WO2019003491A1 - 宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法 - Google Patents

宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法 Download PDF

Info

Publication number
WO2019003491A1
WO2019003491A1 PCT/JP2018/005891 JP2018005891W WO2019003491A1 WO 2019003491 A1 WO2019003491 A1 WO 2019003491A1 JP 2018005891 W JP2018005891 W JP 2018005891W WO 2019003491 A1 WO2019003491 A1 WO 2019003491A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
home
optical signal
voa
signal
Prior art date
Application number
PCT/JP2018/005891
Other languages
English (en)
French (fr)
Inventor
大助 梅田
船田 知之
成斗 田中
川瀬 大輔
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019003491A1 publication Critical patent/WO2019003491A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present invention relates to a home apparatus, an optical communication system, and a method of adjusting the transmission level of a home apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2017-127719, which is a Japanese patent application filed on June 29, 2017. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • a passive optical network is a system that performs point-to-multipoint optical communication between an optical line terminal (OLT) and one or more optical network units (ONUs).
  • An optical line termination device is a unit generally located at the service provider's premises, also referred to as a "station-side device.”
  • An optical network unit (ONU) is a unit located at or near a subscriber's premises, and is also referred to as a "home-side device”.
  • An OLT may receive a relatively strong optical signal from one ONU and may receive a relatively weak optical signal from another ONU. Changes in the strength of the received signal can make accurate recovery of the signal difficult at the OLT.
  • the power leveling mechanism is effective in terms of the relaxation of the dynamic range of the burst receiver of the OLT and the prolongation of the life of the laser element included in the burst transmitter of the ONU and the reduction of the power consumption.
  • ITU-T Recommendation G. 984 contains recommendations for Gigabit PON (GPON) and power leveling mechanisms that can be implemented on an OLT (ITU-T Recommendation G.
  • the ONU transmitter adjusts the transmission power by adjusting the drive current of the laser element.
  • ITU-T Recommendation G. 984 (03/2003) shows an example in which the transmission power of the ONU transmitter is adjusted to three levels (Mode 0: normal power, Mode 1: -3 dB, Mode 2: -6 dB).
  • ITU-T Recommendation G.984.2 (03/2003) "Gigabit-capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) layer Specification", "8.3.2 Power leveling mechanism at ONU transmitter” and “Appendix II Description and examples of power levelling mechanism ", https://www.itu.int/rec/T-REC-G.984.2-200303-I/en [June 14, 2017 search]
  • a home apparatus includes an optical transmitter configured to output an optical signal, an optical receiver configured to receive an optical signal, and an optical signal from at least the optical transmitter. And a variable light attenuator configured to attenuate the optical transmitter.
  • An optical communication system includes a station-side device, at least one home-side device, and an optical distribution network that connects the station-side device and the at least one home-side device.
  • the station-side apparatus includes a first optical transmitter configured to output an optical signal, a first optical receiver configured to receive an optical signal, and a stage before the first optical receiver. And a semiconductor optical amplifier disposed.
  • the home apparatus comprises a second optical transmitter configured to output an optical signal, a second optical receiver configured to receive the optical signal, and at least a second optical transmitter. And a variable optical attenuator configured to attenuate the optical signal.
  • a method is a method of adjusting a transmission level of a home apparatus.
  • the home apparatus is input to an optical transmitter configured to output an optical signal, an optical receiver configured to receive an optical signal, and the optical signal from the optical transmitter and the optical receiver.
  • a variable optical attenuator for attenuating an optical signal to be modulated a monitor circuit configured to monitor the reception level of the optical receiver, and a controller.
  • the method comprises the steps of: monitoring the reception level of the optical receiver by a monitoring circuit; controlling the attenuation of the variable optical attenuator based on the reception level obtained by the monitoring step by the controller; The steps of repeating the steps of monitoring and controlling to be within a predetermined range, and permitting the output of the optical signal by the optical transmitter when the reception level falls within the predetermined range.
  • FIG. 1 is a view showing a configuration example of an optical communication system according to a first embodiment.
  • FIG. 2 is a flow chart for explaining the flow of control of the VOA in the ONU shown in FIG.
  • FIG. 3 is a schematic diagram showing an example of the configuration of the VOA shown in FIG.
  • FIG. 4 is a diagram for explaining the operation of the VOA shown in FIG.
  • FIG. 5 is a schematic diagram showing the light beam passing through the aperture of the VOA when the shutter of the VOA is fully open.
  • FIG. 6 is a first schematic diagram showing the light beam passing through the aperture of the VOA when the shutter of the VOA is partially open.
  • FIG. 7 is a second schematic diagram showing the light beam passing through the aperture of the VOA when the shutter of the VOA is partially open.
  • FIG. 1 is a view showing a configuration example of an optical communication system according to a first embodiment.
  • FIG. 2 is a flow chart for explaining the flow of control of the VOA in the ONU shown in FIG.
  • FIG. 8 is a block diagram of a PON system according to the second embodiment.
  • FIG. 9 is a block diagram of a PON system according to the third embodiment.
  • FIG. 10 is a flowchart showing control of the VOA according to the third embodiment.
  • FIG. 11 is a view showing a configuration example of an optical communication system according to a fourth embodiment.
  • FIG. 12 is a diagram showing a first configuration example of the optical communication system according to the fifth embodiment.
  • FIG. 13 is a diagram showing a second configuration example of the optical communication system according to the fifth embodiment.
  • FIG. 14 is a diagram showing a first configuration example of the optical communication system according to the sixth embodiment.
  • FIG. 15 is a diagram showing a second configuration example of the optical communication system according to the sixth embodiment.
  • FIG. 16 is a diagram showing an example of the configuration of the optical communication system according to the seventh embodiment.
  • FIG. 17 is a block diagram showing another configuration example of the VOA.
  • an object of the present disclosure is to provide a technique for adjusting the transmission level of a home apparatus. [Effect of the present disclosure] According to the above, it is possible to provide a technique for adjusting the transmission level of the home apparatus.
  • a home-side apparatus includes an optical transmitter configured to output an optical signal, an optical receiver configured to receive an optical signal, and at least an optical transmitter. And a variable optical attenuator configured to attenuate an optical signal of
  • variable light attenuator is further configured to attenuate the light signal to be input to the light receiver.
  • the home apparatus is optically coupled to the optical transmitter and the optical receiver optically coupled to the optical transmitter and configured to transmit the optical signal output from the optical transmitter.
  • an optical receiver path configured to transmit an optical signal to be input to the optical receiver.
  • the light transmission path and the light reception path include a common transmission path in which variable optical attenuators are arranged.
  • variable optical attenuator is configured to attenuate the optical signal to be input to the optical receiver, and the first variable optical attenuator configured to attenuate the optical signal from the optical transmitter. And a second variable optical attenuator coupled with the first variable optical attenuator.
  • the home apparatus is configured to control the variable optical attenuator in accordance with the monitor circuit configured to monitor the reception level of the optical receiver and the reception level monitored by the monitor circuit. And a controller.
  • the home apparatus further includes an enable circuit that permits the optical transmitter to output an optical signal when the reception level monitored by the monitor circuit is within a predetermined range.
  • the home apparatus further includes a controller configured to control the attenuation amount of the variable optical attenuator by performing feedforward control.
  • variable light attenuator comprises spatially coupled optics. According to the above, the amount of attenuation can be controlled so that insertion loss does not occur, so that the transmission level of the home apparatus can be adjusted in a larger range.
  • the optical communication system includes an optical distribution network that connects a station-side device, at least one home-side device, and the station-side device and at least one home-side device.
  • the station-side apparatus includes a first optical transmitter configured to output an optical signal, a first optical receiver configured to receive an optical signal, and a stage before the first optical receiver. And a semiconductor optical amplifier disposed.
  • the home apparatus comprises a second optical transmitter configured to output an optical signal, a second optical receiver configured to receive the optical signal, and at least a second optical transmitter. And a variable optical attenuator configured to attenuate the optical signal.
  • the transmission level of the home apparatus by adjusting the attenuation amount of the variable optical attenuator. Furthermore, by adjusting the transmission level of the home-side device, the possibility of damage to the optical receiver in the station-side device can be reduced.
  • the optical communication system controls the variable optical attenuator in accordance with a monitor circuit configured to monitor the reception level of the second optical receiver, and the reception level monitored by the monitor circuit. And a controller configured to
  • a method according to an aspect of the present invention is a method of adjusting a transmission level of a home apparatus.
  • the home apparatus is input to an optical transmitter configured to output an optical signal, an optical receiver configured to receive an optical signal, and the optical signal from the optical transmitter and the optical receiver.
  • a variable optical attenuator for attenuating an optical signal to be modulated a monitor circuit configured to monitor the reception level of the optical receiver, and a controller.
  • the method comprises the steps of: monitoring the reception level of the optical receiver by a monitoring circuit; controlling the attenuation of the variable optical attenuator based on the reception level obtained by the monitoring step by the controller; The steps of repeating the steps of monitoring and controlling to be within a predetermined range, and permitting the output of the optical signal by the optical transmitter when the reception level falls within the predetermined range.
  • the transmission level of the home apparatus it is possible to adjust the transmission level of the home apparatus by adjusting the attenuation amount of the variable optical attenuator. Furthermore, by adjusting the transmission level of the home apparatus, it is possible to prevent an optical signal (for example, a strong optical signal) having an unadjusted intensity from being output.
  • an optical signal for example, a strong optical signal
  • PON includes EPON (Ethernet (registered trademark) Passive Optical Network).
  • FIG. 1 is a view showing a configuration example of an optical communication system according to a first embodiment.
  • the PON system 300 includes an OLT (station-side device) 100, an ONU (home-side device) 200, and an optical distribution network 301.
  • OLT station-side device
  • ONU home-side device
  • optical distribution network 301 optical distribution network
  • the optical distribution network 301 is constituted by an optical fiber line and an optical splitter 302.
  • the OLT 100 and the ONUs 200 are connected to the optical distribution network 301.
  • An ODN (Optical Distribution Network) section 306 is a section of the optical distribution network 301 that includes the optical splitter 302 and is sandwiched by defining points 304 and 305.
  • the optical splitter 302 splits the optical distribution network 301.
  • a plurality of ONUs can be connected to the optical distribution network 301.
  • one ONU 200 is representatively shown.
  • the PON system 300 realizes a 100 Gbps class PON (for example, 100 G-EPON).
  • 100G-EPON the same fiber line as 10G-EPON is used to transmit four optical signals with different wavelengths, each having a transmission capacity of 25.78125 Gb / s (hereinafter referred to as "25 Gbps").
  • Ru the same fiber line as 10G-EPON is used to transmit four optical signals with different wavelengths, each having a transmission capacity of 25.78125 Gb / s (hereinafter referred to as "25 Gbps").
  • the OLT 100 includes an optical transmission path 101, an optical reception path 102, a diplexer filter 103, semiconductor optical amplifiers (SOA) 105 and 106, an optical multiplexer 110, and an optical demultiplexer 120.
  • Optical transmitters 111 to 114 and optical receivers 121 to 124 are included.
  • the OLT 100 can include a module (for example, an optical transceiver) that includes the above-described elements.
  • FIG. 1 shows a configuration related to transmission and reception of an optical signal of the OLT 100.
  • the light transmission path 101 and the light reception path 102 are configured by an optical waveguide, an optical fiber, and the like.
  • the diplexer filter 103 is a component for optically separating the light transmission path 101 and the light reception path 102.
  • Each of the optical transmitters 111 to 114 includes, for example, an electro-absorption modulator integrated laser diode (EML) as a light emitting element for generating an optical signal.
  • EML electro-absorption modulator integrated laser diode
  • the optical transmitters 111 to 114 emit light of different wavelengths.
  • Each optical transmitter has a transmission capacity of 25 Gbps. Therefore, 25 Gbps ⁇ 4 channels are realized.
  • the optical multiplexer 110 multiplexes the four optical signals respectively emitted from the optical transmitters 111 to 114 by wavelength multiplexing.
  • the optical transmitters 111, 112, 113, and 114 are associated with channel 0 (ch0), channel 1 (ch1), channel 2 (ch2), and channel 3 (ch3), respectively.
  • the optical transmission path 101 is optically coupled to the optical transmitters 111 to 114 via the optical multiplexer 110.
  • the SOA 105 is disposed in the optical transmission path 101 to amplify the optical signal output from the optical multiplexer 110.
  • the amplified optical signal is transmitted through the optical transmission path 101.
  • the optical signal passes through the diplexer filter 103 and is sent out from the OLT 100 to the optical distribution network 301.
  • the OLT 100 receives an optical signal from the ONU 200.
  • the optical signal passes through the diplexer filter 103 and is routed to the optical receiving path 102.
  • the SOA 106 is disposed in the light receiving path 102 and amplifies an optical signal transmitted through the light receiving path 102.
  • the optical signal from the ONU 200 is a wavelength division multiplexed (WDM) optical signal.
  • the optical demultiplexer 120 separates the optical signal transmitted through the optical receiving path 102 into four optical signals based on the wavelength.
  • the four optical signals are input to the optical receivers 121 to 124, respectively.
  • the optical reception path 102 is optically coupled to the optical receivers 121 to 124 by being optically coupled to the optical demultiplexer 120.
  • Each of the light receivers 121 to 124 is a light receiver having high sensitivity, and includes, for example, an avalanche photodiode (APD) as a light receiving element.
  • the optical receivers 121, 122, 123, 124 are respectively associated with four channels. For the sake of convenience, it is assumed that the optical receivers 121, 122, 123, and 124 are assigned to ch0, ch1, ch2, and ch3, respectively.
  • the ONU 200 includes an optical transmission path 201, an optical reception path 202, a diplexer filter 203, an optical transmission path 204, an optical multiplexer 210, an optical demultiplexer 220, optical transmitters 211 to 214, and an optical receiver 221 to 24 includes a variable optical attenuator (VOA) 230, a received signal strength indication (RSSI) circuit 241, a VOA controller 242, and a Tx enable controller 243.
  • An ONU 200 can include a module (eg, an optical transceiver) that includes the elements described above.
  • the modules of the ONU 200 may include optional elements of the components shown in FIG.
  • the “selective element” means, for example, the optical transmission path 201, the optical reception path 202, the diplexer filter 203, the optical multiplexer 210, the optical demultiplexer 220, the optical transmitters 211 to 214, the optical receivers 221 to 224, and the VOA 230 It may be.
  • the above-mentioned “optional element” is the same number selected from among the optical transmitters 211 to 214 and the optical receivers 221 to 224 (for example, as shown in the fifth embodiment described later, one). Or two) optical transmitters and optical receivers may be included.
  • the OLT 100 also has the same number selected from among the optical transmitters 111 to 114 and the optical receivers 121 to 124 (for example, one or two as shown in the fifth embodiment described later).
  • the optical transmitter and the optical receiver can be included as "optional elements”.
  • the light transmission path 201, the light reception path 202, and the light transmission path 204 are configured by an optical waveguide, an optical fiber, and the like.
  • the diplexer filter 203 is a component for optically separating the light transmission path 201 and the light reception path 202.
  • the optical transmission path 204 is a transmission path common to the optical transmission path 201 and the optical reception path 202.
  • the VOA 230 is disposed in the optical transmission path 204.
  • the optical multiplexer 210 is disposed in the optical transmission path 201.
  • the optical demultiplexer 220 is disposed in the optical receiving path 202.
  • Each of the light transmitters 211 to 214 can include an EML as a light emitting element.
  • the light emitting element of each of the light transmitters 211-214 may be a Direct Modulation Laser Diode (DML).
  • DML Direct Modulation Laser Diode
  • the optical transmitters 211 to 214 emit optical signals of different wavelengths. This optical signal is a burst optical signal.
  • Each optical transmitter has a transmission capacity of 25 Gbps. Therefore, 25 Gbps ⁇ 4 channels are realized. There is no particular limitation on which one of the four channels each optical transmitter is assigned to. For convenience, it is assumed that the optical transmitters 211, 212, 213, and 214 are assigned to ch0, ch1, ch2, and ch3.
  • the optical multiplexer 210 multiplexes the four optical signals respectively emitted from the optical transmitters 211 to 214 by wavelength multiplexing.
  • the multiplexed optical signal is transmitted through the optical transmission path 201 and passes through the diplexer filter 203.
  • the optical signal transmitted through the optical transmission path 201 is attenuated by the VOA 230. That is, the VOA 230 attenuates the optical signals transmitted from the optical transmitters 211-214.
  • the optical signal passed through the VOA 230 is sent out to the optical distribution network 301 as an upstream optical signal from the ONU 200.
  • the ONU 200 receives an optical signal from the OLT 100.
  • the optical signal is transmitted through the optical transmission path 204 and attenuated by the VOA 230. That is, the VOA 230 attenuates the optical signal to be input to the optical receivers 221-224.
  • the optical signal After passing through the VOA 230, the optical signal is transmitted through the optical transmission path 204 and routed to the optical reception path 202 by the diplexer filter 203.
  • the optical demultiplexer 220 separates the optical signal transmitted through the optical receiving path 202 into four optical signals based on the wavelength.
  • the four optical signals are input to the optical receivers 221 to 224, respectively.
  • Each of the light receivers 221 to 224 is a light receiver having high sensitivity.
  • Each of the light receivers 221 to 224 includes an avalanche photodiode as a light receiving element.
  • the optical receivers 221, 222, 223 and 224 are respectively associated with four channels. For convenience, it is assumed that the optical receivers 221, 222, 223, and 224 are assigned to ch0, ch1, ch2, and ch3, respectively.
  • the VOA 230 has a variable amount of attenuation. Specifically, the VOA 230 adjusts the level of attenuation of the optical signal under the control of the VOA controller 242. Note that the variable attenuation may include zero.
  • the RSSI circuit 241 is a monitor circuit that monitors the reception level (received signal strength) of the ONU 200. In one embodiment, the RSSI circuit 241 monitors the reception level in any one of ch0, ch1, ch2, and ch3. In 25G-EPON, 50G-EPON and 100G-EPON, ch0 is commonly used. Therefore, the RSSI circuit 241 may monitor the reception level of ch0 (that is, the optical receiver 221).
  • the RSSI circuit 241 may monitor the maximum value or the minimum value of the reception levels of the four channels. Alternatively, the RSSI circuit 241 may monitor the average value of the reception levels of the four channels.
  • the VOA controller 242 controls the VOA 230 based on the output of the RSSI circuit 241 (the monitored reception level).
  • the Tx enable controller 243 switches the state of each of the optical transmitters 211 to 214 between enable and disable based on the output of the RSSI circuit 241.
  • the RSSI circuit 241, the VOA controller 242, and the Tx enable controller 243 are realized by one or more semiconductor circuits.
  • the SOAs 105 and 106 are arranged in the OLT 100 in order to realize the 100G-EPON by the same fiber line as the 10G-EPON.
  • the transmission loss of this fiber line is a minimum of 15 dB / a maximum of 29 dB. Transmission speed is about 2.5 times faster for 100G-EPON than for 10G-EPON.
  • the OLT is required to have an optical receiver having a wide band. However, in a broadband optical receiver, not only the reception band but also the noise band is wide, so the receiver's reception sensitivity is low.
  • 100G-EPON it is estimated that the receiver sensitivity on the OLT side is degraded by about 4 to 5 dB as compared to 10G-EPON.
  • the increase in transmission speed causes deterioration in waveform quality of the transmission signal and an increase in penalty due to fiber chromatic dispersion.
  • an optical multiplexer, an optical demultiplexer, and a diplexer filter are required for each of the OLT and ONU for multiplexing and demultiplexing. Insertion loss occurs due to the addition of these elements.
  • the loss of each of the optical multiplexer and the optical demultiplexer is about 1.5 dB
  • the loss of the diplexer filter is about 0.5 dB.
  • the loss budget in the ODN section is 29 dB (IEEE 802.3av (PR30)).
  • the transmission power of the optical transmitters 211 to 214 of the ONU 200 may be increased in order to compensate for the deterioration of the reception sensitivity on the OLT side.
  • the SOA 105 can increase the transmission power of the OLT 100. Therefore, it is possible to compensate for the decrease in the reception sensitivity on the ONU side.
  • Error correction may be introduced as a measure for deterioration of the OLT-side reception sensitivity.
  • arranging a semiconductor optical amplifier on the receiving side of the OLT 100 is considered to be more effective for the problem of deterioration of the receiving sensitivity on the OLT side. This is because 10G-EPON has already introduced an error correction function that reduces the BER (Bit Error Ratio) from 10 -3 to 10 -12 or so.
  • the transmission loss of the ODN section 306 mainly depends on the distance of the optical fiber line and the number of branches by the optical splitter 302. In PON, the transmission loss of the fiber line with the OLT 100 differs for each ONU.
  • the optical signals from the plurality of ONUs 200 may include weak optical signals.
  • the SOA 106 can amplify weak light signals.
  • optical signals from a plurality of ONUs 200 may include strong optical signals. When a strong optical signal is amplified by the SOA 106, the maximum value of the reception level of any of the optical receivers 121 to 124 may exceed the threshold (Damage Threshold) for protecting the light receiving element. In such a case, the probability that the light receiving element of the light receiver is damaged is high.
  • the threshold Denage Threshold
  • the SOA 106 is disposed in the light receiving path 102 in common to the light receivers 121 to 124.
  • the semiconductor optical amplifier 105 is disposed in the optical transmission path 101 in common with the optical transmitters 111 to 114.
  • the SOA 106 When the reception level of each channel is different, it is difficult to optimize the amplification factor of the SOA 106. If the four channels include a strong signal channel, the SOA 106 is saturated. The saturation of the SOA 106 causes the amplification factor of the SOA 106 to fluctuate. Cross gain modulation occurs in which the variation in amplification factor affects the channel of the weak signal.
  • the application of the power leveling technique is effective in the PON system 300 of FIG.
  • adjusting the transmission power of the ONU 200 affects the quality of the waveform of the signal transmitted from the ONU 200. Therefore, in this embodiment, the transmission power is adjusted by the VOA 230.
  • the transmission power of the ONU 200 can be adjusted while reducing the influence on the waveform quality. Therefore, power leveling can be realized.
  • 100 G-EPON can be realized by the same fiber line as 10 G-EPON.
  • the OLT measures the reception level of the OLT and instructs the ONU to adjust the transmission power.
  • the OLT needs a function to monitor the power of the optical signal from the ONU.
  • power leveling assumes that communication between the OLT and the ONU has been established. Power leveling can not be performed under circumstances where power leveling is required to establish communication between the OLT and the ONU.
  • the ONU 200 monitors the reception level of the ONU 200 by the RSSI circuit 241.
  • the VOA controller 242 performs feedback control of the VOA 230 based on the output (received signal strength) of the RSSI circuit 241 so that the reception level does not exceed a certain threshold.
  • the VOA 230 can be controlled without the need to store in advance the relationship between the attenuation amount of the optical signal and the control amount of the VOA 230.
  • the VOA controller 242 controls the VOA 230 to add the loss in the VOA 230 to the transmission loss in the ODN section 306. Conversely, when the transmission loss in the ODN section 306 is large, the reception level detected in the RSSI circuit 241 is low. In this case, the VOA controller 242 controls the VOA 230 such that the loss in the VOA 230 is not added to the transmission loss in the ODN section 306.
  • the feedback control of the VOA 230 controls the reception level monitored by the RSSI circuit 241 to be stably within a predetermined range from the minimum reception level. Thereafter, the Tx enable controller 243 enables the transmission of burst optical signals by each of the optical transmitters 211-214.
  • FIG. 2 is a flowchart illustrating the flow of control of the VOA 230 in the ONU 200 shown in FIG. 1 and 2, in step S01, the VOA controller 242 detects the reception level of the ONU 200 by receiving the output signal from the RSSI circuit 241. The process of step S01 is performed until the VOA controller 242 detects the reception of the optical signal. That is, in step S01, the VOA controller 242 confirms that the ONU 200 can receive an optical signal.
  • the process of step S01 enables distinction from the case where the optical fiber is not connected to the ONU 200. Therefore, it can be avoided that transmission is inappropriately started (inappropriately, the process proceeds to step S13).
  • step S11 the RSSI circuit 241 detects the reception level of the ONU 200 by the method described above.
  • the optical signals received by the optical receivers 221 to 224 are optical signals transmitted from the OLT 100.
  • the type of the optical signal is not particularly limited.
  • step S12 the VOA controller 242 controls the VOA 230 based on the output of the RSSI circuit 241.
  • steps S11 and S12 are repeated until the reception level monitored by the RSSI circuit 241 is stabilized within a predetermined range.
  • the Tx enable controller 243 enables the optical transmitters 211-214.
  • transmission from the ONU 200 is started (step S13).
  • the optical signal is not transmitted from the ONU 200 until the control of the VOA 230 is completed. Therefore, the optical receivers 121 to 124 of the OLT 100 can be protected from damage.
  • a burst optical signal having a strength controlled by the VOA 230 is sent from the ONU 200 to the OLT 100. Thereby, power leveling can be realized.
  • the initial attenuation value of the VOA 230 may have a constant attenuation value as long as the RSSI circuit 241 can detect the reception strength. Thus, damage to the optical receivers 221 to 224 of the ONU 200 can be avoided in the initial state.
  • the downstream optical signal from the OLT 100 is a signal of continuous light. Since the optical receivers 221 to 224 receive light continuously, they are more resistant to damage than the optical receivers 121 to 124 on the OLT 100 side. Therefore, practical problems can be prevented.
  • the VOA 230 is a spatially coupled VOA that includes spatially coupled optics.
  • FIG. 3 is a schematic diagram showing an example of the configuration of the VOA 230 shown in FIG. Referring to FIG. 3, the VOA 230 can be realized by a MEMS (Micro Electro Mechanical Systems) device.
  • the VOA 230 includes a shutter 231, a cantilever 232 having one end connected to the shutter 231, a driving unit 233 connected to the other end of the cantilever 232 to drive the cantilever 232 by voltage input, and an electrode 234 for receiving voltage , 235.
  • VOA 230 is formed on substrate 236 (for example, a silicon substrate) using, for example, a semiconductor manufacturing technique.
  • the substrate 236 is provided with an aperture closed by the shutter 231. For example, in a state where a voltage is not applied between the electrodes 234 and 235, the shutter 231 is in contact with the aperture, or the shutter 231 covers the aperture.
  • FIG. 4 is a diagram for explaining the operation of the VOA 230 shown in FIG.
  • a voltage Vd is applied between the electrodes 234 and 235.
  • the driving unit 233 is, for example, a structure connected to the cantilever 232 and deformed by a voltage, and moves the cantilever 232 in the direction in which the shutter 231 opens.
  • the opening degree of the shutter 231 changes in accordance with the magnitude of the voltage Vd.
  • FIG. 4 shows a state in which the shutter 231 is completely open.
  • FIG. 5 is a schematic diagram showing the light beam passing through the aperture 237 of the VOA 230 when the shutter 231 of the VOA 230 is fully open. As shown in FIG. 5, the light beam 21 can pass through the aperture 237 without loss. In FIG. 5, both an optical signal transmitted from the ONU 200 and an optical signal received from the OLT 100 are collectively illustrated as an optical beam 21. The losses at the VOA 230 are independent of the propagation direction of the light beam 21.
  • FIG. 6 is a first schematic diagram showing the light beam passing through the aperture 237 of the VOA 230 when the shutter 231 of the VOA 230 is partially open.
  • the optical signal received from the OLT 100 is represented as a light beam 22. A portion of the light beam 22 is blocked by the shutter 231. Thus, the optical signal received from the OLT 100 is attenuated by the VOA 230.
  • FIG. 7 is a second schematic diagram showing the light beam passing through the aperture 237 of the VOA 230 when the shutter 231 of the VOA 230 is partially open.
  • the optical signal to be transmitted from the ONU 200 is represented as a light beam 23. A part of the light beam 23 is blocked by the shutter 231. Thereby, the optical signal to be transmitted from the ONU 200 is attenuated by the VOA 230.
  • the opening degree of the shutter 231 is the same. Therefore, the same amount of attenuation can be obtained in the VOA 230 regardless of the propagation direction of the light beam.
  • the structure of the VOA 230 capable of obtaining such attenuation characteristics is not limited to the structure shown in FIG. 3 when the VOA 230 is a spatially coupled VOA.
  • the VOA 230 preferably has a MEMS structure.
  • the VOA having the MEMS structure can be realized compactly and inexpensively, and can generate relatively small insertion loss.
  • the VOA 230 may include an input optical fiber for introducing a light beam to the VOA 230, a MEMS mirror, and an output optical fiber for propagating light from the inside of the VOA 230 to the outside of the VOA 230.
  • the light introduced into the interior of the VOA 230 by the incoming optical fiber is reflected by the MEMS mirror and the reflected light is coupled into the outgoing optical fiber.
  • the reflection angle of the mirror changes depending on the voltage applied to the MEMS mirror. As a result, the coupling ratio of the outgoing optical fiber changes, so the amount of attenuation can be changed.
  • the VOA 230 functions only when the transmission loss in the ODN section 306 is small, and the transmission loss due to the VOA 203 is added to the total transmission loss. As a result, the dynamic range of the ODN section 306 is narrowed, so that the reception level of the OLT 100 can be flattened between the burst optical signals. Furthermore, 4-channel optical amplification with one SOA becomes possible. A spatially coupled VOA is applied to the VOA 230. Therefore, when the VOA 230 is not functioning, the insertion loss due to the VOA 230 does not occur.
  • the VOA 230 adjusts the transmission level of the ONU, the transmission level of the ONU 200 can be controlled in a wide range.
  • the transmission loss of the VOA 230 can lower the reception level of the OLT 100.
  • one VOA 230 can control four channels of attenuation.
  • FIG. 8 is a block diagram of a PON system according to the second embodiment.
  • ONU 200 includes VOAs 230A and 230B instead of VOA 230.
  • the VOA 230A is disposed in the optical transmission path 201.
  • the VOA 230 B is disposed in the light receiving path 202.
  • the second embodiment is different from the first embodiment.
  • the VOAs 230A and 230B are spatially coupled VOAs having the same configuration. For example, the configuration of each of the VOAs 230A, 230B is the same as the configuration of the VOA 230 shown in FIG.
  • the VOAs 230A, 230B are simultaneously controlled by the VOA controller 242.
  • the VOAs 230A and 230B are controlled such that the attenuations of the VOAs 230A and 230B are the same.
  • the transmission level of the ONU can be widely controlled by the VOA.
  • FIG. 9 is a block diagram of a PON system according to the third embodiment.
  • VOA 230 is disposed in optical transmission path 201.
  • the third embodiment is different from the first embodiment.
  • feedforward control is executed in control of the VOA 230 by the VOA controller 242. Therefore, information relating the control amount to the attenuation amount is obtained in advance.
  • the information may be stored, for example, in the VOA controller 242.
  • FIG. 10 is a flowchart showing control of the VOA 230 according to the third embodiment.
  • the VOA controller 242 confirms that the ONU 200 can receive the optical signal by receiving the output signal from the RSSI circuit 241.
  • the VOA controller 242 determines the control amount based on the information relating the control amount and the attenuation amount.
  • the VOA controller 242 controls the VOA 230 in accordance with the determined control amount.
  • the Tx enable controller 243 enables the optical transmitters 211 to 214.
  • the transmission power of the ONU can be adjusted not only by feedback control but also by feedforward control.
  • the feedforward control may be performed together with the feedback control according to the first embodiment.
  • the transmission level of the ONU can be widely controlled by the VOA.
  • FIG. 11 is a view showing a configuration example of an optical communication system according to a fourth embodiment.
  • the fourth embodiment is different from the first embodiment in the configuration of the OLT 100.
  • an SOA is provided for each optical transmitter.
  • the SOAs 105a, 105b, 105c, and 105d amplify optical signals emitted from the optical transmitters 111 to 114, respectively.
  • an SOA is provided for each optical receiver.
  • the SOAs 106a, 106b, 106c and 106d amplify optical signals to be input to the optical receivers 121 to 124, respectively.
  • the VOA 230 can control the transmission level of the ONU 200 in a wide range.
  • the optical transmitters 111 to 114 may have one SOA (see the SOA 105 in FIG. 1) in common, and the SOA may be provided for each optical receiver.
  • one SOA (see the SOA 106 in FIG. 1) may be commonly provided for the optical receivers 121 to 124, and the SOA may be disposed for each optical transmitter.
  • the Fifth Preferred Embodiment As an introduction scenario of the wavelength division multiplexing PON system, a gradual expansion (upgrade) of transmission capacity can be considered. For example, prior to the introduction of 100G-EPON, a scenario of introducing 25G-EPON or 50G-EPON is assumed.
  • FIG. 12 is a diagram showing a first configuration example of the optical communication system according to the fifth embodiment.
  • the configuration shown in FIG. 12 can be adopted.
  • each of the OLT 100 and the ONU 200 includes one optical transmitter and one optical receiver. Thereby, transmission of 25 Gbps ⁇ 1 channel can be achieved.
  • the optical multiplexers 110 and 210 and the optical demultiplexer are not essential components to realize 25G-EPON.
  • a cut filter (a band pass filter that passes only the reception signal) for not receiving signals of the other three channels is required in the OLT 100 and the ONU 200.
  • Each of the light receiver 111 and the light receiver 121 may incorporate the above-described cut filter.
  • FIG. 13 is a diagram showing a second configuration example of the optical communication system according to the fifth embodiment.
  • the configuration shown in FIG. 13 can be employed.
  • each of the OLT 100 and the ONU 200 includes two optical transmitters and two optical receivers. This makes it possible to achieve 25 Gbps ⁇ 2 channel transmission.
  • the VOA 230 is controlled on the ONU 200 side based on the output (received signal strength) of the RSSI circuit 241.
  • the transmission capacity can be expanded stepwise.
  • the reception strength of the same channel be monitored.
  • Channel 0 ch0
  • the RSSI circuit 241 monitors the received strength of ch0.
  • the transmission level of the ONU can be controlled in a wide range by the VOA not only in 100G-EPON but also in 25G-EPON and 50G-EPON.
  • the OLT monitors the reception level of the ONU or controls the VOA.
  • FIG. 14 is a diagram showing a first configuration example of the optical communication system according to the sixth embodiment.
  • the OLT 100 further includes a VOA monitor 130.
  • the VOA monitor 130 controls the optical transmitters 111 to 114 to generate an optical signal for the optical transmitters 111 to 114 to inquire the control state of the VOA 230.
  • the ONU 200 In response to the optical signal from the OLT 100, the ONU 200 causes the optical transmitters 211 to 214 to generate a signal indicating the control state of the VOA 230 (for example, the output of the RSSI circuit 241).
  • the optical signals from the ONU 200 are received by the optical receivers 121 to 124 of the OLT 100.
  • the VOA monitor 130 receives the output signals from the optical receivers 121 to 124 and monitors the control state of the VOA 230.
  • FIG. 15 is a diagram showing a second configuration example of the optical communication system according to the sixth embodiment.
  • the OLT 100 may further include a VOA controller 140 and an RSSI circuit 141.
  • the VOA controller 140 has the function of the VOA monitor 130 described above.
  • the OLT 100 finely adjusts the VOA 230 of the ONU 200 based on the output of the RSSI circuit 141.
  • the VOA controller 140 controls the optical transmitters 111 to 114 to generate an optical signal for controlling the VOA 230 in the optical transmitters 111 to 114.
  • the optical receivers 221 to 224 of the ONU 200 receive the optical signal from the OLT 100.
  • the VOA controller 242 controls the VOA 230 in response to signals (control signals) output from the optical receivers 221 to 224. Regarding control of the VOA 230, the VOA controller 242 can perform control based on an instruction from the OLT 100 in addition to control based on the output of the RSSI circuit 241. When the VOA monitor function does not change or the output of the RSSI circuit 141 does not change in response to an instruction from the OLT 100, it can be determined that the ONU 200 has a failure.
  • the spatially coupled VOA is applied to the adjustment of the transmission power of the ONU.
  • another form of optical attenuator is applied.
  • FIG. 16 is a diagram showing an example of the configuration of the optical communication system according to the seventh embodiment.
  • an attenuator (fixed attenuator 251) having a fixed amount of attenuation is mounted on the ONU 200 instead of the VOA 230.
  • the fixed attenuator 251 is, for example, manually mounted inside the ONU 200.
  • the fixed attenuator 251 can be replaced with another fixed attenuator 252 having a different amount of attenuation.
  • the ONU 200 has an indicator 244 that includes an LED 245.
  • the indicator 244 indicates to the operator a fixed attenuator to be attached to the ONU 200. The operator can select a fixed attenuator having an appropriate amount of attenuation by confirming the lighting of the LED 245.
  • FIG. 17 is a block diagram showing another configuration example of the VOA 230.
  • the VOA 230 bends the optical fiber as the optical transmission path 204 to adjust the attenuation.
  • the VOA 230 includes a motor 261, a motor driver 262 for driving the motor 261, a rotation-linear conversion machine 263 for converting the rotational movement of the motor 261 into linear movement, and a rotation-linear conversion machine 263 to perform linear movement.
  • a fiber contact member 264 driven by the
  • the linear motion of the fiber contact member 264 changes the degree of bending of the optical fiber. As a result, the loss of the optical fiber changes, so the amount of attenuation can be changed.
  • the VOA controller 242 generates a signal for controlling the motor 261 based on the output of the RSSI 1 circuit 241.
  • the motor driver 262 supplies current to the motor 261 in response to the control signal from the VOA controller 242. Thereby, for example, the torque of the motor 261 is controlled.
  • the above feedback control can stabilize the amount of attenuation of the VOA 230.
  • a machine operated manually as the rotary-linear conversion machine 263 may be applied.
  • wavelength division multiplexing is applied as a form of multiplexing of a plurality of burst optical signals in the ONU.
  • time division multiplexing TDM
  • TDM time division multiplexing
  • the multiplexed burst optical signal is separated into a plurality of optical signals in the OLT according to the time division multiplexing system.
  • optical communication system according to the embodiment of the present invention can be applied to 25G-EPON, 50G-EPON and 100G-EPON. Accordingly, the embodiments of the present invention include the aspects described below.
  • Station side apparatus At least one home device; An optical distribution network connecting the station apparatus and the at least one home apparatus;
  • the station-side device A first station-side optical transmitter configured to output an optical signal;
  • a first station-side optical receiver configured to receive an optical signal;
  • a semiconductor optical amplifier disposed in front of the first station-side optical receiver;
  • the home device is A first home-side optical transmitter configured to output an optical signal;
  • a first home optical receiver configured to receive an optical signal;
  • a variable optical attenuator configured to attenuate the optical signal from at least the first home-side optical transmitter.
  • the station-side device A second station-side optical transmitter that outputs an optical signal having a wavelength different from the wavelength of the optical signal output by the first station-side optical transmitter;
  • the optical signal output from the first station-side optical transmitter and the optical signal output from the second station-side optical transmitter are multiplexed by wavelength multiplexing to output a downstream optical signal
  • a first optical multiplexer configured to A second station-side optical receiver configured to receive an optical signal;
  • a first optical demultiplexer that outputs a signal
  • the home device is A second home-side optical transmitter that outputs an optical signal having a wavelength different from the wavelength of the optical signal output by the first home-side optical transmitter;
  • the optical signal output from the first home-side optical transmitter and the optical signal output from the second home-side optical transmitter are multiplexed by wavelength multiplexing to output an upstream optical signal
  • the station-side device An optical signal having a wavelength different from the wavelength of the optical signal output by the first station-side optical transmitter and the second station-side optical transmitter is configured to be output to the first optical multiplexer.
  • a third office-side optical receiver and a fourth office-side optical receiver configured to receive optical signals from the first optical demultiplexer;
  • the home device is An optical signal having a wavelength different from the wavelength of the optical signal output by the first home-side optical transmitter and the second home-side optical transmitter is configured to be output to the second optical multiplexer.
  • station-side apparatus 101, 201 light transmission path, 102, 202 light reception path, 103, 203 diplexer filter, 105, 106 semiconductor optical amplifier (SOA), 110, 210 light Multiplexer, 111, 112, 113, 114, 211, 212, 213, 214
  • Optical transmitter 120, 220
  • Optical demultiplexer 121, 122, 123, 124, 221, 222, 223, 224
  • Optical receiver 130 VOA monitor 140, 242 VOA controller, 141, 241 received signal strength indication (RSSI) circuit, 200 home unit (ONU), 204 light transmission path, 230 variable optical attenuator (VOA), 231 shutter, 232 cantilever, 233 drive unit , 234, 235 Pole, 236 Substrate, 237 Aperture, 243 Tx Enable Controller, 244 Indicator, 251, 252 Fixed Attenuator, 261 Motor, 262 Motor Driver, 263 Rotation-to-Line

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本発明の一態様に係る宅側装置は、光信号を出力するように構成された光送信器と、光信号を受信するように構成された光受信器と、少なくとも光送信器からの光信号を減衰するように構成された可変光減衰器とを備える。

Description

宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法
 本発明は、宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法に関する。本出願は、2017年6月29日に出願した日本特許出願である特願2017-127719号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 パッシブ光ネットワーク(PON)は、光回線終端装置(OLT)と、1つ以上の光ネットワークユニット(ONU)との間でポイント・ツー・マルチポイントの光通信を行うシステムである。光回線終端装置は、一般にサービスプロバイダの構内に配置されるユニットであり、「局側装置」とも呼ばれる。光ネットワークユニット(ONU)は、加入者の構内あるいはその近くに配置されるユニットであり、「宅側装置」とも呼ばれる。
 PONでは、OLTからの距離およびファイバの分岐数がONUごとに異なるので、ONUごとにファイバ線路の伝送損失が異なる。OLTは、あるONUからは比較的強い光信号を受信し、別のONUからは比較的弱い光信号を受信する可能性がある。受信された信号の強度の変化は、OLTにおいて信号の正確な再生を困難にする可能性がある。
 OLTのバースト受信器のダイナミックレンジの緩和、および、ONUのバースト送信器に含まれるレーザ素子の長寿命化および消費電力の低減の観点から、パワーレベリングメカニズムは有効である。ITU-T勧告G.984(03/2003)は、ギガビットPON(GPON)、およびOLT上に実装可能なパワーレベリングメカニズムに関する勧告を含む(ITU-T Recommendation G.984.2 (03/2003) "Gigabit-capable Passive Optical Networks (GPON):Physical Media Dependent (PMD) layer Specification", "8.3.2  Power levelling mechanism at ONU transmitter" および"Appendix II Description and examples of power levelling mechanism", https://www.itu.int/rec/T-REC-G.984.2-200303-I/en(非特許文献1))。
 ONU送信器はレーザ素子の駆動電流を調整することによって送信パワーを調整する。ITU-T勧告G.984(03/2003)には、ONU送信器の送信パワーを3段階(Mode 0:通常パワー、Mode 1:-3dB、Mode 2:-6dB)に調整する例が示されている。
 本発明の一態様に係る宅側装置は、光信号を出力するように構成された光送信器と、光信号を受信するように構成された光受信器と、少なくとも光送信器からの光信号を減衰するように構成された可変光減衰器とを備える。
 本発明の一態様に係る光通信システムは、局側装置と、少なくとも1つの宅側装置と、局側装置および少なくとも1つの宅側装置とを接続する光分配ネットワークとを備える。局側装置は、光信号を出力するように構成された第1の光送信器と、光信号を受信するように構成された第1の光受信器と、第1の光受信器の前段に配置された半導体光増幅器とを含む。宅側装置は、光信号を出力するように構成された第2の光送信器と、光信号を受信するように構成された第2の光受信器と、少なくとも第2の光送信器からの光信号を減衰するように構成された可変光減衰器とを備える。
 本発明の一態様に係る方法は、宅側装置の送信レベルの調整方法である。宅側装置は、光信号を出力するように構成された光送信器と、光信号を受信するように構成された光受信器と、光送信器からの光信号および光受信器に入力されるべき光信号を減衰させる可変光減衰器と、光受信器の受信レベルをモニタするように構成されたモニタ回路と、コントローラとを含む。方法は、モニタ回路によって、光受信器の受信レベルをモニタするステップと、コントローラによって、モニタするステップによって得られた受信レベルに基づいて可変光減衰器の減衰量を制御するステップと、受信レベルが所定の範囲に入るように、モニタするステップと制御するステップとを繰り返すステップと、受信レベルが所定の範囲に入る場合に、光送信器による光信号の出力を許可するステップとを備える。
図1は、第1の実施の形態に係る光通信システムの構成例を示した図である。 図2は、図1に示したONUにおけるVOAの制御の流れを説明したフローチャートである。 図3は、図1に示したVOAの構成の一例を示した概略図である。 図4は、図3に示すVOAの動作を説明するための図である。 図5は、VOAのシャッタが完全に開いたときにVOAのアパーチャを通過する光ビームを示した模式図である。 図6は、VOAのシャッタが部分的に開いたときにVOAのアパーチャを通過する光ビームを示した第1の模式図である。 図7は、VOAのシャッタが部分的に開いたときにVOAのアパーチャを通過する光ビームを示した第2の模式図である。 図8は、第2の実施の形態に係るPONシステムの構成図である。 図9は、第3の実施の形態に係るPONシステムの構成図である。 図10は、第3の実施の形態に係るVOAの制御を表すフロー図である。 図11は、第4の実施の形態に係る光通信システムの構成例を示した図である。 図12は、第5の実施の形態に係る光通信システムの第1の構成例を示した図である。 図13は、第5の実施の形態に係る光通信システムの第2の構成例を示した図である。 図14は、第6の実施の形態に係る光通信システムの第1の構成例を示した図である。 図15は、第6の実施の形態に係る光通信システムの第2の構成例を示した図である。 図16は、第7の実施の形態に係る光通信システムの構成例を示した図である。 図17は、VOAの他の構成例を示したブロック図である。
[本開示が解決しようとする課題]
 ONU送信器の送信パワーをレーザ素子の直接変調によって調整する場合には、レーザ素子の駆動電流を変化させなければならない。駆動電流を大きく減少させたときには、レーザ素子の発光が不安定になるため、波形品質が劣化する。したがって駆動電流の調整可能な範囲が限定される。レーザ素子の駆動電流の大きさを変化させることによってONUの送信レベルを調整することは、実質的には難しい。
 したがって本開示の目的は、宅側装置の送信レベルを調整するための技術を提供することである。
[本開示の効果]
 上記によれば、宅側装置の送信レベルを調整するための技術を提供することができる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 (1) 本発明の一態様に係る宅側装置は、光信号を出力するように構成された光送信器と、光信号を受信するように構成された光受信器と、少なくとも光送信器からの光信号を減衰するように構成された可変光減衰器とを備える。
 上記によれば、可変光減衰器の減衰量を調整することによって、宅側装置の送信レベルを調整することができる。
 (2) 好ましくは、可変光減衰器は、さらに、光受信器に入力されるべき光信号を減衰するように構成される。
 上記によれば、宅側装置から送信される光信号だけでなく、光受信器に入力される光信号を減衰させることができる。
 (3) 好ましくは、宅側装置は、光送信器に光学的に結合されて、光送信器から出力された光信号を伝送するように構成された光送信路と、光受信器に光学的に結合されて、光受信器に入力されるべき光信号を伝送するように構成された光受信路とをさらに備える。光送信路および光受信路は、可変光減衰器が配置された共通の伝送路を含む。
 上記によれば、宅側装置から送信される光信号だけでなく、光受信器に入力される光信号を減衰させることができる。
 (4) 好ましくは、可変光減衰器は、光送信器からの光信号を減衰するように構成された第1の可変光減衰器と、光受信器に入力されるべき光信号を減衰するように構成されて、第1の可変光減衰器と連動する第2の可変光減衰器とを含む。
 上記によれば、宅側装置から送信される光信号だけでなく、光受信器に入力される光信号を減衰させることができる。
 (5) 好ましくは、宅側装置は、光受信器の受信レベルをモニタするように構成されたモニタ回路と、モニタ回路によってモニタされた受信レベルに従って可変光減衰器を制御するように構成されたコントローラとをさらに備える。
 上記によれば、モニタされた受信レベルに基づくフィードバック制御によって可変光減衰器の減衰量を調整することができる。可変光減衰器の減衰量と制御量との関係を予め取得する必要がない。
 (6) 好ましくは、宅側装置は、モニタ回路によってモニタされた受信レベルが所定の範囲内であるときに光送信器に光信号の出力を許可するイネーブル回路をさらに備える。
 上記によれば、宅側装置から、未調整の強度を有する光信号(たとえば強い光信号)が出力されることを防ぐことができる。
 (7) 好ましくは、上記(1)において、宅側装置は、フィードフォワード制御を実行することによって可変光減衰器の減衰量を制御するように構成されたコントローラをさらに備える。
 上記によれば、受信レベルをモニタしなくとも、可変光減衰器の減衰量と制御量との間の関係に基づくフィードフォワード制御によって可変光減衰器の減衰量を調整することができる。
 (8) 好ましくは、可変光減衰器は、空間結合光学系を含む。
 上記によれば、挿入損失が発生しないように減衰量を制御することができるので、より大きな範囲で宅側装置の送信レベルを調整することができる。
 (9) 本発明の一態様に係る光通信システムは、局側装置と、少なくとも1つの宅側装置と、局側装置および少なくとも1つの宅側装置とを接続する光分配ネットワークとを備える。局側装置は、光信号を出力するように構成された第1の光送信器と、光信号を受信するように構成された第1の光受信器と、第1の光受信器の前段に配置された半導体光増幅器とを含む。宅側装置は、光信号を出力するように構成された第2の光送信器と、光信号を受信するように構成された第2の光受信器と、少なくとも第2の光送信器からの光信号を減衰するように構成された可変光減衰器とを備える。
 上記によれば、可変光減衰器の減衰量を調整することによって、宅側装置の送信レベルを調整することができる。さらに、宅側装置の送信レベルを調整することによって、局側装置における光受信器の損傷の可能性を低減することができる。
 (10) 好ましくは、光通信システムは、第2の光受信器の受信レベルをモニタするように構成されたモニタ回路と、モニタ回路によってモニタされた受信レベルに従って前記可変光減衰器を制御するように構成されたコントローラとをさらに備える。
 上記によれば、モニタされた受信レベルに基づくフィードバック制御によって可変光減衰器の減衰量を調整することができる。可変光減衰器の減衰量と制御量との関係を予め取得する必要がない。
 (11) 本発明の一態様に係る方法は、宅側装置の送信レベルの調整方法である。宅側装置は、光信号を出力するように構成された光送信器と、光信号を受信するように構成された光受信器と、光送信器からの光信号および光受信器に入力されるべき光信号を減衰させる可変光減衰器と、光受信器の受信レベルをモニタするように構成されたモニタ回路と、コントローラとを含む。方法は、モニタ回路によって、光受信器の受信レベルをモニタするステップと、コントローラによって、モニタするステップによって得られた受信レベルに基づいて可変光減衰器の減衰量を制御するステップと、受信レベルが所定の範囲に入るように、モニタするステップと制御するステップとを繰り返すステップと、受信レベルが所定の範囲に入る場合に、光送信器による光信号の出力を許可するステップとを備える。
 上記によれば、可変光減衰器の減衰量を調整することによって、宅側装置の送信レベルを調整することができる。さらに、宅側装置の送信レベルを調整することによって、未調整の強度を有する光信号(たとえば強い光信号)が出力されることを防ぐことができる。
 [本発明の実施形態の詳細]
 以下、本発明の実施の形態について図面を用いて説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 以下の説明において、光通信システムの一実施形態としてPONが示される。なお、限定しない限りにおいて、「PON」はEPON(Ethernet(登録商標) Passive Optical Network)を含む。
 <実施の形態1>
 図1は、第1の実施の形態に係る光通信システムの構成例を示した図である。図1に示されるように、PONシステム300は、OLT(局側装置)100と、ONU(宅側装置)200と、光分配ネットワーク301とを備える。
 光分配ネットワーク301は、光ファイバ線路および光スプリッタ302によって構成される。OLT100およびONU200は、光分配ネットワーク301に接続される。
 ODN(Optical Distribution Network)区間306は、光スプリッタ302を含み、かつ規定点304,305で挟まれた光分配ネットワーク301の区間である。光スプリッタ302により、光分配ネットワーク301が分岐される。これにより複数のONUが光分配ネットワーク301に接続されることができる。図1では、代表的に1つのONU200が示される。
 PONシステム300は、100Gbps級PON(たとえば100G-EPON)を実現する。100G-EPONでは、10G-EPONと同じファイバ線路が使用されて、25.78125Gb/s(以下では「25Gbps」と表記する)の伝送容量を有する、互いに波長が異なる4本の光信号が伝送される。
 OLT100は、光送信路101と、光受信路102と、ダイプレクサフィルタ(Diplexer filter)103と、半導体光増幅器(Semiconductor Optical Amplifier;SOA)105,106と、光マルチプレクサ110と、光デマルチプレクサ120と、光送信器111~114と、光受信器121~124とを含む。OLT100は、上記の要素を含むモジュール(たとえば光トランシーバ)を含むことができる。図1では、OLT100の光信号の送信および受信に関する構成を示している。
 光送信路101および光受信路102は、光導波路、光ファイバ等により構成される。ダイプレクサフィルタ103は、光送信路101および光受信路102を光学的に分離するための部品である。
 光送信器111~114の各々は、光信号を発生させる発光素子として、たとえば電界吸収型変調器集積レーザダイオード(Electro-absorption Modulator Laser Diode;EML)を含む。光送信器111~114は、波長の互いに異なる光を発する。各々の光送信器は25Gbpsの伝送容量を有する。したがって25Gbps×4チャネルが実現される。
 光マルチプレクサ110は、光送信器111~114からそれぞれ発せられた4つの光信号を波長多重によって多重化する。各々の光送信器が4つのチャネルのうちの、いずれの1つに割り当てられるのかは特に限定されない。便宜上、光送信器111,112,113,114が、それぞれ、チャネル0(ch0)、チャネル1(ch1)、チャネル2(ch2)、チャネル3(ch3)に対応付けられているものとする。
 光送信路101は、光マルチプレクサ110を介して光送信器111~114に光学的に結合される。SOA105は、光送信路101に配置されて、光マルチプレクサ110から出力された光信号を増幅する。増幅された光信号は、光送信路101を伝送される。光信号は、ダイプレクサフィルタ103を通過して、OLT100から光分配ネットワーク301に送出される。
 OLT100はONU200から光信号を受ける。その光信号はダイプレクサフィルタ103を通過して、光受信路102に経路付られる。SOA106は、光受信路102に配置されて、光受信路102を伝送される光信号を増幅する。
 ONU200からの光信号は波長分割多重(WDM)光信号である。光デマルチプレクサ120は、光受信路102を伝送された光信号を、波長に基づいて4つの光信号に分離する。4つの光信号は、光受信器121~124に、それぞれ入力される。光受信路102は、光デマルチプレクサ120に光学的に結合されることにより、光受信器121~124に光学的に結合される。
 光受信器121~124の各々は、高感度を有する受光器であり、たとえば、受光素子としてアバランシェフォトダイオード(Avalanche Photodiode;APD)を含む。光受信器121,122,123,124は、4つのチャネルにそれぞれ関連付けられる。便宜上、光受信器121,122,123,124が、それぞれ、ch0,ch1,ch2,ch3に割り当てられているものとする。
 ONU200は、光送信路201と、光受信路202と、ダイプレクサフィルタ203と、光伝送路204と、光マルチプレクサ210と、光デマルチプレクサ220と、光送信器211~214と、光受信器221~224と、可変光減衰器(Variable Optical Attenuator;VOA)230と、受信信号強度表示(Received Signal Strength Indication;RSSI)回路241と、VOAコントローラ242と、Txイネーブルコントローラ243とを含む。ONU200は、上記の要素を含むモジュール(たとえば光トランシーバ)を含むことができる。
 ONU200のモジュールは、図1に示された構成要素のうちの選択的な要素を含んでもよい。「選択的な要素」とは、たとえば光送信路201、光受信路202、ダイプレクサフィルタ203、光マルチプレクサ210、光デマルチプレクサ220、光送信器211~214、光受信器221~224、およびVOA230であってもよい。さらに、上記の「選択的な要素」は、光送信器211~214および光受信器221~224の中から選択された同数(たとえば後述する第5の実施の形態に示されるように、1つ、あるいは2つ)の光送信器および光受信器を含んでもよい。この場合には、OLT100も同様に、光送信器111~114および光受信器121~124の中から選択された同数(たとえば後述する第5の実施の形態に示されるように1つ、あるいは2つ)の光送信器および光受信器を、「選択的な要素」として含むことができる。
 光送信路201、光受信路202および、光伝送路204は、光導波路、光ファイバ等により構成される。ダイプレクサフィルタ203は、光送信路201および光受信路202を光学的に分離するための部品である。
 光伝送路204は、光送信路201および光受信路202に共通する伝送路である。第1の実施の形態では、VOA230は光伝送路204に配置される。
 光マルチプレクサ210は光送信路201に配置される。光デマルチプレクサ220は、光受信路202に配置される。
 光送信器211~214の各々は、発光素子としてEMLを含むことができる。代わりに、光送信器211~214の各々の発光素子は、直接変調レーザダイオード(Direct Modulation Laser Diode;DML)であってもよい。光送信器211~214は、波長の互いに異なる光信号を発する。この光信号はバースト光信号である。各々の光送信器は25Gbpsの伝送容量を有する。したがって25Gbps×4チャネルが実現される。各々の光送信器が4つのチャネルのうちの、いずれの1つに割り当てられるのかは特に限定されない。便宜上、光送信器211,212,213,214が、ch0,ch1,ch2,ch3に割り当てられているものとする。
 光マルチプレクサ210は、光送信器211~214からそれぞれ発せられた4つの光信号を波長多重によって多重化する。多重化された光信号は、光送信路201を伝送されて、ダイプレクサフィルタ203を通過する。
 光送信路201を伝送された光信号は、VOA230によって減衰させられる。すなわち、VOA230は、光送信器211~214から送出された光信号を減衰させる。VOA230を通った光信号は、ONU200からの上り光信号として、光分配ネットワーク301へと送出される。
 ONU200は、OLT100から光信号を受ける。その光信号は、光伝送路204を伝送されて、VOA230によって減衰させられる。すなわち、VOA230は、光受信器221~224に入力されるべき光信号を減衰させる。
 VOA230を通過した後、光信号は、光伝送路204を伝送されて、ダイプレクサフィルタ203によって、光受信路202に経路付られる。光デマルチプレクサ220は、光受信路202を伝送された光信号を波長に基づいて4つの光信号に分離する。4つの光信号は、光受信器221~224に、それぞれ入力される。光受信器221~224の各々は、高感度を有する受光器である。光受信器221~224の各々は、受光素子としてアバランシェフォトダイオードを含む。光受信器221,222,223,224は、4つのチャネルにそれぞれ関連付けられる。便宜上、光受信器221,222,223,224が、それぞれ、ch0,ch1,ch2,ch3に割り当てられているものとする。
 VOA230は、可変の減衰量を有する。詳細には、VOA230は、VOAコントローラ242の制御により、光信号の減衰(アッテネーション)のレベルを調節する。なお、可変の減衰量は0を含み得る。
 RSSI回路241は、ONU200の受信レベル(受信信号強度)をモニタするモニタ回路である。一実施形態では、RSSI回路241は、ch0,ch1,ch2,ch3のいずれか1つのチャネルにおける受信レベルをモニタする。25G-EPON、50G-EPONおよび100G-EPONでは、ch0が共通に使われる。したがってRSSI回路241は、ch0(すなわち光受信器221)の受信レベルをモニタしてもよい。
 RSSI回路241は、4つのチャネルの受信レベルのうちの最大値、あるいは最小値をモニタしてもよい。あるいは、RSSI回路241は、4つのチャネルの受信レベルの平均値をモニタするのでもよい。
 VOAコントローラ242は、RSSI回路241の出力(モニタされた受信レベル)に基づいて、VOA230を制御する。Txイネーブルコントローラ243は、RSSI回路241の出力に基づいて、光送信器211~214の各々の状態をイネーブルとディセーブルとの間で切り替える。RSSI回路241と、VOAコントローラ242と、Txイネーブルコントローラ243とは、1または複数の半導体回路によって実現される。
 この実施の形態では、10G-EPONと同じファイバ線路によって100G-EPONを実現するために、SOA105,106がOLT100に配置される。このファイバ線路の伝送損失は、最小15dB/最大29dBである。10G-EPONに比べて100G-EPONでは、伝送速度が約2.5倍になる。伝送速度が高いほど、OLTには、広い帯域を有する光受信器が求められる。しかし、広帯域の光受信器では、受信帯域だけでなくノイズ帯域も広いため、受信器の受信感度は低い。
 100G-EPONでは、10G-EPONに比べて、OLT側の受信器の受信感度が約4~5dB劣化すると見積もられる。また、伝送速度が高まることにより、伝送信号の波形品質の劣化、および、ファイバ波長分散によるペナルティの増加が生じる。
 さらに、合波および分波のために、OLTおよびONUの各々に、光マルチプレクサ、光デマルチプレクサ、およびダイプレクサフィルタが必要である。これらの素子を追加することによる挿入損失が発生する。たとえば光マルチプレクサ、光デマルチプレクサの各々の損失は約1.5dBであり、ダイプレクサフィルタの損失は約0.5dBである。ODN区間のロスバジェットは29dB(IEEE 802.3av(PR30))である。
 OLT側の受信感度の劣化を補うために、ONU200の光送信器211~214の送信パワーを上げてもよい。しかし、ONU側の送信パワーを増加させることによって、ONU200のコストが増加する可能性を考慮する必要がある。光分配ネットワーク301に複数のONU200が接続されるので、各ONUのコストの増加が、PONシステム300の全体のコストに大きく影響する。OLT100の受信側に光増幅器を適用することによって、OLT側の受信感度を改善しつつ、ONU200の側のコストが大幅に増加することを抑えることができる。上り方向と同様に、下り方向では、ONUの受信感度が不足する。SOA105によって、OLT100の送信パワーを高めることができる。したがって、ONU側の受信感度の低下を補うことができる。
 OLT側の受信感度の劣化のための対策として、誤り訂正を導入してもよい。ただし、OLT100の受信側に半導体光増幅器を配置するほうが、OLT側の受信感度の劣化の問題に対してより効果的であると考えられる。既に、10G-EPONではBER(Bit Error Ratio)を10-3から10-12相当まで低減する誤り訂正機能が導入されているためである。
 ODN区間306の伝送損失は、主に、光ファイバ線路の距離と光スプリッタ302による分岐数に依存する。PONでは、ONUごとに、OLT100とのファイバ線路の伝送損失が異なる。複数のONU200からの光信号の中には、弱い光信号が含まれる可能性がある。SOA106によって、弱い光信号を増幅することができる。一方、複数のONU200からの光信号の中には、強い光信号が含まれる可能性がある。強い光信号がSOA106によって増幅された場合、光受信器121~124のいずれかの受信レベルの最大値が受光素子を保護するための閾値(Damage Threshold)を上回るおそれがある。このような場合には、その光受信器の受光素子が損傷する確率が高い。
 コストの観点からは、1つの半導体光増幅器が4チャネルの信号を同時に増幅することが好ましい。このため、SOA106は、光受信器121~124に共通して、光受信路102に配置される。同様にコストの観点から、半導体光増幅器105が、光送信器111~114に共通して光送信路101に配置される。
 各チャネルの受信レベルが異なる場合には、SOA106の増幅率を最適化することが難しい。4つのチャネルの中に、強信号のチャネルが含まれる場合にはSOA106が飽和する。SOA106の飽和により、SOA106の増幅率が変動する。増幅率の変動が弱信号のチャネルに影響を及ぼすという、相互利得変調(Cross Gain Modulation)が発生する。
 したがって、図1のPONシステム300において、パワーレベリング技術の適用が有効である。上述のように、ONU200の送信パワーを調整することは、ONU200から送信される信号の波形の品質に影響を与える。したがって、この実施の形態では、VOA230により送信パワーを調整する。これにより波形品質への影響を小さくしながらONU200の送信パワーを調整することができる。したがって、パワーレベリングを実現することができる。また、SOAを利用することにより、10G-EPONと同じファイバ線路によって100G-EPONを実現することができる。
 GPONのパワーレベリング機構では、OLTは、OLTの受信レベルを測定して、ONUに対して送信パワーを調整するよう指示する。OLTには、ONUからの光信号のパワーをモニタする機能が必要である。加えて、パワーレベリングは、OLTとONUとの間の通信が確立されていることが前提となる。OLTとONUとの間の通信を確立するためにパワーレベリングが必要な状況下では、パワーレベリングは実行できない。
 この実施の形態では、ONU200がONU200の受信レベルをRSSI回路241によりモニタする。VOAコントローラ242は、受信レベルが一定の閾値を超えないように、RSSI回路241の出力(受信信号強度)に基づいてVOA230をフィードバック制御する。フィードバック制御を採用することにより、光信号の減衰量とVOA230の制御量との間の関係を予め記憶する必要なしにVOA230を制御することができる。
 ODN区間306における伝送損失が小さい場合、RSSI回路241において検出される受信レベルが高い。この場合には、VOAコントローラ242は、VOA230を制御して、VOA230における損失をODN区間306における伝送損失に加算する。逆に、ODN区間306における伝送損失が大きい場合、RSSI回路241において検出される受信レベルが低い。この場合には、VOAコントローラ242は、VOA230における損失がODN区間306における伝送損失に加算されないようにVOA230を制御する。
 VOA230のフィードバック制御により、RSSI回路241によりモニタされた受信レベルが、最小受信レベルから、所定の範囲内に安定的に入るように制御される。その後に、Txイネーブルコントローラ243は、光送信器211~214の各々によるバースト光信号の送信を可能にする。
 図2は、図1に示したONU200におけるVOA230の制御の流れを説明したフローチャートである。図1および図2を参照して、ステップS01において、VOAコントローラ242は、RSSI回路241からの出力信号を受けることにより、ONU200の受信レベルを検出する。VOAコントローラ242が光信号の受信を検出するまで、ステップS01の処理が実行される。すなわち、ステップS01において、VOAコントローラ242は、ONU200において光信号が受信できていることを確認する。ステップS01の処理によって、光ファイバがONU200に接続されていない場合との区別が可能になる。したがって、不適切に送信が開始される(不適切にステップS13に処理が進む)ことを回避することができる。
 ステップS11において、RSSI回路241は、上述した方法により、ONU200の受信レベルを検出する。なお、光受信器221~224が受信する光信号は、OLT100から送信された光信号である。この光信号の種類は特に限定されない。ステップS12において、VOAコントローラ242は、RSSI回路241の出力に基づいてVOA230を制御する。
 ステップS11,S12の処理は、RSSI回路241でモニタされた受信レベルが所定の範囲内で安定するまで繰り返される。受信レベルが所定の範囲内で安定すると、Txイネーブルコントローラ243は、光送信器211~214をイネーブルにする。これによりONU200からの送信が開始される(ステップS13)。VOA230の制御が完了するまでONU200から光信号は送信されない。したがってOLT100の光受信器121~124を損傷から保護することができる。VOA230によって制御された強度を有するバースト光信号がONU200からOLT100へと送られる。これにより、パワーレベリングを実現できる。
 なお、VOA230の初期減衰値は、RSSI回路241が受信強度を検出できる範囲で一定の減衰値を持ってもよい。これにより、初期状態においてONU200の光受信器221~224の損傷を回避することができる。OLT100からの下り光信号は、連続光の信号である。光受信器221~224は連続的に光を受信するため、OLT100側の光受信器121~124よりも損傷に対して強い。したがって、実運用上の問題を防ぐことができる。
 VOA230は、空間結合光学系を含む空間結合型VOAである。図3は、図1に示したVOA230の構成の一例を示した概略図である。図3を参照して、VOA230は、MEMS(Micro Electro Mechanical Systems)デバイスにより実現可能である。VOA230は、シャッタ231と、シャッタ231に接続された一方端を有するカンチレバー232と、カンチレバー232の他方端に接続されて、電圧の入力によりカンチレバー232を駆動する駆動部233と、電圧を受ける電極234,235を含む。VOA230は、基板236(たとえばシリコン基板)上に、たとえば半導体製造技術を用いて形成される。なお、図3には示されていないが、基板236には、シャッタ231により塞がれるアパーチャが形成される。たとえば電極234,235の間に電圧が印加されていない状態において、シャッタ231はアパーチャと内接する、あるいはシャッタ231はアパーチャを覆っている。
 図4は、図3に示すVOA230の動作を説明するための図である。図4に示すように、電極234,235の間に電圧Vdが印加される。駆動部233は、たとえば、カンチレバー232に接続されて、電圧によって変形する構造体であり、シャッタ231が開く方向にカンチレバー232を動かす。電圧Vdの大きさに応じてシャッタ231の開度が変化する。なお、図4には、シャッタ231が完全に開いた状態が示されている。
 図5は、VOA230のシャッタ231が完全に開いたときにVOA230のアパーチャ237を通過する光ビームを示した模式図である。図5に示すように、光ビーム21は、損失なくアパーチャ237を通過することができる。図5では、ONU200から送出される光信号、OLT100から受信した光信号の両方をまとめて光ビーム21として図示する。VOA230における損失は、光ビーム21の伝搬方向とは無関係である。
 図6は、VOA230のシャッタ231が部分的に開いたときにVOA230のアパーチャ237を通過する光ビームを示した第1の模式図である。図6において、OLT100から受信した光信号は、光ビーム22として表される。光ビーム22の一部がシャッタ231により遮られる。これにより、OLT100から受信した光信号は、VOA230によって減衰される。
 図7は、VOA230のシャッタ231が部分的に開いたときにVOA230のアパーチャ237を通過する光ビームを示した第2の模式図である。図7において、ONU200から送信されるべき光信号は、光ビーム23として表される。光ビーム23の一部がシャッタ231により遮られる。これにより、ONU200から送信されるべき光信号は、VOA230によって減衰される。図6と図7とでは、シャッタ231の開度が同じである。したがって、光ビームの伝搬方向によらず、VOA230において同じ減衰量を得ることができる。
 このような減衰特性を得ることが可能なVOA230の構造は、VOA230が空間結合型のVOAである場合には、図3に示された構造に限定されない。VOA230はMEMS構造を有することが好ましい。MEMS構造を有するVOAは、小型かつ安価で実現できるとともに、比較的小さい挿入損失を発生させることができる。
 たとえば、VOA230は、VOA230に光ビームを導入する入射光ファイバと、MEMSミラーと、VOA230の内部からVOA230の外部に光を伝播する出射光ファイバとを備えてもよい。入射光ファイバによりVOA230の内部に導入された光は、MEMSミラーにより反射され、反射光は、出射光ファイバに結合する。ミラーの反射角はMEMSミラーに印加される電圧に依存して変化する。これにより出射光ファイバの結合率が変化するので、減衰量を変化させることができる。
 ODN区間306の伝送損失が小さい場合にのみ、VOA230が機能して、トータルの伝送損失にVOA203による伝送損失が加算される。これによりODN区間306のダイナミックレンジが狭まるため、OLT100の受信レベルをバースト光信号の間で平坦化できる。さらに、1つのSOAによる4チャネル光増幅が可能になる。VOA230には、空間結合型VOAが適用される。したがって、VOA230を機能していない場合には、VOA230による挿入損失が発生しない。
 VOA230によってONUの送信レベルを調整するので、ONU200の送信レベルを広範囲で制御することができる。加えて、VOA230の伝送損失によって、OLT100の受信レベルを下げることができる。これにより、OLT100側の受光素子が強い光信号の入力によって損傷する可能性を低減することができる。さらに、1つのVOA230で4チャネルの減衰を制御できる。
 <実施の形態2>
 図8は、第2の実施の形態に係るPONシステムの構成図である。図8を参照して、ONU200は、VOA230に代えて、VOA230A,230Bを含む。VOA230Aは、光送信路201に配置される。VOA230Bは、光受信路202に配置される。この点において、第2の実施の形態は、第1の実施の形態と相違する。VOA230A,230Bとは互いに同じ構成を有する空間結合型VOAである。たとえばVOA230A,230Bの各々の構成は、図3に示されたVOA230の構成と同じである。
 VOA230A,230Bは、VOAコントローラ242により同時に制御される。VOA230A,230Bの減衰量が同じになるようにVOA230A,230Bが制御される。
 第1の実施の形態と同様に、第2の実施の形態によれば、ONUの送信レベルをVOAによって広範囲で制御することができる。
 <実施の形態3>
 図9は、第3の実施の形態に係るPONシステムの構成図である。図9を参照して、第3の実施の形態において、VOA230は光送信路201に配置される。この点において、第3の実施の形態は、第1の実施の形態と相違する。
 実施の形態1と異なり、VOAコントローラ242によるVOA230の制御において、フィードフォワード制御が実行される。したがって、制御量と減衰量とを関係づける情報が予め取得される。その情報は、たとえばVOAコントローラ242に記憶されてもよい。
 図10は、第3の実施の形態に係るVOA230の制御を表すフロー図である。ステップS01において、VOAコントローラ242は、RSSI回路241からの出力信号を受けることにより、ONU200において光信号が受信できていることを確認する。ステップS11において、VOAコントローラ242は、制御量と減衰量とを関係づける情報に基づいて、制御量を決定する。ステップS12において、VOAコントローラ242は、その決定された制御量に従ってVOA230を制御する。続いて、ステップS13において、Txイネーブルコントローラ243は、光送信器211~214をイネーブルにする。
 第3の実施の形態によれば、フィードバック制御だけでなく、フィードフォワード制御によってもONUの送信パワーを調整することができる。なお、フィードフォワード制御は、第1の実施の形態に係るフィードバック制御とともに実行されてもよい。
 さらに、第1の実施の形態と同様に、第3の実施の形態によれば、ONUの送信レベルをVOAによって広範囲で制御することができる。
 <実施の形態4>
 図11は、第4の実施の形態に係る光通信システムの構成例を示した図である。第4の実施の形態は、OLT100の構成において、第1の実施の形態と異なる。詳細には、光送信器ごとにSOAが設けられる。SOA105a,105b,105c,105dは、光送信器111~114のそれぞれから発せられる光信号を増幅する。
 さらに、光受信器ごとにSOAが設けられる。SOA106a,106b,106c,106dは、光受信器121~124のそれぞれに入力されるべき光信号を増幅する。
 第4の実施の形態によれば、VOA230によってONU200の送信レベルを広範囲で制御することができる。
 なお、光送信器111~114には共通に1つのSOA(図1のSOA105を参照)を共通に配置し、光受信器ごとにSOAを設けてもよい。あるいは、光受信器121~124には共通に1つのSOA(図1のSOA106を参照)を配置し、光送信器ごとにSOAを配置してもよい。
 <実施の形態5>
 波長多重型PONシステムの導入シナリオとして、伝送容量の段階的な拡張(アップグレード)が考えられる。たとえば100G-EPONの導入に先立ち、25G-EPONまたは50G-EPONを導入するというシナリオが想定される。
 図12は、第5の実施の形態に係る光通信システムの第1の構成例を示した図である。25G-EPONを実現するために、図12に示した構成を採用することができる。図12に示すように、OLT100およびONU200の各々は、1つの光送信器と、1つの光受信器とを含む。これにより25Gbps×1チャネルの伝送を達成できる。図12において、光マルチプレクサ110,210および光デマルチプレクサは、25G-EPONを実現するための必須の構成ではない。また、他の3つのチャネルの信号を受信しないためのカットフィルタ(受信信号のみ通すバンドパスフィルタ)がOLT100およびONU200において必要である。光受信器111および光受信器121の各々は、上記のカットフィルタを内蔵してもよい。
 図13は、第5の実施の形態に係る光通信システムの第2の構成例を示した図である。50G-EPONを実現するために、図13に示した構成を採用することができる。図13に示すように、OLT100およびONU200の各々は、2つの光送信器と、2つの光受信器とを含む。これにより25Gbps×2チャネルの伝送を達成できる。図12、図13に示した構成においても、ONU200側において、RSSI回路241の出力(受信信号強度)に基づいて、VOA230が制御される。
 PONシステム300の構成を、図12に示す構成から、図13に示す構成を経て、図1に示す構成へと段階的に変化させることにより、伝送容量の段階的な拡張が可能である。このような段階的な拡張において、VOA230の制御には、同じチャネルの受信強度がモニタされることが好ましい。25G-EPON、50G-EPONおよび100G-EPONの間では、チャネル0(ch0)が共通する。したがって、RSSI回路241は、ch0の受信強度がモニタされる。同じチャネルをモニタすることによって、基準が揃うので調整ばらつきを低減できる。
 また、第5の実施の形態によれば、100G-EPONに限定されず、25G-EPONおよび50G-EPONにおいてもONUの送信レベルをVOAによって広範囲で制御することができる。
 <実施の形態6>
 第6の実施の形態では、OLTがONUの受信レベルを監視する、あるいはVOAを制御する。図14は、第6の実施の形態に係る光通信システムの第1の構成例を示した図である。図14に示されるように、第6の実施の形態において、OLT100は、VOAモニタ130をさらに備える。VOAモニタ130は、光送信器111~114を制御して、VOA230の制御状態を問い合わせるための光信号を光送信器111~114に発生させる。
 ONU200は、OLT100からの光信号に応答して、VOA230の制御状態(たとえばRSSI回路241の出力)を示す信号を、光送信器211~214により発生させる。ONU200からの光信号は、OLT100の光受信器121~124に受信される。VOAモニタ130は、光受信器121~124からの出力信号を受けて、VOA230の制御状態をモニタする。
 図15は、第6の実施の形態に係る光通信システムの第2の構成例を示した図である。図15に示されるように、第6の実施の形態において、OLT100は、VOAコントローラ140およびRSSI回路141をさらに備えてもよい。VOAコントローラ140は、上述したVOAモニタ130の機能を有する。OLT100は、RSSI回路141の出力に基づき、ONU200のVOA230を微調整する。VOAコントローラ140は、光送信器111~114を制御して、VOA230を制御するための光信号を光送信器111~114に発生させる。ONU200の光受信器221~224は、OLT100からの光信号を受信する。VOAコントローラ242は、光受信器221~224から出力された信号(制御信号)に応答してVOA230を制御する。VOA230の制御に関して、VOAコントローラ242は、RSSI回路241の出力に基づく制御に加えて、OLT100からの指示に基づく制御を実行することができる。また、OLT100からの指示に対して、VOAモニタの機能が変化しない場合、あるいはRSSI回路141の出力が変化しない場合には、ONU200の故障と判断することができる。
 <実施の形態7>
 第1の実施の形態から第6の実施の形態においては、ONUの送信パワーの調整に空間結合型VOAが適用される。第7の実施の形態では、光減衰器の他の形態が適用される。
 図16は、第7の実施の形態に係る光通信システムの構成例を示した図である。図16に示すように、固定した減衰量を持つアッテネータ(固定アッテネータ251)がVOA230に代えてONU200に実装される。固定アッテネータ251は、たとえば手動でONU200の内部に取り付けられる。さらに、固定アッテネータ251は、異なる減衰量を有する別の固定アッテネータ252と交換可能である。
 さらに、ONU200は、LED245を含むインジケータ244を有する。インジケータ244は、ONU200に取り付けられるべき固定アッテネータを作業者に指示する。作業者は、LED245の点灯を確認することにより、適切な減衰量を持つ固定アッテネータを選択することができる。
 図17は、VOA230の他の構成例を示したブロック図である。図17に示すように、VOA230は、光伝送路204である光ファイバを屈曲させて減衰量を調整する。VOA230は、モータ261と、モータ261を駆動するためのモータドライバ262と、モータ261の回転運動を直線運動に変換する回転-直線変換機械263と、直線運動を行うように回転-直線変換機械263によって駆動されるファイバ接触部材264とを含む。
 ファイバ接触部材264の直線運動により、光ファイバの屈曲の度合いを変化させる。これにより、光ファイバの損失が変化するので、減衰量を変化させることができる。
 実施の形態1と同様に、RSSI回路241の出力に基づくフィードバック制御が実行される。VOAコントローラ242は、RSSI1回路241の出力に基づいて、モータ261を制御するための信号を発生させる。モータドライバ262は、VOAコントローラ242からの制御信号に応答して、モータ261に電流を供給する。これにより、たとえばモータ261のトルクが制御される。
 上記のフィードバック制御により、VOA230の減衰量を安定させることができる。しかしながら、回転-直線変換機械263として手動操作される機械を適用してもよい。
 なお、上記の実施の形態では、ONUにおける複数のバースト光信号の多重化の形態として波長分割多重が適用される。しかし、複数のバースト光信号の多重化の形態として時分割多重(TDM)を適用することもできる。この場合、OLTにおいて、時分割多重方式に従って、多重化されたバースト光信号が複数の光信号に分離される。
 [付記]上記の通り、本発明の実施の形態に係る光通信システムは、25G-EPON、50G-EPONおよび100G-EPONに適用できる。したがって本発明の実施の形態は、以下に記載される態様を含むものである。
 (付記1)局側装置と、
 少なくとも1つの宅側装置と、
 前記局側装置および前記少なくとも1つの宅側装置とを接続する光分配ネットワークとを備え、
 前記局側装置は、
 光信号を出力するように構成された第1の局側光送信器と、
 光信号を受信するように構成された第1の局側光受信器と、
 前記第1の局側光受信器の前段に配置された半導体光増幅器とを含み、
 前記宅側装置は、
 光信号を出力するように構成された第1の宅側光送信器と、
 光信号を受信するように構成された第1の宅側光受信器と、
 少なくとも前記第1の宅側光送信器からの前記光信号を減衰するように構成された可変光減衰器とを備える、光通信システム。
 (付記2) 前記局側装置は、
 前記第1の局側光送信器により出力された前記光信号の波長と異なる波長を有する光信号を出力する第2の局側光送信器と、
 前記第1の局側光送信器から出力された前記光信号と、前記第2の局側光送信器から出力された前記光信号とを、波長多重によって多重化して下り光信号を出力するように構成された第1の光マルチプレクサと、
 光信号を受信するように構成された第2の局側光受信器と、
 多重化された上り光信号を受けて、前記第1の局側光受信器に入力されるべき第1の光信号と、前記第2の局側光受信器に入力されるべき第2の光信号とを出力する第1の光デマルチプレクサとを含み、
 前記宅側装置は、
 前記第1の宅側光送信器により出力された前記光信号の波長と異なる波長を有する光信号を出力する第2の宅側光送信器と、
 前記第1の宅側光送信器から出力された前記光信号と、前記第2の宅側光送信器から出力された前記光信号とを、波長多重によって多重化して上り光信号を出力するように構成された第2の光マルチプレクサと、
 光信号を受信するように構成された第2の宅側光受信器と、
 多重化された下り光信号を受けて、前記第1の宅側光受信器に入力されるべき第1の光信号と、前記第2の宅側光受信器に入力されるべき第2の光信号とを出力する第2の光デマルチプレクサとを含む、付記1に記載の光通信システム。
 (付記3) 前記局側装置は、
 前記第1の局側光送信器および前記第2の局側光送信器により出力された前記光信号の波長と異なる波長を有する光信号を前記第1の光マルチプレクサに出力するように構成された第3の局側光送信器および第4の局側光送信器と、
 前記第1の光デマルチプレクサから光信号を受信するように構成された第3の局側光受信器および第4の局側光受信器とを含み、
 前記宅側装置は、
 前記第1の宅側光送信器および前記第2の宅側光送信器により出力された前記光信号の波長と異なる波長を有する光信号を前記第2の光マルチプレクサに出力するように構成された第3の宅側光送信器および第4の宅側光送信器と、
 前記第2の光デマルチプレクサから光信号を受信するように構成された第3の宅側光受信器および第4の宅側光受信器とを含む、付記2に記載の光通信システム。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 21,22,23 光ビーム、100 局側装置(OLT)、101,201 光送信路、102,202 光受信路、103,203 ダイプレクサフィルタ、105,106 半導体光増幅器(SOA)、110,210 光マルチプレクサ、111,112,113,114,211,212,213,214 光送信器、120,220 光デマルチプレクサ、121,122,123,124,221,222,223,224 光受信器、130 VOAモニタ、140,242 VOAコントローラ、141,241 受信信号強度表示(RSSI)回路、200 宅側装置(ONU)、204 光伝送路、230 可変光減衰器(VOA)、231 シャッタ、232 カンチレバー、233 駆動部、234,235 電極、236 基板、237 アパーチャ、243 Txイネーブルコントローラ、244 インジケータ、251,252 固定アッテネータ、261 モータ、262 モータドライバ、263 回転-直線変換機械、264 ファイバ接触部材、300 システム、301 光分配ネットワーク、302 光スプリッタ、304,305 規定点、306 ODN区間。

Claims (11)

  1.  光信号を出力するように構成された光送信器と、
     光信号を受信するように構成された光受信器と、
     少なくとも前記光送信器からの前記光信号を減衰するように構成された可変光減衰器とを備える、宅側装置。
  2.  前記可変光減衰器は、さらに、前記光受信器に入力されるべき光信号を減衰するように構成される、請求項1に記載の宅側装置。
  3.  前記宅側装置は、
     前記光送信器に光学的に結合されて、前記光送信器から出力された前記光信号を伝送するように構成された光送信路と、
     前記光受信器に光学的に結合されて、前記光受信器に入力されるべき前記光信号を伝送するように構成された光受信路とをさらに備え、
     前記光送信路および前記光受信路は、前記可変光減衰器が配置された共通の伝送路を含む、請求項1または請求項2に記載の宅側装置。
  4.  前記可変光減衰器は、
     前記光送信器からの前記光信号を減衰するように構成された第1の可変光減衰器と、
     前記光受信器に入力されるべき光信号を減衰するように構成されて、前記第1の可変光減衰器と連動する第2の可変光減衰器とを含む、請求項1または請求項2に記載の宅側装置。
  5.  前記光受信器の受信レベルをモニタするように構成されたモニタ回路と、
     前記モニタ回路によってモニタされた前記受信レベルに従って前記可変光減衰器を制御するように構成されたコントローラとをさらに備える、請求項1から請求項4のいずれか1項に記載の宅側装置。
  6.  前記モニタ回路によってモニタされた前記受信レベルが所定の範囲内であるときに前記光送信器に前記光信号の出力を許可するイネーブル回路をさらに備える、請求項5に記載の宅側装置。
  7.  フィードフォワード制御を実行することによって前記可変光減衰器の減衰量を制御するように構成されたコントローラをさらに備える、請求項1に記載の宅側装置。
  8.  前記可変光減衰器は、空間結合光学系を含む、請求項1から請求項7のいずれか1項に記載の宅側装置。
  9.  局側装置と、
     少なくとも1つの宅側装置と、
     前記局側装置および前記少なくとも1つの宅側装置とを接続する光分配ネットワークとを備え、
     前記局側装置は、
     光信号を出力するように構成された第1の光送信器と、
     光信号を受信するように構成された第1の光受信器と、
     前記第1の光受信器の前段に配置された半導体光増幅器とを含み、
     前記宅側装置は、
     光信号を出力するように構成された第2の光送信器と、
     光信号を受信するように構成された第2の光受信器と、
     少なくとも前記第2の光送信器からの前記光信号を減衰するように構成された可変光減衰器とを備える、光通信システム。
  10.  前記光通信システムは、
     前記第2の光受信器の受信レベルをモニタするように構成されたモニタ回路と、
     前記モニタ回路によってモニタされた前記受信レベルに従って前記可変光減衰器を制御するように構成されたコントローラとをさらに備える、請求項9に記載の光通信システム。
  11.  宅側装置の送信レベルの調整方法であって、前記宅側装置は、光信号を出力するように構成された光送信器と、光信号を受信するように構成された光受信器と、前記光送信器からの前記光信号および前記光受信器に入力されるべき光信号を減衰させる可変光減衰器と、前記光受信器の受信レベルをモニタするように構成されたモニタ回路と、コントローラとを含み、
     前記モニタ回路によって、前記光受信器の受信レベルをモニタするステップと、
     前記コントローラによって、前記モニタするステップによって得られた前記受信レベルに基づいて前記可変光減衰器の減衰量を制御するステップと、
     前記受信レベルが所定の範囲に入るように、前記モニタするステップと前記制御するステップとを繰り返すステップと、
     前記受信レベルが所定の範囲に入る場合に、前記光送信器による前記光信号の出力を許可するステップとを備える、宅側装置の送信レベルの調整方法。
PCT/JP2018/005891 2017-06-29 2018-02-20 宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法 WO2019003491A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-127719 2017-06-29
JP2017127719 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003491A1 true WO2019003491A1 (ja) 2019-01-03

Family

ID=64741347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005891 WO2019003491A1 (ja) 2017-06-29 2018-02-20 宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法

Country Status (1)

Country Link
WO (1) WO2019003491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764568A1 (en) * 2019-07-12 2021-01-13 Nokia Solutions and Networks Oy Method and system for power measurement in case of upgrade of a passive optical network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023793A (ja) * 2009-07-13 2011-02-03 Oki Electric Industry Co Ltd 加入者端末、光通信ネットワーク及び光通信ネットワークにおける光信号の強度調整方法
JP2012019264A (ja) * 2010-07-06 2012-01-26 Hitachi Ltd 通信システムおよび通信装置
JP2015207842A (ja) * 2014-04-18 2015-11-19 富士通株式会社 光伝送装置及び光伝送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023793A (ja) * 2009-07-13 2011-02-03 Oki Electric Industry Co Ltd 加入者端末、光通信ネットワーク及び光通信ネットワークにおける光信号の強度調整方法
JP2012019264A (ja) * 2010-07-06 2012-01-26 Hitachi Ltd 通信システムおよび通信装置
JP2015207842A (ja) * 2014-04-18 2015-11-19 富士通株式会社 光伝送装置及び光伝送方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764568A1 (en) * 2019-07-12 2021-01-13 Nokia Solutions and Networks Oy Method and system for power measurement in case of upgrade of a passive optical network

Similar Documents

Publication Publication Date Title
US9455782B2 (en) Monitoring a multiplexed laser array in an optical communication system
Ossieur et al. A 135-km 8192-Split Carrier Distributed DWDM-TDMA PON With 2$\,\times\, $32 $\,\times\, $10 Gb/s Capacity
KR100711201B1 (ko) 광대역 비간섭성 광원의 위치 조정을 이용한 장거리 전송파장분할 다중방식 수동형 광 가입자망
US9497523B2 (en) Arrangement for deploying co-existing GPON and XGPON optical communication systems
US8897639B2 (en) Methods and systems for increasing reach and/or split in passive optical networks
US8126332B2 (en) Method of wavelength alignment for a wavelength division multiplexed passive optical network
US9531155B2 (en) Switched radio frequency (RF) driver for tunable laser with multiple in-line sections
US9236949B1 (en) Laser transceiver with improved bit error rate
Iannone et al. Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission
Fujiwara et al. Field trial of 100-km reach symmetric-rate 10G-EPON system using automatic level controlled burst-mode SOAs
US6633430B1 (en) Booster amplifier with spectral control for optical communications systems
EP2209233A1 (en) Optical communications systems and optical line terminals
Chowdhury et al. A survivable protection and restoration scheme using wavelength switching of integrated tunable optical transmitter for high throughput WDM-PON system
Fujiwara et al. Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC
WO2019003491A1 (ja) 宅側装置、光通信システムおよび宅側装置の送信レベルの調整方法
JP2012015866A (ja) 双方向光増幅器並びにこれを用いたponシステム及び通信方法
Ossieur et al. A symmetric 320Gb/s capable, 100km extended reach hybrid DWDM-TDMA PON
Wagner et al. Wavelength-agnostic WDM-PON system
Murano et al. Tunable 2.5 Gb/s receiver for wavelength-agile DWDM-PON
Antony et al. Upstream burst-mode operation of a 100km reach, 16× 512 split hybrid DWDM-TDM PON using tuneable external cavity lasers at the ONU-side
KR101836225B1 (ko) 장거리 wdm-pon에서 레일리 역산란으로 인한 페널티 최소화 방법 및 파장분할다중방식 수동형 광가입자망 시스템
Minoguchi et al. Extended-loss-budget pluggable transceiver for 10G/1G compatible PON with N: 1 redundant OLT protection
Fujiwara et al. Effective ONU accommodation through PON systems with multi-stage splitter configuration using ALC burst-mode SOAs
Bouda et al. Extended-reach wavelength-shared hybrid PON
Thiele et al. System margin considerations for cost-effective CWDM access networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP