WO2019004062A1 - In-wheel motor system and electric automobile - Google Patents

In-wheel motor system and electric automobile Download PDF

Info

Publication number
WO2019004062A1
WO2019004062A1 PCT/JP2018/023706 JP2018023706W WO2019004062A1 WO 2019004062 A1 WO2019004062 A1 WO 2019004062A1 JP 2018023706 W JP2018023706 W JP 2018023706W WO 2019004062 A1 WO2019004062 A1 WO 2019004062A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel motor
signal
motor drive
wheel
communication
Prior art date
Application number
PCT/JP2018/023706
Other languages
French (fr)
Japanese (ja)
Inventor
明生 中島
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019004062A1 publication Critical patent/WO2019004062A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an in-wheel motor system provided with an RD converter (resolver digital converter) that processes resolver signals, and an electric vehicle equipped with the same.
  • RD converter resolver digital converter
  • a signal cable is provided between the inverter device on the vehicle body and the sensor in the wheel.
  • Sensors in the wheel include a resolver and a temperature sensor, and about 10 wires are used.
  • Patent Document 1 an in-wheel motor drive device integrated with a mechanical device has been proposed.
  • Patent Document 2 an in-wheel motor drive device integrated with a mechanical device.
  • the wiring between the inverter device and the motor does not appear outside.
  • a structure of a shielded resolver wiring has been proposed. In this case, although seven wires are required, there are six if no shield is required.
  • the signal cable wired from the vehicle body side to the sensor on the in-wheel motor drive side is always subjected to bending, tension, rotation, etc. force due to vertical vibration by the suspension of the wheel or turning operation in turning, and possibility of cutting There is. For this reason, it is necessary to use a cable having bending resistance as the signal cable.
  • a connector is usually used at both ends or one side of the signal cable.
  • the signal cable and connector on the in-wheel motor drive side also need elements of water resistance, oil resistance, high temperature resistance, low temperature resistance and vibration resistance, and especially connectors with 5 cores or more have few commercial products and their selection is difficult It becomes. Therefore, in order to improve the feasibility, it is desirable to reduce the number of wires as much as possible and to use only two to four wires. If wiring is possible using only 2 to 4 electric wires, harnesses and connectors developed for coaxial cables and ABS (anti-lock brake system) can be diverted.
  • FIG. 7 is an example of the electric circuit of the conventional general sensor signal around the inverter apparatus 1 and the in-wheel motor drive device 10.
  • the resolver 6 is composed of a resolver stator 4 fixed to a frame (not shown) in the in-wheel motor drive device 10 and a resolver rotor 5 mechanically connected to a motor rotating portion. Signals of the SIN coil 8 and the COS coil 9 induced from the exciting coil 7 by the rotation of the resolver rotor 5 are sent to the inverter device 1 using the sensor signal cable 13.
  • the RD converter 2 processes the signal and transmits it to the CPU 30 in the inverter device 1 as a detection signal of the rotational position of the resolver rotor 5.
  • the RD converter 2 performs analysis on the basis of the signal REF from the excitation circuit 3 that excites the excitation coil 7.
  • the excitation circuit 3 may be provided independently of the RD converter IC.
  • a signal from the motor temperature sensor 11 is sent to the inverter device 1 using a sensor signal cable 13.
  • the motor rotation detection position information and the motor temperature information which are processed through the RD converter 2 and the temperature sensor circuit 18 are transmitted to the CPU 30.
  • the in-wheel motor drive device 10 and the inverter device 1 are connected by the sensor signal cable 13.
  • the sensor signal cable 13 comprises electric wires of six resolver signals (resolver signals) and two electric wires connected to the motor temperature sensor 11. If a shield is required, the number will increase further. Since a plurality of temperature sensors 11 may be disposed, the sensor signal cable 13 is a wire of eight or more.
  • the wiring is required to have water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, and bending resistance.
  • a connector (not shown) is usually attached to both the in-wheel motor drive device 10 side and the inverter device 1 side, and performances of water resistance, oil resistance, high temperature resistance, low temperature resistance and vibration resistance are required.
  • Patent Document 1 In the case of the in-wheel motor drive unit integrated with the mechanical and electrical unit (Patent Document 1), only two signal wires are provided because there is only power supply and communication such as CAN (control area network) between the vehicle side and the inverter unit. That's it. However, since the inverter is installed in the in-wheel motor drive device, the entire device becomes large and the in-wheel motor drive device does not fit in the wheel. Moreover, in the case of air cooling, the cooling performance is limited and it is not suitable for a large output.
  • CAN control area network
  • An object of the present invention is to provide an in-wheel motor system that requires less wiring between the in-wheel motor drive and the inverter device and does not easily get in the wheel because the in-wheel motor drive is large, and an electric vehicle It is to be.
  • the in-wheel motor system includes an in-wheel motor drive device 10 having a motor 36 and a bearing 34 for a wheel, and an inverter device 1 installed on the vehicle body to convert direct current power of the battery into alternating current power and to control output.
  • a communication circuit 22 for transmitting an output and an output of the temperature sensor circuit 18 is mounted on the in-wheel motor drive device 10.
  • the detection signal of the resolver 6 or the temperature sensor 11 may be sent as it is as an analog signal Differently, it can be digitized and transmitted by serial transmission. Therefore, transmission of signals between the in-wheel motor drive device 10 and the inverter device 1 can be performed with a small number of wires. For example, it can be wired by two electric wires or one shield wire. Water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, bending resistance performance are required for the wiring between in-wheel motor drive device 10 and inverter device 1, but two electric wires Implementation of performance requirements is facilitated. It also facilitates connector design, manufacture and selection.
  • the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 are mounted on the in-wheel motor drive device 10 1 itself is not mounted, so the in-wheel motor drive 10 does not get stuck in the wheel because it is large.
  • the communication power transmission line 24 for supplying the power source power of the weak power system output from the inverter device 1 to the in-wheel motor drive device 10 is provided, and the information communication is performed on the current flowing through the communication power transmission line 24.
  • the in-wheel motor drive device 10 may have signal superimposing means for superimposing the above signals, and the inverter device 1 may have signal separating means 29 for separating the signal superimposed on the current.
  • the signal of the information communication is superimposed on the wiring (communication power transmission line 24) for supplying power to the RD converter 2 and the like as described above, the number of wirings can be further reduced.
  • the wiring is required to have water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, and bending resistance, but the reduction in the number of wirings facilitates the realization of the required performance. It also facilitates connector design, manufacture and selection.
  • the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 may be provided on a common sensor substrate 19. This makes the wiring and mounting of various electronic elements more compact.
  • An electric vehicle of the present invention is equipped with the in-wheel motor system of any of the above-described configurations of the present invention. For this reason, the wiring between the in-wheel motor drive device 10 and the inverter device 1 can be reduced, and since the in-wheel motor drive device 10 is large, it does not become difficult to enter the wheel.
  • FIG. 6 is an electrical circuit diagram of an in-wheel motor system according to another embodiment of the present invention. It is a sectional view showing an outline of an in-wheel motor drive. It is an electric circuit diagram of a conventional example.
  • FIG. 1 is a conceptual view showing an example of an electric vehicle equipped with this in-wheel motor system.
  • the electric vehicle is a rear wheel drive vehicle in which left and right wheels 32 serving as rear wheels of a vehicle body 51 are driven by the in-wheel motor drive device 10 respectively.
  • the wheels 33 serving as the front wheels are driven wheels, which are steered wheels steered by the operation of the steering wheel 52.
  • a friction brake 35 is provided for each of the wheels 32 and 33.
  • the VCU (vehicle-control-unit) 55 reads an accelerator input which is an operation angle of the accelerator 53 by the driver, converts it into a torque command, and instructs the inverter device 1.
  • the VCU 55 is an ECU (Electronic-control-unit) that performs overall control of the entire vehicle.
  • the inverter device 1 converts the DC power of the battery 56 into three-phase AC by the inverter 1a, and controls the motor 36 of the left and right in-wheel motor drive devices 10 by controlling the power based on the torque command by the motor control circuit 1b. To drive.
  • the inverter device 1 of this example is a two-axis integrated type and can drive two motors 36.
  • the electric vehicle of this example is rear wheel drive, front wheel drive and four wheel drive can also be realized with the same configuration as described above.
  • the inverter device 1 may be provided separately for the front wheels and the rear wheels.
  • the in-wheel motor drive device 10 includes a motor 36, a reduction gear 37, and a bearing 34 for a wheel, and a part or all of these are disposed in the wheel 32.
  • the rotation of the motor 36 is transmitted to the wheel 32 via the reduction gear 37, its output member 40, and the hub wheel 34 a which is a rotating wheel of the wheel bearing 34.
  • the brake rotor 35a is fixed to the flange portion of the hub wheel 34a.
  • the brake rotor 35 a rotates integrally with the wheel 32.
  • a friction type brake 35 is configured by the brake rotor 35a and the brake caliper 35b.
  • the motor 36 is, for example, an embedded magnet synchronous motor in which a permanent magnet (not shown) is incorporated in the core portion of the rotor 36a.
  • the motor 36 is a motor having a radial gap between a stator 36 b fixed to the housing 38 and a rotor 36 a attached to the rotational output shaft 39.
  • the motor 36 is provided with a resolver 6 as a sensor for detecting the rotation of the rotation output shaft 39, and is provided with a temperature sensor 11 and a sensor substrate 19.
  • the temperature sensor 11 is a sensor that detects the temperature of the motor 36, for example, the temperature of the stator. In the case of a liquid-cooled motor 36, the temperature sensor 11 may detect the oil temperature, and a plurality of temperature sensors 11 are provided to perform temperature detection and oil temperature detection of the stator, respectively. It may be The sensor substrate 19 will be described later.
  • FIG. 2 is a basic structure of an in-wheel motor system.
  • the inverter device 1 mounted on the vehicle body 51 of FIG. 1 and the motor 36 in the in-wheel motor drive device 10 are connected by the motor cable 14 of each phase, which is a power line for driving the motor.
  • the resolver 6 and the temperature sensor 11 in the in-wheel motor drive device 10 are connected to the inverter device 1 by a sensor signal cable 13 for transmitting and receiving sensor drive power and signals.
  • the sensor signal cable 13 is representatively shown by one in FIG.
  • FIG. 3 shows a circuit of sensor signals and sensor power in the in-wheel motor system of this embodiment.
  • the RD converter 2 or the temperature normally in the inverter device 1 on the vehicle body The sensor circuit 18 is transferred to the in-wheel motor drive 10.
  • the information digitized on the circuit on the in-wheel motor drive 10 side is communicated to the inverter 1 on the vehicle side via the communication transmission line 16.
  • two to three wires are required for digital communication, but in this embodiment, two wires are used.
  • the number of wires between the in-wheel motor drive device 10 and the inverter device 1 is four.
  • the power supply line 15 and the communication transmission line 16 are represented as one sensor signal cable 13 in FIG.
  • a sensor substrate 19 is installed in the in-wheel motor drive device 10, and an RD converter 2, a temperature sensor circuit 18, and a communication circuit 22 are commonly mounted on the same sensor substrate 19.
  • the resolver 6 is composed of a resolver rotor 5 and a resolver stator 4, and the resolver stator 4 has a SIN coil 8, a COS coil 9 and an excitation coil 7 which have an electrical angle difference of 90 degrees. Either the SIN coil 8 or the COS coil 9 may be used for excitation, and the excitation coil 7 may be omitted.
  • the RD converter 2 is a device for converting the detection signal of the resolver 6 into a digital signal, and outputs an excitation current from the excitation circuit 3 to the excitation coil 7 of the resolver 6, and the excitation coil 7 of the resolver 6, SIN coil 8 and A detection signal of the COS coil 9 is obtained from the reference signal (REF) input terminal, the SIN signal input terminal, and the COS signal input terminal, and is output from the output terminal as a digital signal.
  • REF reference signal
  • the temperature sensor circuit 18 is a circuit that converts an analog signal output from the temperature sensor 11 as a detection signal into a digital signal and outputs the digital signal.
  • the communication circuit 22 converts rotational position signals and temperature detection signals obtained as digital signals from the RD converter 2 and the temperature sensor circuit 18 into serial signals (by time multiplexing in the case of a plurality of types of signals) to the communication transmission line 16. It is a means to output.
  • the communication circuit 22 may be unbalanced communication means such as RS232C or Ethernet (registered trademark), or communication means such as RS485 or CAN differential circuit 22a as shown in FIG. 5, or 3-wire communication means. (Not shown) may be used.
  • the communication direction may be bidirectional as shown in FIG. 4, or may be unidirectional from the in-wheel motor drive device 10 to the inverter device 1.
  • the communication transmission line 16 may include a shielded electric wire shown in FIG. 3 that is grounded (on the GND side).
  • a communication method of differential input such as LVDS (Low Voltage Differential Signaling) may be used.
  • a power supply line 15 prepared separately from the communication transmission line 16 is used.
  • the power supply line 15 is connected to a power supply 25 for a weak electric device provided separately from the motor drive of the inverter device 1.
  • the power supply 25 is a DC power supply of about 5 to 24 V, and is set to, for example, 5 V, 12 V, or 24 V.
  • the wiring on the positive side of the power supply line 15 is grounded via the power supply capacitor 17, and the wiring on the negative side is installed (GND side).
  • the power supply capacitor 17 is provided in each of the inverter device 1 and the in-wheel motor drive device 10.
  • the contents of communication by the communication circuit 22 are mainly information on the rotational position of the motor 36 detected by the resolver 6 from the in-wheel motor drive device 10 side to the inverter device 1 side. Detection value is added.
  • the resolver 6 or the in-wheel motor drive device 10 has a detection function of resolver state, resolver signal abnormality, resolver initial diagnosis, or the RD converter 2 has RD converter temperature, RD converter self-diagnosis function, some are in-wheel
  • the motor drive device 10 has other sensors, these states, diagnosis results, sensor-related signals, etc. are added.
  • there are communication contents from the inverter device 1 side to the in-wheel motor drive device 10 side including, for example, a command for performing self-diagnosis and a command for performing abnormality reset.
  • the inverter device 1 includes a communication unit 22A in addition to the power supply 25 as a unit related to driving of the RD converter 2 and sensors and signal reception.
  • the communication unit 22A is a unit that receives the rotational position and temperature signals and the like transmitted from the communication unit 22 of the in-wheel motor drive device 10 through the communication transmission line 16, and outputs the signals to the CPU 10.
  • the CPU 30 is means for controlling the current sent from the motor cable 14 for driving the traveling motor 36 (see FIG. 2), and uses the signals of the rotational position and temperature for the control.
  • the communication means 22A includes the transmission function from the inverter device 1 side to the in-wheel motor drive device 10 side as described above.
  • the inverter device 1 is mounted on the in-wheel motor drive device 10
  • it is the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 that are mounted on the in-wheel motor drive device 10. Since the in-wheel motor drive 10 is large, it does not get stuck in the wheel.
  • the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 are provided on the common sensor substrate 19, the mounting of the wiring and various electronic elements can be made more compact.
  • FIG. 5 shows another embodiment of the present invention. This embodiment is the same as the embodiment described above with reference to FIGS. 1 to 4 except for items to be particularly described.
  • the signal communicated between the in-wheel motor drive device 10 and the inverter device 1 is superimposed on the power supply current, and the wire between the in-wheel motor drive device 10 and the inverter device 1 transmits two communication powers. It is only the line 24.
  • the communication power transmission line 24 can be one if the shield line is not used. By thus reducing the number of wires, it is possible to further improve the wire cost and reliability.
  • the sensor signal is superimposed on the current for power supply so that the power supply and communication of the signal can be performed by the communication power transmission line 24.
  • the inverter device 1 is provided with signal separation means 29 for separating the signal superimposed on the current for power supply.
  • signal transmission is performed between the signal superimposing means 28 and the signal separating means 29, the signal transmission may be unidirectional or bidirectional from one means to the other.
  • the signal superposition means 28 comprises modulation means 23 connected to the output terminal of the communication means 22 to modulate the signal.
  • the signal superimposing means 28 has a coupling capacitor 20 interposed between the output terminal of the modulation means 23 and the plus side wiring of the communication power transmission line 24.
  • the signal superimposing means 28 has a choke coil 21.
  • the signal superimposing means 28 is mounted on the sensor substrate 19.
  • the choke coil 21 is interposed between a connection point of the communication power transmission line 24 with the coupling capacitor 20 and a power input terminal of the communication unit 22.
  • the modulation unit 23 includes a circuit such as a modulation functional element, modulates a signal so as not to include a DC component and a low frequency AC component, and performs impedance matching (matching).
  • the communication and modulation methods may be arbitrary methods, for example, FM modulation, digital modulation, pulse modulation and the like.
  • the signal separation means 29 has a coupling capacitor 20A connected to the plus side wiring of the communication power transmission line 24 in the inverter device 1.
  • the signal separation means 29 has a demodulation means 23A connected to the communication power transmission line 24 via the coupling capacitor 20A and having a demodulation output terminal connected to the communication means 22.
  • the signal separation means 29 has a choke coil 21A.
  • the choke coil 21A is interposed between a connection point of the communication power transmission line 24 with the coupling capacitor 20A and a power input terminal of the communication means 22A.
  • the power supply from the power supply 25 is a direct current, and the transmission of the communication signal to be superimposed is, for example, an AC signal of at least 1 kHz or more, usually 1 MHz or more.
  • the power supply voltage is about 5 to 24V, for example 12V, or 24V, or 5V.
  • the power supply is via the choke coil 21A provided in the inverter device 1, the communication power transmission line 24, and the choke coil 21 provided in the in-wheel motor drive device 10 to communicate with the RD converter 2 or communication in the in-wheel motor drive device 10. It is supplied to the means 22.
  • the power supply capacitors 17, 17A are attached for the stabilization of the power supply.
  • the voltage can also be converted by a regulator, a DC-DC converter or the like (not shown) as necessary.
  • the contents of communication are the same as in the previous embodiment.
  • the rotation detection position information of the resolver rotor 5 and the temperature information of the temperature sensor 11 pass through the communication means 22 of the in-wheel motor drive device 10, the modulation means 23 and the coupling capacitor 20, and pass through the communication power transmission line 24 It passes through the coupling capacitor 20A on the device 1 side, the demodulation means 23A, and the communication means 22A, and is transmitted to the CPU 30 of the inverter device 1. In the case of two-way communication, information is transmitted in the opposite direction.
  • the number of wirings can be further reduced.
  • the wiring is required to have water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, and bending resistance, but the reduction in the number of wirings facilitates the realization of the required performance. It also facilitates connector design, manufacture and selection.
  • each of the above embodiments is directed to an electric vehicle having two in-wheel motor systems
  • the present invention also applies to two or more sets of two in-wheel motor systems even in the case of an electric vehicle having four-wheel drive or more It can be applied as having. It can also be applied to electric vehicles having only one in-wheel motor system.

Abstract

Provided is an in-wheel motor system with which the amount of wiring between an in-wheel motor drive device and an inverter device can be reduced, and a situation in which the in-wheel motor drive device is large and thus difficult to be put into the wheel can be eliminated. In a system in which an in-wheel motor drive device (10) and an inverter device (1) mounted on a vehicle body are connected by wiring, the following are installed in the in-wheel motor drive device (10): an RD converter (2) that converts a detection signal of a resolver (6), which detects the rotation of a motor, to a digital signal; a temperature sensor circuit (18) that processes a detection signal of a motor temperature sensor (11); and a communication circuit (22). A superposing means (28) that superposes a signal on the power source current may be provided.

Description

インホイールモータシステムおよび電気自動車In-wheel motor system and electric vehicle 関連出願Related application
 本出願は、2017年6月28日出願の特願2017-125786の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-125786 filed on June 28, 2017, which is incorporated by reference in its entirety.
 この発明は、レゾルバ信号を処理するRDコンバータ(レゾルバデジタルコンバータ)を備えたインホイールモータシステム、およびこれを搭載した電気自動車に関する。 The present invention relates to an in-wheel motor system provided with an RD converter (resolver digital converter) that processes resolver signals, and an electric vehicle equipped with the same.
 インホイールモータシステムでは、車体上にあるインバータ装置と、ホイール内にあるセンサとの間を、信号ケーブルで配線している。ホイール内にあるセンサとしてはレゾルバと温度センサとがあり、10本前後の配線が用いられている。 In the in-wheel motor system, a signal cable is provided between the inverter device on the vehicle body and the sensor in the wheel. Sensors in the wheel include a resolver and a temperature sensor, and about 10 wires are used.
 この他に、機電一体のインホイールモータ駆動装置が提案されている(特許文献1)。この例では、インバータ装置とモータを一体化しているため、インバータ装置とモータ間の配線は、外部に現れない。また、シールド付きのレゾルバ用の配線の構造が提案されている。この場合は、電線は7本必要であるところ、シールドが不要な場合は6本である。(特許文献2) In addition to this, an in-wheel motor drive device integrated with a mechanical device has been proposed (Patent Document 1). In this example, since the inverter device and the motor are integrated, the wiring between the inverter device and the motor does not appear outside. Also, a structure of a shielded resolver wiring has been proposed. In this case, although seven wires are required, there are six if no shield is required. (Patent Document 2)
特開2013-201878号公報JP, 2013-201878, A 特開2015-177716号公報JP, 2015-177716, A
 車体側からインホイールモータ駆動装置側のセンサに配線された信号ケーブルは、ホイールのサスペンションによる上下振動や、転舵における旋回動作により、常に屈曲、引張、回転などの力がかかり、切断の可能性がある。このため、前記信号ケーブルには耐屈曲性能を有するケーブルを使用する必要がある。 The signal cable wired from the vehicle body side to the sensor on the in-wheel motor drive side is always subjected to bending, tension, rotation, etc. force due to vertical vibration by the suspension of the wheel or turning operation in turning, and possibility of cutting There is. For this reason, it is necessary to use a cable having bending resistance as the signal cable.
 また、信号ケーブルの両端あるいは片側は、通常、コネクタが使用される。インホイールモータ駆動装置側の信号ケーブルとコネクタは、さらに、耐水、耐油、耐高温、耐低温、耐振動の要素が必要であり、特に5芯以上のコネクタは市販品が少なく、その選定が困難となる。そこで、実現性を向上させるためには、少しでも配線数を減らし、2~4本の電線のみで配線することが望ましい。2~4本の電線のみで配線が可能であれば、同軸ケーブルやABS(アンチロックプレーキシステム)用に開発されたハーネスやコネクタを流用することができる。 Also, at both ends or one side of the signal cable, a connector is usually used. The signal cable and connector on the in-wheel motor drive side also need elements of water resistance, oil resistance, high temperature resistance, low temperature resistance and vibration resistance, and especially connectors with 5 cores or more have few commercial products and their selection is difficult It becomes. Therefore, in order to improve the feasibility, it is desirable to reduce the number of wires as much as possible and to use only two to four wires. If wiring is possible using only 2 to 4 electric wires, harnesses and connectors developed for coaxial cables and ABS (anti-lock brake system) can be diverted.
 具体例で説明すると、図7は、インバータ装置1およびインホイールモータ駆動装置10周りの従来の一般的なセンサ信号の電気回路の例である。レゾルバ6は、インホイールモータ駆動装置10内のフレーム(図示せず)に固定されたレゾルバステータ4とモータ回転部に機械的に接続されたレゾルバロータ5から成る。レゾルバロータ5の回転により励磁コイル7から誘導された、SINコイル8とCOSコイル9の信号は、センサ信号ケーブル13を使用してインバータ装置1に送られる。インバータ装置1内では、その信号をRDコンバータ2が処理し、レゾルバロータ5の回転位置の検出信号としてインバータ装置1内のCPU30に伝達する。その際、RDコンバータ2は、励磁コイル7を励磁する励磁回路3からの信号REFを基準として、解析を行う。なお、励磁回路3は、RDコンバータICの外部に独立して設けられる場合もある。 If it demonstrates in an example, FIG. 7 is an example of the electric circuit of the conventional general sensor signal around the inverter apparatus 1 and the in-wheel motor drive device 10. As shown in FIG. The resolver 6 is composed of a resolver stator 4 fixed to a frame (not shown) in the in-wheel motor drive device 10 and a resolver rotor 5 mechanically connected to a motor rotating portion. Signals of the SIN coil 8 and the COS coil 9 induced from the exciting coil 7 by the rotation of the resolver rotor 5 are sent to the inverter device 1 using the sensor signal cable 13. In the inverter device 1, the RD converter 2 processes the signal and transmits it to the CPU 30 in the inverter device 1 as a detection signal of the rotational position of the resolver rotor 5. At this time, the RD converter 2 performs analysis on the basis of the signal REF from the excitation circuit 3 that excites the excitation coil 7. The excitation circuit 3 may be provided independently of the RD converter IC.
 モータ温度センサ11からの信号は、センサ信号ケーブル13を使用してインバータ装置1に送られる。インバータ装置1内では、RDコンバータ2、温度センサ回路18を通して処理されたモータ回転検出位置情報およびモータ温度情報等がCPU30に伝達される。 A signal from the motor temperature sensor 11 is sent to the inverter device 1 using a sensor signal cable 13. In the inverter device 1, the motor rotation detection position information and the motor temperature information which are processed through the RD converter 2 and the temperature sensor circuit 18 are transmitted to the CPU 30.
 インホイールモータ駆動装置10とインバータ装置1の間は、センサ信号ケーブル13で接続される。センサ信号ケーブル13は6本のレゾルバ用の信号(レゾルバ信号)の電線と、モータ温度センサ11に接続した2本の電線から成る。シールドが必要な場合は、さらに本数が増える。温度センサ11が複数配置される場合もあるため、センサ信号ケーブル13は8本以上の本数の電線となる。 The in-wheel motor drive device 10 and the inverter device 1 are connected by the sensor signal cable 13. The sensor signal cable 13 comprises electric wires of six resolver signals (resolver signals) and two electric wires connected to the motor temperature sensor 11. If a shield is required, the number will increase further. Since a plurality of temperature sensors 11 may be disposed, the sensor signal cable 13 is a wire of eight or more.
 インホイールモータシステムの場合、配線は、耐水、耐油、耐高温、耐低温、耐振動、耐屈曲の各性能が要求される。コネクタ(図示せず)は、通常はインホイールモータ駆動装置10側とインバータ装置1側の双方に取り付けられ、耐水、耐油、耐高温、耐低温、耐振動の各性能が要求される。 In the case of an in-wheel motor system, the wiring is required to have water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, and bending resistance. A connector (not shown) is usually attached to both the in-wheel motor drive device 10 side and the inverter device 1 side, and performances of water resistance, oil resistance, high temperature resistance, low temperature resistance and vibration resistance are required.
 前記機電一体のインホイールモータ駆動装置の場合は(特許文献1)、車体側とインバータ装置間で、電力供給と、CAN(コントロールエリアネットワーク)等の通信があるだけのため、信号配線は2本で済む。ただし、インホイールモータ駆動装置内にインバータが設置されるため、装置全体が大きくなり、インホイールモータ駆動装置がホイール内に収まらない。また、空冷の場合は冷却性能に限界があり、大きな出力には適さない。 In the case of the in-wheel motor drive unit integrated with the mechanical and electrical unit (Patent Document 1), only two signal wires are provided because there is only power supply and communication such as CAN (control area network) between the vehicle side and the inverter unit. That's it. However, since the inverter is installed in the in-wheel motor drive device, the entire device becomes large and the in-wheel motor drive device does not fit in the wheel. Moreover, in the case of air cooling, the cooling performance is limited and it is not suitable for a large output.
 この発明の目的は、インホイールモータ駆動装置とインバータ装置間の配線が少なくて済み、またインホイールモータ駆動装置が大きいためにホイールに入り難くなることのないインホイールモータシステム、および電気自動車を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an in-wheel motor system that requires less wiring between the in-wheel motor drive and the inverter device and does not easily get in the wheel because the in-wheel motor drive is large, and an electric vehicle It is to be.
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, the present invention will be described with reference to the reference numerals of the embodiments for the sake of convenience to facilitate understanding.
 この発明のインホイールモータシステムは、モータ36および車輪用軸受34を有するインホイールモータ駆動装置10と、車体上に設置されバッテリの直流電力を交流電力に変換すると共に出力制御するインバータ装置1とが、配線により接続されたインホイールモータシステムであって、
 前記モータ36の回転を検出するレゾルバ6の検出信号をデジタル信号に変換するRDコンバータと、前記モータの温度を検出する温度センサ11の検出信号を処理する温度センサ回路18と、前記RDコンバータ2の出力および前記温度センサ回路18の出力の送信を行う通信回路22とが前記インホイールモータ駆動装置10に搭載されている。
The in-wheel motor system according to the present invention includes an in-wheel motor drive device 10 having a motor 36 and a bearing 34 for a wheel, and an inverter device 1 installed on the vehicle body to convert direct current power of the battery into alternating current power and to control output. An in-wheel motor system connected by wiring,
RD converter for converting detection signal of resolver 6 for detecting rotation of motor 36 into digital signal, temperature sensor circuit 18 for processing detection signal of temperature sensor 11 for detecting temperature of motor, and RD converter 2 A communication circuit 22 for transmitting an output and an output of the temperature sensor circuit 18 is mounted on the in-wheel motor drive device 10.
 この構成によると、RDコンバータ2、温度センサ回路18、および通信回路22がインホイールモータ駆動装置10に搭載されているため、レゾルバ6や温度センサ11の検出信号をそのままのアナログ信号で送る場合と異なり、デジタル化して、シリアル伝送で送信することができる。そのため、インホイールモータ駆動装置10とインバータ装置1との間の信号の送信につき、少ない配線本数で送信することができる。例えば、2本の電線または1本のシールド線で配線することができる。インホイールモータ駆動装置10とインバータ装置1との間の配線には、耐水、耐油、耐高温、耐低温、耐振動、耐屈曲の各性能が要求されるが、2本の電線にするとそれらの性能要求の実現が容易になる。またコネクタの設計、製造、選択も容易になる。また、インバータ装置1の全体をインホイールモータ駆動装置10に搭載する構成と異なり、インホイールモータ駆動装置10に搭載するのはRDコンバータ2、温度センサ回路18、および通信回路22であり、インバータ装置1自体は搭載しないため、インホイールモータ駆動装置10が大きいためにホイール内に入らなくなることがない。 According to this configuration, since the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 are mounted on the in-wheel motor drive device 10, the detection signal of the resolver 6 or the temperature sensor 11 may be sent as it is as an analog signal Differently, it can be digitized and transmitted by serial transmission. Therefore, transmission of signals between the in-wheel motor drive device 10 and the inverter device 1 can be performed with a small number of wires. For example, it can be wired by two electric wires or one shield wire. Water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, bending resistance performance are required for the wiring between in-wheel motor drive device 10 and inverter device 1, but two electric wires Implementation of performance requirements is facilitated. It also facilitates connector design, manufacture and selection. Also, unlike the configuration in which the entire inverter device 1 is mounted on the in-wheel motor drive device 10, the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 are mounted on the in-wheel motor drive device 10 1 itself is not mounted, so the in-wheel motor drive 10 does not get stuck in the wheel because it is large.
 前記配線として、前記インバータ装置1から出力される弱電系の電源電力を前記インホイールモータ駆動装置10に供給する通信電力伝達線24を有し、この通信電力伝達線24を流れる電流に前記情報通信の信号を重畳させる信号重畳手段を前記インホイールモータ駆動装置10に有し、前記電流に重畳された信号を分離する信号分離手段29を前記インバータ装置1に有するようにしてもよい。このようにRDコンバータ2等に電力を供給する配線(通信電力伝達線24)に情報通信の信号を重畳させるようにした場合、配線本数がより一層削減できる。この配線には、耐水、耐油、耐高温、耐低温、耐振動、耐屈曲の各性能が要求されるが、配線本数が少なくなることで、それらの要求性能の実現が容易になる。またコネクタの設計、製造、選択も容易になる。 As the wiring, the communication power transmission line 24 for supplying the power source power of the weak power system output from the inverter device 1 to the in-wheel motor drive device 10 is provided, and the information communication is performed on the current flowing through the communication power transmission line 24. The in-wheel motor drive device 10 may have signal superimposing means for superimposing the above signals, and the inverter device 1 may have signal separating means 29 for separating the signal superimposed on the current. When the signal of the information communication is superimposed on the wiring (communication power transmission line 24) for supplying power to the RD converter 2 and the like as described above, the number of wirings can be further reduced. The wiring is required to have water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, and bending resistance, but the reduction in the number of wirings facilitates the realization of the required performance. It also facilitates connector design, manufacture and selection.
 この発明のインホイールモータシステムにおいて、前記RDコンバータ2、前記温度センサ回路18、および前記通信回路22が共通のセンサ基板19に設けられていてもよい。これにより、配線や各種の電子素子の実装がよりコンパクトになる。 In the in-wheel motor system of the present invention, the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 may be provided on a common sensor substrate 19. This makes the wiring and mounting of various electronic elements more compact.
 この発明の電気自動車は、この発明の上記いずれかの構成のインホイールモータシステムを搭載する。このため、インホイールモータ駆動装置10とインバータ装置1間の配線が少なくて済み、またインホイールモータ駆動装置10が大きいためにホイールに入り難くなることがない。 An electric vehicle of the present invention is equipped with the in-wheel motor system of any of the above-described configurations of the present invention. For this reason, the wiring between the in-wheel motor drive device 10 and the inverter device 1 can be reduced, and since the in-wheel motor drive device 10 is large, it does not become difficult to enter the wheel.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the invention. In particular, any combination of two or more of the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
この発明の一の実施形態に係るインホイールモータシステムを搭載した電気自動車の概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram of the electric vehicle carrying the in-wheel motor system which concerns on one Embodiment of this invention. 同インホイールモータシステムの基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the same in-wheel motor system. 同インホイールモータシステムの電気回路図である。It is an electric circuit diagram of the same in-wheel motor system. 同インホイールモータシステムにおけるセンサ信号回路の変形例の回路図である。It is a circuit diagram of a modification of a sensor signal circuit in the in-wheel motor system. この発明の他の実施形態に係るインホイールモータシステムの電気回路図である。FIG. 6 is an electrical circuit diagram of an in-wheel motor system according to another embodiment of the present invention. インホイールモータ駆動装置の概要を示す断面図である。It is a sectional view showing an outline of an in-wheel motor drive. 従来例の電気回路図である。It is an electric circuit diagram of a conventional example.
 この発明の一の実施形態を図1~図4と共に説明する。図1は、このインホイールモータシステムを搭載した電気自動車の一例を示す概念図である。この電気自動車は、車体51の後輪となる左右の車輪32をそれぞれインホイールモータ駆動装置10で駆動する後輪駆動車である。前輪となる車輪33は従動輪であって、ハンドル52の操作で転舵される転舵輪となる。各車輪32,33に対して、摩擦式のブレーキ35が設けられている。 One embodiment of the present invention will be described in conjunction with FIGS. FIG. 1 is a conceptual view showing an example of an electric vehicle equipped with this in-wheel motor system. The electric vehicle is a rear wheel drive vehicle in which left and right wheels 32 serving as rear wheels of a vehicle body 51 are driven by the in-wheel motor drive device 10 respectively. The wheels 33 serving as the front wheels are driven wheels, which are steered wheels steered by the operation of the steering wheel 52. A friction brake 35 is provided for each of the wheels 32 and 33.
 車両全体の制御系につき説明する。運転者よる、アクセル53の操作角度であるアクセル入力は、VCU(vehicle-control-unit)55が読み取り、それをトルク指令に換算して、インバータ装置1に指令する。VCU55は、車両全体の統括制御を行うECU(Electronic-control-unit)である。インバータ装置1は、バッテリ56の直流電力をインバータ1aで三相交流に変換し、かつモータ制御回路1bにより前記トルク指令に基づいた電力に制御して左右のインホイールモータ駆動装置10のモータ36を駆動する。この場合、2つのインバータ装置を使用することも可能であるが、この例のインバータ装置1は2軸一体型であり、2つのモータ36を駆動できる。なお、この例の電気自動車は後輪駆動であるが、前輪駆動、四輪駆動も上記と同様の構成で実現できる。四輪駆動の場合、前記インバータ装置1が前輪および後輪に対して別々に設けられていてもよい。 The control system of the whole vehicle will be described. The VCU (vehicle-control-unit) 55 reads an accelerator input which is an operation angle of the accelerator 53 by the driver, converts it into a torque command, and instructs the inverter device 1. The VCU 55 is an ECU (Electronic-control-unit) that performs overall control of the entire vehicle. The inverter device 1 converts the DC power of the battery 56 into three-phase AC by the inverter 1a, and controls the motor 36 of the left and right in-wheel motor drive devices 10 by controlling the power based on the torque command by the motor control circuit 1b. To drive. In this case, although it is also possible to use two inverter devices, the inverter device 1 of this example is a two-axis integrated type and can drive two motors 36. Although the electric vehicle of this example is rear wheel drive, front wheel drive and four wheel drive can also be realized with the same configuration as described above. In the case of four-wheel drive, the inverter device 1 may be provided separately for the front wheels and the rear wheels.
  <インホイールモータ駆動装置10>
 インホイールモータ駆動装置10は、例えば図6に示すように、モータ36、減速機37、および車輪用軸受34を有し、これらの一部または全体が車輪32内に配置される。モータ36の回転は、減速機37、その出力部材40、および車輪用軸受34の回転輪であるハブ輪34aを介して車輪32に伝達される。ハブ輪34aのフランジ部にはブレーキロータ35aが固定される。同ブレーキロータ35aは、車輪32と一体に回転する。ブレーキロータ35aとブレーキキャリパ35bとで摩擦式のブレーキ35が構成される。モータ36は、例えば、ロータ36aのコア部に永久磁石(図示せず)が内蔵された埋込磁石型同期モータである。このモータ36は、ハウジング38に固定したステータ36bと、回転出力軸39に取り付けたロータ36aとの間にラジアルギャップを有するモータである。
<In-wheel motor drive 10>
For example, as shown in FIG. 6, the in-wheel motor drive device 10 includes a motor 36, a reduction gear 37, and a bearing 34 for a wheel, and a part or all of these are disposed in the wheel 32. The rotation of the motor 36 is transmitted to the wheel 32 via the reduction gear 37, its output member 40, and the hub wheel 34 a which is a rotating wheel of the wheel bearing 34. The brake rotor 35a is fixed to the flange portion of the hub wheel 34a. The brake rotor 35 a rotates integrally with the wheel 32. A friction type brake 35 is configured by the brake rotor 35a and the brake caliper 35b. The motor 36 is, for example, an embedded magnet synchronous motor in which a permanent magnet (not shown) is incorporated in the core portion of the rotor 36a. The motor 36 is a motor having a radial gap between a stator 36 b fixed to the housing 38 and a rotor 36 a attached to the rotational output shaft 39.
 モータ36には、その回転出力軸39の回転を検出するセンサとしてレゾルバ6が設けられ、また温度センサ11とセンサ基板19とが設けられている。温度センサ11は、モータ36の温度、例えばステータの温度を検出するセンサである。温度センサ11は、液冷式のモータ36の場合、油液温を検出するものであってもよく、またステータの温度検出と油温検出とをそれぞれ行うように、温度センサ11が複数設けられていてもよい。センサ基板19については後に説明する。 The motor 36 is provided with a resolver 6 as a sensor for detecting the rotation of the rotation output shaft 39, and is provided with a temperature sensor 11 and a sensor substrate 19. The temperature sensor 11 is a sensor that detects the temperature of the motor 36, for example, the temperature of the stator. In the case of a liquid-cooled motor 36, the temperature sensor 11 may detect the oil temperature, and a plurality of temperature sensors 11 are provided to perform temperature detection and oil temperature detection of the stator, respectively. It may be The sensor substrate 19 will be described later.
 図2は、インホイールモータシステムの基本構造である。図1の車体51に搭載されたインバータ装置1と、インホイールモータ駆動装置10内のモータ36との間は、モータ駆動用の動力線となる各相のモータケーブル14で接続される。インホイールモータ駆動装置10内のレゾルバ6および温度センサ11は、センサ駆動電力および信号送受用のセンサ信号ケーブル13でインバータ装置1に接続される。センサ信号ケーブル13は、同図では1本で代表して示している。 FIG. 2 is a basic structure of an in-wheel motor system. The inverter device 1 mounted on the vehicle body 51 of FIG. 1 and the motor 36 in the in-wheel motor drive device 10 are connected by the motor cable 14 of each phase, which is a power line for driving the motor. The resolver 6 and the temperature sensor 11 in the in-wheel motor drive device 10 are connected to the inverter device 1 by a sensor signal cable 13 for transmitting and receiving sensor drive power and signals. The sensor signal cable 13 is representatively shown by one in FIG.
  <センサ信号・センサ電源回路の概要>
 図3は、この実施形態のインホイールモータシステムにおけるセンサ信号およびセンサ電源の回路を示す。この実施形態の特徴事項を説明すると、従来と比べて、インホイールモータ駆動装置10と、インバータ装置1間の配線を減らすために、通常は車体上のインバータ装置1内にあるRDコンバータ2や温度センサ回路18を、インホイールモータ駆動装置10に移している。このインホイールモータ駆動装置10側の回路上でデジタル化された情報を、通信伝達線16によって車両側のインバータ装置1に通信する。通常、デジタル通信に必要な電線は2本から3本であるが、この実施形態では2本としている。この他に、電源供給用に2本が別に必要となり、その2本の電源供給線15を設けている。そのため、この実施形態では、インホイールモータ駆動装置10とインバータ装置1間の配線は4本となっている。なお、これら電源供給線15と通信伝達線16とを代表して、図2では1本のセンサ信号ケーブル13として示している。インホイールモータ駆動装置10内にはセンサ基板19を設置し、この同一のセンサ基板19上にRDコンバータ2と、温度センサ回路18と、通信回路22とを共通で搭載している。
<Outline of sensor signal / sensor power circuit>
FIG. 3 shows a circuit of sensor signals and sensor power in the in-wheel motor system of this embodiment. In order to explain the features of this embodiment, in order to reduce the wiring between the in-wheel motor drive device 10 and the inverter device 1 as compared with the prior art, the RD converter 2 or the temperature normally in the inverter device 1 on the vehicle body The sensor circuit 18 is transferred to the in-wheel motor drive 10. The information digitized on the circuit on the in-wheel motor drive 10 side is communicated to the inverter 1 on the vehicle side via the communication transmission line 16. Usually, two to three wires are required for digital communication, but in this embodiment, two wires are used. In addition to this, two are separately required for power supply, and the two power supply lines 15 are provided. Therefore, in this embodiment, the number of wires between the in-wheel motor drive device 10 and the inverter device 1 is four. The power supply line 15 and the communication transmission line 16 are represented as one sensor signal cable 13 in FIG. A sensor substrate 19 is installed in the in-wheel motor drive device 10, and an RD converter 2, a temperature sensor circuit 18, and a communication circuit 22 are commonly mounted on the same sensor substrate 19.
  <レゾルバ6>
 レゾルバ6は、レゾルバロータ5とレゾルバステータ4とで構成され、レゾルバステータ4は、互いに90度の電気的角度差を持ったSINコイル8およびCOSコイル9と励磁コイル7とを有する。SINコイル8およびCOSコイル9のいずれかを励磁に兼用し、励磁コイル7を省略した形式であってもよい。
<Resolver 6>
The resolver 6 is composed of a resolver rotor 5 and a resolver stator 4, and the resolver stator 4 has a SIN coil 8, a COS coil 9 and an excitation coil 7 which have an electrical angle difference of 90 degrees. Either the SIN coil 8 or the COS coil 9 may be used for excitation, and the excitation coil 7 may be omitted.
  <RDコンバータ2>
 RDコンバータ2は、レゾルバ6の検出信号をデジタル信号に変換する機器であり、励磁回路3からレゾルバ6の励磁コイル7に励磁電流を出力すると共に、レゾルバ6の励磁コイル7、SINコイル8、およびCOSコイル9の検出信号を、参照信号(REF)入力端子、SIN信号入力端子、およびCOS信号入力端子から得て、デジタル信号として出力端子から出力する。
<RD converter 2>
The RD converter 2 is a device for converting the detection signal of the resolver 6 into a digital signal, and outputs an excitation current from the excitation circuit 3 to the excitation coil 7 of the resolver 6, and the excitation coil 7 of the resolver 6, SIN coil 8 and A detection signal of the COS coil 9 is obtained from the reference signal (REF) input terminal, the SIN signal input terminal, and the COS signal input terminal, and is output from the output terminal as a digital signal.
  <温度センサ回路18>
 温度センサ回路18は、温度センサ11が検出信号として出力するアナログ信号をデジタル信号に変換して出力する回路である。
<Temperature sensor circuit 18>
The temperature sensor circuit 18 is a circuit that converts an analog signal output from the temperature sensor 11 as a detection signal into a digital signal and outputs the digital signal.
  <通信回路22>
 通信回路22は、RDコンバータ2および温度センサ回路18からデジタル信号で得た回転位置信号および温度検出信号を(複数種類の信号の場合は時間多重により)シリアル信号に変換して通信伝達線16に出力する手段である。通信回路22は、RS232C、イーサネット(登録商標)等による不平衡な通信手段、または、図5で示すような、RS485、CAN等の差動回路22aによる通信手段、あるいは、3線式による通信手段(図示せず)でもよい。通信方向は、図4のような双方向であっても、またインホイールモータ駆動装置10からインバータ装置1への単方向であってもよい。なお、通信伝送線16には、接地された(GND側の)図3に示すシールド用の電線が含まれてもよい。また、当該通信には、LVDS(Low Voltage Differential Signaling)等の差動入力の通信方式が用いられてもよい。
<Communication circuit 22>
The communication circuit 22 converts rotational position signals and temperature detection signals obtained as digital signals from the RD converter 2 and the temperature sensor circuit 18 into serial signals (by time multiplexing in the case of a plurality of types of signals) to the communication transmission line 16. It is a means to output. The communication circuit 22 may be unbalanced communication means such as RS232C or Ethernet (registered trademark), or communication means such as RS485 or CAN differential circuit 22a as shown in FIG. 5, or 3-wire communication means. (Not shown) may be used. The communication direction may be bidirectional as shown in FIG. 4, or may be unidirectional from the in-wheel motor drive device 10 to the inverter device 1. The communication transmission line 16 may include a shielded electric wire shown in FIG. 3 that is grounded (on the GND side). In addition, for the communication, a communication method of differential input such as LVDS (Low Voltage Differential Signaling) may be used.
  <電源供給>
 RDコンバータ2および通信回路22への電源電力の供給には、通信伝達線16とは別に準備した電源供給線15を用いる。電源供給線15は、インバータ装置1にモータ駆動用とは別に設けられた弱電機器用の電源25に接続される。電源25は、5~24V程度の直流電源であり、例えば5V、または12V、または24Vとされる。電源供給線15の正側の配線は、電源コンデンサ17を介して接地され、負側の配線は設置される(GND側)。この電源コンデンサ17は、インバータ装置1およびインホイールモータ駆動装置10においてそれぞれ設けられる。
<Power supply>
In order to supply power to the RD converter 2 and the communication circuit 22, a power supply line 15 prepared separately from the communication transmission line 16 is used. The power supply line 15 is connected to a power supply 25 for a weak electric device provided separately from the motor drive of the inverter device 1. The power supply 25 is a DC power supply of about 5 to 24 V, and is set to, for example, 5 V, 12 V, or 24 V. The wiring on the positive side of the power supply line 15 is grounded via the power supply capacitor 17, and the wiring on the negative side is installed (GND side). The power supply capacitor 17 is provided in each of the inverter device 1 and the in-wheel motor drive device 10.
  <電線本数>
 インバータ装置1とインホイールモータ駆動装置10との間の電線の本数は、電源供給線15と通信伝達線16の各アース側(GND側)側を共通にすれば3本となるが、この実施形態では合計4本とされている。なお、3線式の通信手段22を採用すれば、電線の数が1本増える。
<Number of wires>
The number of electric wires between the inverter device 1 and the in-wheel motor drive device 10 will be three if the ground side (GND side) of the power supply line 15 and the communication transmission line 16 is common. The form is a total of four. If the three-wire communication means 22 is adopted, the number of electric wires increases by one.
  <通信内容>
 通信回路22による通信内容は、インホイールモータ駆動装置10側からインバータ装置1側へは、主に、レゾルバ6により検出されたモータ36の回転位置の情報であるが、これに温度センサ11による温度検出値が加わる。レゾルバ6またはインホイールモータ駆動装置10に、レゾルバ状態、レゾルバ信号異常、レゾルバ初期診断の検出機能を備える場合や、RDコンバータ2にRDコンバータ温度、RDコンバータ自己診断機能を備える場合、あるはインホイールモータ駆動装置10が他のセンサを有する場合は、これらの状態や診断結果、センサ関連の信号等が追加される。双方向通信の場合は、インバータ装置1側からインホイールモータ駆動装置10側への通信内容があり、例えば自己診断を行わせる指令や、異常リセットを行わせる指令などが含まれる。
<Communication content>
The contents of communication by the communication circuit 22 are mainly information on the rotational position of the motor 36 detected by the resolver 6 from the in-wheel motor drive device 10 side to the inverter device 1 side. Detection value is added. When the resolver 6 or the in-wheel motor drive device 10 has a detection function of resolver state, resolver signal abnormality, resolver initial diagnosis, or the RD converter 2 has RD converter temperature, RD converter self-diagnosis function, some are in-wheel When the motor drive device 10 has other sensors, these states, diagnosis results, sensor-related signals, etc. are added. In the case of two-way communication, there are communication contents from the inverter device 1 side to the in-wheel motor drive device 10 side, including, for example, a command for performing self-diagnosis and a command for performing abnormality reset.
  <インバータ装置1内のセンサ関連の構成>
 インバータ装置1は、RDコンバータ2やセンサ類の駆動および信号受信に関する手段として、前記電源25を備える他に通信手段22Aを備えている。通信手段22Aは、インホイールモータ駆動装置10の通信手段22から通信伝達線16を経て送信された回転位置および温度の信号等を受信しCPU10へ出力する手段である。CPU30は、走行用のモータ36(図2参照)の駆動のためにモータケーブル14から送る電流を制御する手段であり、その制御に前記回転位置および温度の信号を用いる。なお、通信手段22Aでは、双方向通信の場合は、上述のように、インバータ装置1側からインホイールモータ駆動装置10側への送信機能が含まれる。
<Sensor related configuration in inverter device 1>
The inverter device 1 includes a communication unit 22A in addition to the power supply 25 as a unit related to driving of the RD converter 2 and sensors and signal reception. The communication unit 22A is a unit that receives the rotational position and temperature signals and the like transmitted from the communication unit 22 of the in-wheel motor drive device 10 through the communication transmission line 16, and outputs the signals to the CPU 10. The CPU 30 is means for controlling the current sent from the motor cable 14 for driving the traveling motor 36 (see FIG. 2), and uses the signals of the rotational position and temperature for the control. In the case of bi-directional communication, the communication means 22A includes the transmission function from the inverter device 1 side to the in-wheel motor drive device 10 side as described above.
  <作用、効果>
 この構成のインホイールモータシステムによると、RDコンバータ2、温度センサ回路18、および通信回路22がインホイールモータ駆動装置10に搭載されているため、レゾルバ6や温度センサ11の検出信号をそのままのアナログ信号で送る場合と異なり、デジタル化して、シリアル伝送で送信することができる。そのため、インホイールモータ駆動装置10とインバータ装置1との間の信号の送信につき、少ない配線本数で送信することができる。図示の例では2本としているが、インホイールモータ駆動装置10とインバータ装置1との間の配線には、耐水、耐油、耐高温、耐低温、耐振動、耐屈曲の各性能が要求されるため、配線本数が低減することでそれらの性能要求の実現が容易になる。またコネクタの設計、製造、選択も容易になる。また、インバータ装置1をインホイールモータ駆動装置10に搭載する構成と異なり、インホイールモータ駆動装置10に搭載するのはRDコンバータ2、温度センサ回路18、および通信回路22であり、インバータ装置1自体は搭載しないため、インホイールモータ駆動装置10が大きいためにホイール内に入らなくなることがない。
<Action, effect>
According to the in-wheel motor system of this configuration, since the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 are mounted on the in-wheel motor drive device 10, the detection signals of the resolver 6 and the temperature sensor 11 are analog as they are Unlike signal transmission, it can be digitized and transmitted by serial transmission. Therefore, transmission of signals between the in-wheel motor drive device 10 and the inverter device 1 can be performed with a small number of wires. Although two are shown in the illustrated example, water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance and bending resistance are required for the wiring between the in-wheel motor drive device 10 and the inverter device 1 Therefore, the reduction in the number of wires facilitates the realization of those performance requirements. It also facilitates connector design, manufacture and selection. Also, unlike the configuration in which the inverter device 1 is mounted on the in-wheel motor drive device 10, it is the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 that are mounted on the in-wheel motor drive device 10. Since the in-wheel motor drive 10 is large, it does not get stuck in the wheel.
 また、前記RDコンバータ2、温度センサ回路18、および通信回路22が共通のセンサ基板19に設けられているため、配線や各種の電子素子の実装がより一層コンパクトになる。 Further, since the RD converter 2, the temperature sensor circuit 18, and the communication circuit 22 are provided on the common sensor substrate 19, the mounting of the wiring and various electronic elements can be made more compact.
  <他の実施形態>
 図5は、この発明の他の実施形態を示す。この実施形態において、特に説明する事項の他は、図1~図4と共に前述した実施形態と同様である。この実施形態では、インホイールモータ駆動装置10と、インバータ装置1間で通信する信号を電源電流と重畳させており、インホイールモータ駆動装置10とインバータ装置1間の配線は2本の通信電力伝達線24のみとなっている。この通信電力伝達線24は、シールド線を使用しなければ1本とできる。このように、配線本数を少なくすることで、より一層、配線コスト、信頼性を向上させることができる。具体的には、インホイールモータ駆動装置10に信号重畳手段28を設けることで、電源供給用の電流にセンサ信号を重畳させ、通信電力伝達線24で電源供給と信号の通信とを行えるようにしている。また、インバータ装置1には、電源供給用の電流に重畳された信号を分離する信号分離手段29を設けている。なお、信号重畳手段28と信号分離手段29との間で信号伝送されるが、当該信号伝送は一方の手段から他方の手段への単方向でもよく、また双方向でもよい。
Other Embodiments
FIG. 5 shows another embodiment of the present invention. This embodiment is the same as the embodiment described above with reference to FIGS. 1 to 4 except for items to be particularly described. In this embodiment, the signal communicated between the in-wheel motor drive device 10 and the inverter device 1 is superimposed on the power supply current, and the wire between the in-wheel motor drive device 10 and the inverter device 1 transmits two communication powers. It is only the line 24. The communication power transmission line 24 can be one if the shield line is not used. By thus reducing the number of wires, it is possible to further improve the wire cost and reliability. Specifically, by providing the signal superimposing means 28 in the in-wheel motor drive device 10, the sensor signal is superimposed on the current for power supply so that the power supply and communication of the signal can be performed by the communication power transmission line 24. ing. Further, the inverter device 1 is provided with signal separation means 29 for separating the signal superimposed on the current for power supply. Although signal transmission is performed between the signal superimposing means 28 and the signal separating means 29, the signal transmission may be unidirectional or bidirectional from one means to the other.
  <信号重畳手段28>
 信号重畳手段28は、通信手段22の出力端子に接続されて信号を変調する変調手段23を有する。信号重畳手段28は、この変調手段23の出力端子と前記通信電力伝達線24におけるプラス側配線との間に介在したカップリングコンデンサ20を有する。さらに、信号重畳手段28は、チョークコイル21を有する。信号重畳手段28は、前記センサ基板19に実装されている。チョークコイル21は、前記通信電力伝達線24における前記カップリングコンデンサ20との接続点と、前記通信手段22の電源入力端子との間に介在している。前記変調手段23は、変調機能素子等の回路からなり、信号をDC成分および低周波AC成分が含まれないように変調し、インピーダンスの整合(マッチング)も行う。通信、変調方式は任意の方式でよく、例えば、FM変調、デジタル変調、パルス変調等とする。
<Signal superposing means 28>
The signal superposition means 28 comprises modulation means 23 connected to the output terminal of the communication means 22 to modulate the signal. The signal superimposing means 28 has a coupling capacitor 20 interposed between the output terminal of the modulation means 23 and the plus side wiring of the communication power transmission line 24. Furthermore, the signal superimposing means 28 has a choke coil 21. The signal superimposing means 28 is mounted on the sensor substrate 19. The choke coil 21 is interposed between a connection point of the communication power transmission line 24 with the coupling capacitor 20 and a power input terminal of the communication unit 22. The modulation unit 23 includes a circuit such as a modulation functional element, modulates a signal so as not to include a DC component and a low frequency AC component, and performs impedance matching (matching). The communication and modulation methods may be arbitrary methods, for example, FM modulation, digital modulation, pulse modulation and the like.
  <信号分離手段29>
 信号分離手段29は、インバータ装置1内において、前記通信電力伝達線24におけるプラス側配線に接続されたカップリングコンデンサ20Aを有する。信号分離手段29は、このカップリングコンデンサ20Aを介して前記通信電力伝達線24に接続されてその復調出力端子が前記通信手段22に接続された復調手段23Aを有する。さらに、信号分離手段29は、チョークコイル21Aを有する。チョークコイル21Aは、通信電力伝達線24における前記カップリングコンデンサ20Aとの接続点と、前記通信手段22Aの電源入力端子との間に介在している。
<Signal separation means 29>
The signal separation means 29 has a coupling capacitor 20A connected to the plus side wiring of the communication power transmission line 24 in the inverter device 1. The signal separation means 29 has a demodulation means 23A connected to the communication power transmission line 24 via the coupling capacitor 20A and having a demodulation output terminal connected to the communication means 22. Furthermore, the signal separation means 29 has a choke coil 21A. The choke coil 21A is interposed between a connection point of the communication power transmission line 24 with the coupling capacitor 20A and a power input terminal of the communication means 22A.
  <他の実施形態の作用説明と、構成の説明の補足>
 電源25からの電源供給は直流であり、重畳される通信信号の伝達は、例えば、少なくとも1kHz以上、通常1MHz以上の交流信号でなされるものとする。電源電圧は5~24V程度、例えば12V、または24V、または5Vである。電源は、インバータ装置1に備えられたチョークコイル21A、通信電力伝達線24、インホイールモータ駆動装置10に備えられたチョークコイル21を介して、インホイールモータ駆動装置10内のRDコンバータ2や通信手段22に供給される。電源コンデンサ17、17Aは電源の安定のために取り付ける。インホイールモータ駆動装置10内では、必要に応じてレギュレータ、DC-DCコンバータ等(図示せず)で電圧を変換することもできる。通信内容は先の実施形態と同様である。
<Supplementary Description of Operation of Other Embodiments and Description of Configuration>
The power supply from the power supply 25 is a direct current, and the transmission of the communication signal to be superimposed is, for example, an AC signal of at least 1 kHz or more, usually 1 MHz or more. The power supply voltage is about 5 to 24V, for example 12V, or 24V, or 5V. The power supply is via the choke coil 21A provided in the inverter device 1, the communication power transmission line 24, and the choke coil 21 provided in the in-wheel motor drive device 10 to communicate with the RD converter 2 or communication in the in-wheel motor drive device 10. It is supplied to the means 22. The power supply capacitors 17, 17A are attached for the stabilization of the power supply. In the in-wheel motor drive device 10, the voltage can also be converted by a regulator, a DC-DC converter or the like (not shown) as necessary. The contents of communication are the same as in the previous embodiment.
 レゾルバロータ5の回転検出位置情報、および温度センサ11の温度情報は、インホイールモータ駆動装置10の通信手段22、変調手段23、カップリングコンデンサ20を通過し、通信電力伝達線24を通り、インバータ装置1側のカップリングコンデンサ20A、復調手段23A、通信手段22Aを通過し、インバータ装置1のCPU30に伝達される。なお、双方向に通信する場合は、情報を逆向きに伝達する。 The rotation detection position information of the resolver rotor 5 and the temperature information of the temperature sensor 11 pass through the communication means 22 of the in-wheel motor drive device 10, the modulation means 23 and the coupling capacitor 20, and pass through the communication power transmission line 24 It passes through the coupling capacitor 20A on the device 1 side, the demodulation means 23A, and the communication means 22A, and is transmitted to the CPU 30 of the inverter device 1. In the case of two-way communication, information is transmitted in the opposite direction.
 この実施形態の場合、上記のようにRDコンバータ2等に電力を供給する配線(通信電力伝達線24)に情報通信の信号を重畳させるようにしたため、配線本数がより一層削減できる。この配線には、耐水、耐油、耐高温、耐低温、耐振動、耐屈曲の各性能が要求されるが、配線本数が少なくなることで、それらの要求性能の実現が容易になる。またコネクタの設計、製造、選択も容易になる。 In the case of this embodiment, since the signal of the information communication is superimposed on the wiring (communication power transmission line 24) for supplying power to the RD converter 2 and the like as described above, the number of wirings can be further reduced. The wiring is required to have water resistance, oil resistance, high temperature resistance, low temperature resistance, vibration resistance, and bending resistance, but the reduction in the number of wirings facilitates the realization of the required performance. It also facilitates connector design, manufacture and selection.
 なお、上記各実施形態は、2つのインホイールモータシステムをもつ電気自動車を対象にしているが、この発明は、4輪駆動以上の電気自動車の場合も、2つのインホイールモータシステムを2組以上持っているものとして適用することができる。また1個のインホイールモータシステムのみをもつ電気自動車にも適用することができる。 Although each of the above embodiments is directed to an electric vehicle having two in-wheel motor systems, the present invention also applies to two or more sets of two in-wheel motor systems even in the case of an electric vehicle having four-wheel drive or more It can be applied as having. It can also be applied to electric vehicles having only one in-wheel motor system.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications, and deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
1…インバータ装置
2…RDコンバータ
6…レゾルバ
10…インホイールモータ駆動装置
11…温度センサ
13…センサ信号ケーブル
14…モータケーブル
15…電源供給線
16…通信伝達線
17,17A…電源コンデンサ
18…温度センサ回路
19…センサ基板
20,20A…カップリングコンデンサ
21,21A…チョークコイル
22,22A…通信手段  
23…変調手段
23A…復調手段
24…通信電力伝達線
28…信号重畳手段 
29…信号分離手段 
32…車輪
34…車輪用軸受
36…モータ
37…減速機
DESCRIPTION OF SYMBOLS 1 ... Inverter apparatus 2 ... RD converter 6 ... Resolver 10 ... In-wheel motor drive apparatus 11 ... Temperature sensor 13 ... Sensor signal cable 14 ... Motor cable 15 ... Power supply line 16 ... Communication transmission line 17, 17A ... Power supply capacitor 18 ... Temperature Sensor circuit 19: Sensor substrate 20, 20A: Coupling capacitor 21, 21A: Choke coil 22, 22A: Communication means
23 Modulation means 23A Demodulation means 24 Communication power transmission line 28 Signal superposition means
29: Signal separation means
32: Wheels 34: Wheel bearings 36: Motor 37: Reduction gear

Claims (4)

  1.  モータおよび車輪用軸受を有するインホイールモータ駆動装置と、車体上に設置されバッテリの直流電力を交流電力に変換すると共に出力制御するインバータ装置とが、配線により接続されたインホイールモータシステムであって、
     前記モータの回転を検出するレゾルバの検出信号をデジタル信号に変換するRDコンバータと、前記モータの温度を検出する温度センサの検出信号を処理する温度センサ回路と、前記RDコンバータの出力および前記温度センサ回路の出力の送信を行う通信回路とが前記インホイールモータ駆動装置に搭載されているインホイールモータシステム。
    An in-wheel motor system in which an in-wheel motor drive device having a motor and a bearing for a wheel, and an inverter device installed on a vehicle body for converting direct current power of a battery to alternating current power and controlling output are connected by wiring. ,
    An RD converter for converting a detection signal of a resolver for detecting rotation of the motor into a digital signal, a temperature sensor circuit for processing a detection signal of a temperature sensor for detecting the temperature of the motor, an output of the RD converter and the temperature sensor The in-wheel motor system by which the communication circuit which transmits the output of a circuit is mounted in the said in-wheel motor drive device.
  2.  請求項1に記載のインホイールモータシステムにおいて、前記配線として、前記インバータ装置から出力される弱電系の電源電力を前記インホイールモータ駆動装置に供給する通信電力伝達線を有し、この通信電力伝達線を流れる電流に前記情報通信の信号を重畳させる信号重畳手段を前記インホイールモータ駆動装置に有し、前記電流に重畳された信号を分離する信号分離手段を前記インバータ装置に有するインホイールモータシステム。 The in-wheel motor system according to claim 1, wherein the wiring includes a communication power transmission line for supplying the power supply power of the low-power system output from the inverter device to the in-wheel motor drive device. In-wheel motor system having signal superimposing means for superimposing the signal of the information communication on current flowing through the wire in the in-wheel motor drive device, and signal separating means for separating the signal superimposed on the current in the inverter device .
  3.  請求項1または請求項2に記載のインホイールモータシステムにおいて、前記RDコンバータ、前記温度センサ回路、および前記通信回路が、共通のセンサ基板に設けられているインホイールモータシステム。 The in-wheel motor system according to claim 1 or 2, wherein the RD converter, the temperature sensor circuit, and the communication circuit are provided on a common sensor substrate.
  4.  請求項1ないし請求項3のいずれか1項に記載のインホイールモータシステムを搭載した電気自動車。 An electric vehicle equipped with the in-wheel motor system according to any one of claims 1 to 3.
PCT/JP2018/023706 2017-06-28 2018-06-21 In-wheel motor system and electric automobile WO2019004062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-125786 2017-06-28
JP2017125786A JP2019006322A (en) 2017-06-28 2017-06-28 In-wheel motor system and electric automobiles

Publications (1)

Publication Number Publication Date
WO2019004062A1 true WO2019004062A1 (en) 2019-01-03

Family

ID=64741649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023706 WO2019004062A1 (en) 2017-06-28 2018-06-21 In-wheel motor system and electric automobile

Country Status (2)

Country Link
JP (1) JP2019006322A (en)
WO (1) WO2019004062A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121431A1 (en) 2022-08-24 2024-02-29 Keßler & Co.GmbH & Co.KG wheel side

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161032A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Traveling device
US20110295457A1 (en) * 2007-11-09 2011-12-01 Michelin Recherche Et Technique S.A. System for controlling a vehicle with determination of its instantaneous speed relative to the ground
JP2013110903A (en) * 2011-11-24 2013-06-06 Ntn Corp Controller for motor
JP2014239583A (en) * 2013-06-06 2014-12-18 株式会社クリーンクラフト Permanent magnet type synchronous motor control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161032A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Traveling device
US20110295457A1 (en) * 2007-11-09 2011-12-01 Michelin Recherche Et Technique S.A. System for controlling a vehicle with determination of its instantaneous speed relative to the ground
JP2013110903A (en) * 2011-11-24 2013-06-06 Ntn Corp Controller for motor
JP2014239583A (en) * 2013-06-06 2014-12-18 株式会社クリーンクラフト Permanent magnet type synchronous motor control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121431A1 (en) 2022-08-24 2024-02-29 Keßler & Co.GmbH & Co.KG wheel side

Also Published As

Publication number Publication date
JP2019006322A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP4154883B2 (en) Brake device
EP2810818B1 (en) Electric vehicle
EP3843250A1 (en) Electric power steering device
JP5195360B2 (en) Brake hydraulic pressure control device
JP4929189B2 (en) Resolver abnormality detection circuit
KR101219350B1 (en) Device and method for sensing wheel speed using inwheel motor
EP1690768A1 (en) Electromechanical disc brake system
JP2018052482A (en) Bearing device for wheel with auxiliary power unit and auxiliary power unit
WO2020162399A1 (en) Vehicle power device and wheel bearing device equipped with generator
WO2019225556A1 (en) Motor, vehicle power unit with motor, generator, vehicle wheel bearing with generator
JP7025176B2 (en) Vehicle power unit
EP3863880B1 (en) A traction control system
JP2018057255A (en) Vehicle power assistance system and vehicle driven wheel regenerative system
WO2019004062A1 (en) In-wheel motor system and electric automobile
JP5195458B2 (en) Electric motor and electric power steering apparatus provided with the electric motor
JP2007330040A (en) Failure determination device of electric motor drive circuit
CN114132375A (en) Electric power steering system and power assisting device thereof
WO2022153690A1 (en) Electronic control device and method for routing ground line
WO2019078216A1 (en) Vehicle power device and wheel bearing device with generator
JP2019075976A (en) Vehicle power device and generator-equipped wheel bearing device
CN108110960A (en) A kind of motor, controller and the integrated drive system of reduction box
JP4062427B2 (en) Rolling device operation status detection device
WO2018056270A1 (en) Vehicle power assist system
JP5695366B2 (en) Torque sensor for power steering and electric power steering apparatus having the same
EP0864450B1 (en) A bearing assembly with an integrated current generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823209

Country of ref document: EP

Kind code of ref document: A1