WO2019004232A1 - Radiographic image detection device and method for operating same - Google Patents

Radiographic image detection device and method for operating same Download PDF

Info

Publication number
WO2019004232A1
WO2019004232A1 PCT/JP2018/024252 JP2018024252W WO2019004232A1 WO 2019004232 A1 WO2019004232 A1 WO 2019004232A1 JP 2018024252 W JP2018024252 W JP 2018024252W WO 2019004232 A1 WO2019004232 A1 WO 2019004232A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
detection
power
signal
state
Prior art date
Application number
PCT/JP2018/024252
Other languages
French (fr)
Japanese (ja)
Inventor
岩切 直人
北野 浩一
将 清水川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019526950A priority Critical patent/JP6864092B2/en
Priority to CN201880043331.XA priority patent/CN110832848B/en
Publication of WO2019004232A1 publication Critical patent/WO2019004232A1/en
Priority to US16/727,849 priority patent/US11064966B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/38Exposure time
    • H05G1/40Exposure time using adjustable time-switch

Definitions

  • the present invention relates to a radiation image detecting apparatus and an operation method thereof.
  • the radiation image detection apparatus has a sensor panel and a circuit unit.
  • a plurality of pixels which are irradiated from the radiation generation apparatus and sensitive to the radiation transmitted through the subject (patient), are arranged in a two-dimensional manner in a plurality of pixels that accumulate charges.
  • a radiographic image detection device having such a sensor panel is also called a flat panel detector (FPD).
  • the circuit section is provided with a signal processing circuit that converts the charge accumulated in the pixels of the sensor panel into a digital signal and outputs the digital signal as a radiation image.
  • the radiation image detection apparatus is classified into a stationary type fixed to an imaging table installed in an imaging room and a portable type in which a sensor panel and the like are accommodated in a portable case.
  • a portable radiation image detection device is called an electronic cassette.
  • Electronic cassettes include a wired type in which power is supplied from a commercial power supply via a cable, and a wireless type in which power is supplied from a battery mounted in a housing.
  • Each pixel is connected to a switching element, for example, a TFT (Thin Film Transistor), for selecting a pixel from which charge is read.
  • a switching element for example, a TFT (Thin Film Transistor)
  • gate lines for driving the TFTs in units of rows of pixels and signal lines for reading out the charge from each pixel to the signal processing circuit are provided so as to cross each other. That is, the gate lines extend in the row direction of the pixels, and are arranged at a predetermined pitch in the column direction of the pixels.
  • the signal lines extend in the column direction of the pixels, and are arranged at a predetermined pitch in the row direction of the pixels.
  • the signal processing circuit includes a charge amplifier (hereinafter, CA (Charge Amp)), a multiplexer (hereinafter, MUX (multiplexer)), an AD converter (hereinafter, ADC (Analog-to-Digital Converter)), and the like.
  • CA Charge Amp
  • MUX multiplexer
  • ADC Analog-to-Digital Converter
  • the CA is provided for each signal line and connected to one end of the signal line.
  • CA outputs an analog voltage signal corresponding to the charge flowing from the pixel through the signal line.
  • a plurality of CAs are connected to the input terminal of the MUX, and one ADC is connected to the output terminal.
  • the MUX sequentially selects analog voltage signals from the plurality of CAs connected to the input terminal, and outputs the selected analog voltage signal to the ADC.
  • the ADC executes an AD conversion process that converts an analog voltage signal from the MUX into a digital signal according to the voltage value.
  • the signal processing circuit reads out the charge representing the image information of the subject from the sensor panel and converts it into a digital signal, and outputs it as a radiation image of one screen to be provided for diagnosis.
  • Patent Document 1 describes a radiation image detection apparatus in which a sensor panel has 2880 rows ⁇ 2304 columns of pixels, and a signal processing circuit has nine MUXs and ADCs.
  • the signal processing circuit when reading a radiation image of one screen from the sensor panel, the signal processing circuit performs the following image reading operation. That is, gate pulses are sequentially applied to the gate lines of 2880 rows, and the TFTs of each row are sequentially turned on one by one, and in each case, the charges of the pixels in one row in which the TFTs are turned on It flows simultaneously to the signal lines of each column. As a result, the charges of the pixels in one row are read out and accumulated in each of the CAs connected to the respective columns of the 2304th signal line.
  • each MUX sequentially selects analog voltage signals from 256 CAs connected thereto, and outputs the selected analog voltage signal to each ADC.
  • Each ADC sequentially converts an analog voltage signal from each MUX into a digital signal and outputs it.
  • the output of digital signals for one row corresponds to image reading for one row. When the image reading for one line is completed, the same operation is repeated and the image reading for the next line is performed.
  • a radiation image for one screen is output by repeating such an image reading operation for one row for 2880 lines.
  • the radiation image detection apparatus described in Patent Document 1 has an irradiation start detection (hereinafter, AED (Auto Exposure Detection)) function of detecting the start of irradiation of radiation using a sensor panel.
  • AED Automatic Exposure Detection
  • the operation of reading the charges of the pixels as digital signals is repeatedly performed before the start of radiation irradiation.
  • the operation of converting the charge of the pixel into a digital signal and reading it out is repeatedly performed before the start of radiation irradiation, and the radiation start of radiation is determined based on the digital signal.
  • an AED operation in order to distinguish this operation from the image reading operation, it will be referred to as an AED operation.
  • the digital signal read out in the AED operation and the irradiation start determination threshold set in advance are compared with each other in the same manner as the image reading operation, and the digital signal becomes larger than the irradiation start determination threshold. It is determined that radiation irradiation has been started. Then, when it is determined that the irradiation of radiation has been started, while the radiation is being irradiated, the pixel charge accumulation operation of accumulating charges in the pixel is performed, and then the image readout operation is performed.
  • the communication between the radiation image detecting device and the radiation generating device communicates the timing signal for notifying the start timing of the radiation irradiation because the radiation image detecting device and the radiation generating device are different manufacturers. Even when this can not be performed, it is possible to cause the sensor panel to start the pixel charge storage operation according to the radiation start timing of the radiation.
  • the image reading operation is ended if the radiation image for one screen is read once.
  • the AED operation continues from before the start of the radiation irradiation until the start of the irradiation, in order to wait for the start of the irradiation of the radiation whose timing is indefinite.
  • the AED operation is an irradiation that instructs the start of radiation irradiation after the operator sets the radiation irradiation conditions in the radiation generating apparatus. It lasts for a few seconds to a few tens of seconds until the switch is pressed.
  • Patent Document 1 while the AED operation continues, the signal processing circuit repeats the same operation as the image reading operation for reading out the charges of the pixels of all the columns, so the AED operation has a long operation time with respect to the image reading operation. In the period of, there was a problem that the power consumption was very high. In particular, when the radiation image detection device is a battery-operated electronic cassette, a battery with a limited charge capacity is used, so if the power consumption is high, the battery must be charged frequently, and the imaging efficiency is high. It gets worse.
  • An object of the present invention is to provide a radiation image detection apparatus capable of reducing the power consumed by a signal processing circuit in an irradiation start detection operation for detecting the start of irradiation of radiation and an operation method thereof.
  • a plurality of pixels each of which charges in response to radiation emitted from a radiation generating apparatus and transmitted through a subject and stores charges are two-dimensionally arrayed.
  • a sensor panel in which signal lines are disposed, a signal processing circuit that performs signal processing by reading out analog voltage signals corresponding to charges from pixels through the signal lines, and a plurality of charge amplifiers included in the signal processing circuit,
  • a plurality of charge amplifiers provided for each signal line and connected to one end of the signal line and converting charges from pixels into analog voltage signals, and a multiplexer included in a signal processing circuit, the plurality of input terminals
  • a plurality of charge amplifiers are respectively connected to the plurality of input terminals, and sequentially select and output analog voltage signals from the plurality of charge amplifiers.
  • An AD converter included in the signal processing circuit which is connected to the subsequent stage of the multiplexer and performs AD conversion processing for converting an analog voltage signal output from the multiplexer into a digital signal according to the voltage value
  • the charge read out through the detection channel which is a signal line connected to the detection pixel, is an operation to detect the start of radiation irradiation based on the digital signal corresponding to the read charge, and the image readout operation is radiation irradiation
  • the control unit is connected to the detection channel among the plurality of charge amplifiers connected to the multiplexer in the irradiation start detection operation.
  • the analog voltage signal from some of the charge amplifiers including the detection charge amplifier which is the charge amplifier is selectively output to the AD converter, and the control unit is selectively output to the AD converter.
  • the controller performs only AD conversion processing to an analog voltage signal, and the control unit further reduces the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter than when reading out the image, and further controls
  • the Drive at least one of the charge amplifiers in the low power state where power less than normal power and greater than 0 is supplied.
  • the multiplexer preferably has a function of selecting an analog voltage signal from a part of the plurality of charge amplifiers connected.
  • the control unit preferably controls the switch to select the second path during the irradiation start detection operation, and has a switch that selectively switches the first path and the second path.
  • the control unit supplies at least one of a plurality of non-selected charge amplifiers other than a part of the charge amplifiers among the plurality of charge amplifiers connected to the multiplexer, and the power supply is lower than the normal power It is preferable to be in a power saving state.
  • the power saving state is preferably a low power state in which power lower than normal power and greater than 0 is supplied.
  • the power saving state is preferably a power-off state in which the supply of power is stopped.
  • the control unit preferably puts all of the unselected charge amplifiers in the power saving state.
  • Control includes a first path for inputting charge to the charge amplifier, a second path for outputting charge to the multiplexer without passing through the charge amplifier, and a switch for selectively switching between the first path and the second path.
  • the unit preferably controls the switch to select the second path.
  • the control unit stabilizes the potential of the input stage with respect to the non-selected charge amplifier in the power off state. It is preferable to apply a bias voltage.
  • the control unit includes a plurality of blocks including one multiplexer to which at least one detection charge amplifier is connected and one AD converter connected to the subsequent stage of one multiplexer. Power supply between the first state supplying the first power and the second state supplying the second power whose power per unit time is lower than the first power. Preferably, the power supply state of at least one of the plurality of blocks is periodically switched during the irradiation start detection operation.
  • control unit When there are two or more blocks in which the power supply state periodically switches, the control unit preferably shifts the timing of switching the power supply state of at least two of the two or more blocks.
  • the two or more blocks are divided into groups, and the control unit preferably shifts the timing of switching the power supply state for each group.
  • the control unit preferably shifts the timing of switching the power supply state for each group.
  • at least one block is preferably disposed between two blocks belonging to the same group.
  • the control unit preferably shifts the timing of switching of the power supply state of all the power of two or more blocks.
  • the control unit preferably keeps at least one of the blocks including the multiplexer to which a part of the charge amplifiers is not connected among the plurality of blocks in the second state during the irradiation start detection operation.
  • the block is provided for each area configured by pixels connected to a plurality of adjacent signal lines.
  • a plurality of adjacent blocks, each in charge of an adjacent area be mounted on the same chip, and a plurality of chips be provided.
  • the control unit preferably switches the power supply state of the block on a block basis or a chip basis in charge of the area.
  • the detection pixel is preferably a dedicated pixel specialized for the irradiation start detection operation.
  • the sensor panel and the signal processing circuit be an electronic cassette which is housed in a portable case and is supplied with power from a battery mounted on the case.
  • the pixels for accumulating charges in response to radiation emitted from the radiation generating apparatus and transmitted through the object are two-dimensionally arrayed, and a plurality of signal lines for reading out the charges are arranged.
  • a signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to an electric charge from a pixel through a signal line, and a plurality of charge amplifiers included in the signal processing circuit, provided for each signal line
  • a plurality of charge amplifiers connected to one end of the signal line and converting charges from the pixels into analog voltage signals, and a multiplexer included in the signal processing circuit, the plurality of input terminals having a plurality of input terminals
  • a charge amplifier is connected to each of a plurality of input terminals, and a multiplexer that sequentially selects and outputs analog voltage signals from the plurality of charge amplifiers;
  • An AD converter included in the processing circuit the AD converter being connected to the subsequent stage of the multiplexer and performing an AD conversion process of converting an analog voltage signal output from the multiplexer into a digital signal according to the voltage value;
  • charge is generated through a detection channel which is a signal line connected to a detection pixel preset among
  • Analog voltage signals from some charge amplifiers including a detection charge amplifier are selectively output to the AD converter, and AD conversion to the analog voltage signals selectively output to the AD converter Only the processing is executed, and furthermore, the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter is reduced as compared to that at the image readout, and furthermore, in the irradiation start detection operation, If the power supplied to the charge amplifier is normal power, At least one is driven in a low power state where less than normal power and greater than 0 power is supplied.
  • Analog voltage signals from some charge amplifiers including a detection charge amplifier are selectively output to the AD converter, and AD conversion to the analog voltage signals selectively output to the AD converter Only the processing is executed, and furthermore, the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter is reduced as compared to that at the image readout, and furthermore, in the irradiation start detection operation.
  • the power supplied to the charge amplifier is normal power
  • at least one of the charge amplifiers is The radiation image detection apparatus capable of reducing the power consumed by the signal processing circuit in the irradiation start detection operation and operating in a low power state in which the power is supplied lower than the above value and larger than 0 is supplied. Can be provided.
  • FIG. 9A is a diagram showing a digital signal read procedure by the first MUX and the first ADC
  • FIG. 9A is a first column
  • FIG. 9B is a second column
  • FIG. 9A is a diagram showing a digital signal read procedure by the first MUX and the first ADC
  • FIG. 9C is a third column, and FIG. Show how It is a figure which shows the flow of the operation
  • FIG. 18 is a diagram showing another example of the power supply state of the ADC in the AED operation of the first to sixth embodiments.
  • FIG. 18 is a block diagram showing a first to eighth embodiment in which a detection channel which is a signal line to which a detection pixel used for AED operation is connected is set. It is a figure which shows the supply state of the electric power of ADC in AED operation
  • FIG. 18 is a diagram showing another example of the power supply state of the ADC in the AED operation of the first to eighth embodiments. It is a figure which shows the example of arrangement
  • FIG. 14 is a diagram showing a first embodiment of the invention in which the leak charge correction and the temperature drift correction are performed. It is a figure which shows the time of AED operation
  • FIG. 44B is a diagram showing a reading procedure of dose signals by the first MUX and the first ADC in the 3-1 embodiment
  • FIG. 44A is a first column
  • FIG. 44B is a third column
  • FIG. 44C is a fifth column
  • FIG. 44A is a first column
  • FIG. 44B is a third column
  • FIG. 44C is a fifth column
  • FIG. 44A is a first column
  • FIG. 44B is a third column
  • FIG. 44C is a fifth column
  • FIG. 46A is a diagram showing a clock signal during an image read operation
  • FIG. 46B is an AED when the number of pulses per unit time of the clock signal of the ADC during AED operation is reduced compared to that during image read operation.
  • the clock signals at the time of operation are respectively shown.
  • FIG. 47B is a diagram showing a second method of reducing the number of pulses per unit time of the clock signal of the ADC at the time of AED operation compared to at the time of image reading operation
  • FIG. 47A is a clock signal at the time of image reading operation
  • FIG. The clock signals at the time of operation are respectively shown.
  • FIG. 7 is a diagram showing a power supply state of the block in the case where charge readout is started immediately after switching the block from the non-operation state to the operation state. It is a figure which shows the supply state of the electric power of the block in, when switching from the non-operating state of a block to an operation state is performed predetermined time before the timing which starts read-out of electric charge.
  • FIG. 17 is a diagram showing the details of the charge readout period in the case where the odd column is the detection channel and the MUX has the function of selecting only the analog voltage signal from the detection CA of the detection channel. .
  • FIG. 14 is a diagram showing a fourth embodiment of activating all blocks in an active state before detection of an image reading operation after detection of X-ray irradiation start in AED operation; It is a graph which shows the power supply to CA.
  • an X-ray imaging system 10 for performing imaging using X-rays as radiation includes an X-ray generator 11 and an X-ray imaging apparatus 12 and is installed, for example, in an imaging room of a radiology department in a medical facility. Ru.
  • the X-ray generator 11 includes an X-ray source 13, a radiation source controller 14 that controls the X-ray source 13, and an irradiation switch 15 connected to the radiation source controller 14.
  • the X-ray imaging apparatus 12 has an electronic cassette 16 which is a radiation image detection apparatus, and a console 17.
  • a standing imaging stand 18 for imaging the patient P who is the subject in a standing posture and a lying imaging stage 19 for imaging the patient P in a lying posture It is done.
  • the X-ray source 13 is shared by the standing position imaging stand 18 and the reclining position imaging stand 19. Note that FIG. 1 shows that the electronic cassette 16 is set on the standing imaging stand 18 and X-ray imaging of the patient P is performed in the standing posture.
  • the X-ray source 13 includes an X-ray tube that generates X-rays, and a radiation field limiter (also called a collimator) that limits the radiation field of X-rays generated from the X-ray tube to the patient P.
  • the source controller 14 controls the tube voltage, the tube current, and the irradiation time of the X-ray applied to the X-ray tube.
  • a plurality of types of X-ray irradiation conditions consisting of a tube voltage, a tube current, and an irradiation time are stored in advance in the radiation source control device 14 in accordance with the imaging site such as the chest and abdomen. The conditions are selectively input by the operator. The irradiation conditions can be finely adjusted by the operator in consideration of the type of the patient P and the like.
  • the irradiation switch 15 is operated by the operator when starting the irradiation of X-rays.
  • the irradiation switch 15 is a two-stage depression type, and when the irradiation switch 15 is depressed (half-pressed) to the first stage, the radiation source control device 14 performs a preparation operation before irradiating the X-ray source 13 with X-rays. To start. When the irradiation switch 15 is pushed to the second stage (full pushing), the radiation source control device 14 starts the irradiation of X-rays by the X-ray source 13.
  • the radiation source control device 14 has a timer that starts timing when X-ray irradiation is started, and when the time counted by the timer reaches the irradiation time set in the irradiation condition, X by the X-ray source 13 Stop irradiation of the line.
  • the electronic cassette 16 detects an X-ray image based on the X-ray irradiated from the X-ray source 13 and transmitted through the patient P.
  • the console 17 is configured by installing a control program such as an operating system and various application programs based on a computer such as a notebook personal computer, for example.
  • the console 17 has a display 20 and an input device 21 such as a touch pad or a keyboard.
  • the console 17 displays various operation screens provided with operation functions by GUI (Graphical User Interface) on the display 20, and accepts input of various operation instructions by the operator from the input device 21 through the various operation screens.
  • GUI Graphic User Interface
  • the electronic cassette 16 and the console 17 include wireless communication units 22 and 23 for wireless communication with each other.
  • the electronic cassette 16 and the console 17 wirelessly communicate various information including an imaging menu and an X-ray image through the wireless communication units 22 and 23.
  • Each of the wireless communication units 22 and 23 includes an antenna, a modulation / demodulation circuit, a transmission control unit, and the like.
  • the modulation and demodulation circuit performs modulation for loading data to be transmitted on a carrier (also referred to as a carrier) and demodulation for extracting data from the carrier received by the antenna.
  • the transmission control unit performs transmission control in accordance with the wireless local area network (LAN) standard.
  • LAN wireless local area network
  • the console 17 receives an input of an imaging order for instructing the operator to perform X-ray imaging.
  • the imaging order is input to the console 17 from, for example, a Radio Information System (RIS) (not shown).
  • RIS Radio Information System
  • the imaging order has items such as order ID (Identification Data), patient ID, imaging region / posture / direction, and the like.
  • the order ID is a symbol or a number that identifies each imaging order, and is automatically assigned by the RIS.
  • the patient ID of the patient P to be imaged is described in the item of patient ID.
  • the patient ID is a symbol or a number identifying the individual patient P.
  • the imaging region / posture / direction item describes the imaging region, posture, and imaging direction specified by the doctor who issued the imaging order.
  • the site to be imaged is a part of the human body such as the head, cervical spine, chest, abdomen, hands, fingers, elbows, knees and the like.
  • the posture is the posture of the patient P such as standing position, lying position, sitting position, etc.
  • the imaging direction is the direction of the patient P with respect to X-rays such as front, side, back and the like.
  • items of patient information such as the name, sex, age, height, and weight of the patient P are provided.
  • imaging order for one patient P there may be one imaging order for one patient P or multiple imaging orders for one patient P at the same time.
  • an identification code indicating that the imaging order is for one patient P is attached to the order IDs of the plurality of imaging orders.
  • the console 17 stores a menu / condition table 25 shown in FIG.
  • an imaging menu in which an imaging region, an attitude, and an imaging direction form one set is associated with an irradiation condition corresponding thereto and registered.
  • an imaging menu in which the imaging region excluding the posture from the above imaging menu and the imaging direction become one set or an imaging menu corresponding to special imaging such as tomosynthesis imaging may be provided.
  • the console 17 displays the photographing order list in which the contents of the photographing order shown in FIG. 2 are listed on the display according to the operation of the operator.
  • the operator browses the imaging order list and confirms the contents of the imaging order.
  • the console 17 displays the contents of the menu / condition table 25 on the display in a form in which the shooting menu can be set.
  • the operator selects and sets the imaging menu that matches the imaging region / posture / direction specified in the imaging order.
  • the operator sets, in the radiation source control device 14, the irradiation condition corresponding to the irradiation condition corresponding to the selected imaging menu.
  • the console 17 wirelessly communicates various information such as a shooting menu set by the operator, an irradiation condition corresponding to the set shooting menu, an order ID, a console ID which is a symbol or a number identifying itself, and a shooting preparation instruction.
  • the electronic cassette 16 is transmitted via the unit 23.
  • the console 17 converts the X-ray image from the electronic cassette 16 into an image file of a format conforming to, for example, DICOM (Digital Imaging and Communication in Medicine) standard, and this is a medical image storage communication system (PACS; Picture Archiving and Communication) Send to System (not shown).
  • image file an X-ray image is associated with image incidental information such as order ID, patient information, imaging menu, irradiation condition, cassette ID which is a symbol or number identifying the electronic cassette 16 by one image ID. It is a thing.
  • the doctor of the medical department who has issued the imaging order can access the PACS with a terminal of the medical department or the like to download the image file and view the X-ray image.
  • the electronic cassette 16 is configured of a sensor panel 30, a circuit unit 31, and a portable housing 32 having a rectangular parallelepiped shape for housing these components.
  • the housing 32 has a size in conformity with the International Standard for International Organization for Standardization (ISO) 4090: 2001, which is substantially the same as, for example, a film cassette, an imaging plate (IP) cassette, and a computed radiography (CR) cassette.
  • ISO International Standard for International Organization for Standardization
  • the wireless communication section 22 in addition to the sensor panel 30 and the circuit section 31, the wireless communication section 22 described above, the battery 65 (see FIG. 5) for supplying power to each section of the electronic cassette 16, and the console 17 and cable
  • a wired communication unit 66 (see FIG. 5) and the like for wired connection via the communication channel are accommodated.
  • the wireless communication unit 22 is used, the electronic cassette 16 is driven by the power from the battery 65 and can be used wirelessly.
  • a rectangular opening is formed in the front surface 32A of the housing 32, and a transmission plate 33 having X-ray transparency is attached to the opening.
  • the electronic cassette 16 is positioned with the X-ray source 13 and the front surface 32A facing each other.
  • the housing 32 is provided with a switch for switching the power on / off, and an indicator for notifying the operating state of the electronic cassette 16 such as the remaining use time of the battery 65 and the shooting preparation completion state. .
  • the sensor panel 30 is composed of a scintillator 34 and a light detection substrate 35.
  • the scintillator 34 and the light detection substrate 35 are stacked in the order of the scintillator 34 and the light detection substrate 35 as viewed from the front surface 32A where X-rays are incident.
  • the scintillator 34 has phosphors such as CsI: Tl (thallium activated cesium iodide) and GOS (Gd 2 O 2 S: Tb, terbium activated gadolinium oxysulfide), etc., and receives X rays incident through the transmission plate 33. Convert to visible light and emit.
  • a sensor panel may be used in which the light detection substrate 35 and the scintillator 34 are stacked in order as viewed from the front surface 32A where X-rays are incident.
  • a direct conversion type sensor panel may be used in which X-rays are directly converted into electric charges by a photoconductive film such as amorphous selenium.
  • the light detection substrate 35 detects visible light emitted from the scintillator 34 and converts it into a charge.
  • the circuit unit 31 controls driving of the light detection substrate 35 and generates an X-ray image based on the charge output from the light detection substrate 35.
  • the light detection substrate 35 includes pixels 40 arranged in a two-dimensional matrix of N rows and M columns, N gate lines 41, and M signals on a glass substrate (not shown). And a line 42 is provided.
  • the gate lines 41 extend in the X direction along the row direction of the pixels 40 and are arranged at a predetermined pitch in the Y direction along the column direction of the pixels 40.
  • the signal lines 42 extend in the Y direction and are arranged at a predetermined pitch in the X direction.
  • the gate line 41 and the signal line 42 are orthogonal to each other, and the pixel 40 is provided corresponding to the intersection of the gate line 41 and the signal line 42.
  • Each pixel 40 includes a photoelectric conversion unit 43 generating charges (electron-hole pairs) upon incidence of visible light and storing the charge, and a TFT (Thin Film Transistor) 44 as a switching element, as is well known.
  • the photoelectric conversion unit 43 has a structure in which an upper electrode and a lower electrode are disposed above and below the semiconductor layer generating charges.
  • the semiconductor layer is, for example, a PIN (p-intrinsic-n) type, and an N-type layer is formed on the upper electrode side and a P-type layer is formed on the lower electrode side.
  • the TFT 44 has a gate electrode connected to the gate line 41, a source electrode connected to the signal line 42, and a drain electrode connected to the lower electrode of the photoelectric conversion unit 43.
  • CMOS complementary metal oxide semiconductor
  • a bias line (not shown) is connected to the upper electrode of the photoelectric conversion unit 43.
  • a positive bias voltage is applied to the upper electrode through the bias line.
  • the application of a positive bias voltage generates an electric field in the semiconductor layer. Therefore, the electrons of the electron-hole pairs generated in the semiconductor layer by photoelectric conversion move to the upper electrode and are absorbed by the bias line, and the holes move to the lower electrode and are collected as charge. .
  • the circuit unit 31 is provided with a gate drive unit 50, a signal processing circuit 51, a memory 52, a power supply unit 53, and a control unit 54 for controlling these.
  • the control unit 54 drives the TFT 44 through the gate drive unit 50 and controls the signal processing circuit 51 to read out the dark charge from the pixel 40 and reset (discard) the dark charge, and the received dose of the X-ray.
  • a pixel charge accumulation operation for accumulating corresponding charges in the pixels 40, an image reading operation for reading an X-ray image to be used for diagnosis, and an AED operation for detecting the start of X-ray irradiation are executed.
  • the image readout operation reads out the charge from the pixel 40 through the signal line 42 after the pixel charge accumulation period has elapsed after the start of X-ray irradiation, and outputs an X-ray image represented by the digital signal corresponding to the read out charge. It is an operation.
  • the AED operation is an operation of reading out the charge from the pixel 40 through the signal line 42 before the start of the X-ray irradiation and detecting the start of the X-ray irradiation based on the digital signal corresponding to the read charge.
  • the signal processing circuit 51 includes a CA 60, a correlated double sampling circuit (hereinafter referred to as CDS (Correlated Double Sampling)) 61, a MUX unit 62, and an ADC unit 63.
  • CDS Correlated Double Sampling
  • the CA 60 is provided for each signal line 42 and is connected to one end of the signal line 42.
  • the CA 60 outputs an analog voltage signal V (C) according to the charge flowing from the pixel 40 through the signal line 42.
  • the CDS 61 is provided for each signal line 42 in the same manner as the CA 60.
  • the CDS 61 performs well-known correlated double sampling processing on the analog voltage signal V (C) from the CA 60 to remove the reset noise component of the CA 60 from the analog voltage signal V (C).
  • the CA 60 is connected to the MUX unit 62.
  • the CDS 61 is disposed between the CA 60 and the MUX unit 62.
  • an ADC unit 63 is connected to the subsequent stage of the MUX unit 62.
  • the MUX unit 62 sequentially selects analog voltage signals V (C) from the plurality of CAs 60 input via the CDS 61, and outputs the selected analog voltage signal V (C) to the ADC unit 63.
  • the ADC unit 63 executes AD conversion processing for converting the analog voltage signal V (C) from the MUX unit 62 into a digital signal DS (C) according to the voltage value. Then, the converted digital signal DS (C) is output to the memory 52.
  • the memory 52 stores the digital signal DS (C) from the ADC unit 63.
  • the memory 52 has a capacity for storing at least one screen of X-ray images.
  • the power supply unit 53 supplies the power from the battery 65 to each unit under the control of the control unit 54.
  • the battery 65 is detachably mounted on the back surface of the housing 32 opposite to the front surface 32A.
  • the control unit 54 receives various information from the console 17 received by the wireless communication unit 22 or the wired communication unit 66, and performs control according to the various information. For example, the control unit 54 changes the processing condition of the signal processing circuit 51 according to the irradiation condition.
  • the CA 60 includes an operational amplifier 70, a capacitor 71, and an amplifier reset switch 72.
  • the operational amplifier 70 has two input terminals and one output terminal.
  • the signal line 42 is connected to one of the two input terminals, and the ground line is connected to the other.
  • the capacitor 71 and the amplifier reset switch 72 are connected in parallel between the input terminal to which the signal line 42 is connected and the output terminal.
  • the CA 60 integrates the charges flowing from the signal line 42 by accumulating it in the capacitor 71, and outputs a voltage value corresponding to the integrated value, that is, an analog voltage signal V (C).
  • the unpreset switch 72 is drive-controlled by the control unit 54. By turning on the unpreset switch 72, the charge accumulated in the capacitor 71 is reset (discarded).
  • the CDS 61 includes a first sample and hold circuit (hereinafter abbreviated as S / H) 73A and a second S / H 73B, and a differential amplifier 74.
  • the first S / H 73A samples and holds the reset noise component of the CA 60 when the TFT 44 is off.
  • the second S / H 73B samples and holds the analog voltage signal V (C) output from the CA 60 based on the charge that flows in when the TFT 44 is turned on.
  • the differential amplifier 74 takes the difference between the reset noise component held by both S / Hs 73A and 73B and the analog voltage signal V (C). As a result, an analog voltage signal V (C) from which noise has been removed is output.
  • an area constituted by the pixels 40 connected to the plurality of adjacent signal lines 42 is referred to as an area AR (AR1 to AR16).
  • Each MUX 76 has a plurality of input terminals.
  • a plurality of CAs 60 are connected to the plurality of input terminals with the CDS 61 interposed therebetween.
  • the ADC unit 63 includes first to sixteenth ADCs 16 in total.
  • the first to sixteenth ADCs 77 are connected to the subsequent stages of the first to sixteenth MUXs 76, respectively. Since the first to sixteenth MUXs 76 are provided for each of the areas AR1 to AR16, the first to sixteenth ADCs 77 are also provided for each of the areas AR1 to AR16.
  • the first ADC 77 converts analog voltage signals V (1) to V (144) sequentially output from the first MUX 76 into digital signals DS (1) to DS (144), and the second ADC 77 outputs analog sequentially output from the second MUX 76 , And converts one of the voltage signals V (145) to V (288) into the digital signals DS (145) to DS (288). It shares the AD conversion process of the signal DS (V).
  • one MUX 76, a plurality of CAs 60 and CDSs 61 connected to its input terminal, and one ADC 77 connected to the output terminal of the MUX 76 constitute one block BL.
  • blocks BL1 to BL4 configured of CA 60, CDS 61, MUX (first to fourth MUX) 76, and ADC (first to fourth ADC) 77 that respectively handle four adjacent areas AR1 to AR4.
  • blocks BL5 to BL8 configured of CA60, CDS 61, MUX (fifth to eighth MUX) 76 and ADC (fifth to eighth ADC) 77 in charge of areas AR5 to AR8 are mounted on chip CP2. ing.
  • Blocks BL9 to BL12 configured with CA 60, CDS 61, MUX (ninth to 12th MUX) 76 and ADC (9th to 12th ADC) 77 respectively responsible for the areas AR9 to AR12 are mounted on the chip CP3.
  • Blocks BL13 to BL16 configured with CA 60, CDS 61, MUXs (13 to 16 MUXs) 76, and ADCs (13 to 16 ADCs) 77 respectively responsible for the areas AR13 to AR16 are mounted on the chip CP4. These chips CP1 to CP4 are physically completely separated.
  • the number of gate drive circuits 75 and the number of rows of pixels 40 which one gate drive circuit 75 is in charge of are not limited to 12 and 240 in this example.
  • the number of MUXs 76 and ADCs 77 (number of blocks BL), and the number of columns of pixels 40 that one MUX 76 and ADC 77 takes charge of (the number of columns of pixels 40 included in one block BL)
  • the number of blocks BL constituting one chip CP is not limited to this example, and is arbitrary.
  • the number of columns of the pixels 40 included in one block BL may be 256, and the number of blocks BL may be nine.
  • the number of columns of the pixels 40 included in one block BL may be 128 columns, and the number of blocks BL may be eighteen.
  • FIG. 9 shows a reading procedure of the digital signals DS (1) to DS (144) of the area AR1 of the first to 144th columns as an example.
  • analog voltage signals V (1) to V (144) after reset noise removal corresponding to the charges read from the pixel 40 through the signal line 42 appear at the output terminal of the CDS 61. It shows.
  • the first MUX 76 selects the analog voltage signal V (1) in the first column. Accordingly, the analog voltage signal V (1) is input to the first ADC 77, and is converted into the digital signal DS (1) by the first ADC 77.
  • the first MUX 76 selects the analog voltage signal V (2) in the second column. Accordingly, the analog voltage signal V (2) is input to the first ADC 77, and is converted into the digital signal DS (2) by the first ADC 77.
  • the first MUX 76 selects the analog voltage signal V (3) in the third column. As a result, the analog voltage signal V (3) is input to the first ADC 77, and is converted into the digital signal DS (3) by the first ADC 77.
  • the voltage signal V (144) in the 144th column is finally converted to the digital signal DS (144) as shown in FIG. 9D.
  • the reading of the digital signals DS (1) to DS (144) in the area AR1 in the first to 144th columns is completed.
  • the control unit 54 when the control unit 54 receives from the wireless communication unit 22 or the wired communication unit 66 a shooting preparation instruction that is various information including a shooting menu from the console 17, the control unit 54 starts the AED operation.
  • the signal processing circuit 51 converts the charge generated in the photoelectric conversion unit 43 of the pixel 40 into a digital signal DS (C) and stores the digital signal DS (C) in the memory 52.
  • the digital signal DS (C) stored in the memory 52 in the AED operation is hereinafter referred to as a dose signal DDS (C).
  • the control unit 54 performs a standby operation before receiving a shooting preparation instruction. In the standby operation, only the bias voltage is applied to the upper electrode of the photoelectric conversion unit 43, and power is not supplied to the signal processing circuit 51 and the like.
  • the dose signal DDS (C) is repeatedly read at predetermined intervals.
  • the dose signal DDS (C) obtained by one reading corresponds to the incident dose of X-rays per unit time.
  • the X-ray incident dose per unit time gradually increases, and accordingly, the value of the dose signal DDS (C) also increases.
  • the control unit 54 Every time the dose signal DDS (C) is stored in the memory 52, the control unit 54 reads the dose signal DDS (C) from the memory 52, and the dose signal DDS (C) and an irradiation start determination threshold value preset. Compare the size of When the dose signal DDS (C) becomes larger than the irradiation start determination threshold value, the control unit 54 determines that the X-ray irradiation has been started. As a result, the electronic cassette 16 can detect the start of X-ray irradiation without receiving a timing signal for reporting the X-ray irradiation start timing from the radiation source controller 14.
  • the control unit 54 When the start of X-ray irradiation is detected, the control unit 54 performs a pixel charge accumulation operation after performing a pixel reset operation (not shown in FIG. 10).
  • the control unit 54 has a timer that starts counting when it detects the start of X-ray irradiation, similarly to the radiation source control device 14, and the time measured by the timer is the irradiation time of the irradiation condition set by the console 17. When it becomes, it determines with irradiation of X-ray having been completed.
  • the control unit 54 detects the end of the X-ray irradiation, the control unit 54 ends the pixel charge accumulation operation and performs the image read operation. Thus, one X-ray imaging for obtaining one screen of X-ray images is completed. After the end of the image reading operation, the control unit 54 returns to the standby operation again.
  • gate pulses G (R) are applied to the gate lines 41 from the gate drive circuit 75 in order from the first row to the 2880th row.
  • the charge from the pixel 40 flows through the signal line 42 to the capacitor 71 of the CA 60 and is accumulated, but this charge is discarded without being read out by the operation of the amplifier reset switch 72.
  • the digital signal DS (C) based on the charge from the pixel 40 is read and stored in the memory 52 as an X-ray image to be used for diagnosis.
  • the image signal DIS (C) in order to distinguish the digital signal DS (C) read out in the image reading operation from the dose signal DDS (C) in the AED operation, it is expressed as the image signal DIS (C).
  • the control unit 54 places all of the first to sixteenth ADCs 77 in the operating state (corresponding to the first state) during the image reading operation. Then, during the image reading operation, the first to sixteenth ADCs 77 are operated in parallel at the same timing.
  • the first to sixteenth MUXs 76 connected to the first to sixteenth ADCs 77 are also activated during the image reading operation and operated in parallel at the same timing. Therefore, in the image reading operation, the image signals DIS (C) of the same row are read out at the same timing in order from the top row to the last row of the areas AR1 to AR16.
  • the image signal DIS (1), the DIS (145), the DIS (289),. , DIS (2161) are read at the same timing.
  • the CAs 60 and the CDS 61 connected to the first to sixteenth MUXs 76 are all activated during the image reading operation.
  • the control unit 54 puts all of the first to sixteenth ADCs 77 in the non-operating state (corresponding to the second state).
  • the first to sixteenth MUXs 76, CA 60, and CDS 61 are all deactivated during standby operation.
  • gate pulses G (R) are simultaneously applied to the respective gate lines 41 of the same row sequentially from the top row to the last row which each of the first to twelfth gate drive circuits 75 takes charge of.
  • Gate pulses G (1), G (241), G (481),..., G (2639) are simultaneously applied to the gate lines 41 of the 2639th line of the first line of the drive circuit 75, and then the first line On the second line, the 242nd line, the 482nd line,..., The 2640th line of the next line of the gate line 41, gate pulses G (2), G (242), G (482),. G (2640) is given.
  • gate pulses G (R) are simultaneously applied to the gate lines 41 of a total of 12 rows spaced by 240 rows. Therefore, the TFTs 44 in the 12 rows are simultaneously turned on, and the charges from the pixels 40 in the 12 rows are added by the signal lines 42 in each column and input to the CA 60. For this reason, when the generated charges in the respective pixels 40 are the same, the dose signal DDS (C) obtained in the AED operation is approximately 12 times the image signal DIS (C) obtained in the image reading operation. Thereby, the S / N (Signal-to-Noise) ratio of the dose signal DDS (C) can be improved.
  • the control unit 54 compares the dose signal DDS (C) with the irradiation start determination threshold every time the dose signal DDS (C) based on the charge for 12 rows is stored in the memory 52, and the X-ray irradiation is performed. Determine if it has started. Although the dose signal DDS (C) is output for 2304 columns, the control unit 54 compares the representative value of one of the 2304 dose signals with the irradiation start determination threshold.
  • the representative value is, for example, an average value, a maximum value, a mode value or the like of 2304 dose signals.
  • the gate pulse G (R) is not applied from the gate drive circuit 75 to the gate line 41, and all the TFTs 44 of each pixel 40 are turned off.
  • gate pulses G (R) are not sequentially applied to the gate lines 41 as shown in FIG. 11, but the first to twelfth gate drive circuits 75 are shown in FIG.
  • the gate pulse G (R) may be simultaneously applied to the respective gate lines 41 of the same row in order from the first row to the last row which each is in charge of.
  • the gate pulse G (R) may be simultaneously applied to the gate lines 41 to read out the charge from all the pixels 40 at once.
  • the control unit 54 periodically switches the power supply states of the first to sixteenth ADCs 77, specifically, the operating state and the non-operating state, during the AED operation.
  • the control unit 54 shifts the timing of switching of the power supply state of the first to sixteenth ADCs 77. Specifically, first, the control unit 54 activates the first, fifth, ninth, and thirteenth ADCs 77 at the top of each of the chips CP1 to CP4, and switches to the inoperative state after the time T has elapsed.
  • the second, sixth, tenth and fourteenth ADCs 77 adjacent to each other are activated, and similarly switched to the inoperative state after time T has elapsed.
  • FIG. 14 can be said to switch the power supply state of the ADC 77 in units of the ADCs 77 in charge of the area AR.
  • the sixteenth ADCs 77 correspond to groups to which the power supply state is switched at the same timing. In these groups, the timing of the power supply state is shifted.
  • three ADCs 77 are disposed between two ADCs 77 belonging to the same group. For example, a total of three ADCs 77 of the second to fourth ADCs 77 are disposed between the first ADC 77 and the fifth ADC 77 belonging to the same group.
  • the time T is the time required to read out the dose signal DDS (C) from all 144 columns which are the columns of the pixels 40 that each ADC 77 takes charge in the AED operation.
  • the dose signal DDS (C) obtained by the AED operation is not used as image information of the patient P, unlike the image signal DIS (C) obtained by the image reading operation. Therefore, in the AED operation, as shown in FIG. 13, the gate pulse G (R) is simultaneously applied to the gate lines 41 in a total of 12 rows, and the charges from the pixels 40 in 12 rows are transmitted to the signal lines 42 of each column. It is added by. Further, as shown in FIG. 14, in the AED operation, the power supply state is periodically switched without the first to sixteenth ADCs 77 being always in the operating state as in the image reading operation.
  • the operating state is a state in which the power PON_A necessary to exhibit the function of the ADC 77 is supplied to the ADC 77, as shown on the right side of FIG.
  • the power PON_A corresponds to the first power. That is, the operating state corresponds to the first state as described above.
  • the non-operating state as shown on the left side of FIG. 15, the power PSL_A which is lower than the power PON_A and in which the ADC 77 can not function is supplied to the ADC 77.
  • the power PSL_A corresponds to the second power. That is, the non-operating state corresponds to the second state as described above.
  • control unit 54 has a function of switching the power supply state to the ADC 77 between the operating state which is the first state and the non-operating state which is the second state. There is.
  • the power PON_A required to exert the function of the ADC 77 is the power required at the time of the image reading operation. It should be noted that a state in which power that is lower than the power required at the time of image reading operation but which can exhibit the function of the ADC 77 may be set as the operating state.
  • the power PSL_A has a value of 0 or more in FIG. 15, the power PSL_A may be 0. That is, the power off state where no power is supplied to the ADC 77 may be set as the non-operating state. In addition, the supply of the clock signal that defines the operation timing of the ADC 77 may be stopped, and the state in which the power consumption of the ADC 77 is substantially zero may be set as the non-operation state.
  • the operating state (first state) per unit time T is The number of ADCs 77 is sixteen.
  • control unit 54 switches the power supply state in conjunction with the ADC 77 also for the ADC 60 and the CA 60, the CDS 61, and the MUX 76 that constitute the block BL.
  • Control unit 54 executes a standby operation (step ST100).
  • the operator sets a desired imaging menu via the input device 21 of the console 17.
  • various information such as the set photographing menu and the irradiation conditions corresponding to the set photographing menu is transmitted from the console 17 to the electronic cassette 16 as a photographing preparation instruction.
  • the operator finely adjusts the irradiation conditions which are the same as the irradiation conditions corresponding to the set imaging menu or the irradiation conditions corresponding to the set imaging menu according to the physical constitution etc. of the patient P.
  • the source control device 14 is set.
  • the operator sets the electronic cassette 16 on either the standing imaging stand 18 or the reclining imaging stand 19 to position the X-ray source 13, the electronic cassette 16 and the patient P at desired positions.
  • the operator depresses the irradiation switch 15 to drive the X-ray source 13 to irradiate the patient P with X-rays.
  • the order of the setting of the imaging menu and the setting of the irradiation condition and the positioning of the patient P may be reversed.
  • the radiographing preparation instruction which is various information including the radiographing menu, is received by the wireless communication unit 22 or the wired communication unit 66, and is received by the control unit 54 (YES in step ST110).
  • the control unit 54 executes the AED operation. During this AED operation, as shown in FIG. 14, the power supply states of the first to sixteenth ADCs 77 are periodically switched (step ST 120, irradiation start detection step).
  • the control unit 54 compares the magnitude of the dose signal DDS (C) obtained in the AED operation with the irradiation start determination threshold (step ST130). The value of the dose signal DDS (C) increases with the irradiation of the X-rays. When the dose signal DDS (C) becomes larger than the irradiation start determination threshold (YES in step ST130), the control unit 54 determines that the X-ray irradiation has been started (step ST140). Control unit 54 executes a pixel charge storage operation (step ST150).
  • step ST160 If the dose signal DDS (C) does not become larger than the irradiation start determination threshold within a predetermined time (YES in step ST160) and the power is not turned off (NO in step ST190), the control unit 54 The process returns to the standby operation again (step ST100).
  • control unit 54 When the control unit 54 detects the start of X-ray irradiation, the timer starts counting time. The pixel charge accumulation operation is continued until the time counted by this timer becomes the irradiation time of the irradiation condition set by the console 17. If the timed time of the timer has become the irradiation time of the irradiation condition (YES in step ST170), control unit 54 executes an image reading operation. During this image reading operation, as shown in FIG. 12, all of the first to sixteenth ADCs 77 are constantly operated (step ST180, image reading step). These series of operations are continued until the power is turned off (YES in step ST190).
  • the image signal DIS (C) obtained by the image reading operation is transmitted from the wireless communication unit 22 or the wired communication unit 66 to the console 17 as an X-ray image.
  • the x-ray image is displayed on the display 20 for viewing by the operator.
  • the number of operating ADCs 77 per unit time T in the AED operation is reduced compared to that in the image reading operation, and the signal processing circuit 51 consumes in the AED operation. Power can be reduced.
  • the first to sixteenth ADCs 77 are always in operation as in the image reading operation, and the number of operating ADCs 77 per unit time is the same as in the image reading operation. For this reason, a large amount of power is consumed in the AED operation whose operation time is long as compared with the image reading operation which is ended by reading an X-ray image for one screen once.
  • the electronic cassette 16 driven by the battery 65 if the power consumption is large, the battery 65 must be frequently charged, and the imaging efficiency is degraded.
  • the first invention it is possible to reduce the power consumed by the signal processing circuit 51 in the AED operation. As a result, the battery 65 lasts longer than before, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
  • the power supply states of all the first to sixteenth ADCs 77 are periodically switched, and the number of operating ADCs 77 per unit time T in AED operation is It is reduced compared to the read operation time. Therefore, in addition to the effect that it is possible to reduce the power consumed by signal processing circuit 51 in the AED operation, dose signal DDS (C) can be read out uniformly from all areas AR1 to AR16. The effect that the areas AR1 to AR16 can be covered is obtained.
  • a specific ADC 77 is always operated and the remaining ADCs 77 are always not operated. It is also conceivable to do.
  • the power consumption of the signal processing circuit 51 can be further reduced by periodically switching the power supply state as in the first to sixteenth ADCs 77 of this embodiment without constantly putting the specific ADC 77 into the operating state. It is clear that it is possible.
  • periodically switching the power supply state of at least one of the plurality of ADCs 77 means that the specific ADC 77 is always in a non-operating state or the specific ADC 77 is always in operation. It can be said that it is more effective than the case where the remaining ADCs 77 are always in a non-operating state.
  • Embodiment 1-2 In the first and second embodiments shown in FIG. 18, the control unit 54 shifts the timing of switching the supply state of all the power of the first to sixteenth ADCs 77. That is, first, the first ADC 77 is put in an operating state for time T. After that, the second ADC 77 continues operating for time T, and the third ADC 77 continues operating for time T. After switching the power supply state to the sixteenth ADC 77 and bringing the sixteenth ADC into operation for time T, the first ADC 77 returns to the first ADC 77 again for being in operation T for time. Then, switching of the series of power supply states is repeated.
  • FIG. 19 shows a first to third embodiment.
  • three ADCs 77 are disposed between two ADCs 77 belonging to the same group.
  • two ADCs 77 belonging to the same group may be adjacent.
  • the first and second ADCs 77, the third and fourth ADCs 77, the fifth and sixth ADCs 77, the seventh and eighth ADCs 77,..., The thirteenth and fourteenth ADCs 77, and the fifteenth and sixteenth ADCs 77 They are groups to which the power supply state is switched at the same timing. However, there is no one ADC 77 between two ADCs 77 belonging to the same group, and they are adjacent to each other.
  • Embodiment 1-4 The first to fourth embodiments are shown in FIG.
  • the power supply state of the ADC 77 is switched in area AR units.
  • the control unit 54 switches the power supply state of the ADC 77 in chip CP units. May be Specifically, first, the control unit 54 causes the first to fourth ADCs 77 of the chip CP1 to be in the operating state, and switches to the non-operating state after the time T has elapsed. Next, the fifth to eighth ADCs 77 of the chip CP2 are activated, and similarly switched to the inoperative state after the time T has elapsed.
  • the ninth to twelfth ADCs 77 of the chip CP3 are put into operation for time T, and the thirteenth to sixteenth ADCs 77 of the chip CP4 are put into operation for time T. Then, switching of the series of power supply states is repeated.
  • the first to fifth embodiments are shown in FIG.
  • the power supply states of all the ADCs 77 are switched periodically, but the present invention is not limited to this.
  • at least one ADC 77 may be always in a non-operating state.
  • even-numbered ADCs 77 such as the second, fourth, sixth,..., Sixteenth are always inactivated by the control unit 54 during AED operation.
  • odd numbered ADCs 77 such as the first, third, fifth,..., Fifteenth
  • the power supply state is periodically switched as in the above embodiments.
  • power consumption can be reduced by switching the power supply state periodically if it is in a non-operating state at all times.
  • FIGS. 22 and 23 show the first to sixth embodiments.
  • the other ADC 77 is switched from the non-operating state to the operating state at the timing when the operating state is switched from the operating state to the non-operating state
  • the present invention is not limited to this.
  • the timing at which one ADC 77 is switched from the operating state to the non-operating state may be shifted from the timing at which the other ADC 77 is switched from the non-operating state to the operating state.
  • the twelfth and sixteenth ADCs 77 are groups to which the power supply state is switched at the same timing, which is the same as the first to eleventh embodiments shown in FIG.
  • the first, fifth, ninth, and thirteenth ADCs 77 are in operation, specifically, the second, sixth, tenth, and fourteenth ADCs 77 can be activated at timing T / 2, or the like.
  • the other ADC 77 is switched from the inactive state to the active state.
  • the reading period of the dose signal DDS (C) is shortened by shifting the timing of switching one ADC 77 from the operating state to the non-operating state and the timing of switching the other ADC 77 from the non-operating state to the operating state. be able to.
  • the reading cycle of the dose signal DDS (C) is 4T, but is short as 2.5T in FIG.
  • FIG. 22 is an example based on the above-described first embodiment shown in FIG. 14, but FIG. 23 shifts the timing of switching of the power supply state of all the first to sixteenth ADCs 77,
  • This is an example based on the above first to second embodiments shown in FIG.
  • the second ADC 77 before switching one ADC 77 from the operating state to the non-operating state, for example, the second ADC 77 is put into the operating state at the timing of T / 2 in the middle of the first ADC 77.
  • the other ADC 77 is switched from the non-operating state to the operating state.
  • the reading cycle of the dose signal DDS (C) can be shortened from 16T to 8.5T in FIG. Further, the number of operating ADCs 77 per unit time T in this case is 1.5.
  • FIG. 24 shows a first embodiment 1-7.
  • the timing of switching the power supply state of the plurality of ADCs 77 is shifted, but in the first to seventh embodiments, the control unit 54 supplies all the power states of the first to sixteenth ADCs 77. The timing of switching is the same.
  • the reading cycle of the dose signal DDS (C) is 2T obtained by adding the first half T in which all the ADCs 77 are in operation simultaneously and the second half time T in which all the ADCs 77 are inoperative simultaneously.
  • the unit time in this case is not T but 2 T.
  • FIGS. 25 to 27 show the 1-8th embodiment.
  • the dose signal DDS (C) based on the charges from all the pixels 40 is read out, so to say, all the pixels 40 are used as detection pixels for reading out the dose signal DDS (C). is working.
  • some of the plurality of pixels 40 instead of all the pixels 40 may be set in advance as detection pixels.
  • the detection pixel is given a code and denoted as a detection pixel 90 (see FIG. 25).
  • the signal line 42 to which the detection pixel 90 is connected is hereinafter referred to as a detection channel 95 (see FIG. 25).
  • FIG. 25 shows all the pixels 40 belonging to a total of eight areas AR covered by the chips CP2 and CP3 among the chips CP1 to CP4 as the detection pixels 90 (indicated by hatching). It is an example set.
  • the detection channel 95 is the signal line 42 connected to the fifth to eighth MUX 76 of the chip CP2 and to the ninth to twelfth MUX 76 of the chip CP3.
  • the control unit 54 keeps the first to fourth ADCs 77 of the chip CP1 and the thirteenth to sixteenth ADCs 77 of the chip CP4 in a non-operating state at all times during AED operation. Do. Further, the control unit 54 periodically switches the power supply states of the fifth to eighth ADCs 77 of the chip CP2 and the ninth to twelfth ADCs 77 of the chip CP3 in charge of the detection channel 95.
  • the ADC 77 not in charge of the detection channel 95 has no meaning even if it is in the operating state at the time of the AED operation, and is always in the non-operating state during the AED operation.
  • the power supply state of the ADC 77 in charge of the detection channel 95 is periodically switched during AED operation. This reduces the number of operating ADCs 77 per unit time T.
  • FIG. 27 is the same as the case of FIG. 26 in that the ADC 77 not in charge of the detection channel 95 is always inoperative during AED operation.
  • the ADCs 77 (the fifth to eighth ADCs 77 of the chip CP2 and the ninth to twelfth ADCs 77 of the chip CP3) in charge of the detection channel 95 are always in the operating state.
  • the first invention also includes the case where the power supply state of the ADC 77 is not switched periodically.
  • the detection channels 95 may be set at intervals of 64 columns, such as columns, in four columns, and the method of setting the detection channels 95 is free.
  • the detection pixels 90 set in one detection channel 95 are not all the pixels 40 for one column, but, for example, the 481st to 960th lines that the third and fourth gate drive circuits 75 are in charge of There is no particular limitation on the setting method, such as setting only the pixel 40 of the pixel as the detection pixel 90.
  • FIGS. 28 to 31 show the first to ninth embodiments.
  • the pixel 40 for obtaining the image signal DIS (C) in the image reading operation is also used as the detection pixel 90 for obtaining the dose signal DDS (C) in the AED operation. Is not limited to this. Aside from the X-ray image detection pixels 40, dedicated detection pixels 90X specialized for the AED operation may be provided.
  • the detection pixel 90X dedicated to the AED operation When the detection pixel 90X dedicated to the AED operation is provided, the pixel 40 and the detection pixel 90X are mixed on the light detection substrate 35. Since the size of the light detection substrate 35 is limited, if the detection pixels 90X are provided too much, the space for providing the pixels 40 is reduced accordingly, and the image quality of the X-ray image is degraded. In addition, when the detection pixel 90X is provided at a biased position on the light detection substrate 35, depending on the setting of the irradiation field, the case where the X-ray is not irradiated to the relevant position may be considered. Therefore, as shown in FIG. 28, for example, as shown in FIG.
  • the number of detection pixels 90X arranged in one row of detection channels 95 is 12 out of 2880, and the number of millions of pixels 40 is 40.
  • the detection pixels 90X be on the order of several tens to several hundreds, and the detection pixels 90X be disposed on the light detection substrate 35 in a dispersed manner.
  • the basic configuration of the detection pixel 90X1 shown in FIG. 29 including the photoelectric conversion unit 43 and the TFT 44 is the same as that of the pixel 40. Therefore, the detection pixel 90X1 can be formed by substantially the same manufacturing process as the pixel 40.
  • the detection pixel 90X1 is different from the pixel 40 in that the source electrode and the drain electrode of the TFT 44 are short-circuited by the short circuit line 100. That is, in the detection pixel 90X1 shown in FIG. 29, the photoelectric conversion unit 43 is directly connected to the signal line 42 by the short circuit line 100. This signal line 42 becomes a detection channel 95.
  • the charge generated in the photoelectric conversion unit 43 of the detection pixel 90X1 flows out regardless of the on / off state of the TFT 44. Therefore, even if the pixels 40 in the same row are in the pixel charge accumulation operation with the TFT 44 turned off, charges generated in the photoelectric conversion unit 43 of the detection pixel 90X1 always flow into the CA 60 through the detection channel 95. Do.
  • the ADC 77 not in charge of the detection channel 95 is always in a non-operating state during the AED operation. Further, the ADC 77 in charge of the detection channel 95 periodically switches the power supply state during the AED operation or is always in the operating state.
  • the TFT 44 is removed as in the detection pixel 90X2 shown in FIG. 30, instead of the detection pixel 90X1 shown in FIG. It may be composed of only 43.
  • the generated charges of the detection pixels 90X1 and 90X2 are always added to the generated charges of the pixels 40 in the same column as the detection pixels 90X1 and 90X2 which are short-circuited pixels.
  • the pixels 40 in the same column as the detection pixels 90X1 and 90X2 can not be used as pixels for acquiring the image signal DIS (C). For this reason, the pixels 40 in the column of the detection channel 95 and the detection pixels 90X1 and 90X2 are treated as defective pixels, and are interpolated by the image signal DIS (C) of the pixels 40 in the column other than the surrounding detection channel 95.
  • FIG. 31 shows an example in which a detection pixel 90X3 dedicated to the AED operation is provided adjacent to a specific pixel 40. Similar to the pixel 40, the detection pixel 90X3 includes the photoelectric conversion unit 105 and the TFT 106.
  • the TFT 106 is connected to a gate line 107 and a signal line (detection channel 95) different from the gate line 41 and the signal line 42 connected to the TFT 44 of the pixel 40.
  • the gate line 107 is connected to a gate drive unit 108 which is driven independently of the gate drive unit 50.
  • the detection channel 95 is connected to the MUX unit 62 together with the signal line 42.
  • the gate driver 50 does not operate, and only the gate driver 108 operates.
  • the gate driver 108 simultaneously applies gate pulses to the gate lines 107 in a plurality of rows, and turns on each of the TFTs 106 connected to the gate lines 107 in the same manner as in the first embodiment.
  • the gate driver 108 may sequentially apply gate pulses to the gate lines 107.
  • the ADC 77 not in charge of the detection channel 95 is always in a non-operating state during the AED operation. Further, the ADC 77 in charge of the detection channel 95 periodically switches the power supply state during the AED operation or is always in the operating state.
  • the basic configuration of the MUX unit 62 is the same as that of each of the above-described embodiments, except that the detection channel 95 to which the detection pixel 90X3 is connected is also connected in addition to the signal line 42.
  • the TFT 106 of the detection pixel 90X3 is also connected to the signal line 42, and the detection channel 95 is connected to the signal line 42. It may be shared.
  • the pixel 40 and the detection pixel 90X3 can be driven independently of each other by the gate drive units 50 and 108, and the signal line 42 and the detection channel 95 are separate. Therefore, as in the case of FIGS. 29 and 30, the pixels 40 in the same column as the detection pixels 90X3 may not be treated as defective pixels.
  • FIG. 32 shows an embodiment 1-10.
  • the operator can change the setting of the detection pixels 90 that use the dose signal DDS (C) for the X-ray irradiation start determination among all the detection pixels 90.
  • the detection pixels 90X3 shown in FIG. 31 of the first to ninth embodiments are dispersedly disposed on the light detection substrate 35 as shown in FIG. 28, as shown in FIG.
  • the detection pixel 90X3 in the rectangular area LA1 corresponding to the lung field of the patient P is selected, and the dose signal DDS (C) from the selected detection pixel 90X3 is used for X-ray irradiation start determination.
  • the detection pixel 90X3 in the rectangular area LA2 is selected, and the dose signal DDS (C) from the selected detection pixel 90X3 is used for X-ray irradiation start determination.
  • the gate driving unit 108 has a function of selectively applying a gate pulse to the TFT 106 of the detection pixel 90X3 in the regions LA1 and LA2.
  • the signal line 42 of the range RLA1 corresponding to the width of the area LA1 serves as the detection channel 95. Therefore, the area RLA1 is in charge during AED operation.
  • the power supply state of the ADC 77 is switched or kept in an operating state at all times. Then, the ADC 77 in charge of the other ranges RLA2 and RLA3 is inactivated.
  • the power supply state of the ADC 77 in charge of the area RLA2 is switched or constantly operated during the AED operation. Then, in this case, the ADC 77 in charge of the ranges RLA1 and RLA3 is inactivated.
  • the detection pixel 90X3 of FIG. 31 of the first to ninth embodiments is described as an example, the present invention is not limited to this.
  • the pixel 40 for obtaining the image signal DIS (C) in the image readout operation and the dose signal DDS (C) for the AED operation can be obtained by providing the gate driver 50 with a function of selectively applying the gate pulse G (R) to the TFTs 44 of the pixels 40 in the specific area also when the pixel 90 is also used as the detection pixel 90.
  • the detection pixels 90X1 and 90X2 shown in FIGS. 29 and 30 of the first to ninth embodiments are arranged only in the area LA1 in the range RLA1 and the area RLA2 If the detection pixels 90X1 and 90X2 are arranged only in LA2, the same effect can be obtained.
  • Embodiment 1-11 The first to eleventh embodiments are shown in FIGS. 33 and 34.
  • the dose signal DDS (C) obtained in the AED operation is not used as image information of the patient P. Therefore, in the AED operation, the accuracy required for the image signal DIS (C) output in the image reading operation is not required for the dose signal DDS (C). Therefore, in the first to eleventh embodiments shown in FIG. 33, the power consumption of the signal processing circuit 51 in the AED operation is further reduced by simplifying the operation of the CDS 61 in the AED operation as compared with the image reading operation.
  • the operation of the CDS 61 at the time of image reading, the outline of which has been described with reference to FIG. 6, is as shown in FIG. That is, the reset noise component is held by the first S / H 73A of the CDS 61 (step ST300). Then, the analog voltage signal V (C) is held at the second S / H 73B (step ST310). Finally, the difference between the reset noise component held in both S / Hs 73A and 73B and the analog voltage signal V (C) is taken by the differential amplifier 74, and the analog voltage signal V (C) from which the noise has been removed is calculated. It outputs (step ST320).
  • step ST300 the holding of the reset noise component by the first S / H 73A in step ST300 is skipped, and the holding of the analog voltage signal V (C) by the second S / H 73B in step ST310.
  • the analog voltage signal V (C) is output as it is from the differential amplifier 74 without taking the difference with the reset noise component (step ST330).
  • the AED operation can output the analog voltage signal V (C) faster than the image reading operation.
  • the differential amplifier 74 is connected to the input terminal of the MUX 76 as shown in FIG. 6 in the above first embodiment, the present invention is not limited to this. As shown in FIG. 34, two MUXs 76A and 76B are connected between the first and second S / Hs 73A and 73B and the differential amplifier 74, and the differential amplifier 74 is connected between the MUXs 76A and 76B and the ADC 77. May be.
  • the first S / Hs 73A of the plurality of CDS 61 in the same area AR column are connected to the MUX 76A, and the second S / H 73B is connected to the MUX 76B.
  • the differential amplifier 74 is connected to the front stage of the MUX 76, so the differential amplifier 74 is provided for each CDS 61. Since the differential amplifiers 74 are connected to the subsequent stages of the MUXs 76A and 76B, the differential amplifiers 74 have the same number as the ADCs 77.
  • power saving can be achieved by skipping retention of the reset noise component by the first S / H 73A during the AED operation as shown in FIG. 33B.
  • the power supplied to the MUX 76A can be reduced in addition to the first S / H 73A, and further, the power supplied to the differential amplifier 74 can be reduced by reducing the number of differential amplifiers 74. it can. Therefore, the power consumption of the signal processing circuit 51 during the AED operation can be further reduced.
  • FIGS. 35 to 37 show the first to twelfth embodiments.
  • the timing of switching of the power supply state is in the inactive state for the sixth and eighth ADCs 77 on both sides for a relatively long time. If they are different, the temperature distribution in the column direction of the block BL7 when the ADC 77 is in the operating state is as shown in FIG. That is, the temperature drops due to the influence of the non-operating blocks BL6 and BL8 at both ends by all means, resulting in a mountain-shaped temperature distribution in which the temperature at the central portion is higher than this.
  • the temperature distribution of the block BL6 has a gentle mountain shape because, as shown in FIG. 18, the sixth ADC 77 is put into operation immediately before the seventh ADC 77 is put into operation.
  • the change in the temperature distribution in the block BL is gradual since the central portion approaches a flat and becomes gentle since the width in the column direction of the block BL is wide when the number of columns of the pixels 40 in charge in the block BL is large.
  • the width in the column direction of the block BL becomes narrow, and therefore, it becomes steep.
  • the detection channel 95 having the detection pixel 90 is preferably disposed at the center of the area AR where the temperature gradient tends to be relatively flat.
  • the number of detection pixels 90X1 and 90X2 arranged in one row of detection channels 95 is, for example, 12 out of 2880, or the like. Less than 1% of As described above, the number of pixels 40 and the number of detection pixels 90X1 and 90X2 is in the relation of the pixel 40 >> detection pixels 90X1 and 90X2.
  • the charge generated in the pixel 40 flows into the signal line 42 although the amount is small even if the TFT 44 is in the off state. Such charge is called leak charge.
  • this leak charge LC also flows, as schematically shown in FIG. . Since the leak charge LC is added to the charge SC generated in the detection pixels 90X1 and 90X2 which are originally to be extracted as the dose signal DDS (C), it becomes noise when determining the start of X-ray irradiation.
  • the amount of the leak charge LC becomes an unignorable amount with respect to the charge SC generated in the detection pixels 90X1 and 90X2.
  • the influence of the leak charge LC is removed from the dose signal DDS (C) of the detection channel 95, and then the correction of removing the influence of the temperature drift is performed.
  • a pixel 40 not including the detection pixels 90X1 and 90X2 so as to sandwich the detection channel 95 adjacent to the detection channel 95 in which the detection pixels 90X1 and 90X2 are arranged.
  • the signal line 42 corresponding to the row of only the pixels 40 not including the detection pixels 90X1 and 90X2 is expressed as a reference channel 120.
  • the detection channel 95 and the reference channel 120 are connected to the same MUX 76 and ADC 77. That is, the detection channel 95 and the reference channel 120 are in the same block BL.
  • the control unit 54 causes the ADC 77, which is in charge of both the detection channel 95 and the reference channel 120, to be in an active state during the AED operation.
  • the control unit 54 causes the ADC 77 in charge of the detection channel 95 to be in the operating state and the reference channel 120.
  • the memory 52 stores the dose signal DDS (C) based on the analog voltage signal V (C) from the detection channel 95 and the analog voltage signals V (C-1) and V (C) from the reference channel 120.
  • Dose signals DDS (C-1) and DDS (C + 1) based on C + 1) are output from the ADC 77.
  • the dose signals DDS (C-1) and DDS (C + 1) are hereinafter referred to as reference signals DRS (C-1) and DRS (C + 1).
  • Leakage charge correction unit 121 accesses memory 52 and reads out dose signal DDS (C) from memory 52.
  • the leak charge correction unit 121 is provided, for example, in the control unit 54.
  • the leak charge correction unit 121 performs subtraction shown in the following equation (1) to obtain a leak charge corrected dose signal RCDDS (C) from the dose signal DDS (C).
  • RCDDS (C) DDS (C)-DRS (C) (1)
  • DRS (C) ⁇ DRS (C-1) + DRS (C + 1) ⁇ / 2 That is, the leak charge corrected dose signal RCDDS (C) is obtained from the dose signal DDS (C) from the detection channel 95 to the two reference signals DRS (C-1) and DRS (C + 1) from the reference channel 120 in two columns.
  • the average value of DRS (C) is subtracted.
  • the reference signals DRS (C ⁇ 1) and DRS (C + 1) are components based on the leak charge LC of the pixel 40 connected to the reference channel 120.
  • the detection channel 95 and the reference channel 120 are adjacent to each other, and the number of pixels 40 is almost the same. Therefore, the average value DRS (C) of the reference signals DRS (C-1) and DRS (C + 1) is the detection channel It is considered to be substantially coincident with the component based on the leak charge LC of the pixel 40 connected to 95. Therefore, the component of the leak charge LC can be removed from the dose signal DDS (C) by performing the subtraction of the above equation (1).
  • a temperature drift correction unit 122 is provided downstream of the leak charge correction unit 121.
  • the temperature drift correction unit 122 is provided, for example, in the control unit 54 as the leak charge correction unit 121 is.
  • the temperature drift correction unit 122 multiplies the leakage charge corrected dose signal RCDDS (C) by the correction coefficient ⁇ (C) as shown in the following equation (2) to obtain a temperature drift corrected dose signal DRCDDS (C) and Do.
  • DRCDDS (C) RCDDS (C) x ⁇ (C) (2)
  • the temperature distribution shown in FIG. 35 in the signal processing circuit 51 including the detection channel 95 and the reference channel 120 is reflected in the reference signals DRS (C ⁇ 1) and DRS (C + 1). That is, according to the reference signals DRS (C-1) and DRS (C + 1), it can be known how much temperature drift is occurring in the dose signal DDS (C).
  • the correction coefficient ⁇ (C) is obtained from the calculation formula F ⁇ DRS (C ⁇ 1), DRS (C + 1) ⁇ using the reference signals DRS (C ⁇ 1) and DRS (C + 1) as variables.
  • the correction coefficient ⁇ (C) is the standard condition when all the ADCs 77 are in operation in the image reading operation and each block BL 1 to 16 is in thermal equilibrium condition, and the leak charge corrected dose signal RCDDS (C) is in the standard condition. This coefficient is the same value as when read.
  • the correction coefficient ⁇ (C) is obtained for each of the detection channels 95. Note that the correction coefficient ⁇ (C) may be obtained from a calculation formula in which the average value DRS (C) of the reference signals DRS (C ⁇ 1) and DRS (C + 1) is a variable.
  • the correction coefficient ⁇ (C) is determined based on the temperature TP acquired by the temperature measurement function (using a calculation formula with the temperature TP as a variable). If the chip CP does not have a temperature measurement function, another temperature measurement function may be provided to obtain the temperature TP from there.
  • the temperature drift correction unit 122 may not perform correction of the temperature drift. Specifically, a threshold is set to the temperature TP, and the temperature drift is not corrected when the temperature TP is equal to or less than the threshold, and the temperature drift is corrected when the temperature TP is higher than the threshold.
  • the temperature drift correction unit 122 also performs the image signal DIS (C). Correction of temperature drift may be performed.
  • the temperature distribution bias shown in FIG. 35 is not in block BL units but in chip CP units. It occurs. Therefore, in this case, the temperature TP is measured in chip CP units, and the temperature drift is corrected in chip CP units.
  • the reference channel 120 is one adjacent row (two rows in total) sandwiching the detection channel 95, but may be a plurality of rows. Preferably, two rows or more (four rows in all) are preferable. That is, when the number of reference channels 120 is small and the number of reference signals is small, the average value DRS of the reference signals to be subtracted from the dose signal DDS (C) when the value of the reference signal varies in each reference channel 120 It is because the reliability of (C) becomes low.
  • the signal line 42 and the detection channel 95 are separate, and the pixel 40 is not connected to the detection channel 95.
  • the leak charge LC of the pixel 40 does not flow into the channel 95.
  • the detection channel 95 and the signal line 42 are also used in FIG. 31, the generated charge of the detection pixel 90X3 does not flow into the signal line 42 if the TFT 106 is turned off. Therefore, when the TFT 106 is in the off state, the signal line 42 used also as the detection channel 95 behaves as if it is the reference channel 120.
  • the digital signal DS (C) read out with the TFT 106 turned off may be replaced with the reference signal, and subtracted from the dose signal DDS (C) read out with the TFT 106 turned on. That is, in any case, in the case of FIG. 31, it is not necessary to provide a dedicated reference channel 120.
  • the control unit 54 performs an image reading operation on an interface (hereinafter referred to as I / F (Interface)) that transmits the digital signal DS (C) in the subsequent stage of the ADC 77. Switch to the one with lower power consumption than time. Thus, the power consumption of the signal processing circuit 51 during the AED operation may be reduced.
  • I / F Interface
  • LVDS Low Voltage Differential Signaling
  • CMOS I / F 126 are prepared for transmission I / F of digital signal DS (C) between ADC 77 and memory 52.
  • the LVDS I / F 125 has higher transmission accuracy than the CMOS I / F 126, but consumes more power than the CMOS I / F 126.
  • the control unit 54 controls the operation of the switch 127 to switch these transmission I / Fs.
  • FIG. 38A shows the AED operation time
  • FIG. 38B shows the image reading operation time. That is, the CMOS I / F 126 is selected in the AED operation, and the LVDS I / F 125 is selected in the image read operation.
  • the CMOS I / F 126 is selected in the AED operation, it is possible to further reduce the power consumed by the signal processing circuit 51 in the AED operation. Although the accuracy of the transmission of the dose signal DDS (C) is low, the dose signal DDS (C) is not used as image information of the patient P, so even if there is a slight error in the transmission, this is not a major problem. On the other hand, since the LVDS I / F 125 is selected at the time of the image reading operation, the power consumption increases, but the image signal DIS (C) can be accurately transmitted to the memory 52.
  • the transmission I / F of the digital signal DS (C) between the ADC 77 and the memory 52 may be only the CMOS I / F 126, and the voltage supplied to the CMOS I / F 126 may be switched.
  • the supply voltage is set to 5.0 V at the time of image reading operation and 3.3 V at the time of AED operation.
  • it may be 2.5 V at the time of image reading operation and 1.8 V at the time of AED operation.
  • the higher the supply voltage the wider the dynamic range and the more accurate the transmission, but the higher the power consumption, the lower the supply voltage during AED operation than during image readout operation. As a result, the power consumed by the signal processing circuit 51 in the AED operation can be further reduced.
  • the second state is illustrated as the non-operating state.
  • the non-operating state includes the state in which the power PSL_A is supplied, the power-off state in which no power is supplied to the ADC 77, and the state in which the clock signal supply to the ADC 77 is stopped.
  • the second state is not limited to such a non-operating state.
  • the number of pulses per unit time of the clock signal to the ADC 77 may be reduced as compared to the first state
  • the power consumption per unit time of the ADC 77 may be reduced as compared to the first state as the second state.
  • the control unit 54 is a non-detection channel 130 (see FIG. 39A) which is a signal line 42 other than the detection channel 95 among the plurality of CAs 60.
  • Supply non-detecting CA 131 (see FIG. 39A) connected to at least one of the non-detecting CAs 131 (see FIG. 39A) in a power saving state lower than the normal power in the image reading operation. It is the content.
  • the power supplied to the CA 60 including the non-detection CA 131 during the AED operation is reduced as compared to that during the image read operation.
  • FIGS. 39 and 40 show a 2-1 embodiment.
  • a configuration including the detection pixel 90X1 shown in FIG. 29 of the first to ninth embodiments or the detection pixel 90X2 shown in FIG. 30 will be described.
  • the configuration is not limited to this.
  • the case where even-numbered columns of four columns, six columns,..., 144 columns are the non-detection channel 130 is illustrated.
  • the CA 60 connected to the detection channel 95 is referred to as a detection CA 132 in order to distinguish it from the non-detection CA 131 which is the CA 60 connected to the non-detection channel 130.
  • the alphabet DT at the top of the detection channel 95 indicates that the column is the detection channel 95
  • the alphabet NDT at the top of the non-detection channel 130 indicates that the column is the non-detection channel 130. It shows.
  • the MUX 76 sequentially selects the analog voltage signals V (C) from the plurality of CAs 60 and outputs the selected analog voltage signal V (C) to the ADC 77, as in the above embodiments.
  • the supplied power P_C to the CA 60 during AED operation is PN_C in the case of CA 132 for detection and PL_C lower than PN_C in the case of CA 131 for non-detection.
  • the supplied power PN_C is power supplied to all the CAs 60 at the time of image reading operation, and corresponds to normal power.
  • the supplied power PL_C to the non-detection CA 131 is, for example, a value 1/10 of the normal power PN_C. That is, the state of non-detection CA 131 shown in FIG. 39B is a low power state in which power PL_C lower than normal power PN_C and larger than 0 is supplied.
  • the control unit 54 does not use the digital signal DS (C) based on the analog voltage signal V (C) from the non-detection CA 131 as the dose signal DDS (C).
  • FIG. 40 is a flowchart showing the operation procedure of the electronic cassette of the present second embodiment.
  • the difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1202 and step ST1802 surrounded by a dashed dotted line. Only the differences will be described below.
  • step ST1202 in the AED operation, the power supplied to the detection CA 132 is the normal power PN_C, and the power supplied to the non-detection CA 131 is PL_C lower than PN_C (irradiation start detection step).
  • step ST1802 in the image reading operation, the power supplied to all the CAs 60 is set as the normal power PN_C regardless of the detection CA 132 and the non-detection CA 131 (image reading step).
  • the power supplied to the non-detection CA 131 during the AED operation is set to the power saving state lower than the normal power, the power consumed by the signal processing circuit 51 in the AED operation can be reduced. Therefore, as in the first aspect of the invention, the battery 65 lasts longer than in the prior art, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
  • non-detection CA 131 to be in the power saving state during the AED operation may be at least one of all the non-detection CAs 131.
  • Embodiment 2-2 A second embodiment is shown in FIG. 39 and 40, the supplied power PL_C to the non-detection CA 131 during the AED operation is set to a value larger than 0. However, in the 2-2 embodiment, FIG. As shown, the supply power PL_C to the non-detection CA 131 during AED operation is set to 0. That is, the non-detection CA 131 is brought into the power-off state in which the supply of power is stopped.
  • the power supplied to the non-detection CA 131 is 0, which is different from the case of the above-described second embodiment shown in FIGS. 39 and 40. Furthermore, the power consumption of the non-detection CA 131 can be reduced.
  • the power for supplying the non-detection CA 131 is completely 0 and the power-off state is set as in the case of the second embodiment. It is more preferable to supply the supply power PL_C to such an extent that the potential of the input stage of the CA 131 does not become unstable to make the power state low.
  • the switch 133 whose opening and closing is controlled by the control unit 54 is provided at the front stage of the non-detection CA 131. Then, during the AED operation shown in FIG. 41A in which the supplied electric power is 0, the control unit 54 turns off the switch 133 to disconnect the non-detection CA 131 and the non-detection channel 130 from each other. Furthermore, the control unit 54 supplies the non-detection CA 131 with the same reference potential as when the normal power PN_C is supplied.
  • the switch 133 is turned on at the time of the image reading operation in which the normal power PN_C shown in FIG. 41B is supplied.
  • the switch 133 since there is a need to provide the switch 133, the influence of the charge instability of the non-detection channel 130 due to the potential of the input stage of the non-detection CA 131 becoming unstable is an image reading operation. It never happens.
  • the non-detection CA 131 to be in the power-off state at the time of AED operation may be at least one of all non-detection CAs 131. From the viewpoint, it is more preferable that all the non-detection CAs 131 be in the power-off state.
  • Embodiment 2-3 In the second to third embodiments shown in FIG. 43, not only the non-detection CA 131 but also the detection CA 132 are driven in a low power state in which power lower than the normal power PN_C and larger than 0 is supplied.
  • the power supplied to the non-detection CA 131 during AED operation is PL_C1 which is 1/10 of the normal power PN_C
  • the power supplied to the detection CA 132 is PL_C2 which is 1 ⁇ 2 of the normal power PN_C.
  • the transient response characteristic of the detection CA 132 is degraded by the half of the normal power PN_C. In this case, the operating speed of the ADC 77 is delayed to compensate for the degradation of the transient response characteristic.
  • the detection CA 132 to be in the low power state at the time of AED operation is at least one of all the detection CAs 132.
  • each embodiment of the second invention may be implemented in combination with each embodiment of the first invention.
  • the control unit 54 supplies power of the ADC 77 and the MUX 76 that configures the block BL with this to the first state and the second state. It may be switched periodically.
  • the first state is, for example, the above-described operating state, in which power necessary to perform the functions of the MUX 76 and the ADC 77 is supplied to each.
  • the second state is, for example, the above-mentioned non-operating state, in which power that can not perform a function is supplied to at least one of MUX 76 and ADC 77, or a clock signal is supplied to ADC 77. It has not been done. Furthermore, the second state includes a state in which the number of pulses per unit time of the clock signal to the ADC 77 is reduced compared to the first state.
  • the control unit 54 when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
  • the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong.
  • at least one block BL is disposed between two blocks BL belonging to the same group.
  • the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
  • Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
  • the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set.
  • the first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
  • the control unit 54 selectively transmits the analog voltage signal V (C) from a part of CA including the detection CA 132 to the ADC 77.
  • Output and the ADC 77 performs only AD conversion processing on the selectively output analog voltage signal V (C), and the number of pulses per unit time of the clock signal of the ADC 77 during AED operation , The content is reduced compared to the image reading operation.
  • the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above.
  • the patterns exemplified in the above 1-1 to 1-7 embodiments can be applied to the switching pattern of the power supply state of the ADC 77.
  • combinations with other embodiments of the first invention (the above 1-8 to 1-13 embodiments) and the above-mentioned 2-1 to 2-3 embodiments of the second invention are also possible.
  • the same parts as those of the first invention and the second invention are denoted by the same reference numerals, and the description thereof is omitted, and the differences will be mainly described.
  • FIGS. 44 to 48 show a third embodiment.
  • the present third embodiment as in the above second embodiment, for example, a configuration including the detection pixel 90X1 shown in FIG. 29 of the above first embodiment or the detection pixel 90X2 shown in FIG.
  • the configuration is not limited to this.
  • FIG. 44 shows the procedure for reading out the dose signal DDS (C) of the area AR1 in the first to 144th columns, as in FIG.
  • the odd channel of 1 column, 3 columns, 5 columns,..., 143 columns is the detection channel 95, and 2 columns, 4 columns, 6 columns,.
  • the case where even-numbered columns are non-detection channels 130 is illustrated.
  • the difference from FIG. 39A is that MUX 76 is changed to MUX 135.
  • the MUX 76 has only the function of sequentially selecting one column at a time.
  • the MUX 135 has a function of sequentially selecting the analog voltage signal V (C) from the detection CA 132 of the detection channel 95 of the odd number column by skipping the non detection channel 130 of the even number column. That is, the MUX 135 has a function of selecting an analog voltage signal V (C) from a part of the plurality of connected CAs 60, in this case, the detection CA 132 of the detection channel 95.
  • This function can be realized by providing a switch or the like in the flip flop circuit of the shift register constituting the MUX 135.
  • the first MUX 135 selects the analog voltage signal V (1) in the first column.
  • the analog voltage signal V (1) is input to the first ADC 77, and is converted into the dose signal DDS (1) by the first ADC 77.
  • the analog voltage signal V (2) in the second column is skipped, and the first MUX 135 selects the analog voltage signal V (3) in the third column.
  • the analog voltage signal V (3) is input to the first ADC 77, and is converted into the dose signal DDS (3) by the first ADC 77.
  • the first MUX 135 selects the analog voltage signal V (5) in the fifth column. Accordingly, the analog voltage signal V (5) is input to the first ADC 77, and is converted into the dose signal DDS (5) by the first ADC 77.
  • the image signals DIS (C) of all the columns are read out during the image reading operation, while only the dose signals DDS (C) of the odd columns are selectively read out during the AED operation.
  • the number of digital signals DS (C) that must be reduced to 1/2 during AED operation compared to image reading operation.
  • the dose signal DDS (C) whose number is reduced to 1/2 is read out in the same time as the image reading operation for reading the image signals DIS (C) of all the columns, the operating speed of the ADC 77 Can be slowed down.
  • FIG. 46A shows the clock signal CLN_A at the time of image reading operation
  • FIG. 46B shows the clock signal CLL_A at the time of AED operation.
  • the period TC of the clock signal itself is the same between the clock signal CLN_A at the time of the image reading operation and the clock signal CLL_A at the time of the AED operation.
  • the clock signal CLN_A is continuously and continuously issued regardless of the detection channel 95 and the non-detection channel 130
  • the clock signal CLL_A corresponds to the detection channel 95 of the odd-numbered column. Only the part is emitted, and the part corresponding to the non-detection channel 130 in the even number row is paused without being emitted.
  • the unit time T is a period required for the output of the digital signal DS (C) of two adjacent columns.
  • the clock signal CLL_A is paused at the portion corresponding to the non-detection channel 130 in the even-numbered column among the two adjacent columns, the number of pulses per unit time T is one clock signal CLN_A. It will be / 2.
  • FIG. 47A shows a clock signal CLN_A at the time of image reading operation
  • FIG. 47B shows a clock signal CLL_A at the time of AED operation.
  • the clock signal CLN_A at the time of the image reading operation is exactly the same as the case of FIG.
  • the clock signal CLL_A at the time of AED operation is not provided with a pause period as shown in FIG. 46B, and instead, the cycle of CLL_A is twice as long as 2TC with respect to the cycle TC of the clock signal CLN_A. .
  • the unit time T is a cycle 2TC of the clock signal CLL_A.
  • the number of pulses of the clock signal CLN_A is two, while the number of pulses of the clock signal CLL_A is one. Therefore, the number of pulses per unit time T of the clock signal CLN_A is 1 ⁇ 2 of the clock signal CLN_A as in the case of FIG.
  • FIG. 48 is a flowchart showing the operation procedure of the electronic cassette of the present 3-1 embodiment.
  • the difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1203 and step ST1803 surrounded by an alternate long and short dash line. Only the differences will be described below.
  • step ST1203 in the AED operation, the analog voltage signal V (C) from the detection CA 132 is selectively output to the ADC 77, and the analog voltage signal V (C Only the AD conversion process for Then, the number of pulses per unit time T of the clock signal of the ADC 77 is reduced compared to that at the time of the image reading operation (irradiation start detection step).
  • step ST1803 the number of pulses per unit time T of the clock signal of the ADC 77 is set as the normal number of pulses (NPUN_A) in the image reading operation (image reading step).
  • the battery 65 since the number of pulses per unit time T of the clock signal of the ADC 77 at the time of AED operation is reduced compared to that at the time of the image reading operation, power consumption for driving the ADC 77 at the time of AED operation can be reduced. As a result, the power consumption of the signal processing circuit 51 during the AED operation can be reduced. Therefore, as in the first and second aspects of the invention, the battery 65 lasts longer than in the prior art, thereby reducing the number of times the battery 65 is charged, so that the imaging efficiency can be improved.
  • a half row of one area AR is used as the detection channel 95, but as described in the first to eighth embodiments, the method of setting the detection channel 95 Is free.
  • Embodiment 3-2 A third embodiment is shown in FIG.
  • the MUX 135 having a function of selecting the analog voltage signal V (C) from a part of the plurality of connected CAs 60 is used.
  • the MUX 135 having such a function does not exist as a general-purpose product, for example, the MUX 76 having only the function of sequentially selecting one row at a time is modified to make the MUX 135, or the MUX 135 having the above function is custom-made It takes time and money. Therefore, in the third-2 embodiment shown in FIG. 49, the analog voltage signal V (C) from a part of CA is selectively output to the ADC 76 while using the general MUX 76.
  • FIG. 49 shows a circuit configuration of the detection channel 95 in the present third embodiment.
  • the detection channel 95 is divided into a first path 140 connected to the MUX 76 and a second path 141 connected to the ADC 77 without the MUX 76 at a stage subsequent to the CDS 61.
  • the first path 140 is a path that outputs the analog voltage signal V (C) from the detection CA 132 to the ADC 77 via the MUX 76.
  • the second path 141 is a path for outputting the analog voltage signal V (C) to the ADC 77 without passing through the MUX 76.
  • a switch 142 is connected to the detection channel 95, the first path 140, and the second path 141.
  • the control unit 54 controls the drive of the switch 142 to switch the path connected to the detection channel 95 between the first path 140 and the second path 141.
  • FIG. 49A shows the AED operation time
  • FIG. 49B shows the image reading operation time. That is, the second path 141 is selected by the switch 142 during the AED operation, and the first path 140 is selected during the image reading operation.
  • the analog voltage signal V (C) is divided into a second path 141 for outputting to the ADC 77. Then, at the time of the AED operation, the switch 142 is controlled to select the second path 141. Therefore, it is not necessary to prepare a special MUX 135 as in the above-described third embodiment shown in FIG. 44, and it is possible to save time and effort.
  • each embodiment of the third invention may be implemented in combination with each embodiment of the first invention and the second invention.
  • the controller 54 controls the ADC 77 and the block BL.
  • the power supply state of the MUX 76 may be switched periodically between the first state and the second state.
  • the definitions of the first state and the second state are as described at the end of the second invention.
  • the combination of the third aspect of the invention and the ADC 77 of the first aspect of the invention and the switching pattern of the power supply of the block BL can be, for example, the following combination.
  • the control unit 54 when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
  • the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong.
  • at least one block BL is disposed between two blocks BL belonging to the same group.
  • the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
  • Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
  • the CA 60 connected to the reference channel 120 shown in FIG. 37 is a part of CA that selectively outputs the analog voltage signal V (C) to the ADC 77. That is, in the above 3-1 and 3-2 embodiments, only the detection CA 132 is illustrated as a part of CA for selectively outputting the analog voltage signal V (C) to the ADC 77.
  • the present invention is not limited to this, but also includes the CA 60 connected to the reference channel 120.
  • the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set.
  • the first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
  • the voltage signal V (C) of an analog signal is selectively output to the ADC 77 by applying the above-described 2-1 to 2-3 embodiments of the second invention shown in FIGS. 39 to 43.
  • the power supplied to at least one of the unselected CAs other than some of the CAs during the AED operation may be set to a power saving state lower than the normal power during the image reading operation.
  • the non-selected CA is the non-detection CA 131 when the above first to twelfth embodiments of FIGS. 35 to 37 are not applied, and the reference channel when the above first to twelfth embodiments are applied. It is CA131 for non-detection except CA60 connected to 120. FIG.
  • the fourth invention shown in FIGS. 50 to 58 described below is the case where the AED operation is performed while switching the power supply states of the plurality of ADCs 77 of the first invention and, consequently, the plurality of blocks BL1 to BL16. It is for solving the problem which arises.
  • the fourth invention is required for the control unit 54 to stably operate the ADC 77 and the like that constitute the block BL rather than the timing for starting the charge readout for each of the plurality of blocks BL1 to BL16 in the AED operation.
  • the content is to switch from the second state to the first state before a predetermined time.
  • the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above.
  • the patterns exemplified in the above 1-1 to 1-7 embodiments can be applied to the switching pattern of the power supply state of the ADC 77.
  • the other embodiments of the first invention (the above 1-8 to 1-13 embodiments), the above the 2-1 to 2-3 embodiments of the second invention, and the above-mentioned third of the third invention.
  • a combination with the -1 and 3-2 embodiments is also possible.
  • the same parts as those of the first to third inventions are given the same reference numerals and their explanations are omitted, and the differences will be mainly explained.
  • FIGS. 50 and 51 A fourth embodiment is shown in FIGS. 50 and 51.
  • the description is made on the assumption that the configuration includes 90X2, the configuration is not limited to this.
  • FIG. 50 shows the power supply state of a certain block BL.
  • the hatched portion is a period during which the charge that is the source of the dose signal DDS (C) is read out. More specifically, charge is read out to CA 60 through signal line 42, CA 60 is sequentially selected by MUX 76, analog voltage signal V (C) based on charge is output to ADC 77, and analog voltage signal V (C) is output by ADC 77. Are converted into the dose signal DDS (C) and output.
  • the block BL becomes unstable in operation due to the influence of temperature drift and the like.
  • the dose signal DDS (C) outputted while the operation is unstable becomes extremely unreliable. Therefore, there is a possibility that the reliability of the determination as to whether or not the X-ray irradiation has been started can not be maintained.
  • FIG. 50A shows an example in which charge reading is started immediately after switching the block BL from the non-operating state to the operating state.
  • the dose signal DDS (C) increases the risk of erroneous determination of the start of X-ray irradiation.
  • switching from the non-operating state to the operating state of the block BL is performed before the time TW at which the charge readout is started.
  • the time TW is a time required to operate the block BL stably.
  • FIG. 51 is a flow chart showing the operation procedure of the electronic cassette of the present fourth embodiment.
  • the points of difference with the flowchart shown in FIG. 17 of the above-described first embodiment are step ST 1204 and step ST 1804 surrounded by an alternate long and short dash line. Only the differences will be described below.
  • step ST1204 in the AED operation, the control unit 54 switches the power supply state of the block BL. Then, the switching from the non-operating state to the operating state of the block BL is performed before the time TW for starting the charge readout (irradiation start detection step). In addition, in step ST1804, in the image reading operation, all the blocks BL are put into operation (image reading step).
  • the dose signal DDS (C) is not output while the operation of the block BL is unstable, and the risk of erroneous determination of the start of X-ray irradiation can be reduced. it can.
  • FIG. 52 to FIG. 54 There are three variations shown in FIG. 52 to FIG. 54 in the period in which the charge indicated by hatching is read. 52 to 54 exemplify the block BL1 in charge of the area AR1 in the first to 144th columns, as in FIGS. 9 and 44.
  • FIG. 52 shows the case where all the signal lines 42 of the area AR1 that the block BL1 is in charge are the detection channels 95, as shown by the alphabet DT (see FIG. 44).
  • the dose signals DDS (1) to DDS (144) based on the analog voltage signals V (1) to V (144) from the detection CA 132 of all the detection channels 95 are output.
  • FIG. 53 shows an analog voltage signal V (C) from the detection CA 132 of the detection channel 95 when the odd-numbered column is the detection channel 95 and the MUX is the same as the embodiment 3-1 shown in FIG.
  • V (C) analog voltage signal from the detection CA 132 of the detection channel 95 when the odd-numbered column is the detection channel 95 and the MUX is the same as the embodiment 3-1 shown in FIG.
  • FIG. 54 is the same as FIG. 52 in that the odd-numbered column is the detection channel 95, but the MUX is not the MUX 76 but the MUX 135.
  • analog voltage signals V (1), V (3), V (5),..., V (143) from the detection CA 132 of the detection channel 95 in the odd-numbered column
  • FIGS. 55 to 57 show a fourth embodiment.
  • the timing at which the block BL is switched from the non-operation state to the operation state with respect to the timing to start the charge readout is defined in the above-described fourth embodiment, the block BL is operated in the fourth to second embodiment. Define the timing to switch from to non-operational state.
  • switching from an operating state to a non-operating state of a certain block BL is performed at timings that do not overlap with timings during which charge is being read in another block BL.
  • 55 to 57 are similar to FIG. 14 of the first-first embodiment, FIG. 18 of the first-second embodiment, and the like, and supply of power to the blocks BL1 to BL16 (not shown after the block BL5).
  • the case where the state is periodically switched and the timing of switching the power supply state of each block BL1 to BL16 is shifted is illustrated.
  • 55 and 56 illustrate the case where the charge readout period is a variation of FIG. 52 or 54
  • FIG. 57 illustrates the charge readout period a variation of FIG. 53, respectively.
  • FIG. 55 is a timing before starting to read out the charge from the detection CA 132 of each of the blocks BL1 to BL16, as indicated by the broken arrows, in which the blocks BL1 to BL16 are switched from the operating state to the non-operating state. Specifically, this is an example performed during startup of the time TW. More specifically, in FIG. 55, the control unit 54 switches the operating state of the block BL1 to the non-operating state during start-up of the block BL2, and switches the operating state of the block BL2 to the non-operating state. It is performed during the start of block BL3. Further, switching from the operating state of the block BL3 to the non-operating state is performed during the startup of the block BL4.
  • FIG. 56 shows an example in which switching from the operating state to the non-operating state of each of the blocks BL1 to BL16 is performed at the timing after the readout of the charge from the detection CA 132 of each of the blocks BL1 to BL16 is completed. More specifically, in FIG. 56, the control unit 54 switches the operating state of the block BL1 to the non-operating state after reading of the charge of the block BL2 is completed, and switches the operating state of the block BL2 to the non-operating state. , And after completion of reading out the charge of the block BL3. Further, switching from the operating state of the block BL3 to the non-operating state is performed after the end of the charge reading of the block BL4.
  • FIG. 57 shows an example in which switching from the operating state to the non-operating state of each of the blocks BL1 to BL16 is performed in the interval between the intermittent charge reading of each of the blocks BL1 to BL16. More specifically, in FIG. 57, the control unit 54 switches the operating state of the block BL1 to the non-operating state in the interval between the intermittent charge reading of the block BL2 and starts the operating state of the block BL2. The switching to the non-operating state is performed between the intermittent charge reading periods of the block BL3. Then, switching from the operating state to the non-operating state of the block BL3 is performed in the interval of the intermittent charge reading of the block BL4.
  • switching of the block BL from the operating state to the non-operating state is performed if switching from the operating state to the non-operating state of the block BL is performed at timings that do not overlap with timings during reading of electric charges in other blocks BL. There is no possibility that the switching noise and the like generated in the above may be carried on the charge of the other block BL.
  • switching of the blocks BL1 to BL16 from the operating state to the non-operating state is performed prior to the start of charge reading of the blocks BL1 to BL16.
  • the example is most preferred.
  • FIG. 35 of the first to twelfth embodiments A fourth embodiment is shown in FIG. As shown in FIG. 35 of the first to twelfth embodiments, when the power supply state of each block BL is switched in the AED operation, deviation of the temperature distribution occurs in the block BL. If the deviation of the temperature distribution is not resolved before the image reading operation for obtaining the X-ray image to be diagnosed, temperature drift occurs in the image signal DIS (C) and the image quality of the X-ray image is degraded. Therefore, in the fourth embodiment, after the control unit 54 detects the start of the X-ray irradiation in the AED operation, all the blocks BL are put into operation until the image reading operation is started.
  • all the blocks BL1 to BL16 are in operation at the timing when the start of X-ray irradiation is detected in the AED operation. More specifically, in FIG. 58, the control unit 54 operates the blocks BL (blocks BL3, BL4, BL7, BL8, BL11, BL12, BL15, BL16) that were inoperative when detecting the start of X-ray irradiation. Switch to On the other hand, the control unit 54 continues the operating state of the blocks BL (the blocks BL1 and BL2 other than the above) which are in the operating state at the detection of the X-ray irradiation start.
  • all the blocks BL1 to BL16 are immediately put into operation at the timing when the start of X-ray irradiation is detected in the AED operation. Therefore, after detecting the start of X-ray irradiation, all blocks BL1 are detected. It can be said that all the blocks BL1 to BL16 are in the operating state during the reading cycle TX of the dose signal DDS (C) in which the switching of .about.BL16 ends one cycle.
  • the timing at which all the blocks BL1 to BL16 are brought into the operating state may be any timing in the period from the start of the X-ray irradiation detection in the AED operation to the start of the image reading operation. However, as shown in FIG. 58, all the blocks BL1 to BL16 are put into operation at the timing when the start of X-ray irradiation is detected by the AED operation as shown in FIG. Is preferred.
  • the definitions of the operating state and the non-operating state, and hence the first state and the second state, are as described at the end of the second invention.
  • the time TW required for stably operating the block BL may be almost the same as the time taken to prepare for operation of the CA 60, the CDS 61, the MUX 76, and the ADC 77 constituting the block BL, or longer than that. In some cases.
  • the fourth invention also includes the case where the time TW required for stably operating the block BL is substantially the same as the time taken to prepare for the operation of the CA 60, the CDS 61, the MUX 76, and the ADC 77 constituting the block BL. That is, the case of starting the charge readout immediately after the preparation of the operation of the CA 60, the CDS 61, the MUX 76, and the ADC 77 constituting the block BL is also included in the fourth invention.
  • the power supplied to each part of the block BL during the time TW may be changed according to the temperature of the block BL. For example, when the temperature of the block BL before the time TW is much lower than the target temperature, the control unit 54 applies a relatively large amount of power to each part of the block BL to reach the target temperature in a short time. On the other hand, if the temperature of the block BL before the time TW is lower than the target temperature but relatively close to the target temperature, the target temperature may be exceeded if relatively large power is applied to each part of the block BL. Because of this, the control unit 54 operates the components of the block BL with relatively low power.
  • each embodiment of the fourth invention may be implemented in combination with each embodiment of the first invention, the second invention, and the third invention.
  • the first invention is applied, and the ADC 54 is controlled by the control unit 54 as shown in FIG. 14 and the like of the first-first embodiment.
  • the power supply state of the MUX 76 constituting the block BL may be periodically switched to the first state and the second state.
  • combinations of the ADC77 of the fourth invention and the ADC77 of the first invention, and eventually the switching pattern of the supply power of the block BL can be, for example, the following combinations.
  • the control unit 54 when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
  • the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong.
  • at least one block BL is disposed between two blocks BL belonging to the same group.
  • the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
  • Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
  • the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set.
  • the first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
  • the voltage signal V (C) of an analog signal is selectively output to the ADC 77 by applying the above-described 2-1 to 2-3 embodiments of the second invention shown in FIGS. 39 to 43.
  • the power supplied to at least one of the unselected CAs other than some of the CAs during the AED operation may be set to a power saving state lower than the normal power during the image reading operation.
  • Embodiments 3-1 and 3-2 in which the number of pulses per unit time of the clock signal of the ADC 77 shown in FIG. 44 to FIG.
  • the fifth invention shown in FIGS. 59 and 60 described below is that the control unit 54 reduces the power supplied to the CA 60 in the AED operation as compared to that in the image read operation.
  • the power supplied to at least one of the non-detection CAs 131 during the AED operation is set to a power saving state lower than the normal power during the image reading operation.
  • the invention is different from the second invention in that the power supplied to the CA 60 is reduced during AED operation than during image read operation, without distinction between the detection CA 132 and the non-detection CA 131.
  • the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above.
  • the same parts as those of the first to fourth inventions are given the same reference numerals and their explanations are omitted, and the differences will be mainly explained.
  • control unit 54 sets the supplied power P_C to all the CAs 60 in the image reading operation as the normal power PN_C, and the supplied power P_C to all the CAs 60 in the AED operation is PL_C lower than PN_C. I assume.
  • FIG. 60 is a flow chart showing the operation procedure of the electronic cassette of the fifth invention.
  • the difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1205 and step ST1805 surrounded by an alternate long and short dash line. Only the differences will be described below.
  • step ST1205 in the AED operation, all the CAs 60 are driven with low power by the supplied power PL_C.
  • all the CAs 60 are driven by the normal power PN_C.
  • the power supplied to the CA 60 is reduced during the AED operation compared to the image reading operation, the power consumption of the signal processing circuit 51 during the AED operation can be reduced. Therefore, as in the first to third inventions, the battery 65 lasts longer than in the prior art, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
  • a sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store electric charges in a two-dimensional manner, and which are provided with a plurality of signal lines for reading out the electric charges;
  • a signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to the charge from the pixel through the signal line;
  • a plurality of charge amplifiers included in the signal processing circuit provided for each of the signal lines and connected to one end of the signal lines, for converting the charges from the pixels into the analog voltage signals
  • Charge amplifier A multiplexer included in the signal processing circuit, the multiplexer having a plurality of input terminals, the plurality of charge amplifiers being respectively connected to the plurality of input terminals, and the analog voltage signals from the plurality of charge amplifiers being sequentially A multiplexer to select and output,
  • An AD converter included in the signal processing circuit which is connected to a subsequent stage of the multiplexer and executes AD conversion processing for converting the analog voltage signal output from the multiplexer into a
  • the irradiation start detection operation is an operation of reading out the charge from the pixel through the signal line before the start of irradiation of the radiation and detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge.
  • the image readout operation corresponds to the readout charge by reading out the charge from the pixel through the signal line after a pixel charge accumulation period for accumulating the charge in the pixel has elapsed after the start of the irradiation of the radiation.
  • the said control part is a radiographic image detection apparatus which reduces the electric power supply to all the said charge amplifiers in the said irradiation start detection operation rather than the time of the said image read-out operation.
  • a sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store charges are arranged in a two-dimensional manner, and a plurality of signal lines for reading out the charges are arranged;
  • a signal processing circuit that performs signal processing by reading an analog voltage signal according to the charge from a pixel, and a plurality of charge amplifiers included in the signal processing circuit, provided for each of the signal lines, and the signal line
  • a plurality of charge amplifiers connected to one end of the plurality of charge amplifiers for converting the charges from the pixels into analog voltage signals, and a multiplexer included in the signal processing circuit, the plurality of charge terminals having a plurality of input terminals;
  • An amplifier is connected to each of the plurality of input terminals to sequentially select and output the analog voltage signals from the plurality of charge amplifiers.
  • an AD converter included in the signal processing circuit which is connected to a subsequent stage of the multiplexer and converts the analog voltage signal output from the multiplexer into a digital signal according to a voltage value
  • an operation method of a radiation image detection apparatus comprising: an AD converter for performing Before the start of the irradiation of radiation, the charge is read out from the pixel through the signal line, and the irradiation start detection operation of detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge is performed Start detection step, After the start of the radiation irradiation, a pixel charge accumulation period for accumulating the charge in the pixel elapses, and then the charge is read from the pixel through the signal line, and the digital signal corresponding to the read charge is represented And an image reading step of executing an image reading operation of outputting a radiation image to be provided for diagnosis.
  • a method of operating a radiation image detection apparatus wherein power supplied to all of the charge amplifiers in the irradiation start detection step
  • step ST1205 and step ST1805 of FIG. 60 correspond to the irradiation start detection step and the image readout step described in the additional item 2, respectively.
  • the control unit 54 reduces the number of pulses per unit time of the clock signal of the ADC 77 at the time of the AED operation as compared to that at the time of the image reading operation. It is the contents of that.
  • the third invention selectively outputs analog voltage signals V (C) from some of the CAs including the detection CA 132 to the ADC 77, and selectively outputs the analog voltages to the ADC 77.
  • the content is that the number of pulses per unit time of the clock signal of the ADC 77 at the time of the AED operation is reduced as compared with that at the time of the image reading operation after performing only the AD conversion processing on the signal V (C).
  • the sixth invention carries out AD conversion processing on the analog voltage signals V (C) from all the CAs 60 in the ADC 77 as in the image read-out operation regardless of the detection CA 132 and the non-detection CA 131.
  • the third embodiment is different from the third invention in that the number of pulses per unit time of the clock signal of the ADC 77 at the time of AED operation is reduced as compared with that at the time of image reading operation.
  • the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above.
  • the same parts as those of the first to fifth inventions will be assigned the same reference numerals and explanations thereof will be omitted, and differences will be mainly described.
  • control unit 54 controls the pulse number NPU_A per unit time of the clock signal of all the ADCs 77, NPUN_A which is a normal pulse number at the time of image reading operation, and 1 ⁇ 2 of NPUN_A at AED operation. Let's call it NPUL_A.
  • FIG. 62 is a flow chart showing the operation procedure of the electronic cassette of the sixth invention.
  • the point of difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1206 and step ST1806 surrounded by a dashed dotted line. Only the differences will be described below.
  • step ST1206 in the AED operation, a clock signal NPUL_A which is 1/2 the pulse number NPUN_A which is a normal pulse number is supplied to all the ADCs 77.
  • a normal clock signal of pulse number NPUN_A is supplied to all the ADCs 77.
  • the battery 65 since the number of pulses per unit time of the clock signal of the ADC 77 at the time of AED operation is reduced as compared with that at the time of image reading operation, power consumption of the signal processing circuit 51 at the time of AED operation can be reduced. Therefore, as in the first to third and fifth aspects of the invention, the battery 65 lasts longer than in the prior art, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
  • a sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store electric charges in a two-dimensional manner, and which are provided with a plurality of signal lines for reading out the electric charges;
  • a signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to the charge from the pixel through the signal line;
  • An AD converter that is included in the signal processing circuit and executes an AD conversion process for converting the analog voltage signal into a digital signal according to a voltage value, the AD conversion process being performed for each of the signal lines With multiple AD converters to share
  • a control unit that controls the signal processing circuit to execute an irradiation start detection operation and an image readout operation.
  • the irradiation start detection operation is an operation of reading out the charge from the pixel through the signal line before the start of irradiation of the radiation and detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge.
  • the image readout operation corresponds to the readout charge by reading out the charge from the pixel through the signal line after a pixel charge accumulation period for accumulating the charge in the pixel has elapsed after the start of the irradiation of the radiation.
  • An operation of outputting a radiation image to be provided for diagnosis represented by the digital signal The control unit reduces the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter for all the AD converters in the irradiation start detection operation as compared to the image read operation. Radiation image detector.
  • a sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store charges are arranged in a two-dimensional manner, and a plurality of signal lines for reading out the charges are arranged;
  • a signal processing circuit that performs signal processing by reading an analog voltage signal according to the charge from a pixel, and an AD conversion process included in the signal processing circuit and converting the analog voltage signal into a digital signal according to a voltage value
  • Operation of a radiation image detection apparatus including: a plurality of AD converters that share the AD conversion process performed for each signal line; and a control unit that controls the signal processing circuit.
  • the charge is read out from the pixel through the signal line, and the irradiation start detection operation of detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge is performed
  • Start detection step After the start of the radiation irradiation, a pixel charge accumulation period for accumulating the charge in the pixel elapses, and then the charge is read from the pixel through the signal line, and the digital signal corresponding to the read charge is represented
  • an image reading step of executing an image reading operation of outputting a radiation image to be provided for diagnosis.
  • the radiation start detection step for all the AD converters, the number of pulses per unit time of a clock signal that defines the operation timing of the AD converters is reduced compared to that at the time of the image reading operation. How it works
  • step ST1206 and step ST1806 of FIG. 62 correspond to the irradiation start detection step and the image readout step described in the supplementary item 4, respectively.
  • the seventh invention shown in FIGS. 63 and 64 described below is a modification of the circuit configuration. Also in the seventh invention, as in the second to sixth inventions, the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. In the following, the same parts as those of the first to sixth inventions will be assigned the same reference numerals and explanations thereof will be omitted, and differences will be mainly described.
  • the 63 and 64 show a circuit configuration of one block BL and its periphery in the seventh invention.
  • the block BL is a mixture of the detection channel 95 and the non-detection channel 130 as in the above-mentioned second embodiment shown in FIG.
  • the detection channel 95 is divided into a first path 140 and a second path 141 at a stage subsequent to the CDS 61 as in the third embodiment shown in FIG. 49, and the switch 142 is connected.
  • the switch 142 switches the path connected to the detection channel 95 between the first path 140 and the second path 141 in response to the drive control signal S_MUX input from the control unit 54.
  • the detection channel 95 and the non-detection channel 130 are divided into a first path 200 and a second path 201 before the detection CA 132 and the non-detection CA 131.
  • the first path 200 is connected to the detection CA 132 and the non-detection CA 131.
  • the second path 201 is connected to the CDS 61 without passing through the detection CA 132 and the non-detection CA 131.
  • the first path 200 is a path for inputting a charge to the detection CA 132 and the non-detection CA 131.
  • the second path 201 is a path for outputting charge to the MUX 76 without passing through the detection CA 132 and the non-detection CA 131.
  • a switch 202 is connected to the detection channel 95 or the non-detection channel 130, the first path 200, and the second path 201.
  • the switch 202 switches the path connected to the detection channel 95 or the non-detection channel 130 between the first path 200 and the second path 201 in accordance with the drive control signal S_CA input from the control unit 54.
  • the detection channel 95 and the non-detection channel 130 are divided into a first path 203 and a second path 204, and the switch 205 is connected.
  • the switch 205 switches the path connected to the detection channel 95 or the non-detection channel 130 between the first path 203 and the second path 204 according to the drive control signal S_CDS input from the control unit 54.
  • a bias power supply 207 is connected to the detection channel 95 and the non-detection channel 130 via the switch 206.
  • the switch 206 is switched on / off in response to the drive control signal S_BIAS input from the control unit 54.
  • the control unit 54 individually outputs the drive control signals S_MUX, S_CA, and S_CDS to the switches 142, 202, and 205 of the channels 95 and 130 (the signal lines 42). Therefore, the control unit 54 sets the switches 202 and 205 of the detection channel 95 to the first paths 200 and 203, and sets the switches 202 and 205 of the non-detection channel 130 to the second paths 201 and 204. Individual drive control of each switch 142, 202, 205 is possible. Similarly for the switch 206, the control unit 54 can individually output the drive control signal S_BIAS, the detection channel 95 can be turned off, the non-detection channel 130 can be turned on, and so on.
  • FIG. 63 shows the time of image read operation. That is, the first paths 140, 200, and 203 are selected by the switches 142, 202, and 205, respectively. Also, the switches 206 are all in the off state.
  • the switch 142 selects the second path 141, and the switches 202 and 205 select the first paths 200 and 203, respectively. Also, the switch 206 is still in the off state. This state is the same as the state of FIG. 49A of the third-2 embodiment. Therefore, as described in the third embodiment, the analog voltage signal V (C) from the detection CA 132 is directly output to the ADC 77 without passing through the MUX 76.
  • the second paths 201 and 204 are selected by the switches 202 and 205, respectively. Also, the switch 206 is in the on state. In this case, the charge of the non-detection channel 130 is directly output to the MUX 76 without passing through the non-detection CA 131 and the CDS 61. Further, a bias voltage is applied to the non-detection channel 130 from the bias power supply 207 through the switch 206.
  • the non-detection CA 131 is in a power-off state where the supplied power PL_C is 0, as in the second to second embodiments shown in FIG.
  • the CDS 61 of the non-detection channel 130 is in the power off state.
  • the switch 206 is turned on, and a bias voltage is applied to the non-detection channel 130 from the bias power supply 207.
  • the non-detection CA 131 may not be in the power off state, but may be set to the low power state by supplying the supply power PL_C to such an extent that the potential of the input stage is not unstable as in the above-described second embodiment.
  • not only the non-detection CA 131 but also the detection CA 132 are driven in a low power state in which power lower than the normal power PN_C and greater than 0 is supplied. You may however, also in this case, as shown in FIG. 64, in the AED operation, in the detection channel 95, the second path 141 is selected by the switch 142, and the first paths 200 and 203 are selected by the switches 202 and 205, respectively. 206 is turned off.
  • the detection CA 132 when the detection CA 132 is driven in a low power state, the detection performance of the detection CA 132 is lowered, and accordingly, the S / N ratio of the dose signal DDS (C) may be lowered. Therefore, the number of gate lines 41 for simultaneously applying gate pulses G (R) from the gate drive unit 50 is increased to increase the amount of charges added in the detection channel 95, and the S / N of the dose signal DDS (C) It is preferred to improve the ratio.
  • the control unit 54 does not individually output the drive control signals S_MUX, S_CA, S_CDS, S_BIAS to the switches 142, 202, 205, 206 of the channels 95, 130 (the signal lines 42), respectively.
  • the drive control signals S_MUX, S_CA, S_CDS, and S_BIAS may be output uniformly in units of blocks BL.
  • the block BL in which the ADC 77 is always inoperative is such that the uniform switches 142, 202, and 205 are on the second paths 141, 201, and 204 side, and the uniform switch 206 is in the on state. .
  • the switch 206 and the bias power supply 207 may be incorporated in the block BL and hence in the signal processing circuit 51.
  • a bias voltage is applied from the bias power supply 207 to the detection channel 95, and the switches 202 and 205 of the detection channel 95 are connected to the second paths 201 and 204 side.
  • the load fluctuation of the bias power supply 207 caused by the current flowing to the pixel 40 at the time of X-ray irradiation is converted by the ADC 77 into a digital signal DS (C).
  • This may be used as the dose signal DDS (C), and when the dose signal DS (C) fluctuates beyond a predetermined range, it may be determined that the X-ray irradiation has been started.
  • a bias voltage is applied from the bias power supply 207 to the non-detection channel 130, and the switches 202 and 205 of the non-detection channel 130 are The paths 201 and 204 are set. Then, the load fluctuation of the bias power supply 207 caused by the current flowing to the pixel 40 at the time of X-ray irradiation is converted by the ADC 77 into a digital signal DS (C). This may be used as the dose signal DDS (C), and when the dose signal DS (C) fluctuates beyond a predetermined range, it may be determined that the X-ray irradiation has been started.
  • the start of X-ray irradiation may be determined based on both of the above. Specifically, the difference or ratio of each dose signal DDS (C) is calculated, and the start of X-ray irradiation is determined based on the calculated difference or ratio. In this case, noise components such as shock, vibration noise, and electromagnetic noise applied to the electronic cassette 16 are canceled, so that it is possible to reduce the possibility of erroneous determination of the start of X-ray irradiation due to the noise components.
  • the potential of the input stage of the detecting CA 132 or the non-detecting CA 131 is not indefinite as in the above-described second embodiment, instead of setting the detecting CA 132 or the non-detecting CA 131 to the power-off state Power supply PL_C may be given to set the low power state.
  • the power supply for acquiring the dose signal DDS (C) representing the load fluctuation is not limited to the bias power supply 207. Any power supply such as the power supply of the ADC 77, the CA 60, or the CDS 61 may be used as long as the power is on during the operation of the AED.
  • the load fluctuation of the power supply is small. There is a possibility that the N ratio is lowered and the X-ray irradiation start detection performance is lowered.
  • the number of gate lines 41 to which gate pulses G (R) are simultaneously given from the gate driver 50 is increased to increase the amount of charges added in the detection channel 95 or the non-detection channel 130, It is preferable to improve the S / N ratio of C).
  • the S / N ratio of the dose signal DDS (C) may be improved by adding or averaging the dose signals DDS (C) between adjacent channels.
  • there is a method of increasing the number of charges added in each channel by increasing the number of gate lines 41 that simultaneously apply gate pulses G (R) from the gate driver 50, and the dose signal DDS between adjacent channels
  • the S / N ratio of the dose signal DDS (C) may be further improved by using a method of adding or averaging C).
  • the seventh aspect of the present invention may be implemented in combination with the respective embodiments of the first aspect, the second aspect, the third aspect, and the fourth aspect of the invention.
  • the control unit 54 controls the ADC 77, and
  • the power supply state of the MUX 76 constituting the block BL may be periodically switched to the first state and the second state.
  • combinations of the ADC77 of the seventh invention and the ADC77 of the first invention and the switching pattern of the supply power of the block BL can be, for example, the following combinations.
  • the control unit 54 when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
  • the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong.
  • at least one block BL is disposed between two blocks BL belonging to the same group.
  • the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
  • Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
  • the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set.
  • the first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
  • the voltage signal V (C) of an analog signal is selectively output to the ADC 77 by applying the above-described 2-1 to 2-3 embodiments of the second invention shown in FIGS. 39 to 43.
  • the power supplied to at least one of the unselected CAs other than some of the CAs during the AED operation may be set to a power saving state lower than the normal power during the image reading operation.
  • Embodiments 3-1 and 3-2 in which the number of pulses per unit time of the clock signal of the ADC 77 shown in FIG. 44 to FIG.
  • the fourth to fourth embodiments may be applied to switch from the second state to the first state before a predetermined time.
  • the electronic cassette 16 is illustrated as a radiation image detection apparatus, but the present invention is not limited to this.
  • the present invention is also applicable to a stationary radiation image detection apparatus fixed to the standing position imaging stand 18 and the deceiving position imaging stand 19.
  • the hardware structure of a processing unit that executes various processes such as the control unit 54, the leak charge correction unit 121, and the temperature drift correction unit 122 , And various processors as shown below.
  • the various processors include a CPU, a programmable logic device (PLD), a dedicated electric circuit, and the like.
  • the CPU is a general-purpose processor that executes software (program) and functions as various processing units, as is well known.
  • the PLD is a processor that can change the circuit configuration after manufacture, such as an FPGA (Field Programmable Gate Array).
  • the dedicated electric circuit is a processor having a circuit configuration specially designed to execute a specific process such as an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • One processing unit may be configured of one of these various processors, or configured of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA) It may be done.
  • a plurality of processing units may be configured by one processor.
  • a plurality of processing units may be configured by one processor.
  • configuring a plurality of processing units by one processor first, there is a form in which one processor is configured by a combination of one or more CPUs and software, and this processor functions as a plurality of processing units. .
  • SoC system on chip
  • the hardware-like structure of these various processors is more specifically an electric circuit (circuitry) combining circuit elements such as semiconductor elements.
  • the present invention can be applied not only to X-rays but also to other radiations such as ⁇ -rays.
  • the present invention is not limited to the embodiments of the first to seventh inventions, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention. Furthermore, the present invention extends to a storage medium for storing a program in addition to the program.

Abstract

Provided is a radiographic image detection device capable of reducing the power consumed by a signal processing circuit during an emission start detection operation for detecting the start of radiation emission, and a method for operating the same. During an AED operation for detecting the start of X-ray emission, a control unit (54) of an electronic cassette (16) selectively outputs to an ADC (77) an analog voltage signal from some of the charge amps including the detection CAs (132) which are connected to a detection channel (95) of a detection pixel (90) for detecting the start of emissions and constitute some of the plurality of CAs (60) connected to a MUX (76), causes the ADC (77) to only perform AD conversion processing of the selectively outputted analog voltage signal, and reduces the pulse number NPU_A per unit of time of a clock signal which specifies the operation timing of the ADC (77) in comparison to when an image is being retrieved.

Description

放射線画像検出装置とその作動方法Radiation image detecting apparatus and operation method thereof
 本発明は、放射線画像検出装置とその作動方法に関する。 The present invention relates to a radiation image detecting apparatus and an operation method thereof.
 医療分野において、放射線画像検出装置で検出された放射線画像に基づく診断が盛んに行われている。放射線画像検出装置は、センサパネルと、回路部とを有している。センサパネルには、放射線発生装置から照射されて被写体(患者)を透過した放射線に感応して電荷を蓄積する複数の画素が二次元に配列されている。このようなセンサパネルを有する放射線画像検出装置は、フラットパネルディテクタ(FPD;flat panel detector)とも呼ばれる。回路部には、センサパネルの画素に蓄積された電荷をデジタル信号に変換し、これを放射線画像として出力する信号処理回路が設けられている。 In the medical field, diagnosis based on a radiation image detected by a radiation image detection apparatus is actively performed. The radiation image detection apparatus has a sensor panel and a circuit unit. In the sensor panel, a plurality of pixels, which are irradiated from the radiation generation apparatus and sensitive to the radiation transmitted through the subject (patient), are arranged in a two-dimensional manner in a plurality of pixels that accumulate charges. A radiographic image detection device having such a sensor panel is also called a flat panel detector (FPD). The circuit section is provided with a signal processing circuit that converts the charge accumulated in the pixels of the sensor panel into a digital signal and outputs the digital signal as a radiation image.
 放射線画像検出装置には、撮影室に設置された撮影台に固定される据え置き型と、持ち運び可能な筐体にセンサパネル等が収容された可搬型とがある。可搬型の放射線画像検出装置は電子カセッテと呼ばれる。電子カセッテには、ケーブルを介して商用電源から給電されるワイヤードタイプの他、筐体に装着されたバッテリから給電されるワイヤレスタイプがある。 The radiation image detection apparatus is classified into a stationary type fixed to an imaging table installed in an imaging room and a portable type in which a sensor panel and the like are accommodated in a portable case. A portable radiation image detection device is called an electronic cassette. Electronic cassettes include a wired type in which power is supplied from a commercial power supply via a cable, and a wireless type in which power is supplied from a battery mounted in a housing.
 各画素には、電荷を読み出す画素を選択するためのスイッチング素子、例えばTFT(Thin Film Transistor)が接続されている。センサパネルには、このTFTを画素の行単位で駆動するためのゲート線と、各画素からの電荷を信号処理回路に読み出すための信号線とが、互いに交差するように設けられている。すなわち、ゲート線は画素の行方向に延伸し、かつ画素の列方向に所定のピッチで配置されている。一方、信号線は画素の列方向に延伸し、かつ画素の行方向に所定のピッチで配置されている。 Each pixel is connected to a switching element, for example, a TFT (Thin Film Transistor), for selecting a pixel from which charge is read. In the sensor panel, gate lines for driving the TFTs in units of rows of pixels and signal lines for reading out the charge from each pixel to the signal processing circuit are provided so as to cross each other. That is, the gate lines extend in the row direction of the pixels, and are arranged at a predetermined pitch in the column direction of the pixels. On the other hand, the signal lines extend in the column direction of the pixels, and are arranged at a predetermined pitch in the row direction of the pixels.
 信号処理回路は、チャージアンプ(以下、CA(Charge Amp))、マルチプレクサ(以下、MUX(multiplexer))、AD変換器(以下、ADC(Analog-to-Digital Converter))等を含む。CAは、信号線毎に設けられ、かつ信号線の一端に接続されている。CAは、画素から信号線を通じて流入する電荷に応じたアナログの電圧信号を出力する。MUXの入力端子には複数のCAが、出力端子には1つのADCがそれぞれ接続される。MUXは、入力端子に接続された複数のCAからのアナログの電圧信号を順次選択して、選択したアナログの電圧信号をADCに出力する。ADCは、MUXからのアナログの電圧信号を、その電圧値に応じたデジタル信号に変換するAD変換処理を実行する。 The signal processing circuit includes a charge amplifier (hereinafter, CA (Charge Amp)), a multiplexer (hereinafter, MUX (multiplexer)), an AD converter (hereinafter, ADC (Analog-to-Digital Converter)), and the like. The CA is provided for each signal line and connected to one end of the signal line. CA outputs an analog voltage signal corresponding to the charge flowing from the pixel through the signal line. A plurality of CAs are connected to the input terminal of the MUX, and one ADC is connected to the output terminal. The MUX sequentially selects analog voltage signals from the plurality of CAs connected to the input terminal, and outputs the selected analog voltage signal to the ADC. The ADC executes an AD conversion process that converts an analog voltage signal from the MUX into a digital signal according to the voltage value.
 放射線が照射された場合、各画素には、到達した放射線の線量に応じた電荷が蓄積される。被写体を透過した放射線は、被写体の透過率に応じて減衰するため、各画素には被写体の画像情報を表す電荷が蓄積される。信号処理回路は、こうした被写体の画像情報を表す電荷をセンサパネルから読み出してデジタル信号に変換することにより、診断に供する1画面分の放射線画像として出力する。 When the radiation is irradiated, charges corresponding to the dose of the radiation reached are accumulated in each pixel. The radiation that has passed through the subject is attenuated according to the transmittance of the subject, so that charges representing image information of the subject are accumulated in each pixel. The signal processing circuit reads out the charge representing the image information of the subject from the sensor panel and converts it into a digital signal, and outputs it as a radiation image of one screen to be provided for diagnosis.
 特許文献1には、センサパネルが2880行×2304列の画素を持ち、信号処理回路が9個のMUXおよびADCを持つ放射線画像検出装置が記載されている。特許文献1において、センサパネルから1画面分の放射線画像を読み出す場合、信号処理回路は、次のような画像読み出し動作を行う。すなわち、2880行の各行のゲート線に順にゲートパルスが与えられて、各行のTFTが1行ずつ順次オン状態とされ、その都度、TFTがオン状態とされた1行分の各画素の電荷が各列の信号線に一斉に流れる。これにより、2304列の信号線の各列に接続された各々のCAに、1行分の各画素の電荷が読み出されて蓄積される。MUXおよびADCは9個であるため、1つのMUXおよび1つのADCで構成される1つのブロックが担当する画素の列は、2304/9=256列となる。9個のブロックは、同じタイミングで並列的に動作する。各MUXは、それぞれに接続された256個のCAからのアナログの電圧信号を順次選択して、選択したアナログの電圧信号を各ADCに出力する。各ADCは、各MUXからのアナログの電圧信号を順次デジタル信号に変換して出力する。こうした1行分のデジタル信号の出力は1行分の画像読み出しに相当する。1行分の画像読み出しが終了すると、同様の動作を繰り返して次の行の画像読み出しが行われる。こうした1行分の画像読み出し動作を2880行分繰り返すことで、1画面分の放射線画像が出力される。 Patent Document 1 describes a radiation image detection apparatus in which a sensor panel has 2880 rows × 2304 columns of pixels, and a signal processing circuit has nine MUXs and ADCs. In Patent Document 1, when reading a radiation image of one screen from the sensor panel, the signal processing circuit performs the following image reading operation. That is, gate pulses are sequentially applied to the gate lines of 2880 rows, and the TFTs of each row are sequentially turned on one by one, and in each case, the charges of the pixels in one row in which the TFTs are turned on It flows simultaneously to the signal lines of each column. As a result, the charges of the pixels in one row are read out and accumulated in each of the CAs connected to the respective columns of the 2304th signal line. Since there are nine MUXs and ADCs, 2304/9 = 256 columns are occupied by one block composed of one MUX and one ADC. The nine blocks operate in parallel at the same timing. Each MUX sequentially selects analog voltage signals from 256 CAs connected thereto, and outputs the selected analog voltage signal to each ADC. Each ADC sequentially converts an analog voltage signal from each MUX into a digital signal and outputs it. The output of digital signals for one row corresponds to image reading for one row. When the image reading for one line is completed, the same operation is repeated and the image reading for the next line is performed. A radiation image for one screen is output by repeating such an image reading operation for one row for 2880 lines.
 また、特許文献1に記載の放射線画像検出装置は、センサパネルを用いて放射線の照射開始を検出する照射開始検出(以下、AED(Auto Exposure Detection))機能を有している。具体的には、放射線の照射開始前から、前述の画像読み出し動作と同様に、画素の電荷をデジタル信号として読み出す動作を繰り返し行う。ここで、放射線の照射開始を検出するために、放射線の照射開始前から、画素の電荷をデジタル信号に変換して読み出す動作を繰り返し行い、デジタル信号に基づいて放射線の照射開始の判定を行う一連の動作を、画像読み出し動作と区別するために、以下、AED動作という。 Moreover, the radiation image detection apparatus described in Patent Document 1 has an irradiation start detection (hereinafter, AED (Auto Exposure Detection)) function of detecting the start of irradiation of radiation using a sensor panel. Specifically, similarly to the above-described image reading operation, the operation of reading the charges of the pixels as digital signals is repeatedly performed before the start of radiation irradiation. Here, in order to detect the start of radiation irradiation, the operation of converting the charge of the pixel into a digital signal and reading it out is repeatedly performed before the start of radiation irradiation, and the radiation start of radiation is determined based on the digital signal. Hereinafter, in order to distinguish this operation from the image reading operation, it will be referred to as an AED operation.
 放射線の照射が開始された場合、画素に発生する電荷の量は、照射開始前と比較して増加する。特許文献1では、画像読み出し動作と同様にしてAED動作で読み出したデジタル信号と、予め設定された照射開始判定閾値とを比較して、デジタル信号が照射開始判定閾値よりも大きくなった場合に、放射線の照射が開始されたと判定している。そして、放射線の照射が開始されたと判定した場合は、放射線が照射されている間、画素に電荷を蓄積する画素電荷蓄積動作を行わせ、次いで画像読み出し動作を行わせる。こうしたAED機能によれば、放射線画像検出装置と放射線発生装置が別メーカーである等の理由で、放射線画像検出装置と放射線発生装置との間で放射線の照射開始タイミングを報せるタイミング信号の通信が行えない場合でも、放射線の照射開始タイミングに合わせて、センサパネルに画素電荷蓄積動作を開始させることができる。 When radiation irradiation is started, the amount of charge generated in the pixel increases compared to before the start of irradiation. In Patent Document 1, the digital signal read out in the AED operation and the irradiation start determination threshold set in advance are compared with each other in the same manner as the image reading operation, and the digital signal becomes larger than the irradiation start determination threshold. It is determined that radiation irradiation has been started. Then, when it is determined that the irradiation of radiation has been started, while the radiation is being irradiated, the pixel charge accumulation operation of accumulating charges in the pixel is performed, and then the image readout operation is performed. According to such an AED function, the communication between the radiation image detecting device and the radiation generating device communicates the timing signal for notifying the start timing of the radiation irradiation because the radiation image detecting device and the radiation generating device are different manufacturers. Even when this can not be performed, it is possible to cause the sensor panel to start the pixel charge storage operation according to the radiation start timing of the radiation.
 特許文献1に記載のAED動作では、256列の画素をそれぞれ担当する9個のMUXおよびADCが、同じタイミングで並列的に動作して、全列の電荷を読み出している。この点においては画像読み出し動作と同様である。 In the AED operation described in Patent Document 1, nine MUXs and ADCs that respectively handle pixels of 256 columns operate in parallel at the same timing to read out the charges of all the columns. This point is similar to the image reading operation.
国際公開第2012/008229号International Publication No. 2012/008229
 画像読み出し動作は、1画面分の放射線画像を1回読み出せば終了する。これに対してAED動作は、タイミングが不定な放射線の照射開始を待ち受けるために、放射線の照射開始前から照射が開始されるまでの間継続する。例えば、画像読み出し動作は、数百msecのオーダで動作が終了するのに対して、AED動作は、オペレータが放射線の照射条件を放射線発生装置に設定してから、放射線の照射開始を指示する照射スイッチを押下するまでの数秒から数十秒の期間継続する。 The image reading operation is ended if the radiation image for one screen is read once. On the other hand, the AED operation continues from before the start of the radiation irradiation until the start of the irradiation, in order to wait for the start of the irradiation of the radiation whose timing is indefinite. For example, while the image reading operation is completed in the order of several hundreds of msec, the AED operation is an irradiation that instructs the start of radiation irradiation after the operator sets the radiation irradiation conditions in the radiation generating apparatus. It lasts for a few seconds to a few tens of seconds until the switch is pressed.
 特許文献1では、AED動作が継続している間、信号処理回路は、全列分の画素の電荷を読み出す画像読み出し動作と同じ動作を繰り返すため、画像読み出し動作に対して動作時間が長いAED動作の期間は、非常に消費電力が多くなるという問題があった。特に放射線画像検出装置がバッテリ駆動の電子カセッテであった場合は、充電容量に限界があるバッテリを使用しているため、消費電力が多いと頻繁にバッテリを充電しなければならず、撮影効率が悪化してしまう。 In Patent Document 1, while the AED operation continues, the signal processing circuit repeats the same operation as the image reading operation for reading out the charges of the pixels of all the columns, so the AED operation has a long operation time with respect to the image reading operation. In the period of, there was a problem that the power consumption was very high. In particular, when the radiation image detection device is a battery-operated electronic cassette, a battery with a limited charge capacity is used, so if the power consumption is high, the battery must be charged frequently, and the imaging efficiency is high. It gets worse.
 本発明は、放射線の照射開始を検出する照射開始検出動作において、信号処理回路が消費する電力を低減することが可能な放射線画像検出装置とその作動方法を提供することを目的とする。 An object of the present invention is to provide a radiation image detection apparatus capable of reducing the power consumed by a signal processing circuit in an irradiation start detection operation for detecting the start of irradiation of radiation and an operation method thereof.
 上記課題を解決するために、本発明の放射線画像検出装置は、放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、電荷を読み出す複数の信号線が配されたセンサパネルと、信号線を通じて、画素から電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、信号処理回路に含まれる複数のチャージアンプであって、信号線毎に設けられ、かつ信号線の一端に接続され、画素からの電荷をアナログの電圧信号に変換する複数のチャージアンプと、信号処理回路に含まれるマルチプレクサであって、複数の入力端子を有し、複数のチャージアンプが複数の入力端子にそれぞれ接続され、複数のチャージアンプからのアナログの電圧信号を順次選択して出力するマルチプレクサと、信号処理回路に含まれるAD変換器であって、マルチプレクサの後段に接続され、マルチプレクサから出力されたアナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器と、信号処理回路を制御して照射開始検出動作および画像読み出し動作を実行する制御部とを備えており、照射開始検出動作は、放射線の照射開始前から、画素のうち予め設定された検出用画素に接続された信号線である検出用チャンネルを通じて電荷を読み出して、読み出した電荷に対応するデジタル信号に基づいて放射線の照射開始を検出する動作であり、画像読み出し動作は、放射線の照射開始後、画素に電荷を蓄積する画素電荷蓄積期間が経過してから、画素から信号線を通じて電荷を読み出して、読み出した電荷に対応するデジタル信号が表す、診断に供する放射線画像を出力する動作であり、制御部は、照射開始検出動作において、マルチプレクサに接続される複数のチャージアンプのうち、検出用チャンネルに接続されたチャージアンプである検出用チャージアンプを含む一部のチャージアンプからのアナログの電圧信号を選択的にAD変換器に対して出力させ、制御部は、AD変換器に、選択的に出力されたアナログの電圧信号へのAD変換処理のみを実行させ、さらに制御部は、AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、画像読み出し時よりも低減し、さらにまた制御部は、照射開始検出動作において、画像読み出し動作時におけるチャージアンプへの供給電力を通常電力とした場合に、一部のチャージアンプの少なくとも1個を、通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動する。 In order to solve the above problems, in the radiation image detecting apparatus according to the present invention, a plurality of pixels each of which charges in response to radiation emitted from a radiation generating apparatus and transmitted through a subject and stores charges are two-dimensionally arrayed. A sensor panel in which signal lines are disposed, a signal processing circuit that performs signal processing by reading out analog voltage signals corresponding to charges from pixels through the signal lines, and a plurality of charge amplifiers included in the signal processing circuit, A plurality of charge amplifiers provided for each signal line and connected to one end of the signal line and converting charges from pixels into analog voltage signals, and a multiplexer included in a signal processing circuit, the plurality of input terminals A plurality of charge amplifiers are respectively connected to the plurality of input terminals, and sequentially select and output analog voltage signals from the plurality of charge amplifiers. An AD converter included in the signal processing circuit, which is connected to the subsequent stage of the multiplexer and performs AD conversion processing for converting an analog voltage signal output from the multiplexer into a digital signal according to the voltage value A converter and a control unit that controls the signal processing circuit to execute the irradiation start detection operation and the image readout operation, and the irradiation start detection operation is set in advance among the pixels before the start of irradiation of radiation. The charge read out through the detection channel which is a signal line connected to the detection pixel, is an operation to detect the start of radiation irradiation based on the digital signal corresponding to the read charge, and the image readout operation is radiation irradiation After the start, after a pixel charge accumulation period for accumulating charges in the pixels has elapsed, the charges are read out from the pixels through the signal line and read out. And the control unit is connected to the detection channel among the plurality of charge amplifiers connected to the multiplexer in the irradiation start detection operation. The analog voltage signal from some of the charge amplifiers including the detection charge amplifier which is the charge amplifier is selectively output to the AD converter, and the control unit is selectively output to the AD converter. The controller performs only AD conversion processing to an analog voltage signal, and the control unit further reduces the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter than when reading out the image, and further controls In the case where the power supplied to the charge amplifier during the image reading operation is the normal power in the irradiation start detection operation, the Drive at least one of the charge amplifiers in the low power state where power less than normal power and greater than 0 is supplied.
 マルチプレクサは、接続される複数のチャージアンプのうちの一部のチャージアンプからのアナログの電圧信号を選択する機能を有することが好ましい。 The multiplexer preferably has a function of selecting an analog voltage signal from a part of the plurality of charge amplifiers connected.
 マルチプレクサを介して、チャージアンプからのアナログの電圧信号をAD変換器に出力する第1経路と、マルチプレクサを介さずに、チャージアンプからのアナログの電圧信号をAD変換器に出力する第2経路と、第1経路と第2経路とを選択的に切り替えるスイッチとを有し、制御部は、照射開始検出動作中は、スイッチを制御して第2経路を選択することが好ましい。 A first path for outputting an analog voltage signal from the charge amplifier to the AD converter through the multiplexer, and a second path for outputting the analog voltage signal from the charge amplifier to the AD converter without the multiplexer The control unit preferably controls the switch to select the second path during the irradiation start detection operation, and has a switch that selectively switches the first path and the second path.
 制御部は、照射開始検出動作において、マルチプレクサに接続される複数のチャージアンプのうち、一部のチャージアンプ以外の非選択のチャージアンプのうちの少なくとも1個を、供給電力が通常電力よりも低い省電力状態にすることが好ましい。 In the irradiation start detection operation, the control unit supplies at least one of a plurality of non-selected charge amplifiers other than a part of the charge amplifiers among the plurality of charge amplifiers connected to the multiplexer, and the power supply is lower than the normal power It is preferable to be in a power saving state.
 省電力状態は、通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態であることが好ましい。あるいは、省電力状態は、電力の供給が停止されるパワーオフの状態であることが好ましい。 The power saving state is preferably a low power state in which power lower than normal power and greater than 0 is supplied. Alternatively, the power saving state is preferably a power-off state in which the supply of power is stopped.
 制御部は、非選択のチャージアンプの全てを省電力状態にすることが好ましい。 The control unit preferably puts all of the unselected charge amplifiers in the power saving state.
 チャージアンプに電荷を入力する第1経路と、チャージアンプを介さずに、電荷をマルチプレクサに出力する第2経路と、第1経路と第2経路とを選択的に切り替えるスイッチとを有し、制御部は、省電力状態とした非選択のチャージアンプについては、スイッチを制御して第2経路を選択することが好ましい。 Control includes a first path for inputting charge to the charge amplifier, a second path for outputting charge to the multiplexer without passing through the charge amplifier, and a switch for selectively switching between the first path and the second path. For the non-selected charge amplifier in the power saving state, the unit preferably controls the switch to select the second path.
 省電力状態が、電力の供給が停止されるパワーオフの状態であった場合、制御部は、パワーオフの状態とした非選択のチャージアンプに対して、入力段の電位を安定化させるためのバイアス電圧を印加させることが好ましい。 When the power saving state is a power off state in which the supply of power is stopped, the control unit stabilizes the potential of the input stage with respect to the non-selected charge amplifier in the power off state. It is preferable to apply a bias voltage.
 少なくとも1個の検出用チャージアンプが接続される1個のマルチプレクサと、1個のマルチプレクサの後段に接続される1個のAD変換器とを含むブロックを複数備えており、制御部は、ブロックへの電力の供給状態を、第1電力を供給する第1状態と、第1電力よりも単位時間当たりの電力が低い第2電力を供給する第2状態との間で切り替える機能を有しており、照射開始検出動作中は、複数のブロックのうちの少なくとも1個のブロックの電力の供給状態を周期的に切り替えることが好ましい。 The control unit includes a plurality of blocks including one multiplexer to which at least one detection charge amplifier is connected and one AD converter connected to the subsequent stage of one multiplexer. Power supply between the first state supplying the first power and the second state supplying the second power whose power per unit time is lower than the first power. Preferably, the power supply state of at least one of the plurality of blocks is periodically switched during the irradiation start detection operation.
 電力の供給状態が周期的に切り替わるブロックが2個以上ある場合、制御部は、2個以上のブロックのうちの少なくとも2個のブロックの電力の供給状態の切り替えのタイミングをずらすことが好ましい。 When there are two or more blocks in which the power supply state periodically switches, the control unit preferably shifts the timing of switching the power supply state of at least two of the two or more blocks.
 2個以上のブロックはグループに分けられ、制御部は、グループ毎に電力の供給状態の切り替えのタイミングをずらすことが好ましい。この場合、同じグループに属する2個のブロックの間には、少なくとも1個のブロックが配されていることが好ましい。 The two or more blocks are divided into groups, and the control unit preferably shifts the timing of switching the power supply state for each group. In this case, at least one block is preferably disposed between two blocks belonging to the same group.
 制御部は、2個以上のブロックの全ての電力の供給状態の切り替えのタイミングをずらすことが好ましい。 The control unit preferably shifts the timing of switching of the power supply state of all the power of two or more blocks.
 制御部は、照射開始検出動作中は、複数のブロックのうち、一部のチャージアンプが接続されていないマルチプレクサを含むブロックの少なくとも1個を、常時第2状態にすることが好ましい。 The control unit preferably keeps at least one of the blocks including the multiplexer to which a part of the charge amplifiers is not connected among the plurality of blocks in the second state during the irradiation start detection operation.
 ブロックは、隣接する複数の信号線に接続された画素で構成されるエリア毎に設けられていることが好ましい。この場合、隣接するエリアを各々担当する隣接する複数個のブロックは、同一のチップに実装されており、チップは複数設けられていることが好ましい。 It is preferable that the block is provided for each area configured by pixels connected to a plurality of adjacent signal lines. In this case, it is preferable that a plurality of adjacent blocks, each in charge of an adjacent area, be mounted on the same chip, and a plurality of chips be provided.
 制御部は、エリアを担当するブロック単位、またはチップ単位でブロックの電力の供給状態を切り替えることが好ましい。 The control unit preferably switches the power supply state of the block on a block basis or a chip basis in charge of the area.
 検出用画素は、照射開始検出動作に特化した専用の画素であることが好ましい。 The detection pixel is preferably a dedicated pixel specialized for the irradiation start detection operation.
 ブロックの電力の供給状態を切り替えることに起因して、信号処理回路内に生じる温度分布の偏りにより生じるデジタル信号の温度ドリフトを補正する温度ドリフト補正部を備えることが好ましい。 It is preferable to include a temperature drift correction unit that corrects the temperature drift of the digital signal caused by the temperature distribution deviation generated in the signal processing circuit due to switching the power supply state of the block.
 センサパネルおよび信号処理回路が持ち運び可能な筐体に収容され、筐体に装着されたバッテリから給電される電子カセッテであることが好ましい。 It is preferable that the sensor panel and the signal processing circuit be an electronic cassette which is housed in a portable case and is supplied with power from a battery mounted on the case.
 本発明の放射線画像検出装置の作動方法は、放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、電荷を読み出す複数の信号線が配されたセンサパネルと、信号線を通じて、画素から電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、信号処理回路に含まれる複数のチャージアンプであって、信号線毎に設けられ、かつ信号線の一端に接続され、画素からの電荷をアナログの電圧信号に変換する複数のチャージアンプと、信号処理回路に含まれるマルチプレクサであって、複数の入力端子を有し、複数のチャージアンプが複数の入力端子にそれぞれ接続され、複数のチャージアンプからのアナログの電圧信号を順次選択して出力するマルチプレクサと、信号処理回路に含まれるAD変換器であって、マルチプレクサの後段に接続され、マルチプレクサから出力されたアナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器と、信号処理回路を制御する制御部とを備える放射線画像検出装置の作動方法において、放射線の照射開始前から、画素のうち予め設定された検出用画素に接続された信号線である検出用チャンネルを通じて電荷を読み出して、読み出した電荷に対応するデジタル信号に基づいて放射線の照射開始を検出する照射開始検出動作を実行する照射開始検出ステップと、放射線の照射開始後、画素に電荷を蓄積する画素電荷蓄積期間が経過してから、画素から信号線を通じて電荷を読み出して、読み出した電荷に対応するデジタル信号が表す、診断に供する放射線画像を出力する画像読み出し動作を実行する画像読み出しステップとを備え、照射開始検出ステップにおいて、マルチプレクサに接続される複数のチャージアンプのうち、検出用チャンネルに接続されたチャージアンプである検出用チャージアンプを含む一部のチャージアンプからのアナログの電圧信号を選択的にAD変換器に対して出力させ、AD変換器に、選択的に出力されたアナログの電圧信号へのAD変換処理のみを実行させ、さらに、AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、画像読み出し時よりも低減し、さらにまた、照射開始検出動作において、画像読み出し動作時におけるチャージアンプへの供給電力を通常電力とした場合に、一部のチャージアンプの少なくとも1個を、通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動する。 According to the operation method of the radiation image detecting apparatus of the present invention, the pixels for accumulating charges in response to radiation emitted from the radiation generating apparatus and transmitted through the object are two-dimensionally arrayed, and a plurality of signal lines for reading out the charges are arranged. A signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to an electric charge from a pixel through a signal line, and a plurality of charge amplifiers included in the signal processing circuit, provided for each signal line A plurality of charge amplifiers connected to one end of the signal line and converting charges from the pixels into analog voltage signals, and a multiplexer included in the signal processing circuit, the plurality of input terminals having a plurality of input terminals; A charge amplifier is connected to each of a plurality of input terminals, and a multiplexer that sequentially selects and outputs analog voltage signals from the plurality of charge amplifiers; An AD converter included in the processing circuit, the AD converter being connected to the subsequent stage of the multiplexer and performing an AD conversion process of converting an analog voltage signal output from the multiplexer into a digital signal according to the voltage value; In an operation method of a radiation image detecting apparatus including a control unit for controlling a signal processing circuit, charge is generated through a detection channel which is a signal line connected to a detection pixel preset among pixels before starting radiation irradiation. And a radiation start detection step of performing radiation start detection operation of detecting radiation start based on a digital signal corresponding to the read charge, and pixel charge accumulation for storing charge in the pixel after radiation radiation start is started. After the period has elapsed, the charge is read from the pixel through the signal line, and a digital signal corresponding to the read charge is displayed. And an image reading step of executing an image reading operation for outputting a radiation image to be diagnosed, and in the irradiation start detecting step, the charge amplifier connected to the detection channel among the plurality of charge amplifiers connected to the multiplexer. Analog voltage signals from some charge amplifiers including a detection charge amplifier are selectively output to the AD converter, and AD conversion to the analog voltage signals selectively output to the AD converter Only the processing is executed, and furthermore, the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter is reduced as compared to that at the image readout, and furthermore, in the irradiation start detection operation, If the power supplied to the charge amplifier is normal power, At least one is driven in a low power state where less than normal power and greater than 0 power is supplied.
 本発明によれば、放射線の照射開始を検出する照射開始検出動作において、マルチプレクサに接続される複数のチャージアンプのうち、照射開始検出用の検出用画素の検出用チャンネルに接続されたチャージアンプである検出用チャージアンプを含む一部のチャージアンプからのアナログの電圧信号を選択的にAD変換器に対して出力させ、AD変換器に、選択的に出力されたアナログの電圧信号へのAD変換処理のみを実行させ、さらに、AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、画像読み出し時よりも低減し、さらにまた、照射開始検出動作において、画像読み出し動作時におけるチャージアンプへの供給電力を通常電力とした場合に、一部のチャージアンプの少なくとも1個を、通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動するので、照射開始検出動作において、信号処理回路が消費する電力を低減することが可能な放射線画像検出装置とその作動方法を提供することができる。 According to the present invention, in the irradiation start detection operation for detecting the irradiation start of radiation, the charge amplifier connected to the detection channel of the detection pixel for irradiation start detection among the plurality of charge amplifiers connected to the multiplexer Analog voltage signals from some charge amplifiers including a detection charge amplifier are selectively output to the AD converter, and AD conversion to the analog voltage signals selectively output to the AD converter Only the processing is executed, and furthermore, the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter is reduced as compared to that at the image readout, and furthermore, in the irradiation start detection operation, When the power supplied to the charge amplifier is normal power, at least one of the charge amplifiers is The radiation image detection apparatus capable of reducing the power consumed by the signal processing circuit in the irradiation start detection operation and operating in a low power state in which the power is supplied lower than the above value and larger than 0 is supplied. Can be provided.
X線撮影システムを示す図である。It is a figure which shows a radiography system. 撮影オーダを示す図である。It is a figure which shows a photography order. メニュー・条件テーブルを示す図である。It is a figure which shows a menu * condition table. 電子カセッテの外観斜視図である。It is an external appearance perspective view of an electronic cassette. 電子カセッテの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of an electronic cassette. CAおよびCDSの回路図である。It is a circuit diagram of CA and CDS. ゲート駆動部、MUX部、およびADC部の詳細を示すブロック図である。It is a block diagram which shows the detail of a gate drive part, a MUX part, and an ADC part. 隣接するエリアを各々担当する隣接する4個のADCが実装されたチップを示す図である。FIG. 6 is a diagram showing a chip on which four adjacent ADCs, each serving an adjacent area, are mounted. 第1MUXおよび第1ADCによるデジタル信号の読み出し手順を示す図であり、図9Aは1列目、図9Bは2列目、図9Cは3列目、図9Dは144列目のデジタル信号をそれぞれ読み出している様子を示す。FIG. 9A is a diagram showing a digital signal read procedure by the first MUX and the first ADC, FIG. 9A is a first column, FIG. 9B is a second column, FIG. 9C is a third column, and FIG. Show how 制御部が実行する動作の流れを示す図である。It is a figure which shows the flow of the operation | movement which a control part performs. 画素リセット動作および画像読み出し動作におけるゲートパルスを示す図である。It is a figure which shows the gate pulse in pixel reset operation and image read-out operation. 画像読み出し動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in image read-out operation. AED動作におけるゲートパルスを示す図である。It is a figure which shows the gate pulse in AED operation | movement. AED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation. ADCへの供給電力を示すグラフである。It is a graph which shows the power supply to ADC. AED動作と画像読み出し動作の第1状態のADCの単位時間当たりの個数を示すグラフである。It is a graph which shows the number per unit time of ADC of the 1st state of AED operation and image read-out operation. 電子カセッテの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of an electronic cassette. 第1-2実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1st-2 embodiment. 第1-3実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1st-3 embodiment. 第1-4実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1st-4th embodiment. 第1-5実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1st-5 embodiment. 第1-6実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1st-6 embodiment. 第1-6実施形態のAED動作におけるADCの電力の供給状態の別の例を示す図である。FIG. 18 is a diagram showing another example of the power supply state of the ADC in the AED operation of the first to sixth embodiments. 第1-7実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1-7 embodiment. AED動作に用いる検出用画素が接続された信号線である検出用チャンネルが設定される第1-8実施形態を示すブロック図である。FIG. 18 is a block diagram showing a first to eighth embodiment in which a detection channel which is a signal line to which a detection pixel used for AED operation is connected is set. 第1-8実施形態のAED動作におけるADCの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of ADC in AED operation | movement of 1st-8 embodiment. 第1-8実施形態のAED動作におけるADCの電力の供給状態の別の例を示す図である。FIG. 18 is a diagram showing another example of the power supply state of the ADC in the AED operation of the first to eighth embodiments. 検出用画素の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the pixel for a detection. AED動作専用の検出用画素の例を示すブロック図である。It is a block diagram which shows the example of the detection pixel only for AED operation | movement. AED動作専用の検出用画素の別の例を示すブロック図である。It is a block diagram which shows another example of the detection pixel only for AED operation | movement. AED動作専用の検出用画素のさらに別の例を示すブロック図である。It is a block diagram which shows another example of the detection pixel only for AED operation | movement. 検出用画素の設定例を示す図である。It is a figure which shows the example of a setting of the pixel for a detection. 画像読み出し動作時におけるCDSの駆動手順を示すフローチャートである。It is a flowchart which shows the drive procedure of CDS at the time of image read-out operation. AED動作時におけるCDSの駆動手順を示すフローチャートである。It is a flowchart which shows the drive procedure of CDS at the time of AED operation | movement. CDS、MUX、ADCの別の接続例を示す回路図である。It is a circuit diagram showing another example of connection of CDS, MUX, and ADC. 信号処理回路の列方向における温度分布を示すグラフである。It is a graph which shows temperature distribution in the column direction of a signal processing circuit. 検出用チャンネルの電荷成分を示すグラフである。It is a graph which shows the charge component of the channel for detection. リーク電荷補正と温度ドリフト補正を施す第1-12実施形態を示す図である。FIG. 14 is a diagram showing a first embodiment of the invention in which the leak charge correction and the temperature drift correction are performed. デジタル信号の伝送I/Fを切り替える第1-13実施形態のAED動作時を示す図である。It is a figure which shows the time of AED operation | movement of 1-13th embodiment which switches transmission I / F of a digital signal. 第1-13実施形態の画像読み出し動作時を示す図である。It is a figure which shows the time of the image read-out operation | movement of 1-13th embodiment. 第2-1実施形態の概略構成図である。It is a schematic block diagram of 2nd-1 embodiment. CAへの供給電力のグラフである。It is a graph of the power supply to CA. 第2-1実施形態の電子カセッテの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the electronic cassette of 2nd-1 embodiment. CAへの供給電力の別の例を示すグラフである。It is a graph which shows another example of the power supply to CA. AED動作時における非検出用CAをパワーオフの状態とする場合の非検出用チャンネルの構成を示す図である。It is a figure which shows the structure of the channel for non-detection in the case of making CA for non-detection in the time of AED operation into the state of a power-off. 画像読み出し動作時における非検出用CAをパワーオフの状態とする場合の非検出用チャンネルの構成を示す図である。It is a figure which shows the structure of the channel for non-detection in the case of making CA for non-detection in the time of image read-out operation into the state of a power-off. CAへの供給電力のさらに別の例を示すグラフである。It is a graph which shows the further another example of the power supply to CA. 第3-1実施形態における第1MUXおよび第1ADCによる線量信号の読み出し手順を示す図であり、図44Aは1列目、図44Bは3列目、図44Cは5列目、図44Dは143列目の線量信号をそれぞれ読み出している様子を示す。FIG. 44B is a diagram showing a reading procedure of dose signals by the first MUX and the first ADC in the 3-1 embodiment, FIG. 44A is a first column, FIG. 44B is a third column, FIG. 44C is a fifth column, and FIG. It shows how the eye dose signals are read out. ADCのクロック信号の単位時間当たりのパルス数を示すグラフである。It is a graph which shows the number of pulses per unit time of the clock signal of ADC. AED動作時のADCのクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する第1の方法を示す図であり、図46Aは画像読み出し動作時のクロック信号、図46BはAED動作時のクロック信号をそれぞれ示す。FIG. 46A is a diagram showing a clock signal during an image read operation, and FIG. 46B is an AED when the number of pulses per unit time of the clock signal of the ADC during AED operation is reduced compared to that during image read operation. The clock signals at the time of operation are respectively shown. AED動作時のADCのクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する第2の方法を示す図であり、図47Aは画像読み出し動作時のクロック信号、図47BはAED動作時のクロック信号をそれぞれ示す。FIG. 47B is a diagram showing a second method of reducing the number of pulses per unit time of the clock signal of the ADC at the time of AED operation compared to at the time of image reading operation, FIG. 47A is a clock signal at the time of image reading operation, FIG. The clock signals at the time of operation are respectively shown. 第3-1実施形態の電子カセッテの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the electronic cassette of 3rd Embodiment. 第3-2実施形態におけるAED動作時の検出用チャンネルの回路構成を示す図である。It is a figure which shows the circuit structure of the channel for detection at the time of AED operation | movement in 3rd-2 embodiment. 第3-2実施形態における画像読み出し動作時の検出用チャンネルの回路構成を示す図である。It is a figure which shows the circuit structure of the channel for detection at the time of the image read-out operation | movement in 3rd-2 embodiment. ブロックを非稼働状態から稼働状態に切り替えた直後に、電荷の読み出しを開始する場合におけるブロックの電力の供給状態を示す図である。FIG. 7 is a diagram showing a power supply state of the block in the case where charge readout is started immediately after switching the block from the non-operation state to the operation state. 電荷の読み出しを開始させるタイミングよりも所定の時間前に、ブロックの非稼働状態から稼働状態への切り替えを行う場合におけるブロックの電力の供給状態を示す図である。It is a figure which shows the supply state of the electric power of the block in, when switching from the non-operating state of a block to an operation state is performed predetermined time before the timing which starts read-out of electric charge. 第4-1実施形態の電子カセッテの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the electronic cassette of 4th Embodiment. ブロックが担当するエリアの全ての信号線が検出用チャンネルの場合の、電荷を読み出している期間の詳細を示す図である。It is a figure which shows the detail of the period which is reading electric charge in case all the signal lines of the area which a block takes charge of are channels for a detection. 奇数列が検出用チャンネルの場合で、かつMUXが1列ずつ順次選択する機能しかない一般的なものの場合の、電荷を読み出している期間の詳細を示す図である。It is a figure which shows the detail of the period which is reading the electric charge in the case of the general thing in case an odd row | line is a channel for a detection, and a MUX has only a function which selects one row one by one sequentially. 奇数列が検出用チャンネルの場合で、かつMUXが検出用チャンネルの検出用CAからのアナログの電圧信号のみを選択する機能を有するものの場合の、電荷を読み出している期間の詳細を示す図である。FIG. 17 is a diagram showing the details of the charge readout period in the case where the odd column is the detection channel and the MUX has the function of selecting only the analog voltage signal from the detection CA of the detection channel. . 各ブロックの稼働状態から非稼働状態への切り替えを、各ブロックの電荷の読み出しを開始する前に行う例を示す図である。It is a figure which shows the example which switches the active state of each block to a non-operating state, before starting reading of the electric charge of each block. 各ブロックの稼働状態から非稼働状態への切り替えを、各ブロックの電荷の読み出し終了後に行う例を示す図である。It is a figure which shows the example which switches the active state of each block to a non-operating state after completion | finish of readout of the electric charge of each block. 各ブロックの稼働状態から非稼働状態への切り替えを、各ブロックの間欠的な電荷を読み出している期間の合間に行う例を示す図である。It is a figure which shows the example which switches from the working state of each block to a non-working state between the periods which are reading the intermittent electric charge of each block. AED動作でX線の照射開始を検出した後、画像読み出し動作が開始される前までに、全てのブロックを稼働状態にする第4-3実施形態を示す図である。FIG. 14 is a diagram showing a fourth embodiment of activating all blocks in an active state before detection of an image reading operation after detection of X-ray irradiation start in AED operation; CAへの供給電力を示すグラフである。It is a graph which shows the power supply to CA. 第5発明の電子カセッテの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the electronic cassette of 5th invention. ADCのクロック信号の単位時間当たりのパルス数を示すグラフである。It is a graph which shows the number of pulses per unit time of the clock signal of ADC. 第6発明の電子カセッテの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the electronic cassette of 6th invention. 第7発明のブロックとその周辺の回路構成であり、画像読み出し動作時の状態を示す図である。It is a block of the 7th invention, and a circuit configuration of the circumference of it, and is a figure showing the state at the time of image read-out operation. 第7発明のブロックとその周辺の回路構成であり、AED動作時の状態を示す図である。It is a block of the 7th invention, and a circuit configuration of the circumference of it, and is a figure showing the state at the time of AED operation.
 1.第1発明
 [第1-1実施形態]
 図1において、放射線としてX線を用いて撮影を行うX線撮影システム10は、X線発生装置11と、X線撮影装置12とを備え、例えば医療施設内の放射線科の撮影室内に設置される。X線発生装置11は、X線源13と、X線源13を制御する線源制御装置14と、線源制御装置14に接続された照射スイッチ15とを有する。X線撮影装置12は、放射線画像検出装置である電子カセッテ16と、コンソール17とを有する。
1. 1st invention [1-1st embodiment]
In FIG. 1, an X-ray imaging system 10 for performing imaging using X-rays as radiation includes an X-ray generator 11 and an X-ray imaging apparatus 12 and is installed, for example, in an imaging room of a radiology department in a medical facility. Ru. The X-ray generator 11 includes an X-ray source 13, a radiation source controller 14 that controls the X-ray source 13, and an irradiation switch 15 connected to the radiation source controller 14. The X-ray imaging apparatus 12 has an electronic cassette 16 which is a radiation image detection apparatus, and a console 17.
 撮影室には、X線撮影システム10の他に、被写体である患者Pを立位姿勢で撮影する立位撮影台18と、患者Pを臥位姿勢で撮影する臥位撮影台19とが設置されている。X線源13は、立位撮影台18と臥位撮影台19とで共用される。なお、図1では、立位撮影台18に電子カセッテ16がセットされて、立位姿勢で患者PのX線撮影が行われている様子を示している。 In the imaging room, in addition to the X-ray imaging system 10, a standing imaging stand 18 for imaging the patient P who is the subject in a standing posture and a lying imaging stage 19 for imaging the patient P in a lying posture It is done. The X-ray source 13 is shared by the standing position imaging stand 18 and the reclining position imaging stand 19. Note that FIG. 1 shows that the electronic cassette 16 is set on the standing imaging stand 18 and X-ray imaging of the patient P is performed in the standing posture.
 X線源13は、周知のように、X線を発生するX線管と、X線管から発生されたX線の患者Pへの照射野を限定する照射野限定器(コリメータともいう)とを有する。線源制御装置14は、X線管に与える管電圧、管電流、およびX線の照射時間を制御する。線源制御装置14には、管電圧、管電流、および照射時間からなるX線の照射条件が、胸部、腹部等の撮影部位に応じて予め複数種類記憶されており、その中から所望の照射条件がオペレータにより選択入力される。この照射条件は、患者Pの体型等を考慮して、オペレータが微調整することも可能である。 As well known, the X-ray source 13 includes an X-ray tube that generates X-rays, and a radiation field limiter (also called a collimator) that limits the radiation field of X-rays generated from the X-ray tube to the patient P. Have. The source controller 14 controls the tube voltage, the tube current, and the irradiation time of the X-ray applied to the X-ray tube. A plurality of types of X-ray irradiation conditions consisting of a tube voltage, a tube current, and an irradiation time are stored in advance in the radiation source control device 14 in accordance with the imaging site such as the chest and abdomen. The conditions are selectively input by the operator. The irradiation conditions can be finely adjusted by the operator in consideration of the type of the patient P and the like.
 照射スイッチ15は、X線の照射を開始する際にオペレータにより操作される。照射スイッチ15は2段押下型であり、照射スイッチ15が1段目まで押された(半押しされた)とき、線源制御装置14はX線源13にX線を照射する前の準備動作を開始させる。照射スイッチ15が2段目まで押された(全押しされた)とき、線源制御装置14はX線源13によるX線の照射を開始させる。線源制御装置14はX線の照射が開始されたときに計時を開始するタイマーを有し、タイマーで計時した時間が照射条件で設定された照射時間となったとき、X線源13によるX線の照射を停止させる。 The irradiation switch 15 is operated by the operator when starting the irradiation of X-rays. The irradiation switch 15 is a two-stage depression type, and when the irradiation switch 15 is depressed (half-pressed) to the first stage, the radiation source control device 14 performs a preparation operation before irradiating the X-ray source 13 with X-rays. To start. When the irradiation switch 15 is pushed to the second stage (full pushing), the radiation source control device 14 starts the irradiation of X-rays by the X-ray source 13. The radiation source control device 14 has a timer that starts timing when X-ray irradiation is started, and when the time counted by the timer reaches the irradiation time set in the irradiation condition, X by the X-ray source 13 Stop irradiation of the line.
 電子カセッテ16は、X線源13から照射されて患者Pを透過したX線に基づくX線画像を検出する。コンソール17は、例えばノート型パーソナルコンピュータといったコンピュータをベースに、オペレーティングシステム等の制御プログラムや、各種アプリケーションプログラムをインストールして構成される。コンソール17は、ディスプレイ20およびタッチパッドやキーボード等の入力デバイス21を有する。コンソール17は、GUI(Graphical User Interface)による操作機能が備えられた各種操作画面をディスプレイ20に表示し、各種操作画面を通じて入力デバイス21からのオペレータによる各種操作指示の入力を受け付ける。 The electronic cassette 16 detects an X-ray image based on the X-ray irradiated from the X-ray source 13 and transmitted through the patient P. The console 17 is configured by installing a control program such as an operating system and various application programs based on a computer such as a notebook personal computer, for example. The console 17 has a display 20 and an input device 21 such as a touch pad or a keyboard. The console 17 displays various operation screens provided with operation functions by GUI (Graphical User Interface) on the display 20, and accepts input of various operation instructions by the operator from the input device 21 through the various operation screens.
 電子カセッテ16とコンソール17は、相互に無線通信を行うための無線通信部22、23を備えている。電子カセッテ16とコンソール17は、これら各無線通信部22、23を介して、撮影メニューを含む各種情報やX線画像を無線通信する。 The electronic cassette 16 and the console 17 include wireless communication units 22 and 23 for wireless communication with each other. The electronic cassette 16 and the console 17 wirelessly communicate various information including an imaging menu and an X-ray image through the wireless communication units 22 and 23.
 各無線通信部22、23は、アンテナ、変復調回路、伝送制御部等で構成されている。変復調回路は、送信するデータを搬送波(キャリアともいう)に載せる変調と、アンテナで受信した搬送波からデータを取り出す復調を行う。伝送制御部は、無線LAN(Local Area Network)規格に準拠した伝送制御を行う。 Each of the wireless communication units 22 and 23 includes an antenna, a modulation / demodulation circuit, a transmission control unit, and the like. The modulation and demodulation circuit performs modulation for loading data to be transmitted on a carrier (also referred to as a carrier) and demodulation for extracting data from the carrier received by the antenna. The transmission control unit performs transmission control in accordance with the wireless local area network (LAN) standard.
 コンソール17は、オペレータにX線撮影を指示する撮影オーダの入力を受け付ける。撮影オーダは、例えば放射線情報システム(RIS;Radiology Information System、図示せず)からコンソール17に入力される。 The console 17 receives an input of an imaging order for instructing the operator to perform X-ray imaging. The imaging order is input to the console 17 from, for example, a Radio Information System (RIS) (not shown).
 図2において、撮影オーダは、オーダID(Identification Data)、患者ID、撮影部位/姿勢/方向等の項目を有する。オーダIDは、個々の撮影オーダを識別する記号や番号であり、RISにより自動的に付される。患者IDの項目には撮影対象の患者Pの患者IDが記される。患者IDは個々の患者Pを識別する記号や番号である。 In FIG. 2, the imaging order has items such as order ID (Identification Data), patient ID, imaging region / posture / direction, and the like. The order ID is a symbol or a number that identifies each imaging order, and is automatically assigned by the RIS. The patient ID of the patient P to be imaged is described in the item of patient ID. The patient ID is a symbol or a number identifying the individual patient P.
 撮影部位/姿勢/方向の項目には、撮影オーダを発行した医師が指定した撮影部位、姿勢、および撮影方向が記される。撮影部位は、頭部、頸椎、胸部、腹部、手、指、肘、膝等の人体の部位である。姿勢は立位、臥位、座位等の患者Pの姿勢、撮影方向は正面、側面、背面等のX線に対する患者Pの向きである。図示は省略するが、撮影オーダには、上記の各項目の他に、患者Pの氏名、性別、年齢、身長、体重といった患者情報の項目が設けられている。なお、撮影オーダを発行した診療科、撮影オーダを発行した医師、RISで撮影オーダを受け付けた日時、術後の経過観察や治療薬の効果判定等の撮影目的、医師からオペレータへの申し渡し事項といった項目を設けてもよい。 The imaging region / posture / direction item describes the imaging region, posture, and imaging direction specified by the doctor who issued the imaging order. The site to be imaged is a part of the human body such as the head, cervical spine, chest, abdomen, hands, fingers, elbows, knees and the like. The posture is the posture of the patient P such as standing position, lying position, sitting position, etc., and the imaging direction is the direction of the patient P with respect to X-rays such as front, side, back and the like. Although illustration is omitted, in the imaging order, in addition to the above-described items, items of patient information such as the name, sex, age, height, and weight of the patient P are provided. The medical department that issued the imaging order, the doctor who issued the imaging order, the date and time when the imaging order was received by RIS, the purpose of imaging such as postoperative follow-up observation and evaluation of the effect of the therapeutic agent, and matters passed to the operator from the doctor An item may be provided.
 なお、撮影オーダは、1人の患者Pに対して1つの場合もあれば、1人の患者Pに対して同時に複数発行される場合もある。1人の患者Pに対して同時に複数撮影オーダが発行された場合は、1人の患者Pに対するものであることを示す識別符号が複数の撮影オーダのオーダIDに付される。 Note that there may be one imaging order for one patient P or multiple imaging orders for one patient P at the same time. When a plurality of imaging orders are issued simultaneously to one patient P, an identification code indicating that the imaging order is for one patient P is attached to the order IDs of the plurality of imaging orders.
 コンソール17には、図3に示すメニュー・条件テーブル25が記憶されている。メニュー・条件テーブル25には、撮影部位、姿勢、および撮影方向が1セットとなった撮影メニューと、これに対応する照射条件とが関連付けて登録されている。なお、上記の撮影メニューから姿勢を除いた撮影部位および撮影方向が1セットとなった撮影メニューや、トモシンセシス撮影といった特殊撮影に対応した撮影メニューを設けてもよい。 The console 17 stores a menu / condition table 25 shown in FIG. In the menu / condition table 25, an imaging menu in which an imaging region, an attitude, and an imaging direction form one set is associated with an irradiation condition corresponding thereto and registered. Note that an imaging menu in which the imaging region excluding the posture from the above imaging menu and the imaging direction become one set or an imaging menu corresponding to special imaging such as tomosynthesis imaging may be provided.
 コンソール17は、オペレータの操作により、図2に示す撮影オーダの内容をリスト化した撮影オーダリストをディスプレイに表示する。オペレータは、撮影オーダリストを閲覧して撮影オーダの内容を確認する。次いでコンソール17は、メニュー・条件テーブル25の内容を、撮影メニューを設定可能な形態でディスプレイに表示する。オペレータは、撮影オーダで指定された撮影部位/姿勢/方向と一致する撮影メニューを選択して設定する。また、オペレータは、選択した撮影メニューに対応する照射条件に見合った照射条件を、線源制御装置14に設定する。 The console 17 displays the photographing order list in which the contents of the photographing order shown in FIG. 2 are listed on the display according to the operation of the operator. The operator browses the imaging order list and confirms the contents of the imaging order. Next, the console 17 displays the contents of the menu / condition table 25 on the display in a form in which the shooting menu can be set. The operator selects and sets the imaging menu that matches the imaging region / posture / direction specified in the imaging order. In addition, the operator sets, in the radiation source control device 14, the irradiation condition corresponding to the irradiation condition corresponding to the selected imaging menu.
 コンソール17は、オペレータにより設定された撮影メニュー、および設定された撮影メニューに対応する照射条件、オーダID、自身を識別する記号や番号であるコンソールID等の各種情報を、撮影準備指示として無線通信部23を介して電子カセッテ16に送信する。 The console 17 wirelessly communicates various information such as a shooting menu set by the operator, an irradiation condition corresponding to the set shooting menu, an order ID, a console ID which is a symbol or a number identifying itself, and a shooting preparation instruction. The electronic cassette 16 is transmitted via the unit 23.
 また、コンソール17は、電子カセッテ16からのX線画像を、例えばDICOM(Digital Imaging and Communication in Medicine)規格に準拠した形式の画像ファイルとし、これを医療画像保管通信システム(PACS;Picture Archiving and Communication System、図示せず)に送信する。画像ファイルは、X線画像と、オーダID、患者情報、撮影メニュー、照射条件、電子カセッテ16を識別する記号や番号であるカセッテID等の画像付帯情報とが、1つの画像IDで関連付けられたものである。撮影オーダを発行した診療科の医師は、診療科の端末等でPACSにアクセスして画像ファイルをダウンロードし、X線画像を閲覧することが可能である。 In addition, the console 17 converts the X-ray image from the electronic cassette 16 into an image file of a format conforming to, for example, DICOM (Digital Imaging and Communication in Medicine) standard, and this is a medical image storage communication system (PACS; Picture Archiving and Communication) Send to System (not shown). In the image file, an X-ray image is associated with image incidental information such as order ID, patient information, imaging menu, irradiation condition, cassette ID which is a symbol or number identifying the electronic cassette 16 by one image ID. It is a thing. The doctor of the medical department who has issued the imaging order can access the PACS with a terminal of the medical department or the like to download the image file and view the X-ray image.
 図4において、電子カセッテ16は、センサパネル30と、回路部31と、これらを収容する直方体形状をした持ち運び可能な筐体32とで構成される。筐体32は、例えば、フイルムカセッテやIP(Imaging Plate)カセッテ、CR(Computed Radiography)カセッテと略同様の、国際規格ISO(International Organization for Standardization)4090:2001に準拠した大きさである。なお、筐体32には、センサパネル30と回路部31の他にも、前述の無線通信部22や、電子カセッテ16の各部に電力を供給するバッテリ65(図5参照)、コンソール17とケーブルを介して有線接続するための有線通信部66(図5参照)等が収容されている。無線通信部22を使用した場合には、電子カセッテ16はバッテリ65からの電力で駆動され、いわゆるワイヤレスで使用することができる。 In FIG. 4, the electronic cassette 16 is configured of a sensor panel 30, a circuit unit 31, and a portable housing 32 having a rectangular parallelepiped shape for housing these components. The housing 32 has a size in conformity with the International Standard for International Organization for Standardization (ISO) 4090: 2001, which is substantially the same as, for example, a film cassette, an imaging plate (IP) cassette, and a computed radiography (CR) cassette. In the housing 32, in addition to the sensor panel 30 and the circuit section 31, the wireless communication section 22 described above, the battery 65 (see FIG. 5) for supplying power to each section of the electronic cassette 16, and the console 17 and cable A wired communication unit 66 (see FIG. 5) and the like for wired connection via the communication channel are accommodated. When the wireless communication unit 22 is used, the electronic cassette 16 is driven by the power from the battery 65 and can be used wirelessly.
 筐体32の前面32Aには矩形状の開口が形成されており、開口にはX線透過性を有する透過板33が取り付けられている。電子カセッテ16は、X線源13と前面32Aが対向する姿勢で位置決めされる。なお図示は省略するが、筐体32には、電源のオン/オフを切り替えるスイッチや、バッテリ65の残り使用時間、撮影準備完了状態といった電子カセッテ16の動作状態を報せるインジケータが設けられている。 A rectangular opening is formed in the front surface 32A of the housing 32, and a transmission plate 33 having X-ray transparency is attached to the opening. The electronic cassette 16 is positioned with the X-ray source 13 and the front surface 32A facing each other. Although not shown, the housing 32 is provided with a switch for switching the power on / off, and an indicator for notifying the operating state of the electronic cassette 16 such as the remaining use time of the battery 65 and the shooting preparation completion state. .
 センサパネル30は、シンチレータ34と光検出基板35とで構成される。シンチレータ34と光検出基板35は、X線が入射する前面32A側からみてシンチレータ34、光検出基板35の順に積層されている。シンチレータ34は、CsI:Tl(タリウム賦活ヨウ化セシウム)やGOS(Gd22S:Tb、テルビウム賦活ガドリニウムオキシサルファイド)等の蛍光体を有し、透過板33を介して入射したX線を可視光に変換して放出する。なお、X線が入射する前面32A側からみて光検出基板35、シンチレータ34の順に積層したセンサパネルを用いてもよい。また、アモルファスセレン等の光導電膜によりX線を直接電荷に変換する直接変換型のセンサパネルを用いてもよい。 The sensor panel 30 is composed of a scintillator 34 and a light detection substrate 35. The scintillator 34 and the light detection substrate 35 are stacked in the order of the scintillator 34 and the light detection substrate 35 as viewed from the front surface 32A where X-rays are incident. The scintillator 34 has phosphors such as CsI: Tl (thallium activated cesium iodide) and GOS (Gd 2 O 2 S: Tb, terbium activated gadolinium oxysulfide), etc., and receives X rays incident through the transmission plate 33. Convert to visible light and emit. A sensor panel may be used in which the light detection substrate 35 and the scintillator 34 are stacked in order as viewed from the front surface 32A where X-rays are incident. Alternatively, a direct conversion type sensor panel may be used in which X-rays are directly converted into electric charges by a photoconductive film such as amorphous selenium.
 光検出基板35は、シンチレータ34から放出された可視光を検出して電荷に変換する。回路部31は、光検出基板35の駆動を制御するとともに、光検出基板35から出力された電荷に基づきX線画像を生成する。 The light detection substrate 35 detects visible light emitted from the scintillator 34 and converts it into a charge. The circuit unit 31 controls driving of the light detection substrate 35 and generates an X-ray image based on the charge output from the light detection substrate 35.
 図5において、光検出基板35は、ガラス基板(図示せず)上に、N行×M列の二次元マトリックス状に配列された画素40と、N本のゲート線41と、M本の信号線42とが設けられたものである。ゲート線41は、画素40の行方向に沿うX方向に延伸し、かつ画素40の列方向に沿うY方向に所定のピッチで配置されている。信号線42は、Y方向に延伸し、かつX方向に所定のピッチで配置されている。ゲート線41と信号線42とは直交しており、ゲート線41と信号線42の交差点に対応して画素40が設けられている。 In FIG. 5, the light detection substrate 35 includes pixels 40 arranged in a two-dimensional matrix of N rows and M columns, N gate lines 41, and M signals on a glass substrate (not shown). And a line 42 is provided. The gate lines 41 extend in the X direction along the row direction of the pixels 40 and are arranged at a predetermined pitch in the Y direction along the column direction of the pixels 40. The signal lines 42 extend in the Y direction and are arranged at a predetermined pitch in the X direction. The gate line 41 and the signal line 42 are orthogonal to each other, and the pixel 40 is provided corresponding to the intersection of the gate line 41 and the signal line 42.
 N、Mは2以上の整数である。本例ではN=2880、M=2304(図7参照)として説明する。なお、画素40の行列数は、これに限定されない。また、画素40の配列は、図5のように正方配列でなくともよく、画素40を45°傾けて、かつ画素40を千鳥状に配置してもよい。 N and M are integers of 2 or more. In this example, N = 2880 and M = 2304 (see FIG. 7) will be described. Note that the number of matrices of the pixels 40 is not limited to this. Further, the arrangement of the pixels 40 does not have to be the square arrangement as shown in FIG. 5, and the pixels 40 may be inclined 45 ° and the pixels 40 may be arranged in a staggered manner.
 各画素40は、周知のように、可視光の入射によって電荷(電子-正孔対)を発生してこれを蓄積する光電変換部43、およびスイッチング素子であるTFT(Thin Film Transistor)44を備える。光電変換部43は、電荷を発生する半導体層とその上下に上部電極および下部電極を配した構造を有している。半導体層は例えばPIN(p-intrinsic-n)型であり、上部電極側にN型層、下部電極側にP型層が形成されている。TFT44は、ゲート電極がゲート線41に、ソース電極が信号線42に、ドレイン電極が光電変換部43の下部電極にそれぞれ接続されている。なお、スイッチング素子の種類としては、TFT型ではなく、CMOS(Complementary Metal Oxide Semiconductor)型のセンサパネルを用いてもよい。 Each pixel 40 includes a photoelectric conversion unit 43 generating charges (electron-hole pairs) upon incidence of visible light and storing the charge, and a TFT (Thin Film Transistor) 44 as a switching element, as is well known. . The photoelectric conversion unit 43 has a structure in which an upper electrode and a lower electrode are disposed above and below the semiconductor layer generating charges. The semiconductor layer is, for example, a PIN (p-intrinsic-n) type, and an N-type layer is formed on the upper electrode side and a P-type layer is formed on the lower electrode side. The TFT 44 has a gate electrode connected to the gate line 41, a source electrode connected to the signal line 42, and a drain electrode connected to the lower electrode of the photoelectric conversion unit 43. Note that as a type of switching element, a complementary metal oxide semiconductor (CMOS) type sensor panel may be used instead of the TFT type.
 光電変換部43の上部電極にはバイアス線(図示せず)が接続されている。このバイアス線を通じて上部電極に正のバイアス電圧が印加される。正のバイアス電圧の印加により半導体層内に電界が生じる。このため、光電変換により半導体層内で発生した電子-正孔対のうちの電子は、上部電極に移動してバイアス線に吸収され、正孔は、下部電極に移動して電荷として収集される。 A bias line (not shown) is connected to the upper electrode of the photoelectric conversion unit 43. A positive bias voltage is applied to the upper electrode through the bias line. The application of a positive bias voltage generates an electric field in the semiconductor layer. Therefore, the electrons of the electron-hole pairs generated in the semiconductor layer by photoelectric conversion move to the upper electrode and are absorbed by the bias line, and the holes move to the lower electrode and are collected as charge. .
 回路部31には、ゲート駆動部50、信号処理回路51、メモリ52、給電部53、およびこれらを制御する制御部54が設けられている。 The circuit unit 31 is provided with a gate drive unit 50, a signal processing circuit 51, a memory 52, a power supply unit 53, and a control unit 54 for controlling these.
 ゲート駆動部50は、各ゲート線41の端部に接続され、TFT44を駆動するゲートパルスG(R)(R=1~N)を発する。制御部54は、ゲート駆動部50を通じてTFT44を駆動し、かつ信号処理回路51を制御することにより、画素40から暗電荷を読み出してリセット(破棄)する画素リセット動作と、X線の到達線量に応じた電荷を画素40に蓄積させる画素電荷蓄積動作と、診断に供するX線画像を読み出すための画像読み出し動作と、X線の照射開始を検出するためのAED動作とを実行する。 The gate driver 50 is connected to an end of each gate line 41 and emits gate pulses G (R) (R = 1 to N) for driving the TFTs 44. The control unit 54 drives the TFT 44 through the gate drive unit 50 and controls the signal processing circuit 51 to read out the dark charge from the pixel 40 and reset (discard) the dark charge, and the received dose of the X-ray. A pixel charge accumulation operation for accumulating corresponding charges in the pixels 40, an image reading operation for reading an X-ray image to be used for diagnosis, and an AED operation for detecting the start of X-ray irradiation are executed.
 画像読み出し動作は、X線の照射開始後、画素電荷蓄積期間が経過してから、画素40から信号線42を通じて電荷を読み出して、読み出した電荷に対応するデジタル信号が表すX線画像を出力する動作である。対してAED動作は、X線の照射開始前から、画素40から信号線42を通じて電荷を読み出して、読み出した電荷に対応するデジタル信号に基づいてX線の照射開始を検出する動作である。 The image readout operation reads out the charge from the pixel 40 through the signal line 42 after the pixel charge accumulation period has elapsed after the start of X-ray irradiation, and outputs an X-ray image represented by the digital signal corresponding to the read out charge. It is an operation. On the other hand, the AED operation is an operation of reading out the charge from the pixel 40 through the signal line 42 before the start of the X-ray irradiation and detecting the start of the X-ray irradiation based on the digital signal corresponding to the read charge.
 信号処理回路51は、信号線42を通じて、画素40から電荷に応じたアナログの電圧信号V(C)(C=1~M)を読み出して信号処理を行う。信号処理回路51は、CA60、相関二重サンプリング回路(以下、CDS(Correlated Double Sampling))61、MUX部62、およびADC部63を含む。 The signal processing circuit 51 reads an analog voltage signal V (C) (C = 1 to M) corresponding to the charge from the pixel 40 through the signal line 42 and performs signal processing. The signal processing circuit 51 includes a CA 60, a correlated double sampling circuit (hereinafter referred to as CDS (Correlated Double Sampling)) 61, a MUX unit 62, and an ADC unit 63.
 CA60は、信号線42毎に設けられ、かつ信号線42の一端に接続されている。CA60は、画素40から信号線42を通じて流入する電荷に応じたアナログの電圧信号V(C)を出力する。CDS61は、CA60と同様に信号線42毎に設けられている。CDS61は、CA60からのアナログの電圧信号V(C)に対して周知の相関二重サンプリング処理を施し、アナログの電圧信号V(C)からCA60のリセットノイズ成分を除去する。 The CA 60 is provided for each signal line 42 and is connected to one end of the signal line 42. The CA 60 outputs an analog voltage signal V (C) according to the charge flowing from the pixel 40 through the signal line 42. The CDS 61 is provided for each signal line 42 in the same manner as the CA 60. The CDS 61 performs well-known correlated double sampling processing on the analog voltage signal V (C) from the CA 60 to remove the reset noise component of the CA 60 from the analog voltage signal V (C).
 MUX部62にはCA60が接続されている。CA60とMUX部62の間には、CDS61が配置されている。さらにMUX部62の後段にはADC部63が接続されている。MUX部62は、CDS61を介して入力される複数のCA60からのアナログの電圧信号V(C)を順次選択して、選択したアナログの電圧信号V(C)をADC部63に出力する。ADC部63は、MUX部62からのアナログの電圧信号V(C)を、その電圧値に応じたデジタル信号DS(C)に変換するAD変換処理を実行する。そして、変換したデジタル信号DS(C)をメモリ52に出力する。メモリ52は、ADC部63からのデジタル信号DS(C)を記憶する。メモリ52は、少なくとも1画面分のX線画像を記憶する容量を有する。 The CA 60 is connected to the MUX unit 62. The CDS 61 is disposed between the CA 60 and the MUX unit 62. Further, an ADC unit 63 is connected to the subsequent stage of the MUX unit 62. The MUX unit 62 sequentially selects analog voltage signals V (C) from the plurality of CAs 60 input via the CDS 61, and outputs the selected analog voltage signal V (C) to the ADC unit 63. The ADC unit 63 executes AD conversion processing for converting the analog voltage signal V (C) from the MUX unit 62 into a digital signal DS (C) according to the voltage value. Then, the converted digital signal DS (C) is output to the memory 52. The memory 52 stores the digital signal DS (C) from the ADC unit 63. The memory 52 has a capacity for storing at least one screen of X-ray images.
 給電部53は、制御部54の制御の下、バッテリ65からの電力を各部に供給する。バッテリ65は、例えば筐体32の前面32Aとは反対側の背面に着脱自在に装着される。 The power supply unit 53 supplies the power from the battery 65 to each unit under the control of the control unit 54. For example, the battery 65 is detachably mounted on the back surface of the housing 32 opposite to the front surface 32A.
 制御部54は、無線通信部22または有線通信部66で受信されたコンソール17からの各種情報を受け取り、各種情報に応じた制御を行う。例えば、制御部54は、照射条件に応じて信号処理回路51の処理条件を変更する。 The control unit 54 receives various information from the console 17 received by the wireless communication unit 22 or the wired communication unit 66, and performs control according to the various information. For example, the control unit 54 changes the processing condition of the signal processing circuit 51 according to the irradiation condition.
 図6において、CA60は、オペアンプ70、キャパシタ71、およびアンプリセットスイッチ72を有する。オペアンプ70は、2つの入力端子と1つの出力端子を有し、2つの入力端子の一方に信号線42が接続され、他方にグランド線が接続されている。キャパシタ71およびアンプリセットスイッチ72は、信号線42が接続された入力端子と、出力端子との間に並列接続されている。 In FIG. 6, the CA 60 includes an operational amplifier 70, a capacitor 71, and an amplifier reset switch 72. The operational amplifier 70 has two input terminals and one output terminal. The signal line 42 is connected to one of the two input terminals, and the ground line is connected to the other. The capacitor 71 and the amplifier reset switch 72 are connected in parallel between the input terminal to which the signal line 42 is connected and the output terminal.
 CA60は、信号線42から流入する電荷をキャパシタ71に蓄積することにより積算し、積算値に対応する電圧値、すなわちアナログの電圧信号V(C)を出力する。アンプリセットスイッチ72は、制御部54により駆動制御される。アンプリセットスイッチ72をオン状態とすることで、キャパシタ71に蓄積された電荷がリセット(破棄)される。 The CA 60 integrates the charges flowing from the signal line 42 by accumulating it in the capacitor 71, and outputs a voltage value corresponding to the integrated value, that is, an analog voltage signal V (C). The unpreset switch 72 is drive-controlled by the control unit 54. By turning on the unpreset switch 72, the charge accumulated in the capacitor 71 is reset (discarded).
 CDS61は、第1サンプルホールド回路(以下、S/Hと略す)73Aおよび第2S/H73Bと、差動アンプ74とを有する。第1S/H73Aは、TFT44がオフ状態の場合に、CA60のリセットノイズ成分をサンプルして保持する。第2S/H73Bは、TFT44がオン状態とされて流入した電荷に基づき、CA60から出力されるアナログの電圧信号V(C)をサンプルして保持する。差動アンプ74は、両S/H73A、73Bに保持されたリセットノイズ成分とアナログの電圧信号V(C)の差分を取る。これにより、ノイズが除去されたアナログの電圧信号V(C)が出力される。 The CDS 61 includes a first sample and hold circuit (hereinafter abbreviated as S / H) 73A and a second S / H 73B, and a differential amplifier 74. The first S / H 73A samples and holds the reset noise component of the CA 60 when the TFT 44 is off. The second S / H 73B samples and holds the analog voltage signal V (C) output from the CA 60 based on the charge that flows in when the TFT 44 is turned on. The differential amplifier 74 takes the difference between the reset noise component held by both S / Hs 73A and 73B and the analog voltage signal V (C). As a result, an analog voltage signal V (C) from which noise has been removed is output.
 図7において、ゲート駆動部50は、例えば、第1~第12の計12個のゲート駆動回路75を有する。各ゲート駆動回路75は、各ゲート線41を分担している。画素40の行N=2880であるため、第1ゲート駆動回路75には画素40の1行目~240行目のゲート線41、第2ゲート駆動回路75には241行目~480行目のゲート線41、というように、1個のゲート駆動回路75には2880/12=240本のゲート線41が接続されている。このため、1個のゲート駆動回路75は、240行分の画素40からの電荷の読み出しを担当する。 In FIG. 7, the gate drive unit 50 has, for example, a total of twelve gate drive circuits 75, the first to twelfth. Each gate drive circuit 75 shares each gate line 41. Since the row N of the pixels 40 is equal to 2880, the first gate drive circuit 75 includes the gate lines 41 of the first to 240th rows of the pixels 40, and the second gate drive circuit 75 includes the 241st to 480th rows. As in the gate line 41, 2880/12 = 240 gate lines 41 are connected to one gate drive circuit 75. Therefore, one gate drive circuit 75 takes charge of reading out the charge from the pixels 40 for 240 rows.
 MUX部62は、例えば、第1~第16の計16個のMUX76を有する。各MUX76は、各信号線42を分担している。画素40の列M=2304であるため、第1MUX76には画素40の1列目~144列目の信号線42、第2MUX76には145列目~288列目の信号線42、というように、1個のMUX76には2304/16=144本の信号線42が接続されている。このため、1個のMUX76は、144列分の画素40からの電荷に基づくアナログの電圧信号V(C)を選択的に出力する。以下、この隣接する複数の信号線42に接続された画素40で構成される領域をエリアAR(AR1~AR16)という。 The MUX unit 62 has, for example, first to sixteenth sixteen MUXs 76 in total. Each MUX 76 shares each signal line 42. Since the column M of the pixel 40 is equal to 2304, the signal line 42 in the first to 144th columns of the pixel 40 is for the first MUX 76, the signal line 42 for the 145th to 288th columns for the second MUX 76, and so on. 2304/16 = 144 signal lines 42 are connected to one MUX 76. Therefore, one MUX 76 selectively outputs an analog voltage signal V (C) based on the charges from the pixels 40 for 144 columns. Hereinafter, an area constituted by the pixels 40 connected to the plurality of adjacent signal lines 42 is referred to as an area AR (AR1 to AR16).
 各MUX76は、複数の入力端子を有している。この複数の入力端子に、CDS61を間に入れて複数のCA60が接続されている。 Each MUX 76 has a plurality of input terminals. A plurality of CAs 60 are connected to the plurality of input terminals with the CDS 61 interposed therebetween.
 ADC部63は、MUX部62の第1~第16MUX76と同様に、第1~第16の計16個のADC77を有する。これら第1~第16ADC77は、第1~第16MUX76の後段にそれぞれ接続されている。第1~第16MUX76はエリアAR1~AR16毎に設けられているので、第1~第16ADC77もエリアAR1~AR16毎に設けられている。 Similar to the first to sixteenth MUXs 76 of the MUX unit 62, the ADC unit 63 includes first to sixteenth ADCs 16 in total. The first to sixteenth ADCs 77 are connected to the subsequent stages of the first to sixteenth MUXs 76, respectively. Since the first to sixteenth MUXs 76 are provided for each of the areas AR1 to AR16, the first to sixteenth ADCs 77 are also provided for each of the areas AR1 to AR16.
 第1ADC77は第1MUX76から順次出力されるアナログの電圧信号V(1)~V(144)をデジタル信号DS(1)~DS(144)に変換し、第2ADC77は第2MUX76から順次出力されるアナログの電圧信号V(145)~V(288)をデジタル信号DS(145)~DS(288)に変換する、というように、1個のADC77は、144列分の画素40からの電荷に基づくデジタル信号DS(V)のAD変換処理を分担する。 The first ADC 77 converts analog voltage signals V (1) to V (144) sequentially output from the first MUX 76 into digital signals DS (1) to DS (144), and the second ADC 77 outputs analog sequentially output from the second MUX 76 , And converts one of the voltage signals V (145) to V (288) into the digital signals DS (145) to DS (288). It shares the AD conversion process of the signal DS (V).
 図8に示すように、1個のMUX76と、その入力端子に接続された複数のCA60およびCDS61と、MUX76の出力端子に接続された1個のADC77とは、1つのブロックBLを構成する。ブロックBLは、エリアARと同数の16個ある。 As shown in FIG. 8, one MUX 76, a plurality of CAs 60 and CDSs 61 connected to its input terminal, and one ADC 77 connected to the output terminal of the MUX 76 constitute one block BL. There are 16 blocks BL as many as the area AR.
 破線で示すように、隣接する4つのエリアAR1~AR4を各々担当するCA60、CDS61、MUX(第1~第4MUX)76、およびADC(第1~第4ADC)77で構成されるブロックBL1~BL4は、同一のチップCP1に実装されている。同様にして、エリアAR5~AR8を各々担当するCA60、CDS61、MUX(第5~第8MUX)76、およびADC(第5~第8ADC)77で構成されるブロックBL5~BL8はチップCP2に実装されている。エリアAR9~AR12を各々担当するCA60、CDS61、MUX(第9~第12MUX)76、およびADC(第9~第12ADC)77で構成されるブロックBL9~BL12はチップCP3に実装されている。エリアAR13~AR16を各々担当するCA60、CDS61、MUX(第13~第16MUX)76、およびADC(第13~第16ADC)77で構成されるブロックBL13~BL16はチップCP4に実装されている。これらのチップCP1~CP4は、物理的に完全に分離されている。 As shown by a broken line, blocks BL1 to BL4 configured of CA 60, CDS 61, MUX (first to fourth MUX) 76, and ADC (first to fourth ADC) 77 that respectively handle four adjacent areas AR1 to AR4. Are mounted on the same chip CP1. Similarly, blocks BL5 to BL8 configured of CA60, CDS 61, MUX (fifth to eighth MUX) 76 and ADC (fifth to eighth ADC) 77 in charge of areas AR5 to AR8 are mounted on chip CP2. ing. Blocks BL9 to BL12 configured with CA 60, CDS 61, MUX (ninth to 12th MUX) 76 and ADC (9th to 12th ADC) 77 respectively responsible for the areas AR9 to AR12 are mounted on the chip CP3. Blocks BL13 to BL16 configured with CA 60, CDS 61, MUXs (13 to 16 MUXs) 76, and ADCs (13 to 16 ADCs) 77 respectively responsible for the areas AR13 to AR16 are mounted on the chip CP4. These chips CP1 to CP4 are physically completely separated.
 なお、ゲート駆動回路75の個数、および1個のゲート駆動回路75が担当する画素40の行の数は、本例の12個および240行に限らない。同様に、MUX76およびADC77の個数(ブロックBLの個数)、および1個のMUX76およびADC77が担当する画素40の列の数(1つのブロックBLに含まれる画素40の列の数)、さらには1つのチップCPを構成するブロックBLの数も、本例に限らず任意である。例えば、1つのブロックBLに含まれる画素40の列の数を256列とし、ブロックBLの個数を9個としてもよい。また、1つのブロックBLに含まれる画素40の列の数を128列とし、ブロックBLの個数を18個としてもよい。 Note that the number of gate drive circuits 75 and the number of rows of pixels 40 which one gate drive circuit 75 is in charge of are not limited to 12 and 240 in this example. Similarly, the number of MUXs 76 and ADCs 77 (number of blocks BL), and the number of columns of pixels 40 that one MUX 76 and ADC 77 takes charge of (the number of columns of pixels 40 included in one block BL) The number of blocks BL constituting one chip CP is not limited to this example, and is arbitrary. For example, the number of columns of the pixels 40 included in one block BL may be 256, and the number of blocks BL may be nine. Further, the number of columns of the pixels 40 included in one block BL may be 128 columns, and the number of blocks BL may be eighteen.
 図9は、一例として1列目~144列目のエリアAR1のデジタル信号DS(1)~DS(144)の読み出し手順を示したものである。図9では、信号線42を通じて画素40から読み出された電荷に応じた、リセットノイズ除去済みのアナログの電圧信号V(1)~V(144)が、CDS61の出力端子に現れている状態を示している。 FIG. 9 shows a reading procedure of the digital signals DS (1) to DS (144) of the area AR1 of the first to 144th columns as an example. In FIG. 9, analog voltage signals V (1) to V (144) after reset noise removal corresponding to the charges read from the pixel 40 through the signal line 42 appear at the output terminal of the CDS 61. It shows.
 この状態において、まず図9Aに示すように、第1MUX76によって1列目のアナログの電圧信号V(1)が選択される。これによりアナログの電圧信号V(1)が第1ADC77に入力され、第1ADC77によってデジタル信号DS(1)に変換される。次いで図9Bに示すように、第1MUX76によって2列目のアナログの電圧信号V(2)が選択される。これによりアナログの電圧信号V(2)が第1ADC77に入力され、第1ADC77によってデジタル信号DS(2)に変換される。続いて図9Cに示すように、第1MUX76によって3列目のアナログの電圧信号V(3)が選択される。これによりアナログの電圧信号V(3)が第1ADC77に入力され、第1ADC77によってデジタル信号DS(3)に変換される。 In this state, first, as shown in FIG. 9A, the first MUX 76 selects the analog voltage signal V (1) in the first column. Accordingly, the analog voltage signal V (1) is input to the first ADC 77, and is converted into the digital signal DS (1) by the first ADC 77. Next, as shown in FIG. 9B, the first MUX 76 selects the analog voltage signal V (2) in the second column. Accordingly, the analog voltage signal V (2) is input to the first ADC 77, and is converted into the digital signal DS (2) by the first ADC 77. Subsequently, as shown in FIG. 9C, the first MUX 76 selects the analog voltage signal V (3) in the third column. As a result, the analog voltage signal V (3) is input to the first ADC 77, and is converted into the digital signal DS (3) by the first ADC 77.
 こうした一連の動作が第1MUX76と第1ADC77において繰り返されることで、最終的には図9Dに示すように、144列目のアナログの電圧信号V(144)がデジタル信号DS(144)に変換されて、1列目~144列目のエリアAR1のデジタル信号DS(1)~DS(144)の読み出しが終了する。他のエリアAR2~AR16の各MUX76および各ADC77についても同様である。 By repeating this series of operations in the first MUX 76 and the first ADC 77, the voltage signal V (144) in the 144th column is finally converted to the digital signal DS (144) as shown in FIG. 9D. The reading of the digital signals DS (1) to DS (144) in the area AR1 in the first to 144th columns is completed. The same applies to each MUX 76 and each ADC 77 of the other areas AR2 to AR16.
 図10に示すように、制御部54は、コンソール17からの撮影メニューを含む各種情報である撮影準備指示を無線通信部22または有線通信部66から受け取ったときに、AED動作を開始する。AED動作では、画素40の光電変換部43で発生した電荷が、信号処理回路51によってデジタル信号DS(C)に変換されてメモリ52に記憶される。このAED動作でメモリ52に記憶されるデジタル信号DS(C)を、以下、線量信号DDS(C)と表現する。なお、制御部54は、撮影準備指示を受け取る前は待機動作をしている。待機動作は、光電変換部43の上部電極にバイアス電圧が印加されているのみで、信号処理回路51等には電力が供給されていない状態である。 As shown in FIG. 10, when the control unit 54 receives from the wireless communication unit 22 or the wired communication unit 66 a shooting preparation instruction that is various information including a shooting menu from the console 17, the control unit 54 starts the AED operation. In the AED operation, the signal processing circuit 51 converts the charge generated in the photoelectric conversion unit 43 of the pixel 40 into a digital signal DS (C) and stores the digital signal DS (C) in the memory 52. The digital signal DS (C) stored in the memory 52 in the AED operation is hereinafter referred to as a dose signal DDS (C). The control unit 54 performs a standby operation before receiving a shooting preparation instruction. In the standby operation, only the bias voltage is applied to the upper electrode of the photoelectric conversion unit 43, and power is not supplied to the signal processing circuit 51 and the like.
 線量信号DDS(C)は、予め定められた間隔で繰り返し読み出される。1回の読み出しによって得られる線量信号DDS(C)は、単位時間当たりのX線の入射線量に相当する。X線の照射が開始された場合、単位時間当たりのX線の入射線量は徐々に増加するので、それに応じて線量信号DDS(C)の値も増加する。 The dose signal DDS (C) is repeatedly read at predetermined intervals. The dose signal DDS (C) obtained by one reading corresponds to the incident dose of X-rays per unit time. When the X-ray irradiation is started, the X-ray incident dose per unit time gradually increases, and accordingly, the value of the dose signal DDS (C) also increases.
 制御部54は、メモリ52に線量信号DDS(C)が記憶される毎に、メモリ52から線量信号DDS(C)を読み出して、線量信号DDS(C)と予め設定された照射開始判定閾値との大小を比較する。制御部54は、線量信号DDS(C)が照射開始判定閾値よりも大きくなった場合に、X線の照射が開始されたと判定する。これにより、線源制御装置14からX線の照射開始タイミングを報せるタイミング信号を受信することなく、電子カセッテ16でX線の照射開始を検出することができる。 Every time the dose signal DDS (C) is stored in the memory 52, the control unit 54 reads the dose signal DDS (C) from the memory 52, and the dose signal DDS (C) and an irradiation start determination threshold value preset. Compare the size of When the dose signal DDS (C) becomes larger than the irradiation start determination threshold value, the control unit 54 determines that the X-ray irradiation has been started. As a result, the electronic cassette 16 can detect the start of X-ray irradiation without receiving a timing signal for reporting the X-ray irradiation start timing from the radiation source controller 14.
 X線の照射開始を検出した場合、制御部54は、画素リセット動作を行った後(図10では不図示)、画素電荷蓄積動作を行う。制御部54は、線源制御装置14と同様に、X線の照射開始を検出したときに計時を開始するタイマーを有し、タイマーで計時した時間がコンソール17で設定された照射条件の照射時間となったとき、X線の照射が終了したと判定する。制御部54は、X線の照射終了を検出すると、画素電荷蓄積動作を終了し、画像読み出し動作を行う。これにて1画面分のX線画像を得る1回のX線撮影が終了する。画像読み出し動作終了後、制御部54は、再び待機動作に戻る。 When the start of X-ray irradiation is detected, the control unit 54 performs a pixel charge accumulation operation after performing a pixel reset operation (not shown in FIG. 10). The control unit 54 has a timer that starts counting when it detects the start of X-ray irradiation, similarly to the radiation source control device 14, and the time measured by the timer is the irradiation time of the irradiation condition set by the console 17. When it becomes, it determines with irradiation of X-ray having been completed. When the control unit 54 detects the end of the X-ray irradiation, the control unit 54 ends the pixel charge accumulation operation and performs the image read operation. Thus, one X-ray imaging for obtaining one screen of X-ray images is completed. After the end of the image reading operation, the control unit 54 returns to the standby operation again.
 図11に示すように、画素リセット動作および画像読み出し動作では、1行目から2880行目まで順に、ゲート駆動回路75から各ゲート線41にゲートパルスG(R)が与えられる。画素リセット動作では、画素40からの電荷が信号線42を通じてCA60のキャパシタ71に流れて蓄積されるが、この電荷は、アンプリセットスイッチ72の作動によって読み出されることなく破棄される。 As shown in FIG. 11, in the pixel reset operation and the image readout operation, gate pulses G (R) are applied to the gate lines 41 from the gate drive circuit 75 in order from the first row to the 2880th row. In the pixel reset operation, the charge from the pixel 40 flows through the signal line 42 to the capacitor 71 of the CA 60 and is accumulated, but this charge is discarded without being read out by the operation of the amplifier reset switch 72.
 対して画像読み出し動作では、図9で示したように画素40からの電荷に基づくデジタル信号DS(C)が読み出され、診断に供するX線画像としてメモリ52に記憶される。以下、画像読み出し動作で読み出されるデジタル信号DS(C)を、AED動作の線量信号DDS(C)と区別するため、画像信号DIS(C)と表現する。 On the other hand, in the image reading operation, as shown in FIG. 9, the digital signal DS (C) based on the charge from the pixel 40 is read and stored in the memory 52 as an X-ray image to be used for diagnosis. Hereinafter, in order to distinguish the digital signal DS (C) read out in the image reading operation from the dose signal DDS (C) in the AED operation, it is expressed as the image signal DIS (C).
 図12に示すように、制御部54は、画像読み出し動作中は、第1~第16ADC77の全てを稼働状態(第1状態に相当)にする。そして、画像読み出し動作中、第1~第16ADC77を、同じタイミングで並列的に動作させる。第1~第16ADC77に接続された第1~第16MUX76も、画像読み出し動作中は全て稼働状態にし、同じタイミングで並列的に動作させる。したがって、画像読み出し動作では、各エリアAR1~AR16の先頭列から最終列まで順に、同じ列の画像信号DIS(C)が同じタイミングで読み出される。例えば各エリアAR1~AR16の先頭列の1列目、145列目、289列目、・・・、2161列目の画像信号DIS(1)、DIS(145)、DIS(289)、・・・、DIS(2161)が同じタイミングで読み出される。さらには、第1~第16MUX76に接続されたCA60およびCDS61も、画像読み出し動作中は全て稼働状態にされる。 As shown in FIG. 12, the control unit 54 places all of the first to sixteenth ADCs 77 in the operating state (corresponding to the first state) during the image reading operation. Then, during the image reading operation, the first to sixteenth ADCs 77 are operated in parallel at the same timing. The first to sixteenth MUXs 76 connected to the first to sixteenth ADCs 77 are also activated during the image reading operation and operated in parallel at the same timing. Therefore, in the image reading operation, the image signals DIS (C) of the same row are read out at the same timing in order from the top row to the last row of the areas AR1 to AR16. For example, the first column, the 145th column, the 289th column,..., The image signal DIS (1), the DIS (145), the DIS (289),. , DIS (2161) are read at the same timing. Furthermore, the CAs 60 and the CDS 61 connected to the first to sixteenth MUXs 76 are all activated during the image reading operation.
 画像読み出し動作が終了した後の待機動作では、制御部54は、第1~第16ADC77の全てを非稼働状態(第2状態に相当)にする。第1~第16MUX76、CA60、およびCDS61も、待機動作中は全て非稼働状態にされる。 In the standby operation after the end of the image reading operation, the control unit 54 puts all of the first to sixteenth ADCs 77 in the non-operating state (corresponding to the second state). The first to sixteenth MUXs 76, CA 60, and CDS 61 are all deactivated during standby operation.
 図13に示すように、AED動作では、第1~第12ゲート駆動回路75の各々が担当する先頭行から最終行まで順に、同じ行の各ゲート線41に同時にゲートパルスG(R)が与えられる。例えば第1ゲート駆動回路75の先頭行の1行目、第2ゲート駆動回路75の先頭行の241行目、第3ゲート駆動回路75の先頭行の481行目、・・・、第12ゲート駆動回路75の先頭行の2639行目の各ゲート線41に、同時にゲートパルスG(1)、G(241)、G(481)、・・・、G(2639)が与えられ、次いで先頭行の次の行の2行目、242行目、482行目、・・・、2640行目の各ゲート線41に、同時にゲートパルスG(2)、G(242)、G(482)、・・・、G(2640)が与えられる。 As shown in FIG. 13, in the AED operation, gate pulses G (R) are simultaneously applied to the respective gate lines 41 of the same row sequentially from the top row to the last row which each of the first to twelfth gate drive circuits 75 takes charge of. Be For example, the first row of the first row of the first gate drive circuit 75, the 241st row of the first row of the second gate drive circuit 75, the 481th row of the first row of the third gate drive circuit 75,. Gate pulses G (1), G (241), G (481),..., G (2639) are simultaneously applied to the gate lines 41 of the 2639th line of the first line of the drive circuit 75, and then the first line On the second line, the 242nd line, the 482nd line,..., The 2640th line of the next line of the gate line 41, gate pulses G (2), G (242), G (482),. G (2640) is given.
 このように、AED動作では、240行間隔の計12行のゲート線41に同時にゲートパルスG(R)が与えられる。したがって、12行のTFT44が一斉にオン状態となり、12行の画素40からの電荷が、各列の信号線42で加算されてCA60に入力される。このため、各画素40での発生電荷が同じであった場合、AED動作で得られる線量信号DDS(C)は、画像読み出し動作で得られる画像信号DIS(C)のおよそ12倍となる。これにより、線量信号DDS(C)のS/N(Signal-to-Noise)比を向上させることができる。 Thus, in the AED operation, gate pulses G (R) are simultaneously applied to the gate lines 41 of a total of 12 rows spaced by 240 rows. Therefore, the TFTs 44 in the 12 rows are simultaneously turned on, and the charges from the pixels 40 in the 12 rows are added by the signal lines 42 in each column and input to the CA 60. For this reason, when the generated charges in the respective pixels 40 are the same, the dose signal DDS (C) obtained in the AED operation is approximately 12 times the image signal DIS (C) obtained in the image reading operation. Thereby, the S / N (Signal-to-Noise) ratio of the dose signal DDS (C) can be improved.
 制御部54は、12行分の電荷に基づく線量信号DDS(C)がメモリ52に記憶される毎に、線量信号DDS(C)と照射開始判定閾値とを比較して、X線の照射が開始されたか否かを判定する。線量信号DDS(C)は2304列分出力されるが、制御部54は、2304個の線量信号のうちの1個の代表値と照射開始判定閾値とを比較する。代表値は、例えば2304個の線量信号の平均値、最大値、最頻値等である。 The control unit 54 compares the dose signal DDS (C) with the irradiation start determination threshold every time the dose signal DDS (C) based on the charge for 12 rows is stored in the memory 52, and the X-ray irradiation is performed. Determine if it has started. Although the dose signal DDS (C) is output for 2304 columns, the control unit 54 compares the representative value of one of the 2304 dose signals with the irradiation start determination threshold. The representative value is, for example, an average value, a maximum value, a mode value or the like of 2304 dose signals.
 画素電荷蓄積動作では、ゲート駆動回路75からゲート線41にはゲートパルスG(R)は与えられず、各画素40のTFT44は全てオフ状態とされる。 In the pixel charge storage operation, the gate pulse G (R) is not applied from the gate drive circuit 75 to the gate line 41, and all the TFTs 44 of each pixel 40 are turned off.
 なお、画素リセット動作においても、図11で示したように各ゲート線41に順次ゲートパルスG(R)を与えるのではなく、図13で示したように第1~第12ゲート駆動回路75の各々が担当する先頭行から最終行まで順に、同じ行の各ゲート線41に同時にゲートパルスG(R)を与えてもよい。あるいは、各ゲート線41に一斉にゲートパルスG(R)を与えて、全画素40から一括して電荷を読み出してもよい。 In the pixel reset operation, gate pulses G (R) are not sequentially applied to the gate lines 41 as shown in FIG. 11, but the first to twelfth gate drive circuits 75 are shown in FIG. The gate pulse G (R) may be simultaneously applied to the respective gate lines 41 of the same row in order from the first row to the last row which each is in charge of. Alternatively, the gate pulse G (R) may be simultaneously applied to the gate lines 41 to read out the charge from all the pixels 40 at once.
 図14に示すように、制御部54は、AED動作中は、第1~第16ADC77の電力の供給状態、具体的には稼働状態と非稼働状態を周期的に切り替える。また、制御部54は、第1~第16ADC77の電力の供給状態の切り替えのタイミングをずらす。具体的には、まず、制御部54は、各チップCP1~CP4の先頭の第1、第5、第9、第13ADC77を稼働状態にして、時間T経過後非稼働状態に切り替える。この切り替えと同時に隣の第2、第6、第10、第14ADC77を稼働状態にして、同様に時間T経過後非稼働状態に切り替える。続いて第3、第7、第11、第15ADC77を時間T稼働状態にした後、各チップCP1~CP4の後尾の第4、第8、第12、第16ADC77を時間T稼働状態にする。そして、これら一連の電力の供給状態の切り替えを繰り返す。 As shown in FIG. 14, the control unit 54 periodically switches the power supply states of the first to sixteenth ADCs 77, specifically, the operating state and the non-operating state, during the AED operation. In addition, the control unit 54 shifts the timing of switching of the power supply state of the first to sixteenth ADCs 77. Specifically, first, the control unit 54 activates the first, fifth, ninth, and thirteenth ADCs 77 at the top of each of the chips CP1 to CP4, and switches to the inoperative state after the time T has elapsed. At the same time as this switching, the second, sixth, tenth and fourteenth ADCs 77 adjacent to each other are activated, and similarly switched to the inoperative state after time T has elapsed. Subsequently, after the third, seventh, eleventh and fifteenth ADCs 77 are in the operating state for time T, the fourth, eighth, twelfth and sixteenth ADCs 77 at the end of each of the chips CP1 to CP4 are in the operating state T for time. Then, switching of the series of power supply states is repeated.
 第1~第16ADC77は、エリアAR1~AR16毎に設けられているので、図14は、エリアARを担当するADC77の単位で、ADC77の電力の供給状態を切り替えているともいえる。また、第1、第5、第9、第13ADC77と、第2、第6、第10、第14ADC77と、第3、第7、第11、第15ADC77と、第4、第8、第12、第16ADC77は、それぞれ同じタイミングで電力の供給状態が切り替えられるグループに該当する。そして、これらのグループは、電力の供給状態のタイミングがずらされている。さらに、同じグループに属する2個のADC77の間には、3個のADC77が配されている。例えば同じグループに属する第1ADC77と第5ADC77の間には、第2~第4ADC77の計3個のADC77が配されている。 Since the first to sixteenth ADCs 77 are provided for each of the areas AR1 to AR16, FIG. 14 can be said to switch the power supply state of the ADC 77 in units of the ADCs 77 in charge of the area AR. Also, first, fifth, ninth and thirteenth ADCs 77, second, sixth, tenth and fourteenth ADCs 77, third, seventh, eleventh and fifteenth ADCs 77, fourth, eighth, twelfth and twelfth The sixteenth ADCs 77 correspond to groups to which the power supply state is switched at the same timing. In these groups, the timing of the power supply state is shifted. Furthermore, three ADCs 77 are disposed between two ADCs 77 belonging to the same group. For example, a total of three ADCs 77 of the second to fourth ADCs 77 are disposed between the first ADC 77 and the fifth ADC 77 belonging to the same group.
 時間Tは、AED動作において、各ADC77が担当する画素40の列である144列の全てから、線量信号DDS(C)を読み出すのに要する時間である。全2304列から線量信号DDS(C)を読み出すのに要する時間(以下、線量信号DDS(C)の読み出し周期という)は、各チップCP1~CP4で4回に分けて線量信号DDS(C)の読み出しを行っているので、T×4=4Tである。 The time T is the time required to read out the dose signal DDS (C) from all 144 columns which are the columns of the pixels 40 that each ADC 77 takes charge in the AED operation. The time required to read out the dose signal DDS (C) from all the 2304 columns (hereinafter referred to as the readout period of the dose signal DDS (C)) is divided into four times for each of the chips CP1 to CP4 to obtain the dose signal DDS (C). Since reading is performed, T × 4 = 4T.
 AED動作で得られる線量信号DDS(C)は、画像読み出し動作で得られる画像信号DIS(C)とは異なり、患者Pの画像情報としては利用されない。このため、AED動作では、図13で示したように、計12行のゲート線41に同時にゲートパルスG(R)を与えて、12行の画素40からの電荷を、各列の信号線42で加算している。また、図14で示したように、AED動作では、第1~第16ADC77を画像読み出し動作時のように常時稼働状態とせず、電力の供給状態を周期的に切り替えている。 The dose signal DDS (C) obtained by the AED operation is not used as image information of the patient P, unlike the image signal DIS (C) obtained by the image reading operation. Therefore, in the AED operation, as shown in FIG. 13, the gate pulse G (R) is simultaneously applied to the gate lines 41 in a total of 12 rows, and the charges from the pixels 40 in 12 rows are transmitted to the signal lines 42 of each column. It is added by. Further, as shown in FIG. 14, in the AED operation, the power supply state is periodically switched without the first to sixteenth ADCs 77 being always in the operating state as in the image reading operation.
 ここで、稼働状態とは、図15の右側に示すように、ADC77の機能を発揮するのに必要な電力PON_AがADC77に供給されている状態である。電力PON_Aは第1電力に相当する。すなわち稼働状態は、前述したように第1状態に相当する。一方、非稼働状態とは、図15の左側に示すように、電力PON_Aよりも低く、かつADC77が機能を発揮できない電力PSL_AがADC77に供給されている状態である。電力PSL_Aは第2電力に相当する。すなわち非稼働状態は、前述したように第2状態に相当する。 Here, the operating state is a state in which the power PON_A necessary to exhibit the function of the ADC 77 is supplied to the ADC 77, as shown on the right side of FIG. The power PON_A corresponds to the first power. That is, the operating state corresponds to the first state as described above. On the other hand, in the non-operating state, as shown on the left side of FIG. 15, the power PSL_A which is lower than the power PON_A and in which the ADC 77 can not function is supplied to the ADC 77. The power PSL_A corresponds to the second power. That is, the non-operating state corresponds to the second state as described above.
 図12および図14で示した通り、制御部54は、ADC77への電力の供給状態を、第1状態である稼働状態と第2状態である非稼働状態との間で切り替える機能を有している。 As shown in FIG. 12 and FIG. 14, the control unit 54 has a function of switching the power supply state to the ADC 77 between the operating state which is the first state and the non-operating state which is the second state. There is.
 ADC77の機能を発揮するのに必要な電力PON_Aは、具体的には画像読み出し動作時に必要な電力である。なお、画像読み出し動作時に必要な電力よりも低いが、ADC77の機能は発揮できる電力が供給されている状態を、稼働状態としてもよい。 Specifically, the power PON_A required to exert the function of the ADC 77 is the power required at the time of the image reading operation. It should be noted that a state in which power that is lower than the power required at the time of image reading operation but which can exhibit the function of the ADC 77 may be set as the operating state.
 図15では電力PSL_Aを0以上の値としているが、電力PSL_Aは0でもよい。すなわち、ADC77に全く電力を供給しないパワーオフの状態を、非稼働状態としてもよい。また、ADC77の動作タイミングを規定するクロック信号の供給を止めて、ADC77の消費電力を実質的に0にした状態を、非稼働状態としてもよい。 Although the power PSL_A has a value of 0 or more in FIG. 15, the power PSL_A may be 0. That is, the power off state where no power is supplied to the ADC 77 may be set as the non-operating state. In addition, the supply of the clock signal that defines the operation timing of the ADC 77 may be stopped, and the state in which the power consumption of the ADC 77 is substantially zero may be set as the non-operation state.
 図12で示したように、画像読み出し動作においては、第1~第16ADC77の全てが常時稼働状態であるので、単位時間をTとした場合、単位時間T当たりの稼働状態(第1状態)のADC77の個数は16である。対して図14で示したように、AED動作においては、第1~第16ADC77のうちの4個のADC77が同じタイミングで稼働するので、単位時間T当たりの稼働状態のADC77の個数は4である。したがって、図16に示すように、画像読み出し動作時の単位時間T当たりの個数16を規格化して1とした場合、AED動作における単位時間T当たりの個数は、4/16=0.25となり、画像読み出し動作時よりも低減される。 As shown in FIG. 12, in the image reading operation, all of the first to sixteenth ADCs 77 are always in the operating state, so when the unit time is T, the operating state (first state) per unit time T is The number of ADCs 77 is sixteen. On the other hand, as shown in FIG. 14, in the AED operation, four ADCs 77 out of the first to sixteenth ADCs 77 operate at the same timing, so the number of operating ADCs 77 per unit time T is four. . Therefore, as shown in FIG. 16, assuming that the number 16 per unit time T at the time of image reading operation is normalized to 1, the number per unit time T in the AED operation is 4/16 = 0.25, It is reduced compared to the image read operation time.
 なお、図示および詳細な説明は省略するが、ADC77とブロックBLを構成するCA60、CDS61、およびMUX76についても、制御部54はADC77と連動して電力の供給状態を切り替える。 Although illustration and detailed description will be omitted, the control unit 54 switches the power supply state in conjunction with the ADC 77 also for the ADC 60 and the CA 60, the CDS 61, and the MUX 76 that constitute the block BL.
 次に、上記構成による作用について、図17のフローチャートを参照して説明する。オペレータは、X線撮影システム10でX線画像を撮影する場合、電子カセッテ16の電源をオンする。制御部54は、待機動作を実行する(ステップST100)。 Next, the operation of the above configuration will be described with reference to the flowchart of FIG. When the operator takes an X-ray image with the X-ray imaging system 10, the power of the electronic cassette 16 is turned on. Control unit 54 executes a standby operation (step ST100).
 オペレータは、コンソール17の入力デバイス21を介して、所望の撮影メニューを設定する。これにより、設定された撮影メニュー、および設定された撮影メニューに対応する照射条件等の各種情報が、撮影準備指示としてコンソール17から電子カセッテ16に送信される。 The operator sets a desired imaging menu via the input device 21 of the console 17. As a result, various information such as the set photographing menu and the irradiation conditions corresponding to the set photographing menu is transmitted from the console 17 to the electronic cassette 16 as a photographing preparation instruction.
 撮影メニューの設定後、オペレータは、設定した撮影メニューに対応する照射条件と同じ照射条件、または設定した撮影メニューに対応する照射条件を患者Pの体格等に応じて微調整した照射条件を、線源制御装置14に設定する。オペレータは、電子カセッテ16を立位撮影台18と臥位撮影台19のいずれかにセットして、X線源13、電子カセッテ16、および患者Pを所望の位置に位置決めする。その後、オペレータは、照射スイッチ15を押下してX線源13を駆動させ、患者Pに向けてX線を照射させる。なお、撮影メニューの設定および照射条件の設定と、患者P等の位置決めとは、順序が前後しても構わない。 After the setting of the imaging menu, the operator finely adjusts the irradiation conditions which are the same as the irradiation conditions corresponding to the set imaging menu or the irradiation conditions corresponding to the set imaging menu according to the physical constitution etc. of the patient P. The source control device 14 is set. The operator sets the electronic cassette 16 on either the standing imaging stand 18 or the reclining imaging stand 19 to position the X-ray source 13, the electronic cassette 16 and the patient P at desired positions. Thereafter, the operator depresses the irradiation switch 15 to drive the X-ray source 13 to irradiate the patient P with X-rays. The order of the setting of the imaging menu and the setting of the irradiation condition and the positioning of the patient P may be reversed.
 撮影メニューを含む各種情報である撮影準備指示は、無線通信部22または有線通信部66で受信され、制御部54で受け取られる(ステップST110でYES)。撮影準備指示の受け取り後、制御部54は、AED動作を実行する。このAED動作中、図14で示したように、第1~第16ADC77は電力の供給状態が周期的に切り替えられる(ステップST120、照射開始検出ステップ)。 The radiographing preparation instruction, which is various information including the radiographing menu, is received by the wireless communication unit 22 or the wired communication unit 66, and is received by the control unit 54 (YES in step ST110). After receiving the imaging preparation instruction, the control unit 54 executes the AED operation. During this AED operation, as shown in FIG. 14, the power supply states of the first to sixteenth ADCs 77 are periodically switched (step ST 120, irradiation start detection step).
 制御部54では、AED動作で得られた線量信号DDS(C)と照射開始判定閾値との大小が比較される(ステップST130)。X線の照射に伴い、線量信号DDS(C)の値は大きくなる。そして、線量信号DDS(C)が照射開始判定閾値よりも大きくなった場合(ステップST130でYES)に、制御部54でX線の照射が開始されたと判定される(ステップST140)。制御部54は、画素電荷蓄積動作を実行する(ステップST150)。なお、所定時間以内に線量信号DDS(C)が照射開始判定閾値よりも大きくならず(ステップST160でYES)、かつ電源がオフされなかった場合(ステップST190でNO)は、制御部54は、再び待機動作に戻る(ステップST100)。 The control unit 54 compares the magnitude of the dose signal DDS (C) obtained in the AED operation with the irradiation start determination threshold (step ST130). The value of the dose signal DDS (C) increases with the irradiation of the X-rays. When the dose signal DDS (C) becomes larger than the irradiation start determination threshold (YES in step ST130), the control unit 54 determines that the X-ray irradiation has been started (step ST140). Control unit 54 executes a pixel charge storage operation (step ST150). If the dose signal DDS (C) does not become larger than the irradiation start determination threshold within a predetermined time (YES in step ST160) and the power is not turned off (NO in step ST190), the control unit 54 The process returns to the standby operation again (step ST100).
 制御部54では、X線の照射開始を検出したときに、タイマーによる計時が開始される。このタイマーで計時した時間がコンソール17で設定された照射条件の照射時間となるまで、画素電荷蓄積動作は続けられる。タイマーの計時時間が照射条件の照射時間となった場合(ステップST170でYES)、制御部54は、画像読み出し動作を実行する。この画像読み出し動作中、図12で示したように、第1~第16ADC77は全て常時稼働状態にされる(ステップST180、画像読み出しステップ)。これら一連の動作は、電源がオフされる(ステップST190でYES)まで続けられる。 When the control unit 54 detects the start of X-ray irradiation, the timer starts counting time. The pixel charge accumulation operation is continued until the time counted by this timer becomes the irradiation time of the irradiation condition set by the console 17. If the timed time of the timer has become the irradiation time of the irradiation condition (YES in step ST170), control unit 54 executes an image reading operation. During this image reading operation, as shown in FIG. 12, all of the first to sixteenth ADCs 77 are constantly operated (step ST180, image reading step). These series of operations are continued until the power is turned off (YES in step ST190).
 画像読み出し動作で得られた画像信号DIS(C)は、X線画像として無線通信部22または有線通信部66からコンソール17に送信される。X線画像はディスプレイ20に表示されて、オペレータの閲覧に供される。 The image signal DIS (C) obtained by the image reading operation is transmitted from the wireless communication unit 22 or the wired communication unit 66 to the console 17 as an X-ray image. The x-ray image is displayed on the display 20 for viewing by the operator.
 第1~第16ADC77の電力の供給状態を切り替えることにより、AED動作における単位時間T当たりの稼働状態のADC77の個数を、画像読み出し動作時よりも低減するので、AED動作において信号処理回路51が消費する電力を低減することが可能となる。 By switching the power supply states of the first to sixteenth ADCs 77, the number of operating ADCs 77 per unit time T in the AED operation is reduced compared to that in the image reading operation, and the signal processing circuit 51 consumes in the AED operation. Power can be reduced.
 従来は、AED動作においても、第1~第16ADC77は画像読み出し動作時と同じく常時稼働状態であり、単位時間当たりの稼働状態のADC77の個数は、画像読み出し動作時と同じであった。このため、1画面分のX線画像を1回読み出せば終了する画像読み出し動作と比較して動作時間が長いAED動作において、非常に多くの電力が消費されていた。特にバッテリ65で駆動する電子カセッテ16の場合は、消費電力が多いと頻繁にバッテリ65を充電しなければならず、撮影効率が悪化してしまう。 Conventionally, even in the AED operation, the first to sixteenth ADCs 77 are always in operation as in the image reading operation, and the number of operating ADCs 77 per unit time is the same as in the image reading operation. For this reason, a large amount of power is consumed in the AED operation whose operation time is long as compared with the image reading operation which is ended by reading an X-ray image for one screen once. In particular, in the case of the electronic cassette 16 driven by the battery 65, if the power consumption is large, the battery 65 must be frequently charged, and the imaging efficiency is degraded.
 しかし、本第1発明では、AED動作において信号処理回路51が消費する電力を低減することが可能となる。このため、バッテリ65が従来よりも長持ちし、これによりバッテリ65の充電回数も減るので、撮影効率を向上させることができる。 However, in the first invention, it is possible to reduce the power consumed by the signal processing circuit 51 in the AED operation. As a result, the battery 65 lasts longer than before, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
 AED動作における単位時間T当たりの稼働状態のADC77の個数を、画像読み出し動作時よりも低減する方法としては、特定のADC77を常時非稼働状態とすることが考えられる。ただし、特定のADC77を常時非稼働状態とすると、そのADC77が担当するエリアARの線量信号DDS(C)は読み出されない。つまり、AED動作でカバーできないエリアARが存在してしまうことになる。 As a method of reducing the number of operating ADCs 77 per unit time T in the AED operation as compared with the image reading operation, it is conceivable to keep the specific ADC 77 in a non-operating state at all times. However, when a specific ADC 77 is always in a non-operating state, the dose signal DDS (C) of the area AR that the ADC 77 is in charge of is not read out. That is, there is an area AR which can not be covered by the AED operation.
 対して本実施形態では、図14で示したように、第1~第16ADC77の全ての電力の供給状態を周期的に切り替え、AED動作における単位時間T当たりの稼働状態のADC77の個数を、画像読み出し動作時よりも低減している。したがって、AED動作において信号処理回路51が消費する電力を低減することが可能となる、という効果に加えて、全てのエリアAR1~AR16から満遍なく線量信号DDS(C)を読み出すことができ、全てのエリアAR1~AR16をカバーすることができる、という効果が得られる。 On the other hand, in the present embodiment, as shown in FIG. 14, the power supply states of all the first to sixteenth ADCs 77 are periodically switched, and the number of operating ADCs 77 per unit time T in AED operation is It is reduced compared to the read operation time. Therefore, in addition to the effect that it is possible to reduce the power consumed by signal processing circuit 51 in the AED operation, dose signal DDS (C) can be read out uniformly from all areas AR1 to AR16. The effect that the areas AR1 to AR16 can be covered is obtained.
 また、AED動作における単位時間T当たりの稼働状態のADC77の個数を、画像読み出し動作時よりも低減する他の方法としては、特定のADC77を常時稼働状態とし、残りのADC77を常時非稼働状態とすることも考えられる。しかし、特定のADC77を常時稼働状態とせずに、本実施形態の第1~第16ADC77のように電力の供給状態を周期的に切り替えれば、より信号処理回路51が消費する電力を低減することが可能であることは明らかである。 Also, as another method of reducing the number of operating ADCs 77 per unit time T in the AED operation as compared with the image reading operation, a specific ADC 77 is always operated and the remaining ADCs 77 are always not operated. It is also conceivable to do. However, the power consumption of the signal processing circuit 51 can be further reduced by periodically switching the power supply state as in the first to sixteenth ADCs 77 of this embodiment without constantly putting the specific ADC 77 into the operating state. It is clear that it is possible.
 以上のことから、AED動作において、複数のADC77のうちの少なくとも1個のADC77の電力の供給状態を周期的に切り替えることは、特定のADC77を常時非稼働状態としたり、特定のADC77を常時稼働状態とし、残りのADC77を常時非稼働状態とする場合よりも、有効であるといえる。 From the above, in the AED operation, periodically switching the power supply state of at least one of the plurality of ADCs 77 means that the specific ADC 77 is always in a non-operating state or the specific ADC 77 is always in operation. It can be said that it is more effective than the case where the remaining ADCs 77 are always in a non-operating state.
 画像読み出し動作時はADC77の全てを稼働状態にしているので、良好な画質のX線画像を取得することができる。 At the time of the image reading operation, since all of the ADCs 77 are in the operating state, it is possible to acquire an X-ray image of good image quality.
 [第1-2実施形態]
 図18に示す第1-2実施形態では、制御部54により、第1~第16ADC77の全ての電力の供給状態の切り替えのタイミングをずらす。すなわち、まず、第1ADC77を時間T稼働状態にさせる。その後、続けて第2ADC77を時間T稼働状態にさせ、さらに第3ADC77を時間T稼働状態にさせる。この電力の供給状態の切り替えを第16ADC77まで継続し、第16ADCを時間T稼働状態にさせた後は、再び第1ADC77に戻って時間T稼働状態にさせる。そして、これら一連の電力の供給状態の切り替えを繰り返す。
Embodiment 1-2
In the first and second embodiments shown in FIG. 18, the control unit 54 shifts the timing of switching the supply state of all the power of the first to sixteenth ADCs 77. That is, first, the first ADC 77 is put in an operating state for time T. After that, the second ADC 77 continues operating for time T, and the third ADC 77 continues operating for time T. After switching the power supply state to the sixteenth ADC 77 and bringing the sixteenth ADC into operation for time T, the first ADC 77 returns to the first ADC 77 again for being in operation T for time. Then, switching of the series of power supply states is repeated.
 この場合、線量信号DDS(C)の読み出し周期は、T×16=16Tとなって、上記第1-1実施形態の4Tよりも長い時間が掛かる。しかし、単位時間T当たりの稼働状態のADC77の個数は1であるため、画像読み出し動作時の単位時間T当たりの個数16を規格化した場合のAED動作における単位時間T当たりの個数は、1/16=0.0625となり、上記第1-1実施形態の0.25よりもさらに低減することができる。 In this case, the read-out cycle of the dose signal DDS (C) is T × 16 = 16T, which takes longer than 4T in the first-first embodiment. However, since the number of operating ADCs 77 per unit time T is 1, the number per unit time T in the AED operation when the number 16 per unit time T in the image reading operation is standardized is 1/00. 16 = 0.0625, which can be further reduced than 0.25 of the above-described first embodiment.
 [第1-3実施形態]
 図19に第1-3実施形態を示す。上記第1-1実施形態では、同じグループに属する2個のADC77の間に、3個のADC77が配されている例を説明したが、本第1-3実施形態のように、同じグループに属する2個のADC77の間に、1個もADC77が存在していなくてもよい。言い換えれば、同じグループに属する2個のADC77は、隣接していてもよい。
Embodiment 1-3
FIG. 19 shows a first to third embodiment. Although the example in which three ADCs 77 are disposed between two ADCs 77 belonging to the same group has been described in the above first-first embodiment, as in the first to third embodiments, it is possible to use the same group There may not be one ADC 77 between the two belonging ADCs 77. In other words, two ADCs 77 belonging to the same group may be adjacent.
 図19では、第1、第2ADC77と、第3、第4ADC77と、第5、第6ADC77と、第7、第8ADC77と、・・・、第13、第14ADC77と、第15、第16ADC77は、それぞれ同じタイミングで電力の供給状態が切り替えられるグループである。ただし、同じグループに属する2個のADC77の間には、1個もADC77が存在しておらず、これらは隣接している。 In FIG. 19, the first and second ADCs 77, the third and fourth ADCs 77, the fifth and sixth ADCs 77, the seventh and eighth ADCs 77,..., The thirteenth and fourteenth ADCs 77, and the fifteenth and sixteenth ADCs 77 They are groups to which the power supply state is switched at the same timing. However, there is no one ADC 77 between two ADCs 77 belonging to the same group, and they are adjacent to each other.
 [第1-4実施形態]
 図20に第1-4実施形態を示す。上記各実施形態では、エリアAR単位でADC77の電力の供給状態を切り替えているが、本第1-4実施形態のように、制御部54により、チップCP単位でADC77の電力の供給状態を切り替えてもよい。具体的には、まず、制御部54は、チップCP1の第1~第4ADC77を稼働状態にして、時間T経過後に非稼働状態に切り替える。次いでチップCP2の第5~第8ADC77を稼働状態にして、同様に時間T経過後に非稼働状態に切り替える。続いてチップCP3の第9~第12ADC77を時間T稼働状態にした後、チップCP4の第13~第16ADC77を時間T稼働状態にする。そして、これら一連の電力の供給状態の切り替えを繰り返す。
Embodiment 1-4
The first to fourth embodiments are shown in FIG. In the above embodiments, the power supply state of the ADC 77 is switched in area AR units. However, as in the first to fourth embodiments, the control unit 54 switches the power supply state of the ADC 77 in chip CP units. May be Specifically, first, the control unit 54 causes the first to fourth ADCs 77 of the chip CP1 to be in the operating state, and switches to the non-operating state after the time T has elapsed. Next, the fifth to eighth ADCs 77 of the chip CP2 are activated, and similarly switched to the inoperative state after the time T has elapsed. Subsequently, the ninth to twelfth ADCs 77 of the chip CP3 are put into operation for time T, and the thirteenth to sixteenth ADCs 77 of the chip CP4 are put into operation for time T. Then, switching of the series of power supply states is repeated.
 このように、チップCP単位でADC77の電力の供給状態を切り替えれば、エリアAR単位の場合よりも制御が簡単である。また、ブロックBL毎に電力の供給状態を切り替える機能を有していないチップCPにも対応することが可能である。 As described above, if the power supply state of the ADC 77 is switched in chip CP units, control is easier than in the case of area AR units. In addition, it is possible to cope with a chip CP that does not have a function of switching the power supply state for each block BL.
 [第1-5実施形態]
 図21に第1-5実施形態を示す。上記各実施形態では、全てのADC77の電力の供給状態を周期的に切り替えているが、本発明はこれに限定されない。本第1-5実施形態のように、少なくとも1個のADC77を、常時非稼働状態にしてもよい。
[First to fifth embodiments]
The first to fifth embodiments are shown in FIG. In the above embodiments, the power supply states of all the ADCs 77 are switched periodically, but the present invention is not limited to this. As in the first to fifth embodiments, at least one ADC 77 may be always in a non-operating state.
 図21において、第1-5実施形態では、第2、第4、第6、・・・、第16といった偶数番のADC77が、制御部54により、AED動作中は常時非稼働状態にされる。一方、第1、第3、第5、・・・、第15といった奇数番のADC77は、上記各実施形態のように、電力の供給状態が周期的に切り替えられる。このように、AED動作中に常時非稼働状態にされるADC77があってもよい。1個のADC77に着目した場合、常時非稼働状態にすれば、周期的に電力の供給状態を切り替えるよりも、消費電力を低減することができる。 In FIG. 21, in the first to fifth embodiments, even-numbered ADCs 77 such as the second, fourth, sixth,..., Sixteenth are always inactivated by the control unit 54 during AED operation. . On the other hand, in the odd numbered ADCs 77 such as the first, third, fifth,..., Fifteenth, the power supply state is periodically switched as in the above embodiments. As such, there may be an ADC 77 that is always disabled during AED operation. In the case of focusing on one ADC 77, power consumption can be reduced by switching the power supply state periodically if it is in a non-operating state at all times.
 なお、これとは逆に、画像読み出し動作時と同じく、AED動作中に常時稼働状態にされるADC77があってもよい(図27参照)。ただし、この場合は、周期的であれ常時であれ、AED動作中に非稼働状態にされるADC77が少なくとも1個あることが必要である。というのは、全てのADC77を常時稼働状態にしてしまうと、画像読み出し動作時と同じ状態になってしまい、AED動作時の単位時間当たりの稼働状態のADC77の個数が、画像読み出し動作時よりも低減されないからである。 Note that, conversely to this, as in the image read operation, there may be an ADC 77 that is always operated during the AED operation (see FIG. 27). However, in this case, it is necessary for at least one ADC 77 to be deactivated during AED operation, either periodically or constantly. The reason is that if all the ADCs 77 are always in the operating state, they will be in the same state as in the image reading operation, and the number of operating states of the ADC 77 per unit time at the AED operation will be higher than in the image reading operation. It is because it is not reduced.
 [第1-6実施形態]
 図22および図23に第1-6実施形態を示す。上記各実施形態では、例えば図14で示した上記第1-1実施形態の第1、第5、第9、第13ADC77と第2、第6、第10、第14ADC77のように、一方のADC77が稼働状態から非稼働状態に切り替えられたタイミングで、他方のADC77を非稼働状態から稼働状態に切り替えているが、本発明はこれに限定されない。本第1-6実施形態のように、一方のADC77を稼働状態から非稼働状態に切り替えるタイミングと、他方のADC77を非稼働状態から稼働状態に切り替えるタイミングとをずらしてもよい。
[1-6 embodiment]
FIGS. 22 and 23 show the first to sixth embodiments. In each of the above embodiments, for example, as in the first, fifth, ninth, and thirteenth ADCs 77 and the second, sixth, tenth, and fourteenth ADCs 77 of the first to eleventh embodiments shown in FIG. Although the other ADC 77 is switched from the non-operating state to the operating state at the timing when the operating state is switched from the operating state to the non-operating state, the present invention is not limited to this. As in the present 1-6 embodiment, the timing at which one ADC 77 is switched from the operating state to the non-operating state may be shifted from the timing at which the other ADC 77 is switched from the non-operating state to the operating state.
 図22では、第1、第5、第9、第13ADC77と、第2、第6、第10、第14ADC77と、第3、第7、第11、第15ADC77と、第4、第8、第12、第16ADC77が、それぞれ同じタイミングで電力の供給状態が切り替えられるグループである点では、図14で示した上記第1-1実施形態と同じである。ただし、第1、第5、第9、第13ADC77が稼働状態である途中、具体的にはT/2のタイミングで、第2、第6、第10、第14ADC77を稼働状態にさせる等、一方のADC77を稼働状態から非稼働状態に切り替える前に、他方のADC77を非稼働状態から稼働状態に切り替えている。 In FIG. 22, the first, fifth, ninth and thirteenth ADCs 77, second, sixth, tenth and fourteenth ADCs 77, third, seventh, eleventh and fifteenth ADCs 77, fourth, eighth and seventh The twelfth and sixteenth ADCs 77 are groups to which the power supply state is switched at the same timing, which is the same as the first to eleventh embodiments shown in FIG. However, while the first, fifth, ninth, and thirteenth ADCs 77 are in operation, specifically, the second, sixth, tenth, and fourteenth ADCs 77 can be activated at timing T / 2, or the like. Before switching the ADC 77 from the active state to the inactive state, the other ADC 77 is switched from the inactive state to the active state.
 このように、一方のADC77を稼働状態から非稼働状態に切り替えるタイミングと、他方のADC77を非稼働状態から稼働状態に切り替えるタイミングとをずらすことで、線量信号DDS(C)の読み出し周期を短くすることができる。具体的には、上記第1-1実施形態の場合は、線量信号DDS(C)の読み出し周期が4Tであったのに対し、図22では2.5Tと短くなる。 As described above, the reading period of the dose signal DDS (C) is shortened by shifting the timing of switching one ADC 77 from the operating state to the non-operating state and the timing of switching the other ADC 77 from the non-operating state to the operating state. be able to. Specifically, in the case of the above-described first embodiment, the reading cycle of the dose signal DDS (C) is 4T, but is short as 2.5T in FIG.
 また、この場合、単位時間T当たりの稼働状態のADC77の個数は、4個のADC77が時間Tの間、稼働状態になり、4個のADC77が時間T/2の間、稼働状態になるので、4+(4×0.5)=6である。 Also, in this case, the number of operating ADCs 77 per unit time T is that the four ADCs 77 are in the operating state for the time T and the four ADCs 77 are in the operating state for the time T / 2. , 4+ (4 × 0.5) = 6.
 図22は、図14で示した上記第1-1実施形態をベースとした例であったが、図23は、第1~第16ADC77の全ての電力の供給状態の切り替えのタイミングをずらした、図18で示した上記第1-2実施形態をベースとした例である。この場合も図22の場合と同様に、第1ADC77が稼働状態である途中のT/2のタイミングで、第2ADC77を稼働状態にさせる等、一方のADC77を稼働状態から非稼働状態に切り替える前に、他方のADC77を非稼働状態から稼働状態に切り替えている。この場合も、線量信号DDS(C)の読み出し周期を、図18の16Tから8.5Tと短くすることができる。また、この場合の単位時間T当たりの稼働状態のADC77の個数は1.5である。 FIG. 22 is an example based on the above-described first embodiment shown in FIG. 14, but FIG. 23 shifts the timing of switching of the power supply state of all the first to sixteenth ADCs 77, This is an example based on the above first to second embodiments shown in FIG. Also in this case, as in the case of FIG. 22, before switching one ADC 77 from the operating state to the non-operating state, for example, the second ADC 77 is put into the operating state at the timing of T / 2 in the middle of the first ADC 77. , The other ADC 77 is switched from the non-operating state to the operating state. Also in this case, the reading cycle of the dose signal DDS (C) can be shortened from 16T to 8.5T in FIG. Further, the number of operating ADCs 77 per unit time T in this case is 1.5.
 [第1-7実施形態]
 図24に第1-7実施形態を示す。上記各実施形態では、複数のADC77の電力の供給状態の切り替えのタイミングをずらしているが、本第1-7実施形態では、制御部54により、第1~第16ADC77の全ての電力の供給状態の切り替えのタイミングを一致させている。
[First embodiment 1-7]
FIG. 24 shows a first embodiment 1-7. In the above embodiments, the timing of switching the power supply state of the plurality of ADCs 77 is shifted, but in the first to seventh embodiments, the control unit 54 supplies all the power states of the first to sixteenth ADCs 77. The timing of switching is the same.
 この場合、線量信号DDS(C)の読み出し周期は、全てのADC77が一斉に稼働状態になる前半のTと、全てのADC77が一斉に非稼働状態になる後半の時間Tを足した2Tである。また、この場合の単位時間もTではなく2Tである。単位時間2T当たりの稼働状態のADC77の個数は、最初の時間Tの間、16個全てのADC77が稼働状態になり、次の時間Tでは1個も稼働状態ではないので、16/2=8である。 In this case, the reading cycle of the dose signal DDS (C) is 2T obtained by adding the first half T in which all the ADCs 77 are in operation simultaneously and the second half time T in which all the ADCs 77 are inoperative simultaneously. . Also, the unit time in this case is not T but 2 T. The number of active ADCs 77 per unit time 2T is 16/2 = 8 because all 16 ADCs 77 are active during the first time T and none are active at the next time T. It is.
 [第1-8実施形態]
 図25~図27に第1-8実施形態を示す。上記各実施形態では、AED動作時には、全ての画素40からの電荷に基づく線量信号DDS(C)を読み出しており、いわば全ての画素40が線量信号DDS(C)を読み出すための検出用画素として働いている。しかし、全ての画素40ではなく、複数の画素40のうちのいくつかを検出用画素として予め設定しておいてもよい。なお、以下、検出用画素に符号を与えて検出用画素90(図25参照)と表記する。また、検出用画素90が接続された信号線42を、以下、検出用チャンネル95(図25参照)と表記する。
[First 1-8 embodiments]
FIGS. 25 to 27 show the 1-8th embodiment. In the above embodiments, during the AED operation, the dose signal DDS (C) based on the charges from all the pixels 40 is read out, so to say, all the pixels 40 are used as detection pixels for reading out the dose signal DDS (C). is working. However, some of the plurality of pixels 40 instead of all the pixels 40 may be set in advance as detection pixels. In the following, the detection pixel is given a code and denoted as a detection pixel 90 (see FIG. 25). Further, the signal line 42 to which the detection pixel 90 is connected is hereinafter referred to as a detection channel 95 (see FIG. 25).
 図25は、各チップCP1~CP4のうち、チップCP2、CP3がカバーする、エリアAR5~AR12までの計8個のエリアARに属する全ての画素40を、検出用画素90(ハッチングで示す)として設定した例である。この場合、検出用チャンネル95は、チップCP2の第5~第8MUX76、およびチップCP3の第9~第12MUX76に接続された信号線42である。 FIG. 25 shows all the pixels 40 belonging to a total of eight areas AR covered by the chips CP2 and CP3 among the chips CP1 to CP4 as the detection pixels 90 (indicated by hatching). It is an example set. In this case, the detection channel 95 is the signal line 42 connected to the fifth to eighth MUX 76 of the chip CP2 and to the ninth to twelfth MUX 76 of the chip CP3.
 制御部54は、例えば図26に示すように、AED動作中は、検出用チャンネル95を担当しない、チップCP1の第1~第4ADC77およびチップCP4の第13~第16ADC77を、常時非稼働状態にする。また、制御部54は、検出用チャンネル95を担当する、チップCP2の第5~第8ADC77およびチップCP3の第9~第12ADC77の電力の供給状態を周期的に切り替える。 For example, as shown in FIG. 26, the control unit 54 keeps the first to fourth ADCs 77 of the chip CP1 and the thirteenth to sixteenth ADCs 77 of the chip CP4 in a non-operating state at all times during AED operation. Do. Further, the control unit 54 periodically switches the power supply states of the fifth to eighth ADCs 77 of the chip CP2 and the ninth to twelfth ADCs 77 of the chip CP3 in charge of the detection channel 95.
 検出用チャンネル95が設定される場合、検出用チャンネル95を担当しないADC77は、AED動作時に稼働状態になっていても意味がないので、AED動作中は常時非稼働状態にされる。一方で、検出用チャンネル95を担当するADC77は、AED動作中は電力の供給状態が周期的に切り替えられる。こうすることで、単位時間T当たりの稼働状態のADC77の個数が低減される。 When the detection channel 95 is set, the ADC 77 not in charge of the detection channel 95 has no meaning even if it is in the operating state at the time of the AED operation, and is always in the non-operating state during the AED operation. On the other hand, the power supply state of the ADC 77 in charge of the detection channel 95 is periodically switched during AED operation. This reduces the number of operating ADCs 77 per unit time T.
 図27は、検出用チャンネル95を担当しないADC77がAED動作中に常時非稼働状態になる点では、図26の場合と同じである。ただし、図27では、検出用チャンネル95を担当するADC77(チップCP2の第5~第8ADC77およびチップCP3の第9~第12ADC77)が、常時稼働状態になる。この図27の例からも分かる通り、本第1発明は、ADC77の電力の供給状態を周期的に切り替えない場合も含む。 FIG. 27 is the same as the case of FIG. 26 in that the ADC 77 not in charge of the detection channel 95 is always inoperative during AED operation. However, in FIG. 27, the ADCs 77 (the fifth to eighth ADCs 77 of the chip CP2 and the ninth to twelfth ADCs 77 of the chip CP3) in charge of the detection channel 95 are always in the operating state. As can be understood from the example of FIG. 27, the first invention also includes the case where the power supply state of the ADC 77 is not switched periodically.
 なお、図25では、エリアAR5~AR12の全ての信号線42を検出用チャンネル95に設定しているが、例えば1列目~4列目、65列目~68列目、129列目~132列目等、4列ずつ64列間隔で検出用チャンネル95を設定してもよく、検出用チャンネル95の設定の仕方は自由である。また、1本の検出用チャンネル95に設定される検出用画素90も、1列分の全ての画素40ではなく、例えば第3、第4ゲート駆動回路75が担当する481行目~960行目の画素40のみを検出用画素90と設定する等、設定の仕方に特に制限はない。 Although all the signal lines 42 of the areas AR5 to AR12 are set as the detection channel 95 in FIG. 25, for example, the first to fourth columns, the 65 to 68 columns, and the 129 to 132 columns. The detection channels 95 may be set at intervals of 64 columns, such as columns, in four columns, and the method of setting the detection channels 95 is free. In addition, the detection pixels 90 set in one detection channel 95 are not all the pixels 40 for one column, but, for example, the 481st to 960th lines that the third and fourth gate drive circuits 75 are in charge of There is no particular limitation on the setting method, such as setting only the pixel 40 of the pixel as the detection pixel 90.
 [第1-9実施形態]
 図28~図31に第1-9実施形態を示す。上記各実施形態では、画像読み出し動作で画像信号DIS(C)を得るための画素40を、AED動作で線量信号DDS(C)を得るための検出用画素90として兼用しているが、本発明はこれに限定されない。X線画像検出用の画素40とは別に、AED動作に特化した専用の検出用画素90Xを設けてもよい。
[1-9 embodiment]
FIGS. 28 to 31 show the first to ninth embodiments. In each of the above embodiments, the pixel 40 for obtaining the image signal DIS (C) in the image reading operation is also used as the detection pixel 90 for obtaining the dose signal DDS (C) in the AED operation. Is not limited to this. Aside from the X-ray image detection pixels 40, dedicated detection pixels 90X specialized for the AED operation may be provided.
 AED動作専用の検出用画素90Xを設ける場合は、画素40と検出用画素90Xが光検出基板35上に混在することとなる。光検出基板35はサイズが限られているので、検出用画素90Xを設けすぎると、その分画素40を設けるスペースが減り、X線画像の画質が低下する。また、検出用画素90Xを光検出基板35上の偏った箇所に設けると、照射野の設定によっては、当該箇所にX線が照射されない場合も考えられる。したがって、検出用画素90Xは、例えば図28に示すように、1列の検出用チャンネル95に配される検出用画素90Xの個数を2880個中12個とする等、数百万個の画素40に対して検出用画素90Xは数十~数百個のオーダとし、かつ検出用画素90Xを光検出基板35上に分散して配置することが好ましい。 When the detection pixel 90X dedicated to the AED operation is provided, the pixel 40 and the detection pixel 90X are mixed on the light detection substrate 35. Since the size of the light detection substrate 35 is limited, if the detection pixels 90X are provided too much, the space for providing the pixels 40 is reduced accordingly, and the image quality of the X-ray image is degraded. In addition, when the detection pixel 90X is provided at a biased position on the light detection substrate 35, depending on the setting of the irradiation field, the case where the X-ray is not irradiated to the relevant position may be considered. Therefore, as shown in FIG. 28, for example, as shown in FIG. 28, the number of detection pixels 90X arranged in one row of detection channels 95 is 12 out of 2880, and the number of millions of pixels 40 is 40. On the other hand, it is preferable that the detection pixels 90X be on the order of several tens to several hundreds, and the detection pixels 90X be disposed on the light detection substrate 35 in a dispersed manner.
 図29に示す検出用画素90X1は、光電変換部43およびTFT44を備える基本的な構成は画素40と全く同じである。したがって、検出用画素90X1は、画素40とほぼ同様の製造プロセスで形成することができる。検出用画素90X1が画素40と異なる点は、TFT44のソース電極とドレイン電極が短絡線100で短絡されている点である。つまり図29に示す検出用画素90X1は、光電変換部43が短絡線100で直接信号線42に接続されている。この信号線42が検出用チャンネル95となる。 The basic configuration of the detection pixel 90X1 shown in FIG. 29 including the photoelectric conversion unit 43 and the TFT 44 is the same as that of the pixel 40. Therefore, the detection pixel 90X1 can be formed by substantially the same manufacturing process as the pixel 40. The detection pixel 90X1 is different from the pixel 40 in that the source electrode and the drain electrode of the TFT 44 are short-circuited by the short circuit line 100. That is, in the detection pixel 90X1 shown in FIG. 29, the photoelectric conversion unit 43 is directly connected to the signal line 42 by the short circuit line 100. This signal line 42 becomes a detection channel 95.
 検出用チャンネル95においては、検出用画素90X1の光電変換部43で発生する電荷が、TFT44のオン/オフ状態に関わらず流れ出す。したがって、たとえ同じ行の画素40がTFT44をオフ状態とされて画素電荷蓄積動作中であっても、検出用画素90X1の光電変換部43で発生した電荷は、常時検出用チャンネル95を通じてCA60に流入する。 In the detection channel 95, the charge generated in the photoelectric conversion unit 43 of the detection pixel 90X1 flows out regardless of the on / off state of the TFT 44. Therefore, even if the pixels 40 in the same row are in the pixel charge accumulation operation with the TFT 44 turned off, charges generated in the photoelectric conversion unit 43 of the detection pixel 90X1 always flow into the CA 60 through the detection channel 95. Do.
 この場合も図25~図27で示した上記第1-8実施形態と同じく、検出用チャンネル95を担当しないADC77は、AED動作中は常時非稼働状態にされる。また、検出用チャンネル95を担当するADC77は、AED動作中は電力の供給状態が周期的に切り替えられる、あるいは常時稼働状態にされる。 Also in this case, as in the first to eighth embodiments shown in FIGS. 25 to 27, the ADC 77 not in charge of the detection channel 95 is always in a non-operating state during the AED operation. Further, the ADC 77 in charge of the detection channel 95 periodically switches the power supply state during the AED operation or is always in the operating state.
 光電変換部43が直接信号線42に接続された短絡画素としては、図29に示す検出用画素90X1に替えて、図30に示す検出用画素90X2のように、TFT44が取り払われて光電変換部43のみで構成されたものでもよい。なお、図29および図30に示す例において、短絡画素である検出用画素90X1、90X2と同じ列の画素40の発生電荷には、検出用画素90X1、90X2の発生電荷も常に加算されてしまうため、検出用画素90X1、90X2と同じ列の画素40は、画像信号DIS(C)を取得するための画素としては使用できない。このため、検出用チャンネル95の列の画素40および検出用画素90X1、90X2は欠陥画素として扱われ、周囲の検出用チャンネル95ではない列の画素40の画像信号DIS(C)で補間される。 As a short-circuited pixel in which the photoelectric conversion unit 43 is directly connected to the signal line 42, the TFT 44 is removed as in the detection pixel 90X2 shown in FIG. 30, instead of the detection pixel 90X1 shown in FIG. It may be composed of only 43. In the example shown in FIGS. 29 and 30, the generated charges of the detection pixels 90X1 and 90X2 are always added to the generated charges of the pixels 40 in the same column as the detection pixels 90X1 and 90X2 which are short-circuited pixels. The pixels 40 in the same column as the detection pixels 90X1 and 90X2 can not be used as pixels for acquiring the image signal DIS (C). For this reason, the pixels 40 in the column of the detection channel 95 and the detection pixels 90X1 and 90X2 are treated as defective pixels, and are interpolated by the image signal DIS (C) of the pixels 40 in the column other than the surrounding detection channel 95.
 図31は、特定の画素40の隣りに、AED動作専用の検出用画素90X3を設けた例である。検出用画素90X3は、画素40と同じく、光電変換部105およびTFT106を備える。TFT106には、画素40のTFT44に接続されたゲート線41および信号線42とは別のゲート線107および信号線(検出用チャンネル95)が接続されている。ゲート線107は、ゲート駆動部50とは別に独立して駆動するゲート駆動部108に接続されている。検出用チャンネル95は、信号線42とともにMUX部62に接続されている。 FIG. 31 shows an example in which a detection pixel 90X3 dedicated to the AED operation is provided adjacent to a specific pixel 40. Similar to the pixel 40, the detection pixel 90X3 includes the photoelectric conversion unit 105 and the TFT 106. The TFT 106 is connected to a gate line 107 and a signal line (detection channel 95) different from the gate line 41 and the signal line 42 connected to the TFT 44 of the pixel 40. The gate line 107 is connected to a gate drive unit 108 which is driven independently of the gate drive unit 50. The detection channel 95 is connected to the MUX unit 62 together with the signal line 42.
 AED動作中は、ゲート駆動部50は作動せず、ゲート駆動部108のみが作動する。ゲート駆動部108は、上記第1-1実施形態と同様に、複数行のゲート線107に同時にゲートパルスを与え、各ゲート線107に接続された各TFT106を複数行ずつオン状態とする。あるいは、ゲート駆動部108は、各ゲート線107に順次ゲートパルスを与えてもよい。 During the AED operation, the gate driver 50 does not operate, and only the gate driver 108 operates. The gate driver 108 simultaneously applies gate pulses to the gate lines 107 in a plurality of rows, and turns on each of the TFTs 106 connected to the gate lines 107 in the same manner as in the first embodiment. Alternatively, the gate driver 108 may sequentially apply gate pulses to the gate lines 107.
 この場合も図25~図27で示した上記第1-8実施形態と同じく、検出用チャンネル95を担当しないADC77は、AED動作中は常時非稼働状態にされる。また、検出用チャンネル95を担当するADC77は、AED動作中は電力の供給状態が周期的に切り替えられる、あるいは常時稼働状態にされる。MUX部62は、信号線42だけでなく検出用画素90X3が接続された検出用チャンネル95も接続される点が異なるだけで、基本的な構成は上記各実施形態と同じである。なお、検出用画素90X3専用に、信号線42とは別の検出用チャンネル95を設けるのではなく、検出用画素90X3のTFT106も信号線42に接続して、検出用チャンネル95を信号線42と兼用してもよい。 Also in this case, as in the first to eighth embodiments shown in FIGS. 25 to 27, the ADC 77 not in charge of the detection channel 95 is always in a non-operating state during the AED operation. Further, the ADC 77 in charge of the detection channel 95 periodically switches the power supply state during the AED operation or is always in the operating state. The basic configuration of the MUX unit 62 is the same as that of each of the above-described embodiments, except that the detection channel 95 to which the detection pixel 90X3 is connected is also connected in addition to the signal line 42. Note that instead of providing a detection channel 95 separate from the signal line 42 exclusively for the detection pixel 90X3, the TFT 106 of the detection pixel 90X3 is also connected to the signal line 42, and the detection channel 95 is connected to the signal line 42. It may be shared.
 図31の場合は、画素40と検出用画素90X3は、各ゲート駆動部50、108で互いに独立して駆動可能で、かつ信号線42と検出用チャンネル95が別々である。したがって、図29および図30の場合のように、検出用画素90X3と同じ列の画素40を欠陥画素として扱わなくてもよい。 In the case of FIG. 31, the pixel 40 and the detection pixel 90X3 can be driven independently of each other by the gate drive units 50 and 108, and the signal line 42 and the detection channel 95 are separate. Therefore, as in the case of FIGS. 29 and 30, the pixels 40 in the same column as the detection pixels 90X3 may not be treated as defective pixels.
 [第1-10実施形態]
 図32に第1-10実施形態を示す。本第1-10実施形態は、全検出用画素90のうち、線量信号DDS(C)をX線の照射開始判定に用いる検出用画素90をオペレータが設定変更可能な形態である。例えば上記第1-9実施形態の図31で示した検出用画素90X3が、図28で示したように光検出基板35上に分散配置されていた場合、図32に示すように、胸部撮影の場合は患者Pの肺野に該当する矩形領域LA1内の検出用画素90X3を選択し、選択した検出用画素90X3からの線量信号DDS(C)をX線の照射開始判定に用いる。一方、腹部撮影の場合は矩形領域LA2内の検出用画素90X3を選択し、選択した検出用画素90X3からの線量信号DDS(C)をX線の照射開始判定に用いる。
Embodiment 1-10
FIG. 32 shows an embodiment 1-10. In the first to tenth embodiments, the operator can change the setting of the detection pixels 90 that use the dose signal DDS (C) for the X-ray irradiation start determination among all the detection pixels 90. For example, in the case where the detection pixels 90X3 shown in FIG. 31 of the first to ninth embodiments are dispersedly disposed on the light detection substrate 35 as shown in FIG. 28, as shown in FIG. In this case, the detection pixel 90X3 in the rectangular area LA1 corresponding to the lung field of the patient P is selected, and the dose signal DDS (C) from the selected detection pixel 90X3 is used for X-ray irradiation start determination. On the other hand, in the case of abdominal imaging, the detection pixel 90X3 in the rectangular area LA2 is selected, and the dose signal DDS (C) from the selected detection pixel 90X3 is used for X-ray irradiation start determination.
 この場合、ゲート駆動部108は、領域LA1、LA2内の検出用画素90X3のTFT106に対して選択的にゲートパルスを与える機能を有する。また、胸部撮影で領域LA1内の検出用画素90X3が選択された場合は、領域LA1の幅に相当する範囲RLA1の信号線42が検出用チャンネル95となるので、AED動作中は範囲RLA1を担当するADC77の電力の供給状態を切り替える、あるいは常時稼働状態にさせる。そして、その他の範囲RLA2、RLA3を担当するADC77は非稼働状態にする。一方、腹部撮影で領域LA2内の検出用画素90X3が選択された場合は、AED動作中は領域RLA2を担当するADC77の電力の供給状態を切り替える、あるいは常時稼働状態にさせる。そして、この場合は範囲RLA1、RLA3を担当するADC77は非稼働状態にする。 In this case, the gate driving unit 108 has a function of selectively applying a gate pulse to the TFT 106 of the detection pixel 90X3 in the regions LA1 and LA2. When the detection pixel 90X3 in the area LA1 is selected in chest imaging, the signal line 42 of the range RLA1 corresponding to the width of the area LA1 serves as the detection channel 95. Therefore, the area RLA1 is in charge during AED operation. The power supply state of the ADC 77 is switched or kept in an operating state at all times. Then, the ADC 77 in charge of the other ranges RLA2 and RLA3 is inactivated. On the other hand, when the detection pixel 90X3 in the area LA2 is selected in the abdominal imaging, the power supply state of the ADC 77 in charge of the area RLA2 is switched or constantly operated during the AED operation. Then, in this case, the ADC 77 in charge of the ranges RLA1 and RLA3 is inactivated.
 なお、図32では、上記第1-9実施形態の図31の検出用画素90X3を例に説明したが、これに限定されない。図25~図27で示した上記第1-8実施形態のように、画像読み出し動作で画像信号DIS(C)を得るための画素40を、AED動作で線量信号DDS(C)を得るための検出用画素90として兼用した場合も、ゲート駆動部50に特定領域内の画素40のTFT44に対して選択的にゲートパルスG(R)を与える機能を設ければ、同じことができる。 In FIG. 32, although the detection pixel 90X3 of FIG. 31 of the first to ninth embodiments is described as an example, the present invention is not limited to this. As in the first to eighth embodiments shown in FIG. 25 to FIG. 27, the pixel 40 for obtaining the image signal DIS (C) in the image readout operation and the dose signal DDS (C) for the AED operation. The same effect can be obtained by providing the gate driver 50 with a function of selectively applying the gate pulse G (R) to the TFTs 44 of the pixels 40 in the specific area also when the pixel 90 is also used as the detection pixel 90.
 また、上記第1-9実施形態の図29および図30に示す検出用画素90X1、90X2の場合も、範囲RLA1には領域LA1にのみ検出用画素90X1、90X2を配し、範囲RLA2には領域LA2にのみ検出用画素90X1、90X2を配するようにすれば、同じことができる。 Also in the case of the detection pixels 90X1 and 90X2 shown in FIGS. 29 and 30 of the first to ninth embodiments, the detection pixels 90X1 and 90X2 are arranged only in the area LA1 in the range RLA1 and the area RLA2 If the detection pixels 90X1 and 90X2 are arranged only in LA2, the same effect can be obtained.
 [第1-11実施形態]
 図33および図34に第1-11実施形態を示す。前にも述べたように、AED動作で得られる線量信号DDS(C)は、患者Pの画像情報としては利用されない。そのため、AED動作においては、線量信号DDS(C)について、画像読み出し動作で出力される画像信号DIS(C)に必要な正確性はあまり求められない。そこで、図33に示す第1-11実施形態では、AED動作におけるCDS61の動作を画像読み出し動作時よりも簡略化することで、AED動作時の信号処理回路51の消費電力をさらに低減する。
Embodiment 1-11
The first to eleventh embodiments are shown in FIGS. 33 and 34. As described above, the dose signal DDS (C) obtained in the AED operation is not used as image information of the patient P. Therefore, in the AED operation, the accuracy required for the image signal DIS (C) output in the image reading operation is not required for the dose signal DDS (C). Therefore, in the first to eleventh embodiments shown in FIG. 33, the power consumption of the signal processing circuit 51 in the AED operation is further reduced by simplifying the operation of the CDS 61 in the AED operation as compared with the image reading operation.
 図6を用いて概略を説明した、画像読み出し時のCDS61の動作は、フローチャートで示すと図33Aのようになる。すなわち、CDS61の第1S/H73Aでリセットノイズ成分が保持される(ステップST300)。次いで、第2S/H73Bでアナログの電圧信号V(C)が保持される(ステップST310)。最後に、差動アンプ74で、両S/H73A、73Bに保持されたリセットノイズ成分とアナログの電圧信号V(C)の差分を取り、ノイズが除去されたアナログの電圧信号V(C)を出力する(ステップST320)。 The operation of the CDS 61 at the time of image reading, the outline of which has been described with reference to FIG. 6, is as shown in FIG. That is, the reset noise component is held by the first S / H 73A of the CDS 61 (step ST300). Then, the analog voltage signal V (C) is held at the second S / H 73B (step ST310). Finally, the difference between the reset noise component held in both S / Hs 73A and 73B and the analog voltage signal V (C) is taken by the differential amplifier 74, and the analog voltage signal V (C) from which the noise has been removed is calculated. It outputs (step ST320).
 一方、AED動作時は、図33Bに示すように、ステップST300の第1S/H73Aによるリセットノイズ成分の保持を飛ばして、ステップST310の第2S/H73Bによるアナログの電圧信号V(C)の保持からはじめる。そして、リセットノイズ成分との差分を取ることなく、そのまま差動アンプ74からアナログの電圧信号V(C)を出力する(ステップST330)。 On the other hand, during the AED operation, as shown in FIG. 33B, the holding of the reset noise component by the first S / H 73A in step ST300 is skipped, and the holding of the analog voltage signal V (C) by the second S / H 73B in step ST310. Begin. Then, the analog voltage signal V (C) is output as it is from the differential amplifier 74 without taking the difference with the reset noise component (step ST330).
 このように、AED動作時には第1S/H73Aによるリセットノイズ成分の保持を飛ばすので、第1S/H73Aへの電力供給が不要となる、あるいは第1S/H73Aを画像読み出し動作よりも低電力で駆動することが可能となる。したがって、AED動作時の信号処理回路51の消費電力をさらに低減することができる。また、第1S/H73Aによるリセットノイズ成分の保持を飛ばす分、AED動作では画像読み出し動作よりもアナログの電圧信号V(C)を速く出力することができる。 As described above, since the retention of the reset noise component by the first S / H 73A is skipped during the AED operation, power supply to the first S / H 73A is unnecessary, or the first S / H 73A is driven with lower power than the image reading operation. It becomes possible. Therefore, the power consumption of the signal processing circuit 51 during the AED operation can be further reduced. Further, since the retention of the reset noise component by the first S / H 73A is skipped, the AED operation can output the analog voltage signal V (C) faster than the image reading operation.
 なお、上記第1-1実施形態では、図6で示したように、差動アンプ74がMUX76の入力端子に接続されている例を示したが、本発明はこれに限定されない。図34に示すように、第1、第2S/H73A、73Bと差動アンプ74との間に2つのMUX76A、76Bを接続し、差動アンプ74をMUX76A、76BとADC77の間に接続した構成でもよい。 Although the differential amplifier 74 is connected to the input terminal of the MUX 76 as shown in FIG. 6 in the above first embodiment, the present invention is not limited to this. As shown in FIG. 34, two MUXs 76A and 76B are connected between the first and second S / Hs 73A and 73B and the differential amplifier 74, and the differential amplifier 74 is connected between the MUXs 76A and 76B and the ADC 77. May be.
 この場合、例えば同じエリアARの列の複数個のCDS61の第1S/H73AがMUX76Aに、第2S/H73BがMUX76Bに、それぞれ接続される。また、上記第1-1実施形態では、図6で示したように、差動アンプ74はMUX76の前段に接続されるため、差動アンプ74はCDS61毎に設けられていたが、図34では、差動アンプ74はMUX76A、76Bの後段に接続されるので、差動アンプ74はADC77と同じ個数となる。 In this case, for example, the first S / Hs 73A of the plurality of CDS 61 in the same area AR column are connected to the MUX 76A, and the second S / H 73B is connected to the MUX 76B. Further, in the above first-first embodiment, as shown in FIG. 6, the differential amplifier 74 is connected to the front stage of the MUX 76, so the differential amplifier 74 is provided for each CDS 61. Since the differential amplifiers 74 are connected to the subsequent stages of the MUXs 76A and 76B, the differential amplifiers 74 have the same number as the ADCs 77.
 この図34に示す構成においても、図33Bで示したようにAED動作時における第1S/H73Aによるリセットノイズ成分の保持を飛ばすことで、省電力化を図ることができる。しかもこの場合は、第1S/H73Aに加えてMUX76Aへの供給電力も低減することができ、さらには差動アンプ74の個数が減ったことで差動アンプ74への供給電力も低減することができる。したがって、AED動作時の信号処理回路51の消費電力をより多く低減することができる。 Also in the configuration shown in FIG. 34, power saving can be achieved by skipping retention of the reset noise component by the first S / H 73A during the AED operation as shown in FIG. 33B. Furthermore, in this case, the power supplied to the MUX 76A can be reduced in addition to the first S / H 73A, and further, the power supplied to the differential amplifier 74 can be reduced by reducing the number of differential amplifiers 74. it can. Therefore, the power consumption of the signal processing circuit 51 during the AED operation can be further reduced.
 [第1-12実施形態]
 図35~図37に第1-12実施形態を示す。ここで、例えば上記第1-2実施形態の図18に示す第7ADC77等のように、両隣の第6、第8ADC77が比較的長い時間非稼働状態で、かつ電力の供給状態の切り替えのタイミングが異なる場合、ADC77が稼働状態である場合のブロックBL7の列方向における温度分布は、図35に示すようになる。すなわち、両端部はどうしても非稼働状態の両隣のブロックBL6、BL8の影響を受けて温度が落ち込み、これと比較して中心部の温度が高くなる山型の温度分布となる。なお、ブロックBL6の温度分布が緩やかな山型であるのは、図18で示したように、第7ADC77が稼働状態になる直前に第6ADC77が稼働状態とされていたためである。
[Embodiments 1-12]
FIGS. 35 to 37 show the first to twelfth embodiments. Here, for example, as in the seventh ADC 77 shown in FIG. 18 of the above-described first and second embodiments, the timing of switching of the power supply state is in the inactive state for the sixth and eighth ADCs 77 on both sides for a relatively long time. If they are different, the temperature distribution in the column direction of the block BL7 when the ADC 77 is in the operating state is as shown in FIG. That is, the temperature drops due to the influence of the non-operating blocks BL6 and BL8 at both ends by all means, resulting in a mountain-shaped temperature distribution in which the temperature at the central portion is higher than this. The temperature distribution of the block BL6 has a gentle mountain shape because, as shown in FIG. 18, the sixth ADC 77 is put into operation immediately before the seventh ADC 77 is put into operation.
 こうしたブロックBL内における温度分布の変化は、ブロックBLで担当する画素40の列が多い場合は、ブロックBLの列方向の幅が広くなるので、中心部がフラットに近付いて緩やかなものとなる。対して、ブロックBLで担当する画素40の列が少ない場合は、ブロックBLの列方向の幅が狭くなるので、逆に急峻なものとなる。このようにブロックBL内で温度分布の偏りがあると、デジタル信号DS(C)に温度ドリフトが生じる。この温度ドリフトの影響をなるべく蒙らないようにするため、検出用画素90を有する検出用チャンネル95は、温度勾配が比較的フラットになりやすい、エリアARの中心部に配することが好ましい。 The change in the temperature distribution in the block BL is gradual since the central portion approaches a flat and becomes gentle since the width in the column direction of the block BL is wide when the number of columns of the pixels 40 in charge in the block BL is large. On the other hand, when the number of columns of the pixels 40 in charge of the block BL is small, the width in the column direction of the block BL becomes narrow, and therefore, it becomes steep. As described above, when there is a temperature distribution deviation in the block BL, a temperature drift occurs in the digital signal DS (C). In order to minimize the influence of the temperature drift, the detection channel 95 having the detection pixel 90 is preferably disposed at the center of the area AR where the temperature gradient tends to be relatively flat.
 また、上記第1-9実施形態の図29および図30に示す例において、1列の検出用チャンネル95に配される検出用画素90X1、90X2の個数は、例えば2880個中12個等、全体の1%未満である。このように、画素40と検出用画素90X1、90X2の個数は、画素40≫検出用画素90X1、90X2の関係にある。 In the example shown in FIGS. 29 and 30 of the first to ninth embodiments, the number of detection pixels 90X1 and 90X2 arranged in one row of detection channels 95 is, for example, 12 out of 2880, or the like. Less than 1% of As described above, the number of pixels 40 and the number of detection pixels 90X1 and 90X2 is in the relation of the pixel 40 >> detection pixels 90X1 and 90X2.
 ここで、画素40で発生した電荷は、TFT44がオフ状態であっても、微量ではあるが信号線42に流入する。こうした電荷はリーク電荷と呼ばれる。図29および図30に示す例の検出用チャンネル95には、図36に模式的に示すように、検出用画素90X1、90X2で発生した電荷SCに加えて、このリーク電荷LCも流入してしまう。リーク電荷LCは、本来線量信号DDS(C)として取り出したい検出用画素90X1、90X2で発生した電荷SCに加算されてしまうので、X線の照射開始を判定する場合にはノイズとなる。しかも、画素40≫検出用画素90X1、90X2の関係にあった場合は、リーク電荷LCの量が、検出用画素90X1、90X2で発生した電荷SCに対して無視できない量となるため、X線の照射開始の判定を誤るリスクが高まる。そこで、本第1-12実施形態では、検出用チャンネル95の線量信号DDS(C)からリーク電荷LCの影響を取り除き、そのうえで温度ドリフトの影響を取り除く補正を施す。 Here, the charge generated in the pixel 40 flows into the signal line 42 although the amount is small even if the TFT 44 is in the off state. Such charge is called leak charge. In the detection channel 95 of the example shown in FIGS. 29 and 30, in addition to the charge SC generated in the detection pixels 90X1 and 90X2, this leak charge LC also flows, as schematically shown in FIG. . Since the leak charge LC is added to the charge SC generated in the detection pixels 90X1 and 90X2 which are originally to be extracted as the dose signal DDS (C), it becomes noise when determining the start of X-ray irradiation. Moreover, when the relationship of the pixel 40 >> detection pixels 90X1 and 90X2 is satisfied, the amount of the leak charge LC becomes an unignorable amount with respect to the charge SC generated in the detection pixels 90X1 and 90X2. There is an increased risk of misjudgement of the start of irradiation. Therefore, in the first to twelfth embodiments, the influence of the leak charge LC is removed from the dose signal DDS (C) of the detection channel 95, and then the correction of removing the influence of the temperature drift is performed.
 具体的には図37に示すように、検出用画素90X1、90X2が配された検出用チャンネル95に隣接して、検出用チャンネル95を挟むように、検出用画素90X1、90X2を含まない画素40のみの列を設ける。以下、この検出用画素90X1、90X2を含まない画素40のみの列に対応する信号線42を、リファレンスチャンネル120と表現する。 Specifically, as shown in FIG. 37, a pixel 40 not including the detection pixels 90X1 and 90X2 so as to sandwich the detection channel 95 adjacent to the detection channel 95 in which the detection pixels 90X1 and 90X2 are arranged. Provide a row of only. Hereinafter, the signal line 42 corresponding to the row of only the pixels 40 not including the detection pixels 90X1 and 90X2 is expressed as a reference channel 120.
 図37では、検出用チャンネル95およびリファレンスチャンネル120は同じMUX76およびADC77に接続されている。つまり検出用チャンネル95およびリファレンスチャンネル120は同じブロックBLにある。この場合、制御部54は、AED動作中は、検出用チャンネル95およびリファレンスチャンネル120を両方担当するADC77を稼働状態にさせる。なお、検出用チャンネル95とリファレンスチャンネル120が異なるブロックBLに分かれ、異なるADC77に接続されていた場合は、制御部54は、検出用チャンネル95を担当するADC77を稼働状態にさせるとともに、リファレンスチャンネル120を担当するADC77も稼働状態にさせる。 In FIG. 37, the detection channel 95 and the reference channel 120 are connected to the same MUX 76 and ADC 77. That is, the detection channel 95 and the reference channel 120 are in the same block BL. In this case, the control unit 54 causes the ADC 77, which is in charge of both the detection channel 95 and the reference channel 120, to be in an active state during the AED operation. When the detection channel 95 and the reference channel 120 are divided into different blocks BL and connected to different ADCs 77, the control unit 54 causes the ADC 77 in charge of the detection channel 95 to be in the operating state and the reference channel 120. The ADC 77 responsible for the
 これにより、メモリ52には、検出用チャンネル95からのアナログの電圧信号V(C)に基づく線量信号DDS(C)と、リファレンスチャンネル120からのアナログの電圧信号V(C-1)およびV(C+1)に基づく線量信号DDS(C-1)およびDDS(C+1)がADC77から出力される。線量信号DDS(C-1)およびDDS(C+1)を、以下、リファレンス信号DRS(C-1)およびDRS(C+1)と表現する。 Thus, the memory 52 stores the dose signal DDS (C) based on the analog voltage signal V (C) from the detection channel 95 and the analog voltage signals V (C-1) and V (C) from the reference channel 120. Dose signals DDS (C-1) and DDS (C + 1) based on C + 1) are output from the ADC 77. The dose signals DDS (C-1) and DDS (C + 1) are hereinafter referred to as reference signals DRS (C-1) and DRS (C + 1).
 リーク電荷補正部121は、メモリ52にアクセスして、メモリ52から線量信号DDS(C)を読み出す。リーク電荷補正部121は、例えば制御部54内に設けられている。リーク電荷補正部121は、下記式(1)に示す減算を行って、線量信号DDS(C)からリーク電荷補正済み線量信号RCDDS(C)を得る。
 RCDDS(C)=DDS(C)-DRS(C)・・・(1)
 ただし、DRS(C)={DRS(C-1)+DRS(C+1)}/2
 すなわち、リーク電荷補正済み線量信号RCDDS(C)は、検出用チャンネル95からの線量信号DDS(C)から、2列のリファレンスチャンネル120からの2つのリファレンス信号DRS(C-1)、DRS(C+1)の平均値であるDRS(C)を減算したものである。
Leakage charge correction unit 121 accesses memory 52 and reads out dose signal DDS (C) from memory 52. The leak charge correction unit 121 is provided, for example, in the control unit 54. The leak charge correction unit 121 performs subtraction shown in the following equation (1) to obtain a leak charge corrected dose signal RCDDS (C) from the dose signal DDS (C).
RCDDS (C) = DDS (C)-DRS (C) (1)
Where DRS (C) = {DRS (C-1) + DRS (C + 1)} / 2
That is, the leak charge corrected dose signal RCDDS (C) is obtained from the dose signal DDS (C) from the detection channel 95 to the two reference signals DRS (C-1) and DRS (C + 1) from the reference channel 120 in two columns. The average value of DRS (C) is subtracted.
 リファレンス信号DRS(C-1)、DRS(C+1)は、リファレンスチャンネル120に接続された画素40のリーク電荷LCに基づく成分である。検出用チャンネル95とリファレンスチャンネル120は隣り合っており、画素40の個数もほぼ同数であるため、リファレンス信号DRS(C-1)、DRS(C+1)の平均値DRS(C)は、検出用チャンネル95に接続された画素40のリーク電荷LCに基づく成分とほぼ一致していると考えられる。したがって、上記式(1)の減算を行うことで、線量信号DDS(C)からリーク電荷LCの成分を取り除くことができる。 The reference signals DRS (C−1) and DRS (C + 1) are components based on the leak charge LC of the pixel 40 connected to the reference channel 120. The detection channel 95 and the reference channel 120 are adjacent to each other, and the number of pixels 40 is almost the same. Therefore, the average value DRS (C) of the reference signals DRS (C-1) and DRS (C + 1) is the detection channel It is considered to be substantially coincident with the component based on the leak charge LC of the pixel 40 connected to 95. Therefore, the component of the leak charge LC can be removed from the dose signal DDS (C) by performing the subtraction of the above equation (1).
 リーク電荷補正部121の後段には、温度ドリフト補正部122が設けられている。温度ドリフト補正部122は、リーク電荷補正部121と同じく、例えば制御部54内に設けられている。温度ドリフト補正部122は、下記式(2)に示すように、リーク電荷補正済み線量信号RCDDS(C)に補正係数α(C)を乗算して、温度ドリフト補正済み線量信号DRCDDS(C)とする。
 DRCDDS(C)=RCDDS(C)×α(C)・・・(2)
A temperature drift correction unit 122 is provided downstream of the leak charge correction unit 121. The temperature drift correction unit 122 is provided, for example, in the control unit 54 as the leak charge correction unit 121 is. The temperature drift correction unit 122 multiplies the leakage charge corrected dose signal RCDDS (C) by the correction coefficient α (C) as shown in the following equation (2) to obtain a temperature drift corrected dose signal DRCDDS (C) and Do.
DRCDDS (C) = RCDDS (C) x α (C) (2)
 リファレンス信号DRS(C-1)、DRS(C+1)には、検出用チャンネル95およびリファレンスチャンネル120を含む信号処理回路51内の、図35で示した温度分布が反映されている。つまり、リファレンス信号DRS(C-1)、DRS(C+1)によれば、線量信号DDS(C)に生じている温度ドリフトがどの程度かが分かる。補正係数α(C)は、これらリファレンス信号DRS(C-1)、DRS(C+1)を変数とする計算式F{DRS(C-1)、DRS(C+1)}から求められる。補正係数α(C)は、画像読み出し動作において全てのADC77が稼働状態で各ブロックBL1~16が熱平衡状態にある場合を標準状態として、リーク電荷補正済み線量信号RCDDS(C)が標準状態にて読み出した場合と同じ値となるような係数である。補正係数α(C)は、検出用チャンネル95毎に求められる。なお、リファレンス信号DRS(C-1)、DRS(C+1)の平均値DRS(C)を変数とする計算式から補正係数α(C)を求めてもよい。 The temperature distribution shown in FIG. 35 in the signal processing circuit 51 including the detection channel 95 and the reference channel 120 is reflected in the reference signals DRS (C−1) and DRS (C + 1). That is, according to the reference signals DRS (C-1) and DRS (C + 1), it can be known how much temperature drift is occurring in the dose signal DDS (C). The correction coefficient α (C) is obtained from the calculation formula F {DRS (C−1), DRS (C + 1)} using the reference signals DRS (C−1) and DRS (C + 1) as variables. The correction coefficient α (C) is the standard condition when all the ADCs 77 are in operation in the image reading operation and each block BL 1 to 16 is in thermal equilibrium condition, and the leak charge corrected dose signal RCDDS (C) is in the standard condition. This coefficient is the same value as when read. The correction coefficient α (C) is obtained for each of the detection channels 95. Note that the correction coefficient α (C) may be obtained from a calculation formula in which the average value DRS (C) of the reference signals DRS (C−1) and DRS (C + 1) is a variable.
 チップCPには、各ブロックBLの中心部の温度TPを測定する温度測定機能が予め搭載されているものがある。この場合は、当該温度測定機能で取得した温度TPに基づいて(温度TPを変数とする計算式を用いて)、補正係数α(C)を求める。チップCPに温度測定機能が搭載されていない場合は、別に温度測定機能を設けて、そこから温度TPを取得すればよい。 There is a chip CP on which a temperature measurement function for measuring the temperature TP of the central portion of each block BL is mounted in advance. In this case, the correction coefficient α (C) is determined based on the temperature TP acquired by the temperature measurement function (using a calculation formula with the temperature TP as a variable). If the chip CP does not have a temperature measurement function, another temperature measurement function may be provided to obtain the temperature TP from there.
 なお、温度TPが標準状態であった場合等、線量信号DDS(C)に温度ドリフトが生じていないと判断した場合は、温度ドリフト補正部122による温度ドリフトの補正を施さなくてもよい。具体的には、温度TPに閾値を設定し、温度TPが閾値以下であった場合は温度ドリフトの補正を施さず、温度TPが閾値よりも高い場合は温度ドリフトの補正を施す。 When it is determined that temperature drift does not occur in the dose signal DDS (C), for example, when the temperature TP is in the standard state, the temperature drift correction unit 122 may not perform correction of the temperature drift. Specifically, a threshold is set to the temperature TP, and the temperature drift is not corrected when the temperature TP is equal to or less than the threshold, and the temperature drift is corrected when the temperature TP is higher than the threshold.
 画像読み出し動作時は、全てのADC77が常時稼働状態であるため、図35に示すような温度分布の偏りは生じにくいが、もちろん、画像信号DIS(C)に対しても温度ドリフト補正部122で温度ドリフトの補正を施してもよい。 At the time of image reading operation, since all ADCs 77 are always in the operating state, the temperature distribution as shown in FIG. 35 is unlikely to be uneven, but of course the temperature drift correction unit 122 also performs the image signal DIS (C). Correction of temperature drift may be performed.
 図20で示した上記第1-4実施形態のように、チップCP単位でADC77の電力の供給状態を切り替える場合は、図35に示す温度分布の偏りは、ブロックBL単位ではなくチップCP単位で生じる。そこで、この場合はチップCP単位で温度TPを測定して、チップCP単位で温度ドリフトを補正する。 When the power supply state of the ADC 77 is switched in chip CP units as in the first to fourth embodiments shown in FIG. 20, the temperature distribution bias shown in FIG. 35 is not in block BL units but in chip CP units. It occurs. Therefore, in this case, the temperature TP is measured in chip CP units, and the temperature drift is corrected in chip CP units.
 チップCP単位でADC77の電力の供給状態を切り替える場合は、温度分布自体に偏りを生じさせない対策、例えば、隣接するチップCP同士をヒートシンクやヒートパイプといった熱伝導部材で接続する等の対策を講じることが好ましい。 When switching the power supply state of the ADC 77 per chip CP, take measures to prevent the temperature distribution itself from being biased, for example, connecting adjacent chips CP with a heat conduction member such as a heat sink or heat pipe Is preferred.
 なお、図37では、リファレンスチャンネル120を、検出用チャンネル95を挟む隣接する1列ずつ(全2列)としたが、複数列ずつとしてもよい。好ましくは2列ずつ(全4列)以上がよい。というのは、リファレンスチャンネル120の列数が少なくリファレンス信号の個数が少ないと、各リファレンスチャンネル120でリファレンス信号の値がばらついた場合に、線量信号DDS(C)から減算するリファレンス信号の平均値DRS(C)の信頼性が低くなるためである。 Note that, in FIG. 37, the reference channel 120 is one adjacent row (two rows in total) sandwiching the detection channel 95, but may be a plurality of rows. Preferably, two rows or more (four rows in all) are preferable. That is, when the number of reference channels 120 is small and the number of reference signals is small, the average value DRS of the reference signals to be subtracted from the dose signal DDS (C) when the value of the reference signal varies in each reference channel 120 It is because the reliability of (C) becomes low.
 上記第1-9実施形態の図31に示す検出用画素90X3の場合は、信号線42と検出用チャンネル95とは別々で、検出用チャンネル95には画素40は接続されていないので、検出用チャンネル95に画素40のリーク電荷LCが流入する心配はない。また、図31において検出用チャンネル95と信号線42とを兼用した場合も、TFT106をオフにしておけば検出用画素90X3の発生電荷は信号線42へは流入しない。このため、TFT106がオフ状態の場合、検出用チャンネル95と兼用された信号線42は、あたかもリファレンスチャンネル120のように振る舞う。したがってこの場合はTFT106をオフにした状態で読み出したデジタル信号DS(C)をリファレンス信号に置き換え、TFT106をオンした状態で読み出した線量信号DDS(C)から減算すればよい。つまり、いずれにしても図31の場合は、専用のリファレンスチャンネル120を設ける必要はない。 In the case of the detection pixel 90X3 shown in FIG. 31 of the first to ninth embodiments, the signal line 42 and the detection channel 95 are separate, and the pixel 40 is not connected to the detection channel 95. The leak charge LC of the pixel 40 does not flow into the channel 95. Also in the case where the detection channel 95 and the signal line 42 are also used in FIG. 31, the generated charge of the detection pixel 90X3 does not flow into the signal line 42 if the TFT 106 is turned off. Therefore, when the TFT 106 is in the off state, the signal line 42 used also as the detection channel 95 behaves as if it is the reference channel 120. Therefore, in this case, the digital signal DS (C) read out with the TFT 106 turned off may be replaced with the reference signal, and subtracted from the dose signal DDS (C) read out with the TFT 106 turned on. That is, in any case, in the case of FIG. 31, it is not necessary to provide a dedicated reference channel 120.
 [第1-13実施形態]
 図38に示す第1-13実施形態では、制御部54は、AED動作において、ADC77の後段でデジタル信号DS(C)を伝送するインターフェース(以下、I/F(Interface))を、画像読み出し動作時よりも低い消費電力のものに切り替える。このようにしてAED動作時の信号処理回路51の消費電力を低減してもよい。
[First embodiment 1-13]
In the first to thirteenth embodiments shown in FIG. 38, in the AED operation, the control unit 54 performs an image reading operation on an interface (hereinafter referred to as I / F (Interface)) that transmits the digital signal DS (C) in the subsequent stage of the ADC 77. Switch to the one with lower power consumption than time. Thus, the power consumption of the signal processing circuit 51 during the AED operation may be reduced.
 図38において、ADC77とメモリ52との間のデジタル信号DS(C)の伝送I/Fには、LVDS(Low Voltage Differential Signaling)I/F125とCMOSI/F126の2種類が用意されている。LVDSI/F125は、伝送の正確性はCMOSI/F126に比べて高いが、消費電力はCMOSI/F126に比べて大きい。制御部54は、スイッチ127の動作を制御して、これらの伝送I/Fを切り替える。 In FIG. 38, two types of LVDS (Low Voltage Differential Signaling) I / F 125 and CMOS I / F 126 are prepared for transmission I / F of digital signal DS (C) between ADC 77 and memory 52. The LVDS I / F 125 has higher transmission accuracy than the CMOS I / F 126, but consumes more power than the CMOS I / F 126. The control unit 54 controls the operation of the switch 127 to switch these transmission I / Fs.
 図38AはAED動作時を示し、図38Bは画像読み出し動作時を示す。すなわち、AED動作時はCMOSI/F126が選択され、画像読み出し動作時はLVDSI/F125が選択される。 FIG. 38A shows the AED operation time, and FIG. 38B shows the image reading operation time. That is, the CMOS I / F 126 is selected in the AED operation, and the LVDS I / F 125 is selected in the image read operation.
 このように、AED動作時にはCMOSI/F126を選択するので、AED動作において信号処理回路51が消費する電力をさらに低減することが可能となる。線量信号DDS(C)の伝送の正確性は低くなるが、線量信号DDS(C)は患者Pの画像情報としては利用されないため、多少伝送に誤りがあっても大した問題にはならない。一方、画像読み出し動作時にはLVDSI/F125を選択するので、消費電力は嵩むが、画像信号DIS(C)をメモリ52に正確に伝送することができる。 As described above, since the CMOS I / F 126 is selected in the AED operation, it is possible to further reduce the power consumed by the signal processing circuit 51 in the AED operation. Although the accuracy of the transmission of the dose signal DDS (C) is low, the dose signal DDS (C) is not used as image information of the patient P, so even if there is a slight error in the transmission, this is not a major problem. On the other hand, since the LVDS I / F 125 is selected at the time of the image reading operation, the power consumption increases, but the image signal DIS (C) can be accurately transmitted to the memory 52.
 なお、ADC77とメモリ52との間のデジタル信号DS(C)の伝送I/FをCMOSI/F126のみとし、CMOSI/F126への供給電圧を切り替えてもよい。例えば画像読み出し動作時は供給電圧を5.0V、AED動作時は3.3Vとする。あるいは、画像読み出し動作時は2.5V、AED動作時は1.8Vとしてもよい。供給電圧が高い程、ダイナミックレンジが広くなり、伝送の正確性は高くなるが、消費電力は嵩むので、AED動作時は画像読み出し動作時よりも低い供給電圧に切り替える。これにより、AED動作において信号処理回路51が消費する電力をより低減することが可能となる。 The transmission I / F of the digital signal DS (C) between the ADC 77 and the memory 52 may be only the CMOS I / F 126, and the voltage supplied to the CMOS I / F 126 may be switched. For example, the supply voltage is set to 5.0 V at the time of image reading operation and 3.3 V at the time of AED operation. Alternatively, it may be 2.5 V at the time of image reading operation and 1.8 V at the time of AED operation. The higher the supply voltage, the wider the dynamic range and the more accurate the transmission, but the higher the power consumption, the lower the supply voltage during AED operation than during image readout operation. As a result, the power consumed by the signal processing circuit 51 in the AED operation can be further reduced.
 なお、上記各実施形態において、第2状態を、非稼働状態として例示した。上述のとおり、非稼働状態には、電力PSL_Aが供給された状態、ADC77に全く電力を供給しないパワーオフの状態、ADC77へのクロック信号の供給を止めた状態が含まれる。しかし、第2状態は、こうした非稼働状態に限らない。例えば、ADC77へのクロック信号の単位時間当たりのパルス数を第1状態よりも低減して、ADC77の単位時間当たりの消費電力を第1状態よりも低減した状態を、第2状態としてもよい。 In each of the above embodiments, the second state is illustrated as the non-operating state. As described above, the non-operating state includes the state in which the power PSL_A is supplied, the power-off state in which no power is supplied to the ADC 77, and the state in which the clock signal supply to the ADC 77 is stopped. However, the second state is not limited to such a non-operating state. For example, the number of pulses per unit time of the clock signal to the ADC 77 may be reduced as compared to the first state, and the power consumption per unit time of the ADC 77 may be reduced as compared to the first state as the second state.
 2.第2発明
 以下に説明する図39~図43に示す第2発明は、制御部54が、複数のCA60のうち、検出用チャンネル95以外の信号線42である非検出用チャンネル130(図39A参照)に接続されたCA60である非検出用CA131(図39A参照)について、その少なくとも1個へのAED動作時の供給電力を、画像読み出し動作時における通常電力よりも低い省電力状態にする、という内容である。これにより、AED動作時の非検出用CA131を含むCA60への供給電力を、画像読み出し動作時よりも低減する。
2. Second Invention In the second invention shown in FIGS. 39 to 43 described below, the control unit 54 is a non-detection channel 130 (see FIG. 39A) which is a signal line 42 other than the detection channel 95 among the plurality of CAs 60. Supply non-detecting CA 131 (see FIG. 39A) connected to at least one of the non-detecting CAs 131 (see FIG. 39A) in a power saving state lower than the normal power in the image reading operation. It is the content. As a result, the power supplied to the CA 60 including the non-detection CA 131 during the AED operation is reduced as compared to that during the image read operation.
 第2発明では、X線撮影システム10、電子カセッテ16等の基本的な構成は、上述の第1発明と同様である。また、ADC77の電力の供給状態の切り替えパターンについても、上記第1-1~第1-7実施形態で例示したパターンを適用可能である。さらに、第1発明の他の実施形態(上記第1-8~第1-13実施形態)との組み合わせも可能である。以下、第1発明と同一部分については同一の符号を付して説明を省略し、相違点を中心に説明する。 In the second invention, basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. Also, the patterns exemplified in the above 1-1 to 1-7 embodiments can be applied to the switching pattern of the power supply state of the ADC 77. Furthermore, a combination with other embodiments of the first invention (the above 1-8 to 1-13 embodiments) is also possible. Hereinafter, the same parts as those of the first invention are given the same reference numerals, and the description thereof is omitted, and the differences will be mainly described.
 [第2-1実施形態]
 図39および図40に第2-1実施形態を示す。本第2-1実施形態では、例えば、上記第1-9実施形態の図29に示す検出用画素90X1、あるいは図30に示す検出用画素90X2を含む構成を想定して説明する。ただし、構成はこれに限らない。
Embodiment 2-1
FIGS. 39 and 40 show a 2-1 embodiment. In the present second embodiment, for example, a configuration including the detection pixel 90X1 shown in FIG. 29 of the first to ninth embodiments or the detection pixel 90X2 shown in FIG. 30 will be described. However, the configuration is not limited to this.
 本第2-1実施形態では、図39Aに示すように、説明を簡単化するため、1列、3列、5列、・・・、143列の奇数列が検出用チャンネル95で、2列、4列、6列、・・・、144列の偶数列が非検出用チャンネル130である場合を例示している。以下では、検出用チャンネル95に接続されたCA60を、非検出用チャンネル130に接続されたCA60である非検出用CA131と区別するため、検出用CA132と表記する。なお、検出用チャンネル95の上部のアルファベットDTは、当該列が検出用チャンネル95であることを示し、非検出用チャンネル130の上部のアルファベットNDTは、当該列が非検出用チャンネル130であることを示している。 In the present second embodiment, as shown in FIG. 39A, in order to simplify the description, the odd channel of 1 row, 3 columns, 5 columns,. The case where even-numbered columns of four columns, six columns,..., 144 columns are the non-detection channel 130 is illustrated. Hereinafter, the CA 60 connected to the detection channel 95 is referred to as a detection CA 132 in order to distinguish it from the non-detection CA 131 which is the CA 60 connected to the non-detection channel 130. The alphabet DT at the top of the detection channel 95 indicates that the column is the detection channel 95, and the alphabet NDT at the top of the non-detection channel 130 indicates that the column is the non-detection channel 130. It shows.
 MUX76は、上記各実施形態と同じく、複数のCA60からのアナログの電圧信号V(C)を順次選択して、選択したアナログの電圧信号V(C)をADC77に出力する。 The MUX 76 sequentially selects the analog voltage signals V (C) from the plurality of CAs 60 and outputs the selected analog voltage signal V (C) to the ADC 77, as in the above embodiments.
 本第2-1実施形態では、図39Bに示すように、AED動作時のCA60への供給電力P_Cを、検出用CA132の場合はPN_Cとし、非検出用CA131の場合はPN_Cよりも低いPL_Cとする。供給電力PN_Cは、画像読み出し動作時に全てのCA60に供給される電力であり、通常電力に相当する。非検出用CA131への供給電力PL_Cは、通常電力PN_Cの例えば1/10の値である。すなわち、図39Bに示す非検出用CA131の状態は、通常電力PN_Cよりも低く、かつ0よりも大きい電力PL_Cが供給される低電力状態である。 In the present second embodiment, as shown in FIG. 39B, the supplied power P_C to the CA 60 during AED operation is PN_C in the case of CA 132 for detection and PL_C lower than PN_C in the case of CA 131 for non-detection. Do. The supplied power PN_C is power supplied to all the CAs 60 at the time of image reading operation, and corresponds to normal power. The supplied power PL_C to the non-detection CA 131 is, for example, a value 1/10 of the normal power PN_C. That is, the state of non-detection CA 131 shown in FIG. 39B is a low power state in which power PL_C lower than normal power PN_C and larger than 0 is supplied.
 このように、非検出用CA131に対して通常電力PN_Cよりも低い供給電力PL_Cしか与えられていないため、非検出用CA131からのアナログの電圧信号V(C)に基づくデジタル信号DS(C)は、データ的には意味のない値となる。このため、図39Aに示すように、制御部54は、非検出用CA131からのアナログの電圧信号V(C)に基づくデジタル信号DS(C)を、線量信号DDS(C)としては用いずに破棄する。 As described above, since only the supply power PL_C lower than the normal power PN_C is supplied to the non-detection CA 131, the digital signal DS (C) based on the analog voltage signal V (C) from the non-detection CA 131 is The data is meaningless. Therefore, as shown in FIG. 39A, the control unit 54 does not use the digital signal DS (C) based on the analog voltage signal V (C) from the non-detection CA 131 as the dose signal DDS (C). Destroy
 図40は、本第2-1実施形態の電子カセッテの動作手順を示すフローチャートである。上記第1-1実施形態の図17で示したフローチャートとの相違点は、一点鎖線で囲ったステップST1202およびステップST1802である。以下、相違点のみ説明する。 FIG. 40 is a flowchart showing the operation procedure of the electronic cassette of the present second embodiment. The difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1202 and step ST1802 surrounded by a dashed dotted line. Only the differences will be described below.
 ステップST1202において、AED動作では、検出用CA132への供給電力を通常電力PN_Cとし、非検出用CA131への供給電力を、PN_Cよりも低いPL_Cとする(照射開始検出ステップ)。また、ステップST1802において、画像読み出し動作では、検出用CA132、非検出用CA131の区別なく、全てのCA60への供給電力を通常電力PN_Cとする(画像読み出しステップ)。 In step ST1202, in the AED operation, the power supplied to the detection CA 132 is the normal power PN_C, and the power supplied to the non-detection CA 131 is PL_C lower than PN_C (irradiation start detection step). In step ST1802, in the image reading operation, the power supplied to all the CAs 60 is set as the normal power PN_C regardless of the detection CA 132 and the non-detection CA 131 (image reading step).
 このように、AED動作時の非検出用CA131への供給電力を、通常電力よりも低い省電力状態にするので、AED動作における信号処理回路51が消費する電力を低減することが可能となる。このため、上記第1発明と同じく、バッテリ65が従来よりも長持ちし、これによりバッテリ65の充電回数も減るので、撮影効率を向上させることができる。 As described above, since the power supplied to the non-detection CA 131 during the AED operation is set to the power saving state lower than the normal power, the power consumed by the signal processing circuit 51 in the AED operation can be reduced. Therefore, as in the first aspect of the invention, the battery 65 lasts longer than in the prior art, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
 なお、AED動作時に省電力状態とする非検出用CA131は、全ての非検出用CA131のうちの少なくとも1つであればよい。もちろん、全ての非検出用CA131を省電力状態としたほうが、最大の効果を発揮するため好ましい。 Note that the non-detection CA 131 to be in the power saving state during the AED operation may be at least one of all the non-detection CAs 131. Of course, it is preferable to set all the non-detection CAs 131 in the power saving state in order to exert the maximum effect.
 [第2-2実施形態]
 図41に第2-2実施形態を示す。図39および図40に示す上記第2-1実施形態では、AED動作時の非検出用CA131への供給電力PL_Cを0よりも大きい値としているが、第2-2実施形態では、図41に示すように、AED動作時の非検出用CA131への供給電力PL_Cを0とする。すなわち、非検出用CA131を、電力の供給が停止されたパワーオフの状態とする。
Embodiment 2-2
A second embodiment is shown in FIG. 39 and 40, the supplied power PL_C to the non-detection CA 131 during the AED operation is set to a value larger than 0. However, in the 2-2 embodiment, FIG. As shown, the supply power PL_C to the non-detection CA 131 during AED operation is set to 0. That is, the non-detection CA 131 is brought into the power-off state in which the supply of power is stopped.
 このように、非検出用CA131をパワーオフの状態とすれば、非検出用CA131への供給電力が0になるので、図39および図40に示す上記第2-1実施形態の場合と比べて、さらに非検出用CA131の消費電力を低減することができる。 As described above, when the non-detection CA 131 is in the power-off state, the power supplied to the non-detection CA 131 is 0, which is different from the case of the above-described second embodiment shown in FIGS. 39 and 40. Furthermore, the power consumption of the non-detection CA 131 can be reduced.
 ただし、非検出用CA131をパワーオフの状態とした場合、非検出用CA131の2つの入力端子間のバーチャルショート状態が保てず、非検出用CA131の入力段の電位が不定となり、これに伴って非検出用チャンネル130の電荷も不安定となり、後の画像読み出し動作に悪影響を及ぼしてしまう。このため、本第2-2実施形態のように、非検出用CA131への供給電力を完全に0としてパワーオフの状態とするよりも、上記第2-1実施形態のように、非検出用CA131の入力段の電位が不定とならない程度の供給電力PL_Cを与えて低電力状態とするほうが、より好ましい。 However, when the non-detection CA 131 is in the power-off state, the virtual short state between the two input terminals of the non-detection CA 131 can not be maintained, and the potential of the input stage of the non-detection CA 131 becomes unstable. As a result, the charge of the non-detection channel 130 also becomes unstable, which adversely affects the later image reading operation. For this reason, as in the case of the second embodiment, the power for supplying the non-detection CA 131 is completely 0 and the power-off state is set as in the case of the second embodiment. It is more preferable to supply the supply power PL_C to such an extent that the potential of the input stage of the CA 131 does not become unstable to make the power state low.
 なお、非検出用CA131をパワーオフの状態とする場合は、画像読み出し動作に悪影響を及ぼさないようにするため、図42に示すような対策を講じればよい。すなわち、非検出用CA131の前段に、制御部54により開閉が制御されるスイッチ133を設ける。そして、制御部54は、供給電力が0とされる図41Aに示すAED動作時は、スイッチ133をオフして非検出用CA131と非検出用チャンネル130との接続を断つ。さらに、制御部54は、通常電力PN_Cが供給されている場合と同様の基準電位を非検出用CA131に与える。対して図41Bに示す通常電力PN_Cが供給される画像読み出し動作時は、スイッチ133をオンする。こうすれば、スイッチ133を設けたりする手間はあるが、非検出用CA131の入力段の電位が不定となることに起因する非検出用チャンネル130の電荷の不安定化の影響が、画像読み出し動作時に及ぶことがない。 When the non-detection CA 131 is in the power-off state, measures such as shown in FIG. 42 may be taken to prevent the image reading operation from being adversely affected. That is, the switch 133 whose opening and closing is controlled by the control unit 54 is provided at the front stage of the non-detection CA 131. Then, during the AED operation shown in FIG. 41A in which the supplied electric power is 0, the control unit 54 turns off the switch 133 to disconnect the non-detection CA 131 and the non-detection channel 130 from each other. Furthermore, the control unit 54 supplies the non-detection CA 131 with the same reference potential as when the normal power PN_C is supplied. On the other hand, the switch 133 is turned on at the time of the image reading operation in which the normal power PN_C shown in FIG. 41B is supplied. In this case, although there is a need to provide the switch 133, the influence of the charge instability of the non-detection channel 130 due to the potential of the input stage of the non-detection CA 131 becoming unstable is an image reading operation. It never happens.
 この場合も上記第2-1実施形態と同じく、AED動作時にパワーオフの状態とする非検出用CA131は、全ての非検出用CA131のうちの少なくとも1つであればよいが、消費電力低減の観点からは、全ての非検出用CA131をパワーオフの状態としたほうがより好ましい。 Also in this case, as in the above-described second embodiment, the non-detection CA 131 to be in the power-off state at the time of AED operation may be at least one of all non-detection CAs 131. From the viewpoint, it is more preferable that all the non-detection CAs 131 be in the power-off state.
 [第2-3実施形態]
 図43に示す第2-3実施形態では、非検出用CA131だけでなく、検出用CA132も、通常電力PN_Cよりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動する。具体的には、AED動作時の非検出用CA131への供給電力を、通常電力PN_Cの1/10のPL_C1とし、さらに検出用CA132への供給電力を、通常電力PN_Cの1/2のPL_C2とする。通常電力PN_Cの1/2とした分、検出用CA132の過渡応答特性は低下する。この場合、この過渡応答特性の低下に見合うようにADC77の動作速度を遅らせる。そうすれば、データ的に意味のある線量信号DDS(C)が得られるので、問題はない。非検出用CA131に加えて検出用CA132への供給電力も低減するので、AED動作時の信号処理回路51の消費電力のさらなる低減が可能となる。
Embodiment 2-3
In the second to third embodiments shown in FIG. 43, not only the non-detection CA 131 but also the detection CA 132 are driven in a low power state in which power lower than the normal power PN_C and larger than 0 is supplied. Specifically, the power supplied to the non-detection CA 131 during AED operation is PL_C1 which is 1/10 of the normal power PN_C, and the power supplied to the detection CA 132 is PL_C2 which is 1⁄2 of the normal power PN_C. Do. The transient response characteristic of the detection CA 132 is degraded by the half of the normal power PN_C. In this case, the operating speed of the ADC 77 is delayed to compensate for the degradation of the transient response characteristic. Then, there is no problem because a dose signal DDS (C) that is meaningful in data can be obtained. Since the power supplied to the detection CA 132 is also reduced in addition to the non-detection CA 131, the power consumption of the signal processing circuit 51 during the AED operation can be further reduced.
 なお、本第2-3実施形態においても、上記各実施形態の非検出用CA131と同じく、AED動作時に低電力状態とする検出用CA132は、全ての検出用CA132のうちの少なくとも1つであればよいが、全ての検出用CA132を低電力状態としたほうが、消費電力低減の観点ではより好ましい。 In the second to third embodiments, as in the case of the non-detection CA 131 of each of the above-described embodiments, the detection CA 132 to be in the low power state at the time of AED operation is at least one of all the detection CAs 132. However, it is more preferable to set all the detection CAs 132 in the low power state from the viewpoint of power consumption reduction.
 上述したように、本第2発明の各実施形態は、上記第1発明の各実施形態と複合して実施してもよい。例えば、上記第1-1実施形態の図14等で示したように、制御部54により、ADC77、およびこれとブロックBLを構成するMUX76の電力の供給状態を、第1状態と第2状態とに周期的に切り替えてもよい。この場合、第1状態とは、例えば上述の稼働状態であり、MUX76およびADC77の各々の機能を発揮するのに必要な電力が各々に供給されている状態である。一方、第2状態とは、例えば上述の非稼働状態であり、MUX76およびADC77のうちの少なくとも1つに対して、機能を発揮できない電力が供給されている状態、もしくは、ADC77にクロック信号が与えられていない状態である。さらには、第2状態は、ADC77へのクロック信号の単位時間当たりのパルス数を第1状態よりも低減した状態も含まれる。 As described above, each embodiment of the second invention may be implemented in combination with each embodiment of the first invention. For example, as shown in FIG. 14 and the like of the first-first embodiment, the control unit 54 supplies power of the ADC 77 and the MUX 76 that configures the block BL with this to the first state and the second state. It may be switched periodically. In this case, the first state is, for example, the above-described operating state, in which power necessary to perform the functions of the MUX 76 and the ADC 77 is supplied to each. On the other hand, the second state is, for example, the above-mentioned non-operating state, in which power that can not perform a function is supplied to at least one of MUX 76 and ADC 77, or a clock signal is supplied to ADC 77. It has not been done. Furthermore, the second state includes a state in which the number of pulses per unit time of the clock signal to the ADC 77 is reduced compared to the first state.
 本第2発明と上記第1発明のADC77、ひいてはブロックBLの供給電力の切り替えパターンの組み合わせについては、例えば以下に示す組み合わせが可能である。まず、上記第1-1実施形態の図14等で示したように、電力の供給状態を周期的に切り替えるMUX76およびADC77のブロックBLが2個以上ある場合、制御部54により、2個以上のブロックBLのうちの少なくとも2個のブロックBLの電力の供給状態の切り替えのタイミングをずらしてもよい。 For the combination of the ADC 77 of the second invention and the above-described first invention, and further the switching pattern of the power supply of the block BL, for example, the combination shown below is possible. First, as shown in FIG. 14 and the like of the first-first embodiment, when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
 さらに、これも上記第1-1実施形態の図14等で示したように、2個以上のブロックBLが属する複数のグループ毎に電力の供給状態の切り替えのタイミングをずらしてもよい。この場合、同じグループに属する2個のブロックBLの間には、少なくとも1個のブロックBLが配されていることが好ましい。あるいは、上記第1-2実施形態の図18等で示したように、2個以上のブロックBLの全ての電力の供給状態の切り替えのタイミングをずらしてもよい。 Furthermore, as shown in FIG. 14 and the like of the first-first embodiment, the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong. In this case, preferably, at least one block BL is disposed between two blocks BL belonging to the same group. Alternatively, as shown in FIG. 18 and the like of the first and second embodiments, the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
 上記第1-5実施形態の図21等で示したように、非検出用CA131のみが接続されているMUX76を含むブロックBLが複数あった場合は、そのうちの少なくとも1つを常時第2状態にしてもよい。 As shown in FIG. 21 and the like of the first to fifth embodiments, when there are a plurality of blocks BL including the MUX 76 to which only the non-detection CA 131 is connected, at least one of them is always kept in the second state. May be
 図35~図37の上記第1-12実施形態で示したように、線量信号DDS(C)にリーク電荷補正と温度ドリフト補正を施してもよい。 Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
 この他にも、図25~図27に示す、AED動作に用いる検出用画素90が接続された信号線42である検出用チャンネル95が設定される上記第1-8実施形態、図28~図31に示す、AED動作専用の検出用画素90Xを設けた上記第1-9実施形態、図32に示す、検出用画素90を設定変更可能とした上記第1-10実施形態、図33および図34に示す、AED動作時のCDS61の動作を簡略化する上記第1-11実施形態、図38に示す、デジタル信号の伝送I/Fを切り替える上記第1-13実施形態を組み合わせてもよい。 Besides, the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set. The first to ninth embodiments shown in FIG. 31, provided with detection pixels 90X dedicated to the AED operation, the above first to tenth embodiments shown in FIG. 32, in which the detection pixels 90 can be changed, FIG. 33 and FIG. The first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
 3.第3発明
 以下に説明する図44~図49に示す第3発明は、制御部54が、検出用CA132を含む一部のCAからのアナログの電圧信号V(C)を選択的にADC77に対して出力させ、ADC77に対して、選択的に出力されたアナログの電圧信号V(C)に対するAD変換処理のみを実施させ、かつ、AED動作時のADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する、という内容である。
3. Third Invention In the third invention shown in FIGS. 44 to 49 described below, the control unit 54 selectively transmits the analog voltage signal V (C) from a part of CA including the detection CA 132 to the ADC 77. Output and the ADC 77 performs only AD conversion processing on the selectively output analog voltage signal V (C), and the number of pulses per unit time of the clock signal of the ADC 77 during AED operation , The content is reduced compared to the image reading operation.
 第3発明では、上記第2発明と同じく、X線撮影システム10、電子カセッテ16等の基本的な構成は、上述の第1発明と同様である。また、ADC77の電力の供給状態の切り替えパターンについても、上記第1-1~第1-7実施形態で例示したパターンを適用可能である。さらに、第1発明の他の実施形態(上記第1-8~第1-13実施形態)、並びに第2発明の上記第2-1~第2-3実施形態との組み合わせも可能である。以下、第1発明、第2発明と同一部分については同一の符号を付して説明を省略し、相違点を中心に説明する。 In the third invention, as in the second invention, the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. Also, the patterns exemplified in the above 1-1 to 1-7 embodiments can be applied to the switching pattern of the power supply state of the ADC 77. Furthermore, combinations with other embodiments of the first invention (the above 1-8 to 1-13 embodiments) and the above-mentioned 2-1 to 2-3 embodiments of the second invention are also possible. Hereinafter, the same parts as those of the first invention and the second invention are denoted by the same reference numerals, and the description thereof is omitted, and the differences will be mainly described.
 [第3-1実施形態]
 図44~図48に第3-1実施形態を示す。本第3-1実施形態では、上記第2-1実施形態と同じく、例えば、上記第1-9実施形態の図29に示す検出用画素90X1、あるいは図30に示す検出用画素90X2を含む構成を想定して説明するが、構成はこれに限らない。
Embodiment 3-1
FIGS. 44 to 48 show a third embodiment. In the present third embodiment, as in the above second embodiment, for example, a configuration including the detection pixel 90X1 shown in FIG. 29 of the above first embodiment or the detection pixel 90X2 shown in FIG. However, the configuration is not limited to this.
 図44は、図9で示したのと同じく、1列目~144列目のエリアAR1の線量信号DDS(C)の読み出し手順を示したものである。図44では、図39Aと同じく、1列、3列、5列、・・・、143列の奇数列が検出用チャンネル95で、2列、4列、6列、・・・、144列の偶数列が非検出用チャンネル130である場合を例示している。 FIG. 44 shows the procedure for reading out the dose signal DDS (C) of the area AR1 in the first to 144th columns, as in FIG. In FIG. 44, as in FIG. 39A, the odd channel of 1 column, 3 columns, 5 columns,..., 143 columns is the detection channel 95, and 2 columns, 4 columns, 6 columns,. The case where even-numbered columns are non-detection channels 130 is illustrated.
 この場合、図39Aとの相違点は、MUX76がMUX135に変更されている点である。MUX76は、1列ずつ順次選択する機能しか持ち合わせていない。対してMUX135は、偶数列の非検出用チャンネル130を飛ばして、奇数列の検出用チャンネル95の検出用CA132からのアナログの電圧信号V(C)を順次選択する機能を有する。すなわち、MUX135は、接続される複数のCA60のうちの一部のCA、この場合は検出用チャンネル95の検出用CA132からのアナログの電圧信号V(C)を選択する機能を有する。この機能は、MUX135を構成するシフトレジスタのフリップフロップ回路にスイッチを設ける等して実現可能である。 In this case, the difference from FIG. 39A is that MUX 76 is changed to MUX 135. The MUX 76 has only the function of sequentially selecting one column at a time. On the other hand, the MUX 135 has a function of sequentially selecting the analog voltage signal V (C) from the detection CA 132 of the detection channel 95 of the odd number column by skipping the non detection channel 130 of the even number column. That is, the MUX 135 has a function of selecting an analog voltage signal V (C) from a part of the plurality of connected CAs 60, in this case, the detection CA 132 of the detection channel 95. This function can be realized by providing a switch or the like in the flip flop circuit of the shift register constituting the MUX 135.
 線量信号DDS(C)の読み出し手順は、まず図44Aに示すように、第1MUX135によって1列目のアナログの電圧信号V(1)が選択される。これによりアナログの電圧信号V(1)が第1ADC77に入力され、第1ADC77によって線量信号DDS(1)に変換される。次いで図44Bに示すように、2列目のアナログの電圧信号V(2)は飛ばされて、第1MUX135によって3列目のアナログの電圧信号V(3)が選択される。これによりアナログの電圧信号V(3)が第1ADC77に入力され、第1ADC77によって線量信号DDS(3)に変換される。続いて図44Cに示すように、第1MUX135によって5列目のアナログの電圧信号V(5)が選択される。これによりアナログの電圧信号V(5)が第1ADC77に入力され、第1ADC77によって線量信号DDS(5)に変換される。 In the reading procedure of the dose signal DDS (C), first, as shown in FIG. 44A, the first MUX 135 selects the analog voltage signal V (1) in the first column. As a result, the analog voltage signal V (1) is input to the first ADC 77, and is converted into the dose signal DDS (1) by the first ADC 77. Next, as shown in FIG. 44B, the analog voltage signal V (2) in the second column is skipped, and the first MUX 135 selects the analog voltage signal V (3) in the third column. As a result, the analog voltage signal V (3) is input to the first ADC 77, and is converted into the dose signal DDS (3) by the first ADC 77. Subsequently, as shown in FIG. 44C, the first MUX 135 selects the analog voltage signal V (5) in the fifth column. Accordingly, the analog voltage signal V (5) is input to the first ADC 77, and is converted into the dose signal DDS (5) by the first ADC 77.
 こうした一連の動作が第1MUX76と第1ADC77とで繰り返されることで、最終的には図44Dに示すように、143列目のアナログの電圧信号V(143)が線量信号DDS(143)に変換されて、エリアAR1の線量信号DDS(1)、DDS(3)、DDS(5)、・・・DDS(143)の読み出しが終了する。他のエリアAR2~AR16の各MUX135および各ADC77についても同様である。 Such a series of operations are repeated by the first MUX 76 and the first ADC 77, and finally, as shown in FIG. 44D, the analog voltage signal V (143) of the 143rd column is converted to the dose signal DDS (143) Thus, the reading of the dose signals DDS (1), DDS (3), DDS (5),..., DDS (143) of the area AR1 is completed. The same applies to each MUX 135 and each ADC 77 of the other areas AR2 to AR16.
 このように、画像読み出し動作時は全ての列の画像信号DIS(C)を読み出すのに対し、AED動作時は奇数列の線量信号DDS(C)だけを選択的に読み出すので、同じ時間で読み出さなければならないデジタル信号DS(C)の個数が、AED動作時は画像読み出し動作時と比べて1/2に減る。このAED動作時において、個数が1/2に減った線量信号DDS(C)を、全列の画像信号DIS(C)を読み出す画像読み出し動作と同じ時間で読み出すならば、その分ADC77の動作速度を遅くすることができる。 As described above, the image signals DIS (C) of all the columns are read out during the image reading operation, while only the dose signals DDS (C) of the odd columns are selectively read out during the AED operation. The number of digital signals DS (C) that must be reduced to 1/2 during AED operation compared to image reading operation. During this AED operation, if the dose signal DDS (C) whose number is reduced to 1/2 is read out in the same time as the image reading operation for reading the image signals DIS (C) of all the columns, the operating speed of the ADC 77 Can be slowed down.
 具体的には図45に示すように、ADC77のクロック信号の単位時間当たりのパルス数NPU_Aを、画像読み出し動作時は通常のパルス数であるNPUN_A、AED動作時はNPUN_Aの1/2のNPUL_Aとする。 Specifically, as shown in FIG. 45, the pulse number NPU_A of the clock signal of the ADC 77 per unit time, the normal pulse number NPUN_A at the time of image readout operation, and NPUL_A of 1⁄2 of NPUN_A at the time of AED operation Do.
 ADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時のNPUN_Aの1/2のNPUL_Aとする方法には2通りある。第1の方法は、図46に示すものである。図46Aは画像読み出し動作時のクロック信号CLN_A、図46BはAED動作時のクロック信号CLL_Aをそれぞれ示す。 There are two ways to set the number of pulses per unit time of the clock signal of the ADC 77 to NPUL_A which is 1/2 of NPUN_A at the time of image reading operation. The first method is shown in FIG. FIG. 46A shows the clock signal CLN_A at the time of image reading operation, and FIG. 46B shows the clock signal CLL_A at the time of AED operation.
 図46においては、クロック信号の周期TC自体は、画像読み出し動作時のクロック信号CLN_AとAED動作時のクロック信号CLL_Aとで同一である。ただし、クロック信号CLN_Aは、検出用チャンネル95、非検出用チャンネル130に関係なく、連続的に絶え間なく発せられているのに対して、クロック信号CLL_Aは、奇数列の検出用チャンネル95に該当する部分のみ発せられ、偶数列の非検出用チャンネル130に該当する部分は発せられずに休止されている。 In FIG. 46, the period TC of the clock signal itself is the same between the clock signal CLN_A at the time of the image reading operation and the clock signal CLL_A at the time of the AED operation. However, while the clock signal CLN_A is continuously and continuously issued regardless of the detection channel 95 and the non-detection channel 130, the clock signal CLL_A corresponds to the detection channel 95 of the odd-numbered column. Only the part is emitted, and the part corresponding to the non-detection channel 130 in the even number row is paused without being emitted.
 図46の例では、単位時間Tは、隣接する2列のデジタル信号DS(C)の出力に要する期間である。前述のように、クロック信号CLL_Aは、隣接する2列のうちの偶数列の非検出用チャンネル130に該当する部分が休止されているので、単位時間T当たりのパルス数は、クロック信号CLN_Aの1/2となる。 In the example of FIG. 46, the unit time T is a period required for the output of the digital signal DS (C) of two adjacent columns. As described above, since the clock signal CLL_A is paused at the portion corresponding to the non-detection channel 130 in the even-numbered column among the two adjacent columns, the number of pulses per unit time T is one clock signal CLN_A. It will be / 2.
 ADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時のNPUN_Aの1/2のNPUL_Aとする第2の方法は、図47に示すものである。図46と同様に、図47Aは画像読み出し動作時のクロック信号CLN_A、図47BはAED動作時のクロック信号CLL_Aをそれぞれ示す。画像読み出し動作時のクロック信号CLN_Aは、図46の場合と全く同じである。対して、AED動作時のクロック信号CLL_Aには、図46Bで示したような休止期間は設けられておらず、替わりにクロック信号CLN_Aの周期TCに対して、CLL_Aの周期は2TCと2倍長い。 A second method of setting the number of pulses per unit time of the clock signal of the ADC 77 to NPUL_A which is 1/2 of NPUN_A at the time of image reading operation is shown in FIG. Similarly to FIG. 46, FIG. 47A shows a clock signal CLN_A at the time of image reading operation, and FIG. 47B shows a clock signal CLL_A at the time of AED operation. The clock signal CLN_A at the time of the image reading operation is exactly the same as the case of FIG. On the other hand, the clock signal CLL_A at the time of AED operation is not provided with a pause period as shown in FIG. 46B, and instead, the cycle of CLL_A is twice as long as 2TC with respect to the cycle TC of the clock signal CLN_A. .
 図47の例では、単位時間Tは、クロック信号CLL_Aの周期2TCである。周期2TCでは、クロック信号CLN_Aのパルス数は2個、対してクロック信号CLL_Aのパルス数は1個である。このため、クロック信号CLN_Aの単位時間T当たりのパルス数は、図46の場合と同じく、クロック信号CLN_Aの1/2となる。 In the example of FIG. 47, the unit time T is a cycle 2TC of the clock signal CLL_A. In the cycle 2TC, the number of pulses of the clock signal CLN_A is two, while the number of pulses of the clock signal CLL_A is one. Therefore, the number of pulses per unit time T of the clock signal CLN_A is 1⁄2 of the clock signal CLN_A as in the case of FIG.
 図48は、本第3-1実施形態の電子カセッテの動作手順を示すフローチャートである。上記第1-1実施形態の図17で示したフローチャートとの相違点は、一点鎖線で囲ったステップST1203およびステップST1803である。以下、相違点のみ説明する。 FIG. 48 is a flowchart showing the operation procedure of the electronic cassette of the present 3-1 embodiment. The difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1203 and step ST1803 surrounded by an alternate long and short dash line. Only the differences will be described below.
 ステップST1203において、AED動作では、検出用CA132からのアナログの電圧信号V(C)を選択的にADC77に対して出力させ、ADC77に対して、選択的に出力されたアナログの電圧信号V(C)に対するAD変換処理のみを実施させる。そして、ADC77のクロック信号の単位時間T当たりのパルス数を、画像読み出し動作時よりも低減する(照射開始検出ステップ)。また、ステップST1803において、画像読み出し動作では、ADC77のクロック信号の単位時間T当たりのパルス数を通常のパルス数(NPUN_A)とする(画像読み出しステップ)。 In step ST1203, in the AED operation, the analog voltage signal V (C) from the detection CA 132 is selectively output to the ADC 77, and the analog voltage signal V (C Only the AD conversion process for Then, the number of pulses per unit time T of the clock signal of the ADC 77 is reduced compared to that at the time of the image reading operation (irradiation start detection step). In step ST1803, the number of pulses per unit time T of the clock signal of the ADC 77 is set as the normal number of pulses (NPUN_A) in the image reading operation (image reading step).
 このように、AED動作時のADC77のクロック信号の単位時間T当たりのパルス数を、画像読み出し動作時よりも低減するので、AED動作時のADC77の駆動に掛かる消費電力を低減することができ、ひいてはAED動作時の信号処理回路51の消費電力を低減することができる。このため、上記第1、第2発明と同じく、バッテリ65が従来よりも長持ちし、これによりバッテリ65の充電回数も減るので、撮影効率を向上させることができる。 As described above, since the number of pulses per unit time T of the clock signal of the ADC 77 at the time of AED operation is reduced compared to that at the time of the image reading operation, power consumption for driving the ADC 77 at the time of AED operation can be reduced. As a result, the power consumption of the signal processing circuit 51 during the AED operation can be reduced. Therefore, as in the first and second aspects of the invention, the battery 65 lasts longer than in the prior art, thereby reducing the number of times the battery 65 is charged, so that the imaging efficiency can be improved.
 なお、図44では、説明の便宜上、1つのエリアARのうちの半分の列を検出用チャンネル95としたが、上記第1-8実施形態で述べたように、検出用チャンネル95の設定の仕方は自由である。 In FIG. 44, for convenience of explanation, a half row of one area AR is used as the detection channel 95, but as described in the first to eighth embodiments, the method of setting the detection channel 95 Is free.
 [第3-2実施形態]
 図49に第3-2実施形態を示す。上記第3-1実施形態では、接続される複数のCA60のうちの一部のCAからのアナログの電圧信号V(C)を選択する機能を有するMUX135を用いた。しかし、そうした機能をもつMUX135が汎用の製品として存在しない場合は、例えば1列ずつ順次選択する機能しかないMUX76を改造してMUX135としたり、上記機能を持つMUX135を特注で作らせたりする等の手間と費用が掛かる。そこで、図49に示す第3-2実施形態では、一般的なMUX76を用いながらも、一部のCAからのアナログの電圧信号V(C)を選択的にADC76に対して出力させる。
Embodiment 3-2
A third embodiment is shown in FIG. In the above-described 3-1 embodiment, the MUX 135 having a function of selecting the analog voltage signal V (C) from a part of the plurality of connected CAs 60 is used. However, when the MUX 135 having such a function does not exist as a general-purpose product, for example, the MUX 76 having only the function of sequentially selecting one row at a time is modified to make the MUX 135, or the MUX 135 having the above function is custom-made It takes time and money. Therefore, in the third-2 embodiment shown in FIG. 49, the analog voltage signal V (C) from a part of CA is selectively output to the ADC 76 while using the general MUX 76.
 図49は、本第3-2実施形態における検出用チャンネル95の回路構成を示す。検出用チャンネル95は、CDS61の後段で、MUX76に接続される第1経路140と、MUX76を介さずに、ADC77に接続される第2経路141とに分かれている。第1経路140は、MUX76を介して、検出用CA132からのアナログの電圧信号V(C)をADC77に出力する経路である。対して第2経路141は、MUX76を介さずに、アナログの電圧信号V(C)をADC77に出力する経路である。 FIG. 49 shows a circuit configuration of the detection channel 95 in the present third embodiment. The detection channel 95 is divided into a first path 140 connected to the MUX 76 and a second path 141 connected to the ADC 77 without the MUX 76 at a stage subsequent to the CDS 61. The first path 140 is a path that outputs the analog voltage signal V (C) from the detection CA 132 to the ADC 77 via the MUX 76. On the other hand, the second path 141 is a path for outputting the analog voltage signal V (C) to the ADC 77 without passing through the MUX 76.
 検出用チャンネル95、第1経路140、および第2経路141には、スイッチ142が接続されている。制御部54は、このスイッチ142の駆動を制御して、検出用チャンネル95と接続する経路を、第1経路140と第2経路141とに切り替える。 A switch 142 is connected to the detection channel 95, the first path 140, and the second path 141. The control unit 54 controls the drive of the switch 142 to switch the path connected to the detection channel 95 between the first path 140 and the second path 141.
 図49AはAED動作時を示し、図49Bは画像読み出し動作時を示す。すなわち、スイッチ142によりAED動作時は第2経路141が選択され、画像読み出し動作時は第1経路140が選択される。 FIG. 49A shows the AED operation time, and FIG. 49B shows the image reading operation time. That is, the second path 141 is selected by the switch 142 during the AED operation, and the first path 140 is selected during the image reading operation.
 このように、検出用チャンネル95を、MUX76を介して、検出用CA132からのアナログの電圧信号V(C)をADC77に出力する第1経路140と、MUX76を介さずに、検出用CA132からのアナログの電圧信号V(C)をADC77に出力する第2経路141に分ける。そして、AED動作時はスイッチ142を制御して第2経路141を選択する。したがって、図44で示した上記第3-1実施形態のような特別なMUX135を用意する必要がなく、手間と費用を省くことができる。 Thus, the first channel 140 for outputting the analog voltage signal V (C) from the detection CA 132 to the ADC 77 via the MUX 76 and the detection channel 95 from the detection CA 132 without passing through the MUX 76. The analog voltage signal V (C) is divided into a second path 141 for outputting to the ADC 77. Then, at the time of the AED operation, the switch 142 is controlled to select the second path 141. Therefore, it is not necessary to prepare a special MUX 135 as in the above-described third embodiment shown in FIG. 44, and it is possible to save time and effort.
 上述したように、本第3発明の各実施形態は、上記第1発明および上記第2発明の各実施形態と複合して実施してもよい。例えば、上記第2発明の場合と同じく、上記第1発明を適用して、上記第1-1実施形態の図14等で示したように、制御部54により、ADC77、およびこれとブロックBLを構成するMUX76の電力の供給状態を、第1状態と第2状態とに周期的に切り替えてもよい。なお、第1状態と第2状態の定義は、上記第2発明の末尾で述べた通りである。 As described above, each embodiment of the third invention may be implemented in combination with each embodiment of the first invention and the second invention. For example, as in the case of the second invention, as shown in FIG. 14 and the like of the first-first embodiment by applying the first invention, the controller 54 controls the ADC 77 and the block BL. The power supply state of the MUX 76 may be switched periodically between the first state and the second state. The definitions of the first state and the second state are as described at the end of the second invention.
 上記第2発明と同じく、本第3発明と上記第1発明のADC77、ひいてはブロックBLの供給電力の切り替えパターンの組み合わせについては、例えば以下に示す組み合わせが可能である。まず、上記第1-1実施形態の図14等で示したように、電力の供給状態を周期的に切り替えるMUX76およびADC77のブロックBLが2個以上ある場合、制御部54により、2個以上のブロックBLのうちの少なくとも2個のブロックBLの電力の供給状態の切り替えのタイミングをずらしてもよい。 Similar to the second aspect of the invention, the combination of the third aspect of the invention and the ADC 77 of the first aspect of the invention and the switching pattern of the power supply of the block BL can be, for example, the following combination. First, as shown in FIG. 14 and the like of the first-first embodiment, when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
 さらに、これも上記第1-1実施形態の図14等で示したように、2個以上のブロックBLが属する複数のグループ毎に電力の供給状態の切り替えのタイミングをずらしてもよい。この場合、同じグループに属する2個のブロックBLの間には、少なくとも1個のブロックBLが配されていることが好ましい。あるいは、上記第1-2実施形態の図18等で示したように、2個以上のブロックBLの全ての電力の供給状態の切り替えのタイミングをずらしてもよい。 Furthermore, as shown in FIG. 14 and the like of the first-first embodiment, the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong. In this case, preferably, at least one block BL is disposed between two blocks BL belonging to the same group. Alternatively, as shown in FIG. 18 and the like of the first and second embodiments, the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
 上記第1-5実施形態の図21等で示したように、一部のCAが接続されていないMUX76を含むブロックBLが複数あった場合は、そのうちの少なくとも1つを常時第2状態にしてもよい。 As shown in FIG. 21 and the like of the first to fifth embodiments, when there are a plurality of blocks BL including the MUX 76 to which a part of CA is not connected, at least one of them is always kept in the second state. It is also good.
 図35~図37の上記第1-12実施形態で示したように、線量信号DDS(C)にリーク電荷補正と温度ドリフト補正を施してもよい。 Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
 例えば図44に示す上記第3-1実施形態の構成に、図35~図37の上記第1-12実施形態を適用する場合は、図44に示す検出用チャンネル95に接続された検出用CA132に加えて、図37に示すリファレンスチャンネル120に接続されたCA60が、アナログの電圧信号V(C)を選択的にADC77に対して出力する一部のCAとなる。すなわち、上記第3-1、第3-2実施形態では、アナログの電圧信号V(C)を選択的にADC77に対して出力する一部のCAとして、検出用CA132のみを例示しているが、本発明はこれに限定されず、リファレンスチャンネル120に接続されたCA60も含まれる。 For example, in the case where the above first to twelfth embodiments of FIGS. 35 to 37 are applied to the configuration of the above third to tenth embodiment shown in FIG. 44, the detection CA 132 connected to the detection channel 95 shown in FIG. In addition to the above, the CA 60 connected to the reference channel 120 shown in FIG. 37 is a part of CA that selectively outputs the analog voltage signal V (C) to the ADC 77. That is, in the above 3-1 and 3-2 embodiments, only the detection CA 132 is illustrated as a part of CA for selectively outputting the analog voltage signal V (C) to the ADC 77. The present invention is not limited to this, but also includes the CA 60 connected to the reference channel 120.
 この他にも、図25~図27に示す、AED動作に用いる検出用画素90が接続された信号線42である検出用チャンネル95が設定される上記第1-8実施形態、図28~図31に示す、AED動作専用の検出用画素90Xを設けた上記第1-9実施形態、図32に示す、検出用画素90を設定変更可能とした上記第1-10実施形態、図33および図34に示す、AED動作時のCDS61の動作を簡略化する上記第1-11実施形態、図38に示す、デジタル信号の伝送I/Fを切り替える上記第1-13実施形態を組み合わせてもよい。 Besides, the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set. The first to ninth embodiments shown in FIG. 31, provided with detection pixels 90X dedicated to the AED operation, the above first to tenth embodiments shown in FIG. 32, in which the detection pixels 90 can be changed, FIG. 33 and FIG. The first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
 また、図39~図43に示す、上記第2発明の上記第2-1~第2-3実施形態を適用して、アナログの電圧信号V(C)を選択的にADC77に対して出力する一部のCA以外の非選択のCAの少なくとも1個へのAED動作時の供給電力を、画像読み出し動作時における通常電力よりも低い省電力状態にしてもよい。 Further, the voltage signal V (C) of an analog signal is selectively output to the ADC 77 by applying the above-described 2-1 to 2-3 embodiments of the second invention shown in FIGS. 39 to 43. The power supplied to at least one of the unselected CAs other than some of the CAs during the AED operation may be set to a power saving state lower than the normal power during the image reading operation.
 ここで、非選択のCAは、図35~図37の上記第1-12実施形態を適用しない場合は、非検出用CA131であり、上記第1-12実施形態を適用する場合は、リファレンスチャンネル120に接続されたCA60を除く非検出用CA131である。 Here, the non-selected CA is the non-detection CA 131 when the above first to twelfth embodiments of FIGS. 35 to 37 are not applied, and the reference channel when the above first to twelfth embodiments are applied. It is CA131 for non-detection except CA60 connected to 120. FIG.
 上記第2-3実施形態を適用した場合は、非検出用CA131だけでなく、検出用CA132(上記第1-12実施形態を適用する場合は、リファレンスチャンネル120に接続されたCA60も含む)の少なくとも1個が、通常電力PN_Cよりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動される。このため、AED動作時の信号処理回路51の消費電力のさらなる低減が可能となる。 When the above second to third embodiments are applied, not only the non-detection CA 131 but also the detection CA 132 (including the CA 60 connected to the reference channel 120 when the above first to twelfth embodiments are applied) At least one is driven in a low power state where power below normal power PN_C and greater than 0 is supplied. Therefore, it is possible to further reduce the power consumption of the signal processing circuit 51 during the AED operation.
 4.第4発明
 以下に説明する図50~図58に示す第4発明は、上記第1発明の複数のADC77、ひいては複数のブロックBL1~BL16の電力の供給状態を切り替えながらAED動作を実行する場合に生じる問題を解消するためのものである。第4発明は、制御部54が、AED動作において、複数のブロックBL1~BL16のそれぞれについて、電荷の読み出しを開始させるタイミングよりもブロックBLを構成するADC77等を安定して稼働させるために必要な所定の時間前に、第2状態から第1状態への切り替えを行う、という内容である。
4. Fourth Invention The fourth invention shown in FIGS. 50 to 58 described below is the case where the AED operation is performed while switching the power supply states of the plurality of ADCs 77 of the first invention and, consequently, the plurality of blocks BL1 to BL16. It is for solving the problem which arises. The fourth invention is required for the control unit 54 to stably operate the ADC 77 and the like that constitute the block BL rather than the timing for starting the charge readout for each of the plurality of blocks BL1 to BL16 in the AED operation. The content is to switch from the second state to the first state before a predetermined time.
 第4発明においても、上記第2、第3発明と同じく、X線撮影システム10、電子カセッテ16等の基本的な構成は、上述の第1発明と同様である。また、ADC77の電力の供給状態の切り替えパターンについても、上記第1-1~第1-7実施形態で例示したパターンを適用可能である。さらに、第1発明の他の実施形態(上記第1-8~第1-13実施形態)、第2発明の上記第2-1~第2-3実施形態、並びに第3発明の上記第3-1、3-2実施形態との組み合わせも可能である。以下、第1~第3発明と同一部分については同一の符号を付して説明を省略し、相違点を中心に説明する。 Also in the fourth invention, as in the second and third inventions, the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. Also, the patterns exemplified in the above 1-1 to 1-7 embodiments can be applied to the switching pattern of the power supply state of the ADC 77. Furthermore, the other embodiments of the first invention (the above 1-8 to 1-13 embodiments), the above the 2-1 to 2-3 embodiments of the second invention, and the above-mentioned third of the third invention. A combination with the -1 and 3-2 embodiments is also possible. In the following, the same parts as those of the first to third inventions are given the same reference numerals and their explanations are omitted, and the differences will be mainly explained.
 [第4-1実施形態]
 図50および図51に第4-1実施形態を示す。本第4-1実施形態では、上記第2-1、3-1実施形態と同じく、例えば、上記第1-9実施形態の図29に示す検出用画素90X1、あるいは図30に示す検出用画素90X2を含む構成を想定して説明するが、構成はこれに限らない。
[Fourth embodiment]
A fourth embodiment is shown in FIGS. 50 and 51. In the present fourth embodiment, for example, the detection pixel 90X1 shown in FIG. 29 of the first embodiment or the detection pixel shown in FIG. Although the description is made on the assumption that the configuration includes 90X2, the configuration is not limited to this.
 図50は、あるブロックBLの電力の供給状態を示す。斜線のハッチングで示す箇所は、線量信号DDS(C)の元となる電荷を読み出している期間である。より詳しくは、信号線42を通じて電荷をCA60に読み出し、MUX76でCA60を順次選択して、電荷に基づくアナログの電圧信号V(C)をADC77に出力し、ADC77でアナログの電圧信号V(C)を線量信号DDS(C)に変換して出力する一連の動作を行っている期間である。 FIG. 50 shows the power supply state of a certain block BL. The hatched portion is a period during which the charge that is the source of the dose signal DDS (C) is read out. More specifically, charge is read out to CA 60 through signal line 42, CA 60 is sequentially selected by MUX 76, analog voltage signal V (C) based on charge is output to ADC 77, and analog voltage signal V (C) is output by ADC 77. Are converted into the dose signal DDS (C) and output.
 ここで、ブロックBLは、第2状態である非稼働状態から第1状態である稼働状態に切り替えた直後は、温度ドリフト等の影響で動作が不安定となる。この動作が不安定な間に出力された線量信号DDS(C)は、信頼性が著しく低いものとなる。このため、X線の照射が開始されたか否かの判定の信頼性が保てなくなるおそれがある。 Here, immediately after switching from the non-operating state, which is the second state, to the operating state, which is the first state, the block BL becomes unstable in operation due to the influence of temperature drift and the like. The dose signal DDS (C) outputted while the operation is unstable becomes extremely unreliable. Therefore, there is a possibility that the reliability of the determination as to whether or not the X-ray irradiation has been started can not be maintained.
 図50Aは、ブロックBLを非稼働状態から稼働状態に切り替えた直後に、電荷の読み出しを開始している例である。このように、ブロックBLの非稼働状態から稼働状態への切り替えと、電荷の読み出しを開始させるタイミングとの間に時間が空けられていないと、ブロックBLの動作が不安定な間に出力された線量信号DDS(C)によって、X線の照射開始の判定を誤るリスクが高まる。 FIG. 50A shows an example in which charge reading is started immediately after switching the block BL from the non-operating state to the operating state. As described above, when there is no time between the switching from the non-operating state to the operating state of the block BL and the timing for starting the charge readout, the operation is performed while the operation of the block BL is unstable. The dose signal DDS (C) increases the risk of erroneous determination of the start of X-ray irradiation.
 そこで、図50Bに示すように、電荷の読み出しを開始させるタイミングよりも時間TW前に、ブロックBLの非稼働状態から稼働状態への切り替えを行う。時間TWは、ブロックBLを安定して稼働させるために必要な時間である。 Therefore, as shown in FIG. 50B, switching from the non-operating state to the operating state of the block BL is performed before the time TW at which the charge readout is started. The time TW is a time required to operate the block BL stably.
 図51は、本第4-1実施形態の電子カセッテの動作手順を示すフローチャートである。上記第1-1実施形態の図17で示したフローチャートとの相違点は、一点鎖線で囲ったステップST1204およびステップST1804である。以下、相違点のみ説明する。 FIG. 51 is a flow chart showing the operation procedure of the electronic cassette of the present fourth embodiment. The points of difference with the flowchart shown in FIG. 17 of the above-described first embodiment are step ST 1204 and step ST 1804 surrounded by an alternate long and short dash line. Only the differences will be described below.
 ステップST1204において、AED動作では、制御部54により、ブロックBLの電力の供給状態が切り替えられる。そして、電荷の読み出しを開始させるタイミングよりも時間TW前に、ブロックBLの非稼働状態から稼働状態への切り替えが行われる(照射開始検出ステップ)。また、ステップST1804において、画像読み出し動作では、全てのブロックBLが稼働状態にされる(画像読み出しステップ)。 In step ST1204, in the AED operation, the control unit 54 switches the power supply state of the block BL. Then, the switching from the non-operating state to the operating state of the block BL is performed before the time TW for starting the charge readout (irradiation start detection step). In addition, in step ST1804, in the image reading operation, all the blocks BL are put into operation (image reading step).
 こうすれば、図50Aのように、ブロックBLの動作が不安定な間に線量信号DDS(C)が出力されてしまうことがなく、X線の照射開始の判定を誤るおそれを低減することができる。 In this way, as shown in FIG. 50A, the dose signal DDS (C) is not output while the operation of the block BL is unstable, and the risk of erroneous determination of the start of X-ray irradiation can be reduced. it can.
 なお、斜線のハッチングで示す電荷を読み出している期間には、図52~図54に示す3つのバリエーションがある。図52~図54では、図9および図44と同じく、1列目~144列目のエリアAR1を担当するブロックBL1を例示したものである。 There are three variations shown in FIG. 52 to FIG. 54 in the period in which the charge indicated by hatching is read. 52 to 54 exemplify the block BL1 in charge of the area AR1 in the first to 144th columns, as in FIGS. 9 and 44.
 まず、図52は、アルファベットDT(図44参照)で示すように、ブロックBL1が担当するエリアAR1の全ての信号線42が検出用チャンネル95の場合である。この場合の電荷を読み出している期間は、全検出用チャンネル95の検出用CA132からのアナログの電圧信号V(1)~V(144)に基づく線量信号DDS(1)~DDS(144)を出力する期間である。 First, FIG. 52 shows the case where all the signal lines 42 of the area AR1 that the block BL1 is in charge are the detection channels 95, as shown by the alphabet DT (see FIG. 44). In this case, during the charge readout period, the dose signals DDS (1) to DDS (144) based on the analog voltage signals V (1) to V (144) from the detection CA 132 of all the detection channels 95 are output. Period of time
 図53は、図44で示した第3-1実施形態と同じく、奇数列が検出用チャンネル95の場合で、かつMUXが検出用チャンネル95の検出用CA132からのアナログの電圧信号V(C)を選択する機能を有するMUX135ではなく、1列ずつ順次選択する機能しかない一般的なMUX76の場合である。この場合の電荷を読み出している期間は、奇数列の検出用チャンネル95の検出用CA132からのアナログの電圧信号V(1)、V(3)、V(5)、・・・、V(143)に基づく線量信号DDS(1)、DDS(3)、DDS(5)、・・・、DDS(144)をそれぞれ出力する期間である。つまり、この場合の電荷を読み出している期間は、間欠的となる。 FIG. 53 shows an analog voltage signal V (C) from the detection CA 132 of the detection channel 95 when the odd-numbered column is the detection channel 95 and the MUX is the same as the embodiment 3-1 shown in FIG. In the case of a general MUX 76 having only a function of sequentially selecting one column at a time, instead of the MUX 135 having a function of selecting. In this case, while the charge is being read out, analog voltage signals V (1), V (3), V (5),..., V (143) from the detection CA 132 of the detection channel 95 in the odd-numbered column Period during which the dose signals DDS (1), DDS (3), DDS (5),. That is, the period in which the charge is read out in this case is intermittent.
 図54は、奇数列が検出用チャンネル95である点では図52と同じであるが、MUXがMUX76ではなくMUX135の場合である。この場合の電荷を読み出している期間は、奇数列の検出用チャンネル95の検出用CA132からのアナログの電圧信号V(1)、V(3)、V(5)、・・・、V(143)に基づく線量信号DDS(1)、DDS(3)、DDS(5)、・・・、DDS(144)をそれぞれ出力する期間の合計である。電荷を読み出している期間が図53のように間欠的でないので、単純な見た目は図52の場合と同じである。しかし、図52ではMUX76でアナログの電圧信号V(C)を一列ずつ順次選択しているのに対し、図54ではMUX135でアナログの電圧信号V(C)を一列おきに選択しているので、具体的な中身は異なる。 FIG. 54 is the same as FIG. 52 in that the odd-numbered column is the detection channel 95, but the MUX is not the MUX 76 but the MUX 135. In this case, while the charge is being read out, analog voltage signals V (1), V (3), V (5),..., V (143) from the detection CA 132 of the detection channel 95 in the odd-numbered column The dose signals DDS (1), DDS (3), DDS (5),... Since the charge readout period is not intermittent as shown in FIG. 53, the simple appearance is the same as in FIG. However, while in FIG. 52 the analog voltage signal V (C) is sequentially selected one by one in the MUX 76, in FIG. 54, the analog voltage signal V (C) is selected every other row in the MUX 135. The specific content is different.
 [第4-2実施形態]
 図55~図57に第4-2実施形態を示す。上記第4-1実施形態では、電荷の読み出しを開始するタイミングに対するブロックBLを非稼働状態から稼働状態へ切り替えるタイミングを規定しているが、本第4-2実施形態では、ブロックBLを稼働状態から非稼働状態に切り替えるタイミングを規定する。
Embodiment 4-2
FIGS. 55 to 57 show a fourth embodiment. Although the timing at which the block BL is switched from the non-operation state to the operation state with respect to the timing to start the charge readout is defined in the above-described fourth embodiment, the block BL is operated in the fourth to second embodiment. Define the timing to switch from to non-operational state.
 あるブロックBLを稼働状態から非稼働状態に切り替えたときに、他のブロックBLにおいて電荷を読み出し中であった場合、ブロックBLを稼働状態から非稼働状態に切り替えたことで発生するスイッチングノイズ等が、他のブロックBLの電荷に乗ってしまうおそれがある。そこで、本第4-2実施形態では、あるブロックBLの稼働状態から非稼働状態への切り替えを、他のブロックBLにおいて電荷を読み出し中のタイミングと重ならないタイミングで行う。 When charge is being read out in another block BL when one block BL is switched from the operating state to the non-operating state, switching noise and the like generated by switching the block BL from the operating state to the non-operating state , There is a risk of getting on the charge of the other block BL. Therefore, in the present fourth embodiment, switching from an operating state to a non-operating state of a certain block BL is performed at timings that do not overlap with timings during which charge is being read in another block BL.
 図55~図57は、上記第1-1実施形態の図14や、上記第1-2実施形態の図18等と同じく、各ブロックBL1~BL16(ブロックBL5以降は不図示)の電力の供給状態を周期的に切り替え、かつ各ブロックBL1~BL16の電力の供給状態の切り替えのタイミングをずらす場合を例示している。そして、図55および図56は、電荷を読み出している期間が図52または図54のバリエーションの場合、図57は、電荷を読み出している期間が図53のバリエーションの場合をそれぞれ例示している。 55 to 57 are similar to FIG. 14 of the first-first embodiment, FIG. 18 of the first-second embodiment, and the like, and supply of power to the blocks BL1 to BL16 (not shown after the block BL5). The case where the state is periodically switched and the timing of switching the power supply state of each block BL1 to BL16 is shifted is illustrated. 55 and 56 illustrate the case where the charge readout period is a variation of FIG. 52 or 54, and FIG. 57 illustrates the charge readout period a variation of FIG. 53, respectively.
 図55は、破線の矢印で示すように、各ブロックBL1~BL16の稼働状態から非稼働状態への切り替えを、各ブロックBL1~BL16の検出用CA132からの電荷の読み出しを開始する前のタイミング、具体的には時間TWの立ち上げ中に行う例である。より詳しくは、図55においては、制御部54は、ブロックBL1の稼働状態から非稼働状態の切り替えを、ブロックBL2の立ち上げ中に行い、ブロックBL2の稼働状態から非稼働状態への切り替えを、ブロックBL3の立ち上げ中に行う。また、ブロックBL3の稼働状態から非稼働状態への切り替えを、ブロックBL4の立ち上げ中に行う。 FIG. 55 is a timing before starting to read out the charge from the detection CA 132 of each of the blocks BL1 to BL16, as indicated by the broken arrows, in which the blocks BL1 to BL16 are switched from the operating state to the non-operating state. Specifically, this is an example performed during startup of the time TW. More specifically, in FIG. 55, the control unit 54 switches the operating state of the block BL1 to the non-operating state during start-up of the block BL2, and switches the operating state of the block BL2 to the non-operating state. It is performed during the start of block BL3. Further, switching from the operating state of the block BL3 to the non-operating state is performed during the startup of the block BL4.
 図56は、各ブロックBL1~BL16の稼働状態から非稼働状態への切り替えを、各ブロックBL1~BL16の検出用CA132からの電荷の読み出しが終了した後のタイミングに行う例である。より詳しくは、図56においては、制御部54は、ブロックBL1の稼働状態から非稼働状態の切り替えを、ブロックBL2の電荷の読み出し終了後に行い、ブロックBL2の稼働状態から非稼働状態への切り替えを、ブロックBL3の電荷の読み出し終了後に行う。また、ブロックBL3の稼働状態から非稼働状態への切り替えを、ブロックBL4の電荷の読み出し終了後に行う。 FIG. 56 shows an example in which switching from the operating state to the non-operating state of each of the blocks BL1 to BL16 is performed at the timing after the readout of the charge from the detection CA 132 of each of the blocks BL1 to BL16 is completed. More specifically, in FIG. 56, the control unit 54 switches the operating state of the block BL1 to the non-operating state after reading of the charge of the block BL2 is completed, and switches the operating state of the block BL2 to the non-operating state. , And after completion of reading out the charge of the block BL3. Further, switching from the operating state of the block BL3 to the non-operating state is performed after the end of the charge reading of the block BL4.
 図57は、各ブロックBL1~BL16の稼働状態から非稼働状態への切り替えを、各ブロックBL1~BL16の間欠的な電荷を読み出している期間の合間に行う例である。より詳しくは、図57においては、制御部54は、ブロックBL1の稼働状態から非稼働状態の切り替えを、ブロックBL2の間欠的な電荷を読み出している期間の合間に行い、ブロックBL2の稼働状態から非稼働状態への切り替えを、ブロックBL3の間欠的な電荷を読み出している期間の合間に行う。そして、ブロックBL3の稼働状態から非稼働状態への切り替えを、ブロックBL4の間欠的な電荷を読み出している期間の合間に行う。 FIG. 57 shows an example in which switching from the operating state to the non-operating state of each of the blocks BL1 to BL16 is performed in the interval between the intermittent charge reading of each of the blocks BL1 to BL16. More specifically, in FIG. 57, the control unit 54 switches the operating state of the block BL1 to the non-operating state in the interval between the intermittent charge reading of the block BL2 and starts the operating state of the block BL2. The switching to the non-operating state is performed between the intermittent charge reading periods of the block BL3. Then, switching from the operating state to the non-operating state of the block BL3 is performed in the interval of the intermittent charge reading of the block BL4.
 このように、ブロックBLの稼働状態から非稼働状態への切り替えを、他のブロックBLにおいて電荷を読み出し中のタイミングと重ならないタイミングで行えば、ブロックBLを稼働状態から非稼働状態に切り替えたことで発生するスイッチングノイズ等が、他のブロックBLの電荷に乗ってしまうおそれがない。 As described above, switching of the block BL from the operating state to the non-operating state is performed if switching from the operating state to the non-operating state of the block BL is performed at timings that do not overlap with timings during reading of electric charges in other blocks BL. There is no possibility that the switching noise and the like generated in the above may be carried on the charge of the other block BL.
 省電力の観点でいえば、図55~図57の例のうち、各ブロックBL1~BL16の稼働状態から非稼働状態への切り替えを、各ブロックBL1~BL16の電荷の読み出し開始前に行う図55の例が最も好ましい。 From the viewpoint of power saving, among the examples of FIGS. 55 to 57, switching of the blocks BL1 to BL16 from the operating state to the non-operating state is performed prior to the start of charge reading of the blocks BL1 to BL16. The example is most preferred.
 [第4-3実施形態]
 図58に第4-3実施形態を示す。上記第1-12実施形態の図35で示したように、AED動作で各ブロックBLの電力の供給状態を切り替えた場合、ブロックBL内で温度分布の偏りが生じる。この温度分布の偏りが、診断に供するX線画像を得るための画像読み出し動作までに解消されていないと、画像信号DIS(C)に温度ドリフトが生じてX線画像の画質が劣化する。そこで、本第4-3実施形態では、制御部54が、AED動作でX線の照射開始を検出した後、画像読み出し動作が開始される前までに、全てのブロックBLを稼働状態にする。
[4-3 Embodiment]
A fourth embodiment is shown in FIG. As shown in FIG. 35 of the first to twelfth embodiments, when the power supply state of each block BL is switched in the AED operation, deviation of the temperature distribution occurs in the block BL. If the deviation of the temperature distribution is not resolved before the image reading operation for obtaining the X-ray image to be diagnosed, temperature drift occurs in the image signal DIS (C) and the image quality of the X-ray image is degraded. Therefore, in the fourth embodiment, after the control unit 54 detects the start of the X-ray irradiation in the AED operation, all the blocks BL are put into operation until the image reading operation is started.
 図58では、AED動作でX線の照射開始を検出したタイミングで、全てのブロックBL1~BL16を稼働状態にしている。より詳しくは、図58においては、制御部54は、X線の照射開始検出時に非稼働状態であったブロックBL(ブロックBL3、BL4、BL7、BL8、BL11、BL12、BL15、BL16)を稼働状態に切り替える。一方、制御部54は、X線の照射開始検出時に稼働状態であったブロックBL(上記以外のブロックBL1、BL2等)についてはそのまま稼働状態を継続させる。 In FIG. 58, all the blocks BL1 to BL16 are in operation at the timing when the start of X-ray irradiation is detected in the AED operation. More specifically, in FIG. 58, the control unit 54 operates the blocks BL (blocks BL3, BL4, BL7, BL8, BL11, BL12, BL15, BL16) that were inoperative when detecting the start of X-ray irradiation. Switch to On the other hand, the control unit 54 continues the operating state of the blocks BL (the blocks BL1 and BL2 other than the above) which are in the operating state at the detection of the X-ray irradiation start.
 また、図58では、AED動作でX線の照射開始を検出したタイミングで、すぐに全てのブロックBL1~BL16を稼働状態にしているので、X線の照射開始を検出した後、全てのブロックBL1~BL16の切り替えが1サイクル終了する線量信号DDS(C)の読み出し周期TXの間に、全てのブロックBL1~BL16を稼働状態にしているといえる。 Further, in FIG. 58, all the blocks BL1 to BL16 are immediately put into operation at the timing when the start of X-ray irradiation is detected in the AED operation. Therefore, after detecting the start of X-ray irradiation, all blocks BL1 are detected. It can be said that all the blocks BL1 to BL16 are in the operating state during the reading cycle TX of the dose signal DDS (C) in which the switching of .about.BL16 ends one cycle.
 このように、AED動作でX線の照射開始を検出した後、画像読み出し動作が開始される前までに、全てのブロックBLを稼働状態にするので、画像読み出し動作時には、AED動作で各ブロックBLの電力の供給状態を切り替えたことで生じたブロックBL内の温度分布の偏りは解消されている可能性が高い。したがって、ブロックBL内の温度分布の偏りによって画像信号DIS(C)に温度ドリフトが生じることがなく、良好な画質のX線画像を得ることができる。 As described above, after detecting the start of X-ray irradiation in the AED operation, all the blocks BL are put into operation before the image reading operation is started. Therefore, in the image reading operation, each block BL in the AED operation. It is highly possible that the deviation of the temperature distribution in the block BL, which is caused by switching the power supply state of the power supply, is eliminated. Therefore, the temperature distribution does not occur in the image signal DIS (C) due to the deviation of the temperature distribution in the block BL, and an X-ray image of good image quality can be obtained.
 また、X線の照射開始を検出した後、全てのブロックBL1~BL16の切り替えが1サイクル終了する線量信号DDS(C)の読み出し周期TXの間に、全てのブロックBL1~BL16を稼働状態にするので、画像読み出し動作の開始までに、ブロックBL内の温度分布の偏りを解消するための十分な時間を確保することができる。 In addition, after detecting the start of X-ray irradiation, all blocks BL1 to BL16 are put into operation during the read cycle TX of the dose signal DDS (C) in which switching of all the blocks BL1 to BL16 ends one cycle. Therefore, it is possible to secure a sufficient time for eliminating the deviation of the temperature distribution in the block BL by the start of the image reading operation.
 なお、全てのブロックBL1~BL16を稼働状態にするタイミングとしては、AED動作でX線の照射開始を検出した後、画像読み出し動作が開始される前までの期間の任意のタイミングでよい。ただし、確実にブロックBL内の温度分布の偏りを解消するためには、図58で示したようにAED動作でX線の照射開始を検出したタイミングで全てのブロックBL1~BL16を稼働状態にすることが好ましい。なお、稼働状態と非稼働状態、ひいては第1状態と第2状態の定義は、上記第2発明の末尾で述べた通りである。 The timing at which all the blocks BL1 to BL16 are brought into the operating state may be any timing in the period from the start of the X-ray irradiation detection in the AED operation to the start of the image reading operation. However, as shown in FIG. 58, all the blocks BL1 to BL16 are put into operation at the timing when the start of X-ray irradiation is detected by the AED operation as shown in FIG. Is preferred. The definitions of the operating state and the non-operating state, and hence the first state and the second state, are as described at the end of the second invention.
 また、ブロックBLを安定して稼働させるために必要な時間TWは、ブロックBLを構成するCA60、CDS61、MUX76、およびADC77の稼働の準備に掛かる時間とほぼ同じ場合もあれば、それよりも長い場合もある。ブロックBLを安定して稼働させるために必要な時間TWが、ブロックBLを構成するCA60、CDS61、MUX76、およびADC77の稼働の準備に掛かる時間とほぼ同じ場合も、本第4発明に含まれる。つまり、ブロックBLを構成するCA60、CDS61、MUX76、およびADC77の稼働の準備が済んだら直ちに電荷の読み出しを開始する場合も、本第4発明に含まれる。 In addition, the time TW required for stably operating the block BL may be almost the same as the time taken to prepare for operation of the CA 60, the CDS 61, the MUX 76, and the ADC 77 constituting the block BL, or longer than that. In some cases. The fourth invention also includes the case where the time TW required for stably operating the block BL is substantially the same as the time taken to prepare for the operation of the CA 60, the CDS 61, the MUX 76, and the ADC 77 constituting the block BL. That is, the case of starting the charge readout immediately after the preparation of the operation of the CA 60, the CDS 61, the MUX 76, and the ADC 77 constituting the block BL is also included in the fourth invention.
 なお、時間TWの間にブロックBLの各部に与える電力は、ブロックBLの温度に応じて変更してよい。例えば時間TWの前のブロックBLの温度が目標温度よりも大幅に低い場合は、制御部54は、比較的大きい電力をブロックBLの各部に与えて、短時間で目標温度に達するようにする。対して時間TWの前のブロックBLの温度が、目標温度より低いが比較的目標温度に近い場合は、比較的大きい電力をブロックBLの各部に与えてしまうと、目標温度を超えてしまうおそれがあるため、制御部54は、比較的低い電力でブロックBLの各部を動作させる。 The power supplied to each part of the block BL during the time TW may be changed according to the temperature of the block BL. For example, when the temperature of the block BL before the time TW is much lower than the target temperature, the control unit 54 applies a relatively large amount of power to each part of the block BL to reach the target temperature in a short time. On the other hand, if the temperature of the block BL before the time TW is lower than the target temperature but relatively close to the target temperature, the target temperature may be exceeded if relatively large power is applied to each part of the block BL. Because of this, the control unit 54 operates the components of the block BL with relatively low power.
 上述したように、本第4発明の各実施形態は、上記第1発明、上記第2発明、および上記第3発明の各実施形態と複合して実施してもよい。例えば、上記第2、第3発明の場合と同じく、上記第1発明を適用して、上記第1-1実施形態の図14等で示したように、制御部54により、ADC77、およびこれとブロックBLを構成するMUX76の電力の供給状態を、第1状態と第2状態とに周期的に切り替えてもよい。 As described above, each embodiment of the fourth invention may be implemented in combination with each embodiment of the first invention, the second invention, and the third invention. For example, as in the case of the second and third inventions, the first invention is applied, and the ADC 54 is controlled by the control unit 54 as shown in FIG. 14 and the like of the first-first embodiment. The power supply state of the MUX 76 constituting the block BL may be periodically switched to the first state and the second state.
 上記第2、第3発明と同じく、本第4発明と上記第1発明のADC77、ひいてはブロックBLの供給電力の切り替えパターンの組み合わせについては、例えば以下に示す組み合わせが可能である。まず、上記第1-1実施形態の図14等で示したように、電力の供給状態を周期的に切り替えるMUX76およびADC77のブロックBLが2個以上ある場合、制御部54により、2個以上のブロックBLのうちの少なくとも2個のブロックBLの電力の供給状態の切り替えのタイミングをずらしてもよい。 Similar to the second and third inventions, combinations of the ADC77 of the fourth invention and the ADC77 of the first invention, and eventually the switching pattern of the supply power of the block BL can be, for example, the following combinations. First, as shown in FIG. 14 and the like of the first-first embodiment, when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
 さらに、これも上記第1-1実施形態の図14等で示したように、2個以上のブロックBLが属する複数のグループ毎に電力の供給状態の切り替えのタイミングをずらしてもよい。この場合、同じグループに属する2個のブロックBLの間には、少なくとも1個のブロックBLが配されていることが好ましい。あるいは、上記第1-2実施形態の図18等で示したように、2個以上のブロックBLの全ての電力の供給状態の切り替えのタイミングをずらしてもよい。 Furthermore, as shown in FIG. 14 and the like of the first-first embodiment, the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong. In this case, preferably, at least one block BL is disposed between two blocks BL belonging to the same group. Alternatively, as shown in FIG. 18 and the like of the first and second embodiments, the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
 上記第1-5実施形態の図21等で示したように、非検出用CA131のみが接続されているMUX76を含むブロックBLが複数あった場合は、そのうちの少なくとも1つを常時第2状態にしてもよい。 As shown in FIG. 21 and the like of the first to fifth embodiments, when there are a plurality of blocks BL including the MUX 76 to which only the non-detection CA 131 is connected, at least one of them is always kept in the second state. May be
 図35~図37の上記第1-12実施形態で示したように、線量信号DDS(C)にリーク電荷補正と温度ドリフト補正を施してもよい。 Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
 この他にも、図25~図27に示す、AED動作に用いる検出用画素90が接続された信号線42である検出用チャンネル95が設定される上記第1-8実施形態、図28~図31に示す、AED動作専用の検出用画素90Xを設けた上記第1-9実施形態、図32に示す、検出用画素90を設定変更可能とした上記第1-10実施形態、図33および図34に示す、AED動作時のCDS61の動作を簡略化する上記第1-11実施形態、図38に示す、デジタル信号の伝送I/Fを切り替える上記第1-13実施形態を組み合わせてもよい。 Besides, the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set. The first to ninth embodiments shown in FIG. 31, provided with detection pixels 90X dedicated to the AED operation, the above first to tenth embodiments shown in FIG. 32, in which the detection pixels 90 can be changed, FIG. 33 and FIG. The first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
 また、図39~図43に示す、上記第2発明の上記第2-1~第2-3実施形態を適用して、アナログの電圧信号V(C)を選択的にADC77に対して出力する一部のCA以外の非選択のCAの少なくとも1個へのAED動作時の供給電力を、画像読み出し動作時における通常電力よりも低い省電力状態にしてもよい。 Further, the voltage signal V (C) of an analog signal is selectively output to the ADC 77 by applying the above-described 2-1 to 2-3 embodiments of the second invention shown in FIGS. 39 to 43. The power supplied to at least one of the unselected CAs other than some of the CAs during the AED operation may be set to a power saving state lower than the normal power during the image reading operation.
 さらに、図44~図49に示す、ADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する上記第3-1、3-2実施形態を適用してもよい。 Furthermore, the above-described Embodiments 3-1 and 3-2 in which the number of pulses per unit time of the clock signal of the ADC 77 shown in FIG. 44 to FIG.
 5.第5発明
 以下に説明する図59および図60に示す第5発明は、制御部54が、AED動作におけるCA60への供給電力を、画像読み出し動作時よりも低減する、という内容である。上記第2発明では、非検出用CA131の少なくとも1個へのAED動作時の供給電力を、画像読み出し動作時における通常電力よりも低い省電力状態にする、という内容であったが、本第5発明は、検出用CA132、非検出用CA131の区別なく、AED動作時はCA60への供給電力を画像読み出し動作時よりも低減する、という点で上記第2発明とは異なる。
5. Fifth Invention The fifth invention shown in FIGS. 59 and 60 described below is that the control unit 54 reduces the power supplied to the CA 60 in the AED operation as compared to that in the image read operation. In the second invention, the power supplied to at least one of the non-detection CAs 131 during the AED operation is set to a power saving state lower than the normal power during the image reading operation. The invention is different from the second invention in that the power supplied to the CA 60 is reduced during AED operation than during image read operation, without distinction between the detection CA 132 and the non-detection CA 131.
 第5発明においても、上記第2~第4発明と同じく、X線撮影システム10、電子カセッテ16等の基本的な構成は、上述の第1発明と同様である。以下、第1~第4発明と同一部分については同一の符号を付して説明を省略し、相違点を中心に説明する。 Also in the fifth invention, as in the second to fourth inventions, the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. In the following, the same parts as those of the first to fourth inventions are given the same reference numerals and their explanations are omitted, and the differences will be mainly explained.
 図59に示すように、制御部54は、画像読み出し動作時の全てのCA60への供給電力P_Cを通常電力のPN_Cとし、AED動作時の全てのCA60への供給電力P_CをPN_Cよりも低いPL_Cとする。 As shown in FIG. 59, the control unit 54 sets the supplied power P_C to all the CAs 60 in the image reading operation as the normal power PN_C, and the supplied power P_C to all the CAs 60 in the AED operation is PL_C lower than PN_C. I assume.
 図60は、本第5発明の電子カセッテの動作手順を示すフローチャートである。上記第1-1実施形態の図17で示したフローチャートとの相違点は、一点鎖線で囲ったステップST1205およびステップST1805である。以下、相違点のみ説明する。 FIG. 60 is a flow chart showing the operation procedure of the electronic cassette of the fifth invention. The difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1205 and step ST1805 surrounded by an alternate long and short dash line. Only the differences will be described below.
 ステップST1205において、AED動作では、全てのCA60が供給電力PL_Cで低電力駆動される。一方、ステップST1805の画像読み出し動作では、全てのCA60が通常電力PN_Cで駆動される。 In step ST1205, in the AED operation, all the CAs 60 are driven with low power by the supplied power PL_C. On the other hand, in the image reading operation in step ST1805, all the CAs 60 are driven by the normal power PN_C.
 このように、AED動作時は画像読み出し動作時よりもCA60への供給電力を低減するので、AED動作時の信号処理回路51の消費電力を低減することができる。このため、上記第1~第3発明と同じく、バッテリ65が従来よりも長持ちし、これによりバッテリ65の充電回数も減るので、撮影効率を向上させることができる。 As described above, since the power supplied to the CA 60 is reduced during the AED operation compared to the image reading operation, the power consumption of the signal processing circuit 51 during the AED operation can be reduced. Therefore, as in the first to third inventions, the battery 65 lasts longer than in the prior art, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
 上記記載から、以下の付記項1に記載の放射線画像検出装置、および付記項2に記載の放射線画像検出装置の作動方法を把握することができる。 From the above description, it is possible to grasp an operation method of the radiation image detection apparatus according to the following supplementary item 1 and the radiation image detection apparatus according to the supplementary item 2.
 [付記項1]
 放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、前記電荷を読み出す複数の信号線が配されたセンサパネルと、
 前記信号線を通じて、前記画素から前記電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、
 前記信号処理回路に含まれる複数のチャージアンプであって、前記信号線毎に設けられ、かつ前記信号線の一端に接続され、前記画素からの前記電荷を前記アナログの電圧信号に変換する複数のチャージアンプと、
 前記信号処理回路に含まれるマルチプレクサであって、複数の入力端子を有し、前記複数のチャージアンプが前記複数の入力端子にそれぞれ接続され、前記複数のチャージアンプからの前記アナログの電圧信号を順次選択して出力するマルチプレクサと、
 前記信号処理回路に含まれるAD変換器であって、前記マルチプレクサの後段に接続され、前記マルチプレクサから出力された前記アナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器と、
 前記信号処理回路を制御して照射開始検出動作および画像読み出し動作を実行する制御部とを備えており、
 前記照射開始検出動作は、前記放射線の照射開始前から、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号に基づいて前記放射線の照射開始を検出する動作であり、
 前記画像読み出し動作は、前記放射線の照射開始後、前記画素に前記電荷を蓄積する画素電荷蓄積期間が経過してから、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号が表す、診断に供する放射線画像を出力する動作であり、
 前記制御部は、前記照射開始検出動作における全ての前記チャージアンプへの供給電力を、前記画像読み出し動作時よりも低減する放射線画像検出装置。
[Appendix 1]
A sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store electric charges in a two-dimensional manner, and which are provided with a plurality of signal lines for reading out the electric charges;
A signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to the charge from the pixel through the signal line;
A plurality of charge amplifiers included in the signal processing circuit, provided for each of the signal lines and connected to one end of the signal lines, for converting the charges from the pixels into the analog voltage signals Charge amplifier,
A multiplexer included in the signal processing circuit, the multiplexer having a plurality of input terminals, the plurality of charge amplifiers being respectively connected to the plurality of input terminals, and the analog voltage signals from the plurality of charge amplifiers being sequentially A multiplexer to select and output,
An AD converter included in the signal processing circuit, which is connected to a subsequent stage of the multiplexer and executes AD conversion processing for converting the analog voltage signal output from the multiplexer into a digital signal according to a voltage value AD converter,
And a control unit that controls the signal processing circuit to execute an irradiation start detection operation and an image readout operation.
The irradiation start detection operation is an operation of reading out the charge from the pixel through the signal line before the start of irradiation of the radiation and detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge. And
The image readout operation corresponds to the readout charge by reading out the charge from the pixel through the signal line after a pixel charge accumulation period for accumulating the charge in the pixel has elapsed after the start of the irradiation of the radiation. An operation of outputting a radiation image to be provided for diagnosis represented by the digital signal
The said control part is a radiographic image detection apparatus which reduces the electric power supply to all the said charge amplifiers in the said irradiation start detection operation rather than the time of the said image read-out operation.
 [付記項2]
 放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、前記電荷を読み出す複数の信号線が配されたセンサパネルと、前記信号線を通じて、前記画素から前記電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、前記信号処理回路に含まれる複数のチャージアンプであって、前記信号線毎に設けられ、かつ前記信号線の一端に接続され、前記画素からの前記電荷をアナログの電圧信号に変換する複数のチャージアンプと、前記信号処理回路に含まれるマルチプレクサであって、複数の入力端子を有し、前記複数のチャージアンプが前記複数の入力端子にそれぞれ接続され、前記複数のチャージアンプからの前記アナログの電圧信号を順次選択して出力するマルチプレクサと、前記信号処理回路に含まれるAD変換器であって、前記マルチプレクサの後段に接続され、前記マルチプレクサから出力された前記アナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器と、前記信号処理回路を制御する制御部とを備える放射線画像検出装置の作動方法において、
 前記放射線の照射開始前から、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号に基づいて前記放射線の照射開始を検出する照射開始検出動作を実行する照射開始検出ステップと、
 前記放射線の照射開始後、前記画素に前記電荷を蓄積する画素電荷蓄積期間が経過してから、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号が表す、診断に供する放射線画像を出力する画像読み出し動作を実行する画像読み出しステップとを備え、
 前記照射開始検出ステップにおける全ての前記チャージアンプへの供給電力を、前記画像読み出し動作時よりも低減する放射線画像検出装置の作動方法。
[Appendix 2]
A sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store charges are arranged in a two-dimensional manner, and a plurality of signal lines for reading out the charges are arranged; A signal processing circuit that performs signal processing by reading an analog voltage signal according to the charge from a pixel, and a plurality of charge amplifiers included in the signal processing circuit, provided for each of the signal lines, and the signal line A plurality of charge amplifiers connected to one end of the plurality of charge amplifiers for converting the charges from the pixels into analog voltage signals, and a multiplexer included in the signal processing circuit, the plurality of charge terminals having a plurality of input terminals; An amplifier is connected to each of the plurality of input terminals to sequentially select and output the analog voltage signals from the plurality of charge amplifiers. And an AD converter included in the signal processing circuit, which is connected to a subsequent stage of the multiplexer and converts the analog voltage signal output from the multiplexer into a digital signal according to a voltage value In an operation method of a radiation image detection apparatus comprising: an AD converter for performing
Before the start of the irradiation of radiation, the charge is read out from the pixel through the signal line, and the irradiation start detection operation of detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge is performed Start detection step,
After the start of the radiation irradiation, a pixel charge accumulation period for accumulating the charge in the pixel elapses, and then the charge is read from the pixel through the signal line, and the digital signal corresponding to the read charge is represented And an image reading step of executing an image reading operation of outputting a radiation image to be provided for diagnosis.
A method of operating a radiation image detection apparatus, wherein power supplied to all of the charge amplifiers in the irradiation start detection step is reduced as compared to that in the image reading operation.
 なお、付記項2に記載の照射開始検出ステップおよび画像読み出しステップは、図60のステップST1205およびステップST1805がそれぞれ該当する。 In addition, step ST1205 and step ST1805 of FIG. 60 correspond to the irradiation start detection step and the image readout step described in the additional item 2, respectively.
 6.第6発明
 以下に説明する図61および図62に示す第6発明は、制御部54が、AED動作時のADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する、という内容である。上記第3発明は、検出用CA132を含む一部のCAからのアナログの電圧信号V(C)を選択的にADC77に対して出力させ、ADC77に対して、選択的に出力されたアナログの電圧信号V(C)に対するAD変換処理のみを実施させたうえで、AED動作時のADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する、という内容であった。対して、本第6発明は、検出用CA132、非検出用CA131の区別なく、画像読み出し動作時と同じく、ADC77に、全てのCA60からのアナログの電圧信号V(C)に対するAD変換処理を実施させたうえで、AED動作時のADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する、という点で上記第3発明とは異なる。
6. Sixth Invention In the sixth invention shown in FIGS. 61 and 62 described below, the control unit 54 reduces the number of pulses per unit time of the clock signal of the ADC 77 at the time of the AED operation as compared to that at the time of the image reading operation. It is the contents of that. The third invention selectively outputs analog voltage signals V (C) from some of the CAs including the detection CA 132 to the ADC 77, and selectively outputs the analog voltages to the ADC 77. The content is that the number of pulses per unit time of the clock signal of the ADC 77 at the time of the AED operation is reduced as compared with that at the time of the image reading operation after performing only the AD conversion processing on the signal V (C). In contrast, the sixth invention carries out AD conversion processing on the analog voltage signals V (C) from all the CAs 60 in the ADC 77 as in the image read-out operation regardless of the detection CA 132 and the non-detection CA 131. The third embodiment is different from the third invention in that the number of pulses per unit time of the clock signal of the ADC 77 at the time of AED operation is reduced as compared with that at the time of image reading operation.
 第6発明においても、上記第2~第5発明と同じく、X線撮影システム10、電子カセッテ16等の基本的な構成は、上述の第1発明と同様である。以下、第1~第5発明と同一部分については同一の符号を付して説明を省略し、相違点を中心に説明する。 Also in the sixth invention, as in the second to fifth inventions, the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. Hereinafter, the same parts as those of the first to fifth inventions will be assigned the same reference numerals and explanations thereof will be omitted, and differences will be mainly described.
 図61に示すように、制御部54は、全てのADC77のクロック信号の単位時間当たりのパルス数NPU_Aを、画像読み出し動作時は通常のパルス数であるNPUN_A、AED動作時はNPUN_Aの1/2のNPUL_Aとする。 As shown in FIG. 61, the control unit 54 controls the pulse number NPU_A per unit time of the clock signal of all the ADCs 77, NPUN_A which is a normal pulse number at the time of image reading operation, and 1⁄2 of NPUN_A at AED operation. Let's call it NPUL_A.
 図62は、本第6発明の電子カセッテの動作手順を示すフローチャートである。上記第1-1実施形態の図17で示したフローチャートとの相違点は、一点鎖線で囲ったステップST1206およびステップST1806である。以下、相違点のみ説明する。 FIG. 62 is a flow chart showing the operation procedure of the electronic cassette of the sixth invention. The point of difference between the flowchart shown in FIG. 17 of the first-first embodiment and the flowchart shown in FIG. 17 is step ST1206 and step ST1806 surrounded by a dashed dotted line. Only the differences will be described below.
 ステップST1206において、AED動作では、通常のパルス数であるNPUN_Aの1/2のパルス数NPUL_Aのクロック信号が全てのADC77に与えられる。一方、ステップST1806の画像読み出し動作では、パルス数NPUN_Aの通常のクロック信号が全てのADC77に与えられる。 In step ST1206, in the AED operation, a clock signal NPUL_A which is 1/2 the pulse number NPUN_A which is a normal pulse number is supplied to all the ADCs 77. On the other hand, in the image readout operation in step ST1806, a normal clock signal of pulse number NPUN_A is supplied to all the ADCs 77.
 このように、AED動作時のADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減するので、AED動作時の信号処理回路51の消費電力を低減することができる。このため、上記第1~第3、第5発明と同じく、バッテリ65が従来よりも長持ちし、これによりバッテリ65の充電回数も減るので、撮影効率を向上させることができる。 As described above, since the number of pulses per unit time of the clock signal of the ADC 77 at the time of AED operation is reduced as compared with that at the time of image reading operation, power consumption of the signal processing circuit 51 at the time of AED operation can be reduced. Therefore, as in the first to third and fifth aspects of the invention, the battery 65 lasts longer than in the prior art, and the number of times the battery 65 is charged is also reduced, so that the imaging efficiency can be improved.
 上記記載から、以下の付記項3に記載の放射線画像検出装置、および付記項4に記載の放射線画像検出装置の作動方法を把握することができる。 From the above description, it is possible to comprehend the radiation image detection apparatus according to the following supplementary item 3 and the operation method of the radiation image detection apparatus according to the supplementary item 4.
 [付記項3]
 放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、前記電荷を読み出す複数の信号線が配されたセンサパネルと、
 前記信号線を通じて、前記画素から前記電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、
 前記信号処理回路に含まれ、前記アナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器であって、前記信号線毎に実行される前記AD変換処理を分担する複数のAD変換器と、
 前記信号処理回路を制御して照射開始検出動作および画像読み出し動作を実行する制御部とを備えており、
 前記照射開始検出動作は、前記放射線の照射開始前から、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号に基づいて前記放射線の照射開始を検出する動作であり、
 前記画像読み出し動作は、前記放射線の照射開始後、前記画素に前記電荷を蓄積する画素電荷蓄積期間が経過してから、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号が表す、診断に供する放射線画像を出力する動作であり、
 前記制御部は、前記照射開始検出動作において、全ての前記AD変換器について、前記AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、前記画像読み出し動作時よりも低減する放射線画像検出装置。
[Appendix 3]
A sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store electric charges in a two-dimensional manner, and which are provided with a plurality of signal lines for reading out the electric charges;
A signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to the charge from the pixel through the signal line;
An AD converter that is included in the signal processing circuit and executes an AD conversion process for converting the analog voltage signal into a digital signal according to a voltage value, the AD conversion process being performed for each of the signal lines With multiple AD converters to share
And a control unit that controls the signal processing circuit to execute an irradiation start detection operation and an image readout operation.
The irradiation start detection operation is an operation of reading out the charge from the pixel through the signal line before the start of irradiation of the radiation and detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge. And
The image readout operation corresponds to the readout charge by reading out the charge from the pixel through the signal line after a pixel charge accumulation period for accumulating the charge in the pixel has elapsed after the start of the irradiation of the radiation. An operation of outputting a radiation image to be provided for diagnosis represented by the digital signal
The control unit reduces the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter for all the AD converters in the irradiation start detection operation as compared to the image read operation. Radiation image detector.
 [付記項4]
 放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、前記電荷を読み出す複数の信号線が配されたセンサパネルと、前記信号線を通じて、前記画素から前記電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、前記信号処理回路に含まれ、前記アナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器であって、前記信号線毎に実行される前記AD変換処理を分担する複数のAD変換器と、前記信号処理回路を制御する制御部とを備える放射線画像検出装置の作動方法において、
 前記放射線の照射開始前から、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号に基づいて前記放射線の照射開始を検出する照射開始検出動作を実行する照射開始検出ステップと、
 前記放射線の照射開始後、前記画素に前記電荷を蓄積する画素電荷蓄積期間が経過してから、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号が表す、診断に供する放射線画像を出力する画像読み出し動作を実行する画像読み出しステップとを備え、
 前記照射開始検出ステップにおいて、全ての前記AD変換器について、前記AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、前記画像読み出し動作時よりも低減する放射線画像検出装置の作動方法。
[Appendix 4]
A sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store charges are arranged in a two-dimensional manner, and a plurality of signal lines for reading out the charges are arranged; A signal processing circuit that performs signal processing by reading an analog voltage signal according to the charge from a pixel, and an AD conversion process included in the signal processing circuit and converting the analog voltage signal into a digital signal according to a voltage value Operation of a radiation image detection apparatus including: a plurality of AD converters that share the AD conversion process performed for each signal line; and a control unit that controls the signal processing circuit. In the method
Before the start of the irradiation of radiation, the charge is read out from the pixel through the signal line, and the irradiation start detection operation of detecting the start of irradiation of the radiation based on the digital signal corresponding to the read charge is performed Start detection step,
After the start of the radiation irradiation, a pixel charge accumulation period for accumulating the charge in the pixel elapses, and then the charge is read from the pixel through the signal line, and the digital signal corresponding to the read charge is represented And an image reading step of executing an image reading operation of outputting a radiation image to be provided for diagnosis.
In the radiation start detection step, for all the AD converters, the number of pulses per unit time of a clock signal that defines the operation timing of the AD converters is reduced compared to that at the time of the image reading operation. How it works
 なお、付記項4に記載の照射開始検出ステップおよび画像読み出しステップは、図62のステップST1206およびステップST1806がそれぞれ該当する。 In addition, step ST1206 and step ST1806 of FIG. 62 correspond to the irradiation start detection step and the image readout step described in the supplementary item 4, respectively.
 7.第7発明
 以下に説明する図63および図64に示す第7発明は、回路構成の変形例である。第7発明においても、上記第2~第6発明と同じく、X線撮影システム10、電子カセッテ16等の基本的な構成は、上述の第1発明と同様である。以下、第1~第6発明と同一部分については同一の符号を付して説明を省略し、相違点を中心に説明する。
7. Seventh Invention The seventh invention shown in FIGS. 63 and 64 described below is a modification of the circuit configuration. Also in the seventh invention, as in the second to sixth inventions, the basic configurations of the X-ray imaging system 10, the electronic cassette 16 and the like are the same as those of the first invention described above. In the following, the same parts as those of the first to sixth inventions will be assigned the same reference numerals and explanations thereof will be omitted, and differences will be mainly described.
 図63および図64は、本第7発明における1つのブロックBLとその周辺の回路構成を示す。ブロックBLは、図39で示した上記第2-1実施形態のように、検出用チャンネル95と非検出用チャンネル130が混在したものである。検出用チャンネル95は、図49で示した上記第3-2実施形態と同じく、CDS61の後段で第1経路140と第2経路141とに分かれており、スイッチ142が接続されている。スイッチ142は、制御部54から入力される駆動制御信号S_MUXに応じて、検出用チャンネル95と接続する経路を、第1経路140と第2経路141とに切り替える。 63 and 64 show a circuit configuration of one block BL and its periphery in the seventh invention. The block BL is a mixture of the detection channel 95 and the non-detection channel 130 as in the above-mentioned second embodiment shown in FIG. The detection channel 95 is divided into a first path 140 and a second path 141 at a stage subsequent to the CDS 61 as in the third embodiment shown in FIG. 49, and the switch 142 is connected. The switch 142 switches the path connected to the detection channel 95 between the first path 140 and the second path 141 in response to the drive control signal S_MUX input from the control unit 54.
 検出用CA132および非検出用CA131の前段において、検出用チャンネル95および非検出用チャンネル130は、第1経路200と第2経路201とに分かれている。第1経路200は、検出用CA132および非検出用CA131に接続される。第2経路201は、検出用CA132および非検出用CA131を介さずに、CDS61に接続される。第1経路200は、検出用CA132および非検出用CA131に電荷を入力する経路である。第2経路201は、検出用CA132および非検出用CA131を介さずに、電荷をMUX76に出力する経路である。 The detection channel 95 and the non-detection channel 130 are divided into a first path 200 and a second path 201 before the detection CA 132 and the non-detection CA 131. The first path 200 is connected to the detection CA 132 and the non-detection CA 131. The second path 201 is connected to the CDS 61 without passing through the detection CA 132 and the non-detection CA 131. The first path 200 is a path for inputting a charge to the detection CA 132 and the non-detection CA 131. The second path 201 is a path for outputting charge to the MUX 76 without passing through the detection CA 132 and the non-detection CA 131.
 検出用チャンネル95または非検出用チャンネル130、第1経路200、および第2経路201には、スイッチ202が接続されている。スイッチ202は、制御部54から入力される駆動制御信号S_CAに応じて、検出用チャンネル95または非検出用チャンネル130と接続する経路を、第1経路200と第2経路201とに切り替える。 A switch 202 is connected to the detection channel 95 or the non-detection channel 130, the first path 200, and the second path 201. The switch 202 switches the path connected to the detection channel 95 or the non-detection channel 130 between the first path 200 and the second path 201 in accordance with the drive control signal S_CA input from the control unit 54.
 同様にして、CDS61の前段において、検出用チャンネル95および非検出用チャンネル130は、第1経路203と第2経路204とに分かれており、スイッチ205が接続されている。スイッチ205は、制御部54から入力される駆動制御信号S_CDSに応じて、検出用チャンネル95または非検出用チャンネル130と接続する経路を、第1経路203と第2経路204とに切り替える。 Similarly, in the front stage of the CDS 61, the detection channel 95 and the non-detection channel 130 are divided into a first path 203 and a second path 204, and the switch 205 is connected. The switch 205 switches the path connected to the detection channel 95 or the non-detection channel 130 between the first path 203 and the second path 204 according to the drive control signal S_CDS input from the control unit 54.
 検出用チャンネル95および非検出用チャンネル130には、スイッチ206を介してバイアス電源207が接続されている。スイッチ206は、制御部54から入力される駆動制御信号S_BIASに応じて、オン/オフが切り替わる。 A bias power supply 207 is connected to the detection channel 95 and the non-detection channel 130 via the switch 206. The switch 206 is switched on / off in response to the drive control signal S_BIAS input from the control unit 54.
 制御部54は、各チャンネル95、130(各信号線42)のスイッチ142、202、205に対して、個別に各駆動制御信号S_MUX、S_CA、S_CDSを出力する。このため、制御部54は、検出用チャンネル95のスイッチ202、205を第1経路200、203側とする一方で、非検出用チャンネル130のスイッチ202、205を第2経路201、204側とする等、各スイッチ142、202、205の個別の駆動制御が可能である。スイッチ206についても同様に、制御部54は、個別に駆動制御信号S_BIASを出力し、検出用チャンネル95はオフ状態、非検出用チャンネル130はオン状態とする等が可能である。 The control unit 54 individually outputs the drive control signals S_MUX, S_CA, and S_CDS to the switches 142, 202, and 205 of the channels 95 and 130 (the signal lines 42). Therefore, the control unit 54 sets the switches 202 and 205 of the detection channel 95 to the first paths 200 and 203, and sets the switches 202 and 205 of the non-detection channel 130 to the second paths 201 and 204. Individual drive control of each switch 142, 202, 205 is possible. Similarly for the switch 206, the control unit 54 can individually output the drive control signal S_BIAS, the detection channel 95 can be turned off, the non-detection channel 130 can be turned on, and so on.
 図63は、画像読み出し動作時を示す。すなわち、スイッチ142、202、205により、各チャンネル95、130のいずれも第1経路140、200、203が選択されている。また、スイッチ206はいずれもオフ状態とされている。 FIG. 63 shows the time of image read operation. That is, the first paths 140, 200, and 203 are selected by the switches 142, 202, and 205, respectively. Also, the switches 206 are all in the off state.
 一方、AED動作時は、例えば図64に示す状態とされる。すなわち、検出用チャンネル95においては、スイッチ142により第2経路141が、スイッチ202、205により第1経路200、203がそれぞれ選択されている。また、スイッチ206は依然としてオフ状態とされている。この状態は、上記第3-2実施形態の図49Aの状態と同じである。したがって、上記第3-2実施形態で説明した通り、検出用CA132からのアナログの電圧信号V(C)は、MUX76を介さずに、直接ADC77に出力される。 On the other hand, at the time of the AED operation, for example, the state shown in FIG. That is, in the detection channel 95, the switch 142 selects the second path 141, and the switches 202 and 205 select the first paths 200 and 203, respectively. Also, the switch 206 is still in the off state. This state is the same as the state of FIG. 49A of the third-2 embodiment. Therefore, as described in the third embodiment, the analog voltage signal V (C) from the detection CA 132 is directly output to the ADC 77 without passing through the MUX 76.
 対して非検出用チャンネル130においては、スイッチ202、205により第2経路201、204がそれぞれ選択されている。また、スイッチ206はオン状態とされている。この場合、非検出用チャンネル130の電荷は、非検出用CA131、CDS61を介さずに、直接MUX76に出力される。また、非検出用チャンネル130には、スイッチ206を通じてバイアス電源207からバイアス電圧が印加される。 On the other hand, in the non-detection channel 130, the second paths 201 and 204 are selected by the switches 202 and 205, respectively. Also, the switch 206 is in the on state. In this case, the charge of the non-detection channel 130 is directly output to the MUX 76 without passing through the non-detection CA 131 and the CDS 61. Further, a bias voltage is applied to the non-detection channel 130 from the bias power supply 207 through the switch 206.
 この場合、非検出用CA131は、図41で示した上記第2-2実施形態と同じく、供給電力PL_Cが0のパワーオフの状態である。非検出用チャンネル130のCDS61も同様に、パワーオフの状態である。 In this case, the non-detection CA 131 is in a power-off state where the supplied power PL_C is 0, as in the second to second embodiments shown in FIG. Similarly, the CDS 61 of the non-detection channel 130 is in the power off state.
 非検出用CA131をパワーオフの状態とした場合は、上記第2-2実施形態で説明したように、非検出用CA131の2つの入力端子間のバーチャルショート状態が保てず、非検出用CA131の入力段の電位が不定となり、これに伴って非検出用チャンネル130の電荷も不安定となり、後の画像読み出し動作に悪影響を及ぼしてしまう、という問題があった。そこで、本第7発明では、スイッチ206をオン状態として、非検出用チャンネル130にバイアス電源207からバイアス電圧を印加している。これにより、非検出用チャンネル130の電荷が不安定となり、後の画像読み出し動作に悪影響を及ぼす、という上記問題を解決することができる。 When the non-detection CA 131 is in the power-off state, the virtual short state between the two input terminals of the non-detection CA 131 can not be maintained as described in the second embodiment, and the non-detection CA 131 can not be maintained. The potential of the input stage becomes unstable, and accordingly, the charges of the non-detection channel 130 also become unstable, which adversely affects the subsequent image reading operation. Therefore, in the seventh invention, the switch 206 is turned on, and a bias voltage is applied to the non-detection channel 130 from the bias power supply 207. As a result, the above-mentioned problem that the charge of the non-detection channel 130 becomes unstable and adversely affects the image reading operation later can be solved.
 なお、非検出用CA131は、パワーオフの状態ではなく、上記第2-1実施形態のように、入力段の電位が不定とならない程度の供給電力PL_Cを与えて低電力状態としてもよい。 The non-detection CA 131 may not be in the power off state, but may be set to the low power state by supplying the supply power PL_C to such an extent that the potential of the input stage is not unstable as in the above-described second embodiment.
 図43で示した第2-3実施形態のように、非検出用CA131だけでなく、検出用CA132も、通常電力PN_Cよりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動してもよい。ただし、この場合も図64で示したように、AED動作時は、検出用チャンネル95において、スイッチ142により第2経路141が、スイッチ202、205により第1経路200、203がそれぞれ選択され、スイッチ206はオフ状態とされる。 As in the second to third embodiments shown in FIG. 43, not only the non-detection CA 131 but also the detection CA 132 are driven in a low power state in which power lower than the normal power PN_C and greater than 0 is supplied. You may However, also in this case, as shown in FIG. 64, in the AED operation, in the detection channel 95, the second path 141 is selected by the switch 142, and the first paths 200 and 203 are selected by the switches 202 and 205, respectively. 206 is turned off.
 また、検出用CA132を低電力状態で駆動した場合、検出用CA132の検出性能が低下するため、これに伴い線量信号DDS(C)のS/N比が低下するおそれがある。そこで、ゲート駆動部50から同時にゲートパルスG(R)を与えるゲート線41の本数を多くして、検出用チャンネル95で加算される電荷の量を増やし、線量信号DDS(C)のS/N比を向上させることが好ましい。 Further, when the detection CA 132 is driven in a low power state, the detection performance of the detection CA 132 is lowered, and accordingly, the S / N ratio of the dose signal DDS (C) may be lowered. Therefore, the number of gate lines 41 for simultaneously applying gate pulses G (R) from the gate drive unit 50 is increased to increase the amount of charges added in the detection channel 95, and the S / N of the dose signal DDS (C) It is preferred to improve the ratio.
 なお、制御部54は、各チャンネル95、130(各信号線42)のスイッチ142、202、205、206に対して、個別に各駆動制御信号S_MUX、S_CA、S_CDS、S_BIASを出力するのではなく、ブロックBL単位で一律に各駆動制御信号S_MUX、S_CA、S_CDS、S_BIASを出力してもよい。例えば上記第1-5実施形態のようにADC77を常時非稼働とするブロックBLは、一律スイッチ142、202、205を第2経路141、201、204側とし、かつ一律スイッチ206をオン状態とする。 The control unit 54 does not individually output the drive control signals S_MUX, S_CA, S_CDS, S_BIAS to the switches 142, 202, 205, 206 of the channels 95, 130 (the signal lines 42), respectively. The drive control signals S_MUX, S_CA, S_CDS, and S_BIAS may be output uniformly in units of blocks BL. For example, as in the first to fifth embodiments, the block BL in which the ADC 77 is always inoperative is such that the uniform switches 142, 202, and 205 are on the second paths 141, 201, and 204 side, and the uniform switch 206 is in the on state. .
 スイッチ206およびバイアス電源207は、ブロックBL、ひいては信号処理回路51に内蔵させてもよい。 The switch 206 and the bias power supply 207 may be incorporated in the block BL and hence in the signal processing circuit 51.
 検出用CA132をパワーオフの状態とし、スイッチ206をオン状態として、検出用チャンネル95にバイアス電源207からバイアス電圧を印加し、検出用チャンネル95のスイッチ202、205を第2経路201、204側とする。そして、X線の照射時に画素40に流れる電流により生じるバイアス電源207の負荷変動を、ADC77でデジタル信号DS(C)に変換する。これを線量信号DDS(C)として用い、当該線量信号DS(C)が所定の範囲よりも変動した場合に、X線の照射が開始されたと判定してもよい。 With the detection CA 132 in the power-off state and the switch 206 in the on state, a bias voltage is applied from the bias power supply 207 to the detection channel 95, and the switches 202 and 205 of the detection channel 95 are connected to the second paths 201 and 204 side. Do. Then, the load fluctuation of the bias power supply 207 caused by the current flowing to the pixel 40 at the time of X-ray irradiation is converted by the ADC 77 into a digital signal DS (C). This may be used as the dose signal DDS (C), and when the dose signal DS (C) fluctuates beyond a predetermined range, it may be determined that the X-ray irradiation has been started.
 同様に、非検出用CA131をパワーオフの状態とし、スイッチ206をオン状態として、非検出用チャンネル130にバイアス電源207からバイアス電圧を印加し、非検出用チャンネル130のスイッチ202、205を第2経路201、204側とする。そして、X線の照射時に画素40に流れる電流により生じるバイアス電源207の負荷変動を、ADC77でデジタル信号DS(C)に変換する。これを線量信号DDS(C)として用い、当該線量信号DS(C)が所定の範囲よりも変動した場合に、X線の照射が開始されたと判定してもよい。 Similarly, with the non-detection CA 131 in the power-off state and the switch 206 in the on state, a bias voltage is applied from the bias power supply 207 to the non-detection channel 130, and the switches 202 and 205 of the non-detection channel 130 are The paths 201 and 204 are set. Then, the load fluctuation of the bias power supply 207 caused by the current flowing to the pixel 40 at the time of X-ray irradiation is converted by the ADC 77 into a digital signal DS (C). This may be used as the dose signal DDS (C), and when the dose signal DS (C) fluctuates beyond a predetermined range, it may be determined that the X-ray irradiation has been started.
 あるいは、検出用チャンネル95から出力された、バイアス電源207の負荷変動を表す線量信号DDS(C)と、非検出用チャンネル130から出力された、バイアス電源207の負荷変動を表す線量信号DDS(C)の両方に基づいて、X線の照射開始を判定してもよい。具体的には、上記各線量信号DDS(C)の差分、または比を演算し、演算した差分、または比に基づいて、X線の照射開始を判定する。こうすれば、電子カセッテ16に加わる衝撃や振動ノイズ、電磁ノイズ等のノイズ成分がキャンセルされるので、ノイズ成分でX線の照射開始の判定を誤るおそれを低減することができる。 Alternatively, a dose signal DDS (C) representing the load fluctuation of the bias power supply 207 output from the detection channel 95 and a dose signal DDS representing the load fluctuation of the bias power supply 207 output from the non-detection channel 130 (C) The start of X-ray irradiation may be determined based on both of the above. Specifically, the difference or ratio of each dose signal DDS (C) is calculated, and the start of X-ray irradiation is determined based on the calculated difference or ratio. In this case, noise components such as shock, vibration noise, and electromagnetic noise applied to the electronic cassette 16 are canceled, so that it is possible to reduce the possibility of erroneous determination of the start of X-ray irradiation due to the noise components.
 検出用CA132、または非検出用CA131をパワーオフの状態とするのではなく、上記第2-1実施形態のように、検出用CA132、または非検出用CA131の入力段の電位が不定とならない程度の供給電力PL_Cを与えて低電力状態としてもよい。 The potential of the input stage of the detecting CA 132 or the non-detecting CA 131 is not indefinite as in the above-described second embodiment, instead of setting the detecting CA 132 or the non-detecting CA 131 to the power-off state Power supply PL_C may be given to set the low power state.
 負荷変動を表す線量信号DDS(C)を取得する電源は、バイアス電源207に限らない。ADC77やCA60、あるいはCDS61の電源等、AED動作中にパワーオンしている電源であれば何でもよい。 The power supply for acquiring the dose signal DDS (C) representing the load fluctuation is not limited to the bias power supply 207. Any power supply such as the power supply of the ADC 77, the CA 60, or the CDS 61 may be used as long as the power is on during the operation of the AED.
 ただし、電源の負荷変動を表す線量信号DDS(C)でX線の照射が開始されたか否かを判定する場合、電源の負荷変動量が小さく、これに伴い線量信号DDS(C)のS/N比が低下して、X線の照射開始検出性能が低下するおそれがある。 However, when it is determined by the dose signal DDS (C) representing load fluctuation of the power supply whether or not the X-ray irradiation has been started, the load fluctuation of the power supply is small. There is a possibility that the N ratio is lowered and the X-ray irradiation start detection performance is lowered.
 そこで、ゲート駆動部50から同時にゲートパルスG(R)を与えるゲート線41の本数を多くして、検出用チャンネル95または非検出用チャンネル130で加算される電荷の量を増やし、線量信号DDS(C)のS/N比を向上させることが好ましい。あるいは、隣り合うチャンネル間の線量信号DDS(C)を加算または加算平均することで線量信号DDS(C)のS/N比を向上させてもよい。さらには、ゲート駆動部50から同時にゲートパルスG(R)を与えるゲート線41の本数を多くして、各チャンネルで加算される電荷の量を増やす手法と、隣り合うチャンネル間の線量信号DDS(C)を加算または加算平均する手法を併用することで、線量信号DDS(C)のS/N比をより向上させてもよい。 Therefore, the number of gate lines 41 to which gate pulses G (R) are simultaneously given from the gate driver 50 is increased to increase the amount of charges added in the detection channel 95 or the non-detection channel 130, It is preferable to improve the S / N ratio of C). Alternatively, the S / N ratio of the dose signal DDS (C) may be improved by adding or averaging the dose signals DDS (C) between adjacent channels. Furthermore, there is a method of increasing the number of charges added in each channel by increasing the number of gate lines 41 that simultaneously apply gate pulses G (R) from the gate driver 50, and the dose signal DDS between adjacent channels The S / N ratio of the dose signal DDS (C) may be further improved by using a method of adding or averaging C).
 本第7発明は、上記第1発明、上記第2発明、上記第3発明、および上記第4発明の各実施形態と複合して実施してもよい。例えば、上記第2~第4発明の場合と同じく、上記第1発明を適用して、上記第1-1実施形態の図14等で示したように、制御部54により、ADC77、およびこれとブロックBLを構成するMUX76の電力の供給状態を、第1状態と第2状態とに周期的に切り替えてもよい。 The seventh aspect of the present invention may be implemented in combination with the respective embodiments of the first aspect, the second aspect, the third aspect, and the fourth aspect of the invention. For example, as in the case of the second to fourth inventions, as described in FIG. 14 and the like of the first-first embodiment applying the first invention, the control unit 54 controls the ADC 77, and The power supply state of the MUX 76 constituting the block BL may be periodically switched to the first state and the second state.
 上記第2~第4発明と同じく、本第7発明と上記第1発明のADC77、ひいてはブロックBLの供給電力の切り替えパターンの組み合わせについては、例えば以下に示す組み合わせが可能である。まず、上記第1-1実施形態の図14等で示したように、電力の供給状態を周期的に切り替えるMUX76およびADC77のブロックBLが2個以上ある場合、制御部54により、2個以上のブロックBLのうちの少なくとも2個のブロックBLの電力の供給状態の切り替えのタイミングをずらしてもよい。 Similar to the second to fourth inventions, combinations of the ADC77 of the seventh invention and the ADC77 of the first invention and the switching pattern of the supply power of the block BL can be, for example, the following combinations. First, as shown in FIG. 14 and the like of the first-first embodiment, when there are two or more blocks 76 of the MUX 76 and the ADC 77 that periodically switch the power supply state, the control unit 54 The timing of switching of the power supply state of at least two blocks BL in the block BL may be shifted.
 さらに、これも上記第1-1実施形態の図14等で示したように、2個以上のブロックBLが属する複数のグループ毎に電力の供給状態の切り替えのタイミングをずらしてもよい。この場合、同じグループに属する2個のブロックBLの間には、少なくとも1個のブロックBLが配されていることが好ましい。あるいは、上記第1-2実施形態の図18等で示したように、2個以上のブロックBLの全ての電力の供給状態の切り替えのタイミングをずらしてもよい。 Furthermore, as shown in FIG. 14 and the like of the first-first embodiment, the timing of switching of the power supply state may be shifted for each of a plurality of groups to which two or more blocks BL belong. In this case, preferably, at least one block BL is disposed between two blocks BL belonging to the same group. Alternatively, as shown in FIG. 18 and the like of the first and second embodiments, the timing of switching the supply state of all the power of two or more blocks BL may be shifted.
 上記第1-5実施形態の図21等で示したように、非検出用CA131のみが接続されているMUX76を含むブロックBLが複数あった場合は、そのうちの少なくとも1つを常時第2状態にしてもよい。 As shown in FIG. 21 and the like of the first to fifth embodiments, when there are a plurality of blocks BL including the MUX 76 to which only the non-detection CA 131 is connected, at least one of them is always kept in the second state. May be
 図35~図37の上記第1-12実施形態で示したように、線量信号DDS(C)にリーク電荷補正と温度ドリフト補正を施してもよい。 Leakage charge correction and temperature drift correction may be applied to the dose signal DDS (C) as shown in the first to twelfth embodiments of FIGS.
 この他にも、図25~図27に示す、AED動作に用いる検出用画素90が接続された信号線42である検出用チャンネル95が設定される上記第1-8実施形態、図28~図31に示す、AED動作専用の検出用画素90Xを設けた上記第1-9実施形態、図32に示す、検出用画素90を設定変更可能とした上記第1-10実施形態、図33および図34に示す、AED動作時のCDS61の動作を簡略化する上記第1-11実施形態、図38に示す、デジタル信号の伝送I/Fを切り替える上記第1-13実施形態を組み合わせてもよい。 Besides, the above-described first to eighth embodiments in which the detection channel 95 which is the signal line 42 to which the detection pixel 90 used for the AED operation shown in FIGS. 25 to 27 is connected are set. The first to ninth embodiments shown in FIG. 31, provided with detection pixels 90X dedicated to the AED operation, the above first to tenth embodiments shown in FIG. 32, in which the detection pixels 90 can be changed, FIG. 33 and FIG. The first to eleventh embodiments for simplifying the operation of the CDS 61 during the AED operation shown in FIG. 34 and the above first to thirteenth embodiments for switching the transmission I / F of the digital signal shown in FIG. 38 may be combined.
 また、図39~図43に示す、上記第2発明の上記第2-1~第2-3実施形態を適用して、アナログの電圧信号V(C)を選択的にADC77に対して出力する一部のCA以外の非選択のCAの少なくとも1個へのAED動作時の供給電力を、画像読み出し動作時における通常電力よりも低い省電力状態にしてもよい。 Further, the voltage signal V (C) of an analog signal is selectively output to the ADC 77 by applying the above-described 2-1 to 2-3 embodiments of the second invention shown in FIGS. 39 to 43. The power supplied to at least one of the unselected CAs other than some of the CAs during the AED operation may be set to a power saving state lower than the normal power during the image reading operation.
 さらに、図44~図49に示す、ADC77のクロック信号の単位時間当たりのパルス数を、画像読み出し動作時よりも低減する上記第3-1、3-2実施形態を適用してもよい。 Furthermore, the above-described Embodiments 3-1 and 3-2 in which the number of pulses per unit time of the clock signal of the ADC 77 shown in FIG. 44 to FIG.
 さらにまた、図50~図58に示す、AED動作において、複数のブロックBL1~BL16のそれぞれについて、電荷の読み出しを開始させるタイミングよりもブロックBLを構成するADC77等を安定して稼働させるために必要な所定の時間前に、第2状態から第1状態への切り替えを行う上記第4-1~4-3実施形態を適用してもよい。 Furthermore, in the AED operation shown in FIG. 50 to FIG. 58, it is necessary to stably operate the ADC 77 etc. constituting the block BL rather than the timing for starting the charge readout for each of the plurality of blocks BL1 to BL16. The fourth to fourth embodiments may be applied to switch from the second state to the first state before a predetermined time.
 上記第1~第7発明の各実施形態では、放射線画像検出装置として電子カセッテ16を例示したが、本発明はこれに限定されない。立位撮影台18や臥位撮影台19に固定される据え置き型の放射線画像検出装置に対しても、本発明は適用することが可能である。 In each of the embodiments of the first to seventh inventions, the electronic cassette 16 is illustrated as a radiation image detection apparatus, but the present invention is not limited to this. The present invention is also applicable to a stationary radiation image detection apparatus fixed to the standing position imaging stand 18 and the deceiving position imaging stand 19.
 上記第1~第7発明の各実施形態において、例えば、制御部54、リーク電荷補正部121、温度ドリフト補正部122といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。 In each embodiment of the first to seventh inventions, for example, the hardware structure of a processing unit that executes various processes such as the control unit 54, the leak charge correction unit 121, and the temperature drift correction unit 122 , And various processors as shown below.
 各種のプロセッサには、CPU、プログラマブルロジックデバイス(Programmable Logic Device:PLD)、専用電気回路等が含まれる。CPUは、周知のとおりソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサである。PLDは、FPGA(Field Programmable Gate Array) 等の、製造後に回路構成を変更可能なプロセッサである。専用電気回路は、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである。 The various processors include a CPU, a programmable logic device (PLD), a dedicated electric circuit, and the like. The CPU is a general-purpose processor that executes software (program) and functions as various processing units, as is well known. The PLD is a processor that can change the circuit configuration after manufacture, such as an FPGA (Field Programmable Gate Array). The dedicated electric circuit is a processor having a circuit configuration specially designed to execute a specific process such as an application specific integrated circuit (ASIC).
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be configured of one of these various processors, or configured of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA) It may be done. In addition, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units by one processor, first, there is a form in which one processor is configured by a combination of one or more CPUs and software, and this processor functions as a plurality of processing units. . Second, as typified by a system on chip (SoC) or the like, there is a mode using a processor that realizes functions of the entire system including a plurality of processing units by one IC chip. Thus, the various processing units are configured using one or more of the above-described various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。 Furthermore, the hardware-like structure of these various processors is more specifically an electric circuit (circuitry) combining circuit elements such as semiconductor elements.
 本発明は、X線に限らず、γ線等の他の放射線を使用する場合にも適用することができる。 The present invention can be applied not only to X-rays but also to other radiations such as γ-rays.
 なお、本明細書中に記載の「あるいは」、「または」、「もしくは」なる接続詞は、文脈によっては、これらの接続詞で繋げられた複数の選択肢のうちのいずれか1つ、という限定的解釈を意図する表現ではなく、複数の選択肢の組み合わせも含む表現である。例えば、「選択肢A、あるいは選択肢Bを行う。」という文章は、文脈によっては、「選択肢Aを行う。」、「選択肢Bを行う。」、「選択肢Aおよび選択肢Bを行う。」の3通りの意があると解釈すべきである。 Note that the conjunctions “or”, “or”, “or” described in the present specification may have a restrictive interpretation that, depending on the context, any one of a plurality of options connected by these conjunctions. Is not an intentional expression but an expression that includes a combination of multiple options. For example, the sentence "Perform Option A or Option B" has three ways depending on the context: "Perform Option A", "Perform Option B", "Perform Option A and Option B". It should be interpreted that there is
 本発明は、上記第1~第7発明の各実施形態に限らず、本発明の要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。さらに、本発明は、プログラムに加えて、プログラムを記憶する記憶媒体にもおよぶ。 The present invention is not limited to the embodiments of the first to seventh inventions, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention. Furthermore, the present invention extends to a storage medium for storing a program in addition to the program.
 10 X線撮影システム
 11 X線発生装置
 12 X線撮影装置
 13 X線源
 14 線源制御装置
 15 照射スイッチ
 16 電子カセッテ(放射線画像検出装置)
 17 コンソール
 18 立位撮影台
 19 臥位撮影台
 20 ディスプレイ
 21 入力デバイス
 22、23 無線通信部
 25 メニュー・条件テーブル
 30 センサパネル
 31 回路部
 32 筐体
 32A 前面
 33 透過板
 34 シンチレータ
 35 光検出基板
 40 画素
 41、107 ゲート線
 42 信号線
 43、105 光電変換部
 44、106 TFT
 50、108 ゲート駆動部
 51 信号処理回路
 52 メモリ
 53 給電部
 54 制御部
 60 チャージアンプ(CA)
 61 相関二重サンプリング回路(CDS)
 62 マルチプレクサ(MUX)部
 63 AD変換器(ADC)部
 65 バッテリ
 66 有線通信部
 70 オペアンプ
 71 キャパシタ
 72 アンプリセットスイッチ
 73A 第1サンプルホールド回路(第1S/H)
 73B 第2サンプルホールド回路(第2S/H)
 74 差動アンプ
 75 (第1~第12)ゲート駆動回路
 76、76A、76B、135 (第1~第16)MUX
 77 (第1~第16)ADC
 90、90X、90X1~90X3 検出用画素
 95 検出用チャンネル
 100 短絡線
 120 リファレンスチャンネル
 121 リーク電荷補正部
 122 温度ドリフト補正部
 125 LVDSインターフェース(I/F)
 126 CMOSインターフェース(I/F)
 127 スイッチ
 130 非検出用チャンネル
 131 非検出用CA
 132 検出用CA
 133 スイッチ
 140、200、203 第1経路
 141、201、204 第2経路
 142、202、205、206 スイッチ
 207 バイアス電源
 G(R) ゲートパルス
 V(C) アナログの電圧信号
 DS(C) デジタル信号
 DIS(C) 画像信号
 DDS(C) 線量信号
 RCDDS(C) リーク電荷補正済み線量信号
 DRCDDS(C) 温度ドリフト補正済み線量信号
 AR1~AR16 エリア
 BL1~BL16 ブロック
 CP1~CP4 チップ
 T 単位時間
 P_A、PON_A、PSL_A ADCへの供給電力
 ST100~ST190、ST1202~ST1206、ST1802~ST1806、ST300~ST330 ステップ
 LA1、LA2 領域
 RLA1~RLA3 範囲
 α(C) 補正係数
 F{DRS(C-1)、DRS(C+1)} 補正係数の計算式
 TP ブロックの中心部の温度
 SC 検出用画素で発生した電荷
 LC リーク電荷
 P_C、PN_C、PL_C、PL_C1、PL_C2 CAへの供給電力
 DT 検出用チャンネルを示すアルファベット
 NDT 非検出用チャンネルを示すアルファベット
 NPU_A、NPUN_A、NPUL_A ADCのクロック信号の単位時間当たりのパルス数
 CLN_A、CLL_A ADCのクロック信号
 TC クロック信号の周期
 TW ブロックを安定して稼働させるために必要な時間
 TX 線量信号の読み出し周期
 S_MUX、S_CA、S_CDS、S_BIAS スイッチの駆動制御信号
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 11 X-ray generator 12 X-ray imaging apparatus 13 X-ray source 14 Radiation source control apparatus 15 Irradiation switch 16 Electronic cassette (radiographic image detection apparatus)
DESCRIPTION OF SYMBOLS 17 console 18 standing imaging stand 19 repositioning stand 20 display 21 input device 22, 23 radio | wireless communication part 25 menu * condition table 30 sensor panel 31 circuit part 32 housing 32A front 33 transparent board 34 scintillator 35 light detection board | substrate 40 pixels 41, 107 gate line 42 signal line 43, 105 photoelectric conversion unit 44, 106 TFT
50, 108 Gate drive unit 51 Signal processing circuit 52 Memory 53 Power supply unit 54 Control unit 60 Charge amplifier (CA)
61 Correlated Double Sampling Circuit (CDS)
62 multiplexer (MUX) section 63 AD converter (ADC) section 65 battery 66 wired communication section 70 operational amplifier 71 capacitor 72 unpreset switch 73A first sample and hold circuit (first S / H)
73B 2nd sample and hold circuit (2nd S / H)
74 differential amplifier 75 (first to twelfth) gate drive circuits 76, 76A, 76B, 135 (first to sixteenth) MUX
77 (1st to 16th) ADC
90, 90X, 90X1 to 90X3 detection pixels 95 detection channel 100 short circuit line 120 reference channel 121 leak charge correction unit 122 temperature drift correction unit 125 LVDS interface (I / F)
126 CMOS interface (I / F)
127 switch 130 channel for non-detection 131 CA for non-detection
132 Detection CA
133 switch 140, 200, 203 first path 141, 201, 204 second path 142, 202, 205, 206 switch 207 bias power supply G (R) gate pulse V (C) analog voltage signal DS (C) digital signal DIS (C) Image signal DDS (C) Dose signal RCDDS (C) Leakage charge corrected dose signal DRCDDS (C) Temperature drift corrected dose signal AR1 to AR16 Area BL1 to BL16 block CP1 to CP4 chip T Unit time P_A, PON_A, PSL_A Supply power to ADC ST100 to ST190, ST1202 to ST1206, ST1802 to ST1806, ST300 to ST330 Step LA1, LA2 area RLA1 to RLA3 Range α (C) Correction coefficient F {DRS (C-1), RS (C + 1)} Calculation formula for correction coefficient Charge at the center of the TP block SC Charge generated at the detection pixel LC Charge Charge to the P_C, PN_C, PL_C, PL_C1, PL_C2 CA Alphabet for indicating the channel for DT detection Alphabet NPU_A, NPUN_A, NPUL_A for indicating non-detection channels, pulse number per unit time of clock signal of ADCL CLN_A, clock signal of CLL_A ADC TC clock signal period Time necessary for stable operation of TW block TX dose Signal readout cycle S_MUX, S_CA, S_CDS, S_BIAS Switch drive control signal

Claims (22)

  1.  放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、前記電荷を読み出す複数の信号線が配されたセンサパネルと、
     前記信号線を通じて、前記画素から前記電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、
     前記信号処理回路に含まれる複数のチャージアンプであって、前記信号線毎に設けられ、かつ前記信号線の一端に接続され、前記画素からの前記電荷を前記アナログの電圧信号に変換する複数のチャージアンプと、
     前記信号処理回路に含まれるマルチプレクサであって、複数の入力端子を有し、前記複数のチャージアンプが前記複数の入力端子にそれぞれ接続され、前記複数のチャージアンプからの前記アナログの電圧信号を順次選択して出力するマルチプレクサと、
     前記信号処理回路に含まれるAD変換器であって、前記マルチプレクサの後段に接続され、前記マルチプレクサから出力された前記アナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器と、
     前記信号処理回路を制御して照射開始検出動作および画像読み出し動作を実行する制御部とを備えており、
     前記照射開始検出動作は、前記放射線の照射開始前から、前記画素のうち予め設定された検出用画素に接続された前記信号線である検出用チャンネルを通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号に基づいて前記放射線の照射開始を検出する動作であり、
     前記画像読み出し動作は、前記放射線の照射開始後、前記画素に前記電荷を蓄積する画素電荷蓄積期間が経過してから、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号が表す、診断に供する放射線画像を出力する動作であり、
     前記制御部は、前記照射開始検出動作において、前記マルチプレクサに接続される複数の前記チャージアンプのうち、前記検出用チャンネルに接続された前記チャージアンプである検出用チャージアンプを含む一部のチャージアンプからの前記アナログの電圧信号を選択的に前記AD変換器に対して出力させ、
     前記制御部は、前記AD変換器に、前記選択的に出力された前記アナログの電圧信号への前記AD変換処理のみを実行させ、
     さらに前記制御部は、前記AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、前記画像読み出し時よりも低減し、
     さらにまた前記制御部は、前記照射開始検出動作において、前記画像読み出し動作時における前記チャージアンプへの供給電力を通常電力とした場合に、前記一部のチャージアンプの少なくとも1個を、前記通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動する放射線画像検出装置。
    A sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store electric charges in a two-dimensional manner, and which are provided with a plurality of signal lines for reading out the electric charges;
    A signal processing circuit that performs signal processing by reading an analog voltage signal corresponding to the charge from the pixel through the signal line;
    A plurality of charge amplifiers included in the signal processing circuit, provided for each of the signal lines and connected to one end of the signal lines, for converting the charges from the pixels into the analog voltage signals Charge amplifier,
    A multiplexer included in the signal processing circuit, the multiplexer having a plurality of input terminals, the plurality of charge amplifiers being respectively connected to the plurality of input terminals, and the analog voltage signals from the plurality of charge amplifiers being sequentially A multiplexer to select and output,
    An AD converter included in the signal processing circuit, which is connected to a subsequent stage of the multiplexer and executes AD conversion processing for converting the analog voltage signal output from the multiplexer into a digital signal according to a voltage value AD converter,
    And a control unit that controls the signal processing circuit to execute an irradiation start detection operation and an image readout operation.
    In the irradiation start detection operation, the electric charge is read out through the detection channel which is the signal line connected to the detection pixel preset among the pixels before the irradiation start of the radiation, and the electric charge is read out. It is an operation of detecting the start of irradiation of the radiation based on the corresponding digital signal,
    The image readout operation corresponds to the readout charge by reading out the charge from the pixel through the signal line after a pixel charge accumulation period for accumulating the charge in the pixel has elapsed after the start of the irradiation of the radiation. An operation of outputting a radiation image to be provided for diagnosis represented by the digital signal
    The control unit is a part of charge amplifiers including a detection charge amplifier that is the charge amplifier connected to the detection channel among the plurality of charge amplifiers connected to the multiplexer in the irradiation start detection operation Selectively output the analog voltage signal from the AD converter to the AD converter,
    The control unit causes the AD converter to execute only the AD conversion process to the selectively output analog voltage signal.
    Furthermore, the control unit reduces the number of pulses per unit time of a clock signal that defines the operation timing of the AD converter, as compared with the time of image reading.
    Furthermore, in the irradiation start detection operation, when the power supplied to the charge amplifier at the time of the image reading operation is a normal power in the irradiation start detection operation, at least one of the partial charge amplifiers is the normal power A radiation image detection device driven in a low power state in which a power lower than 0 and greater than 0 is supplied.
  2.  前記マルチプレクサは、接続される複数の前記チャージアンプのうちの前記一部のチャージアンプからの前記アナログの電圧信号を選択する機能を有する請求項1に記載の放射線画像検出装置。 The radiation image detecting apparatus according to claim 1, wherein the multiplexer has a function of selecting the analog voltage signal from the partial charge amplifier among the plurality of charge amplifiers connected.
  3.  前記マルチプレクサを介して、前記チャージアンプからの前記アナログの電圧信号を前記AD変換器に出力する第1経路と、
     前記マルチプレクサを介さずに、前記チャージアンプからの前記アナログの電圧信号を前記AD変換器に出力する第2経路と、
     前記第1経路と前記第2経路とを選択的に切り替えるスイッチとを有し、
     前記制御部は、前記照射開始検出動作中は、前記スイッチを制御して前記第2経路を選択する請求項1に記載の放射線画像検出装置。
    A first path for outputting the analog voltage signal from the charge amplifier to the AD converter via the multiplexer;
    A second path for outputting the analog voltage signal from the charge amplifier to the AD converter without passing through the multiplexer;
    A switch selectively switching between the first path and the second path;
    The radiation image detection apparatus according to claim 1, wherein the control unit controls the switch to select the second path during the irradiation start detection operation.
  4.  前記制御部は、前記照射開始検出動作において、前記マルチプレクサに接続される複数の前記チャージアンプのうち、前記一部のチャージアンプ以外の非選択のチャージアンプのうちの少なくとも1個を、前記供給電力が前記通常電力よりも低い省電力状態にする請求項1ないし3のいずれか1項に記載の放射線画像検出装置。 The control unit, in the irradiation start detection operation, supplies at least one of non-selected charge amplifiers other than the partial charge amplifier among the plurality of charge amplifiers connected to the multiplexer with the supplied power. The radiation image detection apparatus according to any one of claims 1 to 3, wherein the power saving state is lower than the normal power.
  5.  前記省電力状態は、前記通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態である請求項4に記載の放射線画像検出装置。 The radiation image detection apparatus according to claim 4, wherein the power saving state is a low power state in which power lower than the normal power and larger than 0 is supplied.
  6.  前記省電力状態は、前記電力の供給が停止されるパワーオフの状態である請求項4に記載の放射線画像検出装置。 The radiation image detection apparatus according to claim 4, wherein the power saving state is a power off state in which the supply of the power is stopped.
  7.  前記制御部は、前記非選択のチャージアンプの全てを前記省電力状態にする請求項4ないし6のいずれか1項に記載の放射線画像検出装置。 The radiation image detecting apparatus according to any one of claims 4 to 6, wherein the control unit puts all of the unselected charge amplifiers in the power saving state.
  8.  前記チャージアンプに前記電荷を入力する第1経路と、
     前記チャージアンプを介さずに、前記電荷を前記マルチプレクサに出力する第2経路と、
     前記第1経路と前記第2経路とを選択的に切り替えるスイッチとを有し、
     前記制御部は、前記省電力状態とした前記非選択のチャージアンプについては、前記スイッチを制御して前記第2経路を選択する請求項4ないし7のいずれか1項に記載の放射線画像検出装置。
    A first path for inputting the charge to the charge amplifier;
    A second path for outputting the charge to the multiplexer without passing through the charge amplifier;
    A switch selectively switching between the first path and the second path;
    The radiation image detection apparatus according to any one of claims 4 to 7, wherein the control unit controls the switch to select the second path for the unselected charge amplifiers in the power saving state. .
  9.  前記省電力状態が、前記電力の供給が停止されるパワーオフの状態であった場合、
     前記制御部は、前記パワーオフの状態とした前記非選択のチャージアンプに対して、入力段の電位を安定化させるためのバイアス電圧を印加させる請求項8に記載の放射線画像検出装置。
    When the power saving state is a power off state in which the supply of the power is stopped:
    The radiation image detecting apparatus according to claim 8, wherein the control unit applies a bias voltage for stabilizing the potential of the input stage to the unselected charge amplifier in the power-off state.
  10.  少なくとも1個の前記検出用チャージアンプが接続される1個のマルチプレクサと、前記1個のマルチプレクサの後段に接続される1個のAD変換器とを含むブロックを複数備えており、
     前記制御部は、前記ブロックへの電力の供給状態を、第1電力を供給する第1状態と、前記第1電力よりも単位時間当たりの電力が低い第2電力を供給する第2状態との間で切り替える機能を有しており、
     前記照射開始検出動作中は、前記複数のブロックのうちの少なくとも1個のブロックの前記電力の供給状態を周期的に切り替える請求項1ないし9のいずれか1項に記載の放射線画像検出装置。
    And a plurality of blocks each including one multiplexer to which at least one detection charge amplifier is connected and one AD converter connected to a subsequent stage of the one multiplexer,
    The control unit is configured to supply power to the block in a first state for supplying a first power and a second state for supplying a second power having a lower power per unit time than the first power. Has the ability to switch between
    The radiation image detection apparatus according to any one of claims 1 to 9, wherein the power supply state of at least one of the plurality of blocks is periodically switched during the irradiation start detection operation.
  11.  前記電力の供給状態が周期的に切り替わる前記ブロックが2個以上ある場合、前記制御部は、前記2個以上の前記ブロックのうちの少なくとも2個のブロックの前記電力の供給状態の切り替えのタイミングをずらす請求項10に記載の放射線画像検出装置。 When there are two or more blocks in which the power supply state is periodically switched, the control unit determines the timing of switching the power supply state of at least two blocks of the two or more blocks. The radiographic image detection apparatus of Claim 10 which shifts.
  12.  前記2個以上の前記ブロックはグループに分けられ、
     前記制御部は、前記グループ毎に前記電力の供給状態の切り替えのタイミングをずらす請求項11に記載の放射線画像検出装置。
    The two or more blocks are divided into groups,
    The radiation image detection apparatus according to claim 11, wherein the control unit shifts the timing of switching the supply state of the power for each group.
  13.  同じ前記グループに属する2個の前記ブロックの間には、少なくとも1個の前記ブロックが配されている請求項12に記載の放射線画像検出装置。 The radiation image detecting apparatus according to claim 12, wherein at least one block is disposed between two blocks belonging to the same group.
  14.  前記制御部は、前記2個以上の前記ブロックの全ての前記電力の供給状態の切り替えのタイミングをずらす請求項11に記載の放射線画像検出装置。 The radiation image detection apparatus according to claim 11, wherein the control unit shifts the timing of switching the supply state of all the power of the two or more blocks.
  15.  前記制御部は、前記照射開始検出動作中は、前記複数のブロックのうち、前記一部のチャージアンプが接続されていない前記マルチプレクサを含む前記ブロックの少なくとも1個を、常時前記第2状態にする請求項10ないし14のいずれか1項に記載の放射線画像検出装置。 The control unit causes at least one of the blocks including the multiplexer to which the partial charge amplifier is not connected among the plurality of blocks to always be in the second state during the irradiation start detection operation. The radiographic image detection apparatus of any one of Claims 10 thru | or 14.
  16.  前記ブロックは、隣接する複数の前記信号線に接続された画素で構成されるエリア毎に設けられている請求項10ないし15のいずれか1項に記載の放射線画像検出装置。 The radiation image detecting apparatus according to any one of claims 10 to 15, wherein the block is provided for each area configured by pixels connected to a plurality of adjacent signal lines.
  17.  隣接する前記エリアを各々担当する隣接する複数個の前記ブロックは、同一のチップに実装されており、前記チップは複数設けられている請求項16に記載の放射線画像検出装置。 17. The radiation image detecting apparatus according to claim 16, wherein a plurality of adjacent ones of the blocks that are respectively responsible for the adjacent areas are mounted on the same chip, and a plurality of the chips are provided.
  18.  前記制御部は、前記エリアを担当する前記ブロック単位、または前記チップ単位で前記ブロックの前記電力の供給状態を切り替える請求項17に記載の放射線画像検出装置。 The radiation image detection apparatus according to claim 17, wherein the control unit switches the supply state of the power of the block in units of the block in charge of the area or in units of the chip.
  19.  前記検出用画素は、前記照射開始検出動作に特化した専用の画素である請求項1ないし18のいずれか1項に記載の放射線画像検出装置。 The radiation image detection apparatus according to any one of claims 1 to 18, wherein the detection pixel is a dedicated pixel specialized for the irradiation start detection operation.
  20.  前記ブロックの前記電力の供給状態を切り替えることに起因して、前記信号処理回路内に生じる温度分布の偏りにより生じる前記デジタル信号の温度ドリフトを補正する温度ドリフト補正部を備える請求項10ないし19のいずれか1項に記載の放射線画像検出装置。 20. The temperature drift correction unit according to claim 10, further comprising: a temperature drift correction unit that corrects a temperature drift of the digital signal caused by a temperature distribution deviation generated in the signal processing circuit due to switching the power supply state of the block. The radiographic image detection apparatus of any one term.
  21.  前記センサパネルおよび前記信号処理回路が持ち運び可能な筐体に収容され、前記筐体に装着されたバッテリから給電される電子カセッテである請求項1ないし20のいずれか1項に記載の放射線画像検出装置。 The radiation image detection according to any one of claims 1 to 20, wherein the sensor panel and the signal processing circuit are electronic cassettes housed in a portable case and fed from a battery mounted in the case. apparatus.
  22.  放射線発生装置から照射されて被写体を透過した放射線に感応して電荷を蓄積する画素が二次元に配列され、前記電荷を読み出す複数の信号線が配されたセンサパネルと、前記信号線を通じて、前記画素から前記電荷に応じたアナログの電圧信号を読み出して信号処理を行う信号処理回路と、前記信号処理回路に含まれる複数のチャージアンプであって、前記信号線毎に設けられ、かつ前記信号線の一端に接続され、前記画素からの前記電荷を前記アナログの電圧信号に変換する複数のチャージアンプと、前記信号処理回路に含まれるマルチプレクサであって、複数の入力端子を有し、前記複数のチャージアンプが前記複数の入力端子にそれぞれ接続され、前記複数のチャージアンプからの前記アナログの電圧信号を順次選択して出力するマルチプレクサと、前記信号処理回路に含まれるAD変換器であって、前記マルチプレクサの後段に接続され、前記マルチプレクサから出力された前記アナログの電圧信号を電圧値に応じたデジタル信号に変換するAD変換処理を実行するAD変換器と、前記信号処理回路を制御する制御部とを備える放射線画像検出装置の作動方法において、
     前記放射線の照射開始前から、前記画素のうち予め設定された検出用画素に接続された前記信号線である検出用チャンネルを通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号に基づいて前記放射線の照射開始を検出する照射開始検出動作を実行する照射開始検出ステップと、
     前記放射線の照射開始後、前記画素に前記電荷を蓄積する画素電荷蓄積期間が経過してから、前記画素から前記信号線を通じて前記電荷を読み出して、読み出した前記電荷に対応する前記デジタル信号が表す、診断に供する放射線画像を出力する画像読み出し動作を実行する画像読み出しステップとを備え、
     前記照射開始検出ステップにおいて、前記マルチプレクサに接続される複数の前記チャージアンプのうち、前記検出用チャンネルに接続された前記チャージアンプである検出用チャージアンプを含む一部のチャージアンプからの前記アナログの電圧信号を選択的に前記AD変換器に対して出力させ、
     前記AD変換器に、前記選択的に出力された前記アナログの電圧信号への前記AD変換処理のみを実行させ、
     さらに、前記AD変換器の動作タイミングを規定するクロック信号の単位時間当たりのパルス数を、前記画像読み出し時よりも低減し、
     さらにまた、前記照射開始検出動作において、前記画像読み出し動作時における前記チャージアンプへの供給電力を通常電力とした場合に、前記一部のチャージアンプの少なくとも1個を、前記通常電力よりも低く、かつ0よりも大きい電力が供給される低電力状態で駆動する放射線画像検出装置の作動方法。
    A sensor panel in which pixels which are irradiated from the radiation generating apparatus and sensitive to the radiation transmitted through the subject and store charges are arranged in a two-dimensional manner, and a plurality of signal lines for reading out the charges are arranged; A signal processing circuit that performs signal processing by reading an analog voltage signal according to the charge from a pixel, and a plurality of charge amplifiers included in the signal processing circuit, provided for each of the signal lines, and the signal line A plurality of charge amplifiers connected to one end of the plurality of charge amplifiers for converting the charges from the pixels into voltage signals of the analog, and a multiplexer included in the signal processing circuit, having a plurality of input terminals; A charge amplifier is connected to each of the plurality of input terminals, and sequentially selects and outputs the analog voltage signal from the plurality of charge amplifiers. And an AD converter included in the signal processing circuit, which is connected to the subsequent stage of the multiplexer and converts the analog voltage signal output from the multiplexer into a digital signal according to the voltage value In an operation method of a radiation image detection apparatus comprising: an AD converter for performing
    Before the start of the radiation irradiation, the charge is read out through the detection channel which is the signal line connected to the detection pixel preset among the pixels, and the digital signal corresponding to the read charge is read out. An irradiation start detection step of executing an irradiation start detection operation of detecting the irradiation start of the radiation;
    After the start of the radiation irradiation, a pixel charge accumulation period for accumulating the charge in the pixel elapses, and then the charge is read from the pixel through the signal line, and the digital signal corresponding to the read charge is represented And an image reading step of executing an image reading operation of outputting a radiation image to be provided for diagnosis.
    In the irradiation start detection step, among the plurality of charge amplifiers connected to the multiplexer, the analog signals from some of the charge amplifiers including the detection charge amplifier that is the charge amplifier connected to the detection channel Selectively output a voltage signal to the AD converter;
    Allowing the AD converter to execute only the AD conversion process to the selectively output analog voltage signal,
    Furthermore, the number of pulses per unit time of the clock signal that defines the operation timing of the AD converter is reduced compared to when reading out the image,
    Furthermore, in the irradiation start detection operation, when the power supplied to the charge amplifier at the time of the image reading operation is a normal power, at least one of the partial charge amplifiers is lower than the normal power, And a method of operating a radiation image detection apparatus driven in a low power state where power greater than 0 is supplied.
PCT/JP2018/024252 2017-06-28 2018-06-26 Radiographic image detection device and method for operating same WO2019004232A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019526950A JP6864092B2 (en) 2017-06-28 2018-06-26 Radiation image detector and its operation method
CN201880043331.XA CN110832848B (en) 2017-06-28 2018-06-26 Radiation image detection apparatus and method for operating the same
US16/727,849 US11064966B2 (en) 2017-06-28 2019-12-26 Radiographic image detection device and method for operating the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017126222 2017-06-28
JP2017-126222 2017-06-28
JP2018028298 2018-02-20
JP2018-028298 2018-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/727,849 Continuation US11064966B2 (en) 2017-06-28 2019-12-26 Radiographic image detection device and method for operating the same

Publications (1)

Publication Number Publication Date
WO2019004232A1 true WO2019004232A1 (en) 2019-01-03

Family

ID=64742378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024252 WO2019004232A1 (en) 2017-06-28 2018-06-26 Radiographic image detection device and method for operating same

Country Status (4)

Country Link
US (1) US11064966B2 (en)
JP (1) JP6864092B2 (en)
CN (1) CN110832848B (en)
WO (1) WO2019004232A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271209B2 (en) * 2019-02-06 2023-05-11 キヤノン株式会社 Radiation imaging apparatus, radiation imaging system, and radiation imaging apparatus control method
DE102020216576B3 (en) * 2020-12-28 2021-12-30 Siemens Healthcare Gmbh X-ray detector unit with an adjustable voltage supply and method for operating an X-ray detector unit
JP2022164433A (en) * 2021-04-16 2022-10-27 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029816A (en) * 2006-06-26 2008-02-14 Canon Inc Radiation imaging apparatus, radiation imaging system and its control method
WO2012008229A1 (en) * 2010-07-16 2012-01-19 富士フイルム株式会社 Radiological image-capturing device, radiological image-capturing system, radiological image-capturing method, and program
WO2013136597A1 (en) * 2012-03-16 2013-09-19 富士フイルム株式会社 Radiography control device, radiography system, radiography device control method, and radiography control program
JP2016027889A (en) * 2015-10-01 2016-02-25 富士フイルム株式会社 Radiation image detector and radiation imaging system
JP2016040880A (en) * 2014-08-12 2016-03-24 キヤノン株式会社 Radiation imaging device and radiation detection system
JP2017064388A (en) * 2015-09-30 2017-04-06 東芝メディカルシステムズ株式会社 Radiation diagnostic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111627B2 (en) 2015-09-30 2018-10-30 Toshiba Medical Systems Corporation Medical image processing apparatus
CN110800288B (en) * 2017-06-28 2021-12-21 富士胶片株式会社 Radiation image detection apparatus and method for operating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029816A (en) * 2006-06-26 2008-02-14 Canon Inc Radiation imaging apparatus, radiation imaging system and its control method
WO2012008229A1 (en) * 2010-07-16 2012-01-19 富士フイルム株式会社 Radiological image-capturing device, radiological image-capturing system, radiological image-capturing method, and program
WO2013136597A1 (en) * 2012-03-16 2013-09-19 富士フイルム株式会社 Radiography control device, radiography system, radiography device control method, and radiography control program
JP2016040880A (en) * 2014-08-12 2016-03-24 キヤノン株式会社 Radiation imaging device and radiation detection system
JP2017064388A (en) * 2015-09-30 2017-04-06 東芝メディカルシステムズ株式会社 Radiation diagnostic device
JP2016027889A (en) * 2015-10-01 2016-02-25 富士フイルム株式会社 Radiation image detector and radiation imaging system

Also Published As

Publication number Publication date
JPWO2019004232A1 (en) 2020-04-02
JP6864092B2 (en) 2021-04-21
CN110832848B (en) 2021-10-29
US20200129138A1 (en) 2020-04-30
US11064966B2 (en) 2021-07-20
CN110832848A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
JP6850349B2 (en) Radiation image detector and its operation method
JP5937552B2 (en) Radiation imaging system and operating method thereof
US9833214B2 (en) Radiographic image capturing device, method for detecting radiation doses, and computer readable storage medium
WO2013176251A1 (en) Radiological image detecting device, operating method therefor, and radiological imaging system
CN104068881A (en) Radiation image detecting device and operating method thereof
US11064966B2 (en) Radiographic image detection device and method for operating the same
KR20160057398A (en) Digital radiography detector image readout process
KR20130004130A (en) Radiographic detector including trap occupancy change monitor and feedback, imaging apparatus and methods using the same
US20100207032A1 (en) Radiographic image capture system, radiation generation device, image capture control device and radiographic image capture device
WO2014038480A1 (en) Radiation image detection device
JP2014209105A (en) Radiation image detector and operation method for the same, and radiation imaging device
EP2952136B1 (en) Radiographic apparatus
US11206366B2 (en) Radiographic image detection device and method for operating the same
JP6870086B2 (en) Radiation image detector and its operation method
US9392988B2 (en) X-ray imaging apparatus
JP2013150226A (en) Radiation image capturing system and radiation image capturing device
JP2009082195A (en) Radiation conversion panel and radiation image capturing method
JP2013093736A (en) Radiation image photographing device and radiation image photographing system
JP2017086544A (en) Control method for radiographic apparatus, and radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822842

Country of ref document: EP

Kind code of ref document: A1