WO2019004182A1 - Steering control system and method for stopping steering device - Google Patents

Steering control system and method for stopping steering device Download PDF

Info

Publication number
WO2019004182A1
WO2019004182A1 PCT/JP2018/024142 JP2018024142W WO2019004182A1 WO 2019004182 A1 WO2019004182 A1 WO 2019004182A1 JP 2018024142 W JP2018024142 W JP 2018024142W WO 2019004182 A1 WO2019004182 A1 WO 2019004182A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
pressure
drive unit
supply
determination
Prior art date
Application number
PCT/JP2018/024142
Other languages
French (fr)
Japanese (ja)
Inventor
嘉彦 松岡
周丙 大塚
高志 下舞
辰喜 田中
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020207000755A priority Critical patent/KR102393338B1/en
Priority to CN201880043834.7A priority patent/CN110785348A/en
Priority to DE112018002941.7T priority patent/DE112018002941B4/en
Publication of WO2019004182A1 publication Critical patent/WO2019004182A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/41536Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8752Emergency operation mode, e.g. fail-safe operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies

Definitions

  • the present invention relates to a steering control system that changes the steering angle of a steering plate, and a method of stopping a steering device.
  • a ship is equipped with a steering control system so as to change the traveling direction, and a marine vessel steering apparatus such as Patent Document 1 is known as an example of the steering control system.
  • the marine steering device of Patent Document 1 includes a steering plate drive unit and a hydraulic pressure pump, and the steering plate drive unit is driven by supplying pressure fluid from the hydraulic pressure pump to the steering plate drive unit. There is. Further, a switching valve is interposed between the steering plate drive portion and the hydraulic pressure pump. The switching valve can switch the direction of the pressure fluid flowing to the steering plate drive unit, and the marine steering device changes the steering angle of the steering plate by switching.
  • Patent Document 1 does not mention at all the failure of the marine steering device. Therefore, for example, when the switching valve sticks with the valve open, an unintended hydraulic fluid flows in the steering plate drive unit, and the steering plate drive unit moves undesirably. In addition, when the wiring connected to the motor driven by the hydraulic pump is broken and the switching valve is operated in that state, if an external force is applied to the steering plate, the force causes an undesired movement. Besides, failures in the marine steering device are various, and the failure may cause the steering plate drive to move undesirably. Therefore, it is desirable to detect the occurrence of a failure in the marine control device, that is, the steering control system, and to prevent the steering plate drive unit in the steering control system from an undesired movement when the failure occurs.
  • an object of the present invention is to provide a steering control system capable of preventing an undesired movement of a steering plate drive unit when a failure occurs, and a method for stopping the same.
  • a steering plate drive unit for moving a steering plate in a direction according to the flow direction of supplied hydraulic pressure, and pressure fluid in the flow direction according to the input steering signal is the steering plate drive unit
  • a steering device having a hydraulic fluid feeder for supplying pressure fluid, a shutoff mechanism for switching the supply of hydraulic fluid from the hydraulic fluid feeder to the steering plate drive unit and the stop thereof, and the state of different parts of the steering device
  • a state of the steering device is determined according to detection results detected by the plurality of detectors, and the supply of pressure liquid is stopped by the blocking mechanism based on the determination results.
  • a determination cutoff device is provided.
  • the states of various parts of the steering apparatus are detected, and the state of the entire steering apparatus is determined based on the detected states. Furthermore, the supply and discharge of the pressure fluid to the steering plate drive unit can be stopped based on the determination result. That is, the movement of the steering plate drive unit can be stopped according to the determined state of the steering device, and the steering angle of the steering plate can be maintained as it is.
  • the steering plate drive unit can be stopped according to the determined state of the steering device, and the steering angle of the steering plate can be maintained as it is.
  • the plurality of detectors include at least a steering detector and a steering plate operation detector, and the steering detector detects the presence or absence of an operation on a steering unit, and the steering plate operation detector The presence or absence of actuation of the steering plate drive unit may be detected, and the determination cutoff device may determine an actuation state of the steering device according to detection results of the steering detector and the steering plate actuation detector.
  • the hydraulic fluid supply machine is in a non-responsive state to the steering signal, and in that state, the movement of the steering plate drive unit is stopped and the steering angle of the steering plate is left unchanged. It can be maintained in the state.
  • the pressure liquid supply machine has a tank for discharging the pressure liquid
  • the plurality of detectors have at least a pressure detector and a liquid level detector, and the pressure detection
  • the pressure sensor detects the pressure of the hydraulic fluid supplied to the steering plate drive unit
  • the liquid level detector detects the position of the liquid level of the tank
  • the determination shutoff device detects the pressure detector and the pressure sensor.
  • the leakage state of the steering device may be determined according to the detection result of the liquid level detector.
  • the steering device further includes a preliminary pressure liquid feeder different from the pressure liquid feeder and capable of supplying pressure fluid in a flow direction according to the input steering signal to the steering plate drive unit.
  • the pressure liquid supply source for supplying the pressure liquid to the steering plate drive unit is configured to be switchable from the pressure liquid supply machine to the preliminary pressure liquid supply machine, and the determination shutoff device is operated by the shutoff mechanism based on the determination result. The supply of pressure liquid may be stopped, and the pressure liquid supply source may be switched from the pressure liquid supply machine to the preliminary pressure liquid supply machine.
  • the steering system is supplied with pre-pressure liquid from the pressure liquid feeder.
  • the steering plate drive can be moved by switching to the aircraft. As a result, it is possible to control the direction of the ship even after a failure of the pressure liquid supply machine.
  • the apparatus further comprises an instruction unit for instructing the presence or absence of the operation in the shutoff mechanism, and the determination shutoff device stops the supply of pressure liquid by the shutoff mechanism based on the judgment result and an instruction to the instruction unit.
  • the determination cut-off device when the supply of pressure liquid is stopped by the cut-off mechanism based on the determination result, the determination cut-off device supplies the pressure liquid by the cut-off mechanism after a predetermined time has elapsed from the determination. You may stop it.
  • a steering plate drive section for moving a steering plate in a direction according to the flow direction of supplied hydraulic pressure, and pressure fluid in the flow direction according to an input steering signal
  • a method of stopping a steering apparatus comprising: a hydraulic fluid supply machine for supplying to a drive unit; and a shutoff mechanism for switching supply and stop of hydraulic fluid from the hydraulic pressure supply machine to the steering plate drive unit, A detection step of detecting the states of different parts of the steering device by a detector, a state determination step of determining the state of the steering device according to the detection result in the detection step, and a determination result in the state determination step And stopping the supply of the pressure liquid by the shutoff mechanism.
  • the states of various parts in the steering device are detected, and the state of the steering device is determined based on the detected states. Furthermore, the supply and discharge of the pressure fluid to the steering plate drive unit can be stopped based on the determination result. That is, the movement of the steering plate drive unit can be stopped according to the state of the steering device, and the steering angle of the steering plate can be maintained as it is.
  • an external force acts on the steering plate to turn the steering plate in an undesired direction It is possible to prevent the steering plate from being moved in an uncontrollable state. That is, when a failure or the like occurs, it is possible to prevent the steering plate drive unit from making an undesired movement.
  • the steering plate drive unit it is possible to prevent the steering plate drive unit from making an undesired movement when a failure occurs.
  • the steering control systems 1 and 1A according to the first and second embodiments of the present invention and the method for stopping the steering device 30 to be executed by the steering control systems 1 and 1A will be described below with reference to the drawings.
  • the concept of the direction used in the following description is used for convenience of the description, and the direction of the configuration of the invention is not limited to that direction.
  • the steering control systems 1 and 1A described below are merely an embodiment of the present invention. Accordingly, the present invention is not limited to the embodiments, and additions, deletions, and modifications are possible without departing from the scope of the invention.
  • a steering control system 1 is provided to change.
  • the steering control system 1 is driven by hydraulic fluid (for example, fluid such as oil or water), and the steering plate 12, the steering plate drive unit 2, the electric liquid drive device 3, and the control unit 4 , A steering unit 5, a sensor group 6, and a display operation unit 7.
  • the steering plate 12 is a member for changing the traveling direction of the ship, and is mounted around the stern of the ship. Describing in more detail, the rudder plate 12 is a plate-like member having a substantially rectangular shape in a side view, and the rudder plate 12 is fixed to the rudder shaft 11.
  • the rudder shaft 11 is attached to the stern of the ship with its axis extending substantially vertically and being rotatable about the axis, and the rudder plate 12 stands vertically and extends longitudinally Is fixed to the rudder axle 11.
  • a rudder 13 is attached to the rudder axle 11.
  • the rudder 13 extends from the rudder shaft 11 in a direction perpendicular to the axis thereof, and the rudder 13 is provided with a rudder plate driving unit 2 for rotating the rudder shaft 11.
  • the steering plate drive unit 2 is a so-called ram cylinder, and includes a ram 14 and two cylinders 15 and 16.
  • the ram 14 has a ram shaft 14a and a ram pin 14b.
  • the ram shaft 14a is a longitudinal member extending in the axial direction, and a ram pin 14b is provided in a protruding manner at a central portion in the axial direction.
  • the ram pin 14b moves integrally with the ram shaft 14a, and the steering wheel 13 is engaged with the ram pin 14b. Therefore, when the ram shaft 14a moves, the steering wheel 13 pivots about the steering shaft 11, and accordingly the steering plate 12 pivots about its axis.
  • Two cylinders 15 and 16 are attached to the ram shaft 14a configured as described above so as to move it in the axial direction.
  • the two cylinders 15, 16 are respectively provided at one end and the other end of the ram shaft 14a in the axial direction. That is, in the first cylinder 15, one end in the axial direction of the ram shaft 14a is movably inserted into the first cylinder chamber 15a which is the internal space, and in the second cylinder 16, the second cylinder which is the internal space The other axial end of the ram shaft 14a is inserted into the chamber 16a so as to be movable back and forth.
  • the two cylinders 15, 16 are configured to be able to supply pressure fluid to the respective cylinder chambers 15a, 16a, and the ram shaft 14a moves by receiving the hydraulic pressure of each of the cylinder chambers 15a, 16a at each end It is supposed to That is, when the hydraulic fluid is supplied to the first cylinder chamber 15a, the ram pin 14b is moved in one axial direction together with the ram shaft 14a. As a result, the steering wheel 13 pivots in one circumferential direction about the axis, and accordingly the steering plate 12 also pivots in one circumferential direction. Further, when the hydraulic fluid is supplied to the second cylinder chamber 16a, the ram pin 14b is moved in the other axial direction along with the ram shaft 14a.
  • the steering plate drive unit 2 can move the steering plate 12 by the supply of pressure fluid to the cylinder chambers 15a and 16a.
  • the steering plate drive unit 2 includes the cylinder chambers 15a. , 16a are connected to the electrolyzed liquid driving device 3.
  • the electric fluid drive device 3 has two steering systems 3L and 3R in the present embodiment.
  • the two steering systems 3L and 3R both have the same function. That is, both of the steering systems 3L and 3R can supply the hydraulic fluid to the steering plate drive unit 2, and can switch the direction of the hydraulic fluid.
  • the electric liquid drive unit 3 configured in this way has two steering systems 3L and 3R, but operates the steering plate drive unit 2 mainly by the first steering system 3L which is one steering system 3L.
  • the second steering system 3R operates the steering plate drive unit 2 when the first steering system 3L fails.
  • the configuration of the two steering systems 3L, 3R will be described below, the two steering systems 3L, 3R have the same configuration. Therefore, only the configuration of the first steering system 3L will be described, and the configuration of the second steering system 3R will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the first steering system 3L includes a hydraulic fluid feeder 20.
  • the hydraulic fluid feeder 20 supplies hydraulic fluid to the steering plate drive unit 2 to drive the steering plate drive unit 2 and is input thereto.
  • the steering angle of the steering plate 12 can be changed by changing the direction of the hydraulic fluid flowing to the steering plate drive unit 2 based on the steering signal.
  • the hydraulic fluid feeder 20 mainly includes a hydraulic pump 21, a motor 22, a direction switching valve 23, and a pilot switching valve 24.
  • the hydraulic pump 21 is, for example, a fixed displacement type oblique shaft pump, and discharges the hydraulic fluid supplied to the steering plate drive unit 2. More specifically, the hydraulic pump 21 has an input shaft 21 a, and the input shaft 21 a is connected to the motor 22.
  • the electric motor 22 is configured to be able to rotationally drive the input shaft 21 a by receiving electric power from a power supply device (not shown).
  • the hydraulic pump 21 sucks the working fluid from the suction port 21b by the rotation of the input shaft 21a, and discharges the working fluid from the discharge port 21c while pressurizing it further.
  • the suction side passage 31a is connected to the suction port 21b
  • the discharge side passage 31b is connected to the discharge port 21c
  • the direction is switched via these two passages 31a and 31b. It is connected to the valve 23.
  • the direction switching valve 23 is, for example, a pilot type switching valve, and changes the flow of the hydraulic fluid according to pilot pressures p1 and p2 output from the pilot switching valve 24 described later in detail. More specifically, the direction switching valve 23 has four ports, and the four ports are connected to the suction side passage 31a, the discharge side passage 31b, the first supply / discharge passage 32a and the second supply / discharge passage 32b. Each is connected.
  • the first supply / discharge passage 32 a connects the direction switching valve 23 and the second cylinder 16, and the second supply / discharge passage 32 b connects the direction switching valve 23 and the first cylinder 15.
  • the direction switching valve 23 has a spool 23a, and switches the flow direction of the hydraulic fluid according to the position of the spool 23a.
  • the spool 23a is configured to be movable to the neutral position M1, the first offset position L1, and the second offset position R1.
  • the suction side passage 31a and the discharge side passage 31b are connected by the spool 23a, and the hydraulic pressure pump 21 is in the unloading state.
  • each of the first supply and discharge passage 32a and the second supply and discharge passage 32b is shut off, and the supply and discharge of the hydraulic fluid to the first cylinder 15 and the second cylinder 16 is stopped.
  • the hydraulic fluid is supplied to the second cylinder chamber 16a and the hydraulic fluid in the first cylinder chamber 15a is discharged, and the ram shaft 14a moves in the other axial direction. That is, the steering plate 12 rotates in the other circumferential direction.
  • the direction switching valve 23 can switch the flow of the hydraulic fluid according to the position of the spool 23a, and by switching the flow of the hydraulic fluid, the direction of the steering plate 12 (i.e., the steering angle) can be changed.
  • two pilot pressures p1 and p2 are applied to the spool 23a in order to change its position. More specifically, the two pilot pressures p1 and p2 act on the spool 23a so as to oppose each other, and the position is changed according to the differential pressure (p1-p2).
  • a pilot switching valve 24 is connected to the direction switching valve 23 in order to apply such two pilot pressures p1 and p2 to the spool 23a.
  • the pilot switching valve 24 is a so-called electromagnetic switching valve, and controls the pilot pressures p1 and p2 in accordance with a steering signal input thereto. More specifically, the pilot switching valve 24 has four ports, and the four ports are connected to the self pressure supply passage 33a, the tank passage 33b, the first pilot passage 34a, and the second pilot passage 34b, respectively. It is connected.
  • the self pressure supply passage 33 a is connected to the discharge side passage 31 b, and the tank passage 33 b is connected to the tank 28.
  • the first pilot passage 34a is connected to the direction switching valve 23 to apply the first pilot pressure p1 to the spool 23a
  • the second pilot passage 34b is connected to the direction switching valve 23 to apply the second pilot pressure p2 to the spool 23a. It is connected to the.
  • the pilot switching valve 24 has a spool 24 a, and the spool 24 a changes its position according to a steering signal input to the pilot switching valve 24. Further, the spool 24a is adapted to switch the flow direction of the hydraulic fluid by changing its position.
  • the spool 24a is configured to be movable to the neutral position M2, the first offset position L2, and the second offset position R2.
  • the tank passage 33b and the second pilot passage 34b are connected by the spool 24a, and the self-pressure supply passage 33a and the first pilot passage 34a are connected.
  • the pilot fluid in the second pilot passage 34b is discharged to the tank 28, and the second pilot pressure p2 becomes the tank pressure.
  • the hydraulic pressure of the discharge side passage 31b is led to the first pilot passage 34a via the self pressure supply passage 33a.
  • the throttle 25 is provided in the discharge side passage 31b at the downstream side of the connection with the self pressure supply passage 33a, the hydraulic pressure of the discharge side passage 31b is maintained higher by the throttle 25 than the suction side passage 31a. ing. Therefore, the first pilot pressure p1 higher than the second pilot pressure p2 is output from the pilot switching valve 24, and the spool 23a of the direction switching valve 23 moves to the first offset position L1. Thus, the steering plate 12 moves in one circumferential direction.
  • the tank passage 33b and the first pilot passage 34a are connected, and the self-pressure supply passage 33a and the second pilot passage 34b are connected.
  • the pilot fluid in the first pilot passage 34a is discharged to the tank 28, and the first pilot pressure p1 becomes the tank pressure.
  • the hydraulic pressure of the discharge side passage 31b is led to the second pilot passage 34b via the self pressure supply passage 33a.
  • the second pilot pressure p2 higher than the first pilot pressure p1 is output from the pilot switching valve 24, and the spool 23a of the direction switching valve 23 moves to the second offset position R1.
  • the steering plate 12 moves in one circumferential direction.
  • the pilot switching valve 24 can control the two pilot pressures p1 and p2 in accordance with the steering signal input thereto, and can move the spool 23a of the direction switching valve 23. By moving the spool 23a, it is possible to supply and discharge the working fluid in the direction according to the position. Thereby, the steering plate 12 can be swung in the direction according to the steering signal. Further, the electric liquid drive device 3 is provided with a relief mechanism 26 for relieving the hydraulic fluid.
  • the relief mechanism 26 discharges the working fluid to the tank 28 when each fluid pressure exceeds a predetermined relief pressure in order to keep the fluid pressure in the first supply / discharge passage 32 a and the second delivery / discharge passage 32 b below the relief pressure.
  • the relief mechanism 26 has a first relief valve 26a and a second relief valve 26b, the first relief valve 26a is connected to the first supply / discharge passage 32a, and the second relief valve 26b is It is connected to the second supply and discharge passage 32b.
  • the first relief valve 26a discharges the working fluid flowing through the first supply and discharge passage 32a to the tank 28 when the fluid pressure in the first supply and discharge passage 32a exceeds a predetermined first relief pressure.
  • the second relief valve 26b discharges the hydraulic fluid flowing through the second supply / discharge passage 32b to the tank 28 when the fluid pressure in the second supply / discharge passage 32b exceeds a predetermined second relief pressure.
  • a first check valve 29a is connected to the first supply and discharge passage 32a
  • a second check valve 29b is connected to the second supply and discharge passage 32b.
  • the check valves 29a and 29b are both connected to the tank 28, and when the hydraulic fluid in the passages 32a and 32b to which each is connected run short, the hydraulic fluid can be led from the tank 28 to the passages 32a and 32b.
  • the liquid driver 3 includes a shutoff mechanism 27.
  • the shutoff mechanism 27 is interposed between the hydraulic pressure pump 21 and the steering plate drive unit 2, and in the present embodiment, between the direction switching valve 23 and the steering plate drive unit 2. That is, the blocking mechanism 27 intervenes in the middle of the first supply and discharge passage 32a and the second supply and discharge passage 32b.
  • the switching mechanism 27 is configured to receive a switching signal, and opens and closes the first supply / discharge passage 32a and the second supply / discharge passage 32b in response to the switching signal.
  • the shutoff mechanism 27 can stop the transfer of the hydraulic fluid between the hydraulic pump 21 and the steering plate drive unit 2 according to the switching signal inputted thereto.
  • the shutoff mechanism 27 having such a function has an unload shutoff valve 41 and a shutoff switching valve 42.
  • the unloading shutoff valve 41 intervenes in the first supply and discharge passage 32a and the second supply and discharge passage 32b, and the relief mechanism 26 and the two check valves 29a and 29b are provided in the first supply and discharge passage 32a and the second supply and discharge passage 32b. Further, it is disposed on the direction switching valve 23 side. Further, the unload shutoff valve 41 opens and closes each of the first supply / discharge passage 32a and the second supply / discharge passage 32b in accordance with the differential pressure (p4-p3) of the pilot pressure p3, p4 inputted thereto.
  • the unload shutoff valve 41 is closed, and the unload shutoff valve 41 Each of the passage 32a and the second supply / discharge passage 32b is closed.
  • the hydraulic fluid between the hydraulic pump 21 and the steering plate drive unit 2 is prevented from moving back and forth.
  • the first supply / discharge passage 32a and the second supply / discharge passage 32b are connected to each other by the unload cutoff valve 41, and the hydraulic pump 21 is in the unload state.
  • the unload shutoff valve 41 when the differential pressure (p4-p3) exceeds the predetermined pressure, the unload shutoff valve 41 is opened, and each of the first supply / discharge passage 32a and the second supply / discharge passage 32b is opened by the unload shutoff valve 41. be opened. Thereby, the hydraulic fluid can be transferred between the hydraulic pressure pump 21 and the steering plate drive unit 2.
  • the unload shutoff valve 41 switches the open / close state in accordance with the two pilot pressures p3 and p4.
  • a shutoff switching valve 42 is connected to the unloading shutoff valve 41 configured as described above so as to apply pilot pressures p3, p4 thereto.
  • the shutoff switching valve 42 is a so-called electromagnetic switching valve, and controls the pilot pressures p3 and p4 in accordance with a switching signal inputted thereto. More specifically, the shutoff switching valve 42 has four ports, and the four ports are connected to the self pressure supply passage 33a, the tank passage 33b, the third pilot passage 34c, and the fourth pilot passage 34d, respectively. It is connected. The third pilot passage 34c and the fourth pilot passage 34d are connected to the unloading shutoff valve 41 so as to apply pilot pressures p3 and p4. The shutoff switching valve 42 switches the connection destination of each of the two pilot passages 34c, 34d to either the self pressure supply passage 33a or the tank passage 33b, thereby switching the pilot pressure p3, p4. The shutoff switching valve 42 is configured to be able to switch the connection destination not only according to the switching signal but also manually.
  • the shut-off switching valve 42 connects the third pilot passage 34c to the tank passage 33b when the switching signal is input.
  • the third pilot pressure p3 becomes the tank pressure.
  • the fourth pilot passage 34d is connected to the self pressure supply passage 33a, and the pilot fluid according to the fluid pressure of the discharge side passage 31b is led to the fourth pilot passage 34d.
  • the fourth pilot pressure p4 becomes a pressure corresponding to the fluid pressure in the discharge side passage 31b, the difference (p4-p3) exceeds the predetermined pressure, and the unload shutoff valve 41 is opened. Thereby, the hydraulic fluid can be transferred between the hydraulic pressure pump 21 and the steering plate drive unit 2.
  • the shut-off switching valve 42 connects the fourth pilot passage 34d to the tank passage 33b.
  • the fourth pilot pressure p4 becomes the tank pressure.
  • the third pilot passage 34c is connected to the self pressure supply passage 33a, and the pilot fluid according to the fluid pressure of the discharge side passage 31b is led to the third pilot passage 34c.
  • the third pilot pressure p3 becomes a pressure corresponding to the fluid pressure in the discharge side passage 31b, the difference (p4-p3) becomes equal to or less than a predetermined pressure, and the unload shutoff valve 41 is closed.
  • the hydraulic fluid can not travel between the hydraulic pump 21 and the steering plate drive unit 2, and the steering plate 12 is maintained at the steering angle.
  • the shutoff mechanism 27 opens and closes the two supply and discharge passages 32a and 32b according to the input state of the switching signal (that is, the presence or absence of the input of the switching signal).
  • the hydraulic fluid can flow and stop.
  • the shutoff mechanism 27 unloads the hydraulic pump 21 when the hydraulic pump 21 and the steering plate drive unit 2 are shut off, and reduces the load on the hydraulic pump 21 at that time. be able to. Thereby, the energy consumption of the steering control system at the time of interruption
  • the unload shutoff valve 41 has a failure or the like in the circuit 3a formed on the side of the hydraulic pressure pump 21 and can not return the discharged hydraulic fluid to the suction port 21b.
  • the unload shutoff valve 41 has two check valves 41b and 41c, and the two check valves 41b and 41c have the pressure on the hydraulic pressure pump 21 side before and after the unload shutoff valve 41 drive the steering plate.
  • the pressure on the part 2 side is higher, the flow of hydraulic fluid from the hydraulic pump 21 to the steering plate drive part 2 is permitted.
  • the two check valves 41b and 41c are interposed in the middle to close the two supply and discharge passages 32a and 32b, and the rudder plate is driven from the portion where the two supply and discharge passages 32a and 32b communicate with each other. It is arranged on the part 2 side. Therefore, in the unloading state where the hydraulic pump 21 side is lower in pressure than the steering plate drive unit 2 before and after the unloading shutoff valve 41, the two check valves 41b and 41c remain closed. The flow of hydraulic fluid to the plate drive 2 is stopped.
  • the first steering system 3L configured in this way responds to the steering signal when the steering signal input to the pilot switching valve 24 is input while the switching signal is input to the shutoff switching valve 42.
  • the steering plate 12 can be driven in the direction.
  • the second steering system 3R also has the same configuration as the first steering system 3L, and exhibits the same function as the first steering system 3L.
  • the two steering systems 3L and 3R configured as described above constitute a steering device 30 together with the steering plate drive unit 2, and the control unit 4 electrically connects the steering device 30 to input a switching signal and a steering signal. It is connected.
  • the control unit 4 outputs the switching signal and the steering signal to one of the two steering systems 3L and 3R, for example, the first steering system 3L, in order to operate the steering plate drive unit 2, and the cutoff mechanism 27 and the pilot switching valve Control 24 movements. More specifically, the control unit 4 includes a steering control device 4a and a determination cutoff device 4b. The steering control device 4a and the determination cutoff device 4b do not have to be integrated in one place to constitute the control unit 4, and may be separately provided or separately manufactured.
  • the steering control device 4a is connected to the steering unit 5, and the steering unit 5 has a steering wheel (not shown), and the steering wheel is configured to be operable by a steering person or the like.
  • the steering unit 5 outputs a steering command according to the operation of the steered wheels (that is, the operation direction and the amount of operation) to the steering control device 4a, and the steering control device 4a drives the motor 22 when the steering command is input.
  • the hydraulic fluid is discharged from the hydraulic pump 21.
  • the steering control device 4a calculates the steering angle of the steering plate 12 based on the steering command from the steering unit 5, and the steering signal according to the steering angle calculated further is a pilot switching valve 24 of the first steering system 3L.
  • Output to The steering control device 4a also has an auto pilot function, and outputs a steering signal calculated based on the function to the pilot switching valve 24.
  • the determination cutoff device 4b determines the state of the steering control system 1 (that is, the presence or absence of a failure in the steering control system 1), and switches the output state of the switching signal to the cutoff mechanism 27 based on the determination result. There is.
  • the determination cutoff device 4 b having such a function is connected to the sensor group 6 to determine the state of the steering control system 1.
  • the sensor group 6 includes a plurality of sensors for detecting the states of different portions of the steering device 30. Examples of the plurality of sensors include a pressure sensor, a direction switching valve operation detection sensor, a steering angle detection sensor, a disconnection detection sensor, a tank oil level sensor, a ground fault / short circuit detection sensor, a liquid leakage detection sensor, and the like.
  • the pressure sensor is provided in each of the cylinders 15 and 16 to detect the fluid pressure in the cylinder chambers 15a and 16a, and the direction switching valve operation detection sensor detects the position of the spool 23a of the direction switching valve 23 to detect the direction switching valve. Detect the presence or absence of the operation of 23.
  • the steering angle detection sensor detects the steering angle of the steering plate 12 by detecting the rotation angle around the axis of the steering wheel 13, and the disconnection detection sensor detects a signal or the like to a wire connecting the control unit 4 and each device. It flows and detects those disconnections.
  • the tank oil level sensor detects the level of the oil level of the tank 28, and the ground fault / short circuit detection sensor detects whether or not the wiring connecting the control unit 4 and each device has a ground fault or a short circuit. Further, the leak detection sensor detects whether pressure fluid has leaked from the passage in each of the steering systems 3L and 3R.
  • the various sensors described above are merely examples of sensors included in the sensor group 6 and may include other sensors, and any one or more of the sensors described above are included. It does not have to be.
  • the determination blocking device 4b which is a steering detector, acquires a steering signal from the steering control device 4a, and detects the presence or absence of an output of the steering signal. That is, the determination cutoff device 4b plays a role as a sensor that detects the presence or absence of the output of the steering signal. Furthermore, the determination shutoff device 4b acquires start signals from various devices, for example, the starter of the motor 22, each sensor of the sensor group 6, and the autopilot function part of the steering control device 4a, and detects the presence or absence of start of various devices. .
  • the determination blocking device 4b plays a role as a sensor that detects the presence or absence of the output of the start signal.
  • the determination cutoff device 4b determines the state of the steering device 30 (in the present embodiment, mainly the states of the steering systems 3L and 3R) based on the detection result obtained in this manner.
  • Table 1 below shows an example of detection results of sensors used when determining the state of each of the steering systems 3L and 3R.
  • Table 1 shows various sensors and signals in the row direction, and shows the states of the steering systems 3L and 3R in the column direction.
  • Judgment cutoff device 4b is mainly based on the detection results of the sensors indicated by “o” in Table 1 (including not only the detected value and state but also the state where nothing is detected), the steering system 3L, 3R Determine the status.
  • the state of each of the steering systems 3L and 3R based on the detection results of the direction switching valve operation detection sensor and the steering angle detection sensor, which are steering plate operation detection sensors, and the detection results regarding the steering signal and various activation signals
  • the determination blocking device 4b determines whether or not each of the steering systems 3L and 3R is in a non-responsive state (a state in which the steering angle can not be changed spontaneously).
  • the determination blocking device 4b determines that each of the steering systems 3L and 3R is in a non-responsive state.
  • the determination cutoff device 4b can not control each of the steering systems 3L and 3R based on the detection results of the pressure sensor, the direction switching valve operation detection sensor, and the steering angle detection sensor, and the detection results regarding the steering signal and various activation signals. It is determined whether or not it is in a state (that is, a state in which the steering angle can not be controlled). That is, at least one of the steering signal and the starter activation signal of the motor 22 is output, and the detection result detected by the pressure sensor, the direction switching valve operation detection sensor, and the steering angle detection sensor differs from the value corresponding to the steering signal. If it is, the determination cutoff device 4b determines that each of the steering systems 3L and 3R is in an uncontrollable state.
  • the steering systems 3L and 3R are in a liquid leakage state (that is, in the electric liquid driving device 3) based on the detection results of the pressure sensor, the tank oil level sensor, and the liquid leakage detection sensor. It is determined whether or not the condition is leaking. That is, if a pressure drop occurs in the pressure sensor and a defect (a drop in the oil level and a liquid leak) is detected according to either one of the tank oil level sensor and the liquid leakage detection sensor, the liquid is in a leak state.
  • the determination shutoff device 4b makes a determination.
  • the steering systems 3L and 3R are disconnected (that is, connected to various devices) based on the detection results of the disconnection detection sensor and the ground / short detection sensor and detection results regarding various start signals. It is determined whether or not the wiring is broken) and a power loss state (ie, a state in which power to various devices is lost). That is, in the state where the start signal is output, when the disconnection detection sensor detects a disconnection and the ground / short sensor does not detect a ground / short, it is determined that each steering system 3L, 3R is in a disconnected state and cut off The device 4b makes a determination.
  • each steering system 3L, 3R is in the power loss state
  • the blocking device 4b makes a determination.
  • the determination shutoff device 4b determines whether each of the steering systems 3L and 3R is in a non-responsive state, an uncontrollable state, a fluid leakage state, a disconnection state, a power loss state, or the like as described above. Do. If neither of the above conditions applies, the determination cutoff device 4b determines that each of the steering systems 3L and 3R is in a good condition, and if any one of the above-described conditions applies, the determination cutoff device 4b determines each steering system. It is determined that 3L and 3R are in a failure state or a state in which there is a risk of failure (ie, a state such as a failure).
  • the determination shutoff device 4b having such a function is connected to the shutoff mechanism 27 and switches the output state of the switching signal to the shutoff mechanism 27 according to the state of each of the steering systems 3L and 3R. That is, when each of the steering systems 3L and 3R is in a good state, the determination shutoff device 4b outputs a switching signal to the shutoff mechanism 27 so that the steering plate drive unit 2 can operate. On the other hand, when each of the steering systems 3L, 3R is in a failure state, the determination shutoff device 4b stops outputting the switching signal so that the steering plate drive unit 2 does not move and the steering angle of the steering plate 12 is maintained.
  • the determination cutoff device 4b is connected to the display operation unit 7 in order to notify the state of each of the steering systems 3L and 3R.
  • the display operation unit 7 which is an example of the instruction unit is, for example, a touch panel, and displays the state of each of the steering systems 3L and 3R to warn the steerer or the like.
  • various commands can be input to the display operation unit 7 by touching the display portion.
  • the steering control device 4 a adjusts the steering angle of the steering plate 12 in accordance with the steering command input from the steering unit 5 to the steering control device 4 a. Further, the determination cutoff device 4b determines the state of the steering control system 1 based on the presence or absence of the signal output therefrom and the detection result of the sensor group 6, and stops the steering plate drive unit 2 according to the determination result. And the steering angle is maintained. That is, in the steering control system 1, the determination cutoff device 4b determines the state of the first steering system 3L, and when the first steering system 3L is in a failure state etc., the steering plate drive unit 2 is stopped and the steering angle is set. maintain.
  • the determination cutoff device 4b performs the steering angle stop process to stop the steering plate drive unit 2 and maintain the steering angle.
  • steering angle stop processing is explained.
  • the steering angle stop process there are, for example, five embodiments, and in the following, first to fifth embodiments will be described in order with reference to FIGS. 2 to 6.
  • step S1 which is a state determination step, the determination cutoff device 4b of the control unit 4 determines the state of the first steering system 3L based on the detection result of the sensor group 6 and the detection result regarding each signal. For example, in the following cases, the determination cutoff device 4b determines that the first steering system 3L is in a good state.
  • the determination cutoff device 4b determines that the first steering system 3L applies that state. It determines that it has reached. When the state of the first steering system 3L is determined as described above, the process proceeds to step S2.
  • step S2 which is a failure determination step, it is determined whether or not the first steering system 3L has a failure state and a possibility of failure (that is, there is a failure etc.) based on the determination result determined in step S1. .
  • the determination cutoff device 4b determines that the first steering system 3L does not have a failure or the like, and proceeds to step S3.
  • step S3 which is an operation standby process, the determination shutoff device 4b outputs a switching signal to the shutoff mechanism 27.
  • the two supply passages 32 a and 32 b are opened by the shutoff mechanism 27, and the steering control system 1 can operate the steering plate drive unit 2.
  • the steering control device 4 a transmits a steering signal corresponding to the steering command from the steering unit 5 to the pilot switching valve 24. Output.
  • the control unit 4 stops the steering signal output to the pilot switching valve 24, and between the hydraulic pump 21 and the steering plate drive unit 2 Stop it. Thereby, the steering angle of the steering plate 12 can be made an angle according to the steering command, and can be maintained at the steering angle.
  • step S1 the state of the first steering system 3L is determined. Then, in step S1, it is determined that the first steering system 3L is in any state other than the good state, that is, in a non-responsive state, an uncontrollable state, a fluid leakage state, a disconnection state, or a power loss state. In the case, it is determined in step S2 that the first steering system 3L is at fault or the like, and the process proceeds to step S4.
  • step S4 which is an alarm operation step, it is informed that the first steering system 3L is in a failure state or the like. That is, the determination cutoff device 4b displays that there is a failure or the like in the first steering system 3L by the display operation unit 7, and warns the driver or the like that there is a failure or the like. Further, in the steering angle stop process, step S5 is executed in parallel with step S4. In step S5 which is a blocking process, the determination blocking device 4b stops the output of the switching signal to the blocking mechanism 27. As a result, the two supply passages 32a and 32b are closed by the shutoff mechanism 27, and the hydraulic fluid travels between the hydraulic pump 21 and the steering plate drive unit 2 (that is, from the hydraulic pump 21 to the steering plate drive unit 2).
  • the procedure of the steering angle stop process of the second embodiment is similar to the procedure of the steering angle stop process of the first embodiment. Therefore, the procedure of the steering angle stop process of the second embodiment will be mainly described with reference to FIG. 3 as to the point different from the procedure of the steering angle stop process of the first embodiment.
  • step S6 which is a steering system switching process
  • the steering system operated by the control unit 4 is switched from the first steering system 3L to the second steering system 3R.
  • the steering angle stop process ends for the first steering system 3L, and then the steering angle stop process is performed for the second steering system 3R. That is, the hydraulic fluid supply source is switched from the hydraulic fluid supply device 20 of the first steering system 3L to the hydraulic fluid supply device 20 of the second steering system 3R which is the preliminary hydraulic pressure feeder, and the hydraulic fluid supply device of the second steering system 3R.
  • the steering plate drive unit 2 is operated by 20.
  • the steering angle stop process performed on the second steering system 3R is the steering angle stop process of the first embodiment performed on the first steering system 3L only with a difference in the target steering system. It is the same.
  • the second steering system 3R is automatically operated even when the first steering system 3L fails. Therefore, even when the first steering system 3L fails, the steering plate drive unit 2 can be driven as it is by the second steering system 3R to change the steering angle, and the direction of the ship can be controlled.
  • the procedure of the steering angle stop process of the third embodiment is similar to the procedure of the steering angle stop process of the first embodiment. Therefore, the procedure of the steering angle stop process of the third embodiment will be mainly described with reference to FIG. 4 as to the point different from the procedure of the steering angle stop process of the first embodiment.
  • step S2 when it is determined that there is a failure or the like in step S2, the process proceeds to step S4, and the determination cutoff device 4b determines that the steering operator or the like has a failure or the like in the display operation unit 7. Give a warning. Further, the determination cutoff device 4b displays on the display / operation unit 7 that the presence or absence of an approval (i.e., an instruction) regarding the stop of the first steering system 3L should be input together with the warning. After displaying the warning and that the input should be made, the process proceeds to step S7.
  • an approval i.e., an instruction
  • step S7 which is a stop approval step
  • the determination blocking device 4b determines which of the presence and absence of a steering hand or the like has been input with respect to the presence or absence of approval displayed on the display operation unit 7.
  • the steering angle stop processing is ended in a state where the first steering system 3L is not stopped, that is, the switching signal is outputted to the cutoff mechanism 27.
  • the process proceeds to step S5 to stop the first steering system 3L, and the output of the switching signal to the shutoff mechanism 27 is stopped.
  • the steering plate drive unit 2 does not automatically stop when approval is not given even when the first steering system 3L has a failure or the like. Therefore, undesired stopping of the first steering system 3L can be suppressed, and the first steering system 3L can be stopped after the cause or the like is clarified.
  • the procedure of the steering angle stop process of the fourth embodiment is similar to the procedure of the steering angle stop process of the third embodiment. Therefore, the procedure of the steering angle stop process of the fourth embodiment will be mainly described with reference to FIG. 5 as to the point different from the procedure of the steering angle stop process of the third embodiment.
  • step S8 which is an instruction waiting step, it is determined whether or not an instruction regarding the presence or absence of approval has been input via the display operation unit 7 within a predetermined time T1 second. If an instruction regarding the presence or absence of approval is input to the display operation unit 7 before the elapse of T1 seconds, the process proceeds to step S7. On the other hand, when the instruction regarding the presence or absence of approval is not input to the display operation unit 7 within T1 seconds, the process proceeds to step S5.
  • the procedure of the steering angle stop process of the fifth embodiment is similar to the procedure of the steering angle stop process of the third embodiment. Therefore, the procedure of the steering angle stop process of the fourth embodiment will be mainly described with reference to FIG. 6 as to the point different from the procedure of the steering angle stop process of the third embodiment.
  • step S9 which is a shutoff standby step, it is determined whether or not a predetermined time T2 has elapsed since it is determined in step S2 that there is a failure or the like. If the time T2 has not elapsed, the process proceeds to step S3 to continue outputting the switching signal to the blocking mechanism 27. On the other hand, if the time T2 has elapsed, the process proceeds to step S5, and the steering plate drive unit 2 is stopped to maintain the steering angle. Thereafter, the process shifts to step S6, and the steering system to be operated is switched from the first steering system 3L to the second steering system 3R.
  • a state such as a failure etc. is temporarily caused by a sudden trouble, and thereafter it is suppressed that the steering plate drive unit 2 is stopped when the failure etc. is resolved. can do.
  • the steering control system 1A of the second embodiment is similar in configuration to the steering control system 1 of the first embodiment. Therefore, about the composition of steering control system 1A of a 2nd embodiment, a point which differs from steering control system 1 of a 1st embodiment is mainly explained, about the same composition, the same numerals are attached and explanation is omitted.
  • the steering control system 1A includes a steering plate drive unit 2, an electric liquid drive device 3A, a control unit 4, a steering unit 5, a sensor group 6A, and a display operation unit 7. Is equipped.
  • the electric liquid drive device 3A has a plurality of steering systems (two steering systems 3AL and 3AR in the present embodiment), and the two steering systems 3AL and 3AR both have the same function. That is, also in the case of the electric liquid drive device 3A, when the first steering system 3AL, which is one steering system 3AL, mainly operates and the first steering system 3AL breaks down, the second steering system 3AR functions as the steering plate drive unit 2 Activate.
  • the two steering systems 3AL and 3AR together with the steering plate drive unit 2, constitute a steering device 30A.
  • the two steering systems 3AL and 3AR will be described below, the two steering systems 3AL and 3AR have the same configuration. Therefore, only the configuration of the first steering system 3AL will be described, and the configuration of the second steering system 3AR will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the first steering system 3AL includes a hydraulic fluid feeder 20A, a relief mechanism 26, and a shutoff mechanism 27.
  • the hydraulic fluid feeder 20A mainly includes a hydraulic pump 21A, an electric motor 22, and a tilting mechanism. 51 and a pilot pump 52.
  • the hydraulic pump 21A is, for example, a variable displacement oblique shaft pump, and is connected to the first cylinder chamber 15a and the second cylinder chamber 16a via two oil passages 53a and 53b, respectively.
  • the electric motor 22 is connected to the input shaft 21a of the hydraulic pump 21A, and by rotating the input shaft 21a by the electric motor 22, the hydraulic fluid can be discharged from the hydraulic pump 21A.
  • the hydraulic pump 21A can switch the discharge direction of the hydraulic fluid by changing the tilt angle of its oblique shaft. That is, the hydraulic pump 21A sucks the working fluid from one of the two oil passages 53a and 53b when the tilt shaft is tilted to one side, and further pressurizes the working fluid and discharges it to the other. . In addition, when the hydraulic pump 21A tilts the oblique shaft to the other side, it sucks the working fluid from the other of the two oil passages 53a and 53b, further pressurizes the working fluid and discharges it to one side. There is.
  • the hydraulic pump 21A can supply the hydraulic fluid to either the first cylinder chamber 15a or the second cylinder chamber 16a by changing the tilt angle of the oblique shaft.
  • the hydraulic pump 21A configured in this way is provided with a tilting mechanism 51 to change the tilting angle of its oblique shaft.
  • the tilting mechanism 51 has a servo piston 61, a direction control valve 62 and a torque motor 63.
  • the servo piston 61 moves in the axial direction in accordance with the flow direction of the hydraulic fluid supplied thereto, and changes the tilt angle of the hydraulic pump 21A by moving.
  • the servo piston 61 is connected to the pilot pump 52 and the tank 28 via the direction control valve 62.
  • the pilot pump 52 is, for example, a fixed displacement pump and discharges the pilot fluid.
  • the pilot fluid to be discharged is guided to the direction control valve 62, and the direction of flow is switched by the direction control valve 62.
  • the direction control valve 62 has a spool 62a, and controls the supply and discharge of pressure fluid to the servo piston 61 according to the position of the spool 62a. That is, by changing the position of the spool 62a, the servo piston 61 moves, thereby changing the tilt angle.
  • the spool 62 a having such a function is connected to the torque motor 63, and can be changed in position by the torque motor 63.
  • the torque motor 63 is connected to the steering control device 4a, and changes the position of the spool 62a in accordance with a signal output from the steering control device 4a.
  • the tilting mechanism 51 moves the servo piston 61 by controlling the flow direction of the pilot oil discharged from the pilot pump 52 by the directional control valve 62, and changes the tilting angle of the hydraulic pump 21A. That is, the steering control device 4a controls the movement of the torque motor 63 to switch the direction of the hydraulic fluid flowing from the hydraulic pressure pump 21A to the steering plate drive unit 2. Thereby, the steering plate 12 can be swung to one side and the other in the circumferential direction, and the steering angle can be adjusted.
  • the pilot fluid discharged from the pilot pump 52 is also led to the blocking mechanism 27.
  • the blocking mechanism 27 is driven by the pilot fluid from the pilot pump 52 instead of the pressure fluid introduced by the self pressure supply passage 33a.
  • the third pilot passage 34 c is connected to the tank passage 33 b and the fourth pilot passage 34 d is connected to the pilot pump 52.
  • the unload shutoff valve 41 is opened.
  • the hydraulic fluid can be transferred between the hydraulic pump 21 and the steering plate drive unit 2, and when the motor 22 is driven in this state, the steering plate drive unit 2 operates to swing the steering plate 12.
  • the fourth pilot passage 34 d is connected to the tank passage 33 b and the third pilot passage 34 c is connected to the pilot pump 52.
  • the unload shutoff valve 41 is closed.
  • the hydraulic fluid can not travel between the hydraulic pump 21 and the steering plate drive unit 2, and the steering angle of the steering plate 12 is maintained.
  • the steering control device 4a drives the electric motor 22 according to a steering command input from the steering unit 5 to the steering control device 4a of the control unit 4, and the steering angle of the steering plate 12 Adjust the
  • the determination cutoff device 4b determines the state of the steering device 30A based on the presence or absence of signals (steering signal, start signal, etc.) output from the steering control device 4a and the detection result of the sensor group 6A. Accordingly, the steering plate drive unit 2 is stopped and the steering angle is maintained.
  • the sensor group 6A basically includes the same sensors as the sensor group 6A of the first embodiment, the steering device 30A is not provided with the direction switching valve 23. Therefore, the direction switching valve operation detection sensor Instead, a pump displacement sensor is included.
  • a pump tilt angle sensor which is a steering plate operation detection sensor, is a sensor that detects a tilt angle of the hydraulic pressure pump 21A, and outputs a detection result to the determination cutoff device 4b or the like.
  • the steering control system 1A configured in this way, as in the first embodiment, only one of the two steering systems 3L and 3R is operated to drive the steering plate drive unit 2, and the determination is shut off.
  • the device 4b determines the state of one of the steering systems 3L and 3R (in the present embodiment, the first steering system 3L).
  • an example of a detection result of a sensor used when determining the state of each steering system 3L, 3R in 2nd Embodiment is shown in Table 2.
  • Table 2 shows various sensors and signals in the row direction as in Table 1, and shows the states of the steering systems 3L and 3R in the column direction.
  • Judgment cutoff device 4b is mainly based on the detection results of the sensors indicated by “o” in Table 1 (including not only the detected value and state but also the state where nothing is detected), the steering system 3L, 3R Determine the status. That is, in the determination of the non-responsive state and the uncontrollable state, a pump displacement angle sensor is used.
  • the determination cutoff device 4b stops the steering plate drive unit 2 and maintains the steering angle. .
  • the determination cutoff device 4b of the control unit 4 determines that the state of the first steering system 3L is in the failure state, the steering angle stop processing for stopping the steering plate drive unit 2 and maintaining the steering angle is performed. It is supposed to run.
  • the steering angle stop process performed is the same as the steering angle stop process performed by the steering control system 1 of 1st Embodiment, description is abbreviate
  • the steering angle stop process can be applied even to the steering control system 1A provided with the hydraulic pump 21A capable of discharging in both directions, and can be applied to a wide variety of steering control systems. Moreover, in the applied steering control system 1A, the same operation and effect as the steering control system 1 of the first embodiment can be obtained.
  • the electric fluid drive device 3 includes the two steering systems 3L, 3R, 3AL and 3AR, but the invention is not necessarily limited to two. For example, only one operation system may be provided, and three or more steering systems may be provided. When two or more steering systems are provided, the number of operating steering systems is not limited to one, and may be two or more.
  • the shutoff mechanism 27 is configured to stop the hydraulic fluid from moving back and forth, but the structure of the shutoff mechanism 27 is not limited to that described above. Any mechanism may be used as long as it can stop the transfer of hydraulic fluid according to the input state according to the switching signal.
  • shutoff mechanism 27 enables the hydraulic fluid to come and go when the switching signal is input, and can stop the hydraulic fluid from coming and going when the switching signal is stopped, but may be reversed. That is, the blocking mechanism 27 may be configured to stop the transfer of the hydraulic fluid when the switching signal is input, and to enable the transfer of the hydraulic fluid when the switching signal is stopped.
  • the steering angle stop process may be any process that stops the movement of the steering plate drive unit 2 and maintains the steering angle according to the determined state.
  • the determination cutoff device 4b determines the states of the steering devices 30 and 30A based on at least three or more detection results, it does not necessarily have to be three or more. That is, the states of the steering devices 30 and 30A may be determined based on the two detection results. Further, in the present embodiment, the states of the steering systems 3L and 3R are mainly detected, but the state of the steering plate drive unit 2 may be detected.
  • the oblique axis pump is adopted as the hydraulic pressure pumps 21 and 21A, but a swash plate pump may be used.
  • the configurations of the hydraulic fluid feeders 20 and 20A provided in the steering control systems 1 and 1A of the first and second embodiments are not limited to the configurations as shown in the drawings, and the steering plate drive unit 2 is The configuration may be any configuration that can stop the supply and discharge of
  • the ram cylinder type is adopted as the steering plate driving unit 2
  • the steering plate drive part 2 may be of a rotary vane type or may be of a trunk piston type.
  • the above-described electric liquid drive devices 3 and 3A are also merely examples, and any type that can supply pressure liquid to the steering plate drive unit 2 and switch the flow direction thereof can be used.
  • only one control unit 4 is provided for the plurality of steering systems 3L, 3R, 3AL and 3AR.
  • One each may be provided for each of 3R, 3AL, 3AR.
  • the steering control device 4a and the determination cutoff device 4b which constitute the control unit 4 do not necessarily have to be configured as one unit, and may be configured separately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Analytical Chemistry (AREA)

Abstract

Provided is a steering control system capable of preventing undesired operation of a rudder plate driving unit at the occurrence of a failure. The steering control system is provided with: a steering device including a rudder plate driving unit that moves a rudder plate in a direction corresponding to the flow direction of a liquid pressure supplied thereto, a pressurized-liquid supplier that supplies to the rudder plate driving unit, the pressurized liquid flowing in the flow direction corresponding to an inputted steering signal, and a shutoff mechanism that performs switching between supply and stop of the pressurized liquid from the pressurized-liquid supplier to the rudder plate driving unit; a plurality of detectors that detect the states of different portions of the steering device; and a determination and shutoff device that determines the state of the steering device according to the detection results detected by the plurality of detectors, and causes the shutoff mechanism to stop the supply of the pressurized liquid on the basis of the determination result.

Description

操舵制御システム、及び操舵装置の停止方法Steering control system and method of stopping steering device
 本発明は、舵板の舵角を変更する操舵制御システム、及び操舵装置の停止方法に関する。 The present invention relates to a steering control system that changes the steering angle of a steering plate, and a method of stopping a steering device.
 船舶には、進行する方向を変えるべく操舵制御システムが備わっており、操舵制御システムの一例として例えば特許文献1のような舶用操舵装置が知られている。特許文献1の舶用操舵装置は、舵板駆動部と液圧ポンプとを備えており、液圧ポンプから舵板駆動部に圧液を供給することによって舵板駆動部が駆動するようになっている。また、舵板駆動部と液圧ポンプとの間には切換弁が介在している。切換弁は、舵板駆動部に流す圧液の方向を切換えることができ、舶用操舵装置は切換えることによって舵板の舵角が変わる。 A ship is equipped with a steering control system so as to change the traveling direction, and a marine vessel steering apparatus such as Patent Document 1 is known as an example of the steering control system. The marine steering device of Patent Document 1 includes a steering plate drive unit and a hydraulic pressure pump, and the steering plate drive unit is driven by supplying pressure fluid from the hydraulic pressure pump to the steering plate drive unit. There is. Further, a switching valve is interposed between the steering plate drive portion and the hydraulic pressure pump. The switching valve can switch the direction of the pressure fluid flowing to the steering plate drive unit, and the marine steering device changes the steering angle of the steering plate by switching.
特開2012-136148号公報JP 2012-136148 A
 特許文献1では、舶用操舵装置の故障について何ら言及されていない。よって、例えば、切換弁が開いたままの状態でスティックした場合、舵板駆動部に意図しない作動液が流れ、舵板駆動部が不所望に動くことになる。また、液圧ポンプの駆動する電動機に繋がる配線が断線し、その状態で切換弁が作動した場合、舵板に外力がかかるとその力によって不所望に動くことになる。その他、舶用操舵装置における故障は多岐にわたり、その故障により舵板駆動部が不所望に動く可能性がある。それ故、舶用制御装置、即ち操舵制御システムにおける故障の発生を検出し、故障発生時において操舵制御システムにおける舵板駆動部が不所望な動きをしないようにすることが望まれている。 Patent Document 1 does not mention at all the failure of the marine steering device. Therefore, for example, when the switching valve sticks with the valve open, an unintended hydraulic fluid flows in the steering plate drive unit, and the steering plate drive unit moves undesirably. In addition, when the wiring connected to the motor driven by the hydraulic pump is broken and the switching valve is operated in that state, if an external force is applied to the steering plate, the force causes an undesired movement. Besides, failures in the marine steering device are various, and the failure may cause the steering plate drive to move undesirably. Therefore, it is desirable to detect the occurrence of a failure in the marine control device, that is, the steering control system, and to prevent the steering plate drive unit in the steering control system from an undesired movement when the failure occurs.
 そこで本発明は、故障発生時に舵板駆動部が不所望な動きをしないようにすることができる操舵制御システム、及びその停止方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a steering control system capable of preventing an undesired movement of a steering plate drive unit when a failure occurs, and a method for stopping the same.
 本発明の操舵制御システムは、供給される液圧の流れ方向に応じた方向に舵板を動かす舵板駆動部と、入力される操舵信号に応じた流れ方向の圧液を前記舵板駆動部に供給する圧液供給機と、前記圧液供給機から前記舵板駆動部への圧液の供給及びその停止を切換える遮断機構と、を有する操舵装置と、前記操舵装置における互いに異なる部位の状態を検出する複数の検出器と、前記複数の検出器にて検出される検出結果に応じて前記操舵装置の状態を判定し、判定結果に基づいて前記遮断機構によって圧液の供給を停止する、判定遮断装置と、を備えるものである。 In the steering control system according to the present invention, a steering plate drive unit for moving a steering plate in a direction according to the flow direction of supplied hydraulic pressure, and pressure fluid in the flow direction according to the input steering signal is the steering plate drive unit A steering device having a hydraulic fluid feeder for supplying pressure fluid, a shutoff mechanism for switching the supply of hydraulic fluid from the hydraulic fluid feeder to the steering plate drive unit and the stop thereof, and the state of different parts of the steering device And a state of the steering device is determined according to detection results detected by the plurality of detectors, and the supply of pressure liquid is stopped by the blocking mechanism based on the determination results. And a determination cutoff device.
 本発明に従えば、操舵装置における種々の部位の状態を検出し、検出される状態に基づいて操舵装置全体の状態を判定する。更に、判定結果に基づいて舵板駆動部への圧液の給排を停止することができる。即ち、判定される操舵装置の状態に応じて舵板駆動部の動きを止め、且つ舵板の舵角をそのままの状態に維持することができる。これにより、例えば操舵装置が故障した又は操舵装置において故障の恐れがある、即ち故障等が発生した場合において、舵板に外力が作用して舵板が不所望な方向を向いたり、舵板駆動部が制御不能な状態で舵板が動かされたりすることを防ぐことができる。つまり、故障等が発生した時に舵板駆動部が不所望な動きをしないようにすることができる。 According to the present invention, the states of various parts of the steering apparatus are detected, and the state of the entire steering apparatus is determined based on the detected states. Furthermore, the supply and discharge of the pressure fluid to the steering plate drive unit can be stopped based on the determination result. That is, the movement of the steering plate drive unit can be stopped according to the determined state of the steering device, and the steering angle of the steering plate can be maintained as it is. Thereby, for example, when there is a possibility that the steering device is broken or there is a possibility of failure in the steering device, that is, when a failure or the like occurs, an external force acts on the steering plate to turn the steering plate in an undesired direction It is possible to prevent the steering plate from being moved when the unit is out of control. That is, when a failure or the like occurs, it is possible to prevent the steering plate drive unit from making an undesired movement.
 上記発明において、前記複数の検出器は、操舵検出器と、舵板作動検出器とを少なくとも有し、前記操舵検出器は、操舵部に対する操作の有無を検出し、前記舵板作動検出器は、前記舵板駆動部の作動の有無を検出し、前記判定遮断装置は、前記操舵検出器及び前記舵板作動検出器の検出結果に応じて前記操舵装置における作動状態を判定してもよい。 In the above invention, the plurality of detectors include at least a steering detector and a steering plate operation detector, and the steering detector detects the presence or absence of an operation on a steering unit, and the steering plate operation detector The presence or absence of actuation of the steering plate drive unit may be detected, and the determination cutoff device may determine an actuation state of the steering device according to detection results of the steering detector and the steering plate actuation detector.
 上記構成に従えば、圧液供給機が操舵信号に対して無反応な状態であることを判定することができ、その状態において舵板駆動部の動きを止め且つ舵板の舵角をそのままの状態に維持することができる。 According to the above configuration, it can be determined that the hydraulic fluid supply machine is in a non-responsive state to the steering signal, and in that state, the movement of the steering plate drive unit is stopped and the steering angle of the steering plate is left unchanged. It can be maintained in the state.
 上記発明において、前記圧液供給機は、前記圧液を排出すべくタンクを有しており、前記複数の検出器は、圧力検出器と、液面検出器とを少なくとも有し、前記圧力検出器は、前記舵板駆動部に供給される圧液の圧力を検出し、前記液面検出器は、前記タンクの液面の位置を検出し、前記判定遮断装置は、前記圧力検出器及び前記液面検出器の検出結果に応じて前記操舵装置における液漏れ状態を判定してもよい。 In the above invention, the pressure liquid supply machine has a tank for discharging the pressure liquid, and the plurality of detectors have at least a pressure detector and a liquid level detector, and the pressure detection The pressure sensor detects the pressure of the hydraulic fluid supplied to the steering plate drive unit, the liquid level detector detects the position of the liquid level of the tank, and the determination shutoff device detects the pressure detector and the pressure sensor. The leakage state of the steering device may be determined according to the detection result of the liquid level detector.
 上記構成に従えば、圧液の圧力とタンクの液面を検出することによって操舵装置において液漏れ状態を判定することができ、その状態において舵板駆動部の動きを止め且つ舵板の舵角をそのままの状態に維持することができる。 According to the above configuration, it is possible to determine the liquid leakage state in the steering apparatus by detecting the pressure of the pressure liquid and the liquid level of the tank, and in that state, the movement of the steering plate drive unit is stopped and the steering angle of the steering plate Can be maintained as it is.
 上記発明において、前記操舵装置は、前記圧液供給機と異なり且つ入力される前記操舵信号に応じた流れ方向の圧液を前記舵板駆動部に供給可能である予備圧液供給機を更に備え、前記舵板駆動部に圧液を供給する圧液供給源を前記圧液供給機から予備圧液供給機に切換え可能に構成され、前記判定遮断装置は、判定結果に基づいて前記遮断機構によって圧液の供給を停止すると共に、前記圧液供給源を前記圧液供給機から前記予備圧液供給機に切換えてもよい。 In the above invention, the steering device further includes a preliminary pressure liquid feeder different from the pressure liquid feeder and capable of supplying pressure fluid in a flow direction according to the input steering signal to the steering plate drive unit. The pressure liquid supply source for supplying the pressure liquid to the steering plate drive unit is configured to be switchable from the pressure liquid supply machine to the preliminary pressure liquid supply machine, and the determination shutoff device is operated by the shutoff mechanism based on the determination result. The supply of pressure liquid may be stopped, and the pressure liquid supply source may be switched from the pressure liquid supply machine to the preliminary pressure liquid supply machine.
 上記構成に従えば、故障等が発生した際に舵板駆動部の動きを止め且つ舵板の舵角をそのままの状態に維持された後も、操舵系統を圧液供給機から予備圧液供給機に切換えることによって舵板駆動部を動かすことができる。これにより、圧液供給機が故障等した後も船舶の向きを制御することができる。 According to the above configuration, even if the movement of the steering plate drive unit is stopped when a failure or the like occurs and the steering angle of the steering plate is maintained as it is, the steering system is supplied with pre-pressure liquid from the pressure liquid feeder. The steering plate drive can be moved by switching to the aircraft. As a result, it is possible to control the direction of the ship even after a failure of the pressure liquid supply machine.
 上記発明において、前記遮断機構における作動の有無の指示をする指示部を更に備え、前記判定遮断装置は、前記判定結果と前記指示部に対する指示に基づいて前記遮断機構によって圧液の供給を停止してもよい。 In the above invention, the apparatus further comprises an instruction unit for instructing the presence or absence of the operation in the shutoff mechanism, and the determination shutoff device stops the supply of pressure liquid by the shutoff mechanism based on the judgment result and an instruction to the instruction unit. May be
 上記構成に従えば、故障等した場合でも、指示に基づいて舵板駆動部の停止を行うので、圧液供給機が不所望に停止させられることを抑制することができる。 According to the above configuration, since the steering plate drive unit is stopped based on the instruction even in the event of a failure or the like, it is possible to suppress the pressure liquid supply machine from being stopped undesirably.
 上記発明において、前記判定遮断装置は、前記判定結果に基づいて前記遮断機構によって圧液の供給を停止する場合、判定してから予め定められた時間が経過した後に前記遮断機構によって圧液の供給を停止してもよい。 In the above invention, when the supply of pressure liquid is stopped by the cut-off mechanism based on the determination result, the determination cut-off device supplies the pressure liquid by the cut-off mechanism after a predetermined time has elapsed from the determination. You may stop it.
 上記構成に従えば、突発的なトラブルにより一時的に故障等の状態となり、その後故障等が解消された際に舵板駆動部を停止することを抑制することができる。これにより、舵板駆動部の停止回数が増加することを抑制することができる。 According to the above configuration, it is possible to suppress the stopping of the steering plate drive unit when the failure or the like is temporarily caused due to a sudden trouble and the failure or the like is eliminated thereafter. Thereby, it can suppress that the frequency | count of a stop of a steering plate drive part increases.
 本発明の操舵装置の停止方法は、供給される液圧の流れ方向に応じた方向に舵板を動かす舵板駆動部と、入力される操舵信号に応じた流れ方向の圧液を前記舵板駆動部に供給する圧液供給機と、前記圧液供給機から前記舵板駆動部への圧液の供給及びその停止を切換える遮断機構と、を備える操舵装置の停止方法であって、複数の検出器によって前記操舵装置における互いに異なる部位の状態を検出する検出工程と、前記検出工程における検出結果に応じて前記操舵装置の状態を判定する状態判定工程と、前記状態判定工程における判定結果に基づいて前記遮断機構によって圧液の供給を停止する停止工程とを備える方法である。 In the method for stopping a steering device according to the present invention, a steering plate drive section for moving a steering plate in a direction according to the flow direction of supplied hydraulic pressure, and pressure fluid in the flow direction according to an input steering signal A method of stopping a steering apparatus, comprising: a hydraulic fluid supply machine for supplying to a drive unit; and a shutoff mechanism for switching supply and stop of hydraulic fluid from the hydraulic pressure supply machine to the steering plate drive unit, A detection step of detecting the states of different parts of the steering device by a detector, a state determination step of determining the state of the steering device according to the detection result in the detection step, and a determination result in the state determination step And stopping the supply of the pressure liquid by the shutoff mechanism.
 上記構成に従えば、操舵装置における種々の部位の状態を検出し、検出される状態に基づいて操舵装置の状態を判定する。更に、判定結果に基づいて舵板駆動部への圧液の給排を停止することができる。即ち、操舵装置の状態に応じて舵板駆動部の動きを止め、且つ舵板の舵角をそのままの状態に維持することができる。これにより、例えば操舵装置が故障した又は操舵装置において故障の恐れがある、即ち故障等した場合において、舵板に外力が作用して舵板が不所望な方向を向いたり、舵板駆動部が制御不能な状態で舵板が動かされたりすることを防ぐことができる。つまり、故障等が発生した時に舵板駆動部が不所望な動きをしないようにすることができる。 According to the above configuration, the states of various parts in the steering device are detected, and the state of the steering device is determined based on the detected states. Furthermore, the supply and discharge of the pressure fluid to the steering plate drive unit can be stopped based on the determination result. That is, the movement of the steering plate drive unit can be stopped according to the state of the steering device, and the steering angle of the steering plate can be maintained as it is. Thereby, for example, in the case where the steering device is broken or there is a risk of failure in the steering device, that is, in the case of failure or the like, an external force acts on the steering plate to turn the steering plate in an undesired direction It is possible to prevent the steering plate from being moved in an uncontrollable state. That is, when a failure or the like occurs, it is possible to prevent the steering plate drive unit from making an undesired movement.
 本発明によれば、故障発生時に舵板駆動部が不所望な動きをしないようにすることができる。 According to the present invention, it is possible to prevent the steering plate drive unit from making an undesired movement when a failure occurs.
第1実施形態の操舵制御システムの構成を示す油圧回路図である。It is a hydraulic circuit diagram showing composition of a steering control system of a 1st embodiment. 図1の操舵制御システムが実行する舵角停止処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the steering angle stop process which the steering control system of FIG. 1 performs. 図1の操舵制御システムが実行する舵角停止処理(第2実施例)の手順を示すフローチャートである。It is a flowchart which shows the procedure of the steering angle stop process (2nd Example) which the steering control system of FIG. 1 performs. 図1の操舵制御システムが実行する舵角停止処理(第3実施例)の手順を示すフローチャートである。It is a flowchart which shows the procedure of the steering angle stop process (3rd Example) which the steering control system of FIG. 1 performs. 図1の操舵制御システムが実行する舵角停止処理(第4実施例)の手順を示すフローチャートである。It is a flowchart which shows the procedure of the steering angle stop process (4th Example) which the steering control system of FIG. 1 performs. 図1の操舵制御システムが実行する舵角停止処理(第5実施例)の手順を示すフローチャートである。It is a flowchart which shows the procedure of the steering angle stop process (5th Example) which the steering control system of FIG. 1 performs. 第2実施形態の操舵制御システムの構成を示す油圧回路図である。It is a hydraulic circuit diagram showing composition of a steering control system of a 2nd embodiment.
 以下、本発明に係る第1及び第2実施形態の操舵制御システム1,1A及びそれが実行する操舵装置30の停止方法について図面を参照して説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等をその方向に限定するものではない。また、以下に説明する操舵制御システム1,1Aは、本発明の一実施形態に過ぎない。従って、本発明は実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。 The steering control systems 1 and 1A according to the first and second embodiments of the present invention and the method for stopping the steering device 30 to be executed by the steering control systems 1 and 1A will be described below with reference to the drawings. The concept of the direction used in the following description is used for convenience of the description, and the direction of the configuration of the invention is not limited to that direction. Further, the steering control systems 1 and 1A described below are merely an embodiment of the present invention. Accordingly, the present invention is not limited to the embodiments, and additions, deletions, and modifications are possible without departing from the scope of the invention.
 <第1実施形態>
 [操舵制御システム]
 船舶では、操舵室にある操舵部5の舵輪の操作、及びオートパイロット機能等に基づいて入力される操舵信号に応じて船舶の進行方向を変えられるようになっており、船舶はその進行方向を変えるべく操舵制御システム1を備えている。操舵制御システム1は、圧液(例えば、油又は水等の液体)によって駆動するようになっており、舵板12と、舵板駆動部2と、電液駆動装置3と、制御ユニット4と、操舵部5、センサ群6、表示操作部7とを備えている。
First Embodiment
[Steering control system]
In the case of ships, the direction of movement of the ship can be changed according to the operation of the steering wheels of the steering unit 5 in the steering room and the steering signal input based on the autopilot function, etc. A steering control system 1 is provided to change. The steering control system 1 is driven by hydraulic fluid (for example, fluid such as oil or water), and the steering plate 12, the steering plate drive unit 2, the electric liquid drive device 3, and the control unit 4 , A steering unit 5, a sensor group 6, and a display operation unit 7.
 [舵板]
 舵板12は、船舶の進行方向を変えるための部材であり、船舶の船尾辺りに取付けられている。より詳細に説明すると、舵板12は、側面視で大略矩形の板状の部材であり、舵板12は舵軸11に固定されている。舵軸11は、その軸線が略垂直に延在し且つその軸線回りに回動可能な状態で船舶の船尾に取付けられており、舵板12は、上下方向に立ち且つ前後方向に延在するように舵軸11に固定されている。また、舵軸11には、舵柄13が取付けられている。舵柄13は、舵軸11からその軸線に直交する方向に延在しており、舵柄13には、舵軸11を回動させるべく舵板駆動部2が設けられている。
[Rudder plate]
The steering plate 12 is a member for changing the traveling direction of the ship, and is mounted around the stern of the ship. Describing in more detail, the rudder plate 12 is a plate-like member having a substantially rectangular shape in a side view, and the rudder plate 12 is fixed to the rudder shaft 11. The rudder shaft 11 is attached to the stern of the ship with its axis extending substantially vertically and being rotatable about the axis, and the rudder plate 12 stands vertically and extends longitudinally Is fixed to the rudder axle 11. Further, a rudder 13 is attached to the rudder axle 11. The rudder 13 extends from the rudder shaft 11 in a direction perpendicular to the axis thereof, and the rudder 13 is provided with a rudder plate driving unit 2 for rotating the rudder shaft 11.
 [舵板駆動部]
 舵板駆動部2は、いわゆるラムシリンダであり、ラム14と、2つのシリンダ15,16を有している。ラム14は、ラム軸14aとラムピン14bとを有している。ラム軸14aは、その軸線方向に延在する長手状の部材であり、その軸線方向中央部分にラムピン14bが突設されている。ラムピン14bは、ラム軸14aと一体的に移動し、またラムピン14bには舵柄13が係合されている。それ故、ラム軸14aが移動すると、舵柄13が舵軸11を中心に揺動し、それに伴って舵板12がその軸線回りに回動する。このように構成されているラム軸14aには、それを軸線方向に移動させるべく2つのシリンダ15,16が取付けられている。
[Steering plate drive unit]
The steering plate drive unit 2 is a so-called ram cylinder, and includes a ram 14 and two cylinders 15 and 16. The ram 14 has a ram shaft 14a and a ram pin 14b. The ram shaft 14a is a longitudinal member extending in the axial direction, and a ram pin 14b is provided in a protruding manner at a central portion in the axial direction. The ram pin 14b moves integrally with the ram shaft 14a, and the steering wheel 13 is engaged with the ram pin 14b. Therefore, when the ram shaft 14a moves, the steering wheel 13 pivots about the steering shaft 11, and accordingly the steering plate 12 pivots about its axis. Two cylinders 15 and 16 are attached to the ram shaft 14a configured as described above so as to move it in the axial direction.
 2つのシリンダ15,16は、ラム軸14aの軸線方向一端部及び他端部に夫々設けられている。即ち、第1シリンダ15には、その内空間である第1シリンダ室15aにラム軸14aの軸線方向一端部が進退可能に挿入され、第2シリンダ16には、その内空間である第2シリンダ室16aにラム軸14aの軸線方向他端部が進退可能に挿入されている。また、2つのシリンダ15,16は、各シリンダ室15a,16aに圧液を供給可能に構成されており、ラム軸14aは、各シリンダ室15a,16aの液圧を各々端部で受けて移動するようになっている。即ち、第1シリンダ室15aに圧液が供給されると、ラム軸14aと共にラムピン14bが軸線方向一方に移動する。これにより、舵柄13が軸線回りの周方向一方に回動し、それに伴って舵板12もまた周方向一方に揺動する。また、第2シリンダ室16aに圧液が供給されると、ラム軸14aと共にラムピン14bが軸線方向他方に移動する。これにより、舵柄13が軸線回りの周方向他方に回動し、それに伴って舵板12もまた周方向他方に揺動する。このように、舵板駆動部2は、各シリンダ室15a,16aへの圧液の供給によって舵板12を動かすことができるようになっており、舵板駆動部2には、各シリンダ室15a,16aに圧液を供給すべく電液駆動装置3が接続されている。 The two cylinders 15, 16 are respectively provided at one end and the other end of the ram shaft 14a in the axial direction. That is, in the first cylinder 15, one end in the axial direction of the ram shaft 14a is movably inserted into the first cylinder chamber 15a which is the internal space, and in the second cylinder 16, the second cylinder which is the internal space The other axial end of the ram shaft 14a is inserted into the chamber 16a so as to be movable back and forth. Further, the two cylinders 15, 16 are configured to be able to supply pressure fluid to the respective cylinder chambers 15a, 16a, and the ram shaft 14a moves by receiving the hydraulic pressure of each of the cylinder chambers 15a, 16a at each end It is supposed to That is, when the hydraulic fluid is supplied to the first cylinder chamber 15a, the ram pin 14b is moved in one axial direction together with the ram shaft 14a. As a result, the steering wheel 13 pivots in one circumferential direction about the axis, and accordingly the steering plate 12 also pivots in one circumferential direction. Further, when the hydraulic fluid is supplied to the second cylinder chamber 16a, the ram pin 14b is moved in the other axial direction along with the ram shaft 14a. As a result, the steering wheel 13 pivots in the other circumferential direction about the axis, and accordingly the steering plate 12 also pivots in the other circumferential direction. As described above, the steering plate drive unit 2 can move the steering plate 12 by the supply of pressure fluid to the cylinder chambers 15a and 16a. The steering plate drive unit 2 includes the cylinder chambers 15a. , 16a are connected to the electrolyzed liquid driving device 3.
 [電液駆動装置]
 電液駆動装置3は、本実施形態において2つの操舵系統3L,3Rを有している。2つの操舵系統3L,3Rは、共に同一の機能を有している。即ち、2つの操舵系統3L,3Rは、共に舵板駆動部2に圧液を供給可能であって、且つその圧液の方向を切換え可能に構成されている。このように構成されている電液駆動装置3は、2つの操舵系統3L,3Rを有しているが、主に一方の操舵系統3Lである第1操舵系統3Lによって舵板駆動部2を作動させる。他方、第2操舵系統3Rは、第1操舵系統3Lが故障等した際に舵板駆動部2を作動させる。以下では、2つの操舵系統3L,3Rの構成について説明するが、2つの操舵系統3L,3Rは、同一の構成を有している。それ故、第1操舵系統3Lの構成についてのみ説明し、第2操舵系統3Rの構成については同一の符号を付してその説明を省略する。
Electrolyte drive device
The electric fluid drive device 3 has two steering systems 3L and 3R in the present embodiment. The two steering systems 3L and 3R both have the same function. That is, both of the steering systems 3L and 3R can supply the hydraulic fluid to the steering plate drive unit 2, and can switch the direction of the hydraulic fluid. The electric liquid drive unit 3 configured in this way has two steering systems 3L and 3R, but operates the steering plate drive unit 2 mainly by the first steering system 3L which is one steering system 3L. Let On the other hand, the second steering system 3R operates the steering plate drive unit 2 when the first steering system 3L fails. Although the configuration of the two steering systems 3L, 3R will be described below, the two steering systems 3L, 3R have the same configuration. Therefore, only the configuration of the first steering system 3L will be described, and the configuration of the second steering system 3R will be assigned the same reference numerals and descriptions thereof will be omitted.
 第1操舵系統3Lは、圧液供給機20を備えており、圧液供給機20は、舵板駆動部2に圧液を供給して舵板駆動部2を駆動させると共に、そこに入力される操舵信号に基づいて舵板駆動部2に流す圧液の方向を変えて舵板12の舵角を変えられるようになっている。更に詳細に説明すると、圧液供給機20は、主に液圧ポンプ21と、電動機22と、方向切換弁23と、パイロット切換弁24と、を備えている。液圧ポンプ21は、例えば固定容量形の斜軸ポンプであり、舵板駆動部2に供給する作動液を吐出するようになっている。更に詳細に説明すると、液圧ポンプ21は、入力軸21aを有しており、入力軸21aが電動機22に連結されている。電動機22は、図示しない電源装置からの電力を受けて入力軸21aを回転駆動可能に構成されている。液圧ポンプ21は、入力軸21aが回転することによって吸入ポート21bから作動液を吸入し、更に加圧しながら作動液を吐出ポート21cから吐出する。このように構成される液圧ポンプ21は、吸入ポート21bに吸入側通路31aが接続され、且つ吐出ポート21cに吐出側通路31bが接続され、更にこれら2つの通路31a,31bを介して方向切換弁23に接続されている。 The first steering system 3L includes a hydraulic fluid feeder 20. The hydraulic fluid feeder 20 supplies hydraulic fluid to the steering plate drive unit 2 to drive the steering plate drive unit 2 and is input thereto. The steering angle of the steering plate 12 can be changed by changing the direction of the hydraulic fluid flowing to the steering plate drive unit 2 based on the steering signal. More specifically, the hydraulic fluid feeder 20 mainly includes a hydraulic pump 21, a motor 22, a direction switching valve 23, and a pilot switching valve 24. The hydraulic pump 21 is, for example, a fixed displacement type oblique shaft pump, and discharges the hydraulic fluid supplied to the steering plate drive unit 2. More specifically, the hydraulic pump 21 has an input shaft 21 a, and the input shaft 21 a is connected to the motor 22. The electric motor 22 is configured to be able to rotationally drive the input shaft 21 a by receiving electric power from a power supply device (not shown). The hydraulic pump 21 sucks the working fluid from the suction port 21b by the rotation of the input shaft 21a, and discharges the working fluid from the discharge port 21c while pressurizing it further. In the hydraulic pump 21 configured in this way, the suction side passage 31a is connected to the suction port 21b, the discharge side passage 31b is connected to the discharge port 21c, and the direction is switched via these two passages 31a and 31b. It is connected to the valve 23.
 方向切換弁23は、例えばパイロット式の切換弁であり、後で詳述するパイロット切換弁24から出力されるパイロット圧p1,p2に応じて作動液の流れを変える。更に詳細に説明すると、方向切換弁23は、4つのポートを有しており、4つのポートは、吸入側通路31a、吐出側通路31b、第1給排通路32a及び第2給排通路32bに夫々接続されている。第1給排通路32aは、方向切換弁23と第2シリンダ16とを接続し、第2給排通路32bは、方向切換弁23と第1シリンダ15とを接続している。また、方向切換弁23は、スプール23aを有しており、スプール23aの位置に応じて作動液の流れ方向を切換えるようになっている。 The direction switching valve 23 is, for example, a pilot type switching valve, and changes the flow of the hydraulic fluid according to pilot pressures p1 and p2 output from the pilot switching valve 24 described later in detail. More specifically, the direction switching valve 23 has four ports, and the four ports are connected to the suction side passage 31a, the discharge side passage 31b, the first supply / discharge passage 32a and the second supply / discharge passage 32b. Each is connected. The first supply / discharge passage 32 a connects the direction switching valve 23 and the second cylinder 16, and the second supply / discharge passage 32 b connects the direction switching valve 23 and the first cylinder 15. Further, the direction switching valve 23 has a spool 23a, and switches the flow direction of the hydraulic fluid according to the position of the spool 23a.
 更に詳細に説明すると、スプール23aは、中立位置M1、第1オフセット位置L1、及び第2オフセット位置R1に移動可能に構成されている。スプール23aが中立位置M1に位置する場合、スプール23aによって吸入側通路31aと吐出側通路31bとが接続され、液圧ポンプ21がアンロード状態になる。他方、第1給排通路32a及び第2給排通路32bの各々は遮断され、第1シリンダ15及び第2シリンダ16への作動液の給排が止められる。スプール23aが第1オフセット位置L1へと移動すると、スプール23aによって第1給排通路32aと吐出側通路31bとが接続され、且つ第2給排通路32bと吸入側通路31aとが接続される。これにより、作動液が第1シリンダ室15aに供給されると共に第2シリンダ室16aの作動液が排出され、ラム軸14aが軸線方向一方に移動する。即ち、舵板12が周方向一方に回動する。他方、スプール23aが第2オフセット位置R1へと移動すると、スプール23aによって第1給排通路32aと吸入側通路31aとが接続され、且つ第2給排通路32bと吐出側通路31bとが接続される。これにより、作動液が第2シリンダ室16aに供給されると共に第1シリンダ室15aの作動液が排出され、ラム軸14aが軸線方向他方に移動する。即ち、舵板12が周方向他方に回動する。 More specifically, the spool 23a is configured to be movable to the neutral position M1, the first offset position L1, and the second offset position R1. When the spool 23a is located at the neutral position M1, the suction side passage 31a and the discharge side passage 31b are connected by the spool 23a, and the hydraulic pressure pump 21 is in the unloading state. On the other hand, each of the first supply and discharge passage 32a and the second supply and discharge passage 32b is shut off, and the supply and discharge of the hydraulic fluid to the first cylinder 15 and the second cylinder 16 is stopped. When the spool 23a moves to the first offset position L1, the first supply and discharge passage 32a and the discharge side passage 31b are connected by the spool 23a, and the second supply and discharge passage 32b and the suction side passage 31a are connected. As a result, the hydraulic fluid is supplied to the first cylinder chamber 15a and the hydraulic fluid in the second cylinder chamber 16a is discharged, and the ram shaft 14a moves in one axial direction. That is, the steering plate 12 rotates in one circumferential direction. On the other hand, when the spool 23a moves to the second offset position R1, the first supply and discharge passage 32a and the suction side passage 31a are connected by the spool 23a, and the second supply and discharge passage 32b and the discharge side passage 31b are connected. Ru. As a result, the hydraulic fluid is supplied to the second cylinder chamber 16a and the hydraulic fluid in the first cylinder chamber 15a is discharged, and the ram shaft 14a moves in the other axial direction. That is, the steering plate 12 rotates in the other circumferential direction.
 このように、方向切換弁23は、スプール23aの位置によって作動液の流れを切換えることができ、作動液の流れを切換えることによって舵板12の向き(即ち、舵角)を変えたり舵板12の舵角を維持したりすることができる。また、スプール23aには、その位置を変えるべく2つのパイロット圧p1,p2が作用している。更に詳細に説明すると、スプール23aには、2つのパイロット圧p1,p2が互いに抗するように作用しており、それらの差圧(p1-p2)に応じて位置を変えるようになっている。このような2つのパイロット圧p1,p2をスプール23aに作用させるべく、方向切換弁23にはパイロット切換弁24が接続されている。 Thus, the direction switching valve 23 can switch the flow of the hydraulic fluid according to the position of the spool 23a, and by switching the flow of the hydraulic fluid, the direction of the steering plate 12 (i.e., the steering angle) can be changed. Can maintain the steering angle of Further, two pilot pressures p1 and p2 are applied to the spool 23a in order to change its position. More specifically, the two pilot pressures p1 and p2 act on the spool 23a so as to oppose each other, and the position is changed according to the differential pressure (p1-p2). A pilot switching valve 24 is connected to the direction switching valve 23 in order to apply such two pilot pressures p1 and p2 to the spool 23a.
 パイロット切換弁24は、いわゆる電磁切換弁であって、そこに入力される操舵信号に応じてパイロット圧p1,p2を制御するようになっている。更に詳細に説明すると、パイロット切換弁24は、4つのポートを有しており、4つのポートは、自己圧供給通路33a、タンク通路33b、第1パイロット通路34a、及び第2パイロット通路34bに夫々繋がっている。自己圧供給通路33aは、吐出側通路31bに接続され、タンク通路33bは、タンク28に接続されている。他方、第1パイロット通路34aは、スプール23aに第1パイロット圧p1を与えるべく方向切換弁23に接続され、第2パイロット通路34bは、スプール23aに第2パイロット圧p2を与えるべく方向切換弁23に接続されている。また、パイロット切換弁24は、スプール24aを有しており、スプール24aは、パイロット切換弁24に入力される操舵信号に応じて位置を変える。また、スプール24aは、その位置を変えることによって作動液の流れ方向を切換えるようになっている。 The pilot switching valve 24 is a so-called electromagnetic switching valve, and controls the pilot pressures p1 and p2 in accordance with a steering signal input thereto. More specifically, the pilot switching valve 24 has four ports, and the four ports are connected to the self pressure supply passage 33a, the tank passage 33b, the first pilot passage 34a, and the second pilot passage 34b, respectively. It is connected. The self pressure supply passage 33 a is connected to the discharge side passage 31 b, and the tank passage 33 b is connected to the tank 28. On the other hand, the first pilot passage 34a is connected to the direction switching valve 23 to apply the first pilot pressure p1 to the spool 23a, and the second pilot passage 34b is connected to the direction switching valve 23 to apply the second pilot pressure p2 to the spool 23a. It is connected to the. Also, the pilot switching valve 24 has a spool 24 a, and the spool 24 a changes its position according to a steering signal input to the pilot switching valve 24. Further, the spool 24a is adapted to switch the flow direction of the hydraulic fluid by changing its position.
 更に詳細に説明すると、パイロット切換弁24では、スプール24aが中立位置M2、第1オフセット位置L2、及び第2オフセット位置R2に移動可能に構成されている。スプール24aが第1オフセット位置L2に位置する場合、スプール24aによってタンク通路33bと第2パイロット通路34bとが繋がり、また自己圧供給通路33aと第1パイロット通路34aとが繋がる。これにより、第2パイロット通路34bのパイロット液がタンク28に排出され、第2パイロット圧p2がタンク圧となる。他方、第1パイロット通路34aには、自己圧供給通路33aを介して吐出側通路31bの液圧が導かれる。吐出側通路31bには、自己圧供給通路33aとの接続箇所よりも下流側において絞り25が設けられているので、吐出側通路31bの液圧は、絞り25によって吸入側通路31aより高く維持されている。それ故、第2パイロット圧p2より高い第1パイロット圧p1がパイロット切換弁24から出力され、方向切換弁23のスプール23aが第1オフセット位置L1へと移動する。これにより、舵板12が周方向一方に移動する。 More specifically, in the pilot switching valve 24, the spool 24a is configured to be movable to the neutral position M2, the first offset position L2, and the second offset position R2. When the spool 24a is located at the first offset position L2, the tank passage 33b and the second pilot passage 34b are connected by the spool 24a, and the self-pressure supply passage 33a and the first pilot passage 34a are connected. As a result, the pilot fluid in the second pilot passage 34b is discharged to the tank 28, and the second pilot pressure p2 becomes the tank pressure. On the other hand, the hydraulic pressure of the discharge side passage 31b is led to the first pilot passage 34a via the self pressure supply passage 33a. Since the throttle 25 is provided in the discharge side passage 31b at the downstream side of the connection with the self pressure supply passage 33a, the hydraulic pressure of the discharge side passage 31b is maintained higher by the throttle 25 than the suction side passage 31a. ing. Therefore, the first pilot pressure p1 higher than the second pilot pressure p2 is output from the pilot switching valve 24, and the spool 23a of the direction switching valve 23 moves to the first offset position L1. Thus, the steering plate 12 moves in one circumferential direction.
 他方、スプール24aが第2オフセット位置R2に位置する場合、タンク通路33bと第1パイロット通路34aとが繋がり、自己圧供給通路33aと第2パイロット通路34bとが繋がる。これにより、第1パイロット通路34aのパイロット液がタンク28に排出され、第1パイロット圧p1がタンク圧となる。他方、第2パイロット通路34bには、自己圧供給通路33aを介して吐出側通路31bの液圧が導かれる。これにより、第1パイロット圧p1より高い第2パイロット圧p2がパイロット切換弁24から出力され、方向切換弁23のスプール23aが第2オフセット位置R1へと移動する。これにより、舵板12が周方向一方に移動する。 On the other hand, when the spool 24a is located at the second offset position R2, the tank passage 33b and the first pilot passage 34a are connected, and the self-pressure supply passage 33a and the second pilot passage 34b are connected. As a result, the pilot fluid in the first pilot passage 34a is discharged to the tank 28, and the first pilot pressure p1 becomes the tank pressure. On the other hand, the hydraulic pressure of the discharge side passage 31b is led to the second pilot passage 34b via the self pressure supply passage 33a. As a result, the second pilot pressure p2 higher than the first pilot pressure p1 is output from the pilot switching valve 24, and the spool 23a of the direction switching valve 23 moves to the second offset position R1. Thus, the steering plate 12 moves in one circumferential direction.
 最後に、スプール24aが中立位置M2に位置する場合には、自己圧供給通路33aが遮断され、第1パイロット通路34a及び第2パイロット通路34bが共にタンク通路33bに接続される。これにより、第1パイロット圧p1及び第2パイロット圧p2がタンク圧となり、方向切換弁23のスプール23aが中立位置に戻される。これにより、液圧ポンプ21と舵板駆動部2との間の作動液の行き来が止められ、舵板12が動かなくなる。即ち、舵板12の舵角を維持することができる。 Finally, when the spool 24a is located at the neutral position M2, the self pressure supply passage 33a is shut off, and both the first pilot passage 34a and the second pilot passage 34b are connected to the tank passage 33b. As a result, the first pilot pressure p1 and the second pilot pressure p2 become the tank pressure, and the spool 23a of the direction switching valve 23 is returned to the neutral position. Thereby, the movement of the hydraulic fluid between the hydraulic pump 21 and the steering plate drive unit 2 is stopped, and the steering plate 12 does not move. That is, the steering angle of the steering plate 12 can be maintained.
 このようにパイロット切換弁24は、そこに入力される操舵信号に応じて2つのパイロット圧p1、p2を制御し、方向切換弁23のスプール23aを移動させることができる。スプール23aを移動させることによって、その位置に応じた方向へと作動液の給排を行うことができる。これにより、舵板12を操舵信号に応じた方向に揺動させることができる。また、電液駆動装置3には、作動液をリリーフするためのリリーフ機構26が備わっている。 Thus, the pilot switching valve 24 can control the two pilot pressures p1 and p2 in accordance with the steering signal input thereto, and can move the spool 23a of the direction switching valve 23. By moving the spool 23a, it is possible to supply and discharge the working fluid in the direction according to the position. Thereby, the steering plate 12 can be swung in the direction according to the steering signal. Further, the electric liquid drive device 3 is provided with a relief mechanism 26 for relieving the hydraulic fluid.
 リリーフ機構26は、第1給排通路32a及び第2給排通路32bの液圧をリリーフ圧以下に抑えるべく、各々の液圧が予め定められたリリーフ圧を超えると作動液をタンク28に排出するようになっている。更に詳細に説明すると、リリーフ機構26は、第1リリーフ弁26a及び第2リリーフ弁26bを有しており、第1リリーフ弁26aが第1給排通路32aに接続され、第2リリーフ弁26bが第2給排通路32bに接続されている。また、第1リリーフ弁26aは、第1給排通路32aの液圧が予め定められた第1リリーフ圧を超えると、第1給排通路32aを流れる作動液をタンク28に排出する。他方、第2リリーフ弁26bは、第2給排通路32bの液圧が予め定められた第2リリーフ圧を超えると、第2給排通路32bを流れる作動液をタンク28に排出する。これにより、電液駆動装置3内を流れる作動液が過度に加圧され、各構成が損傷を受けることを抑制することができる。また、第1給排通路32aには、第1逆止弁29aが接続され、第2給排通路32bには、第2逆止弁29bが接続されている。各逆止弁29a、29bは、共にタンク28に接続されており、各々が接続される通路32a,32bの作動液が不足した際にタンク28から前記通路32a,32bに作動液を導くことができる、キャビティ防止機能を有している。 The relief mechanism 26 discharges the working fluid to the tank 28 when each fluid pressure exceeds a predetermined relief pressure in order to keep the fluid pressure in the first supply / discharge passage 32 a and the second delivery / discharge passage 32 b below the relief pressure. It is supposed to More specifically, the relief mechanism 26 has a first relief valve 26a and a second relief valve 26b, the first relief valve 26a is connected to the first supply / discharge passage 32a, and the second relief valve 26b is It is connected to the second supply and discharge passage 32b. In addition, the first relief valve 26a discharges the working fluid flowing through the first supply and discharge passage 32a to the tank 28 when the fluid pressure in the first supply and discharge passage 32a exceeds a predetermined first relief pressure. On the other hand, the second relief valve 26b discharges the hydraulic fluid flowing through the second supply / discharge passage 32b to the tank 28 when the fluid pressure in the second supply / discharge passage 32b exceeds a predetermined second relief pressure. As a result, the hydraulic fluid flowing inside the electrolyzed liquid drive device 3 is excessively pressurized, and damage to each component can be suppressed. Further, a first check valve 29a is connected to the first supply and discharge passage 32a, and a second check valve 29b is connected to the second supply and discharge passage 32b. The check valves 29a and 29b are both connected to the tank 28, and when the hydraulic fluid in the passages 32a and 32b to which each is connected run short, the hydraulic fluid can be led from the tank 28 to the passages 32a and 32b. Can have a cavity prevention function.
 このように構成されている電液駆動装置3では、操舵制御システム1において故障等が生じた場合、舵板12の動きを止めると共に舵板12の舵角を維持するようになっている。このような機能を達成すべく、電液駆動装置3は遮断機構27を備えている。遮断機構27は、液圧ポンプ21と舵板駆動部2との間、本実施形態において方向切換弁23と舵板駆動部2との間に介在している。即ち、遮断機構27は、第1給排通路32a及び第2給排通路32bの途中に介在している。また、遮断機構27は、そこに切換信号が入力されるようになっており、この切換信号に応じて第1給排通路32a及び第2給排通路32bを開閉する。即ち、遮断機構27は、そこに入力される切換信号に応じて液圧ポンプ21と舵板駆動部2との間の作動液の行き来を止めることができるようになっている。このような機能を有する遮断機構27は、アンロード遮断弁41と、遮断切換弁42とを有している。 In the electric liquid drive device 3 configured as described above, when a failure or the like occurs in the steering control system 1, the movement of the steering plate 12 is stopped and the steering angle of the steering plate 12 is maintained. In order to achieve such a function, the liquid driver 3 includes a shutoff mechanism 27. The shutoff mechanism 27 is interposed between the hydraulic pressure pump 21 and the steering plate drive unit 2, and in the present embodiment, between the direction switching valve 23 and the steering plate drive unit 2. That is, the blocking mechanism 27 intervenes in the middle of the first supply and discharge passage 32a and the second supply and discharge passage 32b. Also, the switching mechanism 27 is configured to receive a switching signal, and opens and closes the first supply / discharge passage 32a and the second supply / discharge passage 32b in response to the switching signal. That is, the shutoff mechanism 27 can stop the transfer of the hydraulic fluid between the hydraulic pump 21 and the steering plate drive unit 2 according to the switching signal inputted thereto. The shutoff mechanism 27 having such a function has an unload shutoff valve 41 and a shutoff switching valve 42.
 アンロード遮断弁41は、第1給排通路32a及び第2給排通路32bに介在し、第1給排通路32a及び第2給排通路32bにおいてリリーフ機構26及び2つの逆止弁29a,29bより方向切換弁23側に配置されている。また、アンロード遮断弁41は、そこに入力されるパイロット圧p3,p4の差圧(p4-p3)に応じて第1給排通路32a及び第2給排通路32bの各々を開閉する。即ち、差圧(p4-p3)が所定圧力(ばね41aの付勢力に応じて決まる圧力)以下である場合、アンロード遮断弁41は閉状態になり、アンロード遮断弁41によって第1給排通路32a及び第2給排通路32bの各々が閉じられる。これにより、方向切換弁23のスプール23aの位置に関わらず液圧ポンプ21と舵板駆動部2との間における作動液に行き来が止められる。また、閉状態では、第1給排通路32a及び第2給排通路32b同士がアンロード遮断弁41によって互い接続されて、液圧ポンプ21がアンロード状態となる。他方、差圧(p4-p3)が所定圧力を超えている場合、アンロード遮断弁41は開状態となり、第1給排通路32a及び第2給排通路32bの各々がアンロード遮断弁41によって開かれる。これにより、液圧ポンプ21と舵板駆動部2との間で作動液の行き来が可能になる。このようにアンロード遮断弁41は、2つのパイロット圧p3,p4に応じて開閉状態を切換えるようになっている。このように構成されるアンロード遮断弁41には、そこにパイロット圧p3,p4を与えるべく遮断切換弁42が接続されている。 The unloading shutoff valve 41 intervenes in the first supply and discharge passage 32a and the second supply and discharge passage 32b, and the relief mechanism 26 and the two check valves 29a and 29b are provided in the first supply and discharge passage 32a and the second supply and discharge passage 32b. Further, it is disposed on the direction switching valve 23 side. Further, the unload shutoff valve 41 opens and closes each of the first supply / discharge passage 32a and the second supply / discharge passage 32b in accordance with the differential pressure (p4-p3) of the pilot pressure p3, p4 inputted thereto. That is, when the differential pressure (p4-p3) is equal to or less than the predetermined pressure (the pressure determined according to the urging force of the spring 41a), the unload shutoff valve 41 is closed, and the unload shutoff valve 41 Each of the passage 32a and the second supply / discharge passage 32b is closed. As a result, regardless of the position of the spool 23 a of the direction switching valve 23, the hydraulic fluid between the hydraulic pump 21 and the steering plate drive unit 2 is prevented from moving back and forth. Further, in the closed state, the first supply / discharge passage 32a and the second supply / discharge passage 32b are connected to each other by the unload cutoff valve 41, and the hydraulic pump 21 is in the unload state. On the other hand, when the differential pressure (p4-p3) exceeds the predetermined pressure, the unload shutoff valve 41 is opened, and each of the first supply / discharge passage 32a and the second supply / discharge passage 32b is opened by the unload shutoff valve 41. be opened. Thereby, the hydraulic fluid can be transferred between the hydraulic pressure pump 21 and the steering plate drive unit 2. As described above, the unload shutoff valve 41 switches the open / close state in accordance with the two pilot pressures p3 and p4. A shutoff switching valve 42 is connected to the unloading shutoff valve 41 configured as described above so as to apply pilot pressures p3, p4 thereto.
 遮断切換弁42は、いわゆる電磁切換弁であって、そこに入力される切換信号に応じてパイロット圧p3,p4を制御するようになっている。更に詳細に説明すると、遮断切換弁42は、4つのポートを有しており、4つのポートは、自己圧供給通路33a、タンク通路33b、第3パイロット通路34c、及び第4パイロット通路34dに夫々繋がっている。第3パイロット通路34c及び第4パイロット通路34dは、パイロット圧p3,p4を与えるべくアンロード遮断弁41に接続されている。遮断切換弁42は、これら2つのパイロット通路34c,34dの各々の接続先を自己圧供給通路33a及びタンク通路33bの何れかに切換え、これによってパイロット圧p3,p4を切換えるようになっている。なお、遮断切換弁42は、切換信号に応じてだけでなく手動でも接続先を切換可能に構成されている。 The shutoff switching valve 42 is a so-called electromagnetic switching valve, and controls the pilot pressures p3 and p4 in accordance with a switching signal inputted thereto. More specifically, the shutoff switching valve 42 has four ports, and the four ports are connected to the self pressure supply passage 33a, the tank passage 33b, the third pilot passage 34c, and the fourth pilot passage 34d, respectively. It is connected. The third pilot passage 34c and the fourth pilot passage 34d are connected to the unloading shutoff valve 41 so as to apply pilot pressures p3 and p4. The shutoff switching valve 42 switches the connection destination of each of the two pilot passages 34c, 34d to either the self pressure supply passage 33a or the tank passage 33b, thereby switching the pilot pressure p3, p4. The shutoff switching valve 42 is configured to be able to switch the connection destination not only according to the switching signal but also manually.
 遮断切換弁42について更に詳細に説明すると、遮断切換弁42は、切換信号が入力されると、第3パイロット通路34cをタンク通路33bに接続する。これにより、第3パイロット圧p3がタンク圧になる。他方、第4パイロット通路34dは自己圧供給通路33aに接続され、第4パイロット通路34dに吐出側通路31bの液圧に応じたパイロット液が導かれる。そうすると、第4パイロット圧p4が吐出側通路31bの液圧に応じた圧力となり、差分(p4-p3)が所定圧力を超え、アンロード遮断弁41が開状態となる。これにより、液圧ポンプ21と舵板駆動部2との間の作動液の行き来が可能になる。他方、切換信号が入力されなくなると、遮断切換弁42は、第4パイロット通路34dをタンク通路33bに接続する。これにより、第4パイロット圧p4がタンク圧になる。他方、第3パイロット通路34cは自己圧供給通路33aに接続され、第3パイロット通路34cに吐出側通路31bの液圧に応じたパイロット液が導かれる。そうすると、第3パイロット圧p3が吐出側通路31bの液圧に応じた圧力となり、差分(p4-p3)が所定圧以下となり、アンロード遮断弁41が閉状態となる。これにより、液圧ポンプ21と舵板駆動部2との間で作動液の行き来ができなくなり、舵板12をその舵角にて維持される。 Describing the shut-off switching valve 42 in more detail, the shut-off switching valve 42 connects the third pilot passage 34c to the tank passage 33b when the switching signal is input. As a result, the third pilot pressure p3 becomes the tank pressure. On the other hand, the fourth pilot passage 34d is connected to the self pressure supply passage 33a, and the pilot fluid according to the fluid pressure of the discharge side passage 31b is led to the fourth pilot passage 34d. Then, the fourth pilot pressure p4 becomes a pressure corresponding to the fluid pressure in the discharge side passage 31b, the difference (p4-p3) exceeds the predetermined pressure, and the unload shutoff valve 41 is opened. Thereby, the hydraulic fluid can be transferred between the hydraulic pressure pump 21 and the steering plate drive unit 2. On the other hand, when the switching signal is not input, the shut-off switching valve 42 connects the fourth pilot passage 34d to the tank passage 33b. As a result, the fourth pilot pressure p4 becomes the tank pressure. On the other hand, the third pilot passage 34c is connected to the self pressure supply passage 33a, and the pilot fluid according to the fluid pressure of the discharge side passage 31b is led to the third pilot passage 34c. Then, the third pilot pressure p3 becomes a pressure corresponding to the fluid pressure in the discharge side passage 31b, the difference (p4-p3) becomes equal to or less than a predetermined pressure, and the unload shutoff valve 41 is closed. As a result, the hydraulic fluid can not travel between the hydraulic pump 21 and the steering plate drive unit 2, and the steering plate 12 is maintained at the steering angle.
 このように、遮断機構27は、切換信号の入力状態(即ち、切換信号の入力の有無)に応じて2つの給排通路32a,32bを開閉し、液圧ポンプ21から舵板駆動部2に圧液を流したり止めたりすることができる。また、遮断機構27は、液圧ポンプ21と舵板駆動部2との間を遮断した際に液圧ポンプ21をアンロード状態にしており、その際に液圧ポンプ21にかかる負荷を低減することができる。これにより、遮断時における操舵制御システムの消費エネルギーを低減することができ、また液圧ポンプ21の損傷を抑制することができる。 Thus, the shutoff mechanism 27 opens and closes the two supply and discharge passages 32a and 32b according to the input state of the switching signal (that is, the presence or absence of the input of the switching signal). The hydraulic fluid can flow and stop. The shutoff mechanism 27 unloads the hydraulic pump 21 when the hydraulic pump 21 and the steering plate drive unit 2 are shut off, and reduces the load on the hydraulic pump 21 at that time. be able to. Thereby, the energy consumption of the steering control system at the time of interruption | blocking can be reduced, and damage to the hydraulic pressure pump 21 can be suppressed.
 また、アンロード遮断弁41は、閉状態においてそれより液圧ポンプ21側に形成される回路3aにて故障等が生じ、吐出された作動液を吸入ポート21bに返すことができない場合に備えて、以下のような機能を有している。即ち、アンロード遮断弁41は、2つのチェック弁41b,41cを有しており、2つのチェック弁41b,41cは、アンロード遮断弁41の前後において液圧ポンプ21側の圧力が舵板駆動部2側の圧力より高くなった場合、液圧ポンプ21から舵板駆動部2への作動液の流れを許容するようになっている。更に詳細に説明すると、2つのチェック弁41b,41cは、2つの給排通路32a,32bを閉じるべくその途中に介在し、また2つの給排通路32a,32bの互いに連通する部分より舵板駆動部2側に配置されている。それ故、アンロード遮断弁41の前後において液圧ポンプ21側が舵板駆動部2側より低圧となるアンロード状態では、2つのチェック弁41b,41cは閉じたままとなり、液圧ポンプ21から舵板駆動部2への作動液の流れが止められる。他方、故障等によって前記回路3a内の液圧が上昇し、アンロード遮断弁41の前後において液圧ポンプ21側が舵板駆動部2側より高圧となる場合、チェック弁41b,41cが開き回路3a内の作動液がリリーフ機構26を介してタンク28へと排出される。このように、アンロード遮断弁41の前後において液圧ポンプ21側が舵板駆動部2側より高圧になっている際には、液圧ポンプ21側の作動液を排出して回路3a内が過度に昇圧されることを防ぐことができ、回路3a内が昇圧しすぎることを抑制している。 In addition, in the closed state, the unload shutoff valve 41 has a failure or the like in the circuit 3a formed on the side of the hydraulic pressure pump 21 and can not return the discharged hydraulic fluid to the suction port 21b. , Has the following functions. That is, the unload shutoff valve 41 has two check valves 41b and 41c, and the two check valves 41b and 41c have the pressure on the hydraulic pressure pump 21 side before and after the unload shutoff valve 41 drive the steering plate. When the pressure on the part 2 side is higher, the flow of hydraulic fluid from the hydraulic pump 21 to the steering plate drive part 2 is permitted. More specifically, the two check valves 41b and 41c are interposed in the middle to close the two supply and discharge passages 32a and 32b, and the rudder plate is driven from the portion where the two supply and discharge passages 32a and 32b communicate with each other. It is arranged on the part 2 side. Therefore, in the unloading state where the hydraulic pump 21 side is lower in pressure than the steering plate drive unit 2 before and after the unloading shutoff valve 41, the two check valves 41b and 41c remain closed. The flow of hydraulic fluid to the plate drive 2 is stopped. On the other hand, when the hydraulic pressure in the circuit 3a rises due to a failure or the like and the hydraulic pump 21 side becomes higher in pressure than the steering plate drive unit 2 before and after the unload shutoff valve 41, the check valves 41b and 41c open. Internal hydraulic fluid is discharged to the tank 28 via the relief mechanism 26. As described above, when the hydraulic pressure pump 21 side is higher in pressure than the steering plate drive unit 2 before and after the unloading shutoff valve 41, the hydraulic fluid on the hydraulic pressure pump 21 side is discharged and the inside of the circuit 3a is excessive. In the circuit 3a, it is possible to prevent excessive boosting.
 このように構成されている第1操舵系統3Lは、遮断切換弁42に切換信号が入力されている状態にてパイロット切換弁24に入力される操舵信号が入力されると、操舵信号に応じた方向に舵板12を駆動させることができる。他方、遮断切換弁42への切換信号の入力が停止すると、操舵信号の有無に関わらず舵板駆動部2の動きを止め舵板12の舵角を維持するようになっている。前述の通り、第2操舵系統3Rもまた第1操舵系統3Lと同じ構成を有しており、第1操舵系統3Lと同じ機能を発揮する。このように構成される2つの操舵系統3L,3Rは、舵板駆動部2と共に操舵装置30を構成しており、操舵装置30に切換信号及び操舵信号を入力すべく制御ユニット4が電気的に接続されている。 The first steering system 3L configured in this way responds to the steering signal when the steering signal input to the pilot switching valve 24 is input while the switching signal is input to the shutoff switching valve 42. The steering plate 12 can be driven in the direction. On the other hand, when the input of the switching signal to the shutoff switching valve 42 is stopped, the movement of the steering plate drive unit 2 is stopped regardless of the presence or absence of the steering signal, and the steering angle of the steering plate 12 is maintained. As described above, the second steering system 3R also has the same configuration as the first steering system 3L, and exhibits the same function as the first steering system 3L. The two steering systems 3L and 3R configured as described above constitute a steering device 30 together with the steering plate drive unit 2, and the control unit 4 electrically connects the steering device 30 to input a switching signal and a steering signal. It is connected.
 [制御ユニット等]
 制御ユニット4は、舵板駆動部2を作動させるべく、2つの操舵系統3L,3Rのうち一方、例えば第1操舵系統3Lに切換信号及び操舵信号を夫々出力し、遮断機構27及びパイロット切換弁24の動きを制御する。更に詳細に説明すると、制御ユニット4は、操舵制御装置4a及び判定遮断装置4bを有している。なお、操舵制御装置4a及び判定遮断装置4bは、制御ユニット4を構成すべく必ずしも一つの個所に纏まっている必要なく、別々に設けられまた別々に製造されてもよい。操舵制御装置4aは、操舵部5と繋がっており、操舵部5は、図示しない舵輪を有しており、舵輪は、操舵手等が操作可能に構成されている。操舵部5は、舵輪の操作(即ち、操作方向及び操作量)に応じた操舵指令を操舵制御装置4aに出力し、操舵制御装置4aは、操舵指令が入力されると電動機22を駆動させて液圧ポンプ21から作動液を吐出させる。また、操舵制御装置4aは、操舵部5からの操舵指令に基づいて舵板12の舵角を算出し、更に算出される舵角に応じた操舵信号を第1操舵系統3Lのパイロット切換弁24に出力する。また、操舵制御装置4aは、オートパイロット機能を有しており、その機能に基づいて算出される操舵信号もパイロット切換弁24に出力するようになっている。
[Control unit etc.]
The control unit 4 outputs the switching signal and the steering signal to one of the two steering systems 3L and 3R, for example, the first steering system 3L, in order to operate the steering plate drive unit 2, and the cutoff mechanism 27 and the pilot switching valve Control 24 movements. More specifically, the control unit 4 includes a steering control device 4a and a determination cutoff device 4b. The steering control device 4a and the determination cutoff device 4b do not have to be integrated in one place to constitute the control unit 4, and may be separately provided or separately manufactured. The steering control device 4a is connected to the steering unit 5, and the steering unit 5 has a steering wheel (not shown), and the steering wheel is configured to be operable by a steering person or the like. The steering unit 5 outputs a steering command according to the operation of the steered wheels (that is, the operation direction and the amount of operation) to the steering control device 4a, and the steering control device 4a drives the motor 22 when the steering command is input. The hydraulic fluid is discharged from the hydraulic pump 21. Further, the steering control device 4a calculates the steering angle of the steering plate 12 based on the steering command from the steering unit 5, and the steering signal according to the steering angle calculated further is a pilot switching valve 24 of the first steering system 3L. Output to The steering control device 4a also has an auto pilot function, and outputs a steering signal calculated based on the function to the pilot switching valve 24.
 また、判定遮断装置4bは、操舵制御システム1の状態(即ち、操舵制御システム1における故障の有無)を判定し、判定結果に基づいて遮断機構27に対する切換信号の出力状態を切換えるようになっている。このような機能を有する判定遮断装置4bは、操舵制御システム1の状態を判定すべくセンサ群6と接続されている。センサ群6には、操舵装置30における互いに異なる部位の状態を検出すべく複数のセンサが含まれている。複数のセンサとしては、例えば圧力センサ、方向切換弁作動検出センサ、舵角検出センサ、断線検出センサ、タンク油面センサ、地絡・短絡検出センサ、漏液検出センサ等がある。 Further, the determination cutoff device 4b determines the state of the steering control system 1 (that is, the presence or absence of a failure in the steering control system 1), and switches the output state of the switching signal to the cutoff mechanism 27 based on the determination result. There is. The determination cutoff device 4 b having such a function is connected to the sensor group 6 to determine the state of the steering control system 1. The sensor group 6 includes a plurality of sensors for detecting the states of different portions of the steering device 30. Examples of the plurality of sensors include a pressure sensor, a direction switching valve operation detection sensor, a steering angle detection sensor, a disconnection detection sensor, a tank oil level sensor, a ground fault / short circuit detection sensor, a liquid leakage detection sensor, and the like.
 圧力センサは、シリンダ15,16に夫々設けられ、シリンダ室15a,16aの液圧を検出し、方向切換弁作動検出センサは、方向切換弁23のスプール23aの位置を検出することによって方向切換弁23の作動の有無を検出する。舵角検出センサは、舵柄13の軸線回りの回動角を検出することによって舵板12の舵角を検出し、断線検出センサは、制御ユニット4と各機器とを繋ぐ配線に信号等を流してそれらの断線を検出する。また、タンク油面センサは、タンク28の油面のレベルを検出し、地絡・短絡検出センサは、制御ユニット4と各機器とを繋ぐ配線が地絡又は短絡していないかを検出する。更に、漏液検出センサは、各操舵系統3L,3Rにおいて圧液が通路から漏れ出ていないかを検出する。なお、前述する種々のセンサは、あくまでセンサ群6に含まれるセンサの一例であり、これら以外のセンサが含まれていてもよく、また前述するセンサの何れか1つ又はそれ以上が含まれていなくてもよい。 The pressure sensor is provided in each of the cylinders 15 and 16 to detect the fluid pressure in the cylinder chambers 15a and 16a, and the direction switching valve operation detection sensor detects the position of the spool 23a of the direction switching valve 23 to detect the direction switching valve. Detect the presence or absence of the operation of 23. The steering angle detection sensor detects the steering angle of the steering plate 12 by detecting the rotation angle around the axis of the steering wheel 13, and the disconnection detection sensor detects a signal or the like to a wire connecting the control unit 4 and each device. It flows and detects those disconnections. In addition, the tank oil level sensor detects the level of the oil level of the tank 28, and the ground fault / short circuit detection sensor detects whether or not the wiring connecting the control unit 4 and each device has a ground fault or a short circuit. Further, the leak detection sensor detects whether pressure fluid has leaked from the passage in each of the steering systems 3L and 3R. Note that the various sensors described above are merely examples of sensors included in the sensor group 6 and may include other sensors, and any one or more of the sensors described above are included. It does not have to be.
 このようにして構成されるセンサ群6からは各々のセンサで検出される結果が判定遮断装置4bに出力される。また、操舵検出器である判定遮断装置4bは、前述するセンサ群6の他に操舵制御装置4aから操舵信号を取得し、操舵信号の出力の有無を検出する。即ち、判定遮断装置4bは、操舵信号の出力の有無を検出するセンサとしての役割を果たしている。更に、判定遮断装置4bは、各種機器、例えば電動機22のスタータ、センサ群6の各センサ、操舵制御装置4aのオートパイロット機能部分からの起動信号を取得し、各種機器の起動の有無を検出する。即ち、判定遮断装置4bは、起動信号の出力の有無を検出するセンサとしての役割を果たしている。判定遮断装置4bは、このようにして取得される検出結果に基づいて操舵装置30の状態(本実施形態では、主に各操舵系統3L,3Rの状態)を判定する。以下の表1には、各操舵系統3L,3Rの状態を判定する際に用いられるセンサの検出結果の一例について示す。 From the sensor group 6 configured in this manner, the result detected by each sensor is output to the determination blocking device 4b. In addition to the above-described sensor group 6, the determination cutoff device 4b, which is a steering detector, acquires a steering signal from the steering control device 4a, and detects the presence or absence of an output of the steering signal. That is, the determination cutoff device 4b plays a role as a sensor that detects the presence or absence of the output of the steering signal. Furthermore, the determination shutoff device 4b acquires start signals from various devices, for example, the starter of the motor 22, each sensor of the sensor group 6, and the autopilot function part of the steering control device 4a, and detects the presence or absence of start of various devices. . That is, the determination blocking device 4b plays a role as a sensor that detects the presence or absence of the output of the start signal. The determination cutoff device 4b determines the state of the steering device 30 (in the present embodiment, mainly the states of the steering systems 3L and 3R) based on the detection result obtained in this manner. Table 1 below shows an example of detection results of sensors used when determining the state of each of the steering systems 3L and 3R.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、行方向に各種センサ及び信号を示し、列方向に各操舵系統3L,3Rの状態を示している。判定遮断装置4bは、主に表1における「○」で示されるセンサの検出結果(検出した値及び状態だけでなく、何も検出されない状態も含む)に基づいて、各操舵系統3L,3Rの状態を判定する。例えば、舵板作動検出センサである方向切換弁作動検出センサ及び舵角検出センサの検出結果と、操舵信号及び各種起動信号に関する検出結果とに基づいて各操舵系統3L,3Rの状態、具体的には各操舵系統3L,3Rが無反応状態(舵角を自発的に変えることができな状態)か否かを判定遮断装置4bが判定する。即ち、操舵信号及び電動機22のスタータの起動信号のうち少なくとも1つが出力され、且つ方向切換弁作動検出センサによって方向切換弁23が作動していない(即ち、動きを検出できない状態である)ことを検出し且つ舵角検出センサによって舵角の変動が維持されていることを検出すると、各操舵系統3L,3Rが無反応状態であると判定遮断装置4bが判定する。 Table 1 shows various sensors and signals in the row direction, and shows the states of the steering systems 3L and 3R in the column direction. Judgment cutoff device 4b is mainly based on the detection results of the sensors indicated by “o” in Table 1 (including not only the detected value and state but also the state where nothing is detected), the steering system 3L, 3R Determine the status. For example, the state of each of the steering systems 3L and 3R based on the detection results of the direction switching valve operation detection sensor and the steering angle detection sensor, which are steering plate operation detection sensors, and the detection results regarding the steering signal and various activation signals The determination blocking device 4b determines whether or not each of the steering systems 3L and 3R is in a non-responsive state (a state in which the steering angle can not be changed spontaneously). That is, at least one of the steering signal and the start signal of the starter of the motor 22 is output, and the direction switching valve 23 is not operated by the direction switching valve operation detection sensor (that is, the movement can not be detected). When detecting and detecting that the variation of the steering angle is maintained by the steering angle detection sensor, the determination blocking device 4b determines that each of the steering systems 3L and 3R is in a non-responsive state.
 また、判定遮断装置4bは、圧力センサ、方向切換弁作動検出センサ及び舵角検出センサの検出結果と、操舵信号及び各種起動信号に関する検出結果とに基づいて、各操舵系統3L,3Rが制御不能状態(即ち、舵角を制御できない状態)か否かを判定する。即ち、操舵信号及び電動機22のスタータの起動信号のうち少なくとも1つが出力され、且つ圧力センサ、方向切換弁作動検出センサ及び舵角検出センサによって検出される検出結果が操舵信号に対応した値と異なっている場合、各操舵系統3L,3Rが制御不能状態であると判定遮断装置4bが判定する。 In addition, the determination cutoff device 4b can not control each of the steering systems 3L and 3R based on the detection results of the pressure sensor, the direction switching valve operation detection sensor, and the steering angle detection sensor, and the detection results regarding the steering signal and various activation signals. It is determined whether or not it is in a state (that is, a state in which the steering angle can not be controlled). That is, at least one of the steering signal and the starter activation signal of the motor 22 is output, and the detection result detected by the pressure sensor, the direction switching valve operation detection sensor, and the steering angle detection sensor differs from the value corresponding to the steering signal. If it is, the determination cutoff device 4b determines that each of the steering systems 3L and 3R is in an uncontrollable state.
 更に、判定遮断装置4bは、圧力センサ、タンク油面センサ、及び漏液検出センサの検出結果に基づいて、各操舵系統3L,3Rが液漏れ状態(即ち、電液駆動装置3において圧液が漏れている状態)か否かを判定する。即ち、圧力センサにおいて圧力低下が生じ、且つタンク油面センサ及び漏液検出センサのうち何れか一方に応じて不良(油面の低下及び液漏れ)が検出されると、液漏れ状態であると判定遮断装置4bが判定する。また、判定遮断装置4bは、断線検出センサ及び地絡・短絡検出センサの検出結果、及び各種起動信号に関する検出結果に基づいて各操舵系統3L,3Rが断線状態(即ち、各種機器に接続される配線が断線している状態)か否か、及び電源喪失状態(即ち、各種機器への電源が喪失している状態)を判定する。即ち、起動信号が出力されている状態において、断線検出センサが断線を検出し且つ地絡・短絡センサが地絡・短絡を検出しない場合、各操舵系統3L,3Rが断線状態であると判定遮断装置4bが判定する。他方、起動信号が出力されている状態において、地絡・短絡センサが地絡・短絡を検出し且つ断線検出センサが断線を検出しない場合、各操舵系統3L,3Rが電源喪失状態であると判定遮断装置4bが判定する。 Furthermore, in the judgment blocking device 4b, the steering systems 3L and 3R are in a liquid leakage state (that is, in the electric liquid driving device 3) based on the detection results of the pressure sensor, the tank oil level sensor, and the liquid leakage detection sensor. It is determined whether or not the condition is leaking. That is, if a pressure drop occurs in the pressure sensor and a defect (a drop in the oil level and a liquid leak) is detected according to either one of the tank oil level sensor and the liquid leakage detection sensor, the liquid is in a leak state. The determination shutoff device 4b makes a determination. In addition, in the judgment blocking device 4b, the steering systems 3L and 3R are disconnected (that is, connected to various devices) based on the detection results of the disconnection detection sensor and the ground / short detection sensor and detection results regarding various start signals. It is determined whether or not the wiring is broken) and a power loss state (ie, a state in which power to various devices is lost). That is, in the state where the start signal is output, when the disconnection detection sensor detects a disconnection and the ground / short sensor does not detect a ground / short, it is determined that each steering system 3L, 3R is in a disconnected state and cut off The device 4b makes a determination. On the other hand, if the ground fault / short circuit sensor detects a ground fault / short circuit and the disconnection detection sensor does not detect a disconnection in the state where the start signal is output, it is determined that each steering system 3L, 3R is in the power loss state The blocking device 4b makes a determination.
 このように判定遮断装置4bは、各操舵系統3L,3Rが、前述するような無反応状態、制御不能状態、液漏れ状態、断線状態、及び電源喪失状態等の状態であるか否かを判定する。何れの状態にも当てはまらない場合、判定遮断装置4bは、各操舵系統3L,3Rが良好な状態であると判定し、前述する何れかの状態に当てはまる場合、判定遮断装置4bは、各操舵系統3L,3Rが故障している又は故障の恐れがある状態(即ち、故障等の状態)であると判定する。 As described above, the determination shutoff device 4b determines whether each of the steering systems 3L and 3R is in a non-responsive state, an uncontrollable state, a fluid leakage state, a disconnection state, a power loss state, or the like as described above. Do. If neither of the above conditions applies, the determination cutoff device 4b determines that each of the steering systems 3L and 3R is in a good condition, and if any one of the above-described conditions applies, the determination cutoff device 4b determines each steering system. It is determined that 3L and 3R are in a failure state or a state in which there is a risk of failure (ie, a state such as a failure).
 このような機能を有する判定遮断装置4bは、遮断機構27に接続されており、各操舵系統3L,3Rの状態に応じて遮断機構27に対する切換信号の出力状態を切換える。即ち、各操舵系統3L,3Rが良好な状態である場合、判定遮断装置4bは遮断機構27に切換信号を出力し、舵板駆動部2が作動できるようにする。他方、各操舵系統3L,3Rが故障状態である場合、判定遮断装置4bは切換信号の出力を停止し、舵板駆動部2が動かないようにし且つ舵板12の舵角が維持されるようにする。また、判定遮断装置4bは、各操舵系統3L,3Rの状態を報知すべく表示操作部7に接続されている。指示部の一例である表示操作部7は、例えばタッチパネル等であって、各操舵系統3L,3Rの状態を表示して操舵手等に警告する。また、表示操作部7には、その表示部分に触れることによって種々の指令を入力できるようになっている。 The determination shutoff device 4b having such a function is connected to the shutoff mechanism 27 and switches the output state of the switching signal to the shutoff mechanism 27 according to the state of each of the steering systems 3L and 3R. That is, when each of the steering systems 3L and 3R is in a good state, the determination shutoff device 4b outputs a switching signal to the shutoff mechanism 27 so that the steering plate drive unit 2 can operate. On the other hand, when each of the steering systems 3L, 3R is in a failure state, the determination shutoff device 4b stops outputting the switching signal so that the steering plate drive unit 2 does not move and the steering angle of the steering plate 12 is maintained. Make it Further, the determination cutoff device 4b is connected to the display operation unit 7 in order to notify the state of each of the steering systems 3L and 3R. The display operation unit 7 which is an example of the instruction unit is, for example, a touch panel, and displays the state of each of the steering systems 3L and 3R to warn the steerer or the like. In addition, various commands can be input to the display operation unit 7 by touching the display portion.
 このように構成されている操舵制御システム1では、操舵部5から操舵制御装置4aに入力される操舵指令に応じて操舵制御装置4aが舵板12の舵角を調整する。また、判定遮断装置4bは、そこからの信号の出力の有無及びセンサ群6の検出結果に基づいて操舵制御システム1の状態を判定し、その判定結果に応じて舵板駆動部2を停止させ且つ舵角を維持するようになっている。即ち、操舵制御システム1では、判定遮断装置4bが第1操舵系統3Lの状態を判定し、第1操舵系統3Lが故障等の状態である場合に舵板駆動部2を停止させ且つ舵角を維持する。このように判定遮断装置4bは、第1操舵系統3Lの状態が故障状態であると判定した際に舵板駆動部2を停止させ且つ舵角を維持すべく舵角停止処理を実行する。以下では、舵角停止処理について説明する。なお、舵角停止処理としては、例えば5つの実施例があり、以下では第1実施例から第5実施例を図2乃至6を参照しながら順に説明する。 In the steering control system 1 configured as described above, the steering control device 4 a adjusts the steering angle of the steering plate 12 in accordance with the steering command input from the steering unit 5 to the steering control device 4 a. Further, the determination cutoff device 4b determines the state of the steering control system 1 based on the presence or absence of the signal output therefrom and the detection result of the sensor group 6, and stops the steering plate drive unit 2 according to the determination result. And the steering angle is maintained. That is, in the steering control system 1, the determination cutoff device 4b determines the state of the first steering system 3L, and when the first steering system 3L is in a failure state etc., the steering plate drive unit 2 is stopped and the steering angle is set. maintain. As described above, when it is determined that the state of the first steering system 3L is in the failure state, the determination cutoff device 4b performs the steering angle stop process to stop the steering plate drive unit 2 and maintain the steering angle. Below, steering angle stop processing is explained. As the steering angle stop process, there are, for example, five embodiments, and in the following, first to fifth embodiments will be described in order with reference to FIGS. 2 to 6.
 [舵角停止処理]
 (第1実施例)
 操舵制御システム1では、図示しない電源装置から制御ユニット4への電源供給が行われると図2に手順が示されている舵角停止処理が実行され、ステップS1に移行する。状態判断工程であるステップS1では、制御ユニット4の判定遮断装置4bがセンサ群6における検出結果及び各信号に関する検出結果に基づいて第1操舵系統3Lの状態を判定する。例えば、以下のような場合において、判定遮断装置4bは、第1操舵系統3Lが良好な状態であると判定する。即ち、センサ群6における検出結果及び各信号に関する検出結果において異常が検出されない場合、及びセンサ群6における検出結果及び各信号に関する検出結果の何れかにおいて異常が検出されるものの前述する表1に示す各状態と判定されるまでに至らない場合には、第1操舵系統3Lが良好な状態であると判定する。他方、センサ群6における検出結果及び各信号に関する検出結果において異常が検出され、前述する5つの状態の何れかに当てはまる場合には、判定遮断装置4bは、第1操舵系統3Lがその当てはまる状態に至っていると判定する。このように第1操舵系統3Lの状態が判定されると、ステップS2に移行する。
[Steering angle stop processing]
(First embodiment)
In the steering control system 1, when power is supplied from the power supply device (not shown) to the control unit 4, the steering angle stop process whose procedure is shown in FIG. 2 is executed, and the process proceeds to step S1. In step S1 which is a state determination step, the determination cutoff device 4b of the control unit 4 determines the state of the first steering system 3L based on the detection result of the sensor group 6 and the detection result regarding each signal. For example, in the following cases, the determination cutoff device 4b determines that the first steering system 3L is in a good state. That is, when abnormality is not detected in the detection result of the sensor group 6 and the detection result of each signal, and although the abnormality is detected in any of the detection result of the sensor group 6 and the detection result of each signal, When it does not reach until it determines with each state, it determines with the 1st steering system 3L being a favorable state. On the other hand, when an abnormality is detected in the detection result of the sensor group 6 and the detection result regarding each signal and any of the above five states is applied, the determination cutoff device 4b determines that the first steering system 3L applies that state. It determines that it has reached. When the state of the first steering system 3L is determined as described above, the process proceeds to step S2.
 故障判定工程であるステップS2では、ステップS1にて判定された判定結果に基づいて第1操舵系統3Lが故障状態及び故障の虞がある(即ち、故障等がある)状態か否かを判定する。例えば、ステップS1において第1操舵系統3Lが良好な状態であると判定されると、判定遮断装置4bは第1操舵系統3Lに故障等がないと判定し、ステップS3に移行する。作動待機工程であるステップS3では、判定遮断装置4bが遮断機構27に切換信号を出力する。これにより、2つの供給通路32a,32bが遮断機構27によって開かれ、操舵制御システム1が舵板駆動部2を作動可能になる。 In step S2 which is a failure determination step, it is determined whether or not the first steering system 3L has a failure state and a possibility of failure (that is, there is a failure etc.) based on the determination result determined in step S1. . For example, when it is determined in step S1 that the first steering system 3L is in a good state, the determination cutoff device 4b determines that the first steering system 3L does not have a failure or the like, and proceeds to step S3. In step S3 which is an operation standby process, the determination shutoff device 4b outputs a switching signal to the shutoff mechanism 27. As a result, the two supply passages 32 a and 32 b are opened by the shutoff mechanism 27, and the steering control system 1 can operate the steering plate drive unit 2.
 なお、この状態において操舵部5から制御ユニット4の操舵制御装置4aに操舵指令を出力されると、操舵制御装置4aは、操舵部5からの操舵指令に応じた操舵信号をパイロット切換弁24に出力する。その後、舵板12の舵角が操舵指令に応じた角度まで達すると、制御ユニット4はパイロット切換弁24に出力される操舵信号を止め、液圧ポンプ21と舵板駆動部2との間を停止させる。これにより、舵板12の舵角を舵指令に応じた角度にし、且つその舵角にて維持することができる。 In this state, when a steering command is output from the steering unit 5 to the steering control device 4 a of the control unit 4, the steering control device 4 a transmits a steering signal corresponding to the steering command from the steering unit 5 to the pilot switching valve 24. Output. After that, when the steering angle of the steering plate 12 reaches the angle according to the steering command, the control unit 4 stops the steering signal output to the pilot switching valve 24, and between the hydraulic pump 21 and the steering plate drive unit 2 Stop it. Thereby, the steering angle of the steering plate 12 can be made an angle according to the steering command, and can be maintained at the steering angle.
 また、舵板駆動部2を駆動可能な状態にした後、予め定められた時間T0が経過するとステップS1に戻る。そして、ステップS1にて第1操舵系統3Lの状態が判定される。そして、ステップS1において、第1操舵系統3Lが良好な状態以外の状態、即ち無反応状態、制御不能状態、液漏れ状態、断線状態、及び電源喪失状態の何れかの状態であると判定された場合、ステップS2にて第1操舵系統3Lが故障等であると判定され、ステップS4に移行する。 In addition, after the steering plate drive unit 2 is made drivable, when a predetermined time T0 has elapsed, the process returns to step S1. Then, in step S1, the state of the first steering system 3L is determined. Then, in step S1, it is determined that the first steering system 3L is in any state other than the good state, that is, in a non-responsive state, an uncontrollable state, a fluid leakage state, a disconnection state, or a power loss state. In the case, it is determined in step S2 that the first steering system 3L is at fault or the like, and the process proceeds to step S4.
 警報作動工程であるステップS4では、第1操舵系統3Lが故障等である状態である旨を報知する。即ち、判定遮断装置4bは、表示操作部7によって第1操舵系統3Lに故障等がある旨を表示し、操舵手等に故障等があることを警告する。また、舵角停止処理では、ステップS4に平行してステップS5が実行される。遮断工程であるステップS5では、判定遮断装置4bが遮断機構27への切換信号の出力を停止する。これにより、2つの供給通路32a,32bが遮断機構27によって閉じられ、液圧ポンプ21と舵板駆動部2との間における作動液の行き来(即ち、液圧ポンプ21から舵板駆動部2への作動液の供給)を停止することができる。それ故、舵板駆動部2が作動できなくなり、舵角がその状態にて維持されることになる。これにより、故障時において舵板12に外力が作用して舵板12が不所望な方向を向いたり、舵板駆動部2が制御不能な状態で舵板12が動かされたりすることを防ぐことができる。即ち、故障等が発生した時に舵板駆動部2が不所望な動きをしないようにすることができる。このように舵板駆動部2が止められて舵角の維持がなされると、舵角停止処理が終了する。 In step S4 which is an alarm operation step, it is informed that the first steering system 3L is in a failure state or the like. That is, the determination cutoff device 4b displays that there is a failure or the like in the first steering system 3L by the display operation unit 7, and warns the driver or the like that there is a failure or the like. Further, in the steering angle stop process, step S5 is executed in parallel with step S4. In step S5 which is a blocking process, the determination blocking device 4b stops the output of the switching signal to the blocking mechanism 27. As a result, the two supply passages 32a and 32b are closed by the shutoff mechanism 27, and the hydraulic fluid travels between the hydraulic pump 21 and the steering plate drive unit 2 (that is, from the hydraulic pump 21 to the steering plate drive unit 2). Supply of hydraulic fluid) can be stopped. Therefore, the steering plate drive unit 2 can not be operated, and the steering angle is maintained in that state. This prevents external force from acting on the steering plate 12 at the time of failure, causing the steering plate 12 to turn in an undesired direction, and preventing the steering plate 12 from being moved in a state where the steering plate drive unit 2 can not be controlled. Can. That is, when a failure or the like occurs, the steering plate drive unit 2 can be prevented from making an undesired movement. As described above, when the steering plate drive unit 2 is stopped and the steering angle is maintained, the steering angle stop process ends.
 (第2実施例)
 第2実施例の舵角停止処理の手順は、第1実施例の舵角停止処理の手順と類似している。それ故、第2実施例の舵角停止処理の手順については、図3を参照しながら第1実施例の舵角停止処理の手順と異なる点についても主に説明する。
Second Embodiment
The procedure of the steering angle stop process of the second embodiment is similar to the procedure of the steering angle stop process of the first embodiment. Therefore, the procedure of the steering angle stop process of the second embodiment will be mainly described with reference to FIG. 3 as to the point different from the procedure of the steering angle stop process of the first embodiment.
 第2実施例の舵角停止処理では、ステップS4にて故障等している旨を警告し、且つステップS5にて舵角を維持させると、ステップS6に移行する。操舵系統切換工程であるステップS6では、制御ユニット4が作動させる操舵系統を第1操舵系統3Lから第2操舵系統3Rに切換える。切換えた後、第1操舵系統3Lに関して舵角停止処理が終了し、次に第2操舵系統3Rに対して舵角停止処理が実行される。即ち、圧液供給源を第1操舵系統3Lの圧液供給機20から予備液圧供給機である第2操舵系統3Rの圧液供給機20に切換え、第2操舵系統3Rの圧液供給機20によって舵板駆動部2を作動させる。なお、第2操舵系統3Rに対して実行される舵角停止処理は、対象とする操舵系統が異なるだけで、第1操舵系統3Lに対して実行される第1実施例の舵角停止処理と同じである。 In the steering angle stop process of the second embodiment, when warning is made in step S4 that a failure or the like occurs, and the steering angle is maintained in step S5, the process proceeds to step S6. In step S6 which is a steering system switching process, the steering system operated by the control unit 4 is switched from the first steering system 3L to the second steering system 3R. After switching, the steering angle stop process ends for the first steering system 3L, and then the steering angle stop process is performed for the second steering system 3R. That is, the hydraulic fluid supply source is switched from the hydraulic fluid supply device 20 of the first steering system 3L to the hydraulic fluid supply device 20 of the second steering system 3R which is the preliminary hydraulic pressure feeder, and the hydraulic fluid supply device of the second steering system 3R. The steering plate drive unit 2 is operated by 20. The steering angle stop process performed on the second steering system 3R is the steering angle stop process of the first embodiment performed on the first steering system 3L only with a difference in the target steering system. It is the same.
 このように第2実施例の舵角停止処理では、第1操舵系統3Lが故障等した場合でも自動的に第2操舵系統3Rが作動するようになっている。それ故、第1操舵系統3Lが故障した場合でも第2操舵系統3Rによってそのまま舵板駆動部2を駆動させて舵角を変更することができ、船舶の向きを制御することができる。 As described above, in the steering angle stop process of the second embodiment, the second steering system 3R is automatically operated even when the first steering system 3L fails. Therefore, even when the first steering system 3L fails, the steering plate drive unit 2 can be driven as it is by the second steering system 3R to change the steering angle, and the direction of the ship can be controlled.
 その他、第2実施例の舵角停止処理では、第1実施例の舵角停止処理を実行する場合と同様の作用効果を奏する。 In addition, in the steering angle stop process of the second embodiment, the same function and effect as those in the case of executing the steering angle stop process of the first embodiment are obtained.
 (第3実施例)
 第3実施例の舵角停止処理の手順は、第1実施例の舵角停止処理の手順と類似している。それ故、第3実施例の舵角停止処理の手順については、図4を参照しながら第1実施例の舵角停止処理の手順と異なる点についても主に説明する。
Third Embodiment
The procedure of the steering angle stop process of the third embodiment is similar to the procedure of the steering angle stop process of the first embodiment. Therefore, the procedure of the steering angle stop process of the third embodiment will be mainly described with reference to FIG. 4 as to the point different from the procedure of the steering angle stop process of the first embodiment.
 第3実施例の舵角停止処理では、ステップS2にて故障等であると判定されるとステップS4に移行し、判定遮断装置4bは表示操作部7に操舵手等に故障等があることを警告させる。また、判定遮断装置4bは警告と共に第1操舵系統3Lの停止に関する承認の有無(即ち、指示)を入力すべき旨を表示操作部7に表示する。警告及び入力すべき旨を表示した後は、ステップS7に移行する。停止承認工程であるステップS7では、表示操作部7に表示した承認の有無に対して操舵手等が有無の何れを入力したかを判定遮断装置4bが判定する。承認しない旨の入力がなされた場合、第1操舵系統3Lを停止せず、即ち遮断機構27に対して切換信号を出力したままの状態にて舵角停止処理を終了する。他方、承認する旨の入力がなされた場合、第1操舵系統3Lを停止すべくステップS5に移行し、遮断機構27への切換信号の出力が停止される。 In the steering angle stop process of the third embodiment, when it is determined that there is a failure or the like in step S2, the process proceeds to step S4, and the determination cutoff device 4b determines that the steering operator or the like has a failure or the like in the display operation unit 7. Give a warning. Further, the determination cutoff device 4b displays on the display / operation unit 7 that the presence or absence of an approval (i.e., an instruction) regarding the stop of the first steering system 3L should be input together with the warning. After displaying the warning and that the input should be made, the process proceeds to step S7. In step S7, which is a stop approval step, the determination blocking device 4b determines which of the presence and absence of a steering hand or the like has been input with respect to the presence or absence of approval displayed on the display operation unit 7. When the input of not approving is made, the steering angle stop processing is ended in a state where the first steering system 3L is not stopped, that is, the switching signal is outputted to the cutoff mechanism 27. On the other hand, when the approval is given, the process proceeds to step S5 to stop the first steering system 3L, and the output of the switching signal to the shutoff mechanism 27 is stopped.
 このように第3実施例の舵角停止処理では、第1操舵系統3Lが故障等した場合でも承認しない場合には自動的に舵板駆動部2が停止することがない。それ故、第1操舵系統3Lが不所望に停止させられることを抑制することができ、原因等が明らかになった後に第1操舵系統3Lを停止するようにすることができる。 As described above, in the steering angle stop process of the third embodiment, the steering plate drive unit 2 does not automatically stop when approval is not given even when the first steering system 3L has a failure or the like. Therefore, undesired stopping of the first steering system 3L can be suppressed, and the first steering system 3L can be stopped after the cause or the like is clarified.
 その他、第3実施例の舵角停止処理では、第1実施例の舵角停止処理を実行する場合と同様の作用効果を奏する。 In addition, in the steering angle stop process of the third embodiment, the same operation and effect as those in the case of executing the steering angle stop process of the first embodiment can be obtained.
 (第4実施例)
 第4実施例の舵角停止処理の手順は、第3実施例の舵角停止処理の手順と類似している。それ故、第4実施例の舵角停止処理の手順については、図5を参照しながら第3実施例の舵角停止処理の手順と異なる点についても主に説明する。
Fourth Embodiment
The procedure of the steering angle stop process of the fourth embodiment is similar to the procedure of the steering angle stop process of the third embodiment. Therefore, the procedure of the steering angle stop process of the fourth embodiment will be mainly described with reference to FIG. 5 as to the point different from the procedure of the steering angle stop process of the third embodiment.
 第4実施例の舵角停止処理では、ステップS4にて警告及び入力すべき旨を表示した後、ステップS8に移行する。指示待ち工程であるステップS8では、予め定められた時間T1秒以内に表示操作部7を介して承認の有無に関する指令が入力されたか否かを判定する。T1秒経過する前に表示操作部7に承認の有無に関する指令が入力された場合、ステップS7に移行する。他方、T1秒以内に表示操作部7に承認の有無に関する指令が入力されなかった場合、ステップS5に移行する。 In the steering angle stop process of the fourth embodiment, after displaying the warning and the message that the input should be performed in step S4, the process proceeds to step S8. In step S8, which is an instruction waiting step, it is determined whether or not an instruction regarding the presence or absence of approval has been input via the display operation unit 7 within a predetermined time T1 second. If an instruction regarding the presence or absence of approval is input to the display operation unit 7 before the elapse of T1 seconds, the process proceeds to step S7. On the other hand, when the instruction regarding the presence or absence of approval is not input to the display operation unit 7 within T1 seconds, the process proceeds to step S5.
 このように第4実施例の舵角停止処理では、長時間の間に承認の有無が選択されずに舵板駆動部2を停止させるか否かが曖昧になって船舶の航行により悪影響を及ぼすことを抑制することができる。 As described above, in the steering angle stop process of the fourth embodiment, it is unclear whether or not the steering plate drive unit 2 is to be stopped without selecting the presence or absence of approval during a long time, which adversely affects the navigation of the ship. Can be suppressed.
 その他、第4実施例の舵角停止処理では、第3実施例の舵角停止処理を実行する場合と同様の作用効果を奏する。 In addition, in the steering angle stop process of the fourth embodiment, the same function and effect as those in the case of executing the steering angle stop process of the third embodiment are obtained.
 (第5実施例)
 第5実施例の舵角停止処理の手順は、第3実施例の舵角停止処理の手順と類似している。それ故、第4実施例の舵角停止処理の手順については、図6を参照しながら第3実施例の舵角停止処理の手順と異なる点についても主に説明する。
Fifth Embodiment
The procedure of the steering angle stop process of the fifth embodiment is similar to the procedure of the steering angle stop process of the third embodiment. Therefore, the procedure of the steering angle stop process of the fourth embodiment will be mainly described with reference to FIG. 6 as to the point different from the procedure of the steering angle stop process of the third embodiment.
 第5実施例の舵角停止処理では、ステップS4にて警告及び入力すべき旨を表示した後、ステップS9に移行する。遮断待機工程であるステップS9では、ステップS2において故障等であると判定されてから予め定められた時間T2秒経過しているか否かを判定する。時間T2秒経過していない場合には、ステップS3に移行して、遮断機構27に切換信号を出力することを継続する。他方、時間T2秒経過している場合には、ステップS5に移行し、舵板駆動部2を停止し舵角を維持する。その後、ステップS6に移行して、作動させる操舵系統を第1操舵系統3Lから第2操舵系統3Rに切換える。 In the steering angle stop process of the fifth embodiment, after displaying the warning and the message that the input should be performed in step S4, the process proceeds to step S9. In step S9, which is a shutoff standby step, it is determined whether or not a predetermined time T2 has elapsed since it is determined in step S2 that there is a failure or the like. If the time T2 has not elapsed, the process proceeds to step S3 to continue outputting the switching signal to the blocking mechanism 27. On the other hand, if the time T2 has elapsed, the process proceeds to step S5, and the steering plate drive unit 2 is stopped to maintain the steering angle. Thereafter, the process shifts to step S6, and the steering system to be operated is switched from the first steering system 3L to the second steering system 3R.
 このように第5実施例の舵角停止処理では、突発的なトラブルにより一時的に故障等の状態になり、その後故障等が解消された際に、舵板駆動部2を停止することを抑制することができる。これにより、舵板駆動部2が誤って停止してしまって舵板駆動部2の停止回数が増加することを抑制することができる。 As described above, in the steering angle stop process of the fifth embodiment, a state such as a failure etc. is temporarily caused by a sudden trouble, and thereafter it is suppressed that the steering plate drive unit 2 is stopped when the failure etc. is resolved. can do. Thus, it is possible to suppress an increase in the number of stops of the steering plate driving unit 2 due to the steering plate driving unit 2 stopping by mistake.
 その他、第5実施例の舵角停止処理では、第3実施例の舵角停止処理を実行する場合と同様の作用効果を奏する。 In addition, in the steering angle stop process of the fifth embodiment, the same function and effect as those in the case of executing the steering angle stop process of the third embodiment are obtained.
 <第2実施形態>
 第2実施形態の操舵制御システム1Aは、第1実施形態の操舵制御システム1と構成が類似している。従って、第2実施形態の操舵制御システム1Aの構成については、第1実施形態の操舵制御システム1と異なる点について主に説明し、同じ構成については同一の符号を付して説明を省略する。
Second Embodiment
The steering control system 1A of the second embodiment is similar in configuration to the steering control system 1 of the first embodiment. Therefore, about the composition of steering control system 1A of a 2nd embodiment, a point which differs from steering control system 1 of a 1st embodiment is mainly explained, about the same composition, the same numerals are attached and explanation is omitted.
 第2実施形態の操舵制御システム1Aは、図7に示すように、舵板駆動部2と、電液駆動装置3Aと、制御ユニット4と、操舵部5、センサ群6A、表示操作部7とを備えている。電液駆動装置3Aは、複数の操舵系統(本実施形態では、2つの操舵系統3AL,3AR)を有しており、2つの操舵系統3AL,3ARは、共に同一の機能を有している。即ち、電液駆動装置3Aでもまた、一方の操舵系統3ALである第1操舵系統3ALが主に作動し、第1操舵系統3ALが故障等した際に第2操舵系統3ARが舵板駆動部2を作動させる。また、2つの操舵系統3AL,3ARは、舵板駆動部2と共に操舵装置30Aを構成している。以下では、2つの操舵系統3AL,3ARについて説明するが、2つの操舵系統3AL,3ARは、同一の構成を有している。それ故、第1操舵系統3ALの構成についてのみ説明し、第2操舵系統3ARの構成については同一の符号を付してその説明を省略する。 The steering control system 1A according to the second embodiment, as shown in FIG. 7, includes a steering plate drive unit 2, an electric liquid drive device 3A, a control unit 4, a steering unit 5, a sensor group 6A, and a display operation unit 7. Is equipped. The electric liquid drive device 3A has a plurality of steering systems (two steering systems 3AL and 3AR in the present embodiment), and the two steering systems 3AL and 3AR both have the same function. That is, also in the case of the electric liquid drive device 3A, when the first steering system 3AL, which is one steering system 3AL, mainly operates and the first steering system 3AL breaks down, the second steering system 3AR functions as the steering plate drive unit 2 Activate. The two steering systems 3AL and 3AR, together with the steering plate drive unit 2, constitute a steering device 30A. Although the two steering systems 3AL and 3AR will be described below, the two steering systems 3AL and 3AR have the same configuration. Therefore, only the configuration of the first steering system 3AL will be described, and the configuration of the second steering system 3AR will be assigned the same reference numerals and descriptions thereof will be omitted.
 第1操舵系統3ALは、圧液供給機20Aと、リリーフ機構26と、遮断機構27とを備えており、圧液供給機20Aは、主に液圧ポンプ21Aと、電動機22と、傾転機構51と、パイロットポンプ52とを備えている。液圧ポンプ21Aは、例えば可変容量形の斜軸ポンプであって、2つの油通路53a,53bを介して第1シリンダ室15a及び第2シリンダ室16aに夫々接続されている。また、液圧ポンプ21Aの入力軸21aには、電動機22が連結されており、電動機22によって入力軸21aを回転することで液圧ポンプ21Aから作動液を吐出させることができる。また、液圧ポンプ21Aは、その斜軸の傾転角を変えることによって作動液の吐出方向を切換えることができるようになっている。即ち、液圧ポンプ21Aは、斜軸を一方に傾転させると2つの油通路53a,53bの一方から作動液を吸入し、更にその作動液を加圧して他方に吐出するようになっている。また、液圧ポンプ21Aは、斜軸を他方に傾転させると、2つの油通路53a,53bの他方から作動液を吸入し、更にその作動液を加圧して一方に吐出するようになっている。それ故、液圧ポンプ21Aは、斜軸の傾転角を変えることによって第1シリンダ室15a及び第2シリンダ室16aの何れかに作動液を供給することができようになっている。このように構成される液圧ポンプ21Aには、その斜軸の傾転角を変えるべく傾転機構51が設けられている。 The first steering system 3AL includes a hydraulic fluid feeder 20A, a relief mechanism 26, and a shutoff mechanism 27. The hydraulic fluid feeder 20A mainly includes a hydraulic pump 21A, an electric motor 22, and a tilting mechanism. 51 and a pilot pump 52. The hydraulic pump 21A is, for example, a variable displacement oblique shaft pump, and is connected to the first cylinder chamber 15a and the second cylinder chamber 16a via two oil passages 53a and 53b, respectively. Further, the electric motor 22 is connected to the input shaft 21a of the hydraulic pump 21A, and by rotating the input shaft 21a by the electric motor 22, the hydraulic fluid can be discharged from the hydraulic pump 21A. Further, the hydraulic pump 21A can switch the discharge direction of the hydraulic fluid by changing the tilt angle of its oblique shaft. That is, the hydraulic pump 21A sucks the working fluid from one of the two oil passages 53a and 53b when the tilt shaft is tilted to one side, and further pressurizes the working fluid and discharges it to the other. . In addition, when the hydraulic pump 21A tilts the oblique shaft to the other side, it sucks the working fluid from the other of the two oil passages 53a and 53b, further pressurizes the working fluid and discharges it to one side. There is. Therefore, the hydraulic pump 21A can supply the hydraulic fluid to either the first cylinder chamber 15a or the second cylinder chamber 16a by changing the tilt angle of the oblique shaft. The hydraulic pump 21A configured in this way is provided with a tilting mechanism 51 to change the tilting angle of its oblique shaft.
 傾転機構51は、サーボピストン61と方向制御弁62とトルクモータ63とを有している。サーボピストン61は、そこに供給される圧液の流れ方向に応じて軸線方向に移動し、移動することによって液圧ポンプ21Aの傾転角を変えるようになっている。また、サーボピストン61は、方向制御弁62を介してパイロットポンプ52及びタンク28に接続されている。パイロットポンプ52は、例えば固定容量形のポンプであり、パイロット液を吐出する。吐出されるパイロット液は、方向制御弁62に導かれ、方向制御弁62によって流れる方向が切替えられるようになっている。 The tilting mechanism 51 has a servo piston 61, a direction control valve 62 and a torque motor 63. The servo piston 61 moves in the axial direction in accordance with the flow direction of the hydraulic fluid supplied thereto, and changes the tilt angle of the hydraulic pump 21A by moving. Also, the servo piston 61 is connected to the pilot pump 52 and the tank 28 via the direction control valve 62. The pilot pump 52 is, for example, a fixed displacement pump and discharges the pilot fluid. The pilot fluid to be discharged is guided to the direction control valve 62, and the direction of flow is switched by the direction control valve 62.
 方向制御弁62は、スプール62aを有しており、スプール62aの位置に応じてサーボピストン61に対する圧液の給排を制御する。即ち、スプール62aの位置を変えることによってサーボピストン61が移動し、それによって傾転角が変わる。このような機能を有するスプール62aは、トルクモータ63に繋がっており、トルクモータ63によってその位置を変えられるようになっている。また、トルクモータ63は、操舵制御装置4aと接続されており、操舵制御装置4aから出力される信号に応じてスプール62aの位置を変更する。 The direction control valve 62 has a spool 62a, and controls the supply and discharge of pressure fluid to the servo piston 61 according to the position of the spool 62a. That is, by changing the position of the spool 62a, the servo piston 61 moves, thereby changing the tilt angle. The spool 62 a having such a function is connected to the torque motor 63, and can be changed in position by the torque motor 63. The torque motor 63 is connected to the steering control device 4a, and changes the position of the spool 62a in accordance with a signal output from the steering control device 4a.
 このように傾転機構51は、パイロットポンプ52から吐出されるパイロット油の流れ方向を方向制御弁62によって制御することによってサーボピストン61を移動させ、液圧ポンプ21Aの傾転角を変更する。即ち、操舵制御装置4aは、トルクモータ63の動きを制御して液圧ポンプ21Aから舵板駆動部2に流れる作動液の方向を切換える。これにより、舵板12を周方向一方及び他方に揺動させ、その舵角を調整することができる。また、パイロットポンプ52から吐出されるパイロット液は、遮断機構27にも導かれている。遮断機構27は、自己圧供給通路33aによって導かれる圧液に代えてパイロットポンプ52からのパイロット液によって駆動するようになっている。 As described above, the tilting mechanism 51 moves the servo piston 61 by controlling the flow direction of the pilot oil discharged from the pilot pump 52 by the directional control valve 62, and changes the tilting angle of the hydraulic pump 21A. That is, the steering control device 4a controls the movement of the torque motor 63 to switch the direction of the hydraulic fluid flowing from the hydraulic pressure pump 21A to the steering plate drive unit 2. Thereby, the steering plate 12 can be swung to one side and the other in the circumferential direction, and the steering angle can be adjusted. The pilot fluid discharged from the pilot pump 52 is also led to the blocking mechanism 27. The blocking mechanism 27 is driven by the pilot fluid from the pilot pump 52 instead of the pressure fluid introduced by the self pressure supply passage 33a.
 即ち、遮断機構27では、遮断切換弁42に切換信号が入力されると、第3パイロット通路34cがタンク通路33bに接続されると共に、第4パイロット通路34dがパイロットポンプ52に接続される。これにより、アンロード遮断弁41が開状態となる。これにより、液圧ポンプ21と舵板駆動部2との間の作動液の行き来が可能になり、この状態で電動機22が駆動すると舵板駆動部2が作動して舵板12が揺動する。他方、遮断切換弁42への切換信号が停止すると、第4パイロット通路34dがタンク通路33bに接続されると共に、第3パイロット通路34cがパイロットポンプ52に接続される。これにより、アンロード遮断弁41が閉状態となる。これにより、液圧ポンプ21と舵板駆動部2との間で作動液の行き来ができなくなり、舵板12の舵角が維持される。 That is, in the shutoff mechanism 27, when the switching signal is inputted to the shutoff switching valve 42, the third pilot passage 34 c is connected to the tank passage 33 b and the fourth pilot passage 34 d is connected to the pilot pump 52. As a result, the unload shutoff valve 41 is opened. As a result, the hydraulic fluid can be transferred between the hydraulic pump 21 and the steering plate drive unit 2, and when the motor 22 is driven in this state, the steering plate drive unit 2 operates to swing the steering plate 12. . On the other hand, when the switching signal to the shutoff switching valve 42 is stopped, the fourth pilot passage 34 d is connected to the tank passage 33 b and the third pilot passage 34 c is connected to the pilot pump 52. As a result, the unload shutoff valve 41 is closed. As a result, the hydraulic fluid can not travel between the hydraulic pump 21 and the steering plate drive unit 2, and the steering angle of the steering plate 12 is maintained.
 このように構成される操舵制御システム1Aでは、操舵部5から制御ユニット4の操舵制御装置4aに入力される操舵指令に応じて操舵制御装置4aが電動機22を駆動させて舵板12の舵角を調整する。また、判定遮断装置4bは、操舵制御装置4aから出力される信号(操舵信号及び起動信号等)の有無及びセンサ群6Aの検出結果に基づいて操舵装置30Aの状態を判定し、その判定結果に応じて舵板駆動部2を停止させ且つ舵角を維持する。なお、センサ群6Aには、基本的に第1実施形態のセンサ群6Aと同じセンサが含まれているが、操舵装置30Aには方向切換弁23が備わっていないので、方向切換弁作動検出センサに代えてポンプ傾転角センサが含まれている。また、舵板作動検出センサであるポンプ傾転角センサは、液圧ポンプ21Aの傾転角を検出するセンサであり、検出結果を判定遮断装置4b等に出力する。 In the steering control system 1A configured as described above, the steering control device 4a drives the electric motor 22 according to a steering command input from the steering unit 5 to the steering control device 4a of the control unit 4, and the steering angle of the steering plate 12 Adjust the In addition, the determination cutoff device 4b determines the state of the steering device 30A based on the presence or absence of signals (steering signal, start signal, etc.) output from the steering control device 4a and the detection result of the sensor group 6A. Accordingly, the steering plate drive unit 2 is stopped and the steering angle is maintained. Although the sensor group 6A basically includes the same sensors as the sensor group 6A of the first embodiment, the steering device 30A is not provided with the direction switching valve 23. Therefore, the direction switching valve operation detection sensor Instead, a pump displacement sensor is included. Further, a pump tilt angle sensor, which is a steering plate operation detection sensor, is a sensor that detects a tilt angle of the hydraulic pressure pump 21A, and outputs a detection result to the determination cutoff device 4b or the like.
 このように構成されている操舵制御システム1Aでは、第1実施形態と同様に2つの操舵系統3L,3Rのうち何れか一方だけを作動させて舵板駆動部2を駆動させており、判定遮断装置4bは、一方の操舵系統3L,3R(本実施形態では、第1操舵系統3L)の状態を判定する。なお、第2実施形態において各操舵系統3L,3Rの状態を判定する際に用いられるセンサの検出結果の一例を表2に示す。 In the steering control system 1A configured in this way, as in the first embodiment, only one of the two steering systems 3L and 3R is operated to drive the steering plate drive unit 2, and the determination is shut off. The device 4b determines the state of one of the steering systems 3L and 3R (in the present embodiment, the first steering system 3L). In addition, an example of a detection result of a sensor used when determining the state of each steering system 3L, 3R in 2nd Embodiment is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2は、表1と同様に行方向に各種センサ及び信号を示し、列方向に各操舵系統3L,3Rの状態を示している。判定遮断装置4bは、主に表1における「○」で示されるセンサの検出結果(検出した値及び状態だけでなく、何も検出されない状態も含む)に基づいて、各操舵系統3L,3Rの状態を判定する。即ち、無反応状態及び制御不能状態の判定では、ポンプ傾転角センサが用いられる。 Table 2 shows various sensors and signals in the row direction as in Table 1, and shows the states of the steering systems 3L and 3R in the column direction. Judgment cutoff device 4b is mainly based on the detection results of the sensors indicated by “o” in Table 1 (including not only the detected value and state but also the state where nothing is detected), the steering system 3L, 3R Determine the status. That is, in the determination of the non-responsive state and the uncontrollable state, a pump displacement angle sensor is used.
 判定遮断装置4bは、センサ群6A及び信号の検出結果に基づいて第1操舵系統3Lが故障状態にあると判定すると、舵板駆動部2を停止させ且つ舵角を維持するようになっている。このように、制御ユニット4の判定遮断装置4bは、第1操舵系統3Lの状態が故障状態であると判定した際に舵板駆動部2を停止させ且つ舵角を維持する舵角停止処理を実行するようになっている。なお、実行される舵角停止処理は、第1実施形態の操舵制御システム1にて実行される舵角停止処理と同じであるので、その詳細については説明を省略する。 When it is determined that the first steering system 3L is in a failure state based on the sensor group 6A and the detection result of the signal, the determination cutoff device 4b stops the steering plate drive unit 2 and maintains the steering angle. . Thus, when the determination cutoff device 4b of the control unit 4 determines that the state of the first steering system 3L is in the failure state, the steering angle stop processing for stopping the steering plate drive unit 2 and maintaining the steering angle is performed. It is supposed to run. In addition, since the steering angle stop process performed is the same as the steering angle stop process performed by the steering control system 1 of 1st Embodiment, description is abbreviate | omitted about the detail.
 このように舵角停止処理は、双方向に吐出可能な液圧ポンプ21Aを備える操舵制御システム1Aであっても適用することができ、多種多様な操舵制御システムに適用することができる。また、適用された操舵制御システム1Aでは、第1実施形態の操舵制御システム1と同様の作用効果を奏することができる。 As described above, the steering angle stop process can be applied even to the steering control system 1A provided with the hydraulic pump 21A capable of discharging in both directions, and can be applied to a wide variety of steering control systems. Moreover, in the applied steering control system 1A, the same operation and effect as the steering control system 1 of the first embodiment can be obtained.
 <その他の実施形態>
 第1及び第2実施形態の操舵制御システム1,1Aでは、電液駆動装置3が2つの操舵系統3L,3R、3AL,3ARを備えているが、必ずしも2つに限定されない。例えば、1つの操作系統だけであってもよく、また3つ以上の操舵系統を備えていてもよい。また、2つ以上の操舵系統を備えている場合、作動する操舵系統の数は1つに限定されず2つ以上であってもよい。また、第1及び第2実施形態の操舵制御システム1,1Aでは、遮断機構27によって作動液の行き来を止めるようになっているが、遮断機構27の構造は前述するものに限定されない。切換信号に入力状態に応じて作動液の行き来を止めることができる機構であればよい。また、遮断機構27では、切換信号が入力されると作動液の行き来を可能にし、また切換信号が停止すると作動液の行き来が止められるようになっているが、逆であってもよい。即ち、遮断機構27は、切換信号が入力されると作動液の行き来を止め、また切換信号が停止すると作動液の行き来を可能にするように構成されてもよい。
<Other Embodiments>
In the steering control systems 1 and 1A of the first and second embodiments, the electric fluid drive device 3 includes the two steering systems 3L, 3R, 3AL and 3AR, but the invention is not necessarily limited to two. For example, only one operation system may be provided, and three or more steering systems may be provided. When two or more steering systems are provided, the number of operating steering systems is not limited to one, and may be two or more. Further, in the steering control systems 1 and 1A of the first and second embodiments, the shutoff mechanism 27 is configured to stop the hydraulic fluid from moving back and forth, but the structure of the shutoff mechanism 27 is not limited to that described above. Any mechanism may be used as long as it can stop the transfer of hydraulic fluid according to the input state according to the switching signal. Further, the shutoff mechanism 27 enables the hydraulic fluid to come and go when the switching signal is input, and can stop the hydraulic fluid from coming and going when the switching signal is stopped, but may be reversed. That is, the blocking mechanism 27 may be configured to stop the transfer of the hydraulic fluid when the switching signal is input, and to enable the transfer of the hydraulic fluid when the switching signal is stopped.
 第1及び第2実施形態の操舵制御システム1,1Aで実行される舵角停止処理について5つの実施例を示しているが、このような実施例に限定されない。舵角停止処理は、判定される状態に応じて舵板駆動部2の動きを止め且つ舵角を維持するような処理であればよい。また、判定遮断装置4bは、少なくとも3つ以上の検出結果に基づいて操舵装置30,30Aの状態を判定しているが、必ずしも3つ以上である必要はない。即ち、2つの検出結果に基づいて操舵装置30,30Aの状態を判定してもよい。また、本実施形態では、主に操舵系統3L,3Rの状態を検出しているが、舵板駆動部2の状態を検出するようにしいてもよい。 Although five examples are shown about the steering angle stop process performed by the steering control systems 1 and 1A of 1st and 2nd embodiment, it is not limited to such an example. The steering angle stop process may be any process that stops the movement of the steering plate drive unit 2 and maintains the steering angle according to the determined state. Further, although the determination cutoff device 4b determines the states of the steering devices 30 and 30A based on at least three or more detection results, it does not necessarily have to be three or more. That is, the states of the steering devices 30 and 30A may be determined based on the two detection results. Further, in the present embodiment, the states of the steering systems 3L and 3R are mainly detected, but the state of the steering plate drive unit 2 may be detected.
 また、第1及び第2実施形態の操舵制御システム1,1Aでは、液圧ポンプ21,21Aとして斜軸ポンプが採用されているが、斜板ポンプであってもよい。また、第1及び第2実施形態の操舵制御システム1,1Aに備わる圧液供給機20,20Aの構成も図に示されるような構成に限定されず、切換信号に基づいて舵板駆動部2の給排を停止できるような構成であればよい。 Further, in the steering control systems 1 and 1A of the first and second embodiments, the oblique axis pump is adopted as the hydraulic pressure pumps 21 and 21A, but a swash plate pump may be used. Further, the configurations of the hydraulic fluid feeders 20 and 20A provided in the steering control systems 1 and 1A of the first and second embodiments are not limited to the configurations as shown in the drawings, and the steering plate drive unit 2 is The configuration may be any configuration that can stop the supply and discharge of
 更に、第1及び第2実施形態の操舵制御システム1,1Aでは、舵板駆動部2としてラムシリンダタイプのものが採用されているが、必ずしもこのような機構に限定されない。即ち、舵板駆動部2は、ロータリベーンタイプのものであってもよく、またトランクピストンタイプのものであってもよい。また、前述する電液駆動装置3、3Aもまた一例に過ぎず、舵板駆動部2に圧液を供給し且つその流れ方向を切換えることができるものであればよい。 Furthermore, in the steering control systems 1 and 1A of the first and second embodiments, although the ram cylinder type is adopted as the steering plate driving unit 2, it is not necessarily limited to such a mechanism. That is, the steering plate drive part 2 may be of a rotary vane type or may be of a trunk piston type. Further, the above-described electric liquid drive devices 3 and 3A are also merely examples, and any type that can supply pressure liquid to the steering plate drive unit 2 and switch the flow direction thereof can be used.
 更に、第1及び第2実施形態の操舵制御システム1,1Aでは、制御ユニット4が複数の操舵系統3L,3R,3AL,3ARに対して1つしか設けられていないが、各操舵系統3L,3R,3AL,3AR毎に1つずつ設けられていてもよい。また、制御ユニット4を構成する操舵制御装置4a及び判定遮断装置4bは、必ずしも1つのユニットとして構成されている必要はなく、別々に構成されてもよい。 Furthermore, in the steering control systems 1 and 1A of the first and second embodiments, only one control unit 4 is provided for the plurality of steering systems 3L, 3R, 3AL and 3AR. One each may be provided for each of 3R, 3AL, 3AR. Further, the steering control device 4a and the determination cutoff device 4b which constitute the control unit 4 do not necessarily have to be configured as one unit, and may be configured separately.
 1,1A  操舵制御システム
 2   舵板駆動部
 3,3A  電液駆動装置
 4b   判定遮断装置(操舵検出器)
 5   操舵部
 6   センサ群(複数のセンサ、舵板作動検出器、液面検出器)
 7   表示操作部(指示部)
 12  舵板
 20,20A 圧液供給機(予備圧液供給機)
 27  遮断機構
 28  タンク
 30,30A 操舵装置
1, 1 A Steering control system 2 Rudder drive part 3, 3 A Electrolyte drive device 4 b Judgment cutoff device (steering detector)
5 steering unit 6 sensors (multiple sensors, steering plate operation detector, fluid level detector)
7 Display operation unit (instruction unit)
12 Rudder 20, 20A Pressure fluid feeder (pre-pressure fluid feeder)
27 Shut-off mechanism 28 Tank 30, 30A Steering device

Claims (7)

  1.  供給される液圧の流れ方向に応じた方向に舵板を動かす舵板駆動部と、入力される操舵信号に応じた流れ方向の圧液を前記舵板駆動部に供給する圧液供給機と、前記圧液供給機から前記舵板駆動部への圧液の供給及びその停止を切換える遮断機構と、を有する操舵装置と、
     前記操舵装置における互いに異なる部位の状態を検出する複数の検出器と、
     前記複数の検出器にて検出される検出結果に応じて前記操舵装置の状態を判定し、判定結果に基づいて前記遮断機構によって圧液の供給を停止する判定遮断装置と、を備える操舵制御システム。
    A steering plate drive unit for moving a steering plate in a direction corresponding to a flow direction of supplied hydraulic pressure; a pressure liquid supply machine for supplying pressure fluid in a flow direction corresponding to an input steering signal to the steering plate drive unit; A steering device having a shutoff mechanism that switches the supply of hydraulic fluid from the hydraulic fluid supply machine to the steering plate drive unit and the stop thereof;
    A plurality of detectors for detecting states of different portions of the steering device;
    A steering control system comprising: a determination cutoff device that determines a state of the steering device according to detection results detected by the plurality of detectors, and stops supply of pressure liquid by the cutoff mechanism based on the determination result .
  2.  前記複数の検出器は、操舵検出器と、舵板作動検出器とを少なくとも有し、
     前記操舵検出器は、操舵部に対する操作の有無を検出し、
     前記舵板作動検出器は、前記舵板駆動部の作動の有無を検出し、
     前記判定遮断装置は、前記操舵検出器及び前記舵板作動検出器の検出結果に応じて前記操舵装置における作動状態を判定する、請求項1に記載の操舵制御システム。
    The plurality of detectors include at least a steering detector and a steering plate operation detector,
    The steering detector detects the presence or absence of an operation on the steering unit,
    The steering plate operation detector detects the presence or absence of the operation of the steering plate drive unit,
    The steering control system according to claim 1, wherein the determination cutoff device determines an operating state of the steering device according to detection results of the steering detector and the steering plate operation detector.
  3.  前記圧液供給機は、前記圧液を排出すべくタンクを有しており、
     前記複数の検出器は、圧力検出器と、液面検出器とを少なくとも有し、
     前記圧力検出器は、前記舵板駆動部に供給される圧液の圧力を検出し、
     前記液面検出器は、前記タンクの液面の位置を検出し、
     前記判定遮断装置は、前記圧力検出器及び前記液面検出器の検出結果に応じて前記操舵装置における液漏れ状態を判定する、請求項1又は2に記載の操舵制御システム。
    The hydraulic fluid supply machine has a tank for discharging the hydraulic fluid,
    The plurality of detectors include at least a pressure detector and a liquid level detector,
    The pressure detector detects the pressure of the hydraulic fluid supplied to the steering plate drive unit,
    The liquid level detector detects the position of the liquid level of the tank,
    The steering control system according to claim 1 or 2, wherein the determination shutoff device determines a liquid leakage state in the steering device according to the detection results of the pressure detector and the liquid level detector.
  4.  前記操舵装置は、前記圧液供給機と異なり且つ入力される前記操舵信号に応じた流れ方向の圧液を前記舵板駆動部に供給可能である予備圧液供給機を更に備え、前記舵板駆動部に圧液を供給する圧液供給源を前記圧液供給機から予備圧液供給機に切換え可能に構成され、
     前記判定遮断装置は、判定結果に基づいて前記遮断機構によって圧液の供給を停止すると共に、前記圧液供給源を前記圧液供給機から前記予備圧液供給機に切換える、請求項1乃至3の何れか1つに記載の操舵制御システム。
    The steering device further includes a preliminary pressure liquid feeder different from the pressure liquid feeder and capable of feeding pressure fluid in a flow direction according to the input steering signal to the steering plate drive unit, the steering plate The pressure liquid supply source for supplying the pressure liquid to the drive unit is configured to be switchable from the pressure liquid supply machine to the preliminary pressure liquid supply machine,
    4. The judgment shutoff device stops supply of pressure liquid by the shutoff mechanism based on a judgment result, and switches the pressure liquid supply source from the pressure liquid supply machine to the preliminary pressure liquid supply machine. The steering control system according to any one of the above.
  5.  前記遮断機構の作動の有無の指示をする指示部を更に備え、
     前記判定遮断装置は、前記判定結果と前記指示部に対する指示に基づいて前記遮断機構によって圧液の供給を停止する、請求項1乃至4の何れか1つに記載の操舵制御システム。
    It further comprises an instruction unit for instructing the presence or absence of the operation of the blocking mechanism,
    The steering control system according to any one of claims 1 to 4, wherein the determination blocking device stops the supply of the hydraulic fluid by the blocking mechanism based on the determination result and an instruction to the instruction unit.
  6.  前記判定遮断装置は、前記判定結果に基づいて前記遮断機構によって圧液の供給を停止する場合、判定してから予め定められた時間が経過した後に前記遮断機構によって圧液の供給を停止する、請求項1乃至5の何れか1つに記載の操舵制御システム。 When the supply of pressure fluid is stopped by the blocking mechanism based on the determination result, the determination blocking device stops the supply of pressure fluid by the blocking mechanism after a predetermined time has elapsed since the determination. The steering control system according to any one of claims 1 to 5.
  7.  供給される液圧の流れ方向に応じた方向に舵板を動かす舵板駆動部と、入力される操舵信号に応じた流れ方向の圧液を前記舵板駆動部に供給する圧液供給機と、前記圧液供給機から前記舵板駆動部への圧液の供給及びその停止を切換える遮断機構と、を備える操舵装置の停止方法であって、
     複数の検出器によって前記操舵装置における互いに異なる部位の状態を検出する検出工程と、
     前記検出工程における検出結果に応じて前記操舵装置の状態を判定する状態判定工程と、
     前記状態判定工程における判定結果に基づいて前記遮断機構によって圧液の供給を停止する停止工程とを備える、前記操舵装置の停止方法。
    A steering plate drive unit for moving a steering plate in a direction corresponding to a flow direction of supplied hydraulic pressure; a pressure liquid supply machine for supplying pressure fluid in a flow direction corresponding to an input steering signal to the steering plate drive unit; A stop mechanism for switching between supply of hydraulic fluid from the hydraulic fluid supply machine to the steering plate drive unit and suspension thereof, and a method of stopping a steering device,
    Detecting the state of different parts of the steering device by a plurality of detectors;
    A state determination step of determining the state of the steering device according to the detection result in the detection step;
    And a stopping step of stopping supply of pressure liquid by the blocking mechanism based on the determination result in the state determination step.
PCT/JP2018/024142 2017-06-30 2018-06-26 Steering control system and method for stopping steering device WO2019004182A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207000755A KR102393338B1 (en) 2017-06-30 2018-06-26 Steering control system and method of stopping the steering gear
CN201880043834.7A CN110785348A (en) 2017-06-30 2018-06-26 Steering control system and method for stopping steering device
DE112018002941.7T DE112018002941B4 (en) 2017-06-30 2018-06-26 steering control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017128854A JP7002232B2 (en) 2017-06-30 2017-06-30 Steering control system and stopping method of steering device
JP2017-128854 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004182A1 true WO2019004182A1 (en) 2019-01-03

Family

ID=64741583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024142 WO2019004182A1 (en) 2017-06-30 2018-06-26 Steering control system and method for stopping steering device

Country Status (5)

Country Link
JP (1) JP7002232B2 (en)
KR (1) KR102393338B1 (en)
CN (1) CN110785348A (en)
DE (1) DE112018002941B4 (en)
WO (1) WO2019004182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435868A (en) * 2019-06-28 2019-11-12 武汉船用机械有限责任公司 The control system and control method of steering engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423213B2 (en) 2019-07-25 2024-01-29 株式会社 商船三井 Marine steering gear
JP7285720B2 (en) * 2019-07-25 2023-06-02 川崎重工業株式会社 marine steering gear
CN111559488B (en) * 2020-05-25 2022-05-06 智慧航海(青岛)科技有限公司 Intelligent ship rudder equipment automatic control method and system
KR102510267B1 (en) * 2021-06-09 2023-03-16 주식회사 에스에이엠텍 Steering apparatus of ships for straight forward voyage
JP2023172743A (en) * 2022-05-24 2023-12-06 川崎重工業株式会社 Hydraulic circuit system with abnormality diagnosis function, and steering device comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
JPH08113197A (en) * 1994-10-17 1996-05-07 Kawasaki Heavy Ind Ltd Hydraulic control system switching circuit in steering engine
JP2004150516A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Steering engine
JP2011068225A (en) * 2009-09-25 2011-04-07 Japan Hamuwaaji Kk Method of monitoring operation of steering device
JP2012136148A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Ship steering gear and ship steering method
JP2012210847A (en) * 2011-03-30 2012-11-01 Mitsubishi Heavy Ind Ltd Vessel steering device and control method thereof
JP2013112090A (en) * 2011-11-28 2013-06-10 Mitsubishi Heavy Ind Ltd Energy storage type steering apparatus
JP2015020660A (en) * 2013-07-22 2015-02-02 川崎重工業株式会社 Abnormality detection device of steering device, and steering device with abnormality detection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954968B (en) * 2010-09-25 2012-05-16 南京航海仪器二厂有限公司 Valve block special for hydraulic steering engine
JP5897131B2 (en) * 2011-09-09 2016-03-30 ワルトシラ フィンランド オサケユキチュア Hydraulic steering system for ship thrusters
CN203372387U (en) * 2013-07-19 2014-01-01 杨耕新 Ship steering device
KR101690080B1 (en) * 2014-12-12 2016-12-27 주식회사 에이피에스 Rudder Rotational Angle Real Time Monitoring Apparatus and Monitoring Method thereof
KR20160091484A (en) * 2015-01-23 2016-08-03 에스티엑스조선해양 주식회사 Emergency steering appatatus and ship with the same
JP6539454B2 (en) 2015-02-10 2019-07-03 三菱重工業株式会社 Steering gear, steering device, steering plate control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
JPH08113197A (en) * 1994-10-17 1996-05-07 Kawasaki Heavy Ind Ltd Hydraulic control system switching circuit in steering engine
JP2004150516A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Steering engine
JP2011068225A (en) * 2009-09-25 2011-04-07 Japan Hamuwaaji Kk Method of monitoring operation of steering device
JP2012136148A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Ship steering gear and ship steering method
JP2012210847A (en) * 2011-03-30 2012-11-01 Mitsubishi Heavy Ind Ltd Vessel steering device and control method thereof
JP2013112090A (en) * 2011-11-28 2013-06-10 Mitsubishi Heavy Ind Ltd Energy storage type steering apparatus
JP2015020660A (en) * 2013-07-22 2015-02-02 川崎重工業株式会社 Abnormality detection device of steering device, and steering device with abnormality detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435868A (en) * 2019-06-28 2019-11-12 武汉船用机械有限责任公司 The control system and control method of steering engine

Also Published As

Publication number Publication date
DE112018002941B4 (en) 2023-06-15
KR102393338B1 (en) 2022-05-03
KR20200018600A (en) 2020-02-19
JP7002232B2 (en) 2022-01-20
JP2019010964A (en) 2019-01-24
CN110785348A (en) 2020-02-11
DE112018002941T5 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7002232B2 (en) Steering control system and stopping method of steering device
JP6603568B2 (en) Hydraulic drive system
US7770687B2 (en) Hydraulic steering
WO2012090375A1 (en) Ship steering gear and ship steering method
EP3249117B1 (en) Control system for construction machine
US11014604B2 (en) Hydraulic steering arrangement
JP7002231B2 (en) Steering control system
CN108860298B (en) Hydraulic steering unit
JP5778058B2 (en) Construction machine control device and control method thereof
WO2015064044A1 (en) Hydraulic drive unit
JP2007292316A (en) Self-diagnostic device for hydraulic circuit
WO2011121886A1 (en) Steering system for industrial machinery and vehicle-refracting angle changing method
JP3859405B2 (en) Fail-safe circuit
JP5117972B2 (en) Actuator device and power assist device
JP2015020660A (en) Abnormality detection device of steering device, and steering device with abnormality detection device
JP2010048359A (en) Pump control circuit of construction machine
JP5320143B2 (en) Steering machine, control method thereof and ship equipped with steering machine
JP6940992B2 (en) A hydraulic drive system and a hydraulic drive system including the hydraulic drive system.
JPH0941427A (en) Hydraulic working machine
WO2018193807A1 (en) Fluid pressure control device and work machine provided therewith
JP2006336673A (en) Work vehicle
US11815107B2 (en) Fluid control device
US11614103B2 (en) Landing gear lifting/lowering EHA system
WO2018178961A1 (en) Hydraulic system
WO2019087687A1 (en) Hydraulic drive device for industrial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207000755

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18824980

Country of ref document: EP

Kind code of ref document: A1