liquid containing particles and a binder from a thin nozzle under pressure.
  • the particles can be appropriately selected from inorganic particles, organic particles and the like.
  • the binder can be appropriately selected from organic materials and inorganic materials.
  • writing with the ink or erasing of the writing may be performed on the concavo-convex layer 27 or image projection may be performed, writing on the covering layer 25 covering the concavo-convex layer 27 as shown in FIG. , And may be projected video. Further, as shown in FIG. 10, an underlayer 26 may be provided between the uneven layer 27 and the covering layer 25.
  • the unevenness shape of the uneven surface 23 can be controlled by controlling the application amount of the coating solution and the solid content concentration (nonvolatile content concentration).
  • the concavo-convex shape of the concavo-convex layer 27 is the same, the difference in height between the concavo-convex surface 23 of the covering layer 25 decreases as the application amount of the coating liquid increases.
  • the concavo-convex shape of the concavo-convex layer 27 is the same, the height difference of the concavo-convex surface 23 of the covering layer 25 becomes lower as the solid content concentration of the coating liquid is higher.
  • the coating solution is thinly stretched with a sponge or the like, and then used after wiping off the excess. The amount of coating solution applied can be adjusted by the amount of wiping.
  • the uneven surface of the transparent substrate 24 is the uneven surface 23 of the transparent member 20.
  • the uneven surface of the covering layer 25 is the uneven surface 23 of the transparent member 20.
  • the uneven layer 27 is formed on the flat surface, and the underlayer 26 or the covering layer 25 is not further formed on the uneven layer 27, the uneven surface of the uneven layer 27 is It is the uneven surface 23 of the transparent member 20.
  • the uneven layer 27 is formed on the flat surface, and the underlayer 26 or the covering layer 25 is further formed on the uneven layer 27, the uneven surface of the covering layer 25 Is the uneven surface 23 of the transparent member 20.
  • the adhesive layer 30 is provided between the transparent member 20 and the light scattering layer 40 and bonds the transparent member 20 and the light scattering layer 40.
  • the adhesive layer 30 is used when the light scattering layer 40 is formed into a sheet and then attached to the transparent member 20.
  • the light scattering layer 40 is formed into a sheet and then attached to the transparent member 20.
  • the light scattering layer 40 may be formed by applying a raw material liquid of the light scattering layer 40 to the transparent member 20. In the latter case, the adhesive layer 30 is unnecessary.
  • the light scattering layer 40 scatters the light transmitted through the transparent member 20. Thereby, the light scattering layer 40 has a white color, and the contrast of the image visually recognized by the users U1 and U2 is improved.
  • the light scattering layer 40 is formed of a plurality of materials having different refractive indices.
  • the light scattering layer 40 includes, for example, a matrix portion and light scattering portions scattered in the matrix portion.
  • the matrix part may contain either an inorganic material or an organic material.
  • the inorganic material may, for example, be silicon dioxide.
  • Examples of the organic material include polyvinyl alcohol resin, polyvinyl butyral resin, epoxy resin, acrylic resin, polyester resin, polycarbonate resin, melamine resin, polyurethane resin, urethane acrylate resin, silicone resin and the like.
  • the organic material may be any of a thermosetting resin, a photocurable resin, and a thermoplastic resin.
  • the light scattering portion may contain either particles or cavities, or both.
  • the particles may be either inorganic particles or organic particles.
  • Materials of the inorganic particles include silicon dioxide, titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, calcium carbonate, phosphinate, diphosphinate, barium sulfate, talc, mica and the like.
  • Examples of the material of the organic particles include polystyrene resin, acrylic resin, polyurethane resin and the like.
  • the particles may also be porous particles.
  • the pore diameter of the pores of the porous particles is preferably 2 nm to 50 nm.
  • the number average particle size of the particles is 100 nm to 10 ⁇ m.
  • the cavity is formed by a stretching operation, a foaming agent, and the like.
  • the light scattering layer 40 is a porous layer.
  • the appropriate blending amount of the particles is in the case where the light scattering portion includes only the particles and both the particles and the cavities. It is different.
  • the proportion of particles in the light scattering layer 40 is preferably 20% by volume to 98% by volume, and more preferably 30% by volume to 90% by volume.
  • the proportion of particles in the light scattering layer 40 is preferably 0.1% by volume to 50% by volume, and more preferably 0.5% by volume to 30% by volume.
  • the film used as the light scattering layer 40 may be a stretched film, and it may be a uniaxially stretched film stretched in the extrusion direction (longitudinal direction) of the film, or a biaxially stretched film stretched in the longitudinal direction and the transverse direction. Good.
  • the stretched film as the light scattering layer 40 is formed of a resin such as a polyester resin, and may include particles in the interior of the resin, and may include particles and cavities formed at the time of stretching starting from the particles. When the particles and the cavity are included, the plurality of particles and the plurality of cavities are dispersed and disposed inside the stretched film.
  • the particles are formed of, for example, barium sulfate, aluminum oxide, titanium oxide, or calcium carbonate.
  • the particle diameter of the inorganic particles is preferably 1 ⁇ m or less.
  • the particles are formed of talc, mica, calcium carbonate, phosphinate, diphosphinate or the like.
  • the particle size of the particles is preferably 5 ⁇ m or less.
  • the adhesion between the particles and the matrix resin is preferably as small as possible to create a void from the vicinity of the particles when the film is stretched.
  • the cavity formed by stretching is a structure elongated in the stretching direction, and is a structure having a high aspect ratio between the thickness direction and the stretching direction. Therefore, even in the case of a thin stretched film, it is possible to include a large number of cavities in the light path, so that efficient reflection is possible even when the proportion of particles is smaller than in the case of particles alone. Including a cavity is likely to increase the contrast of the image.
  • the light scattering layer 40 may further include a light absorbing portion in addition to the matrix portion and the light scattering portion.
  • the light absorbing portion contains light absorbing particles such as carbon black and titanium black.
  • the ratio of the light absorbing portion to the light scattering layer 40 is, for example, 0.01% by volume to 5% by volume, preferably 0.1% by volume to 3% by volume.
  • the light absorbing unit improves the contrast of the image.
  • the total light transmittance of the light scattering layer 40 is 15% to 40%.
  • the “total light transmittance” refers to one remaining main surface (for example, the back surface) of the light scattering layer 40 with respect to incident light that is incident at an incident angle of 0 ° on one main surface (for example, the front surface) of the light scattering layer 40
  • the percentage of the total transmitted light transmitted is meant.
  • the total light transmittance is measured in accordance with the Japanese Industrial Standard (JIS K7136), and is obtained as the transmittance including diffused light among the transmitted light which transmits the test plate to be measured in the thickness direction.
  • JIS K7136 Japanese Industrial Standard
  • D65 light source as described in Japanese Industrial Standard (JIS Z8720: 2012) is used.
  • the light reflecting layer 50 reflects the light from the light scattering layer 40 toward the light scattering layer 40.
  • the light reflecting layer 50 is configured of one layer or multiple layers. Specifically as a constituent material of a layer, the following is mentioned.
  • the light reflecting layer 50 includes at least one of (1) a metal layer, (2) a layer containing a resin and light reflecting particles dispersed in the resin, and (3) a dielectric multilayer film, Or more may be included. The combination is not particularly limited.
  • the metal contained in the light reflecting layer 50 is preferably a single metal or alloy containing at least one of silver and aluminum from the viewpoint of reflectance and color.
  • the metal layer may be formed by, for example, attaching a metal foil or a metal plate, physical vapor deposition such as sputtering or vacuum evaporation, silver mirror reaction or plating, etc. Can be mentioned.
  • the light reflecting layer 50 may also include a resin and light reflective particles dispersed in the resin.
  • the light reflecting layer 50 is formed, for example, by applying a liquid in which a resin composition and light reflecting particles are mixed to the light scattering layer 40 and solidifying the applied liquid.
  • the liquid may contain a solvent.
  • the resin is a thermoplastic resin, it is formed by extruding a resin material obtained by mixing the resin composition and the light reflective particles into a sheet.
  • metal particles are used as the light reflective particles.
  • the metal is a single metal or alloy containing at least one of silver and aluminum.
  • the shape of the light reflective particles may be spherical or plate-like, but is preferably plate-like from the viewpoint of reflectance.
  • the light reflecting layer 50 may also include a dielectric multilayer film.
  • the dielectric multilayer film can be formed by a method of laminating a plurality of dielectrics having different refractive indexes.
  • the high refractive index dielectric include Si 3 N 4 , AlN, NbN, SnO 2 , ZnO, SnZnO, Al 2 O 3 , MoO, NbO, TiO 2 and ZrO 2 .
  • dielectrics having a refractive index lower than that of the high refractive index dielectric include SiO 2 , MgF 2 , and AlF 3 .
  • the sum of the regular reflectance, the diffuse reflectance, the external transmittance and the absorptivity is set to 100%.
  • the sum of the regular reflectance and the diffuse reflectance is the total reflectance.
  • a measurement sample of the regular reflectance and the diffuse reflectance one in which the light reflection layer 50 is formed on a glass substrate (specifically, a 2 mm thick soda lime glass plate) is used.
  • the regular reflectance of the light reflecting layer 50 is measured as an absolute reflectance.
  • the specular reflectance of the light reflection layer 50 is such that light having a wavelength of 550 nm is incident at an incident angle of 5 ° from the glass substrate side to the surface on the glass substrate side in the light reflection layer 50 of the measurement sample.
  • the detected light is detected by a spectrophotometer to obtain a measurement value.
  • a commercially available one for example, manufactured by Hitachi, Ltd., model: U-4100 is used.
  • the diffuse reflectance of the light reflecting layer 50 is calculated by subtracting the regular reflectance of the light reflecting layer 50 from the total reflectance of the light reflecting layer 50.
  • the total reflectance of the light reflecting layer 50 is measured as an absolute reflectance.
  • the total reflectance of the light reflection layer 50 is determined by placing the measurement sample inside the integrating sphere and setting the incident angle 5 ° from the glass substrate side to the surface of the light reflection layer 50 on the glass substrate side at a wavelength of 550 nm. Light is incident, and light reflected in various directions is collected by an integrating sphere and detected by a spectrophotometer to be a measurement value.
  • the specular reflectance of the light reflecting layer 50 is preferably 40% or more. If the specular reflectance of the light reflection layer 50 is 40% or more, the image is hardly blurred.
  • the regular reflectance of the light reflecting layer is more preferably 50% or more.
  • the diffuse reflectance of the light reflecting layer 50 is preferably less than 40%. If the diffuse reflectance of the light reflecting layer 50 is less than 40%, blurring of the image does not occur.
  • the total of the specular reflectance and the diffuse reflectance of the light reflecting layer 50 is preferably 30 to 100%.
  • the external transmittance of the light reflecting layer 50 is preferably less than 50%. If the external transmittance of the light reflecting layer 50 is less than 50%, sufficient brightness of the image can be obtained.
  • the light reflecting layer 50 is preferably a metal layer.
  • the light reflection layer 50 is formed on the light scattering layer 40 by plating, sputtering, vapor deposition, or the like.
  • the light reflecting layer 50 is in close contact with the light scattering layer 40 in FIG. 3, but may not be in close contact with the light scattering layer 40, and a gap may be formed between the light reflecting layer 50 and the light scattering layer 40.
  • the light reflecting layer 50 may be formed separately from the light scattering layer 40.
  • the front surface of the light reflecting layer 50 has almost no unevenness.
  • the arithmetic mean roughness Ra of the front surface of the light reflecting layer 50 is, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less.
  • the method of manufacturing the reflective screen has a step of manufacturing a laminate including the glass substrate 24, the light scattering layer 40 and the light reflecting layer 50.
  • the above-mentioned resin substrate may be used as a transparent substrate.
  • Reflective screens are suitable for applications where projection and scraping occur.
  • CM -Interior of living space
  • CM display of educational images-Display of information and advertisements at car dealers-Supermarket
  • CM display of educational images-Display of information and advertisements at car dealers-Supermarket
  • CM display of educational images-Display of information and advertisements at car dealers-Supermarket
  • CM display of educational images-Display of information and advertisements at car dealers-Supermarket
  • CM display of educational images-Display of information and advertisements at car dealers-Supermarket
  • information notification applications
  • applications such as events- Use as a glass wall that can change the pattern of wallpaper.
  • Examples of applications in table tops, casings and the like include the following applications. -Restaurant table tops, desks (desktops), kitchen counters, tabletop partitions Also, the following applications can be mentioned as applications in vehicles. -Partition part of the Shinkansen-Display of TV and DVD images as an in-car partition in a car.
  • the reflective screen 10 When the reflective screen 10 is installed on a wall or the like in these applications, it can be attached using a general adhesive or sealing material available for construction or the like.
  • Test Example 1 to Test Example 4 and Test Example 12 are Examples, and Test Examples 5 to 11 are Comparative Examples.
  • Test Example 1 a main surface of a glass plate (a soda lime glass made by Asahi Glass, thickness 3 mm) wet-etched was prepared as a transparent member.
  • the wet etching process was performed in two steps using the first etching solution and the second etching solution.
  • An ammonium hydrogen fluoride aqueous solution was used as the first etching solution.
  • the treatment time with the first etching solution was 60 seconds, and then, before the treatment with the second etching solution, crystals formed on the glass surface by the treatment with the first etching solution were removed by water washing.
  • An aqueous solution containing hydrofluoric acid, sulfuric acid, and hydrochloric acid was used as the second etching solution.
  • the underlayer and the covering layer were not formed on the uneven surface of the wet-etched glass plate.
  • Test Example 1 a white PET film as a light scattering layer was previously formed with an aluminum deposition layer as a light reflection layer and bonded with an adhesive on the surface opposite to the uneven surface of the prepared glass plate. A mold screen was made.
  • a biaxially stretched film (thickness 50 ⁇ m, total light transmittance: 28.5%) having a plurality of cavities formed with aluminum diethylphosphinate aluminum particles (average particle diameter 2 ⁇ m) as a starting point was used. .
  • the aluminum deposited layer was disposed on the opposite side of the white PET film to the glass plate.
  • Test Example 2 A two-step wet-etched glass plate was obtained in the same manner as in Test Example 1 except that the first etching liquid containing ammonium hydrogen fluoride at a higher concentration than the first etching liquid in Test Example 1 was used. The underlayer and the covering layer were not formed on the uneven surface of the wet-etched glass plate.
  • a light scattering layer and a light reflecting layer were formed on the obtained glass plate in the same manner as in Test Example 1 to prepare a reflective screen.
  • Test Example 3 A two-step wet-etched glass plate was obtained in the same manner as in Test Example 1 except that the first etching solution containing ammonium hydrogen fluoride at a higher concentration than the first etching solution in Test Example 2 was used. . The underlayer and the covering layer were not formed on the uneven surface of the wet-etched glass plate.
  • a light scattering layer was attached to the obtained glass plate in the same manner as in Test Example 1 to prepare a reflective screen.
  • Test Example 4 an uneven surface was formed on one main surface of the glass plate in the same manner as in Test Example 1 except for the conditions of the wet etching process.
  • a first etching solution containing ammonium hydrogen fluoride at a higher concentration than that of Test Example 3 was used.
  • the coating layer was formed in the uneven surface of the glass plate by which the wet etching process was carried out.
  • a coating solution for the coating layer (KR 400 manufactured by Shin-Etsu Chemical Co., Ltd.) was dropped and spread with a sponge, and an excess coating solution for the coating layer was wiped using Bencot (Asahi Kasei Corporation). Then, the coating layer was formed by heat-processing for 30 minutes at 200 degreeC.
  • Test Example 4 as in Test Example 1, a white PET film as a light scattering layer was formed with an aluminum deposition layer as a light reflection layer on the surface opposite to the uneven surface of the prepared glass plate. It stuck with the medicine.
  • Test Example 5 blasting and wet etching were used in this order as a method of forming an uneven surface on one of the main surfaces of the glass plate.
  • the blasting apparatus was a direct pressure type
  • the media was alumina # 480
  • the nozzle distance was 60 mm
  • the jetting pressure was 0.3 MPa
  • the processing time per sheet was 6.72 seconds.
  • the wet etching process was performed by treating with a 10 mass% hydrofluoric acid aqueous solution for 60 seconds.
  • the base layer and the coating layer were not formed on the blasted surface.
  • a white PET film as a light scattering layer on which an aluminum deposition layer as a light reflecting layer was formed in advance was adhered with an adhesive on the surface of the prepared glass plate opposite to the uneven surface.
  • a mold screen was made.
  • a biaxially stretched film (thickness 50 ⁇ m, total light transmittance: 28.5%) having a plurality of cavities formed with aluminum diethylphosphinate aluminum particles (average particle diameter 2 ⁇ m) as a starting point was used. .
  • the aluminum deposition layer was disposed on the opposite side of the white PET film to the glass plate.
  • Test Example 6 In Test Example 6, only blasting was used as a method of forming an uneven surface on one of the main surfaces of a glass plate. The blast treatment was performed in the same manner as the blast treatment in Test Example 5.
  • a light scattering layer and a light reflecting layer were formed on the obtained glass plate in the same manner as in Test Example 5 to prepare a reflective screen.
  • Test Examples 7 to 11 In Test Examples 7 to 11, only blasting was used as a method of forming an uneven surface on one of the main surfaces of a glass plate. The blasting was performed in the same manner as the blasting in Test Example 5 except for the type of media.
  • alumina # 600 was used as the medium.
  • alumina # 360 was used as the medium.
  • alumina # 480 was used as the medium.
  • alumina # 600 was used as the medium.
  • alumina # 1000 was used as the medium.
  • Test Example 7 a light scattering layer and a light reflection layer were formed on the obtained glass plate in the same manner as in Test Example 5 to produce a reflective screen. The underlayer and the covering layer were not formed on the uneven surface of the treated glass plate.
  • Test Examples 8 to 11 a light scattering layer and a light reflection layer were formed on the obtained glass plate in the same manner as in Test Example 5.
  • the coating layer was formed in the uneven surface of the processed glass plate. The coating layer was formed by applying the following coating solution to the entire uneven surface of the glass plate by a spin coater, and drying the applied coating solution at 150 ° C. for 30 minutes.
  • the coating solution a solution obtained by diluting silicone oligomer-based coating agent KR400 (manufactured by Shin-Etsu Chemical Co., Ltd.) to 50% with toluene was used.
  • the layer thickness of the coating layer was 0.5 ⁇ m.
  • Test Example 12 In Test Example 12, the glass plate obtained in Test Example 1 was used. The underlayer and the covering layer were not formed on the wet-etched surface.
  • Test Example 12 a white paint (GLS-HF619 manufactured by Teikoku Ink Co., Ltd.) was applied as a light scattering layer on the surface of the prepared glass plate opposite to the uneven surface, and heat curing was performed at 150 ° C. for 30 minutes. The light reflection layer was not formed. No void was formed in the light scattering layer.
  • the surface shape of the uneven surface was measured by a laser microscope LEXT (OLS-4100) manufactured by Olympus.
  • Ra and RSm of the roughness curvilinear element were each measured according to Japanese Industrial Standard (JIS B0601: 2013). Ra and RSm were measured without setting the cutoff value.
  • For Ra and RSm a rectangular area of 260 ⁇ m by 260 ⁇ m is photographed with a laser microscope at a magnification of 50 times, and it is measured along each of 10 straight lines drawn randomly in the photographed image. The average value was adopted.
  • Kurtiss Sku was measured in accordance with the international standard (ISO 25178). Sku was measured without setting the cutoff value. Sku was measured at a magnification of 50 ⁇ in a rectangular area of 260 ⁇ m by 260 ⁇ m, and the average value of the measured values was adopted.
  • ⁇ Glossiness> As a glossiness, a ratio (%) of reflected light reflected at a reflection angle of 60 ° to incident light incident at an incidence angle of 60 ° was measured using a Gloss meter (Rhopoint IQ-S, manufactured by Rhopoint Instruments). In the measurement of glossiness, the back side of the reflective screen was covered with a black felt cloth, and the reflection on the back side of the reflective screen was measured in a state of being suppressed. The glossiness is preferably less than 65%.
  • the hot spot was evaluated visually by projecting an image on a reflective screen from a liquid crystal projector (Qumi, maximum brightness: 800 lumens) which was directly faced to the reflective screen at a distance of about 1 m.
  • a circle with a diameter of 50 mm was drawn on the irregular surface of the reflective screen with a dedicated marker, the inside of the circle was filled, and erasing of the drawn circle was repeated 50 times to evaluate the degree of color remaining.
  • the moving speed of the dedicated marker pressed against the reflective screen was 1 cm / sec, and the load for pressing the dedicated marker against the reflective screen was 0.98 N.
  • ⁇ Glare> The presence or absence of glare was evaluated based on whether or not a fine spot pattern of light and dark was visible at the position of the user U1 shown in FIG. 2 when an image was projected from a projector on a reflective screen as shown in FIG.
  • Table 1 showing the evaluation results of glare, "o” means that no glare was observed, and "x” means that a glare was recognized.
  • ⁇ Contrast> For evaluation of contrast, a stripe pattern in which white (highest luminance part) and black (lowest luminance part) are alternately repeated is projected from a liquid crystal projector (manufactured by Qumi, maximum luminance: 800 lumens), and luminance is saturated in bright white parts I adjusted the ISO sensitivity of the digital camera so as not to shoot an image. Next, the average luminance of the white part of the photograph obtained was divided by the average luminance of the black part to obtain a contrast. For the luminance analysis, for example, image analysis software such as ImageJ was used.
  • Table 1 summarizes the various evaluation results of Test Examples 1 to 12.
  • FIG. 7 is a diagram showing the results of the high-speed write-out test according to Test Examples 1-12.
  • FIG. 8 is a diagram showing the evaluation results of hot spots according to Test Examples 1 to 12.
  • FIG. 9 is a figure which shows the result of the continuous rewriting test by test example 1, 3, 6, 9, 12.
  • the Ra / RSm of the uneven surface of the reflective screen was 0.010 or less, unlike Test Examples 5 to 8. No color residue was visible in the fast write-out test. This is because when the Ra / RS m of the uneven surface is 0.010 or less, the height difference of the unevenness is not too large compared to the period of the unevenness, so the ink written on the uneven surface is easily removed. This is because the insufficient writing can be sufficiently erased.
  • the reflective screen may further comprise a magnetic layer.
  • the magnetic layer may include any of soft magnetic materials such as iron and hard magnetic materials such as permanent magnets. The attractive force of the magnet can be used, and paper can be fixed to the reflective screen, and the reflective screen can be attached to the wall.
  • the reflective screen may further have a protective layer such as a corrosion prevention layer on the opposite side to the light scattering layer 40 with respect to the light reflective layer 50.
  • the light reflecting layer 50 can be protected.
  • the reflective screen may have a transparent substrate on both sides of the light scattering layer 40 and the light reflecting layer 50. That is, the light scattering layer 40 or the light reflecting layer 50 may be provided between the first transparent substrate and the second transparent substrate, and the light scattering layer 40 or the light reflecting layer 50 is provided inside the laminated plate. May be When the first transparent substrate and the second transparent substrate are respectively glass plates, laminated glass can be obtained as a laminated plate.
  • both of the first transparent substrate and the second transparent substrate may be a resin plate, or one may be a glass plate and the other may be a resin plate.
  • the light reflection layer 50 may be one in which diffuse reflection is dominant rather than regular reflection.
  • a layer in which spherical reflective particles are dispersed, and a layer having a reflective uneven structure may be mentioned.
  • the layer having a reflective uneven structure can be obtained, for example, by applying a metal reflective film along the uneven surface.
  • the reflective uneven structure may be a random uneven structure, a regular uneven structure, a hologram or the like.

Abstract

This reflective type screen has: a transparent member having a corrugated surface on one of the primary surfaces; and a light scattering layer provided on the other primary surface that is on the opposite side of the corrugated surface of the transparent member, wherein the corrugated surface satisfies equation (1) 0.0040 ≤ Ra/RSm ≤ 0.010 and equation (2) Sku ≤ 3.5, where Ra is the arithmetic surface roughness, RSm is the average length of a roughness curve element, and Sku is the Kurtosis.

Description

反射型スクリーンReflective screen
 本発明は、反射型スクリーンに関する。 The present invention relates to a reflective screen.
 近年、インクによる書き込みとその書き込みの消去が行われる凹凸面を前面に有し、凹凸面に対し前方から映像が投映される、反射型スクリーンが開発されている(例えば、特許文献1参照)。投影された映像に対し、インクによる書き込みが可能である。 In recent years, a reflective screen has been developed which has an uneven surface on the front surface on which writing with the ink and erasing of the writing is performed and an image is projected from the front to the uneven surface (see, for example, Patent Document 1). The projected image can be written with ink.
 特許文献1に記載の反射型スクリーンは、ガラス板と、光拡散性塗料または顔料を含む層とを有する。ガラス板は、表面に凹凸面を有し、凹凸面への文字や図形の書き込みとその書き込みの消去が可能とされている。光拡散性塗料または顔料を含む層は、ガラス板の背面に形成され、ガラス板の表面に入射した光を反射する。 The reflective screen described in Patent Document 1 has a glass plate and a layer containing a light diffusing paint or pigment. The glass plate has an uneven surface on the surface, and writing of characters and figures on the uneven surface and erasing of the writing are enabled. A layer containing a light diffusing paint or pigment is formed on the back of the glass plate to reflect light incident on the surface of the glass plate.
日本国特開2003-237295号公報Japanese Patent Application Laid-Open No. 2003-237295
 従来、凹凸面の高低差が大きすぎると凹の内部からインクが除去しにくく、凹凸面の高低差が小さすぎるとホットスポットが生じやすく、書き込みの消去性の向上と、ホットスポットの発生の抑制との両立が困難であった。 Conventionally, when the height difference of the uneven surface is too large, the ink is difficult to remove from the inside of the recess, and when the height difference of the uneven surface is too small, hot spots are easily generated, improving the erasability of writing and suppressing the generation of hot spots. It was difficult to achieve both.
 ここで、ホットスポットとは、反射型スクリーンに対し映像が投映されたときに反射型スクリーンの中心部などが明るく光って見える現象である。この現象は、反射型スクリーンの前面が入射光を正反射することで生じる。 Here, the hot spot is a phenomenon in which the central portion of the reflective screen appears bright when the image is projected on the reflective screen. This phenomenon occurs when the front of the reflective screen reflects incident light.
 本発明は、上記課題に鑑みてなされたものであって、インクによる書き込みの消去性が向上すると共にホットスポットの発生を抑制した、反射型スクリーンの提供を主な目的とする。 The present invention has been made in view of the above problems, and its main object is to provide a reflective screen in which the erasability of writing with ink is improved and the occurrence of hot spots is suppressed.
 上記課題を解決するため、本発明の一態様によれば、
 一方の主表面に凹凸面を有する透明部材と、
 前記透明部材の前記凹凸面とは反対側の主表面に設けられる光散乱層とを有し、
 前記凹凸面は、
0.0040≦Ra/RSm≦0.010・・・(1)
Sku≦3.5・・・(2)
Ra:算術平均粗さ
RSm:粗さ曲線要素の平均長さ
Sku:クルトシス
を満たす、反射型スクリーンが提供される。
According to one aspect of the present invention, in order to solve the above problems,
A transparent member having an uneven surface on one of the main surfaces,
And a light scattering layer provided on the main surface of the transparent member opposite to the uneven surface,
The uneven surface is
0.0040 ≦ Ra / RSm ≦ 0.010 (1)
Sku ≦ 3.5 (2)
Ra: Arithmetic mean roughness RSm: Average length of roughness curvilinear elements Sku: A reflective screen is provided which satisfies the kurtosis.
 本発明の一態様によれば、インクによる書き込みの消去性が向上すると共にホットスポットの発生を抑制した、反射型スクリーンが提供される。 According to one aspect of the present invention, there is provided a reflective screen in which the erasability of ink writing is improved and the occurrence of hot spots is suppressed.
一実施形態による反射型スクリーンの正面図である。FIG. 1 is a front view of a reflective screen according to one embodiment. 一実施形態による反射型スクリーンの上面図である。FIG. 1 is a top view of a reflective screen according to one embodiment. 一実施形態による反射型スクリーンの断面図である。FIG. 2 is a cross-sectional view of a reflective screen according to one embodiment. 一実施形態による反射型スクリーンの凹凸面での拡散反射および拡散透過を示す図である。FIG. 7 illustrates diffuse reflection and diffuse transmission on a textured surface of a reflective screen according to one embodiment. Skuと高さ分布との関係を示す図である。It is a figure which shows the relationship between Sku and height distribution. Skuと凹凸形状との関係を示す図である。It is a figure which shows the relationship between Sku and uneven | corrugated shape. 試験例1~12による高速書き消し試験の結果を示す図である。It is a figure which shows the result of the high-speed write-out test by Experiment 1-12. 試験例1~12によるホットスポットの評価結果を示す図である。It is a figure which shows the evaluation result of the hot spot by Experiment 1-12. 試験例1、3、6、9、12による連続書き消し試験の結果を示す図である。It is a figure which shows the result of the continuous writing-out test by Experiment 1, 3, 6, 9, 12. 変形例による透明部材を示す断面図である。It is sectional drawing which shows the transparent member by a modification.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。本明細書において、数値範囲を表す「~」はその前後の数値を含む範囲を意味する。また、本明細書において、「平面視」とは、反射型スクリーンの板厚方向から見たことを意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and the description thereof will be omitted. In the present specification, “to” representing a numerical range means a range including the numerical values before and after that. Further, in the present specification, “plan view” means that it is viewed from the thickness direction of the reflective screen.
 <反射型スクリーン>
 図1は、一実施形態による反射型スクリーンの正面図である。図2は、一実施形態による反射型スクリーンの上面図である。図2において、Pはプロジェクタ、U1は反射型スクリーン10の中心部正面に臨むユーザ、U2はプロジェクタPから反射型スクリーン10への入射光の入射角と同じ反射角の反射光を観察するユーザを示す。図3は、一実施形態による反射型スクリーンの断面図である。
<Reflective screen>
FIG. 1 is a front view of a reflective screen according to one embodiment. FIG. 2 is a top view of a reflective screen according to one embodiment. In FIG. 2, P is a projector, U1 is a user facing the front of the central portion of the reflective screen 10, and U2 is a user who observes the reflected light at the same reflection angle as the incident light from the projector P to the reflective screen 10. Show. FIG. 3 is a cross-sectional view of a reflective screen according to one embodiment.
 反射型スクリーン10は、前面21と、前面21の反対面である後面とを有し、前面21に凹凸面23を有する。凹凸面23に対し、インクによる書き込みと、その書き込みの消去が行われる。また、凹凸面23に対し、前方から映像が投映される。 The reflective screen 10 has a front surface 21 and a rear surface that is the opposite surface of the front surface 21, and has an uneven surface 23 on the front surface 21. Writing with ink and erasing of the writing are performed on the uneven surface 23. Also, an image is projected from the front to the uneven surface 23.
 インクによる書き込みには、専用マーカなどの筆記具、プリンタヘッドなどが用いられる。その書き込みの消去には、字消具、溶剤などが用いられる。一方、映像の投映には、プロジェクタPなどが用いられる。 For writing with ink, a writing instrument such as a dedicated marker or a printer head is used. For erasing the written data, a eraser, a solvent, etc. are used. On the other hand, a projector P or the like is used to project an image.
 インクは、例えば、色素と、色素を溶かす溶剤と、離型剤とを含む。溶剤としては、アルコールなどが用いられる。離型剤としては、オイルなどが用いられる。色素は、離型剤には溶けない。インクの書き消し性は、高速書き消し試験と、連続書き消し試験の両方の試験によって評価する。 The ink contains, for example, a dye, a solvent for dissolving the dye, and a release agent. An alcohol etc. are used as a solvent. An oil etc. are used as a mold release agent. The dye is not soluble in the release agent. The writability of the ink is evaluated by both the high-speed writting test and the continuous writting test.
 高速書き消し試験では、専用マーカを凹凸面23に当てながら高速移動させて凹凸面23に対する書き込みを行う。高速で移動させるため、専用マーカからの離型剤の吐出が抑制され、離型剤の不足した書き込みが行われる。高速書き消し試験では、離型剤の不足した書き込みを字消具で十分に消去できるか否かを評価する。具体的な試験条件については、実施例の欄で説明する。 In the high-speed write-out test, writing is performed on the uneven surface 23 by moving the dedicated marker at high speed while touching the uneven surface 23. In order to move at a high speed, discharge of the release agent from the dedicated marker is suppressed, and writing with insufficient release agent is performed. In the high-speed write-off test, it is evaluated whether writing with insufficient release agent can be sufficiently erased by the eraser. Specific test conditions will be described in the section of Examples.
 一方、連続書き消し試験では、凹凸面23の予め定められた範囲にインクを塗り重ねて凹凸面23に対する書き込みを行うこと、およびその書込みを字消具で消去することを50回繰り返し行う。書き込みとその消去が繰り返し行われるにつれ、凹凸面23に離型剤の膜が形成されやすい。離型剤の膜が形成されると、その膜に色素が取り込まれてしまい、取り込まれた色素が字消具によって除去困難になる。連続書き消し試験では、離型剤の膜の形成による色残りの程度を評価する。具体的な試験条件については、実施例の欄で説明する。 On the other hand, in the continuous writing out test, the ink is applied in a predetermined range of the concavo-convex surface 23 to repeat writing on the concavo-convex surface 23 and erasing the writing with the eraser 50 times repeatedly. As writing and erasing are repeatedly performed, a film of the release agent is likely to be formed on the uneven surface 23. When a film of the release agent is formed, the pigment is incorporated into the film, and the incorporated pigment becomes difficult to remove by the eraser. In the continuous writing out test, the degree of color remaining due to the formation of the film of the release agent is evaluated. Specific test conditions will be described in the section of Examples.
 反射型スクリーン10は、不図示の枠で取り囲まれてもよい。その枠には吊り下げ具や脚が設けられてもよく、脚にはキャスターが取付けられてもよい。反射型スクリーン10は、例えば室内で使用される。尚、反射型スクリーン10の使用場所は、特に限定されない。例えば反射型スクリーンは、乗り物や建物の壁材などに適用されてもよい。 The reflective screen 10 may be surrounded by a frame (not shown). The frame may be provided with a hanger or a leg, and the leg may be attached with a caster. The reflective screen 10 is used indoors, for example. The use place of the reflective screen 10 is not particularly limited. For example, a reflective screen may be applied to a vehicle or a wall of a building.
 反射型スクリーン10は、前側から後側に向けて、例えば透明部材20、接着層30、光散乱層40、および光反射層50をこの順で有する。以下、反射型スクリーン10の各構成についてこの順で説明する。 The reflective screen 10 includes, for example, a transparent member 20, an adhesive layer 30, a light scattering layer 40, and a light reflecting layer 50 in this order from the front side to the rear side. Hereinafter, each configuration of the reflective screen 10 will be described in this order.
 <透明部材>
 透明部材20は、互いに対向する第1主表面21および第2主表面22を有し、第1主表面21に凹凸面23を有する。凹凸面23に対し、インクによる書き込みと、その書き込みの消去が行われる。また、凹凸面23に対し、前方から映像が投映される。
<Transparent member>
The transparent member 20 has a first main surface 21 and a second main surface 22 opposed to each other, and has an uneven surface 23 on the first main surface 21. Writing with ink and erasing of the writing are performed on the uneven surface 23. Also, an image is projected from the front to the uneven surface 23.
 凹凸面23は、図1~図2では第1主表面21の全面を占めているが、第1主表面21の一部のみを占めていてもよい。後者の場合、第1主表面21の残部は凹凸のない平滑面であってよい。また、凹凸面23が第1主表面21に部分的に形成される場合、第1主表面21よりも小さい凹凸面23が間隔をおいて複数配置されてもよい。 The uneven surface 23 occupies the entire surface of the first main surface 21 in FIGS. 1 to 2, but may occupy only a part of the first main surface 21. In the latter case, the remaining portion of the first main surface 21 may be a smooth surface without irregularities. Further, when the uneven surface 23 is partially formed on the first main surface 21, a plurality of uneven surfaces 23 smaller than the first main surface 21 may be arranged at intervals.
 凹凸面23は、図1に示すように平面視で長方形に形成されてよい。凹凸面23の縦寸法L1は、例えば300mm以上である。また、凹凸面23の横寸法L2は、例えば500mm以上である。尚、凹凸面23の平面視での形状は、多種多様であってよい。 The uneven surface 23 may be formed in a rectangular shape in plan view as shown in FIG. The vertical dimension L1 of the uneven surface 23 is, for example, 300 mm or more. Moreover, the horizontal dimension L2 of the uneven surface 23 is 500 mm or more, for example. In addition, the shape in planar view of the uneven surface 23 may be various.
 凹凸面23は、下記式(1)、(2)を満たす。
0.0040≦Ra/RSm≦0.010・・・(1)
Sku≦3.5・・・(2)
Ra:算術平均粗さ(単位:μm)
RSm:粗さ曲線要素の平均長さ(単位:μm)
Sku:クルトシス(単位無し)
 算術平均粗さRa、粗さ曲線要素の平均長さRSmは、それぞれ、日本工業規格(JIS B0601:2013)に準拠して測定される。Ra、RSmは、カットオフ値を設定せずに測定する。Ra、RSmは、倍率50倍で縦0.26mm横0.26mmの長方形の領域をレーザ顕微鏡で撮影し、撮影した画像において無作為に描画される10本の直線のそれぞれに沿って測定され、その測定値の平均値を採用する。Raは凹凸の高低差を表し、RSmは凹凸の周期(例えば凸頂点の周期)を表す。
The uneven surface 23 satisfies the following formulas (1) and (2).
0.0040 ≦ Ra / RSm ≦ 0.010 (1)
Sku ≦ 3.5 (2)
Ra: Arithmetic mean roughness (unit: μm)
RSm: Average length of roughness curve element (unit: μm)
Sku: Kurtosis (no unit)
Arithmetic mean roughness Ra and mean length RSm of the roughness curvilinear element are measured in accordance with Japanese Industrial Standard (JIS B0601: 2013). Ra and RSm are measured without setting the cutoff value. Ra and RSm are measured with a laser microscope and a rectangular area of 0.26 mm long and 0.26 mm long at a magnification of 50 × and measured along each of 10 straight lines drawn randomly in the taken image, The average value of the measured values is adopted. Ra represents the height difference of the unevenness, and RSm represents the period of the unevenness (for example, the period of the convex apex).
 図4は、一実施形態による反射型スクリーンの凹凸面での拡散反射および拡散透過を示す図である。図4において、矢印AはプロジェクタP(図2参照)から凹凸面23への光の入射を示し、矢印BはプロジェクタPから入射した光の凹凸面23での拡散反射を示し、矢印Cは凹凸面23を透過した光の光散乱層40での拡散反射を表し、矢印Dは光散乱層40で拡散反射した光の凹凸面23での拡散透過を示す。 FIG. 4 is a view showing diffuse reflection and diffuse transmission on the uneven surface of the reflective screen according to one embodiment. In FIG. 4, the arrow A indicates the incidence of light from the projector P (see FIG. 2) to the uneven surface 23, the arrow B indicates the diffuse reflection at the uneven surface 23 of the light incident from the projector P, and the arrow C indicates the unevenness The diffuse reflection of the light transmitted through the surface 23 at the light scattering layer 40 is shown, and the arrow D indicates the diffuse transmission at the uneven surface 23 of the light diffusely reflected by the light scattering layer 40.
 凹凸面23のRa/RSmが0.0040以上であると、凹凸の周期に比べて凹凸の高低差が十分に大きいため、凹凸面23において、プロジェクタPからの入射光が拡散反射されやすく、光反射層50からの反射光が拡散透過されやすい。これにより、ホットスポットの発生を抑制できる。 When Ra / RSm of the concavo-convex surface 23 is 0.0040 or more, the height difference of the concavities and convexities is sufficiently large as compared with the concavo-convex period, so the incident light from the projector P is easily diffused and reflected on the concavo-convex surface 23 Reflected light from the reflective layer 50 is easily diffused and transmitted. This can suppress the occurrence of hot spots.
 ホットスポットの有無は、例えば図2に示すユーザU2の位置で確認する。 The presence or absence of the hot spot is confirmed, for example, at the position of the user U2 shown in FIG.
 本実施形態によれば凹凸面23のRa/RSmが0.0040以上であるため、上述の如く、凹凸面23において拡散反射および拡散透過が生じやすい。その結果、ホットスポットの発生を抑制できる。 According to the present embodiment, since Ra / RSm of the concavo-convex surface 23 is 0.0040 or more, diffuse reflection and diffuse transmission easily occur on the concavo-convex surface 23 as described above. As a result, the occurrence of hot spots can be suppressed.
 凹凸面23のRa/RSmが0.010以下であると、凹凸の周期に比べて凹凸の高低差が大き過ぎないため、凹凸面23に書き込まれたインクが除去しやすく、高速書き消し試験において離型剤の不足した書き込みを十分に消去できる。 If Ra / RSm of the concavo-convex surface 23 is 0.010 or less, the height difference of the concavities and convexities is not too large compared to the concavo-convex cycle, so the ink written on the concavo-convex surface 23 is easily removed. The insufficient writing of the release agent can be sufficiently erased.
 凹凸面23のRaは、好ましくは0.10μm以上である。凹凸面23のRaが0.10μm以上であると、光の干渉を抑制でき、ぎらつきを抑制できる。ぎらつきとは、光の明暗による微細な斑点模様が見える現象である。斑点模様は、光の干渉によって生じる。凹凸面23のRaは、好ましくは2.0μm以下である。 Ra of the uneven surface 23 is preferably 0.10 μm or more. Interference of light can be suppressed as Ra of the uneven surface 23 is 0.10 μm or more, and glare can be suppressed. Glare is a phenomenon in which a fine spotted pattern due to light and dark of light is seen. Speckled patterns are caused by light interference. Ra of the uneven surface 23 is preferably 2.0 μm or less.
 クルトシスSkuは、国際規格(ISO 25178)に準拠して測定される。Skuは、カットオフ値を設定せずに測定する。Skuは、倍率50倍で縦0.26mm横0.26mmの長方形の領域をレーザ顕微鏡で撮影して測定し、その測定値の平均値を採用する。 Kurtiss Sku is measured in accordance with the international standard (ISO 25178). Sku measures without setting a cutoff value. In Sku, a rectangular area of 0.26 mm long and 0.26 mm long is photographed by a laser microscope and measured at a magnification of 50 and a mean value of the measured values is adopted.
 Skuは、下記の式(3)で表される。 Sku is represented by the following formula (3).
Figure JPOXMLDOC01-appb-M000001
 上記の式(3)において、Sqは表面の二乗平均平方根高さを、Aは面積を、Z(x,y)は表面の座標(x,y)における高さを表す。Skuは、表面の鋭さの尺度である尖度(せんど)を意味し、高さ分布のとがり(鋭さ)を表す。
Figure JPOXMLDOC01-appb-M000001
In the above equation (3), Sq represents the root mean square height of the surface, A represents the area, and Z (x, y) represents the height at the surface coordinates (x, y). Sku means kurtosis which is a measure of the sharpness of the surface and represents the sharpness (sharpness) of the height distribution.
 図5は、Skuと高さ分布との関係を示す図である。図5(a)はSkuが3.0よりも小さい場合の高さ分布の一例を示す図である。図5(b)はSkuが3.0である場合の高さ分布の一例を示す図である。図5(c)はSkuが3.0よりも大きい場合の高さ分布の一例を示す図である。 FIG. 5 is a diagram showing the relationship between Sku and height distribution. FIG. 5A is a view showing an example of the height distribution when Sku is smaller than 3.0. FIG. 5B is a view showing an example of the height distribution when Sku is 3.0. FIG. 5C is a view showing an example of the height distribution when Sku is larger than 3.0.
 図5(a)に示すようにSkuが3.0よりも小さい場合、高さ分布はガウス分布よりも平均値から離散した分布になり、ガウス分布よりも平らな形状となる。図5(b)に示すようにSkuが3.0である場合、高さ分布はガウス分布になる。図5(c)に示すようにSkuが3.0よりも大きい場合、高さ分布はガウス分布よりも平均値に集中した分布になり、ガウス分布よりも尖った形状となる。 As shown in FIG. 5A, when Sku is smaller than 3.0, the height distribution is a distribution more discrete from the average value than the Gaussian distribution, and has a flatter shape than the Gaussian distribution. When Sku is 3.0 as shown in FIG. 5 (b), the height distribution is Gaussian. As shown in FIG. 5C, when Sku is larger than 3.0, the height distribution is a distribution more concentrated on the average value than the Gaussian distribution, and has a shape sharper than the Gaussian distribution.
 図6は、Skuと凹凸形状との関係を示す図である。図6(a)はSkuが3.0よりも小さい場合の凹凸形状の一例を示す図である。図6(b)はSkuが3.0よりも大きい場合の凹凸形状の一例を示す図である。 FIG. 6 is a diagram showing the relationship between Sku and the concavo-convex shape. FIG. 6A shows an example of the concavo-convex shape in the case where Sku is smaller than 3.0. FIG. 6B is a view showing an example of the concavo-convex shape in the case where Sku is larger than 3.0.
 図6(a)に示すようにSkuが3.0よりも小さい場合、図6(b)に示すようにSkuが3よりも大きい場合に比べて、凸頂点や凹頂点が比較的平らである。 When Sku is smaller than 3.0 as shown in FIG. 6A, the convex apex and concave apex are relatively flat as compared with the case where Sku is larger than 3 as shown in FIG. 6B. .
 凹凸面23のSkuが3.5以下であると、頂点が平らな凸や凹が十分に多いので、インクが除去しやすく、連続書き消し試験において離型剤の膜の形成による色残りを低減できる。凹凸面23のSkuは、好ましくは2.0以上である。 When the Sku of the uneven surface 23 is 3.5 or less, since the peaks are flat and there are sufficiently many bumps and depressions, the ink is easily removed, and the color residue due to the formation of the film of the release agent is reduced in the continuous writing out test. it can. Sku of the uneven surface 23 is preferably 2.0 or more.
 透明部材20の第1主表面21が凹凸面23を有するのに対し、透明部材20の第2主表面22(図3参照)は凹凸をほとんど有しないことが好ましい。透明部材20の第2主表面22の算術平均粗さRaは、例えば5μm以下、好ましくは1μm以下、より好ましくは0.1μm以下である。 While the first main surface 21 of the transparent member 20 has the uneven surface 23, it is preferable that the second main surface 22 (see FIG. 3) of the transparent member 20 has almost no unevenness. The arithmetic mean roughness Ra of the second main surface 22 of the transparent member 20 is, for example, 5 μm or less, preferably 1 μm or less, more preferably 0.1 μm or less.
 透明部材20は、例えば図3に示すように、透明基板24と、透明基板24を基準として光散乱層40とは反対側に設けられる被覆層25とを有してよい。被覆層25が凹凸面23を形成する。尚、被覆層25は無くてもよく、透明基板24が凹凸面23を形成してもよい。 For example, as shown in FIG. 3, the transparent member 20 may have a transparent substrate 24 and a covering layer 25 provided on the opposite side of the light scattering layer 40 with respect to the transparent substrate 24. The covering layer 25 forms the uneven surface 23. The covering layer 25 may be omitted, and the transparent substrate 24 may form the uneven surface 23.
 透明基板24は、例えば、ガラス、ポリカーボネート樹脂、アクリル樹脂、ポリエステル樹脂から選ばれる1種で形成され、剛性や意匠性の観点から好ましくはガラスで形成される。以下、ガラスで形成される透明基板24を、ガラス基板24とも呼ぶ。 The transparent substrate 24 is formed of, for example, one selected from glass, polycarbonate resin, acrylic resin, and polyester resin, and is preferably formed of glass from the viewpoint of rigidity and design. Hereinafter, the transparent substrate 24 formed of glass is also referred to as a glass substrate 24.
 ガラス基板24は、例えばソーダライムガラス、アルミノシリケートガラス、無アルカリガラス、ホウケイ酸ガラスなどで形成される。また、ガラス基板24は、未強化ガラス、強化ガラスのいずれでもよい。未強化ガラスは、溶融ガラスを板状に成形し、徐冷したものである。強化ガラスは、物理強化ガラス、化学強化ガラスのいずれでもよい。物理強化ガラスは、均一に加熱したガラス板を軟化点付近の温度から急冷し、ガラス表面とガラス内部との温度差によってガラス表面に圧縮応力を生じさせることで、ガラス表面を強化したものである。化学強化ガラスは、イオン交換法などによってガラス表面に圧縮応力を生じさせることで、ガラス表面を強化したものである。 The glass substrate 24 is formed of, for example, soda lime glass, aluminosilicate glass, alkali-free glass, borosilicate glass, or the like. The glass substrate 24 may be either untempered glass or tempered glass. Untempered glass is obtained by forming molten glass into a plate and annealing. The tempered glass may be either physically tempered glass or chemically tempered glass. Physically tempered glass is a glass surface strengthened by rapidly cooling a uniformly heated glass plate from a temperature near the softening point and generating a compressive stress on the glass surface by the temperature difference between the glass surface and the inside of the glass. . Chemically strengthened glass is one in which the glass surface is strengthened by generating compressive stress on the glass surface by an ion exchange method or the like.
 ガラス基板24は、フロート法、フュージョン法などで成形される。ガラス基板24は、図2では平坦な平面板であるが、曲面板であってもよい。平面板を曲面板に曲げる曲げ成形としては、重力成形、またはプレス成形などが用いられる。曲げ成形では、均一に加熱したガラス板を軟化点付近の温度から急冷し、ガラス表面とガラス内部との温度差によってガラス表面に圧縮応力を生じさせることで、ガラス表面を物理強化してもよい。尚、化学強化ガラスは、曲げ成形の後、イオン交換法などによってガラス表面に圧縮応力を生じさせることで得られる。 The glass substrate 24 is formed by a float method, a fusion method, or the like. The glass substrate 24 is a flat plate in FIG. 2 but may be a curved plate. As bending for bending a flat plate into a curved plate, gravity forming, press forming or the like is used. In bending, the glass surface may be physically strengthened by quenching the uniformly heated glass plate from a temperature near the softening point and generating a compressive stress on the glass surface by the temperature difference between the glass surface and the inside of the glass . Chemically strengthened glass can be obtained by generating compressive stress on the glass surface by an ion exchange method or the like after bending.
 ガラス基板24は、映像の光を透過する。ガラス基板24は、無色透明であるが、有色透明であってもよい。ガラス基板24のヘーズ(Haze)値は、50%以下である。ガラス基板24のヘーズ値が50%以下であれば、十分な透明度が得られる。尚、ガラス基板24のヘーズ値は、通常、1%以下である。 The glass substrate 24 transmits light of an image. The glass substrate 24 is colorless and transparent, but may be colored and transparent. The haze value of the glass substrate 24 is 50% or less. If the haze value of the glass substrate 24 is 50% or less, sufficient transparency can be obtained. The haze value of the glass substrate 24 is usually 1% or less.
 ヘーズ値は、日本工業規格(JIS K7136)に準拠して測定され、測定対象の試験板を板厚方向に透過する透過光のうち、前方散乱によって入射光から2.5°以上それた透過光の百分率として求められる。ヘーズ値の測定に用いる光源としては、日本工業規格(JIS Z8720:2012)に記載のD65光源を用いる。 The haze value is measured in accordance with the Japanese Industrial Standard (JIS K7136), and of the transmitted light passing through the test plate to be measured in the thickness direction, the transmitted light deviated by 2.5 ° or more from the incident light by forward scattering. It is determined as a percentage of As a light source used for measurement of haze value, D65 light source as described in Japanese Industrial Standard (JIS Z8720: 2012) is used.
 ガラス基板24の板厚は、特に限定されないが、例えば0.1mm~20mmである。また、ガラス基板24の板厚は0.3mm~8mmが好ましい。例えば反射型スクリーン10を壁面に設置する場合、ガラス基板24の板厚が0.1mmより薄いとうねりが生じやすく、ガラス基板24の板厚が20mmより厚いと反射型スクリーン10の重量が重いため壁などの補強が必要になる場合がある。 The thickness of the glass substrate 24 is not particularly limited, and is, for example, 0.1 mm to 20 mm. The thickness of the glass substrate 24 is preferably 0.3 mm to 8 mm. For example, when the reflective screen 10 is installed on a wall surface, the thickness of the glass substrate 24 tends to be thinner than 0.1 mm, and when the thickness of the glass substrate 24 is larger than 20 mm, the weight of the reflective screen 10 is heavy. It may be necessary to reinforce walls and the like.
 ガラス基板24の前面は凹凸面を有する。ガラス基板24の前面に凹凸面を形成するガラス板の加工方法としては、一般的な加工方法が用いられ、例えばブラスト法などの機械的方法やウェットやドライなどのエッチング法が用いられる。エッチング法では、ガラス基板24のエッチング液として例えばフッ化水素とフッ化アンモニウムを混合した水溶液や、フッ化水素アンモニウム水溶液などが使用される。 The front surface of the glass substrate 24 has an uneven surface. As a processing method of the glass plate which forms a concavo-convex surface in the front of glass substrate 24, a general processing method is used, for example, mechanical methods, such as a blast method, and etching methods, such as wet and dry, are used. In the etching method, an aqueous solution in which hydrogen fluoride and ammonium fluoride are mixed, an ammonium hydrogen fluoride aqueous solution, or the like is used as an etching solution for the glass substrate 24, for example.
 エッチング法としては、1段階又は2段階などの複数段階のいずれでもよいが、所望の表面形状の得やすさから複数段階が好ましく、生産性などの点から2段階エッチングがより好ましい。 The etching method may be any one of a single step or a plurality of steps such as two steps, but a plurality of steps are preferable from the viewpoint of easily obtaining a desired surface shape, and a two step etching is more preferable from the viewpoint of productivity.
 例えば、フッ化水素とフッ化アンモニウムを混合した水溶液(第1のエッチング液)でエッチング処理したガラス基板24を、水洗等により析出した結晶を洗い流した後、フッ化水素酸等を含む水溶液(第2のエッチング液)で再度エッチング処理してもよく、この2段階のエッチング処理が好ましい。また第1のエッチング液には析出する結晶の溶解度調節や、有機物の溶解のためにアルコールやグリコールなどの有機溶媒を含有してもよい。 For example, after washing away the deposited crystals by washing with water, etc., the glass substrate 24 etched with an aqueous solution (first etching solution) in which hydrogen fluoride and ammonium fluoride are mixed is washed away, and then an aqueous solution containing hydrofluoric acid (first Etching treatment may be performed again with the etching solution 2), and this two-step etching treatment is preferable. The first etching solution may also contain an organic solvent such as alcohol or glycol for adjusting the solubility of the deposited crystals or dissolving the organic substance.
 2段階のエッチング処理としてはたとえば下記のような方法でもよい。
  第1のエッチング液としてフッ化水素アンモニウムを8~20質量%、フッ化水素ナトリウム(NaHF)などのフッ素化アルカリ金属塩またはフッ化水素アンモニウム(NH)のいずれかを0~3質量%、およびプロピレングリコールの15~40質量%を混合した水溶液を用意する。次に、静止または撹拌された第1のエッチング液中にガラスを配置することにより表面に凹凸表面を形成する。前記ガラスは、3~5分の間に亘り第1のエッチング液中に放置して差し支えなく、より粗い表面粗さを生成するためには、より長い時間処理することで調節する。
As a two-step etching process, for example, the following method may be used.
8 to 20 mass% of ammonium hydrogen fluoride as a first etching solution, and 0 to 3 of either a fluorinated alkali metal salt such as sodium hydrogen fluoride (NaHF 2 ) or ammonium hydrogen fluoride (NH 4 F 2 ) Prepare an aqueous solution in which mass% and 15 to 40 mass% of propylene glycol are mixed. Next, a textured surface is formed on the surface by disposing the glass in a stationary or agitated first etching solution. The glass can be left in the first etchant for between 3 and 5 minutes, and conditioned by treatment for longer times to produce a rougher surface roughness.
 次に第1のエッチング液による処理でガラス表面に生成した結晶を、表面を水で濯ぐことにより除去する。次に第2のエッチング液として5~15質量%のフッ化水素酸を含有する水溶液を用意する。第2のエッチング液は、2~20質量%の鉱酸をさらに含有してよい。鉱酸としては、硫酸、塩化水素酸、硝酸、リン酸などが挙げられる。用意した第2エッチング液中にガラスを配置することにより、第1のエッチング液によって形成された凹凸面の表面粗さを減少させ、第1のエッチング液によって形成された凹凸面の光沢を高める。 Next, crystals formed on the glass surface by the treatment with the first etching solution are removed by rinsing the surface with water. Next, an aqueous solution containing 5 to 15% by mass of hydrofluoric acid is prepared as a second etching solution. The second etching solution may further contain 2 to 20% by mass of a mineral acid. Examples of mineral acids include sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid. By arranging the glass in the prepared second etching solution, the surface roughness of the uneven surface formed by the first etching solution is reduced, and the gloss of the uneven surface formed by the first etching solution is increased.
 第1・第2エッチング液を用いたエッチング条件(フッ化水素酸濃度や処理時間)を最適化することで所望の凹凸面が得られる。 By optimizing the etching conditions (hydrofluoric acid concentration and processing time) using the first and second etching solutions, a desired uneven surface can be obtained.
 尚、透明基板24は、本実施形態では単層構造であるが、多層構造でもよく、例えば合わせガラスでもよい。合わせガラスは、第1ガラス板、第2ガラス板、および第1ガラス板と第2ガラス板とを接合する中間膜を有する。 The transparent substrate 24 has a single-layer structure in the present embodiment, but may have a multilayer structure, for example, laminated glass. A laminated glass has a 1st glass plate, a 2nd glass plate, and the intermediate film which joins a 1st glass plate and a 2nd glass plate.
 被覆層25は、透明基板24の前面の少なくとも一部を覆い、透明基板24の前面のうち少なくとも凹凸面を覆う。被覆層25は、その前面に、透明基板24の凹凸面に倣う凹凸面を有する。 The covering layer 25 covers at least a part of the front surface of the transparent substrate 24 and covers at least the uneven surface of the front surface of the transparent substrate 24. The cover layer 25 has an uneven surface on its front surface that follows the uneven surface of the transparent substrate 24.
 被覆層25は、例えば、シリコーン樹脂、フッ素樹脂、およびウレタン樹脂から選ばれる少なくとも1種で形成される。被覆層25は、ガラス基板24よりもインクとの親和性が低いことが好ましい。インクによる書き込みの消去が容易になる。 The covering layer 25 is formed of, for example, at least one selected from a silicone resin, a fluorine resin, and a urethane resin. The covering layer 25 preferably has a lower affinity to the ink than the glass substrate 24. It becomes easy to erase the writing by the ink.
 被覆層25は、インクとの親和性や耐久性の観点から、好ましくはシリコーン系硬化物を含む。シリコーン系硬化物は、例えば硬化性のシリコーンレジンおよび硬化性のシリコーンオリゴマーの少なくとも一方を縮合硬化させることで得られる。 The cover layer 25 preferably contains a silicone-based cured product from the viewpoint of the affinity to ink and durability. The silicone-based cured product is obtained, for example, by condensation curing at least one of a curable silicone resin and a curable silicone oligomer.
 一般的に、シリコーンレジンとシリコーンオリゴマーの違いは分子量であり、比較的低分子量のシリコーンレジンをシリコーンオリゴマーという。シリコーンオリゴマーは一般に2あるいは3量体から分子量1000程度のものを指す。シリコーンレジンおよびシリコーンオリゴマーはM単位、D単位、T単位、Q単位と呼ばれる含ケイ素結合単位から構成される。 Generally, the difference between silicone resins and silicone oligomers is molecular weight, and silicone resins of relatively low molecular weight are referred to as silicone oligomers. The silicone oligomer generally refers to one having a molecular weight of about 1,000 to a dimer or trimer. Silicone resins and silicone oligomers are composed of silicon-containing bonding units called M units, D units, T units, and Q units.
 硬化性のシリコーンレジンおよび硬化性のシリコーンオリゴマーは主としてT単位またはQ単位から構成される分岐状の構造を持った樹脂であり、T単位のみから構成される樹脂、Q単位のみから構成される樹脂、T単位とQ単位から構成される樹脂がある。またそれら樹脂はさらに少量のM単位やD単位を含むこともある。 A curable silicone resin and a curable silicone oligomer are resins having a branched structure mainly composed of T units or Q units, and a resin composed only of T units, a resin composed only of Q units , T units and Q units. The resins may also contain small amounts of M units and D units.
 硬化性のシリコーンレジンおよび硬化性のシリコーンオリゴマーにおいて、T単位は、1個のケイ素原子を有し、そのケイ素原子に結合した1個の水素原子または1価の有機基と、他のケイ素原子に結合した酸素原子(または他のケイ素原子に結合できる官能基)3個とを有する単位である。 In the curable silicone resin and the curable silicone oligomer, the T unit has one silicon atom and one hydrogen atom or monovalent organic group bonded to the silicon atom and another silicon atom. And a unit having three bonded oxygen atoms (or other functional groups capable of bonding to other silicon atoms).
 含ケイ素結合単位を形成するモノマーは、(R´-)Si(-Z)4-aで表される。ただし、aは0~3の整数、R´は水素原子または1価の有機基、Zは水酸基、塩素原子または他のケイ素原子に結合できる1価の官能基を表す。Zが加水分解性基である場合、その加水分解性基としては、アルコキシ基、アシルオキシ基、イソシアネート基等が挙げられる。 Monomers forming the silicon-containing bond units is represented by (R'-) a Si (-Z) 4-a. However, a is an integer of 0 to 3, R 'is a hydrogen atom or a monovalent organic group, and Z is a hydroxyl group, a chlorine atom or a monovalent functional group capable of binding to another silicon atom. When Z is a hydrolyzable group, examples of the hydrolyzable group include an alkoxy group, an acyloxy group, and an isocyanate group.
 硬度、耐久性の観点から、含ケイ素結合単位としてT単位を主な構成単位とするものが好ましく用いられる。ここで、T単位を主な構成単位とするものとは、M単位、D単位、T単位およびQ単位の合計数に対するT単位数の割合が50%~100%のオルガノポリシロキサンをいう。より好ましくは、該T単位数の割合が70%~100%のオルガノポリシロキサンが用いられる。また、T単位以外に少量含まれる他の単位としてはD単位とQ単位が好ましい。 From the viewpoint of hardness and durability, one having a T unit as a main constituent unit as a silicon-containing bonding unit is preferably used. Here, one having T units as the main constitutional units means organopolysiloxanes in which the ratio of the number of T units to the total number of M units, D units, T units and Q units is 50% to 100%. More preferably, an organopolysiloxane having a ratio of the number of T units of 70% to 100% is used. Moreover, as another unit contained in a small amount other than T unit, D unit and Q unit are preferable.
 硬化性のシリコーンレジンおよび硬化性のシリコーンオリゴマーとしては、市販されている化合物を使用することができる。たとえば、硬化性のシリコーンレジンとしては、信越化学社製KR220L、KR220LP、KR242A、KR251、KR211、KR255、KR300、KR311、KR2621-1、東レダウコーニング社製SR2402、AY42-163、Z6018などが使用できる。硬化性のシリコーンオリゴマーとしては、信越化学社製KC89S、KR515、KR500、X40-9225、X40-9246、X40-9250、KR401N、X40-9227、KR510、KR9218、KR213、KR400、X40-2327、KR401などが使用できる。これらのうちの1品種が単独で用いられてもよいし、複数品種が組合わせて用いられてもよい。 As the curable silicone resin and the curable silicone oligomer, commercially available compounds can be used. For example, as curable silicone resins, KR 220 L, KR 220 LP, KR 242 A, KR 251, KR 211, KR 255, KR 300, KR 300, KR 311, KR 262 1-1 manufactured by Shin-Etsu Chemical Co., Ltd. SR2402, AY 42-163, Z6018 manufactured by Toray Dow Corning, etc. can be used. . As a curable silicone oligomer, Shin-Etsu Chemical KC89S, KR515, KR500, X40-9225, X40-9246, X40-9250, KR401N, X40-9227, KR510, KR9218, KR213, KR400, X40-2327, KR401, etc. Can be used. One of these may be used alone, or a plurality of types may be used in combination.
 被覆層25は、インクによる書き込みの消去性を向上するため、シリコーン系硬化物に加えて、フッ素系化合物を含んでもよい。フッ素系化合物としては、C2n+1基やC2nO基を含む化合物が好ましい。尚、nは1以上の自然数である。 The covering layer 25 may contain a fluorine-based compound in addition to the silicone-based cured product in order to improve the erasability of the writing by the ink. The fluorine-based compound, a compound containing a C n F 2n + 1 group or C n F 2n O groups are preferred. Here, n is a natural number of 1 or more.
 被覆層25は、コート液をガラス基板24に塗布し、塗布したコート液を硬化させることで形成される。コート方法は、公知の手法を用いることができ、例えば、スプレーコート、スリットコート、ダイコート、スピンコート、ディップコート、カーテンコートなどの手法を用いることができる。コート液は、硬化性のシリコーンレジンおよび硬化性のシリコーンオリゴマーの少なくとも一方と、溶媒とを含む。コート液は、必要に応じて、硬化触媒、フッ素系化合物、レベリング剤、および顔料のうちの少なくとも1つをさらに含んでもよい。硬化の促進のため、加熱、および/または活性エネルギー線照射を行うことが好ましい。 The coating layer 25 is formed by applying a coating solution to the glass substrate 24 and curing the applied coating solution. As the coating method, known methods can be used. For example, methods such as spray coating, slit coating, die coating, spin coating, dip coating, curtain coating and the like can be used. The coating liquid contains at least one of a curable silicone resin and a curable silicone oligomer, and a solvent. The coating liquid may further contain at least one of a curing catalyst, a fluorine-based compound, a leveling agent, and a pigment, as necessary. It is preferable to carry out heating and / or active energy ray irradiation to accelerate curing.
 被覆層25の形成方法としてコート法が用いられる場合、コート液の塗布量や固形分濃度(不揮発性分濃度)を制御することで、凹凸面23の凹凸形状を制御できる。ガラス基板24の凹凸面の凹凸形状が同じ場合、コート液の塗布量が多いほど、被覆層25の凹凸面23の高低差が小さくなる。また、ガラス基板24の凹凸面の凹凸形状が同じ場合、コート液の固形分濃度が高いほど、凹凸面23の高低差が低くなる。コート液は、スポンジなどで薄く引き伸ばされた後、余剰分を拭き取って使用する。コート液の塗布量は、拭き取り量で調整できる。 When the coating method is used as a method of forming the covering layer 25, the unevenness shape of the uneven surface 23 can be controlled by controlling the application amount of the coating solution and the solid content concentration (nonvolatile content concentration). When the concavo-convex shape of the concavo-convex surface of the glass substrate 24 is the same, the difference in height between the concavo-convex surface 23 of the covering layer 25 decreases as the application amount of the coating liquid increases. Moreover, when the concavo-convex shape of the concavo-convex surface of the glass substrate 24 is the same, the height difference of the concavo-convex surface 23 becomes lower as the solid content concentration of the coating liquid is higher. The coating solution is thinly stretched with a sponge or the like, and then used after wiping off the excess. The amount of coating solution applied can be adjusted by the amount of wiping.
 被覆層25の層厚は、0.01μm以上20μmが好ましく、0.05μm以上10μm以下がより好ましい。被覆層25の層厚が0.01μm未満では耐久性が不十分である。被覆層25の層厚が20μm超では凹凸面23の高低差が小さくなり、ホットスポットの発生が十分に抑制できない。被覆層25は平均層厚が0.1μmとなるように形成することが好ましい。 0.01 micrometer or more and 20 micrometers are preferable, and, as for the layer thickness of the coating layer 25, 0.05 micrometer or more and 10 micrometers or less are more preferable. If the layer thickness of the covering layer 25 is less than 0.01 μm, the durability is insufficient. When the layer thickness of the covering layer 25 is more than 20 μm, the height difference of the uneven surface 23 becomes small, and the generation of the hot spot can not be sufficiently suppressed. The covering layer 25 is preferably formed to have an average layer thickness of 0.1 μm.
 透明部材20は、図3に示すように、透明基板24と被覆層25との間に、透明基板24と被覆層25との密着性を改善する下地層26をさらに有してもよい。 The transparent member 20 may further have a base layer 26 between the transparent substrate 24 and the covering layer 25 for improving the adhesion between the transparent substrate 24 and the covering layer 25 as shown in FIG.
 尚、透明部材20は、本実施形態では透明基板24を基準として光散乱層40とは反対側に被覆層25を有するが、被覆層25を有しなくてもよい。透明基板24の凹凸面に対し、インクによる書き込みやその書き込みの消去、映像の投映などがなされてもよい。 Although the transparent member 20 has the covering layer 25 on the side opposite to the light scattering layer 40 with reference to the transparent substrate 24 in the present embodiment, the covering member 25 may not be provided. Writing with the ink or erasing of the writing, projection of an image, or the like may be performed on the uneven surface of the transparent substrate 24.
 尚、透明基板24の前面は、本実施形態では凹凸面であるが、平坦面であってもよい。後者の場合、透明部材20は、図10に示すように、透明基板24の平坦面上に形成される凹凸層27をさらに有する。 The front surface of the transparent substrate 24 is an uneven surface in the present embodiment, but may be a flat surface. In the latter case, as shown in FIG. 10, the transparent member 20 further includes an uneven layer 27 formed on the flat surface of the transparent substrate 24.
 凹凸層27の形成方法としては、例えば型押し法、エッチング法、インプリント法、コート法などが単独または任意の組合せで用いられる。 As a method of forming the concavo-convex layer 27, for example, a embossing method, an etching method, an imprint method, a coating method, etc. may be used alone or in any combination.
 凹凸層27の形成方法として型押し法を用いる場合、加熱によって軟化させた樹脂層に対して型を押しつけ、型の凹凸を樹脂層へ転写することで、凹凸層27を形成する。 When the embossing method is used as a method of forming the concavo-convex layer 27, the concavo-convex layer 27 is formed by pressing the mold against the resin layer softened by heating and transferring the concavities and convexities of the mold to the resin layer.
 凹凸層27の形成方法としてエッチング法を用いる場合、エッチング液に樹脂層を浸漬することで、樹脂層の前面に凹凸面を形成する。 When the etching method is used as a method of forming the uneven layer 27, the uneven surface is formed on the front surface of the resin layer by immersing the resin layer in the etching solution.
 凹凸層27の形成方法としてインプリント法を用いる場合、透明基板24とモールドとの間に転写材を挟み、モールドの凹凸パターンを転写材に転写し、転写材を固化させることで、凹凸層27を形成する。固化は、光硬化、熱硬化を含む。 When the imprint method is used as a method of forming the concavo-convex layer 27, the concavo-convex layer 27 is formed by sandwiching the transfer material between the transparent substrate 24 and the mold, transferring the concavo-convex pattern of the mold to the transfer material, and solidifying the transfer material. Form Solidification includes light curing and heat curing.
 凹凸層27の形成方法としてコート法を用いる場合、粒子とバインダーとを含むコート液を透明基板24に塗布し、塗布したコート液を固化させることで凹凸層27を形成する。コート法としては、例えばスプレー法が挙げられる。 When the coating method is used as a method of forming the concavo-convex layer 27, the concavo-convex layer 27 is formed by applying a coating liquid containing particles and a binder to the transparent substrate 24 and solidifying the applied coating liquid. As a coating method, a spray method is mentioned, for example.
 凹凸層27の形成方法としてスプレー法を用いる場合、粒子とバインダーとを含むコート液を細いノズルから圧力をかけて噴霧することにより、液滴を透明基板24に塗布する。粒子は、無機粒子、有機粒子などから適宜選択可能である。バインダーは、有機系材料、無機系材料から適宜選択可能である。 When a spray method is used as a method for forming the uneven layer 27, droplets are applied to the transparent substrate 24 by spraying a coating liquid containing particles and a binder from a thin nozzle under pressure. The particles can be appropriately selected from inorganic particles, organic particles and the like. The binder can be appropriately selected from organic materials and inorganic materials.
 凹凸層27に対しインクによる書き込みやその書き込みの消去、映像の投映などがなされてもよいが、図10に示すように凹凸層27を被覆する被覆層25に対しインクによる書き込みやその書き込みの消去、映像の投映などがなされてもよい。また、図10に示すように凹凸層27と被覆層25との間には、下地層26が設けられてもよい。 Although writing with the ink or erasing of the writing may be performed on the concavo-convex layer 27 or image projection may be performed, writing on the covering layer 25 covering the concavo-convex layer 27 as shown in FIG. , And may be projected video. Further, as shown in FIG. 10, an underlayer 26 may be provided between the uneven layer 27 and the covering layer 25.
 被覆層25の形成方法としてコート法が用いられる場合、コート液の塗布量や固形分濃度(不揮発性分濃度)を制御することで、凹凸面23の凹凸形状を制御できる。凹凸層27の凹凸形状が同じ場合、コート液の塗布量が多いほど、被覆層25の凹凸面23の高低差が小さくなる。また、凹凸層27の凹凸形状が同じ場合、コート液の固形分濃度が高いほど、被覆層25の凹凸面23の高低差が低くなる。コート液は、スポンジなどで薄く引き伸ばされた後、余剰分を拭き取って使用する。コート液の塗布量は、拭き取り量で調整できる。 When the coating method is used as a method of forming the covering layer 25, the unevenness shape of the uneven surface 23 can be controlled by controlling the application amount of the coating solution and the solid content concentration (nonvolatile content concentration). When the concavo-convex shape of the concavo-convex layer 27 is the same, the difference in height between the concavo-convex surface 23 of the covering layer 25 decreases as the application amount of the coating liquid increases. Moreover, when the concavo-convex shape of the concavo-convex layer 27 is the same, the height difference of the concavo-convex surface 23 of the covering layer 25 becomes lower as the solid content concentration of the coating liquid is higher. The coating solution is thinly stretched with a sponge or the like, and then used after wiping off the excess. The amount of coating solution applied can be adjusted by the amount of wiping.
 透明基板24が凹凸面を有し、その凹凸面に下地層26や被覆層25がさらに形成されない場合は、透明基板24の凹凸面が透明部材20の凹凸面23である。また、透明基板24が凹凸面を有し、その凹凸面に下地層26や被覆層25がさらに形成される場合は、被覆層25の凹凸面が透明部材20の凹凸面23である。 In the case where the transparent substrate 24 has an uneven surface and the base layer 26 and the covering layer 25 are not further formed on the uneven surface, the uneven surface of the transparent substrate 24 is the uneven surface 23 of the transparent member 20. When the transparent substrate 24 has an uneven surface, and the underlayer 26 and the covering layer 25 are further formed on the uneven surface, the uneven surface of the covering layer 25 is the uneven surface 23 of the transparent member 20.
 一方、透明基板24が平坦面を有し、その平坦面に凹凸層27が形成され、凹凸層27の上に下地層26や被覆層25がさらに形成されない場合は、凹凸層27の凹凸面が透明部材20の凹凸面23である。また、透明基板24が平坦面を有し、その平坦面に凹凸層27が形成され、凹凸層27の上に下地層26や被覆層25がさらに形成される場合は、被覆層25の凹凸面が透明部材20の凹凸面23である。 On the other hand, in the case where the transparent substrate 24 has a flat surface, the uneven layer 27 is formed on the flat surface, and the underlayer 26 or the covering layer 25 is not further formed on the uneven layer 27, the uneven surface of the uneven layer 27 is It is the uneven surface 23 of the transparent member 20. In the case where the transparent substrate 24 has a flat surface, the uneven layer 27 is formed on the flat surface, and the underlayer 26 or the covering layer 25 is further formed on the uneven layer 27, the uneven surface of the covering layer 25 Is the uneven surface 23 of the transparent member 20.
 <接着層>
 接着層30は、透明部材20と光散乱層40との間に設けられ、透明部材20と光散乱層40とを接着する。接着層30は、光散乱層40がシート状に形成されたうえで、透明部材20に貼り付けられる場合に用いられる。接着層30としては、一般的なものが用いられる。
<Adhesive layer>
The adhesive layer 30 is provided between the transparent member 20 and the light scattering layer 40 and bonds the transparent member 20 and the light scattering layer 40. The adhesive layer 30 is used when the light scattering layer 40 is formed into a sheet and then attached to the transparent member 20. As the adhesive layer 30, a general one is used.
 尚、光散乱層40は、本実施形態ではシート状に形成されたうえで透明部材20に貼り付けられるが、光散乱層40の原料液を透明部材20に塗布して形成されてもよい。後者の場合、接着層30は不要である。 In the present embodiment, the light scattering layer 40 is formed into a sheet and then attached to the transparent member 20. However, the light scattering layer 40 may be formed by applying a raw material liquid of the light scattering layer 40 to the transparent member 20. In the latter case, the adhesive layer 30 is unnecessary.
 <光散乱層>
 光散乱層40は、透明部材20を透過した光を散乱する。これにより光散乱層40が白色を呈するため、ユーザU1、U2によって視認される映像のコントラストが向上する。光散乱層40は、屈折率が異なる複数の材料で形成される。光散乱層40は、例えばマトリックス部と、マトリックス部中に散在する光散乱部とを含む。
<Light scattering layer>
The light scattering layer 40 scatters the light transmitted through the transparent member 20. Thereby, the light scattering layer 40 has a white color, and the contrast of the image visually recognized by the users U1 and U2 is improved. The light scattering layer 40 is formed of a plurality of materials having different refractive indices. The light scattering layer 40 includes, for example, a matrix portion and light scattering portions scattered in the matrix portion.
 マトリックス部は、無機材料、有機材料のいずれを含んでもよい。無機材料としては、二酸化ケイ素などが挙げられる。有機材料としては、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、メラミン樹脂、ポリウレタン樹脂、ウレタンアクリレート樹脂、シリコーン樹脂などが挙げられる。有機材料は、熱硬化性樹脂、光硬化性樹脂、熱可塑性樹脂のいずれであってもよい。 The matrix part may contain either an inorganic material or an organic material. The inorganic material may, for example, be silicon dioxide. Examples of the organic material include polyvinyl alcohol resin, polyvinyl butyral resin, epoxy resin, acrylic resin, polyester resin, polycarbonate resin, melamine resin, polyurethane resin, urethane acrylate resin, silicone resin and the like. The organic material may be any of a thermosetting resin, a photocurable resin, and a thermoplastic resin.
 光散乱部は、粒子、空洞のいずれを含んでもよく、両者を含んでもよい。粒子は、無機粒子、有機粒子のいずれでもよい。無機粒子の材料としては、二酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、ホスフィン酸塩、ジホスフィン酸塩、硫酸バリウム、タルクおよびマイカなどが挙げられる。有機粒子の材料としては、ポリスチレン樹脂、アクリル樹脂、ポリウレタン樹脂などが挙げられる。また、粒子は多孔質粒子であってもよい。多孔質粒子の空孔の細孔直径は2nm~50nmが好ましい。粒子の数平均粒径は100nm~10μmである。空洞は、延伸操作や発泡剤などによって形成される。光散乱部が空洞を含む場合、光散乱層40は多孔質層である。 The light scattering portion may contain either particles or cavities, or both. The particles may be either inorganic particles or organic particles. Materials of the inorganic particles include silicon dioxide, titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, calcium carbonate, phosphinate, diphosphinate, barium sulfate, talc, mica and the like. Examples of the material of the organic particles include polystyrene resin, acrylic resin, polyurethane resin and the like. The particles may also be porous particles. The pore diameter of the pores of the porous particles is preferably 2 nm to 50 nm. The number average particle size of the particles is 100 nm to 10 μm. The cavity is formed by a stretching operation, a foaming agent, and the like. When the light scattering portion includes a cavity, the light scattering layer 40 is a porous layer.
 光散乱層40がフィルム状に形成されたうえで透明部材20に貼り付けられる場合、光散乱部として、粒子のみを含む場合と粒子と空洞の両方を含む場合では、粒子の適切な配合量が異なる。粒子のみを含む場合は、光散乱層40に占める粒子の割合は20体積%~98体積%が好ましく、30体積%~90体積%がより好ましい。粒子と空洞の両方を含む場合は、光散乱層40に占める粒子の割合は0.1体積%~50体積%が好ましく、0.5体積%~30体積%がより好ましい。 When the light scattering layer 40 is formed into a film and attached to the transparent member 20, the appropriate blending amount of the particles is in the case where the light scattering portion includes only the particles and both the particles and the cavities. It is different. When only particles are contained, the proportion of particles in the light scattering layer 40 is preferably 20% by volume to 98% by volume, and more preferably 30% by volume to 90% by volume. When both particles and cavities are included, the proportion of particles in the light scattering layer 40 is preferably 0.1% by volume to 50% by volume, and more preferably 0.5% by volume to 30% by volume.
 光散乱層40として用いられるフィルムは、延伸フィルムであってよく、フィルムの押出し方向(縦方向)に延伸された一軸延伸フィルム、および縦方向および横方向に延伸された二軸延伸フィルムのいずれでもよい。 The film used as the light scattering layer 40 may be a stretched film, and it may be a uniaxially stretched film stretched in the extrusion direction (longitudinal direction) of the film, or a biaxially stretched film stretched in the longitudinal direction and the transverse direction. Good.
 光散乱層40としての延伸フィルムは、ポリエステル樹脂などの樹脂で形成され、樹脂の内部に粒子を含む場合、および粒子と当該粒子を起点として延伸時に形成される空洞とを含む場合がある。粒子と空洞を含む場合、複数の粒子や複数の空洞が、延伸フィルムの内部に分散配置される。 The stretched film as the light scattering layer 40 is formed of a resin such as a polyester resin, and may include particles in the interior of the resin, and may include particles and cavities formed at the time of stretching starting from the particles. When the particles and the cavity are included, the plurality of particles and the plurality of cavities are dispersed and disposed inside the stretched film.
 延伸フィルムが粒子のみを含む場合は、粒子は例えば、硫酸バリウム、酸化アルミニウム、酸化チタン、または炭酸カルシウムなどで形成される。無機粒子の粒径は1μm以下であることが好ましい。 When the stretched film contains only particles, the particles are formed of, for example, barium sulfate, aluminum oxide, titanium oxide, or calcium carbonate. The particle diameter of the inorganic particles is preferably 1 μm or less.
 延伸フィルムが粒子と空洞を含む場合は、粒子としては、タルク、マイカ、炭酸カルシウム、ホスフィン酸塩、ジホスフィン酸塩などから形成される。粒子の粒径は5μm以下であることが好ましい。フィルムの延伸時に粒子付近から空隙を作成するため、粒子とマトリックス樹脂の密着力は小さい方が好ましい。延伸によって形成された空洞は、延伸方向に伸びた構造であって、厚み方向と延伸方向とのアスペクト比の高い構造である。そのため、薄い延伸フィルムであっても、多数の空洞を光路内に含むことが可能となるため、粒子のみの場合に比べ、粒子の割合が少ない場合でも効率的な反射が可能となる。空洞を含むと映像のコントラストが高くなりやすい。 When the stretched film contains particles and cavities, the particles are formed of talc, mica, calcium carbonate, phosphinate, diphosphinate or the like. The particle size of the particles is preferably 5 μm or less. The adhesion between the particles and the matrix resin is preferably as small as possible to create a void from the vicinity of the particles when the film is stretched. The cavity formed by stretching is a structure elongated in the stretching direction, and is a structure having a high aspect ratio between the thickness direction and the stretching direction. Therefore, even in the case of a thin stretched film, it is possible to include a large number of cavities in the light path, so that efficient reflection is possible even when the proportion of particles is smaller than in the case of particles alone. Including a cavity is likely to increase the contrast of the image.
 光散乱層40は、マトリックス部や光散乱部に加えて、光吸収部をさらに含んでもよい。光吸収部は、カーボンブラックやチタンブラックなどの光吸収性粒子を含む。光散乱層40に占める光吸収部の割合は、例えば0.01体積%~5体積%、好ましくは0.1体積%~3体積%である。光吸収部は、映像のコントラストを向上する。 The light scattering layer 40 may further include a light absorbing portion in addition to the matrix portion and the light scattering portion. The light absorbing portion contains light absorbing particles such as carbon black and titanium black. The ratio of the light absorbing portion to the light scattering layer 40 is, for example, 0.01% by volume to 5% by volume, preferably 0.1% by volume to 3% by volume. The light absorbing unit improves the contrast of the image.
 光散乱層40の全光線透過率は、15%~40%である。「全光線透過率」は、光散乱層40の一の主表面(例えば前面)に対し入射角0゜で入射した入射光に対する、光散乱層40の残りの一の主表面(例えば後面)に透過した全透過光の割合(百分率)を意味する。全光線透過率は、日本工業規格(JIS K7136)に準拠して測定され、測定対象の試験板を板厚方向に透過する透過光のうち、拡散光を含めた透過率として求められる。全光線透過率の測定に用いる光源としては、日本工業規格(JIS Z8720:2012)に記載のD65光源を用いる。 The total light transmittance of the light scattering layer 40 is 15% to 40%. The “total light transmittance” refers to one remaining main surface (for example, the back surface) of the light scattering layer 40 with respect to incident light that is incident at an incident angle of 0 ° on one main surface (for example, the front surface) of the light scattering layer 40 The percentage of the total transmitted light transmitted is meant. The total light transmittance is measured in accordance with the Japanese Industrial Standard (JIS K7136), and is obtained as the transmittance including diffused light among the transmitted light which transmits the test plate to be measured in the thickness direction. As a light source used for measurement of total light transmittance, D65 light source as described in Japanese Industrial Standard (JIS Z8720: 2012) is used.
 <光反射層>
 光反射層50は、光散乱層40からの光を光散乱層40に向けて反射する。光反射層50は、1層または多層で構成される。層の構成材料としては具体的には下記が挙げられる。光反射層50は、(1)金属層、(2)樹脂と樹脂中に散在する光反射性粒子とを含む層、(3)誘電体多層膜のうちの少なくとも1つを含み、いずれか2つ以上を含んでもよい。組合わせは特に限定されない。光反射層50に含まれる金属は、反射率や色の観点から、銀およびアルミニウムの少なくとも一方を含む単金属または合金であることが好ましい。
<Light reflecting layer>
The light reflecting layer 50 reflects the light from the light scattering layer 40 toward the light scattering layer 40. The light reflecting layer 50 is configured of one layer or multiple layers. Specifically as a constituent material of a layer, the following is mentioned. The light reflecting layer 50 includes at least one of (1) a metal layer, (2) a layer containing a resin and light reflecting particles dispersed in the resin, and (3) a dielectric multilayer film, Or more may be included. The combination is not particularly limited. The metal contained in the light reflecting layer 50 is preferably a single metal or alloy containing at least one of silver and aluminum from the viewpoint of reflectance and color.
 光反射層50が、金属層を含む場合、金属層の形成方法としては、例えば金属箔や金属板を貼る方法、スパッタリングや真空蒸着法などの物理蒸着法、銀鏡反応やメッキを利用する方法などが挙げられる。 When the light reflection layer 50 includes a metal layer, the metal layer may be formed by, for example, attaching a metal foil or a metal plate, physical vapor deposition such as sputtering or vacuum evaporation, silver mirror reaction or plating, etc. Can be mentioned.
 また、光反射層50は、樹脂と、樹脂中に散在する光反射性粒子とを含んでもよい。この場合、光反射層50は、例えば樹脂組成物と光反射性粒子とを混ぜた液体を光散乱層40に塗布し、塗布した液体を固化させることで形成される。前記液体には溶媒が含まれていてもよい。あるいは、樹脂が熱可塑性樹脂である場合には、樹脂組成物と光反射性粒子とを混ぜた樹脂材料を押し出し成形等によりシート状にすることで形成される。光反射性粒子としては、例えば金属粒子が用いられる。金属としては銀およびアルミニウムの少なくとも一方を含む単金属又は合金である。光反射性粒子の形状は、球状、板状のいずれでもよいが、反射率の観点から好ましくは板状である。 The light reflecting layer 50 may also include a resin and light reflective particles dispersed in the resin. In this case, the light reflecting layer 50 is formed, for example, by applying a liquid in which a resin composition and light reflecting particles are mixed to the light scattering layer 40 and solidifying the applied liquid. The liquid may contain a solvent. Alternatively, when the resin is a thermoplastic resin, it is formed by extruding a resin material obtained by mixing the resin composition and the light reflective particles into a sheet. For example, metal particles are used as the light reflective particles. The metal is a single metal or alloy containing at least one of silver and aluminum. The shape of the light reflective particles may be spherical or plate-like, but is preferably plate-like from the viewpoint of reflectance.
 また、光反射層50は、誘電体多層膜を含んでもよい。誘電体多層膜は、屈折率が異なる複数の誘電体を積層する方法により形成できる。高屈折率の誘電体としては例えばSi、AlN、NbN、SnO、ZnO、SnZnO、Al、MoO、NbO、TiOおよびZrOが挙げられる。前記高屈折率の誘電体より低屈折率の誘電体としては例えばSiO、MgF、およびAlFが挙げられる。 The light reflecting layer 50 may also include a dielectric multilayer film. The dielectric multilayer film can be formed by a method of laminating a plurality of dielectrics having different refractive indexes. Examples of the high refractive index dielectric include Si 3 N 4 , AlN, NbN, SnO 2 , ZnO, SnZnO, Al 2 O 3 , MoO, NbO, TiO 2 and ZrO 2 . Examples of dielectrics having a refractive index lower than that of the high refractive index dielectric include SiO 2 , MgF 2 , and AlF 3 .
 光反射層50については、正反射率と拡散反射率と外部透過率と吸収率の和を100%とする。正反射率と拡散反射率との和が全反射率である。正反射率や拡散反射率の測定サンプルには、ガラス基材(具体的には2mm厚のソーダライムガラス板)上に光反射層50を形成したものを用いる。 For the light reflection layer 50, the sum of the regular reflectance, the diffuse reflectance, the external transmittance and the absorptivity is set to 100%. The sum of the regular reflectance and the diffuse reflectance is the total reflectance. As a measurement sample of the regular reflectance and the diffuse reflectance, one in which the light reflection layer 50 is formed on a glass substrate (specifically, a 2 mm thick soda lime glass plate) is used.
 光反射層50の正反射率は、絶対反射率として測定する。光反射層50の正反射率は、測定サンプルの光反射層50におけるガラス基材側の表面に対しガラス基材側から入射角5°で波長550nmの光を入射し、正反射の方向に反射した光を分光光度計で検出して測定値とする。分光光度計としては、市販のもの(例えば日立製作所社製、型式:U-4100)が用いられる。 The regular reflectance of the light reflecting layer 50 is measured as an absolute reflectance. The specular reflectance of the light reflection layer 50 is such that light having a wavelength of 550 nm is incident at an incident angle of 5 ° from the glass substrate side to the surface on the glass substrate side in the light reflection layer 50 of the measurement sample The detected light is detected by a spectrophotometer to obtain a measurement value. As the spectrophotometer, a commercially available one (for example, manufactured by Hitachi, Ltd., model: U-4100) is used.
 一方、光反射層50の拡散反射率は、光反射層50の全反射率から光反射層50の正反射率を引いて算出する。光反射層50の全反射率は、絶対反射率として測定する。光反射層50の全反射率は、測定サンプルを積分球の内部に設置し、測定サンプルの光反射層50におけるガラス基材側の表面に対しガラス基材側から入射角5°で波長550nmの光を入射し、様々な方向に反射した光を積分球によって集めて分光光度計で検出して測定値とする。 On the other hand, the diffuse reflectance of the light reflecting layer 50 is calculated by subtracting the regular reflectance of the light reflecting layer 50 from the total reflectance of the light reflecting layer 50. The total reflectance of the light reflecting layer 50 is measured as an absolute reflectance. The total reflectance of the light reflection layer 50 is determined by placing the measurement sample inside the integrating sphere and setting the incident angle 5 ° from the glass substrate side to the surface of the light reflection layer 50 on the glass substrate side at a wavelength of 550 nm. Light is incident, and light reflected in various directions is collected by an integrating sphere and detected by a spectrophotometer to be a measurement value.
 光反射層50の正反射率は、好ましくは40%以上である。光反射層50の正反射率が40%以上であれば、映像のぼやけがほとんどない。光反射層の正反射率は、より好ましくは50%以上である。 The specular reflectance of the light reflecting layer 50 is preferably 40% or more. If the specular reflectance of the light reflection layer 50 is 40% or more, the image is hardly blurred. The regular reflectance of the light reflecting layer is more preferably 50% or more.
 光反射層50の拡散反射率は、好ましくは40%未満である。光反射層50の拡散反射率が40%未満であれば、映像のぼやけが略ない。 The diffuse reflectance of the light reflecting layer 50 is preferably less than 40%. If the diffuse reflectance of the light reflecting layer 50 is less than 40%, blurring of the image does not occur.
 光反射層50の正反射率と拡散反射率の合計、つまり光反射層50の全反射率は、30~100%が好ましい。 The total of the specular reflectance and the diffuse reflectance of the light reflecting layer 50, that is, the total reflectance of the light reflecting layer 50 is preferably 30 to 100%.
 光反射層50の外部透過率は、好ましくは50%未満である。光反射層50の外部透過率が50%未満であれば、映像の明るさが十分に得られる。 The external transmittance of the light reflecting layer 50 is preferably less than 50%. If the external transmittance of the light reflecting layer 50 is less than 50%, sufficient brightness of the image can be obtained.
 尚、光反射層50は、金属層が好ましい。この場合、光反射層50は、めっき、スパッタ、蒸着などによって光散乱層40上に形成される。 The light reflecting layer 50 is preferably a metal layer. In this case, the light reflection layer 50 is formed on the light scattering layer 40 by plating, sputtering, vapor deposition, or the like.
 光反射層50は、図3では光散乱層40に密着しているが、光散乱層40に密着していなくてもよく、光散乱層40との間に隙間を形成してもよい。光反射層50は、光散乱層40とは別に形成されてもよい。 The light reflecting layer 50 is in close contact with the light scattering layer 40 in FIG. 3, but may not be in close contact with the light scattering layer 40, and a gap may be formed between the light reflecting layer 50 and the light scattering layer 40. The light reflecting layer 50 may be formed separately from the light scattering layer 40.
 光反射層50の前面は、凹凸をほとんど有しないことが好ましい。光反射層50の前面の算術平均粗さRaは、例えば5μm以下、好ましくは1μm以下である。 It is preferable that the front surface of the light reflecting layer 50 has almost no unevenness. The arithmetic mean roughness Ra of the front surface of the light reflecting layer 50 is, for example, 5 μm or less, preferably 1 μm or less.
 上記反射型スクリーンの製造方法は、ガラス基板24と、光散乱層40と、光反射層50とを含む積層体を製造する工程を有する。尚、ガラス基板24の代わりに、前述の樹脂基板が透明基板として用いられてもよい。 The method of manufacturing the reflective screen has a step of manufacturing a laminate including the glass substrate 24, the light scattering layer 40 and the light reflecting layer 50. In addition, instead of the glass substrate 24, the above-mentioned resin substrate may be used as a transparent substrate.
 <反射型スクリーンの用途>
 反射型スクリーンは、映写とかき消しが行われる用途に適している。
<Application of reflective screen>
Reflective screens are suitable for applications where projection and scraping occur.
 例えば、建物等の表示用途があり、より具体的には下記の用途が挙げられる。
・居住空間のインテリアやCM、教育用の映像の表示
・カーディーラーでの情報や広告等の表示
・スーパーマーケット、リテイルや公共の建物のガラスドアとして用いて広告表示、情報通知、イベント等の用途
・壁紙のパターンを変えられるガラスウォールとしての用途
・ホテルなどのバスルームのパーテーション
・空港、駅、病院、学校における、文字、標識、画像、動画の表示
・寺社、仏閣、神社、教会等の宗教施設における、地域や観光の情報の表示
・商業施設における空間演出
・スタジアムにおける、文字、標識、画像、動画の表示
・キッチンでの情報や個人向けの映像投影用途
・ホワイトボードとして、書き込みや表示が可能な部材として学校やミーティングルームで用いる。また、ユーザーインターフェースと共に用いる。
For example, there are display applications such as buildings, and more specifically, the following applications may be mentioned.
-Interior of living space, CM, display of educational images-Display of information and advertisements at car dealers-Supermarket, use as a glass door for retail and public buildings-Advertising display, information notification, applications such as events- Use as a glass wall that can change the pattern of wallpaper. Partitions of bathrooms in hotels, etc. Partitions of bathrooms, airports, stations, hospitals, schools, letters, signs, images, display of videos, temples, shrines, shrines, churches, etc. Display of regional and tourist information in the space, space presentation in commercial facilities, display of characters, signs, images and videos in the stadium, information in the kitchen and projection of images for individuals and use as whiteboards, writing and display are possible Used in schools and meeting rooms as Also used with the user interface.
 テーブルトップ、ケーシング等における用途として、以下の用途が挙げられる。
・レストランのテーブルトップ
・机(デスクトップ)、キッチンカウンター
・卓上のパーテーション
 また、車両における用途として、以下の用途が挙げられる。
・新幹線のパーテーション部分
・自動車において、車内パーテーションとしてTVやDVDの映像の表示。
Examples of applications in table tops, casings and the like include the following applications.
-Restaurant table tops, desks (desktops), kitchen counters, tabletop partitions Also, the following applications can be mentioned as applications in vehicles.
-Partition part of the Shinkansen-Display of TV and DVD images as an in-car partition in a car.
 これらの用途において反射型スクリーン10を壁等に設置する場合は、建築用などとして入手可能な一般的な接着剤やシーリング材などを用いて貼りつけることができる。 When the reflective screen 10 is installed on a wall or the like in these applications, it can be attached using a general adhesive or sealing material available for construction or the like.
 試験例1~試験例4および試験例12が実施例、試験例5~試験例11が比較例である。 Test Example 1 to Test Example 4 and Test Example 12 are Examples, and Test Examples 5 to 11 are Comparative Examples.
 [試験例1]
 試験例1では、透明部材としてガラス板(旭硝子製ソーダライムガラス、板厚3mm)の一方の主表面をウェットエッチング処理したものを用意した。ウェットエッチング処理は、第1のエッチング液と第2のエッチング液を用いて2段階で行った。第1のエッチング液としては、フッ化水素アンモニウム水溶液を用いた。第1のエッチング液による処理時間は60秒とし、その後、第2のエッチング液による処理の前に、第1のエッチング液による処理でガラス表面に生成した結晶を水洗により除去した。第2のエッチング液としては、フッ化水素酸、硫酸、塩化水素酸を含む水溶液を用いた。
[Test Example 1]
In Test Example 1, a main surface of a glass plate (a soda lime glass made by Asahi Glass, thickness 3 mm) wet-etched was prepared as a transparent member. The wet etching process was performed in two steps using the first etching solution and the second etching solution. An ammonium hydrogen fluoride aqueous solution was used as the first etching solution. The treatment time with the first etching solution was 60 seconds, and then, before the treatment with the second etching solution, crystals formed on the glass surface by the treatment with the first etching solution were removed by water washing. An aqueous solution containing hydrofluoric acid, sulfuric acid, and hydrochloric acid was used as the second etching solution.
 ウェットエッチング処理したガラス板の凹凸面には、下地層や被覆層を形成しなかった。 The underlayer and the covering layer were not formed on the uneven surface of the wet-etched glass plate.
 試験例1では、用意したガラス板の凹凸面とは反対側の面に、光散乱層としての白色PETフィルムに光反射層としてのアルミ蒸着層を予め形成したものを接着剤で貼り合わせて反射型スクリーンを作製した。 In Test Example 1, a white PET film as a light scattering layer was previously formed with an aluminum deposition layer as a light reflection layer and bonded with an adhesive on the surface opposite to the uneven surface of the prepared glass plate. A mold screen was made.
 白色PETフィルムとしては、ジエチルホスフィン酸アルミニウム粒子(平均粒子径2μm)を起点として形成される空洞を内部に複数有する二軸延伸フィルム(厚み50μm、全光線透過率:28.5%)を用いた。 As a white PET film, a biaxially stretched film (thickness 50 μm, total light transmittance: 28.5%) having a plurality of cavities formed with aluminum diethylphosphinate aluminum particles (average particle diameter 2 μm) as a starting point was used. .
 アルミ蒸着層は、白色PETフィルムを基準としてガラス板とは反対側に配した。 The aluminum deposited layer was disposed on the opposite side of the white PET film to the glass plate.
 [試験例2] 
 試験例1の第1のエッチング液より高い濃度のフッ化水素アンモニウムを含む第1のエッチング液を用いたほかは試験例1と同様にして、2段階のウェットエッチング処理したガラス板を得た。ウェットエッチング処理したガラス板の凹凸面には、下地層や被覆層を形成しなかった。
[Test Example 2]
A two-step wet-etched glass plate was obtained in the same manner as in Test Example 1 except that the first etching liquid containing ammonium hydrogen fluoride at a higher concentration than the first etching liquid in Test Example 1 was used. The underlayer and the covering layer were not formed on the uneven surface of the wet-etched glass plate.
 得られたガラス板に試験例1と同様にして光散乱層と光反射層を形成し、反射型スクリーンを作成した。 A light scattering layer and a light reflecting layer were formed on the obtained glass plate in the same manner as in Test Example 1 to prepare a reflective screen.
 [試験例3]
 試験例2の第1のエッチング液よりさらに高い濃度のフッ化水素アンモニウムを含む第1のエッチング液を用いたほかは試験例1と同様にして、2段階のウェットエッチング処理したガラス板を得た。ウェットエッチング処理したガラス板の凹凸面には、下地層や被覆層を形成しなかった。
[Test Example 3]
A two-step wet-etched glass plate was obtained in the same manner as in Test Example 1 except that the first etching solution containing ammonium hydrogen fluoride at a higher concentration than the first etching solution in Test Example 2 was used. . The underlayer and the covering layer were not formed on the uneven surface of the wet-etched glass plate.
 得られたガラス板に試験例1と同様にして光散乱層を貼りあわせ、反射型スクリーンを作成した。 A light scattering layer was attached to the obtained glass plate in the same manner as in Test Example 1 to prepare a reflective screen.
 [試験例4]
 試験例4では、ウェットエッチング処理の条件以外、試験例1と同様にしてガラス板の一方の主表面に凹凸面を形成した。ウェットエッチング処理は、試験例3よりもさらに高い濃度のフッ化水素アンモニウムを含む第1のエッチング液を用いた。ウェットエッチング処理したガラス板の凹凸面には、試験例1とは異なり、被覆層を形成した。
[Test Example 4]
In Test Example 4, an uneven surface was formed on one main surface of the glass plate in the same manner as in Test Example 1 except for the conditions of the wet etching process. In the wet etching process, a first etching solution containing ammonium hydrogen fluoride at a higher concentration than that of Test Example 3 was used. Unlike the test example 1, the coating layer was formed in the uneven surface of the glass plate by which the wet etching process was carried out.
 具体的には、被覆層用のコート液(信越化学社製、KR400)を滴下しスポンジで塗り広げ、余剰の被覆層用のコート液をベンコット(旭化成)を用いてふき取った。その後、200℃で30分間加熱処理することにより、被覆層を形成した。 Specifically, a coating solution for the coating layer (KR 400 manufactured by Shin-Etsu Chemical Co., Ltd.) was dropped and spread with a sponge, and an excess coating solution for the coating layer was wiped using Bencot (Asahi Kasei Corporation). Then, the coating layer was formed by heat-processing for 30 minutes at 200 degreeC.
 試験例4では、試験例1と同様に、用意したガラス板の凹凸面とは反対側の面に、光散乱層としての白色PETフィルムに光反射層としてのアルミ蒸着層を形成したものを接着剤で貼り合わせた。 In Test Example 4, as in Test Example 1, a white PET film as a light scattering layer was formed with an aluminum deposition layer as a light reflection layer on the surface opposite to the uneven surface of the prepared glass plate. It stuck with the medicine.
 [試験例5]
 試験例5では、ガラス板の一方の主表面に凹凸面を形成する方法として、ブラスト処理とウェットエッチング処理とをこの順で用いた。ブラスト処理において、ブラスト装置は直圧式、メディアはアルミナ#480、ノズル距離は60mm、噴射圧力は0.3MPa、1枚当たりの処理時間は6.72秒とした。ウェットエッチング処理は、10質量%のフッ化水素酸水溶液で60秒処理することで行った。ブラスト処理した面には下地層や、被覆層を形成しなかった。試験例5では、用意したガラス板の凹凸面とは反対側の面に、光散乱層としての白色PETフィルムに光反射層としてのアルミ蒸着層を予め形成したものを接着剤で貼り合わせて反射型スクリーンを作製した。
[Test Example 5]
In Test Example 5, blasting and wet etching were used in this order as a method of forming an uneven surface on one of the main surfaces of the glass plate. In the blasting process, the blasting apparatus was a direct pressure type, the media was alumina # 480, the nozzle distance was 60 mm, the jetting pressure was 0.3 MPa, and the processing time per sheet was 6.72 seconds. The wet etching process was performed by treating with a 10 mass% hydrofluoric acid aqueous solution for 60 seconds. The base layer and the coating layer were not formed on the blasted surface. In Test Example 5, a white PET film as a light scattering layer on which an aluminum deposition layer as a light reflecting layer was formed in advance was adhered with an adhesive on the surface of the prepared glass plate opposite to the uneven surface. A mold screen was made.
 白色PETフィルムとしては、ジエチルホスフィン酸アルミニウム粒子(平均粒子径2μm)を起点として形成される空洞を内部に複数有する二軸延伸フィルム(厚み50μm、全光線透過率:28.5%)を用いた。 
  アルミ蒸着層は、白色PET フィルムを基準としてガラス板とは反対側に配した。
As a white PET film, a biaxially stretched film (thickness 50 μm, total light transmittance: 28.5%) having a plurality of cavities formed with aluminum diethylphosphinate aluminum particles (average particle diameter 2 μm) as a starting point was used. .
The aluminum deposition layer was disposed on the opposite side of the white PET film to the glass plate.
 [試験例6]
 試験例6では、ガラス板の一方の主表面に凹凸面を形成する方法として、ブラスト処理のみを用いた。ブラスト処理は試験例5におけるブラスト処理と同様にして行った。
[Test Example 6]
In Test Example 6, only blasting was used as a method of forming an uneven surface on one of the main surfaces of a glass plate. The blast treatment was performed in the same manner as the blast treatment in Test Example 5.
 得られたガラス板に試験例5と同様にして光散乱層と光反射層を形成し、反射型スクリーンを作成した。 A light scattering layer and a light reflecting layer were formed on the obtained glass plate in the same manner as in Test Example 5 to prepare a reflective screen.
 [試験例7~11]
 試験例7~11では、ガラス板の一方の主表面に凹凸面を形成する方法として、ブラスト処理のみを用いた。ブラスト処理は、メディアの種類以外、試験例5のブラスト処理と同様にして行った。試験例7では、メディアとしてアルミナ#600を用いた。試験例8では、メディアとしてアルミナ#360を用いた。試験例9では、メディアとしてアルミナ#480を用いた。試験例10は、メディアとしてアルミナ#600を用いた。試験例11では、メディアとしてアルミナ#1000を用いた。
[Test Examples 7 to 11]
In Test Examples 7 to 11, only blasting was used as a method of forming an uneven surface on one of the main surfaces of a glass plate. The blasting was performed in the same manner as the blasting in Test Example 5 except for the type of media. In Test Example 7, alumina # 600 was used as the medium. In Test Example 8, alumina # 360 was used as the medium. In Test Example 9, alumina # 480 was used as the medium. In Test Example 10, alumina # 600 was used as the medium. In Test Example 11, alumina # 1000 was used as the medium.
 試験例7は、得られたガラス板に試験例5と同様にして光散乱層と光反射層を形成し、反射型スクリーンを作成した。処理したガラス板の凹凸面には、下地層や被覆層を形成しなかった。一方、試験例8~11は、得られたガラス板に試験例5と同様にして光散乱層と光反射層を形成した。そして、処理したガラス板の凹凸面には被覆層を形成した。被覆層は、下記のコート液をスピンコータによってガラス板の凹凸面全体に塗布し、塗布したコート液を150℃で30分間乾燥させることで形成した。コート液としては、シリコーンオリゴマー系コーティング剤KR400(信越化学社製)をトルエンで50%に希釈した液を用いた。被覆層の層厚は0.5μmであった。 In Test Example 7, a light scattering layer and a light reflection layer were formed on the obtained glass plate in the same manner as in Test Example 5 to produce a reflective screen. The underlayer and the covering layer were not formed on the uneven surface of the treated glass plate. On the other hand, in Test Examples 8 to 11, a light scattering layer and a light reflection layer were formed on the obtained glass plate in the same manner as in Test Example 5. And the coating layer was formed in the uneven surface of the processed glass plate. The coating layer was formed by applying the following coating solution to the entire uneven surface of the glass plate by a spin coater, and drying the applied coating solution at 150 ° C. for 30 minutes. As the coating solution, a solution obtained by diluting silicone oligomer-based coating agent KR400 (manufactured by Shin-Etsu Chemical Co., Ltd.) to 50% with toluene was used. The layer thickness of the coating layer was 0.5 μm.
 [試験例12]
 試験例12では、試験例1で得られたガラス板を用いた。ウェットエッチング処理した面には、下地層や被覆層を形成しなかった。
[Test Example 12]
In Test Example 12, the glass plate obtained in Test Example 1 was used. The underlayer and the covering layer were not formed on the wet-etched surface.
 試験例12では用意したガラス板の凹凸面とは反対側の面に、光散乱層として白色塗料(帝国インキ社製GLS-HF619)を塗布し、150℃30分加熱硬化することで形成した。光反射層は形成しなかった。光散乱層には空隙が形成されなかった。 In Test Example 12, a white paint (GLS-HF619 manufactured by Teikoku Ink Co., Ltd.) was applied as a light scattering layer on the surface of the prepared glass plate opposite to the uneven surface, and heat curing was performed at 150 ° C. for 30 minutes. The light reflection layer was not formed. No void was formed in the light scattering layer.
 <凹凸面の表面形状の測定>
 凹凸面の表面形状は、オリンパス製レーザ顕微鏡LEXT(OLS-4100)により測定した。
<Measurement of surface shape of uneven surface>
The surface shape of the uneven surface was measured by a laser microscope LEXT (OLS-4100) manufactured by Olympus.
 算術平均粗さRa、粗さ曲線要素の平均長さRSmは、それぞれ、日本工業規格(JIS B0601:2013)に準拠して測定した。Ra、RSmは、カットオフ値を設定せずに測定した。Ra、RSmは、倍率50倍で縦260μm横260μmの長方形の領域をレーザ顕微鏡で撮影し、撮影した画像において無作為に描画される10本の直線のそれぞれに沿って測定し、その測定値の平均値を採用した。 Arithmetic mean roughness Ra and mean length RSm of the roughness curvilinear element were each measured according to Japanese Industrial Standard (JIS B0601: 2013). Ra and RSm were measured without setting the cutoff value. For Ra and RSm, a rectangular area of 260 μm by 260 μm is photographed with a laser microscope at a magnification of 50 times, and it is measured along each of 10 straight lines drawn randomly in the photographed image. The average value was adopted.
 クルトシスSkuは、国際規格(ISO 25178)に準拠して測定した。Skuは、カットオフ値を設定せずに測定した。Skuは、倍率50倍で縦260μm横260μmの長方形の領域において測定し、その測定値の平均値を採用した。 Kurtiss Sku was measured in accordance with the international standard (ISO 25178). Sku was measured without setting the cutoff value. Sku was measured at a magnification of 50 × in a rectangular area of 260 μm by 260 μm, and the average value of the measured values was adopted.
 <光沢度>
 光沢度として、Glossメーター(Rhopoint Instruments社製、Rhopoint IQ-S)を用いて、入射角60°で入射した入射光に対する反射角60°で反射した反射光の割合(%)を測定した。光沢度の測定では、反射型スクリーンの後面を黒色のフェルト布で覆い、反射型スクリーンの後面での反射を抑えた状態で測定した。光沢度は65%より小さいことが好ましい。
<Glossiness>
As a glossiness, a ratio (%) of reflected light reflected at a reflection angle of 60 ° to incident light incident at an incidence angle of 60 ° was measured using a Gloss meter (Rhopoint IQ-S, manufactured by Rhopoint Instruments). In the measurement of glossiness, the back side of the reflective screen was covered with a black felt cloth, and the reflection on the back side of the reflective screen was measured in a state of being suppressed. The glossiness is preferably less than 65%.
 <ホットスポット評価>
 ホットスポットは、反射型スクリーンに対し約1mの距離をおいて正対させた液晶プロジェクタ(Qumi社製、最大輝度:800ルーメン)から反射型スクリーンに映像を投影して、目視で評価した。
<Hot spot evaluation>
The hot spot was evaluated visually by projecting an image on a reflective screen from a liquid crystal projector (Qumi, maximum brightness: 800 lumens) which was directly faced to the reflective screen at a distance of about 1 m.
 ホットスポットの評価結果を示す下記の表1および図8において、「〇」とは反射型スクリーンに画像を投影したときにホットスポットの存在が認められなかったことを意味し、「×」とはホットスポットの存在が認められたことを意味する。 In the following Table 1 and FIG. 8 showing the evaluation results of the hot spot, “o” means that the presence of the hot spot was not recognized when the image was projected on the reflective screen, “x” means It means that the presence of a hotspot has been recognized.
 <高速書き消し試験>
 高速書き消し試験では、専用マーカとして赤色のホワイトボード用マーカー(コクヨ社製、ホワイトボード用マーカーPM-B102NR)を用い、字消具としてはホワイトボード用イレーサー(コクヨ社製、RA-12NB-DM)を用いた。
<High-speed write-out test>
In the high-speed write-out test, a red whiteboard marker (Kokuyo product, whiteboard marker PM-B102NR) is used as a dedicated marker, and a eraser is a whiteboard eraser (Kokuyo product, RA-12NB-DM) Was used.
 専用マーカで反射型スクリーンの凹凸面に3本の線を引き、これらの線を字消具で消去したときの色残りを目視で評価した。反射型スクリーンに押し付けた専用マーカの移動速度(線を引く速度)は20cm/秒とし、反射型スクリーンに専用マーカを押し付ける荷重は0.98Nとした。 Three lines were drawn on the uneven surface of the reflective screen with a dedicated marker, and the color residue when these lines were erased with a eraser was visually evaluated. The moving speed (line drawing speed) of the dedicated marker pressed against the reflective screen was 20 cm / sec, and the load for pressing the dedicated marker against the reflective screen was 0.98 N.
 高速書き消し試験の評価結果を示す下記の表1および図7において、「〇」とは色残りが認められなかったことを意味し、「×」とは色残りが認められたことを意味する。 In the following Table 1 and FIG. 7 showing the evaluation results of the high-speed write-out test, "o" means that no color residue was observed, and "x" means that a color residue was recognized. .
 <連続書き消し試験>
 連続書き消し試験では、専用マーカとして赤色のホワイトボード用マーカー(ゼブラ社製、BoardMarkerEZcapYYS17-R)を用い、字消具としてはホワイトボード用イレーサー(コクヨ社製、RA-12NB-DM)を用いた。
<Continuous write-out test>
In the continuous writing out test, a red whiteboard marker (BoardMarkerEZcapYYS17-R manufactured by Zebra) was used as a dedicated marker, and a whiteboard eraser (RA-12NB-DM manufactured by KOKUYO) was used as a eraser. .
 専用マーカで反射型スクリーンの凹凸面に直径50mmの円を描き、円の中を塗りつぶし、描いた円を字消具で消去することを50回繰り返し行い、色残りの程度を評価した。反射型スクリーンに押し付けた専用マーカの移動速度は1cm/秒とし、反射型スクリーンに専用マーカを押し付ける荷重は0.98Nとした。 A circle with a diameter of 50 mm was drawn on the irregular surface of the reflective screen with a dedicated marker, the inside of the circle was filled, and erasing of the drawn circle was repeated 50 times to evaluate the degree of color remaining. The moving speed of the dedicated marker pressed against the reflective screen was 1 cm / sec, and the load for pressing the dedicated marker against the reflective screen was 0.98 N.
 色残りの程度は、L表色系(CIE 1976)における色差ΔEab(ΔEab={(ΔL+(Δa+(Δb1/2)で評価した。ΔL、Δa、Δbとは、連続書き消し試験の前後でのL、a、bの変化を表す。ΔEabは、好ましくは2.0未満であり、より好ましくは1.5以下であり、特に好ましくは1.0以下である。ΔEabが1.0以下であった場合、色残りは視認されなかった。 Degree of color remaining, L * a * b * color system color difference in (CIE 1976) ΔE * ab ( ΔE * ab = {(ΔL *) 2 + (Δa *) 2 + (Δb *) 2} 1 / 2 ) rated it. ΔL * , Δa * , Δb * represent changes in L * , a * , b * before and after the continuous writing out test. ΔE * ab is preferably less than 2.0, more preferably 1.5 or less, and particularly preferably 1.0 or less. When ΔE * ab was less than 1.0, no color residue was visible.
 <ぎらつき>
 ぎらつきの有無は、図2に示すように反射型スクリーンに対しプロジェクタから映像を投影したときに、図2に示すユーザU1の位置で明暗による微細な斑点模様が見えるか否かで評価した。ぎらつきの評価結果を示す下記の表1において、「〇」とはぎらつきが認められなかったことを意味し、「×」とはぎらつきが認められたことを意味する。
<Glare>
The presence or absence of glare was evaluated based on whether or not a fine spot pattern of light and dark was visible at the position of the user U1 shown in FIG. 2 when an image was projected from a projector on a reflective screen as shown in FIG. In Table 1 below showing the evaluation results of glare, "o" means that no glare was observed, and "x" means that a glare was recognized.
 <コントラスト>
 コントラストの評価は、白色(最高輝度部分)と黒色(最低輝度部分)を交互に繰り返した縞模様を液晶プロジェクタ(Qumi社製、最大輝度:800ルーメン)から投影し、明るい白色部で輝度が飽和しないようデジタルカメラのISO感度を調整し画像を撮影した。次に得られた写真の白色部の平均輝度を黒色部の平均輝度で除したものをコントラストとした。輝度解析にはたとえばImageJなどの画像解析ソフトを用いた。
<Contrast>
For evaluation of contrast, a stripe pattern in which white (highest luminance part) and black (lowest luminance part) are alternately repeated is projected from a liquid crystal projector (manufactured by Qumi, maximum luminance: 800 lumens), and luminance is saturated in bright white parts I adjusted the ISO sensitivity of the digital camera so as not to shoot an image. Next, the average luminance of the white part of the photograph obtained was divided by the average luminance of the black part to obtain a contrast. For the luminance analysis, for example, image analysis software such as ImageJ was used.
 <評価結果>
 評価結果を表1および図7~9に示す。表1は、試験例1~12の各種評価結果をまとめて示す。図7は、試験例1~12による高速書き消し試験の結果を示す図である。図8は、試験例1~12によるホットスポットの評価結果を示す図である。図9は、試験例1、3、6、9、12による連続書き消し試験の結果を示す図である。
<Evaluation result>
The evaluation results are shown in Table 1 and FIGS. 7-9. Table 1 summarizes the various evaluation results of Test Examples 1 to 12. FIG. 7 is a diagram showing the results of the high-speed write-out test according to Test Examples 1-12. FIG. 8 is a diagram showing the evaluation results of hot spots according to Test Examples 1 to 12. FIG. 9 is a figure which shows the result of the continuous rewriting test by test example 1, 3, 6, 9, 12. FIG.
Figure JPOXMLDOC01-appb-T000002
 表1および図7から明らかなように、試験例1~4および9~12では、試験例5~8とは異なり、反射型スクリーンの凹凸面のRa/RSmが0.010以下であったため、高速書き消し試験において色残りが視認されなかった。これは、凹凸面のRa/RSmが0.010以下であると、凹凸の周期に比べて凹凸の高低差が大き過ぎないため、凹凸面に書き込まれたインクが除去しやすく、離型剤の不足した書き込みを十分に消去できるためである。
Figure JPOXMLDOC01-appb-T000002
As is clear from Table 1 and FIG. 7, in Test Examples 1 to 4 and 9 to 12, the Ra / RSm of the uneven surface of the reflective screen was 0.010 or less, unlike Test Examples 5 to 8. No color residue was visible in the fast write-out test. This is because when the Ra / RS m of the uneven surface is 0.010 or less, the height difference of the unevenness is not too large compared to the period of the unevenness, so the ink written on the uneven surface is easily removed. This is because the insufficient writing can be sufficiently erased.
 また、表1および図8から明らかなように、試験例1~9および12では、試験例10~11とは異なり、反射型スクリーンの凹凸面のRa/RSmが0.0040以上であったため、ホットスポットの発生を抑制できた。これは、凹凸の周期に比べて凹凸の高低差が十分に大きいため、反射型スクリーンの凹凸面において、プロジェクタからの入射光が拡散反射されやすく、光反射層からの反射光が拡散透過されやすいためである。 Further, as is clear from Table 1 and FIG. 8, in Test Examples 1 to 9 and 12, unlike in Test Examples 10 to 11, since the Ra / RSm of the uneven surface of the reflective screen was 0.0040 or more, We were able to suppress the occurrence of hotspots. This is because the height difference of the unevenness is sufficiently large compared to the period of the unevenness, so the incident light from the projector is easily diffused and reflected on the uneven surface of the reflective screen, and the reflected light from the light reflecting layer is easily diffused and transmitted It is for.
 尚、表1および図8から、ホットスポットの評価結果と光沢度とには相関関係があることもわかる。光沢度は正反射率を測定しているため、正反射が原因で生じるホットスポットと光沢度とには相関関係がある。光沢度が50%以上であると、ホットスポットが認められた。 It can also be understood from Table 1 and FIG. 8 that there is a correlation between the evaluation result of the hot spot and the glossiness. Since the glossiness measures the specular reflectance, there is a correlation between the hot spots generated due to the specular reflection and the glossiness. Hot spots were observed when the glossiness was 50% or more.
 さらに、表1および図9から明らかなように、試験例1、3および12では、試験例6および9とは異なり、反射型スクリーンの凹凸面のクルトシスSkuが3.5以下であったため、連続書き消し試験の前後でのΔEabが2.0未満であり、色残りが少なかった。これは、凹凸の周期に比べて凹凸の高低差が十分に大きいため、凹凸面23において、プロジェクタPからの入射光が拡散反射されやすく、光反射層50からの反射光が拡散透過されやすいためである。これは、凹凸面のクルトシスSkuが3.5以下であると、頂点が平らな凸や凹が十分に多いので、インクが除去しやすく、離型剤の膜の形成による色残りを低減できるためである。尚、連続書き消し試験は、試験例1、3、6、9および12において行い、試験例2、4-5、7-8、10-11において行わなかった。 Furthermore, as is clear from Table 1 and FIG. 9, in Test Examples 1, 3 and 12, unlike in Test Examples 6 and 9, since the kurtosis Sku of the uneven surface of the reflective screen was 3.5 or less, Before and after the writing-off test, ΔE * ab was less than 2.0, and there were few color residues. This is because the height difference of the unevenness is sufficiently large compared to the period of the unevenness, so the incident light from the projector P is easily diffused and reflected on the uneven surface 23, and the reflected light from the light reflecting layer 50 is easily diffused and transmitted. It is. This is because if the kurtosis Sku of the uneven surface is 3.5 or less, the peaks are flat and there are sufficiently many projections and depressions, so the ink can be easily removed and the color residue due to the formation of the film of the release agent can be reduced. It is. The continuous writing out test was performed in Test Examples 1, 3, 6, 9 and 12, and was not performed in Test Examples 2, 4-5, 7-8, 10-11.
 <変形、改良>
 以上、反射型スクリーンの実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
<Deformation, improvement>
As mentioned above, although the embodiment etc. of a reflection type screen were explained, the present invention is not limited to the above-mentioned embodiment etc., within the range of the gist of the present invention described in the claim, various modification and improvement are possible It is.
 例えば、反射型スクリーンは、磁性層をさらに有してもよい。磁性層は、鉄などの軟磁性材料、永久磁石などの硬磁性材料のいずれを含んでもよい。磁石の吸着力を利用することができ、反射型スクリーンに紙などを留めたり、壁に反射型スクリーンを取付けたりすることができる。 For example, the reflective screen may further comprise a magnetic layer. The magnetic layer may include any of soft magnetic materials such as iron and hard magnetic materials such as permanent magnets. The attractive force of the magnet can be used, and paper can be fixed to the reflective screen, and the reflective screen can be attached to the wall.
 また、反射型スクリーンは、光反射層50を基準として光散乱層40とは反対側に、腐食防止層などの保護層をさらに有してもよい。光反射層50を保護することができる。 The reflective screen may further have a protective layer such as a corrosion prevention layer on the opposite side to the light scattering layer 40 with respect to the light reflective layer 50. The light reflecting layer 50 can be protected.
 また、反射型スクリーンは、光散乱層40や光反射層50の両側に透明基板を有してもよい。つまり、第1の透明基板と第2の透明基板との間に光散乱層40や光反射層50が設けられてもよく、合わせ板の内部に光散乱層40や光反射層50が設けられてもよい。第1の透明基板および第2の透明基板がそれぞれガラス板の場合、合わせ板として合わせガラスが得られる。尚、第1の透明基板および第2の透明基板は、両方が樹脂板、あるいは一方がガラス板で他方が樹脂板でもよい。 Also, the reflective screen may have a transparent substrate on both sides of the light scattering layer 40 and the light reflecting layer 50. That is, the light scattering layer 40 or the light reflecting layer 50 may be provided between the first transparent substrate and the second transparent substrate, and the light scattering layer 40 or the light reflecting layer 50 is provided inside the laminated plate. May be When the first transparent substrate and the second transparent substrate are respectively glass plates, laminated glass can be obtained as a laminated plate. Incidentally, both of the first transparent substrate and the second transparent substrate may be a resin plate, or one may be a glass plate and the other may be a resin plate.
 また、光反射層50は、正反射よりも拡散反射が支配的なものでもよい。そのような光反射層50としては、球状の反射性粒子が分散した層、反射性の凹凸構造を有する層が挙げられる。反射性の凹凸構造を有する層は、例えば凹凸面に沿って金属の反射膜を施すことで得られる。反射性の凹凸構造は、ランダムな凹凸構造、規則的な凹凸構造であってよく、ホログラム等でもよい。 In addition, the light reflection layer 50 may be one in which diffuse reflection is dominant rather than regular reflection. As such a light reflection layer 50, a layer in which spherical reflective particles are dispersed, and a layer having a reflective uneven structure may be mentioned. The layer having a reflective uneven structure can be obtained, for example, by applying a metal reflective film along the uneven surface. The reflective uneven structure may be a random uneven structure, a regular uneven structure, a hologram or the like.
 本出願は、2017年6月30日に日本国特許庁に出願された特願2017-128646号に基づく優先権を主張するものであり、特願2017-128646号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2017-128646 filed on Jun. 30, 2017, and the entire contents of Japanese Patent Application No. 2017-128646 are incorporated into the present application. Do.
10 反射型スクリーン
20 透明部材
21 第1主表面
22 第2主表面
23 凹凸面
24 透明基板
25 被覆層
26 下地層
27 凹凸層
30 接着層
40 光散乱層
50 光反射層
DESCRIPTION OF REFERENCE NUMERALS 10 reflective type screen 20 transparent member 21 first main surface 22 second main surface 23 uneven surface 24 transparent substrate 25 covering layer 26 underlying layer 27 uneven layer 30 adhesive layer 40 light scattering layer 50 light reflecting layer

Claims (7)

  1.  一方の主表面に凹凸面を有する透明部材と、
     前記透明部材の前記凹凸面とは反対側の主表面に設けられる光散乱層とを有し、
     前記凹凸面は、
    0.0040≦Ra/RSm≦0.010・・・(1)
    Sku≦3.5・・・(2)
    Ra:算術平均粗さ
    RSm:粗さ曲線要素の平均長さ
    Sku:クルトシス
    を満たす、反射型スクリーン。
    A transparent member having an uneven surface on one of the main surfaces,
    And a light scattering layer provided on the main surface of the transparent member opposite to the uneven surface,
    The uneven surface is
    0.0040 ≦ Ra / RSm ≦ 0.010 (1)
    Sku ≦ 3.5 (2)
    Ra: Arithmetic mean roughness RSm: Average length of roughness curvilinear element Sku: Reflective screen satisfying kurtosis.
  2.  前記透明部材の前記凹凸面の算術平均粗さRaが0.10μm以上である、請求項1に記載の反射型スクリーン。 The reflective screen according to claim 1, wherein an arithmetic average roughness Ra of the uneven surface of the transparent member is 0.10 μm or more.
  3.  前記光散乱層の全光線透過率が15%~40%である、請求項1または2に記載の反射型スクリーン。 The reflective screen according to claim 1 or 2, wherein the total light transmittance of the light scattering layer is 15% to 40%.
  4.  前記光散乱層が内部に複数の空洞を含有する、請求項1~3のいずれか1項に記載の反射型スクリーン。 The reflective screen according to any one of claims 1 to 3, wherein the light scattering layer contains a plurality of cavities therein.
  5.  前記光散乱層が内部に複数の空洞を有する延伸フィルムであり、前記空洞は粒子を起点として形成される、請求項1~4のいずれか1項に記載の反射型スクリーン。 The reflective screen according to any one of claims 1 to 4, wherein the light scattering layer is a stretched film having a plurality of cavities therein, and the cavities are formed from particles.
  6.  前記透明部材はガラス板を含む、請求項1~5のいずれか1項に記載の反射型スクリーン。 The reflective screen according to any one of claims 1 to 5, wherein the transparent member comprises a glass plate.
  7.  前記光散乱層の厚みが10μm~150μmである、請求項1~6のいずれか1項に記載の反射型スクリーン。 The reflective screen according to any one of claims 1 to 6, wherein the thickness of the light scattering layer is 10 μm to 150 μm.
PCT/JP2018/024394 2017-06-30 2018-06-27 Reflective type screen WO2019004289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526983A JPWO2019004289A1 (en) 2017-06-30 2018-06-27 Reflective screen
CN201890000121.8U CN209417512U (en) 2017-06-30 2018-06-27 Reflection type screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128646 2017-06-30
JP2017128646 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004289A1 true WO2019004289A1 (en) 2019-01-03

Family

ID=64742298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024394 WO2019004289A1 (en) 2017-06-30 2018-06-27 Reflective type screen

Country Status (3)

Country Link
JP (1) JPWO2019004289A1 (en)
CN (1) CN209417512U (en)
WO (1) WO2019004289A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107062A1 (en) * 2019-11-28 2021-06-03 積水化学工業株式会社 Interlayer film for laminated glass, laminated glass, and image display system
JP2022184685A (en) * 2021-06-01 2022-12-13 積水化学工業株式会社 Resin film, glass laminate, and screen
JP2022189700A (en) * 2021-06-11 2022-12-22 積水化学工業株式会社 Resin film, laminated glass and screen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237613B1 (en) 2019-07-23 2021-04-07 에스케이씨 주식회사 Film for bonding and light transmitting layered product comprising of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032440A1 (en) * 1999-11-04 2001-05-10 Kimoto Co., Ltd. Combination writing board/reflecting screen sheet
JP2013190523A (en) * 2012-03-13 2013-09-26 Panasonic Corp Manufacturing method of screen for projection
US20160237309A1 (en) * 2015-02-03 2016-08-18 Seagrave Coatings Corp. Solvent-free polyurethane 100% solids coating
WO2017073512A1 (en) * 2015-10-30 2017-05-04 旭硝子株式会社 Reflective screen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164132B2 (en) * 2006-02-22 2013-03-13 株式会社サクラクレパス Written sheet and pass / crayon sheet
JP5519185B2 (en) * 2009-05-20 2014-06-11 スリーエム イノベイティブ プロパティズ カンパニー Writing sheet
JP6334055B2 (en) * 2015-06-24 2018-05-30 Jxtgエネルギー株式会社 Sheet-like transparent molded body, transparent screen including the same, and video projection system including the same
KR20180063174A (en) * 2015-09-30 2018-06-11 아사히 가라스 가부시키가이샤 IMAGE PROJECTION STRUCTURE AND IMAGE PROJECTION METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032440A1 (en) * 1999-11-04 2001-05-10 Kimoto Co., Ltd. Combination writing board/reflecting screen sheet
JP2013190523A (en) * 2012-03-13 2013-09-26 Panasonic Corp Manufacturing method of screen for projection
US20160237309A1 (en) * 2015-02-03 2016-08-18 Seagrave Coatings Corp. Solvent-free polyurethane 100% solids coating
WO2017073512A1 (en) * 2015-10-30 2017-05-04 旭硝子株式会社 Reflective screen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107062A1 (en) * 2019-11-28 2021-06-03 積水化学工業株式会社 Interlayer film for laminated glass, laminated glass, and image display system
JPWO2021107062A1 (en) * 2019-11-28 2021-06-03
CN114340894A (en) * 2019-11-28 2022-04-12 积水化学工业株式会社 Interlayer film for laminated glass, and image display system
CN114340894B (en) * 2019-11-28 2022-10-04 积水化学工业株式会社 Interlayer film for laminated glass, and image display system
US11642873B2 (en) 2019-11-28 2023-05-09 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass, laminated glass, and image display system
JP2022184685A (en) * 2021-06-01 2022-12-13 積水化学工業株式会社 Resin film, glass laminate, and screen
JP2022189700A (en) * 2021-06-11 2022-12-22 積水化学工業株式会社 Resin film, laminated glass and screen

Also Published As

Publication number Publication date
CN209417512U (en) 2019-09-20
JPWO2019004289A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
TWI708072B (en) Enclosures having an improved tactile surface
TWI623507B (en) Durable glass articles for use as writable erasable marker boards
WO2019004289A1 (en) Reflective type screen
TWI677722B (en) Textured surfaces for display applications
US9279912B2 (en) Anti-glare glass article and display system
JP6733678B2 (en) Reflective screen
JP4893539B2 (en) Article having antiglare layer and method for producing the same
KR20090046774A (en) Coating solution for forming light diffusion layer, and light diffusion plate
WO2012165107A1 (en) Fingerprint stain-resistant substrate
JP2010044687A (en) Transparent conductive laminate and touch panel
CN106575074B (en) High contrast, glass-based writable/erasable front projection screen
WO2019123896A1 (en) Transparent screen, video projection laminated plate, and video display system
JPWO2018199120A1 (en) Glass substrate with film, article, and method of manufacturing glass substrate with film
KR101164859B1 (en) A preparing method of non-glared board useful for projection screen and writing
JP3214615U (en) Whiteboard assembly
JP3214711U (en) White board with touch sensor
JP2022187987A (en) Optical laminate, polarizing plate, image display device, and method for manufacturing optical laminate
JP2019168621A (en) Transparent screen glass and display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823307

Country of ref document: EP

Kind code of ref document: A1