WO2019003440A1 - Nonaqueous electrolyte battery and battery pack - Google Patents

Nonaqueous electrolyte battery and battery pack Download PDF

Info

Publication number
WO2019003440A1
WO2019003440A1 PCT/JP2017/024228 JP2017024228W WO2019003440A1 WO 2019003440 A1 WO2019003440 A1 WO 2019003440A1 JP 2017024228 W JP2017024228 W JP 2017024228W WO 2019003440 A1 WO2019003440 A1 WO 2019003440A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
aqueous electrolyte
group
mass
material layer
Prior art date
Application number
PCT/JP2017/024228
Other languages
French (fr)
Japanese (ja)
Inventor
大 山本
亜希 長谷川
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2019526115A priority Critical patent/JP6946429B2/en
Priority to PCT/JP2017/024228 priority patent/WO2019003440A1/en
Publication of WO2019003440A1 publication Critical patent/WO2019003440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to non-aqueous electrolyte batteries and battery packs.
  • non-aqueous electrolyte secondary batteries in which charge and discharge are performed by the movement of Li ions between the negative electrode and the positive electrode are electric vehicles (EVs) and hybrid vehicles (HEVs) from the viewpoint of energy problems and environmental problems. It is expected as a large power storage device for stationary power generation systems such as solar power generation and solar power generation.
  • EVs electric vehicles
  • HEVs hybrid vehicles
  • non-aqueous electrolyte secondary batteries are also envisioned for use in cold regions. Therefore, in the non-aqueous electrolyte secondary battery, improvement of output performance in a low temperature environment is required so that large current can be input / output even in a low temperature environment.
  • a non-aqueous electrolyte battery comprises a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte is held at least in the positive electrode material layer.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less.
  • the content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less.
  • the content ratio C1 is larger than the content ratio C2.
  • a battery pack includes the non-aqueous electrolyte battery according to the first embodiment.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of a first example according to the first embodiment cut in the thickness direction.
  • FIG. 2 is an enlarged cross-sectional view of a portion A of FIG.
  • FIG. 3 is a partially cutaway perspective view of a non-aqueous electrolyte battery of a second example according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view of a portion B of FIG.
  • FIG. 5 is an exploded perspective view of an example battery pack according to the second embodiment.
  • FIG. 6 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • a non-aqueous electrolyte battery comprises a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte is held at least in the positive electrode material layer.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less.
  • the content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less.
  • the content ratio C1 is larger than the content ratio C2.
  • the inventors of the present invention conducted intensive studies to enhance the output performance of the battery in a low temperature environment. As one approach, it has been studied to add an additive to the non-aqueous electrolyte to promote dissociation of Li salt at the positive electrode interface and to suppress metal elution from the positive electrode.
  • the additive that exerts an effect in the positive electrode does not necessarily all act on the positive electrode, and a part thereof moves to the negative electrode side, so the effect corresponding to the addition amount It turned out that it can not be used enough.
  • the present inventors have realized the nonaqueous electrolyte battery according to the first embodiment.
  • the first group and the second group can promote the dissociation of Li ions from the non-aqueous electrolyte. Since the non-aqueous electrolyte is held at least in the positive electrode material layer, the first group and the second group can efficiently supply Li ions in the vicinity of the interface between the positive electrode material layer and the non-aqueous electrolyte.
  • the interface between the positive electrode material layer containing the positive electrode active material and the non-aqueous electrolyte can be a reaction site of the positive electrode.
  • the Li ions supplied near the reaction field of the positive electrode need to move a short distance when participating in the positive electrode reaction at this interface. As a result, the resistance value at the time of charge and discharge in a low temperature environment can be lowered.
  • the first group and the second group can promote the positive electrode reaction at the interface between the positive electrode material layer and the non-aqueous electrolyte.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3 mass% or more and 2 mass% or less
  • the content ratio of the second group in the nonaqueous electrolyte C2 is 0.1 mass% or more and 1.5 mass% or less
  • the content rate C1 is larger than the content rate C2.
  • the first group contained in the positive electrode material layer can be prevented from migrating into the non-aqueous electrolyte.
  • the nonaqueous electrolyte battery according to the first embodiment can fully utilize the effect corresponding to the content ratio C1 of the first group.
  • the first group contained in the positive electrode material layer at the content ratio C1 and the second group contained in the non-aqueous electrolyte at the content ratio C2 suppress the decomposition of lithium hexafluorophosphate contained in the non-aqueous electrolyte It can also be done.
  • the decomposition product of lithium hexafluorophosphate adheres on the electrode and becomes the battery's resistive component. Particularly in a low temperature environment, when the movement distance of Li increases due to the generation of the resistance component, the battery resistance increases. Since generation of such a resistance component can be prevented, the non-aqueous electrolyte battery according to the first embodiment can exhibit a lower resistance value.
  • Li ions can be supplied to the vicinity of the reaction site of the positive electrode, and the positive electrode reaction can be promoted.
  • the non-aqueous electrolyte battery according to the first embodiment can exhibit excellent output performance under a low temperature environment.
  • Lithium hexafluorophosphate contained in the non-aqueous electrolyte can be represented, for example, by the chemical formula LiPF 6 .
  • LiPF 6 Li ion
  • PF 6 ⁇ hexafluorophosphate anion
  • the first group and the second group included in the non-aqueous electrolyte battery according to the first embodiment can, for example, promote this dissociation.
  • the first group and the second group can also suppress the decomposition of lithium hexafluorophosphate.
  • the decomposition of lithium hexafluorophosphate is not a Li + dissociation from LiPF 6, means the change in the structure of the hexafluorophosphate anion.
  • the decomposition of lithium hexafluorophosphate can be, for example, a reaction to form at least one selected from the group consisting of HF, PF 5 , POF 3 and LiF.
  • the positive electrode material layer can include, for example, a first compound having a first group.
  • the positive electrode active material may contain the first group.
  • the non-aqueous electrolyte can include, for example, a second compound having a second group.
  • the first compound and the second compound may be the same or different.
  • the first compound and / or the second compound may further contain, as a compound, an element of hydrogen and / or an alkali metal element such as lithium.
  • the first compound and the second compound can further include at least one group selected from the group consisting of an alkyl group, a carbonyl group, a hydroxyl group and an alkyllithium group as the compound.
  • the first compound and / or the second compound may contain a phosphate ester moiety or the like.
  • the first compound and / or the second compound may be in the form of a compound in the battery. Alternatively, the first compound and / or the second compound may be at least partially dissociated in the battery.
  • the positive electrode material layer includes the first group also includes, for example, a state in which the positive electrode material layer includes a first group formed by dissociation of at least a part of the first compound.
  • the non-aqueous electrolyte containing the second group also includes, for example, a state in which the non-aqueous electrolyte contains the second group formed by the dissociation of at least a part of the second compound. .
  • the non-aqueous electrolyte battery according to the first embodiment including the first group and the second group in the positive electrode material layer and the non-aqueous electrolyte at the content ratios C1 and C2 described above, respectively, from the non-aqueous electrolyte It is possible to achieve the promotion of the supply of Li ions to the vicinity of the reaction field of the positive electrode by the promotion of the dissociation of Li ions, the promotion of the positive reaction and the suppression of the decomposition of lithium hexafluorophosphate in the non-aqueous electrolyte . While not wishing to be bound by theory, it is expected that the mechanism of lithium hexafluorophosphate decomposition inhibition is mainly similar to the mechanism of Li ion dissociation promotion.
  • the first group and the second group can also contribute to the stable supply of Li ions to the positive electrode reaction site by suppressing the decomposition of lithium hexafluorophosphate, which is a source of Li ions it can.
  • the first group present in the positive electrode material layer is too small.
  • the suppression of the decomposition of lithium hexafluorophosphate near the reaction site of the positive electrode and the dissociation promoting effect of the Li salt are not sufficiently exhibited.
  • the non-aqueous electrolyte battery in which the content ratio C1 exceeds 2% by mass the ratio of the portion not directly involved in the electrode reaction in the first group contained in the positive electrode material layer is too high.
  • a portion of the first group not directly involved in the electrode reaction inhibits the electrode reaction, and the resistance in a low temperature environment increases.
  • a portion of the first group which does not directly participate in the electrode reaction is a distance between the positive electrode active material and the conductive agent which may be contained in the positive electrode material layer. It can be mentioned that it spreads out.
  • the second group present in the non-aqueous electrolyte is too small.
  • migration of the first group from the positive electrode material layer to the non-aqueous electrolyte is induced.
  • the moved first group diffuses in the non-aqueous electrolyte.
  • the amount of the first group present in the vicinity of the interface between the positive electrode material layer and the non-aqueous electrolyte is reduced, and supply of Li ions to the vicinity of the reaction field of the positive electrode and promotion of positive electrode reaction at this interface It can not express the effect.
  • the content ratio C2 in the non-aqueous electrolyte exceeds 1.5% by mass, not only the viscosity of the non-aqueous electrolyte increases but also a component that inhibits the battery reaction is present in the non-aqueous electrolyte. Therefore, in such a non-aqueous electrolyte battery, the low temperature resistance is increased, and as a result, the output performance is reduced.
  • the content rates C1 and C2 differ in the mass and specific gravity of the positive electrode material layer and the non-aqueous electrolyte, which are denominators.
  • a sufficient amount of the compound continues to be present at the interface between the positive electrode material layer and the non-aqueous electrolyte even if part of the first group moves from the positive electrode material layer to the non-aqueous electrolyte It is possible to further reduce the resistance of the battery in a low temperature environment.
  • a non-aqueous electrolyte battery in which the content ratio C2 of the second group is the content ratio C1 or more of the first group exhibits high resistance. While not wishing to be bound by theory, it is believed that the reason such non-aqueous electrolyte cells exhibit high resistance is as follows.
  • the first material in an amount sufficient to promote the positive electrode reaction is It can be said that it exists.
  • the second group in the nonaqueous electrolyte is an interface between the nonaqueous electrolyte and the positive electrode material layer. Move to the vicinity.
  • the first group is present in a sufficient amount in the portion in contact with the non-aqueous electrolyte in the positive electrode material layer, and the second group in the portion in contact with the positive electrode material layer in the non-aqueous electrolyte.
  • the second group unevenly distributed in the non-aqueous electrolyte in the vicinity of the reaction field of the positive electrode inhibits the movement of Li to the vicinity of the positive electrode reaction field.
  • such non-aqueous electrolyte batteries exhibit high resistance.
  • Lithium hexafluorophosphate can exhibit a high degree of dissociation in nonaqueous solvents compared to other lithium salts. This means that lithium hexafluorophosphate can provide more Li ions in the non-aqueous electrolyte as compared to other Li salts. A non-aqueous electrolyte containing more Li in the ion state can exhibit higher Li ion conductivity. This is due not only to the large amount of Li ions that can be moved, but also to the fact that Li ions can move smoothly.
  • the non-aqueous electrolyte containing lithium hexafluorophosphate can exhibit higher Li ion conductivity than the non-aqueous electrolyte containing no lithium hexafluorophosphate. Therefore, the non-aqueous electrolyte containing lithium hexafluorophosphate can promote the supply of Li near the reaction site of the positive electrode.
  • the non-aqueous electrolyte battery in which the non-aqueous electrolyte does not contain lithium hexafluorophosphate not only the decomposition suppressing effect of the Li supporting salt by the first group and the second group can not be utilized, but also the first group and The second group may act as a resistance component and may exhibit high resistance in a low temperature environment.
  • the non-aqueous electrolyte battery according to the first embodiment includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode includes a positive electrode material layer.
  • the positive electrode material layer further includes a positive electrode active material. That is, the positive electrode material layer can also be referred to as a positive electrode active material-containing layer.
  • the positive electrode material layer can further contain a conductive agent and a binder, as needed.
  • the positive electrode can further include a positive electrode current collector.
  • the positive electrode material layer can be formed on the positive electrode current collector.
  • the positive electrode current collector can have, for example, a first surface and a second surface as its back surface.
  • the positive electrode material layer may be formed on both surfaces of the positive electrode current collector, or may be formed on one surface.
  • the positive electrode current collector can include a portion not carrying the positive electrode material layer on the surface. This portion can, for example, serve as the positive electrode tab. Alternatively, the positive electrode can further comprise a positive electrode tab separate from the positive electrode current collector.
  • the negative electrode can include a negative electrode current collector and a negative electrode material layer formed on the negative electrode current collector.
  • the negative electrode current collector can have, for example, a first surface and a second surface as its back surface.
  • the negative electrode material layer may be formed on both surfaces of the negative electrode current collector, or may be formed on one surface.
  • the negative electrode current collector can include a portion not carrying the negative electrode material layer on the surface. This portion can, for example, serve as the negative electrode tab. Alternatively, the negative electrode can further comprise a negative electrode tab separate from the negative electrode current collector.
  • the negative electrode material layer can include a negative electrode active material. That is, the negative electrode material layer can also be called a negative electrode active material containing layer.
  • the negative electrode material layer can include, for example, a negative electrode active material having an operating potential of 0.7 V (vs. Li / Li + ) or more.
  • the negative electrode material layer may contain one kind of such negative electrode active material, or may contain a combination of a plurality of such negative electrode active materials.
  • the negative electrode material layer can optionally further include a conductive agent and a binder.
  • the positive electrode and the negative electrode can constitute an electrode group.
  • the positive electrode material layer and the negative electrode material layer can face each other through the separator.
  • the structure of the electrode group is not particularly limited, and various structures can be adopted.
  • the electrode group can have a stacked structure.
  • the stack-type electrode group is obtained, for example, by laminating a plurality of positive electrodes and negative electrodes with a separator interposed between a positive electrode material layer and a negative electrode material layer.
  • the electrode group can have, for example, a wound structure.
  • the wound electrode group is obtained, for example, by spirally winding the positive electrode, the separator and the negative electrode.
  • the non-aqueous electrolyte is held at least in the positive electrode material layer.
  • the positive electrode material layer described above can have pores.
  • part of the non-aqueous electrolyte may be retained in the positive electrode material layer in a state of being infiltrated (in an impregnated state) in the pores of the positive electrode material layer.
  • the negative electrode material layer and the separator can also have pores.
  • the other part of the non-aqueous electrolyte can be retained in the negative electrode material layer, for example, in a state (impregnated state) in which the pores of the negative electrode material layer enter.
  • the other part of the non-aqueous electrolyte can be retained in the separator, for example, in a state of being infiltrated in the pores of the separator (in an impregnated state). As a result of these, the non-aqueous electrolyte can be held by the electrode group.
  • the non-aqueous electrolyte battery according to the first embodiment can further include a negative electrode terminal and a positive electrode terminal.
  • the negative electrode terminal can function as a conductor for moving electrons between the negative electrode and the external terminal by electrically connecting a part of the negative electrode terminal to a part of the negative electrode.
  • the negative electrode terminal can, for example, be connected to the negative electrode current collector, in particular to the negative electrode tab.
  • the positive electrode terminal can function as a conductor for moving electrons between the positive electrode and the external circuit by electrically connecting a part of the positive electrode terminal to a part of the positive electrode.
  • the positive electrode terminal can, for example, be connected to a positive electrode current collector, in particular to a positive electrode tab.
  • the nonaqueous electrolyte battery according to the first embodiment can further include an exterior member.
  • the exterior member can accommodate the electrode group and the non-aqueous electrolyte.
  • the non-aqueous electrolyte can be held by the electrode group in the exterior member.
  • a part of each of the positive electrode terminal and the negative electrode terminal can be extended from the exterior member.
  • Positive electrode As a positive electrode collector, metal foils, such as aluminum and copper, can be used, for example.
  • the material of the positive electrode tab is preferably the same as the material of the positive electrode current collector in order to suppress the contact resistance with the positive electrode current collector.
  • the positive electrode active material is not particularly limited as long as it can occlude and release lithium or lithium ions.
  • the positive electrode active material include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium cobalt composite oxide (for example, Li x CoO 2 , 0 ⁇ x ⁇ 1), lithium nickel composite oxide (for example, , Li x NiO 2 , 0 ⁇ x ⁇ 1), lithium nickel cobalt manganese complex oxide (eg, Li x Ni 1-abc Co a Mn b M 1 c O 2 can have a composition represented by the general formula M 1 is at least one selected from the group consisting of Mg, Al, Si, Ti, Zn, Zr, Ca, W, Nb and Sn, and each subscript is ⁇ 0.2 ⁇ x ⁇ 0.5 , 0 ⁇ a ⁇ 0.4 (preferably 0.25 ⁇ a ⁇ 0.4), 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.1), lithium nickel cobalt composite oxide (
  • the conductive agent that can be contained in the positive electrode material layer preferably contains a carbon material.
  • the carbon material include acetylene black, ketjen black, furnace black, graphite, carbon nanotubes and the like.
  • the positive electrode material layer can include one or more of the above-described carbon materials, or can further include another conductive agent.
  • the binder which the positive electrode material layer can contain is not particularly limited.
  • a binder a polymer well dispersed in a mixing solvent for slurry preparation, such as n-methylpyrrolidone (NMP) can be used.
  • NMP n-methylpyrrolidone
  • examples of such a polymer include polyvinylidene fluoride, hexafluoropropylene and polytetrafluoroethylene.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less.
  • the content ratio C1 is preferably more than 0.5% by mass and 2% by mass or less, and more preferably 1% by mass or more and 2% by mass or less.
  • the content of the positive electrode active material, the conductive agent, and the binder in the positive electrode material layer is 80% by mass or more and 97% by mass or less, respectively, with respect to the mass of the positive electrode material layer (100%) % Or more and 10 mass% or less and 0.5 mass% or more and 10 mass% or less, 90 mass% or more and 96 mass% or less, 1 mass% or more and 8 mass% or less, and 1 mass% or more and 8 mass% or less It is more preferable that
  • Negative electrode As a negative electrode collector, metal foil, such as aluminum and copper, can be used, for example.
  • the material of the negative electrode tab is preferably the same as the material of the negative electrode current collector in order to suppress the contact resistance with the negative electrode current collector. .
  • the negative electrode active material is not particularly limited as long as it can occlude and release lithium or lithium ions.
  • the negative electrode active material for example, lithium titanate having a crystal structure of spinel type (for example, Li 4 + y Ti 5 O 12 (y is in the range of 0 ⁇ y ⁇ 3 depending on the state of charge) Can vary in composition), lithium titanate with a ramsdellite type crystal structure (eg, Li 2 + z Ti 3 O 7 ) (z is 0 ⁇ z ⁇ 2 depending on the state of charge) Can vary in the following ranges), anatase-type, rutile-type or bronze-type titanium-containing oxide, a niobium titanium composite oxide having a monoclinic crystal structure, and an orthorhombic-type Examples include Na-containing niobium-titanium composite oxides having a crystal structure.
  • These negative electrode active materials can exhibit an operating potential of 0.7 V (vs. Li / Li + ) or more.
  • the negative electrode active material having an operating potential of 0.7 V (vs. Li / Li + ) or more it is possible to prevent the formation of lithium dendrite in low temperature operation.
  • the type of the negative electrode active material contained in the negative electrode material layer may be one, or two or more.
  • the conductive agent and the binder which the negative electrode material layer can contain those similar to those which the positive electrode material layer can contain can be used.
  • the content of the negative electrode active material, the conductive agent, and the binder in the negative electrode material layer is 80% by mass or more and 98% by mass or less, 1% by mass or more and 10% by mass or less, based on the mass of the negative electrode material layer. % Or more and 10% by mass or less is preferable, and 90% by mass or more and 94% by mass or less, 2% by mass or more and 8% by mass or less, and 1% by mass or more and 5% by mass or less.
  • the nonaqueous electrolyte can include, for example, a nonaqueous solvent, an electrolyte (Li supporting salt) dissolved in the nonaqueous solvent, and an additive.
  • Lithium hexafluorophosphate (LiPF 6 ) can be included in the non-aqueous electrolyte, for example, as an electrolyte.
  • the electrolyte lithium hexafluorophosphate may be used alone, or a combination of lithium hexafluorophosphate and one or more other electrolytes may be used.
  • electrolytes other than lithium hexafluorophosphate include, for example, lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluoromethanesulfonic acid Lithium salts such as lithium (LiCF 3 SO 3 ) can be mentioned.
  • 50 mass% or more of mass of electrolyte is lithium hexafluorophosphate, and it is more preferable that it is 90 mass% or more.
  • non-aqueous solvents for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ⁇ -butyrolactone ( ⁇ ) And -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC dimethyl carbonate
  • DMC diethyl carbonate
  • EMC ethyl methyl carbonate
  • sulfolane acetonitrile
  • 1,2-dimethoxyethane 1,3-dimethoxypropane
  • dimethyl ether tetrahydr
  • non-aqueous solvent one type of solvent may be used alone, or a mixed solvent in which two or more types of solvents are mixed may be used.
  • the amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.5 mol / L to 3 mol / L. If the amount of dissolution is too high, it may not be completely soluble in the electrolyte.
  • Specific examples of the second compound that can be included in the preparation of the non-aqueous electrolyte can include the same compounds as the specific examples that can be used as the first compound described above.
  • the content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less.
  • the content ratio C2 is preferably 0.3% by mass or more and 1.4% by mass or less, and more preferably 0.5% by mass or more and 1.3% by mass or less.
  • the non-aqueous electrolyte can further include one or more additives other than the second compound.
  • an additive other than the second compound for example, vinylene carbonate (VC), fluorovinylene carbonate, methylvinylene carbonate, fluoromethylvinylene carbonate, ethylvinylene carbonate, propylvinylene carbonate, butylvinylene carbonate, dimethylvinylene carbonate, diethylvinylene Carbonate, dipropylvinylene carbonate, vinylene acetate (VA), vinylene butyrate, vinylene hexanate, vinylene crotonate, catechol carbonate, propane sultone, butane sultone, lithium trifluoromethane sulfonate (LiCF 3 SO 3 ), lithium bisoxalatoborate (LiBOB), lithium bis (fluorosulfonyl) imide [LiN (SO 2 F) 2 ], bi Trifluoromethylsulfon
  • additives are preferably contained in the non-aqueous electrolyte in a content ratio of 5% by mass or less, and more preferably in a content ratio of 3% by mass or less. Also, these additives can be contained, for example, in the non-aqueous electrolyte in an amount of 0.1% by mass or more.
  • the separator is not particularly limited, and, for example, a microporous membrane, a woven fabric, a non-woven fabric, or a laminate of the same material or different materials among them can be used.
  • the material forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.
  • Exterior member for example, a metal container or a laminate film container can be used, but it is not particularly limited.
  • a non-aqueous electrolyte battery excellent in impact resistance and long-term reliability can be realized.
  • a laminate film container as the container it is possible to realize a non-aqueous electrolyte battery excellent in corrosion resistance and to reduce the weight of the non-aqueous electrolyte battery.
  • the metal container for example, one having a wall thickness of 0.2 mm or more and 1 mm or less can be used.
  • the metal container more preferably has a wall thickness of 0.3 to 0.8 mm or less.
  • the metal container preferably contains at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al.
  • the metal container can be made of, for example, aluminum, aluminum alloy, iron, nickel (Ni) plated iron, stainless steel (SUS) or the like.
  • the aluminum alloy is preferably an alloy containing an element such as magnesium, zinc or silicon.
  • the alloy contains a transition metal such as iron, copper, nickel, or chromium, the content is preferably 1% by mass or less.
  • the laminate film container for example, one having a thickness in the range of 0.1 or more and 2 mm or less can be used.
  • the thickness of the laminate film is more preferably 0.2 mm or less.
  • a laminate film for example, a multilayer film including a metal layer and a resin layer sandwiching the metal layer is used.
  • the metal layer preferably contains a metal containing at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al.
  • the metal layer is preferably aluminum foil or aluminum alloy foil for weight reduction.
  • polymeric materials such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET), can be used, for example.
  • the laminated film can be molded into the shape of the exterior member by sealing by heat fusion.
  • the shape of the exterior member may be flat (thin), square, cylindrical, coin, button or the like.
  • the exterior member can have various dimensions depending on the application. For example, when the non-aqueous electrolyte battery according to the first embodiment is used for a use of a portable electronic device, the exterior member can be miniaturized according to the size of the mounted electronic device. Alternatively, in the case of a non-aqueous electrolyte battery loaded on a two- or four-wheeled automobile, the exterior member may be a container for a large battery.
  • the positive electrode terminal and the negative electrode terminal are desirably formed of, for example, aluminum or an aluminum alloy.
  • the content ratio C1 of the first group in the positive electrode material layer in the range of 0.3 mass% or more and 2 mass% or less and 0.1 mass% or more.
  • the content ratio C2 of the second group in the nonaqueous electrolyte which is within the range of 5% by mass or less and smaller than the content ratio C1 can not be compatible. The reason is as follows.
  • the supply of the compound having a group selected from the group consisting of PF 2 (OO) O ⁇ , PF (OO) (O ⁇ ) 2 and a combination thereof to the positive electrode material layer is not Only through the water electrolyte.
  • the positive electrode material layer can have, for example, pores, and these pores can be channels of the non-aqueous electrolyte and can retain the non-aqueous electrolyte.
  • a combination thereof is used in the positive electrode material layer, for example, 0.5 mass% or less
  • a compound having a second group is added.
  • the blending ratio P1 (mass%) of the first compound to the mass of the slurry for preparing a positive electrode for preparing the positive electrode material layer, and the blending ratio P2 (mass%) of the second compound to the mass of the non-aqueous electrolyte make it bigger.
  • a positive electrode and a negative electrode are produced.
  • the positive electrode can be produced, for example, by the following method.
  • a positive electrode active material, a conductive agent, and a binder are mixed to obtain a positive electrode mixture.
  • a powdery first compound is charged into the positive electrode mixture in a charging amount P1 (mass%).
  • the content ratio C1 of the group is adjusted to be 0.3% by mass or more and 2% by mass or less.
  • the obtained positive electrode mixture is added to a suitable solvent such as N-methylpyrrolidone.
  • the mixture thus obtained is stirred to obtain a slurry for producing a positive electrode.
  • the slurry for producing a positive electrode thus obtained is applied onto a positive electrode current collector, and the coated film is dried. By pressing the dried coating film, it is possible to obtain a positive electrode including the positive electrode current collector and the positive electrode material layer formed on the positive electrode current collector.
  • the negative electrode can be produced, for example, by the following procedure. First, a negative electrode active material, a conductive agent, and a binder are mixed to obtain a negative electrode mixture. The negative electrode mixture thus obtained is added to a suitable solvent such as N-methyl pyrrolidone, and the mixture is stirred to obtain a slurry for producing a negative electrode. The slurry for producing a negative electrode is applied to a negative electrode current collector, and the coating is dried. By pressing the dried coating film, it is possible to obtain a negative electrode provided with a negative electrode current collector and a negative electrode material layer formed on the negative electrode current collector.
  • a suitable solvent such as N-methyl pyrrolidone
  • an electrode group is produced using the produced positive electrode and negative electrode, and, if necessary, a separator. Next, the produced electrode group is accommodated in an exterior member.
  • a non-aqueous electrolyte is prepared.
  • the non-aqueous electrolyte can be prepared by dissolving the electrolyte (Li salt) and the second compound and, if necessary, additional additives in a non-aqueous solvent.
  • the input amount P2 of the second compound in preparing the non-aqueous electrolyte is smaller than the input amount P1 of the first compound.
  • the ratio C2 is adjusted to be 0.1% by mass or more and 1.5% by mass or less.
  • the non-aqueous electrolyte is introduced into the exterior member containing the electrode group. Finally, the non-aqueous electrolyte is obtained by sealing the exterior member.
  • the method of including the first group in the positive electrode material layer is not limited to this method.
  • the slurry for producing a positive electrode may contain a powder of the first compound or a solution thereof.
  • a solution containing a first compound having a first group is coated on the surface of the positive electrode mixture layer, and then coated.
  • a positive electrode material layer containing the first group can be obtained.
  • the heating can be performed, for example, at a temperature of 60 ° C. to 150 ° C. for 1 minute to 60 minutes.
  • the first compound can be fixed inside the pores of the positive electrode mixture layer. Note that part of the first compound may be denatured by this heating.
  • the positive electrode mixture layer is formed on the positive electrode current collector, and then the positive electrode mixture layer is impregnated with a solution of the first compound having a first group, and then the positive electrode mixture layer is dried.
  • the heating can be performed, for example, at a temperature of 50 ° C. to 80 ° C. for 1 minute to 120 minutes.
  • This heating may be performed, for example, by impregnating the positive electrode mixture layer in the pressure reducing device with the first compound, bringing the pressure reducing device to a temperature within the above range, and maintaining the state for the above time.
  • the first compound can be fixed to the inside of the pores of the positive electrode mixture layer. Note that part of the first compound may be denatured by this heating.
  • the positive electrode prepared slurry powder impregnated with the LiPF 6 to form a positive-electrode mixture layer
  • water is contained in the positive electrode mixture layer, and the positive electrode mixture layer is heated in this state, whereby a positive electrode material layer containing a first group can be obtained.
  • the first additive in the positive electrode material layer is controlled by combining the additive amount of LiPF 6 in preparation of the slurry for preparing the positive electrode, the additive amount of water to the positive electrode mixture layer, the heating temperature and the heating time
  • the content ratio C1 and the content ratio C2 may change, for example, due to the transfer of a part of the first group to the non-aqueous electrolyte, and the charge and discharge of the non-aqueous electrolyte battery.
  • the content ratio C1 of the first group in the positive electrode material layer can be maintained in the range of 0.3% by mass or more and 2% by mass or less
  • the content ratio C2 of the second group in the non-aqueous electrolyte can be maintained in the range of 0.1% by mass or more and 1.5% by mass or less.
  • the content ratio C1 (mass%) of the first group in the positive electrode material layer and the content ratio C2 (mass%) of the second group in the non-aqueous electrolyte can be quantified, for example, by the following method.
  • a non-aqueous electrolyte battery to be tested is prepared.
  • the target non-aqueous electrolyte battery is a battery having a capacity of 80% or more of the rated capacity.
  • the capacity retention rate of the battery is determined by the following method. First, the battery is charged to the operating upper limit voltage. The current value at this time is a current value corresponding to the 1 C rate obtained from the rated capacity. Hold the voltage for 3 hours after reaching the operating upper limit voltage. After charging and holding voltage, discharge to the lower limit of the operating voltage at a rate of 0.2 C and measure the discharge capacity. The ratio of the obtained capacity to the rated capacity is defined as a capacity maintenance rate. After measurement of capacity retention rate, the battery is kept discharged.
  • the battery is disassembled in an inert gas atmosphere.
  • a part of the positive electrode and a part of the non-aqueous electrolyte are collected from the disassembled battery.
  • the battery is disassembled, the non-aqueous electrolyte is removed from the disassembled battery, and the positive electrode in the electrode group is cut off.
  • the excised positive electrode is then washed with solvent.
  • solvent linear carbonates (eg, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate etc.) and acetonitrile can be used.
  • the positive electrode is dried under vacuum while maintaining an inert gas atmosphere. Drying of the positive electrode can be performed, for example, under a vacuum of 50 ° C. for 10 hours.
  • part of the positive electrode material layer is peeled off from the dried positive electrode.
  • the positive electrode material layer is peeled off from the positive electrode current collector so that the surface of the positive electrode current collector is exposed.
  • the mass of the peeled positive electrode material layer is measured.
  • the peeled positive electrode material layer is immersed in heavy water to extract the components contained in the positive electrode material layer.
  • this extract is introduced into an NMR apparatus as a measurement sample, and 19 F-NMR and 31 P-NMR measurements are performed. From the ratio of the peak of the measurement result to that of the standard substance, it is possible to quantify each component contained in the measurement sample.
  • the mass of the group selected from the group can be measured. By dividing the measured mass by the mass of the measurement sample, the content ratio C1 [mass%] of the first group in the positive electrode material layer can be calculated.
  • the identification method of the component of the solvent contained in a non-aqueous electrolyte is demonstrated below.
  • the nonaqueous electrolyte battery to be measured is discharged at 1 C until the battery voltage becomes 1.0V.
  • the discharged non-aqueous electrolyte battery is disassembled in an inert atmosphere glove box.
  • the non-aqueous electrolyte contained in the battery and the electrode group is extracted.
  • the non-aqueous electrolyte can be taken out from the location where the non-aqueous electrolyte battery is opened, the non-aqueous electrolyte is sampled as it is.
  • the electrode group is further disassembled and, for example, the separator impregnated with the non-aqueous electrolyte is taken out.
  • the non-aqueous electrolyte impregnated in the separator can be extracted using, for example, a centrifuge or the like. Thus, non-aqueous electrolyte sampling can be performed.
  • the non-aqueous electrolyte can also be extracted by immersing the electrode and the separator in an acetonitrile liquid.
  • the mass of the acetonitrile solution can be measured before and after extraction to calculate the amount of extraction.
  • the sample of the non-aqueous electrolyte thus obtained is subjected to, for example, gas chromatography mass spectrometry (GC-MS) or nuclear magnetic resonance spectroscopy (NMR) to conduct compositional analysis.
  • GC-MS gas chromatography mass spectrometry
  • NMR nuclear magnetic resonance spectroscopy
  • lithium hexafluorophosphate can also be quantified.
  • a calibration curve of lithium hexafluorophosphate is prepared.
  • the amount of lithium hexafluorophosphate in the non-aqueous electrolyte can be calculated by comparing the prepared calibration curve with the peak intensity or area in the result obtained by measuring the non-aqueous electrolyte sample. .
  • the positive electrode active material contained in the non-aqueous electrolyte battery can be identified according to the following method. First, the non-aqueous electrolyte battery is discharged at 1 C until the battery voltage becomes 1.0V. Next, the battery in such a state is disassembled in an argon-filled glove box. Take out the positive electrode from the disassembled battery. The removed positive electrode is washed with an appropriate solvent. For example, ethyl methyl carbonate is preferably used. If the washing is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed due to the influence of lithium ions remaining in the positive electrode.
  • an appropriate solvent For example, ethyl methyl carbonate is preferably used. If the washing is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed due to the influence of lithium ions remaining in the positive electrode.
  • the positive electrode is subjected to vacuum drying. After drying, the positive electrode material layer is peeled off from the current collector using a spatula or the like to obtain a powdery positive electrode material layer.
  • the powder structure of the compound contained in this powder can be identified by conducting powder X-ray diffraction measurement (XRD) on the powder thus obtained.
  • the measurement is performed using a CuK ⁇ ray as a radiation source in a measurement range of 2 ⁇ of 10 to 90 °.
  • XRD X-ray diffraction measurement
  • an apparatus for powder X-ray diffraction measurement for example, SmartLab manufactured by Rigaku Corporation is used.
  • the measurement conditions are as follows: Cu target; 45 kV 200 mA; solar slit: 5 ° both for incidence and light reception; step width: 0.02 deg; scan rate: 20 deg / min; semiconductor detector: D / teX Ultra 250; Plate holder: Flat glass sample plate holder (thickness 0.5 mm); Measurement range: 10 ° ⁇ 2 ⁇ ⁇ 90 °.
  • measurement is performed using standard Si powder for powder X-ray diffraction so that the measurement results equivalent to the above can be obtained, under the conditions that the peak intensity and peak top position coincide with the above device Do.
  • the mixed state of the active material can be determined by whether or not peaks attributed to a plurality of crystal structures appear.
  • the positive electrode material layer is observed by a scanning electron microscope (SEM). Also for sample sampling, do not touch the air, and perform in an inert atmosphere such as argon or nitrogen.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray spectroscopy
  • the positive electrode material layer is weighed.
  • the weighed powder is dissolved in hydrochloric acid and diluted with ion exchange water, and then the content of metal is calculated by inductively coupled plasma atomic emission spectroscopy (ICP-AES).
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • the mass ratio is estimated from the content ratio of elements unique to each active material.
  • the ratio of the specific element to the mass of the active material is determined from the composition of the constituent element obtained by energy dispersive X-ray spectroscopy.
  • the active material contained in the positive electrode of the non-aqueous electrolyte battery can be identified.
  • the negative electrode active material contained in the non-aqueous electrolyte battery can also be identified by the same procedure as described above. However, here, in order to grasp the crystalline state of the negative electrode active material, lithium ions are separated from the active material to be measured. For example, the non-aqueous electrolyte battery is discharged at 1 C until the battery voltage is 1.0V. However, even when the battery is discharged, lithium ions remaining in the active material may be present.
  • the battery is placed in an inert gas atmosphere such as, for example, in a glove box under an argon gas atmosphere, in order to prevent the battery components from reacting with atmospheric components and moisture during disassembly.
  • an inert gas atmosphere such as, for example, in a glove box under an argon gas atmosphere
  • open the non-aqueous electrolyte battery in such a glove box For example, heat seal parts around each of the positive electrode current collection tab and the negative electrode current collection tab can be cut to cut open the non-aqueous electrolyte battery.
  • the electrode group is taken out of the cut-off non-aqueous electrolyte battery. When the electrode group taken out includes the positive electrode lead and the negative electrode lead, the positive electrode lead and the negative electrode lead are cut while being careful not to short the positive and negative electrodes.
  • the weight of the part which was facing the positive electrode among the negative electrodes taken out from the dismantled electrode group is measured. Thereafter, for example, a 3 cm square negative electrode sample is cut out from the negative electrode.
  • the state of charge of the battery may be any state.
  • the negative electrode sample is cut out from the portion of the negative electrode facing the positive electrode.
  • the weight of the cut-off negative electrode sample is measured.
  • a negative electrode sample is used as a working electrode, and a bipolar or tripolar electrochemical measurement cell using a lithium metal foil as a counter electrode and a reference electrode is prepared.
  • the prepared electrochemical measurement cell is charged to a lower limit potential of 1.0 V (vs. Li / Li + ).
  • the current value at this time is obtained by multiplying the ratio of the weight of the cut negative electrode sample to the weight of the portion of the negative electrode contained in the battery facing the positive electrode by the rated capacity of the battery.
  • discharge is performed until the negative electrode potential reaches 2.0 V (vs. Li / Li + ) at the same current value as charging.
  • a total of 3 cycles of the above charging and discharging are performed.
  • the average potential in charging in the final third cycle and the average potential in discharging are determined, and the average of the two is taken as the operating potential of the negative electrode.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of a first example according to the first embodiment cut in the thickness direction.
  • FIG. 2 is an enlarged cross-sectional view of a portion A of FIG.
  • the nonaqueous electrolyte battery 10 shown in FIGS. 1 and 2 includes a flat wound electrode group 1.
  • the flat wound electrode group 1 is housed in a bag-like exterior member 2 made of a laminate film including a metal layer and two resin films sandwiching the metal layer.
  • the flat wound electrode group 1 is formed by spirally winding and pressing a laminate obtained by stacking the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4 in this order from the outside.
  • the negative electrode 3 includes a negative electrode current collector 3a and a negative electrode material layer 3b formed on the negative electrode current collector 3a. In the portion located in the outermost layer of the negative electrode 3, as shown in FIG. 2, the negative electrode material layer 3b is formed on one surface of the inner surface side of the negative electrode current collector 3a. In the other part of the negative electrode 3, the negative electrode material layer 3 b is formed on both surfaces of the negative electrode current collector 3 a.
  • the positive electrode 5 includes a positive electrode current collector 5a and a positive electrode material layer 5b formed on both surfaces of the positive electrode current collector 5a.
  • the negative electrode terminal 6 is connected to the negative electrode current collector 3 a of the negative electrode 3 near the outer peripheral end of the wound electrode group 1, and the positive electrode terminal 7 is connected to the positive electrode current collector 5 a of the positive electrode 5. It is done.
  • the negative electrode terminal 6 and the positive electrode terminal 7 are extended from one end of the bag-like exterior member 2 to the outside.
  • the nonaqueous electrolyte battery 10 shown in FIG. 1 and FIG. 2 further includes a nonaqueous electrolyte not shown.
  • the non-aqueous electrolyte is accommodated in the exterior member 2 in a state of being held by the electrode group 1, for example, the negative electrode material layer 3 b, the positive electrode material layer 5 b, and the separator 4.
  • the non-aqueous electrolyte can be injected, for example, from the opening of the bag-like exterior member 2. After injecting the non-aqueous electrolyte, the opening of the bag-like exterior member 2 is heat-sealed with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween, whereby the wound electrode group 1 and the non-aqueous electrolyte can be completely sealed.
  • the nonaqueous electrolyte battery according to the first embodiment is not limited to the configuration shown in FIG. 1 and FIG. 2 described above, and can be configured as shown in FIG. 3 and FIG. 4, for example.
  • FIG. 3 is a partially cutaway perspective view of a non-aqueous electrolyte battery of a second example according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view of a portion B of FIG.
  • the non-aqueous electrolyte battery 10 of the example shown in FIGS. 3 and 4 includes a stacked electrode group 11.
  • the laminated electrode group 11 is accommodated in an exterior member 12 formed of a laminate film including a metal layer and two resin films sandwiching the metal layer.
  • the stacked electrode group 11 has a structure in which the positive electrode 13 and the negative electrode 14 are alternately stacked with the separator 15 interposed therebetween.
  • a plurality of positive electrodes 13 exist, each including a current collector 13a and a positive electrode material layer 13b supported on both sides of the current collector 13a.
  • a plurality of negative electrodes 14 exist, each including a current collector 14a and a negative electrode material layer 14b supported on both sides of the current collector 14a.
  • a portion 14 c of the current collector 14 a of each negative electrode 14 protrudes from one end of the positive electrode 13.
  • a portion 14 c of the current collector 14 a is electrically connected to the strip-like negative electrode terminal 16.
  • the tip end of the strip-like negative electrode terminal 16 is pulled out from the exterior member 12 as shown in FIG.
  • a portion of the current collector 13a of the positive electrode 13 opposite to the portion 14c of the current collector 14a protrudes from one end of the negative electrode 14.
  • a portion of the current collector 13 a that protrudes from the negative electrode 14 is electrically connected to the strip-like positive electrode terminal 17.
  • the end of the strip-like positive electrode terminal 17 is located on the opposite side to the negative electrode terminal 16 as shown in FIG. 3 and is drawn out from the side of the exterior member 12.
  • Examples of the shape of the battery include flat type, square type, cylindrical type, coin type, button type, sheet type and laminated type.
  • a large battery loaded on a two- or four-wheeled automobile etc. may be used.
  • the non-aqueous electrolyte battery according to the first embodiment includes a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less.
  • the content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less, and is smaller than the content ratio C1.
  • the supply of Li ions to the vicinity of the reaction site of the positive electrode can be promoted, the positive electrode reaction can be promoted, and the decomposition of lithium hexafluorophosphate is prevented.
  • the non-aqueous electrolyte battery according to the first embodiment can exhibit excellent output performance under a low temperature environment.
  • a battery pack includes the non-aqueous electrolyte battery according to the first embodiment.
  • the battery pack according to the second embodiment can also include a plurality of non-aqueous electrolyte batteries.
  • the plurality of non-aqueous electrolyte batteries can be electrically connected in series or electrically connected in parallel.
  • a plurality of nonaqueous electrolyte batteries can be electrically connected in a combination of series and parallel.
  • the electrically connected non-aqueous electrolyte battery can constitute an assembled battery. That is, the battery pack according to the second embodiment can also include an assembled battery.
  • the battery pack according to the second embodiment can include a plurality of battery packs.
  • a plurality of battery packs can be connected in series, in parallel, or in combination of series and parallel.
  • FIG. 5 is an exploded perspective view of an example battery pack according to the second embodiment.
  • FIG. 6 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • the flat battery shown in FIGS. 1 and 2 can be used.
  • the plurality of unit cells 21 configured from the flat type non-aqueous electrolyte battery shown in FIG. 1 and FIG. 2 described above are laminated so that the negative electrode terminal 6 and the positive electrode terminal 7 extended to the outside are aligned in the same direction,
  • the battery pack 23 is configured by fastening the tape 22. These single cells 21 are electrically connected in series to each other as shown in FIG.
  • the printed wiring board 24 is disposed to face the side surface of the unit cell 21 from which the negative electrode terminal 6 and the positive electrode terminal 7 extend. As shown in FIG. 6, a thermistor 25, a protection circuit 26, and a terminal 27 for energization to an external device are mounted on the printed wiring board 24. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the battery assembly 23 in order to avoid unnecessary connection with the wiring of the battery assembly 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 7 of the unit cell 21 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and is electrically connected.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 6 of the unit cell 21 positioned in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and is electrically connected.
  • These connectors 29 and 31 are connected to the protective circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wire 34 a and the minus side wire 34 b between the protection circuit 26 and the current-carrying terminal 27 to the external device under a predetermined condition.
  • the predetermined condition is, for example, when the detected temperature of the thermistor 25 becomes equal to or higher than a predetermined temperature. Further, the predetermined condition is, for example, when overcharge, overdischarge, overcurrent, or the like of the single battery 21 is detected. The detection of the overcharge and the like is performed on the individual single cells 21 or the entire assembled battery 23.
  • the battery voltage When detecting each single battery 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each single battery 21.
  • a wire 35 for voltage detection is connected to each of the single cells 21. Detection signals relating to respective voltages of the cells 21 are transmitted to the protection circuit 26 through the wires 35.
  • Protective sheets 36 made of rubber or resin are respectively disposed on the three side surfaces of the assembled battery 23 except the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
  • the battery assembly 23 is stored in the storage container 37 together with the protective sheets 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on both the inner side in the long side direction of the storage container 37 and the inner side in the short side direction, and the printed wiring board 24 is disposed on the inner side opposite to the short side.
  • the battery assembly 23 is located in a space surrounded by four sides by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used in place of the adhesive tape 22 for fixing the battery assembly 23.
  • Fixing of the assembled battery in this case can be performed, for example, by the following procedure. First, protective sheets are disposed on both side surfaces of the battery pack 23. Next, the assembled battery 23 is wound with a heat shrink tape from above the protective sheet. The assembled battery 23 can be bound by thermally shrinking the wound heat shrinkable tape.
  • the aspect of the battery pack is appropriately changed depending on the application.
  • a battery pack what the cycle characteristic in a large current characteristic is desired is preferred.
  • a two-wheel or four-wheel hybrid electric vehicle, a two- or four-wheel electric vehicle, an on-vehicle such as an assist bicycle, a train, etc. may be mentioned.
  • automotive applications are preferred.
  • the battery pack according to the second embodiment includes the non-aqueous electrolyte battery according to the first embodiment, and thus can exhibit excellent output performance under a low temperature environment.
  • Example 1 In Example 1, a non-aqueous electrolyte battery was manufactured by the following procedure.
  • a powder of lithium titanium complex oxide Li 4 Ti 5 O 12 : LTO
  • Li 4 Ti 5 O 12 : LTO lithium titanium complex oxide
  • a negative electrode mixture containing 90 parts by mass of this negative electrode active material, 5 parts by mass of carbon black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder Prepared. This negative electrode mixture was added to N-methylpyrrolidone (NMP) to prepare a slurry for producing a negative electrode.
  • NMP N-methylpyrrolidone
  • the slurry for negative electrode preparation thus prepared was applied to both sides of an aluminum foil (negative electrode current collector) having a thickness of 20 ⁇ m. Under the present circumstances, the part in which the slurry for negative electrode preparation was not apply
  • a powder of lithium cobalt composite oxide (LiCoO 2 : LCO) was used as a positive electrode active material.
  • PVdF polyvinylidene fluoride
  • this positive electrode mixture was added to NMP to prepare a slurry for producing a positive electrode.
  • This positive electrode preparation slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m. Under the present circumstances, the part in which the slurry for positive electrode preparation was not apply
  • ⁇ Preparation of electrode group> A laminate obtained by laminating, in this order, the positive electrode manufactured as described above, a separator made of a polyethylene porous film having a thickness of 20 ⁇ m, the negative electrode manufactured as described above, and another separator I got By heat-pressing this at 50 ° C., a flat electrode group having a width of 58 mm, a height of 95 mm and a thickness of 3.0 mm was produced. Next, an exterior member made of a laminate film constituted of an aluminum foil and a polypropylene layer formed on both sides thereof was prepared. The electrode group obtained as described above was accommodated in the exterior member.
  • Ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed in a volume ratio of 2: 3 to prepare a mixed solvent.
  • lithium hexafluorophosphate LiPF 6
  • LiPF 6 lithium hexafluorophosphate
  • non-aqueous electrolyte 10 g of the non-aqueous electrolyte prepared as described above was injected into the exterior member containing the electrode group, and then the exterior member was sealed. Thus, a non-aqueous electrolyte battery was produced.
  • the non-aqueous electrolyte battery was charged at a rate of 0.2 C to a battery voltage of 2.9 V in a 25 ° C. environment. Subsequently, the battery was left for 3 hours while keeping the voltage of the non-aqueous electrolyte battery at 2.9 V as it was. The charging rate of the non-aqueous electrolyte battery in this state was 100%, ie, fully charged. Thereafter, the non-aqueous electrolyte battery was discharged at a 0.2 C rate until the battery voltage was 1.2 V. Next, this non-aqueous electrolyte battery was charged at a 0.2 C rate so as to have a charge rate of 50%. Thus, the non-aqueous electrolyte battery was completed.
  • the completed non-aqueous electrolyte battery was subjected to one charge and discharge cycle at a 0.2 C rate in a 25 ° C. environment.
  • the charge termination voltage was 2.9V.
  • the discharge end voltage was 1.2 V.
  • a 30 minute rest was performed between charge and discharge under a 25 ° C. environment.
  • the discharge capacity at the time of discharge here was measured, and it was set as the first time discharge capacity.
  • the non-aqueous electrolyte battery was charged at a rate of 1 C to adjust the charging rate to 50%.
  • the non-aqueous electrolyte battery was charged in a 25 ° C. environment at a 0.2 C rate until the battery voltage was 2.9 V. Subsequently, the non-aqueous electrolyte battery was left to stand for 3 hours while keeping the voltage of the non-aqueous electrolyte battery at 2.9 V as it was. Thereafter, the non-aqueous electrolyte battery was left in an environment of ⁇ 20 ° C. for 3 hours. Thereafter, the non-aqueous electrolyte battery was discharged at a 1 C rate until the battery voltage was 1.2 V in a -20 ° C. environment. The discharge capacity during this discharge was recorded as ⁇ 20 ° C. 1 C discharge capacity.
  • the percentage (%) of -20 ° C. 1 C discharge capacity to 25 ° C. 1 C discharge capacity was taken as the low temperature performance index of this non-aqueous electrolyte.
  • the low temperature performance index indicates that the higher the value, the higher the output performance in a low temperature environment.
  • Example 2 to 5 and Comparative Examples 1 to 5 In Examples 2 to 5 and Comparative Examples 1 to 5, the mixing ratio P1 of the first compound added to the positive electrode mixture and / or the mixing ratio P2 of the second compound added to the non-aqueous electrolyte are shown in Table 1 below.
  • Table 1 Each non-aqueous electrolyte battery was produced by the same procedure as Example 1 except having changed it from that of Example 1 as shown to.
  • Example 6 According to the same procedure as in Example 1, except that a powder of lithium nickel cobalt manganese composite oxide (LiNi 0.33 Co 0.33 Mn 0.33 O 2 : NCM) was used instead of lithium cobalt composite oxide as the positive electrode active material. A non-aqueous electrolyte battery was produced.
  • a powder of lithium nickel cobalt manganese composite oxide LiNi 0.33 Co 0.33 Mn 0.33 O 2 : NCM
  • the positive electrode active material, the conductive agent, and the binder were mixed in a ratio of 90 parts by weight, 5 parts by weight, and 5 parts by weight, respectively, as in Example 1, to prepare a positive electrode mixture.
  • the mixing ratio P1 of the lithium monofluorophosphate powder as the first compound to the positive electrode mixture was also 1.1 mass% with respect to the mass of the positive electrode mixture, as in Example 1.
  • Example 7 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that lithium manganese composite oxide (LiMn 2 O 4 : LMO) powder was used instead of lithium cobalt composite oxide as the positive electrode active material. did.
  • lithium manganese composite oxide LiMn 2 O 4 : LMO
  • the positive electrode active material, the conductive agent, and the binder were mixed in a ratio of 90 parts by weight, 5 parts by weight, and 5 parts by weight, respectively, as in Example 1, to prepare a positive electrode mixture.
  • the mixing ratio P1 of the lithium monofluorophosphate powder as the first compound to the positive electrode mixture was also 1.1 mass% with respect to the mass of the positive electrode mixture, as in Example 1.
  • Example 8 The same as Example 1, except that a powder of niobium titanium composite oxide (TiNb 2 O 7 : NTO) having a monoclinic crystal structure was used as the negative electrode active material instead of the lithium titanium composite oxide powder.
  • a non-aqueous electrolyte battery was produced by the following procedure. The working potential of this niobium titanium composite oxide is in the range of 0.8 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ).
  • Example 9 As a negative electrode active material, a powder of Na-containing niobium titanium composite oxide (Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 : LNT) having a orthorhombic crystal structure was used instead of the lithium titanium composite oxide powder. A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except for the above. The working potential of this Na-containing niobium titanium composite oxide is in the range of 0.8 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ).
  • Example 10 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the non-aqueous electrolyte prepared in the following procedure was used.
  • a mixed solvent was prepared by mixing ethylene carbonate (EC) and methyl ethyl carbonate solvent (EMC) in a volume ratio of 2: 3.
  • EC ethylene carbonate
  • EMC methyl ethyl carbonate solvent
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • Example 11 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the positive electrode produced in the following procedure was used.
  • a powder of lithium cobalt composite oxide (LiCoO 2 : LCO) was used as a positive electrode active material.
  • PVdF polyvinylidene fluoride
  • This positive electrode preparation slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m. Under the present circumstances, the part in which the slurry for positive electrode preparation was not apply
  • ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed at a volume ratio of 2: 3 to prepare a mixed solvent.
  • EC ethylene carbonate
  • EMC methyl ethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • pure water was added to this mixed solution so as to be 1% by mass to obtain a treatment solution.
  • the positive electrode intermediate prepared above was immersed in the treatment solution thus prepared.
  • the container containing the solution in which the positive electrode intermediate was immersed was placed in a vacuum device, and the pressure therein was reduced.
  • the inside of the positive electrode mixture layer was impregnated with the treatment solution.
  • the container was then sealed and left at 60 ° C. for 1 hour.
  • the positive electrode intermediate was then removed from the vessel, washed with methyl ethyl carbonate solvent and subjected to vacuum drying. Thus, a positive electrode was produced.
  • Example 12 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the positive electrode produced in the following procedure was used.
  • a positive electrode intermediate was produced.
  • ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed at a volume ratio of 2: 3 to prepare a mixed solvent.
  • Lithium hexafluorophosphate (LiPF 6 ) was dissolved in this mixed solvent as an electrolyte at a concentration of 0.5 mol / L.
  • the treatment solution was prepared. Lithium difluorophosphate was introduced in an amount of 2.0% by weight with respect to the weight of the treatment solution.
  • the positive electrode intermediate prepared above was immersed in this treatment solution. Then, the container containing the solution in which the positive electrode intermediate was immersed was placed in a pressure reducing device, and the pressure therein was reduced. Thus, the inside of the positive electrode mixture layer was impregnated with the treatment solution. The container was then sealed and left at 60 ° C. for 1 hour. The positive electrode intermediate was then removed, washed with methyl ethyl carbonate solvent and subjected to vacuum drying. Thus, a positive electrode was produced.
  • Example 6 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the non-aqueous electrolyte prepared in the following procedure was used.
  • a mixed solvent was prepared by mixing ethylene carbonate (EC) and methyl ethyl carbonate solvent (EMC) in a volume ratio of 2: 3.
  • EC ethylene carbonate
  • EMC methyl ethyl carbonate solvent
  • lithium tetrafluoroborate LiBF 4
  • LiBF 4 lithium tetrafluoroborate
  • Example 7 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except for the following points.
  • lithium monofluorophosphate powder was not mixed in the positive electrode mixture. That is, the mixture ratio P1 was set to 0 mass%.
  • the powder of lithium monofluorophosphate was mixed with the negative electrode mixture so that the compounding ratio with respect to the mass of the negative electrode mixture was 2.0 mass%.
  • lithium monofluorophosphate was added to the mixed solvent so that the blending ratio P2 with respect to the mass of the non-aqueous electrolyte was 0.7 mass%.
  • Comparative example 9 a non-aqueous electrolyte battery was produced in the same manner as in Comparative Example 8, except that the blend ratio P2 of the second compound to the non-aqueous electrolyte was changed to 1.7% by mass.
  • Table 2 shows the coated amounts of the positive electrode preparation slurry and negative electrode preparation slurry per one side of the current collector in the production of the non-aqueous electrolyte batteries of Examples 1 to 12 and Comparative Examples 1 to 9 [g / g m 2 ] and the density [g / cm 3 ] of the positive electrode material layer and the negative electrode material layer after pressing are collectively shown.
  • Example 13 to 16 and Comparative Examples 10 and 11 In Examples 13 to 16 and Comparative Examples 10 and 11, the first compound and / or the second compound are changed to those described in Table 4 below, and the first compound and the second compound are shown in Table 4 below.
  • a non-aqueous electrolyte battery was produced in the same manner as in Example 1 except for adding the amounts described in the blending ratios P1 and P2 described.
  • Table 5 shows coating amounts of the positive electrode production slurry and the negative electrode production slurry per one side of the current collector in the production of the nonaqueous electrolyte batteries of Examples 13 to 16 and Comparative Examples 10 and 11 [g / g m 2 ] and the density [g / cm 3 ] of the positive electrode material layer and the negative electrode material layer after pressing are collectively shown.
  • the batteries of Examples 1 to 16 had a large low temperature performance index, ie, a large ratio of ⁇ 20 ° C. 1 C discharge capacity to 25 ° C. 1 C discharge capacity. That is, it can be seen that the batteries of Examples 1 to 16 were able to exhibit excellent output performance under a low temperature environment.
  • Comparative Example 1 in which the content ratio C1 of the first group in the positive electrode material layer exceeds 2% by mass, Comparative Example 2 in which the content ratio C1 is less than 0.3% by mass, and In each of Comparative Example 3 in which the content ratio C2 of the group exceeds 1.5% by mass, Comparative Example 4 in which the content ratio C2 is less than 0.1% by mass, and Comparative Example 5 in which the content ratio C2 is higher than the content ratio C1.
  • the battery had a low temperature performance index and had poor output performance in a low temperature environment.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less
  • the content ratio C2 of the second group in the non-aqueous electrolyte is in the range of 0.1% by mass to 1.5% by mass and the content ratio C1 is larger than the content ratio C2
  • Example 8 also from the comparison of the results of Example 1, Example 8 and Example 9, even if the negative electrode active material is different, the battery in which the content ratios C1 and C2 satisfy the above conditions has a high low temperature performance index. It can be shown that it was possible to show excellent output performance in a low temperature environment.
  • Example 1 only lithium hexafluorophosphate was used as the electrolyte.
  • Example 10 lithium hexafluorophosphate and lithium tetrafluoroborate were used as the electrolyte.
  • Comparative Example 6 only lithium tetrafluoroborate was used as the electrolyte. From the comparison of the results of these examples, the decomposition suppression effect of the electrolyte and the dissociation promoting effect of Li ion due to the presence of the first group and the second group are obtained when the non-aqueous electrolyte contains lithium hexafluorophosphate. It turns out that it is effective.
  • the batteries of Examples 11 and 12 differ from those of Example 1 in the method of adding the first compound to the positive electrode material layer. From the comparison of the results of Example 1 with Examples 11 and 12, regardless of the method of adding the first compound, a battery in which the content ratios C1 and C2 satisfy the above conditions exhibits a high low temperature performance index. It can be seen that it was possible to show excellent output performance in a low temperature environment.
  • Comparative Example 7 the first compound was not added to the positive electrode mixture, but was added to the negative electrode mixture. Further, in Comparative Examples 8 and 9, the first compound was not added to the positive electrode mixture. From the results shown in Table 3, in these comparative examples in which the first compound was not added to the positive electrode mixture, it was not possible to produce a battery in which the content ratio C1 of the first group is 0.3% by mass or more I understand that. Therefore, the batteries of Comparative Examples 7 to 9 had a low temperature performance index and a poor output performance under a low temperature environment.
  • the non-aqueous electrolyte used in Comparative Example 9 was a saturated solution of lithium monofluorophosphate.
  • the non-aqueous electrolyte batteries of Examples 12 to 16 are the ones obtained by changing the first compound and / or the second compound from Example 1. However, it can be seen from the results of Examples 1 and 12 to 16 that the nonaqueous electrolyte batteries of Example 1 and Examples 12 to 16 were similarly able to exhibit excellent output performance under a low temperature environment. Further, from the results of Example 12 and Examples 14 to 16, even if the first compound and the second compound are different compounds, the nonaqueous electrolyte batteries of these examples are excellent in a low temperature environment. It can be seen that the output performance was able to be shown.
  • a non-aqueous electrolyte battery comprises a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte.
  • the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less.
  • the content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less, and is smaller than the content ratio C1.
  • the supply of Li ions to the vicinity of the reaction site of the positive electrode can be promoted, the positive electrode reaction can be promoted, and the decomposition of lithium hexafluorophosphate is prevented.
  • the non-aqueous electrolyte battery can exhibit excellent output performance under a low temperature environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

One embodiment of the present invention provides a nonaqueous electrolyte battery. This battery is provided with: a positive electrode that comprises a positive electrode material layer; a negative electrode; and a nonaqueous electrolyte. The nonaqueous electrolyte is held by at least the positive electrode material layer. The positive electrode material layer contains a positive electrode active material and a first group that is selected from among PF2(=O)O-, PF(=O)(O-)2 and a combination thereof. The nonaqueous electrolyte contains LiPF6 and a second group that is selected from among PF2(=O)O-, PF(=O)(O-)2 and a combination thereof. The content rate C1 of the first group in the positive electrode material layer is from 0.3% by mass to 2% by mass (inclusive). The content rate C2 of the second group in the nonaqueous electrolyte is from 0.1% by mass to 1.5% by mass (inclusive). The content rate C1 is higher than the content rate C2.

Description

非水電解質電池及び電池パックNon-aqueous electrolyte battery and battery pack
 本発明の実施形態は、非水電解質電池及び電池パックに関する。 Embodiments of the present invention relate to non-aqueous electrolyte batteries and battery packs.
 近年、Liイオンが負極と正極との間を移動することにより充放電が行われる非水電解質二次電池が、エネルギー問題や環境問題等の観点から、電気自動車(EV)やハイブリッド自動車(HEV)の車両用の電源、並びに太陽光発電などの定置型発電システム用の大型蓄電デバイスとして期待されている。 In recent years, non-aqueous electrolyte secondary batteries in which charge and discharge are performed by the movement of Li ions between the negative electrode and the positive electrode are electric vehicles (EVs) and hybrid vehicles (HEVs) from the viewpoint of energy problems and environmental problems. It is expected as a large power storage device for stationary power generation systems such as solar power generation and solar power generation.
 このような非水電解質二次電池は、寒冷地での使用も想定される。そのため、非水電解質二次電池は、低温環境下であっても大電流の入出力が可能となるよう、低温環境下での出力性能の向上が求められている。 Such non-aqueous electrolyte secondary batteries are also envisioned for use in cold regions. Therefore, in the non-aqueous electrolyte secondary battery, improvement of output performance in a low temperature environment is required so that large current can be input / output even in a low temperature environment.
特開2015-198006号公報Unexamined-Japanese-Patent No. 2015-198006
 低温環境下で優れた出力性能を示すことができる非水電解質電池、及びこの非水電解質電池を具備する電池パックを提供することを目的とする。 It is an object of the present invention to provide a non-aqueous electrolyte battery capable of exhibiting excellent output performance under a low temperature environment, and a battery pack provided with the non-aqueous electrolyte battery.
 第1の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極材料層を含んだ正極と、負極と、非水電解質とを具備する。非水電解質は、少なくとも正極材料層に保持されている。正極材料層は、正極活物質と、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基とを含む。非水電解質は、六フッ化リン酸リチウムと、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基とを含む。正極材料層における第1の基の含有割合C1は、0.3質量%以上2質量%以下である。非水電解質における第2の基の含有割合C2は、0.1質量%以上1.5質量%以下である。含有割合C1は、含有割合C2よりも大きい。 According to a first embodiment, a non-aqueous electrolyte battery is provided. This non-aqueous electrolyte battery comprises a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte. The non-aqueous electrolyte is held at least in the positive electrode material layer. The positive electrode material layer includes a positive electrode active material, and a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The non-aqueous electrolyte comprises lithium hexafluorophosphate and a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof . The content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less. The content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less. The content ratio C1 is larger than the content ratio C2.
 第2の実施形態によると、電池パックが提供される。この電池パックは、第1の実施形態に係る非水電解質電池を具備する。 According to a second embodiment, a battery pack is provided. The battery pack includes the non-aqueous electrolyte battery according to the first embodiment.
図1は、第1の実施形態に係る第1の例の非水電解質電池を厚さ方向に切断した断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of a first example according to the first embodiment cut in the thickness direction. 図2は、図1のA部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion A of FIG. 図3は、第1の実施形態に係る第2の例の非水電解質電池の一部切欠き斜視図である。FIG. 3 is a partially cutaway perspective view of a non-aqueous electrolyte battery of a second example according to the first embodiment. 図4は、図3のB部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a portion B of FIG. 図5は、第2の実施形態に係る一例の電池パックの分解斜視図である。FIG. 5 is an exploded perspective view of an example battery pack according to the second embodiment. 図6は、図5に示す電池パックの電気回路を示すブロック図である。FIG. 6 is a block diagram showing an electric circuit of the battery pack shown in FIG.
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 Embodiments will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. Each figure is a schematic diagram for promoting explanation and understanding of the embodiment, and there are places where the shape, size, ratio, etc. are different from those of the actual device. The design can be changed as appropriate.
 (第1の実施形態)
 第1の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極材料層を含んだ正極と、負極と、非水電解質とを具備する。非水電解質は、少なくとも正極材料層に保持されている。正極材料層は、正極活物質と、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基とを含む。非水電解質は、六フッ化リン酸リチウムと、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基とを含む。正極材料層における第1の基の含有割合C1は、0.3質量%以上2質量%以下である。非水電解質における第2の基の含有割合C2は、0.1質量%以上1.5質量%以下である。含有割合C1は、含有割合C2よりも大きい。
First Embodiment
According to a first embodiment, a non-aqueous electrolyte battery is provided. This non-aqueous electrolyte battery comprises a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte. The non-aqueous electrolyte is held at least in the positive electrode material layer. The positive electrode material layer includes a positive electrode active material, and a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The non-aqueous electrolyte comprises lithium hexafluorophosphate and a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof . The content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less. The content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less. The content ratio C1 is larger than the content ratio C2.
 本発明者らは、低温環境下での電池の出力性能を高めるために、鋭意研究を重ねた。その1つのアプローチとして、非水電解質に添加剤を加えて、正極界面でのLi塩の解離を促進すること及び正極からの金属溶出を抑制することを検討してきた。しかしながら、正極において効果を発揮する添加剤は、非水電解質に添加した場合、その全てが正極に作用するわけではなく、一部が負極側に移動してしまうため、添加量に対応する効果を十分に利用することができないことがわかった。このような問題を鑑みて鋭意研究した結果、本発明者らは、第1の実施形態に係る非水電解質電池を実現した。 The inventors of the present invention conducted intensive studies to enhance the output performance of the battery in a low temperature environment. As one approach, it has been studied to add an additive to the non-aqueous electrolyte to promote dissociation of Li salt at the positive electrode interface and to suppress metal elution from the positive electrode. However, when added to the non-aqueous electrolyte, the additive that exerts an effect in the positive electrode does not necessarily all act on the positive electrode, and a part thereof moves to the negative electrode side, so the effect corresponding to the addition amount It turned out that it can not be used enough. As a result of earnestly researching in view of such a problem, the present inventors have realized the nonaqueous electrolyte battery according to the first embodiment.
 第1の実施形態に係る非水電解質電池では、第1の基及び第2の基が、非水電解質からのLiイオンの解離を促進することができる。非水電解質は少なくとも正極材料層に保持されているので、第1の基及び第2の基は、正極材料層と非水電解質との界面近傍にLiイオンを効率的に供給できる。正極活物質を含む正極材料層と非水電解質との界面は、正極の反応場となることができる。正極の反応場近傍に供給されたLiイオンは、この界面での正極反応に関与する際に移動する必要のある距離が小さい。その結果、低温環境下での充放電の際の抵抗値を下げることができる。 In the non-aqueous electrolyte battery according to the first embodiment, the first group and the second group can promote the dissociation of Li ions from the non-aqueous electrolyte. Since the non-aqueous electrolyte is held at least in the positive electrode material layer, the first group and the second group can efficiently supply Li ions in the vicinity of the interface between the positive electrode material layer and the non-aqueous electrolyte. The interface between the positive electrode material layer containing the positive electrode active material and the non-aqueous electrolyte can be a reaction site of the positive electrode. The Li ions supplied near the reaction field of the positive electrode need to move a short distance when participating in the positive electrode reaction at this interface. As a result, the resistance value at the time of charge and discharge in a low temperature environment can be lowered.
 加えて、第1の基及び第2の基は、正極材料層と非水電解質との界面での正極反応を促進することができる。第1の実施形態に係る非水電解質電池では、正極材料層における第1の基の含有割合C1が0.3質量%以上2質量%以下であり、非水電解質における第2の基の含有割合C2が0.1質量%以上1.5質量%以下であり、含有割合C1が含有割合C2よりも大きい。含有割合C1及びC2がこの条件を満たす状態にある非水電解質電池では、正極材料層に含まれる第1の基が非水電解質中に移動するのを防ぐことができる。そのため、第1の実施形態に係る非水電解質電池では、正極の反応場近傍に、十分な量の第1の基を留めておくことができる。したがって、第1の実施形態に係る非水電解質電池は、第1の基の含有割合C1に対応する効果を十分に利用することができる。 In addition, the first group and the second group can promote the positive electrode reaction at the interface between the positive electrode material layer and the non-aqueous electrolyte. In the nonaqueous electrolyte battery according to the first embodiment, the content ratio C1 of the first group in the positive electrode material layer is 0.3 mass% or more and 2 mass% or less, and the content ratio of the second group in the nonaqueous electrolyte C2 is 0.1 mass% or more and 1.5 mass% or less, and the content rate C1 is larger than the content rate C2. In the non-aqueous electrolyte battery in which the content ratios C1 and C2 satisfy this condition, the first group contained in the positive electrode material layer can be prevented from migrating into the non-aqueous electrolyte. Therefore, in the nonaqueous electrolyte battery according to the first embodiment, a sufficient amount of the first group can be kept near the reaction site of the positive electrode. Therefore, the nonaqueous electrolyte battery according to the first embodiment can fully utilize the effect corresponding to the content ratio C1 of the first group.
 そして、含有割合C1で正極材料層に含まれる第1の基及び含有割合C2で非水電解質に含まれる第2の基は、非水電解質に含まれる六フッ化リン酸リチウムの分解を抑制することもできる。六フッ化リン酸リチウムの分解生成物は、電極上に付着して、電池の抵抗成分となる。特に低温環境下では、抵抗成分の生成によってLiの移動距離が大きくなると、電池抵抗が大きくなる。このような抵抗成分の生成を防ぐことができるので、第1の実施形態に係る非水電解質電池は、より低い抵抗値を示すことができる。 And, the first group contained in the positive electrode material layer at the content ratio C1 and the second group contained in the non-aqueous electrolyte at the content ratio C2 suppress the decomposition of lithium hexafluorophosphate contained in the non-aqueous electrolyte It can also be done. The decomposition product of lithium hexafluorophosphate adheres on the electrode and becomes the battery's resistive component. Particularly in a low temperature environment, when the movement distance of Li increases due to the generation of the resistance component, the battery resistance increases. Since generation of such a resistance component can be prevented, the non-aqueous electrolyte battery according to the first embodiment can exhibit a lower resistance value.
 このように、第1の実施形態に係る非水電解質電池では、正極の反応場近傍にLiイオンを供給できると共に、正極反応を促進することができる。加えて、電池の抵抗上昇の原因となる抵抗成分の生成を抑えることができる。これらの結果、第1の実施形態に係る非水電解質電池は、低温環境下で優れた出力性能を示すことができる。 Thus, in the non-aqueous electrolyte battery according to the first embodiment, Li ions can be supplied to the vicinity of the reaction site of the positive electrode, and the positive electrode reaction can be promoted. In addition, it is possible to suppress the generation of the resistance component that causes the increase in battery resistance. As a result, the non-aqueous electrolyte battery according to the first embodiment can exhibit excellent output performance under a low temperature environment.
 以下、第1の実施形態に係る非水電解質電池をより詳細に説明する。 
 非水電解質に含まれる六フッ化リン酸リチウムは、例えば、化学式LiPF6で表すことができる。非水電解質においては、六フッ化リン酸リチウムの少なくとも一部が、Liイオン(Li+)と、ヘキサフルオロリン酸アニオン(PF6 -)とに解離していてもよい。第1の実施形態に係る非水電解質電池に含まれる第1の基及び第2の基は、例えば、この解離を促進することができる。また、先に述べたように、第1の基及び第2の基は、六フッ化リン酸リチウムの分解を抑制することもできる。ここで、六フッ化リン酸リチウムの分解は、LiPF6からのLi+の解離ではなく、ヘキサフルオロリン酸アニオンの構造の変化を意味する。六フッ化リン酸リチウムの分解は、例えば、HF、PF5、POF3及びLiFからなる群より選択される少なくとも1種が生成する反応であり得る。
Hereinafter, the nonaqueous electrolyte battery according to the first embodiment will be described in more detail.
Lithium hexafluorophosphate contained in the non-aqueous electrolyte can be represented, for example, by the chemical formula LiPF 6 . In the non-aqueous electrolyte, at least a portion of lithium hexafluorophosphate may be dissociated into Li ion (Li + ) and hexafluorophosphate anion (PF 6 ). The first group and the second group included in the non-aqueous electrolyte battery according to the first embodiment can, for example, promote this dissociation. In addition, as described above, the first group and the second group can also suppress the decomposition of lithium hexafluorophosphate. Here, the decomposition of lithium hexafluorophosphate is not a Li + dissociation from LiPF 6, means the change in the structure of the hexafluorophosphate anion. The decomposition of lithium hexafluorophosphate can be, for example, a reaction to form at least one selected from the group consisting of HF, PF 5 , POF 3 and LiF.
 正極材料層に含まれる第1の基は、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される。第1の基は、PF2(=O)O-若しくはPF(=O)(O-2の何れかであってもよいし、又はPF2(=O)O-及びPF(=O)(O-2の組み合わせであってもよい。 The first group contained in the positive electrode material layer is selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The first group may be either PF 2 (= O) O or PF (= O) (O ) 2 , or PF 2 (= O) O and PF (= O) It may be a combination of (O ) 2 .
 正極材料層は、例えば、第1の基を有する第1の化合物を含むことができる。或いは、正極活物質が、第1の基を含んでいてもよい。 The positive electrode material layer can include, for example, a first compound having a first group. Alternatively, the positive electrode active material may contain the first group.
 非水電解質に含まれる第2の基は、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される。第2の基は、PF2(=O)O-若しくはPF(=O)(O-2の何れかであってもよいし、又はPF2(=O)O-及びPF(=O)(O-2の組み合わせであってもよい。 The second group contained in the non-aqueous electrolyte is selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The second group may be either PF 2 (= O) O or PF (= O) (O ) 2 , or PF 2 (= O) O and PF (= O) It may be a combination of (O ) 2 .
 非水電解質は、例えば、第2の基を有する第2の化合物を含むことができる。 The non-aqueous electrolyte can include, for example, a second compound having a second group.
 第1の化合物及び第2の化合物は、同じでもよいし、又は異なっていてもよい。第1の化合物及び/又は第2の化合物は、化合物としては、水素元素及び/又はリチウムなどのアルカリ金属元素を更に含むこともできる。また、第1の化合物及び第2の化合物は、化合物として、アルキル基、カルボニル基、ヒドロキシル基及びアルキルリチウム基からなる群より選択される少なくとも1つの基を更に含むこともできる。また、第1の化合物及び/又は第2の化合物は、リン酸エステル部分などを含んでいてもよい。第1の化合物及び/又は第2の化合物は、電池内では、化合物の状態であってもよい。或いは、第1の化合物及び/又は第2の化合物は、電池内において、少なくとも一部が解離した状態であってもよい。正極材料層が第1の基を含んでいることは、例えば、第1の化合物の少なくとも一部が解離して生じた第1の基を正極材料層が含んでいる状態も包含する。同様に、非水電解質が第2の基を含んでいることは、例えば、第2の化合物の少なくとも一部が解離して生じた第2の基を非水電解質が含んでいる状態も包含する。 The first compound and the second compound may be the same or different. The first compound and / or the second compound may further contain, as a compound, an element of hydrogen and / or an alkali metal element such as lithium. In addition, the first compound and the second compound can further include at least one group selected from the group consisting of an alkyl group, a carbonyl group, a hydroxyl group and an alkyllithium group as the compound. In addition, the first compound and / or the second compound may contain a phosphate ester moiety or the like. The first compound and / or the second compound may be in the form of a compound in the battery. Alternatively, the first compound and / or the second compound may be at least partially dissociated in the battery. The fact that the positive electrode material layer includes the first group also includes, for example, a state in which the positive electrode material layer includes a first group formed by dissociation of at least a part of the first compound. Similarly, the non-aqueous electrolyte containing the second group also includes, for example, a state in which the non-aqueous electrolyte contains the second group formed by the dissociation of at least a part of the second compound. .
 第1の基と第2の基とを先に述べた含有割合C1及びC2で正極材料層と非水電解質とのそれぞれに含む第1の実施形態に係る非水電解質電池は、非水電解質からのLiイオンの解離促進による正極の反応場近傍へのLiイオンの供給の促進と、正極反応の促進と、非水電解質中の六フッ化リン酸リチウムの分解の抑制とを達成することができる。理論により縛られることを望まないが、六フッ化リン酸リチウムの分解抑制のメカニズムは、主にLiイオンの解離促進のメカニズムに類似すると予想される。第1の基及び第2の基は、Liイオンの供給源である六フッ化リン酸リチウムの分解を抑制することにより、正極反応場へのLiイオンの安定的な供給にも寄与することができる。 The non-aqueous electrolyte battery according to the first embodiment including the first group and the second group in the positive electrode material layer and the non-aqueous electrolyte at the content ratios C1 and C2 described above, respectively, from the non-aqueous electrolyte It is possible to achieve the promotion of the supply of Li ions to the vicinity of the reaction field of the positive electrode by the promotion of the dissociation of Li ions, the promotion of the positive reaction and the suppression of the decomposition of lithium hexafluorophosphate in the non-aqueous electrolyte . While not wishing to be bound by theory, it is expected that the mechanism of lithium hexafluorophosphate decomposition inhibition is mainly similar to the mechanism of Li ion dissociation promotion. The first group and the second group can also contribute to the stable supply of Li ions to the positive electrode reaction site by suppressing the decomposition of lithium hexafluorophosphate, which is a source of Li ions it can.
 正極材料層における第1の基の含有割合C1が0.3質量%未満である非水電解質電池では、正極材料層中に存在する第1の基が少な過ぎる。このような電池では、正極の反応場近傍での六フッ化リン酸リチウムの分解の抑制及びLi塩の解離促進効果が十分に発揮されない。一方、含有割合C1が2質量%を超える非水電解質電池では、正極材料層中に含まれる第1の基のうち電極反応に直接関与しない部分の割合が多くなり過ぎる。このような電池では、正極材料層において、第1の基のうち電極反応に直接関与しない部分が、電極反応を阻害し、低温環境下での抵抗が上昇する。ここで、電極反応が阻害される理由のひとつとして、例えば、第1の基のうち電極反応に直接関与しない部分が、正極活物質と正極材料層に含まれ得る導電剤との間の距離を広げてしまうことが挙げられる。 In a non-aqueous electrolyte battery in which the content ratio C1 of the first group in the positive electrode material layer is less than 0.3% by mass, the first group present in the positive electrode material layer is too small. In such a battery, the suppression of the decomposition of lithium hexafluorophosphate near the reaction site of the positive electrode and the dissociation promoting effect of the Li salt are not sufficiently exhibited. On the other hand, in the non-aqueous electrolyte battery in which the content ratio C1 exceeds 2% by mass, the ratio of the portion not directly involved in the electrode reaction in the first group contained in the positive electrode material layer is too high. In such a battery, in the positive electrode material layer, a portion of the first group not directly involved in the electrode reaction inhibits the electrode reaction, and the resistance in a low temperature environment increases. Here, as one of the reasons why the electrode reaction is inhibited, for example, a portion of the first group which does not directly participate in the electrode reaction is a distance between the positive electrode active material and the conductive agent which may be contained in the positive electrode material layer. It can be mentioned that it spreads out.
 また、非水電解質における第2の基の含有割合C2が0.1質量%未満である非水電解質電池では、非水電解質中に存在する第2の基が少な過ぎる。このような電池では、正極材料層から非水電解質への第1の基の移動が誘発される。移動した第1の基は、非水電解質中を拡散する。その結果、正極材料層と非水電解質との界面近傍に存在する第1の基の量が低減してしまい、正極の反応場近傍へのLiイオンの供給及びこの界面での正極反応の促進の効果を発現することができない。また、このような電池では、非水電解質中の六フッ化リン酸リチウムの分解を十分に抑制することができない。一方、非水電解質における含有割合C2が1.5質量%を超える非水電解質電池では、正極材料層と非水電解質との界面及び非水電解質中において、第2の基が多量に存在している。このような電池では、正極反応に六フッ化リン酸リチウムが関与することが阻害され、抵抗が増加してしまう。また、非水電解質における含有割合C2が1.5質量%を超えると、非水電解質の粘度が増加するだけでなく、非水電解質中に電池反応を阻害する成分が存在するようになる。そのため、このような非水電解質電池では、低温抵抗が増加し、その結果出力性能が低減する。 In addition, in a non-aqueous electrolyte battery in which the content ratio C2 of the second group in the non-aqueous electrolyte is less than 0.1% by mass, the second group present in the non-aqueous electrolyte is too small. In such cells, migration of the first group from the positive electrode material layer to the non-aqueous electrolyte is induced. The moved first group diffuses in the non-aqueous electrolyte. As a result, the amount of the first group present in the vicinity of the interface between the positive electrode material layer and the non-aqueous electrolyte is reduced, and supply of Li ions to the vicinity of the reaction field of the positive electrode and promotion of positive electrode reaction at this interface It can not express the effect. Moreover, in such a battery, the decomposition of lithium hexafluorophosphate in the non-aqueous electrolyte can not be sufficiently suppressed. On the other hand, in a non-aqueous electrolyte battery in which the content ratio C2 in the non-aqueous electrolyte exceeds 1.5% by mass, a large amount of second groups are present in the interface between the positive electrode material layer and the non-aqueous electrolyte and in the non-aqueous electrolyte. There is. In such a battery, involvement of lithium hexafluorophosphate in the positive electrode reaction is inhibited, and resistance increases. In addition, when the content ratio C2 in the non-aqueous electrolyte exceeds 1.5% by mass, not only the viscosity of the non-aqueous electrolyte increases but also a component that inhibits the battery reaction is present in the non-aqueous electrolyte. Therefore, in such a non-aqueous electrolyte battery, the low temperature resistance is increased, and as a result, the output performance is reduced.
 含有割合C1及びC2は、分母となる正極材料層及び非水電解質の質量及び比重が異なる。しかしながら、正極材料層は、例えば遷移金属を含むことができるので、非水電解質よりも大きな比重を有することができる。そのため、含有割合C1が含有割合C2より大きいことは、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基が、正極の反応場近傍の同体積の非水電解質と正極材料層とでは、非水電解質中よりも、正極材料層中に多く含まれている、ということができる。 The content rates C1 and C2 differ in the mass and specific gravity of the positive electrode material layer and the non-aqueous electrolyte, which are denominators. However, since the positive electrode material layer can contain, for example, a transition metal, it can have a specific gravity greater than that of the non-aqueous electrolyte. Therefore, the fact that the content ratio C1 is greater than the content ratio C2 means that the group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and a combination thereof is the reaction of the positive electrode. It can be said that the non-aqueous electrolyte in the same volume near the field and the positive electrode material layer are more contained in the positive electrode material layer than in the non-aqueous electrolyte.
 更に、この好ましい態様では、例えば、正極材料層における含有割合C1が、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基についての非水電解質における溶解度を超えることができる。このような態様では、第1の基の一部が正極材料層から非水電解質に移動しても、より充分な量の化合物が正極材料層と非水電解質との界面に存在し続けることができ、低温環境下での電池の抵抗をより低減することができる。 Furthermore, in this preferred embodiment, for example, a group in which the content ratio C1 in the positive electrode material layer is selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof It can exceed the solubility in non-aqueous electrolytes. In such an embodiment, a sufficient amount of the compound continues to be present at the interface between the positive electrode material layer and the non-aqueous electrolyte even if part of the first group moves from the positive electrode material layer to the non-aqueous electrolyte It is possible to further reduce the resistance of the battery in a low temperature environment.
 一方、第2の基の含有割合C2が第1の基の含有割合C1以上である非水電解質電池は、高い抵抗を示す。理論に縛られることは望まないが、このような非水電解質電池が高い抵抗を示す理由は、以下の通りであると考えられる。 On the other hand, a non-aqueous electrolyte battery in which the content ratio C2 of the second group is the content ratio C1 or more of the first group exhibits high resistance. While not wishing to be bound by theory, it is believed that the reason such non-aqueous electrolyte cells exhibit high resistance is as follows.
 まず、正極材料層における第1の基の含有割合C1が0.3質量%以上である非水電解質電池では、正極反応を促進するのに十分な量の第1の基が、正極材料層に存在しているということができる。しかしながら、第2の基の含有割合C2が第1の基の含有割合C1以上である非水電解質電池では、非水電解質中の第2の基が非水電解質と正極材料層との間の界面近傍に移動する。このような非水電解質電池では、正極材料層のうち非水電解質に接する部分に第1の基が十分な量で存在すると共に、非水電解質のうち正極材料層に接する部分に第2の基が偏在するようになる。正極の反応場近傍の非水電解質に偏在する第2の基は、正極反応場近傍へのLiの移動を阻害する。その結果、このような非水電解質電池は、高い抵抗を示す。 First, in a non-aqueous electrolyte battery in which the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more, the first material in an amount sufficient to promote the positive electrode reaction is It can be said that it exists. However, in the nonaqueous electrolyte battery in which the content ratio C2 of the second group is the content ratio C1 or more of the first group, the second group in the nonaqueous electrolyte is an interface between the nonaqueous electrolyte and the positive electrode material layer. Move to the vicinity. In such a non-aqueous electrolyte battery, the first group is present in a sufficient amount in the portion in contact with the non-aqueous electrolyte in the positive electrode material layer, and the second group in the portion in contact with the positive electrode material layer in the non-aqueous electrolyte. Become ubiquitous. The second group unevenly distributed in the non-aqueous electrolyte in the vicinity of the reaction field of the positive electrode inhibits the movement of Li to the vicinity of the positive electrode reaction field. As a result, such non-aqueous electrolyte batteries exhibit high resistance.
 六フッ化リン酸リチウムは、非水溶媒中で、他のリチウム塩に比べて高い解離度を示すことができる。これは、六フッ化リン酸リチウムが、非水電解質において、他のLi塩に比べて多くのLiイオンを提供できることを意味する。Liをイオンの状態でより多く含む非水電解質ほど、より高いLiイオン伝導性を示すことができる。これは、移動できるLiイオンの量が多いだけでなく、Liイオンが円滑に移動できることにも起因する。そのため、六フッ化リン酸リチウムを含んだ非水電解質は、六フッ化リン酸リチウムを含まない非水電解質よりも、高いLiイオン伝導性を示すことができる。よって、六フッ化リン酸リチウムを含んだ非水電解質は、正極の反応場近傍へのLiの供給を促進することができる。なお、非水電解質が六フッ化リン酸リチウムを含まない非水電解質電池では、第1の基及び第2の基によるLi支持塩の分解抑制効果を利用できないだけでなく、第1の基及び/又は第2の基が抵抗成分として働き、低温環境下において高い抵抗を示すことがある。 Lithium hexafluorophosphate can exhibit a high degree of dissociation in nonaqueous solvents compared to other lithium salts. This means that lithium hexafluorophosphate can provide more Li ions in the non-aqueous electrolyte as compared to other Li salts. A non-aqueous electrolyte containing more Li in the ion state can exhibit higher Li ion conductivity. This is due not only to the large amount of Li ions that can be moved, but also to the fact that Li ions can move smoothly. Therefore, the non-aqueous electrolyte containing lithium hexafluorophosphate can exhibit higher Li ion conductivity than the non-aqueous electrolyte containing no lithium hexafluorophosphate. Therefore, the non-aqueous electrolyte containing lithium hexafluorophosphate can promote the supply of Li near the reaction site of the positive electrode. In the non-aqueous electrolyte battery in which the non-aqueous electrolyte does not contain lithium hexafluorophosphate, not only the decomposition suppressing effect of the Li supporting salt by the first group and the second group can not be utilized, but also the first group and The second group may act as a resistance component and may exhibit high resistance in a low temperature environment.
 次に、第1の実施形態に係る非水電解質電池をより詳細に説明する。 Next, the nonaqueous electrolyte battery according to the first embodiment will be described in more detail.
 第1の実施形態に係る非水電解質電池は、正極と、負極と、非水電解質とを具備する。 The non-aqueous electrolyte battery according to the first embodiment includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
 正極は、正極材料層を含む。 
 正極材料層は、正極活物質を更に含む。すなわち、正極材料層は、正極活物質含有層と呼ぶこともできる。また、正極材料層は、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基を更に含む。正極材料層は、必要に応じて、導電剤及びバインダーをさらに含むことができる。
The positive electrode includes a positive electrode material layer.
The positive electrode material layer further includes a positive electrode active material. That is, the positive electrode material layer can also be referred to as a positive electrode active material-containing layer. In addition, the positive electrode material layer further includes a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The positive electrode material layer can further contain a conductive agent and a binder, as needed.
 正極は、正極集電体を更に含むことができる。正極材料層は、正極集電体上に形成され得る。正極集電体は、例えば、第1の表面と、その裏面としての第2の表面とを有することができる。正極材料層は、正極集電体の両方の表面上に形成されてもよいし、又は一方の表面上に形成されてもよい。 The positive electrode can further include a positive electrode current collector. The positive electrode material layer can be formed on the positive electrode current collector. The positive electrode current collector can have, for example, a first surface and a second surface as its back surface. The positive electrode material layer may be formed on both surfaces of the positive electrode current collector, or may be formed on one surface.
 正極集電体は、表面に正極材料層を担持していない部分を含むことができる。この部分は、例えば正極タブとして働くことができる。或いは、正極は、正極集電体とは別体の正極タブをさらに具備することもできる。 The positive electrode current collector can include a portion not carrying the positive electrode material layer on the surface. This portion can, for example, serve as the positive electrode tab. Alternatively, the positive electrode can further comprise a positive electrode tab separate from the positive electrode current collector.
 負極は、負極集電体と、負極集電体上に形成された負極材料層とを含むことができる。 The negative electrode can include a negative electrode current collector and a negative electrode material layer formed on the negative electrode current collector.
 負極集電体は、例えば、第1の表面と、その裏面としての第2の表面とを有することができる。負極材料層は、負極集電体の両方の表面上に形成されてもよいし、又は一方の表面上に形成されてもよい。 The negative electrode current collector can have, for example, a first surface and a second surface as its back surface. The negative electrode material layer may be formed on both surfaces of the negative electrode current collector, or may be formed on one surface.
 負極集電体は、表面に負極材料層を担持していない部分を含むことができる。この部分は、例えば、負極タブとして働くことができる。或いは、負極は、負極集電体とは別体の負極タブを更に具備することもできる。 The negative electrode current collector can include a portion not carrying the negative electrode material layer on the surface. This portion can, for example, serve as the negative electrode tab. Alternatively, the negative electrode can further comprise a negative electrode tab separate from the negative electrode current collector.
 負極材料層は、負極活物質を含むことができる。すなわち、負極材料層は、負極活物質含有層と呼ぶこともできる。負極材料層は、例えば、作動電位が0.7V(vs.Li/Li+)以上である負極活物質を含むことができる。負極材料層は、1種類のこのような負極活物質を含んでも良いし、又は複数種のこのような負極活物質の組み合わせを含んでも良い。負極材料層は、任意に、導電剤及び結着剤を更に含むことができる。 The negative electrode material layer can include a negative electrode active material. That is, the negative electrode material layer can also be called a negative electrode active material containing layer. The negative electrode material layer can include, for example, a negative electrode active material having an operating potential of 0.7 V (vs. Li / Li + ) or more. The negative electrode material layer may contain one kind of such negative electrode active material, or may contain a combination of a plurality of such negative electrode active materials. The negative electrode material layer can optionally further include a conductive agent and a binder.
 正極と負極とは、電極群を構成することができる。例えば、電極群において、正極材料層と負極材料層とが、セパレータを介して対向することができる。電極群の構造は特に限定されず、様々な構造を採ることができる。例えば、電極群は、スタック型の構造を有することができる。スタック型構造の電極群は、例えば、複数の正極及び負極を、正極材料層と負極材料層との間にセパレータを挟んで積層することによって得られる。或いは、電極群は、例えば捲回型の構造を有することができる。捲回型の電極群は、例えば、正極とセパレータと負極とを渦巻き状に捲回することによって得られる。 The positive electrode and the negative electrode can constitute an electrode group. For example, in the electrode group, the positive electrode material layer and the negative electrode material layer can face each other through the separator. The structure of the electrode group is not particularly limited, and various structures can be adopted. For example, the electrode group can have a stacked structure. The stack-type electrode group is obtained, for example, by laminating a plurality of positive electrodes and negative electrodes with a separator interposed between a positive electrode material layer and a negative electrode material layer. Alternatively, the electrode group can have, for example, a wound structure. The wound electrode group is obtained, for example, by spirally winding the positive electrode, the separator and the negative electrode.
 非水電解質は、六フッ化リン酸リチウムと、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基と含む。 The non-aqueous electrolyte includes lithium hexafluorophosphate and a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof.
 この非水電解質は、少なくとも正極材料層に保持されている。例えば、先に説明した正極材料層は、細孔を有することができる。例えば、非水電解質の一部は、正極材料層の細孔に入り込んだ状態(含浸した状態)で、正極材料層に保持され得る。負極材料層及びセパレータも、細孔を有することができる。非水電解質の他の一部は、例えば、負極材料層の細孔に入り込んだ状態(含浸した状態)で、負極材料層に保持され得る。非水電解質の更に他の一部は、例えば、セパレータの細孔に入り込んだ状態(含浸した状態)で、セパレータに保持され得る。これらの結果、非水電解質は、電極群に保持されることができる。 The non-aqueous electrolyte is held at least in the positive electrode material layer. For example, the positive electrode material layer described above can have pores. For example, part of the non-aqueous electrolyte may be retained in the positive electrode material layer in a state of being infiltrated (in an impregnated state) in the pores of the positive electrode material layer. The negative electrode material layer and the separator can also have pores. The other part of the non-aqueous electrolyte can be retained in the negative electrode material layer, for example, in a state (impregnated state) in which the pores of the negative electrode material layer enter. The other part of the non-aqueous electrolyte can be retained in the separator, for example, in a state of being infiltrated in the pores of the separator (in an impregnated state). As a result of these, the non-aqueous electrolyte can be held by the electrode group.
 第1の実施形態に係る非水電解質電池は、負極端子及び正極端子を更に含むことができる。負極端子は、その一部が負極の一部に電気的に接続されることによって、負極と外部端子との間で電子が移動するための導体として働くことができる。負極端子は、例えば、負極集電体、特に負極タブに接続することができる。同様に、正極端子は、その一部が正極の一部に電気的に接続されることによって、正極と外部回路との間で電子が移動するための導体として働くことができる。正極端子は、例えば、正極集電体、特に正極タブに接続することができる。 The non-aqueous electrolyte battery according to the first embodiment can further include a negative electrode terminal and a positive electrode terminal. The negative electrode terminal can function as a conductor for moving electrons between the negative electrode and the external terminal by electrically connecting a part of the negative electrode terminal to a part of the negative electrode. The negative electrode terminal can, for example, be connected to the negative electrode current collector, in particular to the negative electrode tab. Similarly, the positive electrode terminal can function as a conductor for moving electrons between the positive electrode and the external circuit by electrically connecting a part of the positive electrode terminal to a part of the positive electrode. The positive electrode terminal can, for example, be connected to a positive electrode current collector, in particular to a positive electrode tab.
 第1の実施形態に係る非水電解質電池は、外装部材を更に具備することができる。外装部材は、電極群及び非水電解質を収容することができる。非水電解質は、外装部材内で、電極群に保持され得る。正極端子及び負極端子のそれぞれの一部は、外装部材から延出させることができる。 The nonaqueous electrolyte battery according to the first embodiment can further include an exterior member. The exterior member can accommodate the electrode group and the non-aqueous electrolyte. The non-aqueous electrolyte can be held by the electrode group in the exterior member. A part of each of the positive electrode terminal and the negative electrode terminal can be extended from the exterior member.
 以下、実施形態に係る非水電解質電池が具備することができる各部材の材料について、詳細に説明する。 Hereinafter, the material of each member which can be equipped with the non-aqueous electrolyte battery according to the embodiment will be described in detail.
 (1)正極
 正極集電体としては、例えば、アルミニウム及び銅などの金属箔を使用することができる。正極集電体とは別体の正極タブを用いる場合、正極タブの材料は、正極集電体との接触抵抗を抑えるために、正極集電体の材料と同様のものであることが好ましい。
(1) Positive electrode As a positive electrode collector, metal foils, such as aluminum and copper, can be used, for example. When a positive electrode tab separate from the positive electrode current collector is used, the material of the positive electrode tab is preferably the same as the material of the positive electrode current collector in order to suppress the contact resistance with the positive electrode current collector.
 正極活物質は、リチウム又はリチウムイオンを吸蔵及び放出できるものであれば、特に限定されない。正極活物質の例としては、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムコバルト複合酸化物(例えばLixCoO2、0<x≦1)、リチウムニッケル複合酸化物(例えば、LixNiO2、0<x≦1)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LixNi1-a-b-cCoaMnbM1c2の一般式で表される組成を有することができる。M1は、Mg、Al、Si、Ti、Zn、Zr、Ca、W、Nb及びSnからなる群より選択される少なくとも1種であり、各添字は、-0.2≦x≦0.5、0<a<0.4(好ましくは、0.25<a<0.4)、0<b<0.5、0≦c<0.1の範囲内にある)、リチウムニッケルコバルト複合酸化物(例えば、LixNi1-eCoe2、0<x≦1、0<e<1)、リチウムマンガンコバルト複合酸化物(例えば、LixMnfCo1-f2、0<x≦1、0<f<1)、リチウムニッケルコバルトアルミニウム複合酸化物(例えば、LixNi1-g-hCogAlh2、0<x≦1、0<g<1、0<h<1)、リチウムマンガン複合酸化物(例えば、LixMn24、LixMnO2、0<x≦1)、オリビン構造を有するリチウムリン酸化物(例えば、LixFePO4、LixMnPO4、LixMn1-iFeiPO4、LixCoPO4、0<x≦1、0<i<1)、硫酸鉄(Fe2(SO43)、及びバナジウム酸化物(例えば、V25)が挙げられる。正極材料層が含む正極活物質の種類は、1種類でもよいし、又は2種以上でもよい。 The positive electrode active material is not particularly limited as long as it can occlude and release lithium or lithium ions. Examples of the positive electrode active material include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium cobalt composite oxide (for example, Li x CoO 2 , 0 <x ≦ 1), lithium nickel composite oxide (for example, , Li x NiO 2 , 0 <x ≦ 1), lithium nickel cobalt manganese complex oxide (eg, Li x Ni 1-abc Co a Mn b M 1 c O 2 can have a composition represented by the general formula M 1 is at least one selected from the group consisting of Mg, Al, Si, Ti, Zn, Zr, Ca, W, Nb and Sn, and each subscript is −0.2 ≦ x ≦ 0.5 , 0 <a <0.4 (preferably 0.25 <a <0.4), 0 <b <0.5, 0 ≦ c <0.1), lithium nickel cobalt composite oxide (For example, Li x Ni 1 -e Co e O 2 , 0 <x ≦ 1, 0 <e <1), lithium manganese cobalt composite oxide (for example, Li x Mn f Co 1-f O 2 , 0 <x ≦ 1, 0 <f <1), lithium nickel cobalt aluminum composite oxide (for example, Li x Ni 1-gh Co g Al h O 2 , 0 <x ≦ 1, 0 <g <1, 0 <h <1), lithium manganese complex oxide (eg Li x Mn 2 O 4 , Li x MnO 2 , 0 <x ≦ 1), lithium phosphorus oxide having an olivine structure (for example, Li x FePO 4 , Li x MnPO 4 , Li x Mn 1-i Fe i PO 4 , Li x CoPO 4 , 0 <x ≦ 1, 0 <i <1), iron sulfate (Fe 2 (SO 4 ) 3 ), and vanadium oxide (eg, V 2 O 5 ). The type of the positive electrode active material contained in the positive electrode material layer may be one, or two or more.
 正極活物質は、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基を含んだ相との混相でもよい。 The positive electrode active material may be a mixed phase with a phase including a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof.
 正極材料層が含むことができる導電剤は、カーボン材料を含むことが好ましい。カーボン材料としては、例えば、アセチレンブラック、ケチェンブラック、ファーネスブラック、グラファイト、カーボンナノチューブなどを挙げることができる。正極材料層は、上記カーボン材料の1種若しくは2種以上を含むことができるし、又は他の導電剤を更に含むこともできる。 The conductive agent that can be contained in the positive electrode material layer preferably contains a carbon material. Examples of the carbon material include acetylene black, ketjen black, furnace black, graphite, carbon nanotubes and the like. The positive electrode material layer can include one or more of the above-described carbon materials, or can further include another conductive agent.
 また、正極材料層が含むことができる結着剤は、特に限定されない。例えば、結着剤として、スラリー調製用の混合用溶媒、例えばn-メチルピロリドン(NMP)によく分散するポリマーを用いることができる。このようなポリマーとしては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン及びポリテトラフルオロエチレンなどが挙げられる。 Moreover, the binder which the positive electrode material layer can contain is not particularly limited. For example, as a binder, a polymer well dispersed in a mixing solvent for slurry preparation, such as n-methylpyrrolidone (NMP) can be used. Examples of such a polymer include polyvinylidene fluoride, hexafluoropropylene and polytetrafluoroethylene.
 正極作製の際に正極材料層に含ませ得る第1の化合物の具体例としては、モノフルオロリン酸(PF(=O)(OH)2)、モノフルオロリン酸リチウム(PF(=O)(OLi)2)、モノフルオロリン酸ナトリウム(PF(=O)(ONa)2)、モノフルオロリン酸カリウム(PF(=O)(OK)2)、モノフルオロリン酸ジメチル(PF(=O)(OCH32)、モノフルオロリン酸ジエチル(PF(=O)(OC252)、モノフルオロリン酸エチルメチル(PF(=O)(OCH3)(OC25))、ジフルオロリン酸(PF2(=O)(OH))、ジフルオロリン酸0.5水和物(PF2(=O)(OH)・0.5H2O)、ジフルオロリン酸リチウム(PF2(=O)(OLi))、ジフルオロリン酸ナトリウム(PF2(=O)(ONa))、ジフルオロリン酸カリウム(PF2(=O)(OK))、ジフルオロリン酸メチル(PF2(=O)(OCH3))、及びジフルオロリン酸エチル(PF2(=O)(OC25))が挙げられる。 Specific examples of the first compound which can be contained in the positive electrode material layer in the preparation of the positive electrode include monofluorophosphoric acid (PF (= O) (OH) 2 ) and lithium monofluorophosphate (PF (= O) ( OLi) 2 ), sodium monofluorophosphate (PF (= O) (ONa) 2 ), potassium monofluorophosphate (PF (= O) (OK) 2 ), dimethyl monofluorophosphate (PF (= O) (OCH 3 ) 2 ), diethyl monofluorophosphate (PF (= O) (OC 2 H 5 ) 2 ), ethyl methyl monofluorophosphate (PF (= O) (OCH 3 ) (OC 2 H 5 )) , Difluorophosphoric acid (PF 2 (= O) (OH)), difluorophosphoric acid 0.5 hydrate (PF 2 (= O) (OH) · 0.5H 2 O), lithium difluorophosphate (PF 2 (= O) (OLi)), sodium difluorophosphate PF 2 (= O) (ONa )), potassium difluorophosphate (PF 2 (= O) ( OK)), methyl difluoro phosphate (PF 2 (= O) ( OCH 3)), and ethyl difluorophosphate ( PF 2 (= O) (OC 2 H 5)) and the like.
 正極材料層における第1の基の含有割合C1は、0.3質量%以上2質量%以下である。含有割合C1は、正極材料層の質量を100%として、正極材料層に含まれる、基PF2(=O)O-の質量、基PF(=O)(O-2の質量、又は基PF2(=O)O-の質量と基PF(=O)(O-2の質量との合計を百分率で示したものである。含有割合C1は、0.5質量%より大きく2質量%以下であることが好ましく、1質量%以上2質量%以下であることがより好ましい。 The content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less. The content ratio C1 is the mass of the group PF 2 (= O) O , the mass of the group PF (= O) (O ) 2 , or the group contained in the positive electrode material layer, where the mass of the positive electrode material layer is 100%. The sum of the mass of PF 2 (= O) O − and the mass of the group PF (= O) (O ) 2 is shown as a percentage. The content ratio C1 is preferably more than 0.5% by mass and 2% by mass or less, and more preferably 1% by mass or more and 2% by mass or less.
 また、正極材料層における、正極活物質、導電剤及び結着剤の含有量は、正極材料層の質量を基準(100%)として、それぞれ、80質量%以上97質量%以下、0.5質量%以上10質量%以下及び0.5質量%以上10質量%以下であることが好ましく、90質量%以上96質量%以下、1質量%以上8質量%以下及び1質量%以上8質量%以下であることがより好ましい。 The content of the positive electrode active material, the conductive agent, and the binder in the positive electrode material layer is 80% by mass or more and 97% by mass or less, respectively, with respect to the mass of the positive electrode material layer (100%) % Or more and 10 mass% or less and 0.5 mass% or more and 10 mass% or less, 90 mass% or more and 96 mass% or less, 1 mass% or more and 8 mass% or less, and 1 mass% or more and 8 mass% or less It is more preferable that
 (2)負極
 負極集電体としては、例えば、アルミニウム、銅などの金属箔を使用することができる。負極集電体とは別体の負極タブを用いる場合は、負極タブの材料は、負極集電体との接触抵抗を抑えるために、負極集電体の材料と同様のものであることが好ましい。
(2) Negative electrode As a negative electrode collector, metal foil, such as aluminum and copper, can be used, for example. When a negative electrode tab separate from the negative electrode current collector is used, the material of the negative electrode tab is preferably the same as the material of the negative electrode current collector in order to suppress the contact resistance with the negative electrode current collector. .
 負極活物質は、リチウム又はリチウムイオンを吸蔵及び放出できるものであれば、特に限定されない。負極活物質の例としては、例えば、スピネル型の結晶構造を有するチタン酸リチウム(例えば、Li4+yTi512(yは、充電状態に応じて、0≦y≦3の範囲内で変化する)の組成を有することができる)、ラムズデライト型の結晶構造を有するチタン酸リチウム(例えば、Li2+zTi37)(zは、充電状態に応じて、0≦z≦2の範囲内で変化する)の組成を有することができる)、アナターゼ型、ルチル型又はブロンズ型のチタン含有酸化物、単斜晶型の結晶構造を有するニオブチタン複合酸化物、及び斜方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物が挙げられる。これらの負極活物質は、0.7V(vs.Li/Li+)以上の作動電位を示すことができる。作動電位が0.7V(vs.Li/Li+)以上である負極活物質を用いることにより、低温作動におけるリチウムデンドライトの生成を防ぐことができる。負極材料層が含む負極活物質の種類は、1種類でもよいし、又は2種以上でもよい。 The negative electrode active material is not particularly limited as long as it can occlude and release lithium or lithium ions. As an example of the negative electrode active material, for example, lithium titanate having a crystal structure of spinel type (for example, Li 4 + y Ti 5 O 12 (y is in the range of 0 ≦ y ≦ 3 depending on the state of charge) Can vary in composition), lithium titanate with a ramsdellite type crystal structure (eg, Li 2 + z Ti 3 O 7 ) (z is 0 ≦ z ≦ 2 depending on the state of charge) Can vary in the following ranges), anatase-type, rutile-type or bronze-type titanium-containing oxide, a niobium titanium composite oxide having a monoclinic crystal structure, and an orthorhombic-type Examples include Na-containing niobium-titanium composite oxides having a crystal structure. These negative electrode active materials can exhibit an operating potential of 0.7 V (vs. Li / Li + ) or more. By using the negative electrode active material having an operating potential of 0.7 V (vs. Li / Li + ) or more, it is possible to prevent the formation of lithium dendrite in low temperature operation. The type of the negative electrode active material contained in the negative electrode material layer may be one, or two or more.
 負極材料層が含むことができる導電剤及び結着剤は、正極材料層が含むことができるそれらと同様のものを用いることができる。 As the conductive agent and the binder which the negative electrode material layer can contain, those similar to those which the positive electrode material layer can contain can be used.
 負極材料層における負極活物質、導電剤及び結着剤の含有量は、負極材料層の質量を基準として、それぞれ、80質量%以上98質量%以下、1質量%以上10質量%以下及び1質量%以上10質量%以下であることが好ましく、90質量%以上94質量%以下、2質量%以上8質量%以下及び1質量%以上5質量%以下であることがより好ましい。 The content of the negative electrode active material, the conductive agent, and the binder in the negative electrode material layer is 80% by mass or more and 98% by mass or less, 1% by mass or more and 10% by mass or less, based on the mass of the negative electrode material layer. % Or more and 10% by mass or less is preferable, and 90% by mass or more and 94% by mass or less, 2% by mass or more and 8% by mass or less, and 1% by mass or more and 5% by mass or less.
 (3)非水電解質
 非水電解質は、例えば、非水溶媒と、非水溶媒中に溶解された電解質(Li支持塩)及び添加剤とを含むことができる。
(3) Nonaqueous Electrolyte The nonaqueous electrolyte can include, for example, a nonaqueous solvent, an electrolyte (Li supporting salt) dissolved in the nonaqueous solvent, and an additive.
 六フッ化リン酸リチウム(LiPF6)は、例えば電解質として、非水電解質に含まれ得る。電解質としては、六フッ化リン酸リチウムを単独で用いてもよいし、又は六フッ化リン酸リチウムと、その他の1種若しくは2種以上の電解質との組み合わせを用いることもできる。六フッ化リン酸リチウム以外の電解質の例としては、例えば、過塩素酸リチウム(LiClO4)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)などのリチウム塩を挙げることができる。 Lithium hexafluorophosphate (LiPF 6 ) can be included in the non-aqueous electrolyte, for example, as an electrolyte. As the electrolyte, lithium hexafluorophosphate may be used alone, or a combination of lithium hexafluorophosphate and one or more other electrolytes may be used. Examples of electrolytes other than lithium hexafluorophosphate include, for example, lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluoromethanesulfonic acid Lithium salts such as lithium (LiCF 3 SO 3 ) can be mentioned.
 電解質の質量の50質量%以上が六フッ化リン酸リチウムであることが好ましく、90質量%以上であることがより好ましい。 It is preferable that 50 mass% or more of mass of electrolyte is lithium hexafluorophosphate, and it is more preferable that it is 90 mass% or more.
 非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフランなどを挙げることができる。 As non-aqueous solvents, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ) And -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like.
 非水溶媒としては、1種類の溶媒を単独で使用してもよいし、又は2種以上の溶媒を混合した混合溶媒を使用してもよい。 As the non-aqueous solvent, one type of solvent may be used alone, or a mixed solvent in which two or more types of solvents are mixed may be used.
 電解質の非水溶媒に対する溶解量は、0.5mol/L~3mol/Lとすることが望ましい。なお、溶解量が高過ぎると電解液に完全に溶解できない場合がある。 The amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.5 mol / L to 3 mol / L. If the amount of dissolution is too high, it may not be completely soluble in the electrolyte.
 PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基を有する第2の化合物は、例えば、添加剤として、非水電解質に含まれ得る。 The second compound having a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and a combination thereof is, for example, non-aqueous as an additive. It may be included in the electrolyte.
 非水電解質調製の際に含ませ得る第2の化合物の具体例としては、先に説明した第1の化合物として用いることができる具体例と同様の化合物を挙げることができる。 Specific examples of the second compound that can be included in the preparation of the non-aqueous electrolyte can include the same compounds as the specific examples that can be used as the first compound described above.
 非水電解質における第2の基の含有割合C2は、0.1質量%以上1.5質量%以下である。含有割合C2は、非水電解質の質量を100%として、非水電解質に含まれる、基PF2(=O)O-の質量、基PF(=O)(O-2の質量、又は基PF2(=O)O-の質量と基PF(=O)(O-2の質量との合計を百分率で示したものである。含有割合C2は、0.3質量%以上1.4質量%以下であることが好ましく、0.5質量%以上1.3質量%以下であることがより好ましい。 The content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less. The content ratio C2 is the mass of the group PF 2 (= O) O , the mass of the group PF (= O) (O ) 2 , or the group contained in the non-aqueous electrolyte, where the mass of the non-aqueous electrolyte is 100%. The sum of the mass of PF 2 (= O) O − and the mass of the group PF (= O) (O ) 2 is shown as a percentage. The content ratio C2 is preferably 0.3% by mass or more and 1.4% by mass or less, and more preferably 0.5% by mass or more and 1.3% by mass or less.
 非水電解質は、第2の化合物以外の1種又は2種以上の添加剤を更に含むこともできる。第2の化合物以外の添加剤としては、例えば、ビニレンカーボネート(VC)、フルオロビニレンカーボネート、メチルビニレンカーボネート、フルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、ビニレンアセテート(VA)、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、カテコールカーボネート、プロパンスルトン、ブタンスルトン、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、ビスオキサラトボラートリチウム(LiBOB)、ビス(フルオロスルホニル)イミドリチウム[LiN(SO2F)2]、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等が挙げられる。これらの添加剤は、非水電解質に5質量%以下の含有割合で含まれることが好ましく3質量%以下の含有割合で含まれることがより好ましい。また、これらの添加剤は、例えば、非水電解質に、0.1質量%以上の量で含まれることができる。 The non-aqueous electrolyte can further include one or more additives other than the second compound. As an additive other than the second compound, for example, vinylene carbonate (VC), fluorovinylene carbonate, methylvinylene carbonate, fluoromethylvinylene carbonate, ethylvinylene carbonate, propylvinylene carbonate, butylvinylene carbonate, dimethylvinylene carbonate, diethylvinylene Carbonate, dipropylvinylene carbonate, vinylene acetate (VA), vinylene butyrate, vinylene hexanate, vinylene crotonate, catechol carbonate, propane sultone, butane sultone, lithium trifluoromethane sulfonate (LiCF 3 SO 3 ), lithium bisoxalatoborate (LiBOB), lithium bis (fluorosulfonyl) imide [LiN (SO 2 F) 2 ], bi Trifluoromethylsulfonyl imide [LiN (CF 3 SO 2) 2] , and the like. These additives are preferably contained in the non-aqueous electrolyte in a content ratio of 5% by mass or less, and more preferably in a content ratio of 3% by mass or less. Also, these additives can be contained, for example, in the non-aqueous electrolyte in an amount of 0.1% by mass or more.
 (4)セパレータ
 セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合ポリマー、エチレン-ブテン共重合ポリマー、セルロースなどを挙げることができる。
(4) Separator The separator is not particularly limited, and, for example, a microporous membrane, a woven fabric, a non-woven fabric, or a laminate of the same material or different materials among them can be used. Examples of the material forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.
 (5)外装部材
 外装部材としては、例えば金属製容器又はラミネートフィルム製容器を用いることができるが、特に限定されない。
(5) Exterior member As the exterior member, for example, a metal container or a laminate film container can be used, but it is not particularly limited.
 外装部材として金属製容器を用いることにより、耐衝撃性及び長期信頼性に優れた非水電解質電池を実現することができる。容器としてラミネートフィルム製容器を用いることにより、耐腐食性に優れた非水電解質電池を実現することができると共に、非水電解質電池の軽量化を図ることができる。 By using a metal container as the exterior member, a non-aqueous electrolyte battery excellent in impact resistance and long-term reliability can be realized. By using a laminate film container as the container, it is possible to realize a non-aqueous electrolyte battery excellent in corrosion resistance and to reduce the weight of the non-aqueous electrolyte battery.
 金属製容器は、例えば、壁厚が0.2mm以上1mm以下の範囲内にあるものを用いることができる。金属製容器は、壁厚が0.3~0.8mm以下であることがより好ましい。 As the metal container, for example, one having a wall thickness of 0.2 mm or more and 1 mm or less can be used. The metal container more preferably has a wall thickness of 0.3 to 0.8 mm or less.
 金属製容器は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含んでいることが好ましい。金属製容器は、例えば、アルミニウム、アルミニウム合金、鉄、ニッケル(Ni)めっきした鉄、ステンレス(SUS)等から作ることができる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属を含む場合、その含有量は1質量%以下にすることが好ましい。これにより、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。 The metal container preferably contains at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al. The metal container can be made of, for example, aluminum, aluminum alloy, iron, nickel (Ni) plated iron, stainless steel (SUS) or the like. The aluminum alloy is preferably an alloy containing an element such as magnesium, zinc or silicon. When the alloy contains a transition metal such as iron, copper, nickel, or chromium, the content is preferably 1% by mass or less. As a result, long-term reliability and heat dissipation in a high temperature environment can be dramatically improved.
 ラミネートフィルム製容器は、例えば、厚さが0.1以上2mm以下の範囲内にあるものを用いることができる。ラミネートフィルムの厚さは0.2mm以下であることがより好ましい。 
 ラミネートフィルムとしては、例えば、金属層と、この金属層を挟み込んだ樹脂層を含む多層フィルムが用いられる。金属層は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含む金属を含むことが好ましい。金属層は、軽量化のためにアルミニウム箔又はアルミニウム合金箔であることが好ましい。樹脂層の材料としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
As the laminate film container, for example, one having a thickness in the range of 0.1 or more and 2 mm or less can be used. The thickness of the laminate film is more preferably 0.2 mm or less.
As a laminate film, for example, a multilayer film including a metal layer and a resin layer sandwiching the metal layer is used. The metal layer preferably contains a metal containing at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al. The metal layer is preferably aluminum foil or aluminum alloy foil for weight reduction. As a material of a resin layer, polymeric materials, such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET), can be used, for example. The laminated film can be molded into the shape of the exterior member by sealing by heat fusion.
 外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。外装部材は、用途に応じて様々な寸法を採ることができる。例えば、第1の実施形態に係る非水電解質電池が携帯用電子機器の用途に用いられる場合は、外装部材は搭載する電子機器の大きさに合わせて小型のものにすることができる。或いは、二輪乃至四輪の自動車等に積載される非水電解質電池である場合、外装部材は大型電池用容器であり得る。 The shape of the exterior member may be flat (thin), square, cylindrical, coin, button or the like. The exterior member can have various dimensions depending on the application. For example, when the non-aqueous electrolyte battery according to the first embodiment is used for a use of a portable electronic device, the exterior member can be miniaturized according to the size of the mounted electronic device. Alternatively, in the case of a non-aqueous electrolyte battery loaded on a two- or four-wheeled automobile, the exterior member may be a container for a large battery.
 (6)正極端子及び負極端子
 正極端子及び負極端子は、例えば、アルミニウム又はアルミニウム合金から形成することが望ましい。
(6) Positive Electrode Terminal and Negative Electrode Terminal The positive electrode terminal and the negative electrode terminal are desirably formed of, for example, aluminum or an aluminum alloy.
 <製造方法>
 以下に、第1の実施形態に係る非水電解質電池の製造方法の例を説明する。
<Manufacturing method>
Below, the example of the manufacturing method of the non-aqueous electrolyte battery which concerns on 1st Embodiment is demonstrated.
 PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基を有する化合物を、正極材料層には含ませず、非水電解質に添加剤として含ませて作製した非水電解質電池では、0.3質量%以上2質量%以下の範囲内にある正極材料層における第1の基の含有割合C1と、0.1質量%以上1.5質量%以下の範囲内にあり且つ含有割合C1よりも小さな非水電解質における第2の基の含有割合C2とを両立することができない。その理由は、以下のとおりである。このような電池では、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基を有する化合物の正極材料層への供給は、非水電解質を通してのみとなる。正極材料層は、例えば細孔を有することができ、これらの細孔が、非水電解質の流路となり、且つ非水電解質を保持することができる。このような電池では、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基を有する化合物は、細孔中にしか存在できない。そのため、このような電池では、正極活物質、導電剤及び結着剤を更に含み得る正極材料層におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基の含有割合C1が、必然的に、非水電解質におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基の含有割合C2よりも小さくなる。 PF 2 (= O) O - , PF (= O) (O -) 2 and a compound having a group selected from the group consisting of not included in the positive electrode material layer, added to the non-aqueous electrolyte In the non-aqueous electrolyte battery prepared by including it as an agent, the content ratio C1 of the first group in the positive electrode material layer in the range of 0.3 mass% or more and 2 mass% or less and 0.1 mass% or more. The content ratio C2 of the second group in the nonaqueous electrolyte which is within the range of 5% by mass or less and smaller than the content ratio C1 can not be compatible. The reason is as follows. In such a battery, the supply of the compound having a group selected from the group consisting of PF 2 (OO) O , PF (OO) (O ) 2 and a combination thereof to the positive electrode material layer is not Only through the water electrolyte. The positive electrode material layer can have, for example, pores, and these pores can be channels of the non-aqueous electrolyte and can retain the non-aqueous electrolyte. In such cells, compounds having a group selected from the group consisting of PF 2 (= O) O , PF (PFO) (O ) 2 and combinations thereof can be present only in the pores. Therefore, in such a battery, PF 2 (= O) O , PF (= O) (O ) 2 and combinations thereof in the cathode material layer which may further contain the cathode active material, the conductive agent and the binder. The content ratio C1 of the first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and combinations thereof in the non-aqueous electrolyte It becomes smaller than the content rate C2 of the 2nd group selected more.
 また、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基を、正極材料層に例えば0.5質量%以下の量で含ませ、非水電解質にはこのような基を含ませずに作製した非水電解質電池でも、上記範囲内にある含有割合C1及びC2を両立することはできない。このような非水電解質電池では、正極材料層から第1の基の一部が非水電解質に移動する。その結果、正極材料層におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基の含有割合は、正極材料層の質量に対して0.3質量%未満となってしまう。 In addition, a first group selected from the group consisting of PF 2 (OO) O , PF (= O) (O ) 2, and a combination thereof is used in the positive electrode material layer, for example, 0.5 mass% or less Even in the case of a nonaqueous electrolyte battery which is contained in an amount and which does not contain such a group in the nonaqueous electrolyte, the contents C1 and C2 within the above range can not be compatible. In such a non-aqueous electrolyte battery, a part of the first group moves from the positive electrode material layer to the non-aqueous electrolyte. As a result, the content ratio of the first group selected from the group consisting of PF 2 (OO) O , PF (= O) (O ) 2 and combinations thereof in the positive electrode material layer It will be less than 0.3% by mass with respect to the mass.
 一方、ここで説明する例の製造方法では、正極材料層にPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基を有する化合物(第1の化合物)を添加し、非水電解質にも添加剤としてPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基を有する化合物(第2の化合物)を添加する。ここで、正極材料層を作製するための正極作製用スラリーの質量に対する第1の化合物の配合割合P1(質量%)を、非水電解質の質量に対する第2の化合物の配合割合P2(質量%)よりも大きくする。 On the other hand, in the manufacturing method of the example described here, the first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and a combination thereof in the positive electrode material layer Selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and combinations thereof as an additive to the non-aqueous electrolyte as well. A compound having a second group (second compound) is added. Here, the blending ratio P1 (mass%) of the first compound to the mass of the slurry for preparing a positive electrode for preparing the positive electrode material layer, and the blending ratio P2 (mass%) of the second compound to the mass of the non-aqueous electrolyte Make it bigger.
 この例の製造方法を、以下により具体的に説明する。 
 まず、正極及び負極を作製する。正極は、例えば、以下の方法によって作製することができる。まず、正極活物質と、導電剤と、結着剤とを混合し、正極合材を得る。次いで、この正極合材に、例えば粉末状の第1の化合物を投入量P1(質量%)で投入する。第1の化合物の投入量P1は、完成させる非水電解質電池におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基の含有割合C1が0.3質量%以上2質量%以下となるように調整する。続いて、得られた正極合材を、適切な溶媒、例えばN-メチルピロリドンに加える。かくして得られた混合物を撹拌して、正極作製用スラリーを得る。かくして得られた正極作製用スラリーを、正極集電体上に塗布し、塗膜を乾燥させる。乾燥させた塗膜をプレスすることによって、正極集電体と、正極集電体上に形成された正極材料層とを具備した正極を得ることができる。
The manufacturing method of this example will be specifically described below.
First, a positive electrode and a negative electrode are produced. The positive electrode can be produced, for example, by the following method. First, a positive electrode active material, a conductive agent, and a binder are mixed to obtain a positive electrode mixture. Subsequently, for example, a powdery first compound is charged into the positive electrode mixture in a charging amount P1 (mass%). The first compound input amount P1 is a first compound selected from the group consisting of PF 2 (= O) O , PF (PFO) (O ) 2, and a combination thereof in the nonaqueous electrolyte battery to be completed The content ratio C1 of the group is adjusted to be 0.3% by mass or more and 2% by mass or less. Subsequently, the obtained positive electrode mixture is added to a suitable solvent such as N-methylpyrrolidone. The mixture thus obtained is stirred to obtain a slurry for producing a positive electrode. The slurry for producing a positive electrode thus obtained is applied onto a positive electrode current collector, and the coated film is dried. By pressing the dried coating film, it is possible to obtain a positive electrode including the positive electrode current collector and the positive electrode material layer formed on the positive electrode current collector.
 負極は、例えば、以下の手順により作製することができる。まず、負極活物質と、導電剤と、結着剤とを混合して、負極合材を得る。かくして得られた負極合材を適切な溶媒、例えばN-メチルピロリドンに加え、混合物を攪拌して、負極作製用スラリーを得る。この負極作製用スラリーを負極集電体に塗布し、塗膜を乾燥させる。乾燥させた塗膜をプレスすることによって、負極集電体と、負極集電体上に形成された負極材料層とを具備した負極を得ることができる。 The negative electrode can be produced, for example, by the following procedure. First, a negative electrode active material, a conductive agent, and a binder are mixed to obtain a negative electrode mixture. The negative electrode mixture thus obtained is added to a suitable solvent such as N-methyl pyrrolidone, and the mixture is stirred to obtain a slurry for producing a negative electrode. The slurry for producing a negative electrode is applied to a negative electrode current collector, and the coating is dried. By pressing the dried coating film, it is possible to obtain a negative electrode provided with a negative electrode current collector and a negative electrode material layer formed on the negative electrode current collector.
 続いて、作製した正極及び負極、並びに必要に応じてセパレータを用いて、電極群を作製する。次に、作製した電極群を、外装部材に収容する。 Then, an electrode group is produced using the produced positive electrode and negative electrode, and, if necessary, a separator. Next, the produced electrode group is accommodated in an exterior member.
 一方で、非水電解質を調製する。非水電解質は、非水溶媒に、電解質(Li塩)及び第2の化合物、並びに必要に応じて更なる添加剤を溶解させることにより、調製することができる。ここで、非水電解質を調製する際の第2の化合物の投入量P2を、第1の化合物の投入量P1よりも小さくする。また、投入量P2は、完成させる非水電解質電池におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基の含有割合C2が0.1質量%以上1.5質量%以下となるように調整する。 Meanwhile, a non-aqueous electrolyte is prepared. The non-aqueous electrolyte can be prepared by dissolving the electrolyte (Li salt) and the second compound and, if necessary, additional additives in a non-aqueous solvent. Here, the input amount P2 of the second compound in preparing the non-aqueous electrolyte is smaller than the input amount P1 of the first compound. Also, input amount P2 are, PF 2 in the non-aqueous electrolyte battery is completed (= O) O - containing 2 and a second group selected from the group consisting of -, PF (= O) ( O) The ratio C2 is adjusted to be 0.1% by mass or more and 1.5% by mass or less.
 次いで、電極群を収容した外装部材内に、非水電解質を導入する。最後に外装部材を封止することにより、非水電解質が得られる。 Next, the non-aqueous electrolyte is introduced into the exterior member containing the electrode group. Finally, the non-aqueous electrolyte is obtained by sealing the exterior member.
 以上では、第1の化合物を正極合材に添加する例を説明したが、正極材料層中に第1の基を含ませる方法は、この手段に限られない。例えば、正極作製用スラリーを調製したあと、この正極作製用スラリーに第1の化合物の粉末又はその溶液を含ませてもよい。 Although the example in which the first compound is added to the positive electrode mixture has been described above, the method of including the first group in the positive electrode material layer is not limited to this method. For example, after preparing a slurry for producing a positive electrode, the slurry for producing a positive electrode may contain a powder of the first compound or a solution thereof.
 又は、正極作製用スラリーを用いて正極合材層を正極集電体上に形成したのち、正極合材層の表面に第1の基を有する第1の化合物を含んだ溶液を塗布し、塗膜を乾燥させることによって、第1の基を含む正極材料層を得ることができる。この例では、必要に応じて、塗膜を乾燥に供する前に加熱に供することが好ましい。加熱は、例えば、60℃~150℃の温度で、1分~60分間行うことができる。この加熱により、正極合材層の細孔内部に、第1の化合物を固着させることができる。なお、この加熱により、第1の化合物の一部が変性することがある。 Alternatively, after a positive electrode mixture layer is formed on a positive electrode current collector using a slurry for producing a positive electrode, a solution containing a first compound having a first group is coated on the surface of the positive electrode mixture layer, and then coated. By drying the film, a positive electrode material layer containing the first group can be obtained. In this example, if necessary, it is preferable to subject the coating to heating before subjecting to drying. The heating can be performed, for example, at a temperature of 60 ° C. to 150 ° C. for 1 minute to 60 minutes. By this heating, the first compound can be fixed inside the pores of the positive electrode mixture layer. Note that part of the first compound may be denatured by this heating.
 又は、正極合材層を正極集電体上に形成したのち、正極合材層に第1の基を有する第1の化合物の溶液を含浸させ、その後、正極合材層を乾燥させることによって、第1の基を含んだ正極材料層を得てもよい。この例でも、必要に応じて、正極合材層を乾燥に供する前に加熱に供することが好ましい。加熱は、例えば、50℃~80℃の温度で、1分~120分間行うことができる。この加熱は、例えば、減圧装置内で正極合材層に第1の化合物を含浸させ、この減圧装置を上記範囲内の温度にし、その状態を上記時間に亘って維持することによって行ってもよい。正極合材層の細孔内部に、第1の化合物を固着させることができる。なお、この加熱により、第1の化合物の一部が変性することがある。 Alternatively, the positive electrode mixture layer is formed on the positive electrode current collector, and then the positive electrode mixture layer is impregnated with a solution of the first compound having a first group, and then the positive electrode mixture layer is dried. You may obtain the positive electrode material layer containing 1st group. Also in this example, it is preferable to subject it to heating before subjecting the positive electrode mixture layer to drying as required. The heating can be performed, for example, at a temperature of 50 ° C. to 80 ° C. for 1 minute to 120 minutes. This heating may be performed, for example, by impregnating the positive electrode mixture layer in the pressure reducing device with the first compound, bringing the pressure reducing device to a temperature within the above range, and maintaining the state for the above time. . The first compound can be fixed to the inside of the pores of the positive electrode mixture layer. Note that part of the first compound may be denatured by this heating.
 或いは、LiPF6の粉末を含ませた正極作製用スラリーを用いて正極合材層を形成し、次いでこの正極合材層において第1の基を有する化合物を合成することもできる。例えば、正極合材層に水を含ませ、この状態で正極合材層を加熱することにより、第1の基を含んだ正極材料層を得ることができる。この方法では、例えば、正極作製用スラリー調製の際のLiPF6の添加量、正極合材層への水分の添加量、加熱温度及び加熱時間を組み合わせて制御することにより、正極材料層における第1の基の含有割合C1を調整することができる。 Alternatively, by using the positive electrode prepared slurry powder impregnated with the LiPF 6 to form a positive-electrode mixture layer, then it is also possible to synthesize a compound having a first base in the positive electrode composite material layer. For example, water is contained in the positive electrode mixture layer, and the positive electrode mixture layer is heated in this state, whereby a positive electrode material layer containing a first group can be obtained. In this method, for example, the first additive in the positive electrode material layer is controlled by combining the additive amount of LiPF 6 in preparation of the slurry for preparing the positive electrode, the additive amount of water to the positive electrode mixture layer, the heating temperature and the heating time The content ratio C1 of the groups of
 なお、含有割合C1及び含有割合C2は、例えば、第1の基の一部の非水電解質への移動、及び非水電解質電池の充放電により変化し得る。しかしながら、例えば、下記実施例に記載した手順で作製した電池は、正極材料層における第1の基の含有割合C1を0.3質量%以上2質量%以下の範囲内に維持することができ、非水電解質における第2の基の含有割合C2を0.1質量%以上1.5質量%以下の範囲内に維持することができる。 The content ratio C1 and the content ratio C2 may change, for example, due to the transfer of a part of the first group to the non-aqueous electrolyte, and the charge and discharge of the non-aqueous electrolyte battery. However, for example, in the battery produced by the procedure described in the following example, the content ratio C1 of the first group in the positive electrode material layer can be maintained in the range of 0.3% by mass or more and 2% by mass or less The content ratio C2 of the second group in the non-aqueous electrolyte can be maintained in the range of 0.1% by mass or more and 1.5% by mass or less.
 <各種分析方法>
 (含有割合C1及び含有割合C2の定量)
 正極材料層における第1の基の含有割合C1(質量%)及び非水電解質における第2の基の含有割合C2(質量%)は、例えば、以下の方法によって定量することができる。
<Various analysis methods>
(Quantification of content ratio C1 and content ratio C2)
The content ratio C1 (mass%) of the first group in the positive electrode material layer and the content ratio C2 (mass%) of the second group in the non-aqueous electrolyte can be quantified, for example, by the following method.
 まず、検査対象の非水電解質電池を用意する。対象の非水電解質電池は、定格容量の80%以上の容量を有する電池とする。電池の容量維持率は、以下の方法により判断する。まず、電池を作動上限電圧まで充電する。この時の電流値は定格容量から求めた1Cレートに相当する電流値である。作動上限電圧に達した後、3時間電圧を保持する。充電及び電圧保持後、0.2Cのレートで作動電圧下限値まで放電を行い、放電容量を計測する。得られた容量の定格容量に対する比率を容量維持率と定義する。容量維持率測定後、電池は放電状態のままとする。 First, a non-aqueous electrolyte battery to be tested is prepared. The target non-aqueous electrolyte battery is a battery having a capacity of 80% or more of the rated capacity. The capacity retention rate of the battery is determined by the following method. First, the battery is charged to the operating upper limit voltage. The current value at this time is a current value corresponding to the 1 C rate obtained from the rated capacity. Hold the voltage for 3 hours after reaching the operating upper limit voltage. After charging and holding voltage, discharge to the lower limit of the operating voltage at a rate of 0.2 C and measure the discharge capacity. The ratio of the obtained capacity to the rated capacity is defined as a capacity maintenance rate. After measurement of capacity retention rate, the battery is kept discharged.
 次に、不活性ガス雰囲気内で電池を解体する。次いで、解体した電池から、正極の一部及び非水電解質の一部を採取する。例えば、アルゴンガス雰囲気のグローブボックス内で、電池を解体し、解体した電池から非水電解質を抜き取り、電極群中の正極を切り取る。 Next, the battery is disassembled in an inert gas atmosphere. Next, a part of the positive electrode and a part of the non-aqueous electrolyte are collected from the disassembled battery. For example, in a glove box under an argon gas atmosphere, the battery is disassembled, the non-aqueous electrolyte is removed from the disassembled battery, and the positive electrode in the electrode group is cut off.
 次いで、切り取った正極を溶媒で洗浄する。溶媒としては、鎖状カーボネート(例えばジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなど)やアセトニトリルを用いることができる。洗浄後、不活性ガス雰囲気を保ったまま真空状態にし、正極を乾燥させる。正極の乾燥は、例えば、50℃の真空下で10時間行うことができる。 The excised positive electrode is then washed with solvent. As the solvent, linear carbonates (eg, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate etc.) and acetonitrile can be used. After washing, the positive electrode is dried under vacuum while maintaining an inert gas atmosphere. Drying of the positive electrode can be performed, for example, under a vacuum of 50 ° C. for 10 hours.
 次いで、乾燥させた正極から、正極材料層の一部を剥ぎ取る。この際、正極集電体の表面が露出するように、正極材料層を正極集電体から剥ぎ取る。次に、剥離した正極材料層の質量を測定する。 Next, part of the positive electrode material layer is peeled off from the dried positive electrode. At this time, the positive electrode material layer is peeled off from the positive electrode current collector so that the surface of the positive electrode current collector is exposed. Next, the mass of the peeled positive electrode material layer is measured.
 続いて、剥ぎ取った正極材料層を重水中に浸漬し、正極材料層中に含まれる成分を抽出する。次に、この抽出液を測定サンプルとして、NMR装置内に導入し、19F-NMR及び31P-NMR測定を行う。測定結果と標準物質とのピークの比率から、測定サンプルに含まれている各成分の定量を行うことができる。このようにして19F-NMR及び31P-NMR測定を行うことにより、測定サンプル中に含まれているPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基の質量を測定することができる。測定した質量を測定サンプルの質量で除することで、正極材料層における第1の基の含有割合C1[質量%]を算出することができる。 Subsequently, the peeled positive electrode material layer is immersed in heavy water to extract the components contained in the positive electrode material layer. Next, this extract is introduced into an NMR apparatus as a measurement sample, and 19 F-NMR and 31 P-NMR measurements are performed. From the ratio of the peak of the measurement result to that of the standard substance, it is possible to quantify each component contained in the measurement sample. By performing 19F-NMR and 31P-NMR measurements in this way, it is composed of PF 2 (= O) O , PF (= O) (O ) 2 contained in the measurement sample, and a combination thereof The mass of the group selected from the group can be measured. By dividing the measured mass by the mass of the measurement sample, the content ratio C1 [mass%] of the first group in the positive electrode material layer can be calculated.
 含有割合C2は、以下の手順で算出できる。まず、先のように解体した非水電解質から、非水電解質の一部を測定サンプルとして抽出し、秤量する。このサンプルについて、19F-NMR及び31P-NMRを行う。得られた測定結果から、測定サンプルに含まれているPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基の質量を測定することができる。測定した質量を測定サンプルの秤量値で除することで、非水電解質における第2の基の含有割合C2[質量%]を算出することができる。 The content ratio C2 can be calculated by the following procedure. First, a part of the non-aqueous electrolyte is extracted as a measurement sample from the non-aqueous electrolyte disassembled as described above, and weighed. The sample is subjected to 19 F-NMR and 31 P-NMR. From the measurement results obtained, the mass of a group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and combinations thereof contained in the measurement sample is measured be able to. By dividing the measured mass by the weight value of the measurement sample, the content ratio C2 [mass%] of the second group in the non-aqueous electrolyte can be calculated.
 (非水電解質に含まれる成分の同定方法)
 非水電解質に含まれる溶媒の成分の同定方法を以下に説明する。 
 まず、測定対象の非水電解質電池を、電池電圧が1.0Vになるまで1Cで放電する。放電した非水電解質電池を、不活性雰囲気のグローブボックス内で解体する。
(Method of identifying components contained in non-aqueous electrolyte)
The identification method of the component of the solvent contained in a non-aqueous electrolyte is demonstrated below.
First, the nonaqueous electrolyte battery to be measured is discharged at 1 C until the battery voltage becomes 1.0V. The discharged non-aqueous electrolyte battery is disassembled in an inert atmosphere glove box.
 次いで、電池及び電極群に含まれる非水電解質を抽出する。非水電解質電池を開封した箇所から非水電解質を取り出せる場合は、そのまま非水電解質のサンプリングを行う。一方、電極群に保持されている場合は、電極群を更に解体し、例えば非水電解質を含浸したセパレータを取り出す。セパレータに含浸されている非水電解質は、例えば遠心分離機などを用いて抽出することができる。かくして、非水電解質のサンプリングを行うことができる。なお、非水電解質電池に含まれている非水電解質が少量である場合、電極及びセパレータをアセトニトリル液中に浸すことで非水電解質を抽出することもできる。アセトニトリル液の質量を抽出前後で測定し、抽出量を算出することができる。 Then, the non-aqueous electrolyte contained in the battery and the electrode group is extracted. When the non-aqueous electrolyte can be taken out from the location where the non-aqueous electrolyte battery is opened, the non-aqueous electrolyte is sampled as it is. On the other hand, in the case of being held by the electrode group, the electrode group is further disassembled and, for example, the separator impregnated with the non-aqueous electrolyte is taken out. The non-aqueous electrolyte impregnated in the separator can be extracted using, for example, a centrifuge or the like. Thus, non-aqueous electrolyte sampling can be performed. When the amount of the non-aqueous electrolyte contained in the non-aqueous electrolyte battery is small, the non-aqueous electrolyte can also be extracted by immersing the electrode and the separator in an acetonitrile liquid. The mass of the acetonitrile solution can be measured before and after extraction to calculate the amount of extraction.
 かくして得られた非水電解質のサンプルを、例えばガスクロマトグラフィー質量分析装置(GC-MS)又は核磁気共鳴分光法(NMR)に供して、組成分析を行う。かくして、非水電解質中に六フッ化リン酸リチウムが含まれているか否かを判断することができる。 The sample of the non-aqueous electrolyte thus obtained is subjected to, for example, gas chromatography mass spectrometry (GC-MS) or nuclear magnetic resonance spectroscopy (NMR) to conduct compositional analysis. Thus, it can be determined whether lithium hexafluorophosphate is contained in the non-aqueous electrolyte.
 また、この方法によれば、六フッ化リン酸リチウムを定量することもできる。定量に際しては、まず、六フッ化リン酸リチウムの検量線を作製する。作成した検量線と、非水電解質のサンプルを測定して得られた結果におけるピーク強度又は面積とを対比させることで、非水電解質中の六フッ化リン酸リチウムの量を算出することができる。 Moreover, according to this method, lithium hexafluorophosphate can also be quantified. In the determination, first, a calibration curve of lithium hexafluorophosphate is prepared. The amount of lithium hexafluorophosphate in the non-aqueous electrolyte can be calculated by comparing the prepared calibration curve with the peak intensity or area in the result obtained by measuring the non-aqueous electrolyte sample. .
 (正極活物質及び負極活物質の同定方法)
 非水電解質電池に含まれている正極活物質は、以下の方法に従って同定することができる。 
 まず、非水電解質電池を電池電圧が1.0Vになるまで1Cで放電する。次に、このような状態にした電池を、アルゴンを充填したグローブボックス中で分解する。分解した電池から、正極を取り出す。取り出した正極を適切な溶媒で洗浄する。たとえばエチルメチルカーボネートなどを用いると良い。洗浄が不十分であると、正極中に残留したリチウムイオンの影響で、炭酸リチウムやフッ化リチウムなどの不純物相が混入することがある。その場合は、測定を不活性ガス雰囲気中で行うことができる気密容器を用いるとよい。洗浄した後、正極を真空乾燥に供する。乾燥後、スパチュラなどを用いて正極材料層を集電体から剥離させ、粉末状の正極材料層を得る。
(Method of identifying positive electrode active material and negative electrode active material)
The positive electrode active material contained in the non-aqueous electrolyte battery can be identified according to the following method.
First, the non-aqueous electrolyte battery is discharged at 1 C until the battery voltage becomes 1.0V. Next, the battery in such a state is disassembled in an argon-filled glove box. Take out the positive electrode from the disassembled battery. The removed positive electrode is washed with an appropriate solvent. For example, ethyl methyl carbonate is preferably used. If the washing is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed due to the influence of lithium ions remaining in the positive electrode. In that case, it is advisable to use an airtight container in which the measurement can be performed in an inert gas atmosphere. After washing, the positive electrode is subjected to vacuum drying. After drying, the positive electrode material layer is peeled off from the current collector using a spatula or the like to obtain a powdery positive electrode material layer.
 かくして得られた粉末に対して粉末X線回折測定(X-ray diffraction;XRD)を行うことによって、この粉末に含まれる化合物の結晶構造を同定することができる。測定は、CuKα線を線源として、2θが10~90°の測定範囲で行う。この測定により、この粉末に含まれる化合物のX線回折パターンを得ることができる。粉末X線回折測定の装置としては、例えばRigaku社製SmartLabを用いる。測定条件は以下の通りとする:Cuターゲット;45kV 200mA;ソーラスリット:入射及び受光共に5°;ステップ幅:0.02deg;スキャン速度:20deg/分;半導体検出器:D/teX Ultra 250;試料板ホルダ:平板ガラス試料板ホルダ(厚さ0.5mm);測定範囲:10°≦2θ≦90°の範囲。その他の装置を使用する場合は、上記と同等の測定結果が得られるように、粉末X線回折用標準Si粉末を用いた測定を行い、ピーク強度及びピークトップ位置が上記装置と一致する条件で行う。 The powder structure of the compound contained in this powder can be identified by conducting powder X-ray diffraction measurement (XRD) on the powder thus obtained. The measurement is performed using a CuKα ray as a radiation source in a measurement range of 2θ of 10 to 90 °. By this measurement, an X-ray diffraction pattern of a compound contained in the powder can be obtained. As an apparatus for powder X-ray diffraction measurement, for example, SmartLab manufactured by Rigaku Corporation is used. The measurement conditions are as follows: Cu target; 45 kV 200 mA; solar slit: 5 ° both for incidence and light reception; step width: 0.02 deg; scan rate: 20 deg / min; semiconductor detector: D / teX Ultra 250; Plate holder: Flat glass sample plate holder (thickness 0.5 mm); Measurement range: 10 ° ≦ 2θ ≦ 90 °. When other devices are used, measurement is performed using standard Si powder for powder X-ray diffraction so that the measurement results equivalent to the above can be obtained, under the conditions that the peak intensity and peak top position coincide with the above device Do.
 測定結果において、複数の結晶構造に帰属されるピークが表れるかどうかで活物質の混合状態を判断することができる。 In the measurement results, the mixed state of the active material can be determined by whether or not peaks attributed to a plurality of crystal structures appear.
 続いて、走査型電子顕微鏡(Scanning electron microscope;SEM)によって、正極材料層を観察する。試料のサンプリングについても大気に触れないようにし、アルゴンや窒素など不活性雰囲気で行う。 Subsequently, the positive electrode material layer is observed by a scanning electron microscope (SEM). Also for sample sampling, do not touch the air, and perform in an inert atmosphere such as argon or nitrogen.
 3000倍のSEM観察像にて、視野内で確認される1次粒子あるいは2次粒子の形態を持つ幾つかの粒子を選定する。この際、選定した粒子の粒度分布ができるだけ広くなるように選定する。観察できた活物質粒子に対し、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy;EDX)で活物質の構成元素の種類及び組成を特定する。これにより、選定したそれぞれの粒子に含まれる元素のうちLi以外の元素の種類及び量を特定することができる。複数の活物質粒子それぞれに対し同様の操作を行い、活物質粒子の混合状態を判断する。 Several particles in the form of primary particles or secondary particles identified in the field of view are selected in a 3000 × SEM observation image. At this time, the particle size distribution of the selected particles is selected as wide as possible. For the active material particles that can be observed, the type and composition of the constituent elements of the active material are specified by energy dispersive X-ray spectroscopy (EDX). This makes it possible to specify the type and amount of elements other than Li among the elements contained in each of the selected particles. The same operation is performed on each of the plurality of active material particles to determine the mixed state of the active material particles.
 続いて、正極材料層を秤量する。秤量した粉末を塩酸で溶解し、イオン交換水で希釈した後、誘導結合プラズマ発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)により含有金属量を算出する。活物質が複数種類存在している場合は、各活物質に固有の元素の含有比率からその質量比を推定する。固有の元素と活物質質量の比率とは、エネルギー分散型X線分光法により求めた構成元素の組成から判断する。 Subsequently, the positive electrode material layer is weighed. The weighed powder is dissolved in hydrochloric acid and diluted with ion exchange water, and then the content of metal is calculated by inductively coupled plasma atomic emission spectroscopy (ICP-AES). When multiple types of active materials exist, the mass ratio is estimated from the content ratio of elements unique to each active material. The ratio of the specific element to the mass of the active material is determined from the composition of the constituent element obtained by energy dispersive X-ray spectroscopy.
 かくして、非水電解質電池の正極に含まれている活物質を同定することができる。 Thus, the active material contained in the positive electrode of the non-aqueous electrolyte battery can be identified.
 非水電解質電池に含まれている負極活物質も、先と同様の手順で同定することができる。但し、ここでは、負極活物質の結晶状態を把握するために、測定対象の活物質からリチウムイオンが離脱した状態にする。例えば、非水電解質電池を電池電圧が1.0Vになるまで1Cで放電する。但し、電池を放電した状態でも、活物質に残留したリチウムイオンが存在することがあり得る。 The negative electrode active material contained in the non-aqueous electrolyte battery can also be identified by the same procedure as described above. However, here, in order to grasp the crystalline state of the negative electrode active material, lithium ions are separated from the active material to be measured. For example, the non-aqueous electrolyte battery is discharged at 1 C until the battery voltage is 1.0V. However, even when the battery is discharged, lithium ions remaining in the active material may be present.
 (活物質の作動電位の測定方法)
 まず、電池の構成要素が解体時に大気成分や水分と反応することを防ぐために、例えば、アルゴンガス雰囲気のグローブボックス内のような不活性ガス雰囲気内に電池を入れる。次に、このようなグローブボックス内で、非水電解質電池を開く。例えば、正極集電タブ及び負極集電タブのそれぞれの周辺にあるヒートシール部を切断して、非水電解質電池を切り開くことができる。切り開いた非水電解質電池から、電極群を取り出す。取り出した電極群が正極リード及び負極リードを含む場合は、正負極を短絡させないように注意しながら、正極リード及び負極リードを切断する。
(Method of measuring working potential of active material)
First, the battery is placed in an inert gas atmosphere such as, for example, in a glove box under an argon gas atmosphere, in order to prevent the battery components from reacting with atmospheric components and moisture during disassembly. Next, open the non-aqueous electrolyte battery in such a glove box. For example, heat seal parts around each of the positive electrode current collection tab and the negative electrode current collection tab can be cut to cut open the non-aqueous electrolyte battery. The electrode group is taken out of the cut-off non-aqueous electrolyte battery. When the electrode group taken out includes the positive electrode lead and the negative electrode lead, the positive electrode lead and the negative electrode lead are cut while being careful not to short the positive and negative electrodes.
 次に、解体した電極郡から取り出した負極のうち正極に対向していた部分の重量を測定する。その後、負極から例えば3cm四方の負極サンプルを切り取る。電池の充電状態はいずれの状態であっても構わない。なお、負極サンプルは、負極のうち正極に対向した部分から切り取る。 Next, the weight of the part which was facing the positive electrode among the negative electrodes taken out from the dismantled electrode group is measured. Thereafter, for example, a 3 cm square negative electrode sample is cut out from the negative electrode. The state of charge of the battery may be any state. The negative electrode sample is cut out from the portion of the negative electrode facing the positive electrode.
 次に、切り取った負極サンプルの重量を測定する。測定後、負極サンプルを作用極とし、対極及び参照極にリチウム金属箔を用いた2極式又は3極式の電気化学測定セルを作成する。作成した電気化学測定セルを、下限電位1.0V(vs. Li/Li+)まで充電する。この時の電流値は、電池に含まれていた負極のうち正極に対向していた部分の重量に対する切り取った負極サンプルの重量の比率に、電池の定格容量を掛けたものとする。充電及び電圧保持後、充電と同じ電流値で負極電位が2.0V(vs. Li/Li+)になるまで放電を行う。上記の充放電を計3サイクル行う。最終3サイクル目の充電における平均電位及び放電における平均電位をそれぞれ求め、両者の平均を負極の作動電位とする。 Next, the weight of the cut-off negative electrode sample is measured. After the measurement, a negative electrode sample is used as a working electrode, and a bipolar or tripolar electrochemical measurement cell using a lithium metal foil as a counter electrode and a reference electrode is prepared. The prepared electrochemical measurement cell is charged to a lower limit potential of 1.0 V (vs. Li / Li + ). The current value at this time is obtained by multiplying the ratio of the weight of the cut negative electrode sample to the weight of the portion of the negative electrode contained in the battery facing the positive electrode by the rated capacity of the battery. After charging and voltage holding, discharge is performed until the negative electrode potential reaches 2.0 V (vs. Li / Li + ) at the same current value as charging. A total of 3 cycles of the above charging and discharging are performed. The average potential in charging in the final third cycle and the average potential in discharging are determined, and the average of the two is taken as the operating potential of the negative electrode.
 第1の実施形態に係る非水電解質電池を図1及び図2を参照してより具体的に説明する。図1は、第1の実施形態に係る第1の例の非水電解質電池を厚さ方向に切断した断面図である。図2は、図1のA部の拡大断面図である。 The nonaqueous electrolyte battery according to the first embodiment will be more specifically described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of a first example according to the first embodiment cut in the thickness direction. FIG. 2 is an enlarged cross-sectional view of a portion A of FIG.
 図1及び図2に示す非水電解質電池10は、扁平状の捲回電極群1を具備する。扁平状の捲回電極群1は、金属層とこれを挟む2枚の樹脂フィルムとを含んだラミネートフィルムからなる袋状外装部材2内に収納されている。 The nonaqueous electrolyte battery 10 shown in FIGS. 1 and 2 includes a flat wound electrode group 1. The flat wound electrode group 1 is housed in a bag-like exterior member 2 made of a laminate film including a metal layer and two resin films sandwiching the metal layer.
 扁平状の捲回電極群1は、外側から負極3、セパレータ4、正極5、セパレータ4の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。負極3は、負極集電体3aと、負極集電体3a上に形成された負極材料層3bとを具備する。負極3の最外層に位置する部分では、図2に示すように、負極集電体3aの内面側の片方の表面上に負極材料層3bが形成されている。負極3のその他の部分では、負極集電体3aの両方の表面上に負極材料層3bが形成されている。正極5は、正極集電体5aと、正極集電体5aの両方の表面上に形成された正極材料層5bとを具備している。 The flat wound electrode group 1 is formed by spirally winding and pressing a laminate obtained by stacking the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4 in this order from the outside. The negative electrode 3 includes a negative electrode current collector 3a and a negative electrode material layer 3b formed on the negative electrode current collector 3a. In the portion located in the outermost layer of the negative electrode 3, as shown in FIG. 2, the negative electrode material layer 3b is formed on one surface of the inner surface side of the negative electrode current collector 3a. In the other part of the negative electrode 3, the negative electrode material layer 3 b is formed on both surfaces of the negative electrode current collector 3 a. The positive electrode 5 includes a positive electrode current collector 5a and a positive electrode material layer 5b formed on both surfaces of the positive electrode current collector 5a.
 図1に示すように、捲回電極群1の外周端近傍において、負極端子6が負極3の負極集電体3aに接続されており、正極端子7が正極5の正極集電体5aに接続されている。これらの負極端子6及び正極端子7は、袋状外装部材2の一端から外部に延出されている。 As shown in FIG. 1, the negative electrode terminal 6 is connected to the negative electrode current collector 3 a of the negative electrode 3 near the outer peripheral end of the wound electrode group 1, and the positive electrode terminal 7 is connected to the positive electrode current collector 5 a of the positive electrode 5. It is done. The negative electrode terminal 6 and the positive electrode terminal 7 are extended from one end of the bag-like exterior member 2 to the outside.
 図1及び図2に示す非水電解質電池10は、図示しない非水電解質を更に具備する。非水電解質は、電極群1、例えば負極材料層3b、正極材料層5b及びセパレータ4に保持された状態で、外装部材2内に収容されている。 The nonaqueous electrolyte battery 10 shown in FIG. 1 and FIG. 2 further includes a nonaqueous electrolyte not shown. The non-aqueous electrolyte is accommodated in the exterior member 2 in a state of being held by the electrode group 1, for example, the negative electrode material layer 3 b, the positive electrode material layer 5 b, and the separator 4.
 非水電解質は、例えば、袋状外装部材2の開口部から注入することができる。非水電解質注入後、袋状外装部材2の開口部を負極端子6及び正極端子7を挟んでヒートシールすることにより、捲回電極群1及び非水電解質を完全密封することができる。 The non-aqueous electrolyte can be injected, for example, from the opening of the bag-like exterior member 2. After injecting the non-aqueous electrolyte, the opening of the bag-like exterior member 2 is heat-sealed with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween, whereby the wound electrode group 1 and the non-aqueous electrolyte can be completely sealed.
 第1の実施形態に係る非水電解質電池は、前述した図1及び図2に示す構成のものに限らず、例えば図3及び図4に示す構成にすることができる。 The nonaqueous electrolyte battery according to the first embodiment is not limited to the configuration shown in FIG. 1 and FIG. 2 described above, and can be configured as shown in FIG. 3 and FIG. 4, for example.
 図3は、第1の実施形態に係る第2の例の非水電解質電池の一部切欠き斜視図である。図4は、図3のB部の拡大断面図である。 FIG. 3 is a partially cutaway perspective view of a non-aqueous electrolyte battery of a second example according to the first embodiment. FIG. 4 is an enlarged cross-sectional view of a portion B of FIG.
 図3及び4に示す例の非水電解質電池10は、積層型電極群11を具備する。積層型電極群11は、金属層と、これを間に挟んだ2枚の樹脂フィルムとを含むラミネートフィルムからなる外装部材12内に収納されている。 The non-aqueous electrolyte battery 10 of the example shown in FIGS. 3 and 4 includes a stacked electrode group 11. The laminated electrode group 11 is accommodated in an exterior member 12 formed of a laminate film including a metal layer and two resin films sandwiching the metal layer.
 積層型電極群11は、図4に示すように、正極13と負極14とをその間にセパレータ15を介在させながら交互に積層した構造を有する。正極13は複数枚存在し、それぞれが集電体13aと、集電体13aの両面に担持された正極材料層13bとを備える。負極14は複数枚存在し、それぞれが集電体14aと、集電体14aの両面に担持された負極材料層14bとを備える。各負極14の集電体14aの一部14cは、正極13の一方の端部から突出している。集電体14aの一部14cは、帯状の負極端子16に電気的に接続されている。帯状の負極端子16の先端は、図3に示すように、外装部材12から外部に引き出されている。また、図示しないが、正極13の集電体13aのうち、集電体14aの一部14cと反対側に位置する部分が、負極14の一方の端部から突出している。集電体13aのうち負極14から突出した部分は、帯状の正極端子17に電気的に接続されている。帯状の正極端子17の先端は、図3に示すように、負極端子16とは反対側に位置し、外装部材12の辺から外部に引き出されている。 As shown in FIG. 4, the stacked electrode group 11 has a structure in which the positive electrode 13 and the negative electrode 14 are alternately stacked with the separator 15 interposed therebetween. A plurality of positive electrodes 13 exist, each including a current collector 13a and a positive electrode material layer 13b supported on both sides of the current collector 13a. A plurality of negative electrodes 14 exist, each including a current collector 14a and a negative electrode material layer 14b supported on both sides of the current collector 14a. A portion 14 c of the current collector 14 a of each negative electrode 14 protrudes from one end of the positive electrode 13. A portion 14 c of the current collector 14 a is electrically connected to the strip-like negative electrode terminal 16. The tip end of the strip-like negative electrode terminal 16 is pulled out from the exterior member 12 as shown in FIG. Although not shown, a portion of the current collector 13a of the positive electrode 13 opposite to the portion 14c of the current collector 14a protrudes from one end of the negative electrode 14. A portion of the current collector 13 a that protrudes from the negative electrode 14 is electrically connected to the strip-like positive electrode terminal 17. The end of the strip-like positive electrode terminal 17 is located on the opposite side to the negative electrode terminal 16 as shown in FIG. 3 and is drawn out from the side of the exterior member 12.
 電池の形状としては、例えば、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型等が挙げられる。なお、無論、携帯用電子機器等に積載される小型電池の他、二輪乃至四輪の自動車等に積載される大型電池でも良い。 Examples of the shape of the battery include flat type, square type, cylindrical type, coin type, button type, sheet type and laminated type. Of course, in addition to the small battery loaded on the portable electronic device etc., a large battery loaded on a two- or four-wheeled automobile etc. may be used.
 第1の実施形態に係る非水電解質電池は、正極材料層を含んだ正極と、負極と、非水電解質とを具備する。正極材料層は、正極活物質とPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基とを含む。非水電解質は、六フッ化リン酸リチウムと、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基とを含む。正極材料層における第1の基の含有割合C1は、0.3質量%以上2質量%以下である。非水電解質における第2の基の含有割合C2は、0.1質量%以上1.5質量%以下であり、含有割合C1よりも小さい。このような含有割合C1及びC2を満足する非水電解質電池では、正極の反応場近傍へのLiイオンの供給を促進でき、正極反応を促進でき、且つ六フッ化リン酸リチウムの分解を防ぐことができる。これらの結果、第1の実施形態に係る非水電解質電池は、低温環境下において、優れた出力性能を示すことができる。 The non-aqueous electrolyte battery according to the first embodiment includes a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte. The positive electrode material layer includes a positive electrode active material and a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The non-aqueous electrolyte comprises lithium hexafluorophosphate and a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof . The content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less. The content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less, and is smaller than the content ratio C1. In a non-aqueous electrolyte battery satisfying such content ratios C1 and C2, the supply of Li ions to the vicinity of the reaction site of the positive electrode can be promoted, the positive electrode reaction can be promoted, and the decomposition of lithium hexafluorophosphate is prevented. Can. As a result, the non-aqueous electrolyte battery according to the first embodiment can exhibit excellent output performance under a low temperature environment.
 (第2の実施形態)
 第2の実施形態によると、電池パックが提供される。この電池パックは、第1の実施形態に係る非水電解質電池を具備する。
Second Embodiment
According to a second embodiment, a battery pack is provided. The battery pack includes the non-aqueous electrolyte battery according to the first embodiment.
 第2の実施形態に係る電池パックは、複数の非水電解質電池を備えることもできる。複数の非水電解質電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の非水電解質電池を、直列及び並列の組み合わせで電気的に接続することもできる。電気的に接続された非水電解質電池は、組電池を構成することができる。すなわち、第2の実施形態に係る電池パックは、組電池を具備することもできる。 The battery pack according to the second embodiment can also include a plurality of non-aqueous electrolyte batteries. The plurality of non-aqueous electrolyte batteries can be electrically connected in series or electrically connected in parallel. Alternatively, a plurality of nonaqueous electrolyte batteries can be electrically connected in a combination of series and parallel. The electrically connected non-aqueous electrolyte battery can constitute an assembled battery. That is, the battery pack according to the second embodiment can also include an assembled battery.
 第2の実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。 The battery pack according to the second embodiment can include a plurality of battery packs. A plurality of battery packs can be connected in series, in parallel, or in combination of series and parallel.
 第2の実施形態の電池パックの一例について、図面を参照しながら説明する。 An example of the battery pack of the second embodiment will be described with reference to the drawings.
 図5は、第2の実施形態に係る一例の電池パックの分解斜視図である。図6は、図5に示す電池パックの電気回路を示すブロック図である。単電池には、例えば、図1及び2に示す扁平型電池を使用することができる。 FIG. 5 is an exploded perspective view of an example battery pack according to the second embodiment. FIG. 6 is a block diagram showing an electric circuit of the battery pack shown in FIG. For the unit cell, for example, the flat battery shown in FIGS. 1 and 2 can be used.
 前述した図1及び図2に示す扁平型非水電解質電池から構成される複数の単電池21は、外部に延出した負極端子6および正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図6に示すように互いに電気的に直列に接続されている。 The plurality of unit cells 21 configured from the flat type non-aqueous electrolyte battery shown in FIG. 1 and FIG. 2 described above are laminated so that the negative electrode terminal 6 and the positive electrode terminal 7 extended to the outside are aligned in the same direction, The battery pack 23 is configured by fastening the tape 22. These single cells 21 are electrically connected in series to each other as shown in FIG.
 プリント配線基板24は、単電池21の側面のうち負極端子6及び正極端子7が延出する側面と対向して配置されている。プリント配線基板24には、図6に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、プリント配線基板24の組電池23と対向する面には、組電池23の配線との不要な接続を回避するために絶縁板(図示せず)が取り付けられている。 The printed wiring board 24 is disposed to face the side surface of the unit cell 21 from which the negative electrode terminal 6 and the positive electrode terminal 7 extend. As shown in FIG. 6, a thermistor 25, a protection circuit 26, and a terminal 27 for energization to an external device are mounted on the printed wiring board 24. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the battery assembly 23 in order to avoid unnecessary connection with the wiring of the battery assembly 23.
 正極側リード28は、組電池23の最下層に位置する単電池21の正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する単電池21の負極端子6に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33を通して保護回路26に接続されている。 The positive electrode side lead 28 is connected to the positive electrode terminal 7 of the unit cell 21 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and is electrically connected. The negative electrode side lead 30 is connected to the negative electrode terminal 6 of the unit cell 21 positioned in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and is electrically connected. These connectors 29 and 31 are connected to the protective circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34aおよびマイナス側配線34bを遮断できる。所定の条件とは、例えば、サーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは、例えば、単電池21の過充電、過放電、又は過電流等を検出したときである。この過充電等の検出は、個々の単電池21又は組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、又は正極電位若しくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図5及び図6に示した電池パック20の場合、単電池21それぞれに電圧検出のための配線35が接続されている。単電池21のそれぞれの電圧に関する検出信号は、これら配線35を通して、保護回路26に送信される。 The thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26. The protection circuit 26 can cut off the plus side wire 34 a and the minus side wire 34 b between the protection circuit 26 and the current-carrying terminal 27 to the external device under a predetermined condition. The predetermined condition is, for example, when the detected temperature of the thermistor 25 becomes equal to or higher than a predetermined temperature. Further, the predetermined condition is, for example, when overcharge, overdischarge, overcurrent, or the like of the single battery 21 is detected. The detection of the overcharge and the like is performed on the individual single cells 21 or the entire assembled battery 23. When detecting each single battery 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each single battery 21. In the case of the battery pack 20 shown in FIG. 5 and FIG. 6, a wire 35 for voltage detection is connected to each of the single cells 21. Detection signals relating to respective voltages of the cells 21 are transmitted to the protection circuit 26 through the wires 35.
 正極端子7及び負極端子6が突出する側面を除く組電池23の三側面には、ゴム又は樹脂からなる保護シート36がそれぞれ配置されている。 Protective sheets 36 made of rubber or resin are respectively disposed on the three side surfaces of the assembled battery 23 except the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
 組電池23は、各保護シート36及びプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36及びプリント配線基板24で四方を囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。 The battery assembly 23 is stored in the storage container 37 together with the protective sheets 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on both the inner side in the long side direction of the storage container 37 and the inner side in the short side direction, and the printed wiring board 24 is disposed on the inner side opposite to the short side. The battery assembly 23 is located in a space surrounded by four sides by the protective sheet 36 and the printed wiring board 24. The lid 38 is attached to the upper surface of the storage container 37.
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合の組電池の固定は、例えば以下の手順で行うことができる。まず、組電池23の両側面に保護シートを配置する。次いで、この保護シートの上から、熱収縮テープで組電池23を巻く。巻いた熱収縮テープを熱収縮させることで、組電池23を結束させることができる。 A heat shrink tape may be used in place of the adhesive tape 22 for fixing the battery assembly 23. Fixing of the assembled battery in this case can be performed, for example, by the following procedure. First, protective sheets are disposed on both side surfaces of the battery pack 23. Next, the assembled battery 23 is wound with a heat shrink tape from above the protective sheet. The assembled battery 23 can be bound by thermally shrinking the wound heat shrinkable tape.
 図5及び図6では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列、並列に接続することもできる。 Although the form which connected the cell 21 in series was shown in FIG.5 and FIG.6, in order to increase battery capacity, you may connect in parallel. The assembled battery packs can also be connected in series or in parallel.
 また、電池パックの態様は用途により適宜変更される。電池パックの用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的には車両用、例えば、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用、電車等が挙げられる。特に、車載用が好適である。 In addition, the aspect of the battery pack is appropriately changed depending on the application. As a use of a battery pack, what the cycle characteristic in a large current characteristic is desired is preferred. Specifically, for example, a two-wheel or four-wheel hybrid electric vehicle, a two- or four-wheel electric vehicle, an on-vehicle such as an assist bicycle, a train, etc. may be mentioned. In particular, automotive applications are preferred.
 第2の実施形態に係る電池パックは、第1の実施形態に係る非水電解質電池を具備するので、低温環境下で優れた出力性能を示すことができる。 The battery pack according to the second embodiment includes the non-aqueous electrolyte battery according to the first embodiment, and thus can exhibit excellent output performance under a low temperature environment.
 [実施例]
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載される実施例に限定されるものでない。
[Example]
EXAMPLES Examples are described below, but the present invention is not limited to the examples listed below, as long as the gist of the present invention is not exceeded.
 (実施例1)
 実施例1では、非水電解質電池を以下の手順で製造した。
Example 1
In Example 1, a non-aqueous electrolyte battery was manufactured by the following procedure.
 <負極の作製>
 負極活物質として、1.55V(vs.Li/Li+)の作動電位でリチウムの吸蔵及び放出が可能なスピネル構造のリチウムチタン複合酸化物(Li4Ti512:LTO)の粉末を用いた。この負極活物質を90質量部の割合で含み、導電剤としてカーボンブラックを5質量部の割合で含み、且つ結着剤としてポリフッ化ビニリデン(PVdF)を5質量部の割合で含む負極合材を調製した。この負極合材をN-メチルピロリドン(NMP)に加えて、負極作製用スラリーを調製した。このようにして調製した負極作製用スラリーを、厚さが20μmであるアルミニウム箔(負極集電体)の両面に塗布した。この際、負極集電体に、表面に負極作製用スラリーが塗布されていない部分を残した。次に、塗膜を乾燥させ、次いでプレス処理に供した。かくして、負極集電体と、負極集電体上に形成された負極材料層とを含む負極が得られた。
<Fabrication of negative electrode>
As a negative electrode active material, a powder of lithium titanium complex oxide (Li 4 Ti 5 O 12 : LTO) having a spinel structure capable of absorbing and releasing lithium at an operating potential of 1.55 V (vs. Li / Li + ) is used It was. A negative electrode mixture containing 90 parts by mass of this negative electrode active material, 5 parts by mass of carbon black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder Prepared. This negative electrode mixture was added to N-methylpyrrolidone (NMP) to prepare a slurry for producing a negative electrode. The slurry for negative electrode preparation thus prepared was applied to both sides of an aluminum foil (negative electrode current collector) having a thickness of 20 μm. Under the present circumstances, the part in which the slurry for negative electrode preparation was not apply | coated on the surface remained on the negative electrode collector. The coatings were then dried and then subjected to pressing. Thus, a negative electrode including the negative electrode current collector and the negative electrode material layer formed on the negative electrode current collector was obtained.
 <正極の作製>
 正極活物質としてリチウムコバルト複合酸化物(LiCoO2:LCO)の粉末を用いた。この正極活物質を90質量部の割合で含み、導電剤としてカーボンブラックを5質量部の割合で含み、且つ結着剤としてポリフッ化ビニリデン(PVdF)を5質量部の割合で含む正極合材を調製した。更に、この正極合材に、第1の化合物としてモノフルオロリン酸リチウム(PF(=O)(OLi)2)の粉末を配合割合P1が1.1質量%になるように混合した。次いで、この正極合材をNMPに加えて、正極作製用スラリーを調製した。
<Fabrication of positive electrode>
A powder of lithium cobalt composite oxide (LiCoO 2 : LCO) was used as a positive electrode active material. A positive electrode mixture containing 90 parts by mass of this positive electrode active material, 5 parts by mass of carbon black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder. Prepared. Furthermore, a powder of lithium monofluorophosphate (PF (= O) (OLi) 2 ) as a first compound was mixed with this positive electrode mixture so that the compounding ratio P1 was 1.1% by mass. Next, this positive electrode mixture was added to NMP to prepare a slurry for producing a positive electrode.
 この正極作製用スラリーを、厚さが20μmであるアルミニウム箔(正極集電体)の両面に塗布した。この際、正極集電体に、表面に正極作製用スラリーが塗布されていない部分を残した。次に、塗膜を乾燥させ、次いでこれをプレス処理に供した。かくして、正極集電体と、正極集電体上に形成された正極材料層とを具備した正極が得られた。 This positive electrode preparation slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. Under the present circumstances, the part in which the slurry for positive electrode preparation was not apply | coated on the surface remained on the positive electrode collector. The coating was then dried and then subjected to pressing. Thus, a positive electrode including the positive electrode current collector and the positive electrode material layer formed on the positive electrode current collector was obtained.
 <電極群の作製>
 上記のように作製した正極と、厚さが20μmであるポリエチレン製多孔質フィルムからなるセパレータと、上記のように作製した負極と、もう一枚のセパレータとをこの順序で積層させて、積層体を得た。これを50℃で加熱プレスすることにより、幅58mm、高さ95mm、厚さ3.0mmの偏平状電極群を作製した。次に、アルミニウム箔とその両面に形成されたポリプロピレン層とで構成されたラミネートフィルムからなる外装部材を用意した。この外装部材内に、上記のようにして得られた電極群を収容した。
<Preparation of electrode group>
A laminate obtained by laminating, in this order, the positive electrode manufactured as described above, a separator made of a polyethylene porous film having a thickness of 20 μm, the negative electrode manufactured as described above, and another separator I got By heat-pressing this at 50 ° C., a flat electrode group having a width of 58 mm, a height of 95 mm and a thickness of 3.0 mm was produced. Next, an exterior member made of a laminate film constituted of an aluminum foil and a polypropylene layer formed on both sides thereof was prepared. The electrode group obtained as described above was accommodated in the exterior member.
 <非水電解質の調製>
 エチレンカーボネート(EC)とメチルエチルカーボネート(EMC)とを2:3の体積比となるよう混合し、混合溶媒を調製した。
<Preparation of Nonaqueous Electrolyte>
Ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed in a volume ratio of 2: 3 to prepare a mixed solvent.
 この混合溶媒に、電解質として、六フッ化リン酸リチウム(LiPF6)を1.0mol/Lの濃度で溶解させた。また、混合溶媒に、第2の化合物としてモノフルオロリン酸リチウム(PF(=O)(OLi)2)の粉末を、非水電解質の質量に対する配合割合P2が0.5質量%になるように混合し、溶解した。かくして非水電解質を調製した。 In this mixed solvent, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1.0 mol / L as an electrolyte. In addition, a powder of lithium monofluorophosphate (PF (= O) (OLi) 2 ) as the second compound in a mixed solvent so that the blending ratio P2 with respect to the mass of the non-aqueous electrolyte is 0.5 mass% Mix and dissolve. Thus, a non-aqueous electrolyte was prepared.
 <非水電解質の注入>
 電極群を収容した外装部材に、上記のように調製した非水電解質を10g注入し、次いで外装部材を封止した。かくして、非水電解質電池を作製した。
Injection of non-aqueous electrolyte
10 g of the non-aqueous electrolyte prepared as described above was injected into the exterior member containing the electrode group, and then the exterior member was sealed. Thus, a non-aqueous electrolyte battery was produced.
 <初充電及び再充電>
 まず、非水電解質電池を、25℃環境下において、0.2Cレートで電池電圧が2.9Vになるまで充電した。次いで、非水電解質電池の電圧をそのまま2.9Vに保った状態で、3時間放置した。この状態の非水電解質電池の充電率を100%、すなわち満充電とした。その後、非水電解質電池を、0.2Cレートで電池電圧が1.2Vになるまで放電した。次いで、この非水電解質電池を、充電率が50%となるよう、0.2Cレートで充電した。かくして、非水電解質電池を完成させた。
<First charge and recharge>
First, the non-aqueous electrolyte battery was charged at a rate of 0.2 C to a battery voltage of 2.9 V in a 25 ° C. environment. Subsequently, the battery was left for 3 hours while keeping the voltage of the non-aqueous electrolyte battery at 2.9 V as it was. The charging rate of the non-aqueous electrolyte battery in this state was 100%, ie, fully charged. Thereafter, the non-aqueous electrolyte battery was discharged at a 0.2 C rate until the battery voltage was 1.2 V. Next, this non-aqueous electrolyte battery was charged at a 0.2 C rate so as to have a charge rate of 50%. Thus, the non-aqueous electrolyte battery was completed.
 <初回放電容量の測定>
 続いて、完成した非水電解質電池を、25℃環境下において、0.2Cレートで1回の充放電サイクルに供した。充電終止電圧は2.9Vとした。放電終止電圧は1.2Vとした。充電と放電との間に、25℃環境下において、30分の休止を行った。ここでの放電の際の放電容量を測定し、初回放電容量とした。その後、非水電解質電池を、1Cのレートで充電して、充電率を50%に調整した。
<Measurement of initial discharge capacity>
Subsequently, the completed non-aqueous electrolyte battery was subjected to one charge and discharge cycle at a 0.2 C rate in a 25 ° C. environment. The charge termination voltage was 2.9V. The discharge end voltage was 1.2 V. A 30 minute rest was performed between charge and discharge under a 25 ° C. environment. The discharge capacity at the time of discharge here was measured, and it was set as the first time discharge capacity. Thereafter, the non-aqueous electrolyte battery was charged at a rate of 1 C to adjust the charging rate to 50%.
 <低温性能試験>
 続いて、非水電解質電池を25℃環境で0.2Cレートで電池電圧が2.9Vになるまで充電した。次いで、非水電解質電池の電圧をそのまま2.9Vに保った状態で、非水電解質電池を3時間放置した。その後、非水電解質電池を、25℃環境において、1Cレートで電池電圧が1.2Vになるまで放電した。この放電の際の放電容量を、25℃1C放電容量として記録した。
<Low temperature performance test>
Subsequently, the non-aqueous electrolyte battery was charged in a 25 ° C. environment at a 0.2 C rate until the battery voltage was 2.9 V. Subsequently, the non-aqueous electrolyte battery was left to stand for 3 hours while keeping the voltage of the non-aqueous electrolyte battery at 2.9 V as it was. Thereafter, the non-aqueous electrolyte battery was discharged at a 1 C rate until the battery voltage was 1.2 V in a 25 ° C. environment. The discharge capacity during this discharge was recorded as a 25 ° C. 1 C discharge capacity.
 続いて、非水電解質電池を、25℃環境において、0.2Cレートで電池電圧が2.9Vになるまで充電した。次いで、非水電解質電池の電圧をそのまま2.9Vに保った状態で、非水電解質電池を3時間放置した。その後、非水電解質電池を-20℃の環境に3時間放置した。その後、非水電解質電池を、-20℃環境において、1Cレートで電池電圧が1.2Vになるまで放電した。この放電の際の放電容量を、-20℃1C放電容量として記録した。 Subsequently, the non-aqueous electrolyte battery was charged in a 25 ° C. environment at a 0.2 C rate until the battery voltage was 2.9 V. Subsequently, the non-aqueous electrolyte battery was left to stand for 3 hours while keeping the voltage of the non-aqueous electrolyte battery at 2.9 V as it was. Thereafter, the non-aqueous electrolyte battery was left in an environment of −20 ° C. for 3 hours. Thereafter, the non-aqueous electrolyte battery was discharged at a 1 C rate until the battery voltage was 1.2 V in a -20 ° C. environment. The discharge capacity during this discharge was recorded as −20 ° C. 1 C discharge capacity.
 -20℃1C放電容量の25℃1C放電容量に対する百分率(%)を、この非水電解質の低温性能指数とした。低温性能指数は、その値が高いほど、低温環境下での出力性能が高い電池であることを示す。 The percentage (%) of -20 ° C. 1 C discharge capacity to 25 ° C. 1 C discharge capacity was taken as the low temperature performance index of this non-aqueous electrolyte. The low temperature performance index indicates that the higher the value, the higher the output performance in a low temperature environment.
 (実施例2~5、並びに比較例1~5)
 実施例2~5、並びに比較例1~5では、正極合材に加えた第1の化合物の配合割合P1及び/又は非水電解質に加えた第2の化合物の配合割合P2を以下の表1に示すように実施例1でのそれ又はそれらから変更した以外は実施例1と同様の手順により、各非水電解質電池を作製した。
(Examples 2 to 5 and Comparative Examples 1 to 5)
In Examples 2 to 5 and Comparative Examples 1 to 5, the mixing ratio P1 of the first compound added to the positive electrode mixture and / or the mixing ratio P2 of the second compound added to the non-aqueous electrolyte are shown in Table 1 below. Each non-aqueous electrolyte battery was produced by the same procedure as Example 1 except having changed it from that of Example 1 as shown to.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例6)
 正極活物質として、リチウムコバルト複合酸化物の代わりに、リチウムニッケルコバルトマンガン複合酸化物(LiNi0.33Co0.33Mn0.332:NCM)の粉末を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Example 6)
According to the same procedure as in Example 1, except that a powder of lithium nickel cobalt manganese composite oxide (LiNi 0.33 Co 0.33 Mn 0.33 O 2 : NCM) was used instead of lithium cobalt composite oxide as the positive electrode active material. A non-aqueous electrolyte battery was produced.
 正極活物質、導電剤及び結着剤を、実施例1と同じく、それぞれ90質量部、5質量部及び5質量部の割合で混合し、正極合材を調製した。正極合材への第1の化合物としてのモノフルオロリン酸リチウムの粉末の配合割合P1も、実施例1と同じく、正極合材の質量に対して1.1質量%になるようにした。 The positive electrode active material, the conductive agent, and the binder were mixed in a ratio of 90 parts by weight, 5 parts by weight, and 5 parts by weight, respectively, as in Example 1, to prepare a positive electrode mixture. The mixing ratio P1 of the lithium monofluorophosphate powder as the first compound to the positive electrode mixture was also 1.1 mass% with respect to the mass of the positive electrode mixture, as in Example 1.
 (実施例7)
 正極活物質として、リチウムコバルト複合酸化物の代わりに、リチウムマンガン複合酸化物(LiMn24:LMO)の粉末を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Example 7)
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that lithium manganese composite oxide (LiMn 2 O 4 : LMO) powder was used instead of lithium cobalt composite oxide as the positive electrode active material. did.
 正極活物質、導電剤及び結着剤を、実施例1と同じく、それぞれ90質量部、5質量部及び5質量部の割合で混合し、正極合材を調製した。正極合材への第1の化合物としてのモノフルオロリン酸リチウムの粉末の配合割合P1も、実施例1と同じく、正極合材の質量に対して1.1質量%になるようにした。 The positive electrode active material, the conductive agent, and the binder were mixed in a ratio of 90 parts by weight, 5 parts by weight, and 5 parts by weight, respectively, as in Example 1, to prepare a positive electrode mixture. The mixing ratio P1 of the lithium monofluorophosphate powder as the first compound to the positive electrode mixture was also 1.1 mass% with respect to the mass of the positive electrode mixture, as in Example 1.
 (実施例8)
 負極活物質として、リチウムチタン複合酸化物の粉末の代わりに、単斜晶型の結晶構造を有するニオブチタン複合酸化物(TiNb27:NTO)の粉末を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。このニオブチタン複合酸化物の作動電位は、0.8V(vs.Li/Li+)~2.0V(vs.Li/Li+)の範囲内にある。
(Example 8)
The same as Example 1, except that a powder of niobium titanium composite oxide (TiNb 2 O 7 : NTO) having a monoclinic crystal structure was used as the negative electrode active material instead of the lithium titanium composite oxide powder. A non-aqueous electrolyte battery was produced by the following procedure. The working potential of this niobium titanium composite oxide is in the range of 0.8 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ).
 (実施例9)
 負極活物質として、リチウムチタン複合酸化物の粉末の代わりに、斜方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物(Li2Na1.7Ti5.7Nb0.314:LNT)の粉末を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。このNa含有ニオブチタン複合酸化物の作動電位は、0.8V(vs.Li/Li+)~2.0V(vs.Li/Li+)の範囲内にある。
(Example 9)
As a negative electrode active material, a powder of Na-containing niobium titanium composite oxide (Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 : LNT) having a orthorhombic crystal structure was used instead of the lithium titanium composite oxide powder. A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except for the above. The working potential of this Na-containing niobium titanium composite oxide is in the range of 0.8 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ).
 (実施例10)
 以下の手順で調製した非水電解質を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Example 10)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the non-aqueous electrolyte prepared in the following procedure was used.
 エチレンカーボネート(EC)と、メチルエチルカーボネート溶媒(EMC)とを2:3の体積比となるよう混合し、混合溶媒を調製した。 A mixed solvent was prepared by mixing ethylene carbonate (EC) and methyl ethyl carbonate solvent (EMC) in a volume ratio of 2: 3.
 この混合溶媒に、電解質として、0.5mol/Lの濃度で六フッ化リン酸リチウム(LiPF6)を、及び0.5mol/Lの濃度で四フッ化ホウ酸リチウム(LiBF4)をそれぞれ溶解させた。また、混合溶媒に、第2の化合物としてモノフルオロリン酸リチウム(PF(=O)(OLi)2)の粉末を、非水電解質の質量に対する配合割合P2が0.5質量%になるように混合し、溶解した。かくして非水電解質を調製した。 In this mixed solvent, lithium hexafluorophosphate (LiPF 6 ) is dissolved as an electrolyte at a concentration of 0.5 mol / L, and lithium tetrafluoroborate (LiBF 4 ) is dissolved at a concentration of 0.5 mol / L. I did. In addition, a powder of lithium monofluorophosphate (PF (= O) (OLi) 2 ) as the second compound in a mixed solvent so that the blending ratio P2 with respect to the mass of the non-aqueous electrolyte is 0.5 mass% Mix and dissolve. Thus, a non-aqueous electrolyte was prepared.
 (実施例11)
 以下の手順で作製した正極を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Example 11)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the positive electrode produced in the following procedure was used.
 まず、正極活物質としてリチウムコバルト複合酸化物(LiCoO2:LCO)の粉末を用いた。この正極活物質を90質量部の割合で含み、導電剤としてカーボンブラックを5質量部の割合で含み、且つ結着剤としてポリフッ化ビニリデン(PVdF)を5質量部の割合で含む正極合材を調製した。次いで、この正極合材をNMPに加えて、正極作製用スラリーを調製した。 First, a powder of lithium cobalt composite oxide (LiCoO 2 : LCO) was used as a positive electrode active material. A positive electrode mixture containing 90 parts by mass of this positive electrode active material, 5 parts by mass of carbon black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder. Prepared. Next, this positive electrode mixture was added to NMP to prepare a slurry for producing a positive electrode.
 この正極作製用スラリーを、厚さが20μmであるアルミニウム箔(正極集電体)の両面に塗布した。この際、正極集電体に、表面に正極作製用スラリーが塗布されていない部分を残した。次に、塗膜を乾燥させ、次いでこれをプレス処理に供した。かくして、正極集電体と、正極集電体上に形成された正極合材層とを具備した正極中間体が得られた。 This positive electrode preparation slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. Under the present circumstances, the part in which the slurry for positive electrode preparation was not apply | coated on the surface remained on the positive electrode collector. The coating was then dried and then subjected to pressing. Thus, a positive electrode intermediate having the positive electrode current collector and the positive electrode mixture layer formed on the positive electrode current collector was obtained.
 次に、不活性雰囲気内で、エチレンカーボネート(EC)と、メチルエチルカーボネート(EMC)とを2:3の体積比となるよう混合し、混合溶媒を調製した。この混合溶媒に、電解質として、3.2mol/Lの濃度で六フッ化リン酸リチウム(LiPF6)を溶解させた。更に、この混合溶液に純水を1質量%になるよう添加し、処理溶液とした。 Next, in an inert atmosphere, ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed at a volume ratio of 2: 3 to prepare a mixed solvent. In this mixed solvent, lithium hexafluorophosphate (LiPF 6 ) was dissolved as an electrolyte at a concentration of 3.2 mol / L. Furthermore, pure water was added to this mixed solution so as to be 1% by mass to obtain a treatment solution.
 かくして調製した処理溶液に、先に作製した正極中間体を浸漬させた。次いで、正極中間体を浸漬させた溶液を含む容器を、減圧装置に入れ、その中を減圧した。かくして、正極合材層内部に処理溶液を含浸させた。次いで、この容器を密閉し、60℃環境下で1時間放置した。次いで、正極中間体を容器から取り出し、メチルエチルカーボネート溶媒で洗浄し、真空乾燥に供した。かくして、正極を作製した。 The positive electrode intermediate prepared above was immersed in the treatment solution thus prepared. Next, the container containing the solution in which the positive electrode intermediate was immersed was placed in a vacuum device, and the pressure therein was reduced. Thus, the inside of the positive electrode mixture layer was impregnated with the treatment solution. The container was then sealed and left at 60 ° C. for 1 hour. The positive electrode intermediate was then removed from the vessel, washed with methyl ethyl carbonate solvent and subjected to vacuum drying. Thus, a positive electrode was produced.
 (実施例12)
 以下の手順で作製した正極を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Example 12)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the positive electrode produced in the following procedure was used.
 まず、実施例11と同様の手順で、正極中間体を作製した。次に、不活性雰囲気内で、エチレンカーボネート(EC)と、メチルエチルカーボネート(EMC)とを2:3の体積比となるよう混合し、混合溶媒を調製した。この混合溶媒に、電解質として、0.5mol/Lの濃度で六フッ化リン酸リチウム(LiPF6)を溶解させた。更に、この溶液にジフルオロリン酸リチウム(PF2(=O)(OLi))を投入した。かくして、処理溶液を調製した。ジフルオロリン酸リチウムは、処理溶液の質量に対して2.0質量%の量で投入した。 First, in the same manner as in Example 11, a positive electrode intermediate was produced. Next, in an inert atmosphere, ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed at a volume ratio of 2: 3 to prepare a mixed solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in this mixed solvent as an electrolyte at a concentration of 0.5 mol / L. Furthermore, lithium difluorophosphate (PF 2 (= O) (OLi)) was added to this solution. Thus, the treatment solution was prepared. Lithium difluorophosphate was introduced in an amount of 2.0% by weight with respect to the weight of the treatment solution.
 この処理溶液に、先に作製した正極中間体を浸漬させた。次いで、正極中間体を浸漬させた溶液を含む容器を、減圧装置に入れ、その中を減圧した。かくして、正極合材層内部に処理溶液を含浸させた。次いで、容器を密閉し、60℃環境下で1時間放置した。次いで、正極中間体を取り出し、メチルエチルカーボネート溶媒で洗浄し、真空乾燥に供した。かくして、正極を作製した。 The positive electrode intermediate prepared above was immersed in this treatment solution. Then, the container containing the solution in which the positive electrode intermediate was immersed was placed in a pressure reducing device, and the pressure therein was reduced. Thus, the inside of the positive electrode mixture layer was impregnated with the treatment solution. The container was then sealed and left at 60 ° C. for 1 hour. The positive electrode intermediate was then removed, washed with methyl ethyl carbonate solvent and subjected to vacuum drying. Thus, a positive electrode was produced.
 (比較例6)
 以下の手順で調製した非水電解質を用いたこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Comparative example 6)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the non-aqueous electrolyte prepared in the following procedure was used.
 エチレンカーボネート(EC)と、メチルエチルカーボネート溶媒(EMC)とを2:3の体積比となるよう混合し、混合溶媒を調製した。 A mixed solvent was prepared by mixing ethylene carbonate (EC) and methyl ethyl carbonate solvent (EMC) in a volume ratio of 2: 3.
 この混合溶媒に、電解質として、1.0mol/Lの濃度で四フッ化ホウ酸リチウム(LiBF4)を溶解させた。また、混合溶媒に、第2の化合物としてモノフルオロリン酸リチウム(PF(=O)(OLi)2)の粉末を、非水電解質の質量に対する配合割合P2が0.5質量%になるように混合し、溶解した。かくして非水電解質を調製した。 In this mixed solvent, lithium tetrafluoroborate (LiBF 4 ) was dissolved as an electrolyte at a concentration of 1.0 mol / L. In addition, a powder of lithium monofluorophosphate (PF (= O) (OLi) 2 ) as the second compound in a mixed solvent so that the blending ratio P2 with respect to the mass of the non-aqueous electrolyte is 0.5 mass% Mix and dissolve. Thus, a non-aqueous electrolyte was prepared.
 (比較例7)
 以下の点以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Comparative example 7)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except for the following points.
 まず、正極作製の際、正極合材にモノフルオロリン酸リチウムの粉末を混合しなかった。すなわち、配合割合P1を0質量%とした。 First, during the preparation of the positive electrode, lithium monofluorophosphate powder was not mixed in the positive electrode mixture. That is, the mixture ratio P1 was set to 0 mass%.
 また、負極作製の際、負極合材に、モノフルオロリン酸リチウムの粉末を、負極合材の質量に対する配合割合が2.0質量%になるように混合した。 Moreover, in the case of negative electrode preparation, the powder of lithium monofluorophosphate was mixed with the negative electrode mixture so that the compounding ratio with respect to the mass of the negative electrode mixture was 2.0 mass%.
 また、非水電解質の調製の際、非水電解質の質量に対する配合割合P2が0.7質量%となるように、モノフルオロリン酸リチウムを混合溶媒に添加した。 Further, in the preparation of the non-aqueous electrolyte, lithium monofluorophosphate was added to the mixed solvent so that the blending ratio P2 with respect to the mass of the non-aqueous electrolyte was 0.7 mass%.
 (比較例8)
 正極作製の際に正極合材にモノフルオロリン酸リチウムの粉末を混合しなかったこと、及び非水電解質調製の際、非水電解質の質量に対する配合割合P2が0.7質量%になるようにモノフルオロリン酸リチウムを混合溶媒に混合したこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Comparative example 8)
The lithium monofluorophosphate powder was not mixed with the positive electrode mixture in the preparation of the positive electrode, and in preparing the non-aqueous electrolyte, the blending ratio P2 with respect to the mass of the non-aqueous electrolyte was 0.7 mass%. A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that lithium monofluorophosphate was mixed in the mixed solvent.
 (比較例9)
 比較例9では、非水電解質への第2の化合物の配合割合P2を1.7質量%に変更したこと以外は比較例8と同様の手順で非水電解質電池を作製した。
(Comparative example 9)
In Comparative Example 9, a non-aqueous electrolyte battery was produced in the same manner as in Comparative Example 8, except that the blend ratio P2 of the second compound to the non-aqueous electrolyte was changed to 1.7% by mass.
 以下の表2に、実施例1~12及び比較例1~9の非水電解質電池の製造の際の、集電体の片面当たりの正極作製用スラリー及び負極作製用スラリーの塗布量[g/m2]、並びにプレス処理後の正極材料層及び負極材料層の密度[g/cm3]をまとめて示す。 Table 2 below shows the coated amounts of the positive electrode preparation slurry and negative electrode preparation slurry per one side of the current collector in the production of the non-aqueous electrolyte batteries of Examples 1 to 12 and Comparative Examples 1 to 9 [g / g m 2 ] and the density [g / cm 3 ] of the positive electrode material layer and the negative electrode material layer after pressing are collectively shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [評価]
 実施例2~12及び比較例1~9の非水電解質電池を、実施例1の非水電解質電池と同様の手順で試験した。また、実施例1~12及び比較例1~9の非水電解質電池に関し、正極材料層におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基の含有割合C1及び非水電解質におけるPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基の含有割合C2を、先に説明した手順で定量した。なお、分析の結果、実施例11の非水電解質電池の正極の正極材料層は、基PF(=O)(O-2を有している化合物を含んでいることが分かった。また、分析の結果、実施例11の非水電解質電池の正極の正極材料層は、基PF2(=O)(O-)を有している化合物を含んでいることが分かった。
[Evaluation]
The non-aqueous electrolyte batteries of Examples 2 to 12 and Comparative Examples 1 to 9 were tested in the same procedure as the non-aqueous electrolyte battery of Example 1. Moreover, regarding the nonaqueous electrolyte batteries of Examples 1 to 12 and Comparative Examples 1 to 9, a group consisting of PF 2 (= O) O , PF (= O) (O ) 2 and combinations thereof in the positive electrode material layer PF 2 in more content C1 and a non-aqueous electrolyte of a first group selected (= O) O -, PF (= O) (O -) second selected from 2 and a combination thereof The content ratio C2 of the groups was quantified by the procedure described above. As a result of the analysis, it was found that the positive electrode material layer of the positive electrode of the non-aqueous electrolyte battery of Example 11 contained a compound having a group PF (= O) (O ) 2 . Further, as a result of analysis, it was found that the positive electrode material layer of the positive electrode of the non-aqueous electrolyte battery of Example 11 contains a compound having a group PF 2 (= O) (O ).
 各実施例及び比較例の非水電解質電池についての含有割合C1及びC2、C1とC2との関係、正極活物質の組成、負極活物質の組成、用いた電解質の種類、並びに低温性能指数を、以下の表3にまとめて示す。 Regarding the content ratios C1 and C2, the relationship between C1 and C2, the composition of the positive electrode active material, the composition of the negative electrode active material, the type of electrolyte used, and the low temperature performance index for the non-aqueous electrolyte batteries of each Example and Comparative Example, The results are summarized in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例13~16並びに比較例10及び11)
 実施例13~16並びに比較例10及び11では、第1の化合物及び/又は第2の化合物を下記表4に記載したものに変更し、第1の化合物及び第2の化合物を下記表4に記載した配合割合P1及びP2に記載した量で添加したこと以外は実施例1と同様の手順により、非水電解質電池を作製した。
(Examples 13 to 16 and Comparative Examples 10 and 11)
In Examples 13 to 16 and Comparative Examples 10 and 11, the first compound and / or the second compound are changed to those described in Table 4 below, and the first compound and the second compound are shown in Table 4 below. A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except for adding the amounts described in the blending ratios P1 and P2 described.
 以下の表5に、実施例13~16並びに比較例10及び11の非水電解質電池の製造の際の、集電体の片面当たりの正極作製用スラリー及び負極作製用スラリーの塗布量[g/m2]、並びにプレス処理後の正極材料層及び負極材料層の密度[g/cm3]をまとめて示す。 Table 5 below shows coating amounts of the positive electrode production slurry and the negative electrode production slurry per one side of the current collector in the production of the nonaqueous electrolyte batteries of Examples 13 to 16 and Comparative Examples 10 and 11 [g / g m 2 ] and the density [g / cm 3 ] of the positive electrode material layer and the negative electrode material layer after pressing are collectively shown.
 [評価]
 実施例13~16並びに比較例10及び11の非水電解質電池を、実施例1の非水電解質電池と同様の手順で試験した。また、実施例13~16並びに比較例10及び11の非水電解質電池についての含有割合C1及び含有割合C2を、先に説明した手順で定量した。
[Evaluation]
The nonaqueous electrolyte batteries of Examples 13 to 16 and Comparative Examples 10 and 11 were tested in the same procedure as the nonaqueous electrolyte battery of Example 1. Further, the content ratio C1 and the content ratio C2 of the non-aqueous electrolyte batteries of Examples 13 to 16 and Comparative Examples 10 and 11 were quantified by the procedure described above.
 各実施例及び比較例の非水電解質電池についての含有割合C1及びC2、C1とC2との関係、並びに低温性能指数を、以下の表4及び6にまとめて示す。 The relationship between the content ratios C1 and C2, C1 and C2, and the low temperature performance index for the non-aqueous electrolyte batteries of Examples and Comparative Examples are summarized in Tables 4 and 6 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [結果]
 表の結果から明らかな通り、実施例1~16の電池は、低温性能指数、すなわち25℃1C放電容量に対する-20℃1C放電容量の比率が大きかった。すなわち、実施例1~16の電池は、低温環境下で優れた出力性能を示すことができたことがわかる。これに対して、正極材料層における第1の基の含有割合C1が2質量%を超える比較例1、含有割合C1が0.3質量%未満である比較例2、非水電解質における第2の基の含有割合C2が1.5質量%を超える比較例3、含有割合C2が0.1質量%未満である比較例4、及び含有割合C2が含有割合C1よりも高い比較例5のそれぞれの電池は、低温性能指数が低く、低温環境下での出力性能に乏しかった。
[result]
As apparent from the results in the table, the batteries of Examples 1 to 16 had a large low temperature performance index, ie, a large ratio of −20 ° C. 1 C discharge capacity to 25 ° C. 1 C discharge capacity. That is, it can be seen that the batteries of Examples 1 to 16 were able to exhibit excellent output performance under a low temperature environment. On the other hand, Comparative Example 1 in which the content ratio C1 of the first group in the positive electrode material layer exceeds 2% by mass, Comparative Example 2 in which the content ratio C1 is less than 0.3% by mass, and In each of Comparative Example 3 in which the content ratio C2 of the group exceeds 1.5% by mass, Comparative Example 4 in which the content ratio C2 is less than 0.1% by mass, and Comparative Example 5 in which the content ratio C2 is higher than the content ratio C1. The battery had a low temperature performance index and had poor output performance in a low temperature environment.
 実施例1、実施例6及び実施例7の結果の比較から、正極活物質が異なっていても、正極材料層における第1の基の含有割合C1が0.3質量%以上2質量%以下の範囲内にあり、非水電解質における第2の基の含有割合C2が0.1質量%以上1.5質量%以下の範囲内にあり、且つ含有割合C1が含有割合C2よりも大きい電池は、高い低温性能指数を示すことができ、低温環境下で優れた出力性能を示すことができたことが分かる。同様に、実施例1、実施例8及び実施例9の結果の比較からも、負極活物質が異なっていても、含有割合C1及びC2が上記条件を満たしている電池は、高い低温性能指数を示すことができ、低温環境下で優れた出力性能を示すことができたことが分かる。 From the comparison of the results of Example 1, Example 6, and Example 7, even if the positive electrode active material is different, the content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less In a battery in which the content ratio C2 of the second group in the non-aqueous electrolyte is in the range of 0.1% by mass to 1.5% by mass and the content ratio C1 is larger than the content ratio C2 It can be seen that a high low temperature performance index can be shown, and excellent output performance can be shown in a low temperature environment. Similarly, also from the comparison of the results of Example 1, Example 8 and Example 9, even if the negative electrode active material is different, the battery in which the content ratios C1 and C2 satisfy the above conditions has a high low temperature performance index. It can be shown that it was possible to show excellent output performance in a low temperature environment.
 実施例1では、電解質として、六フッ化リン酸リチウムのみを用いた。実施例10では、電解質として、六フッ化リン酸リチウムと四フッ化ホウ酸リチウムとを用いた。比較例6では、電解質として、四フッ化ホウ酸リチウムのみを用いた。これらの例の結果の比較から、第1の基及び第2の基の存在による電解質の分解抑制及びLiイオンの解離促進効果は、非水電解質が六フッ化リン酸リチウムを含んでいる場合に有効であることが分かる。 In Example 1, only lithium hexafluorophosphate was used as the electrolyte. In Example 10, lithium hexafluorophosphate and lithium tetrafluoroborate were used as the electrolyte. In Comparative Example 6, only lithium tetrafluoroborate was used as the electrolyte. From the comparison of the results of these examples, the decomposition suppression effect of the electrolyte and the dissociation promoting effect of Li ion due to the presence of the first group and the second group are obtained when the non-aqueous electrolyte contains lithium hexafluorophosphate. It turns out that it is effective.
 実施例11及び12の電池は、第1の化合物の正極材料層への添加方法が実施例1のそれと異なる。実施例1と実施例11及び12との結果の比較から、第1の化合物の添加方法に関わらず、含有割合C1及びC2が上記条件を満たしている電池は、高い低温性能指数を示すことができ、低温環境下で優れた出力性能を示すことができたことが分かる。 The batteries of Examples 11 and 12 differ from those of Example 1 in the method of adding the first compound to the positive electrode material layer. From the comparison of the results of Example 1 with Examples 11 and 12, regardless of the method of adding the first compound, a battery in which the content ratios C1 and C2 satisfy the above conditions exhibits a high low temperature performance index. It can be seen that it was possible to show excellent output performance in a low temperature environment.
 一方、比較例7では、第1の化合物を正極合材に添加せず、負極合材に添加した。また、比較例8及び9では、第1の化合物を正極合材に添加しなかった。表3に示した結果から、正極合材に第1の化合物を添加しなかったこれらの比較例では、第1の基の含有割合C1が0.3質量%以上である電池を作製できなかったことが分かる。そのため、比較例7~9の電池は、低温性能指数が低く、低温環境下での出力性能に乏しかった。 On the other hand, in Comparative Example 7, the first compound was not added to the positive electrode mixture, but was added to the negative electrode mixture. Further, in Comparative Examples 8 and 9, the first compound was not added to the positive electrode mixture. From the results shown in Table 3, in these comparative examples in which the first compound was not added to the positive electrode mixture, it was not possible to produce a battery in which the content ratio C1 of the first group is 0.3% by mass or more I understand that. Therefore, the batteries of Comparative Examples 7 to 9 had a low temperature performance index and a poor output performance under a low temperature environment.
 また、比較例9の非水電解質電池では、非水電解質の非水溶媒に溶けきらなかったモノフルオロリン酸リチウムが存在していた。すなわち、比較例9で用いた非水電解質は、モノフルオロリン酸リチウムについての飽和溶液であった。しかしながら、比較例9の非水電解質電池の正極材料層において、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基の含有量が0.3質量%未満であった。つまり、比較例9の結果から、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される基を有する化合物を正極材料層に含ませない場合、このような化合物についての飽和状態にある非水電解質を用いても、正極材料層における第1の基の含有割合C1を0.3質量%以上とすることができないことが分かる。更に、比較例9の非水電解質電池では、非水電解質における含有割合C2が1.5質量%を超えていたため、非水電解質に第2の基が過剰に存在していたと考えられる。そのため、比較例9の非水電解質電池では、正極反応に六フッ化リン酸リチウムが関与することが阻害され、低温抵抗が増加してしまったと考えられる。 Further, in the non-aqueous electrolyte battery of Comparative Example 9, lithium monofluorophosphate which was not completely dissolved in the non-aqueous solvent of the non-aqueous electrolyte was present. That is, the non-aqueous electrolyte used in Comparative Example 9 was a saturated solution of lithium monofluorophosphate. However, in the positive electrode material layer of the nonaqueous electrolyte battery of Comparative Example 9, a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof Content of less than 0.3% by mass. That is, from the result of Comparative Example 9, the positive electrode material layer is caused to contain a compound having a group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. If not, it is understood that the content ratio C1 of the first group in the positive electrode material layer can not be 0.3 mass% or more even if the non-aqueous electrolyte in a saturated state for such a compound is used. Furthermore, in the non-aqueous electrolyte battery of Comparative Example 9, the content ratio C2 in the non-aqueous electrolyte exceeded 1.5% by mass, so it is considered that the second group was present in excess in the non-aqueous electrolyte. Therefore, in the non-aqueous electrolyte battery of Comparative Example 9, involvement of lithium hexafluorophosphate in the positive electrode reaction is inhibited, and it is considered that the low temperature resistance is increased.
 また、実施例12~16の非水電解質電池は、実施例1から、第1の化合物及び/又は第2の化合物を変更したものである。しかしながら、実施例1及び12~16の結果から、実施例1及び実施例12~16の非水電解質電池は、同様に、低温環境下で優れた出力性能を示すことができたことが分かる。また、実施例12及び実施例14~16の結果から、第1の化合物と第2の化合物とが別の化合物であっても、これらの実施例の非水電解質電池は、低温環境下で優れた出力性能を示すことができたことが分かる。 The non-aqueous electrolyte batteries of Examples 12 to 16 are the ones obtained by changing the first compound and / or the second compound from Example 1. However, it can be seen from the results of Examples 1 and 12 to 16 that the nonaqueous electrolyte batteries of Example 1 and Examples 12 to 16 were similarly able to exhibit excellent output performance under a low temperature environment. Further, from the results of Example 12 and Examples 14 to 16, even if the first compound and the second compound are different compounds, the nonaqueous electrolyte batteries of these examples are excellent in a low temperature environment. It can be seen that the output performance was able to be shown.
 一方、比較例10及び11の結果から、含有割合C1と含有割合C2とが等しいと、低温環境下での出力性能に乏しかったことが分かる。 On the other hand, it is understood from the results of Comparative Examples 10 and 11 that when the content ratio C1 and the content ratio C2 are equal, the output performance in a low temperature environment is poor.
 以上に説明した1つ以上の実施形態及び実施例によると、非水電解質電池が提供される。この非水電解質電池は、正極材料層を含んだ正極と、負極と、非水電解質とを具備する。正極材料層は、正極活物質とPF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基とを含む。非水電解質は、六フッ化リン酸リチウムと、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基と含む。正極材料層における第1の基の含有割合C1は、0.3質量%以上2質量%以下である。非水電解質における第2の基の含有割合C2は、0.1質量%以上1.5質量%以下であり、含有割合C1よりも小さい。このような含有割合C1及びC2を満足する非水電解質電池では、正極の反応場近傍へのLiイオンの供給を促進でき、正極反応を促進でき、且つ六フッ化リン酸リチウムの分解を防ぐことができる。これらの結果、この非水電解質電池は、低温環境下において、優れた出力性能を示すことができる。 According to one or more embodiments and examples described above, a non-aqueous electrolyte battery is provided. This non-aqueous electrolyte battery comprises a positive electrode including a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte. The positive electrode material layer includes a positive electrode active material and a first group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The non-aqueous electrolyte includes lithium hexafluorophosphate and a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof. The content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less. The content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less, and is smaller than the content ratio C1. In a non-aqueous electrolyte battery satisfying such content ratios C1 and C2, the supply of Li ions to the vicinity of the reaction site of the positive electrode can be promoted, the positive electrode reaction can be promoted, and the decomposition of lithium hexafluorophosphate is prevented. Can. As a result, the non-aqueous electrolyte battery can exhibit excellent output performance under a low temperature environment.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

Claims (5)

  1.  正極材料層を含んだ正極と、
     負極と、
     少なくとも前記正極材料層に保持された非水電解質と
    を具備し、
     前記正極材料層は、正極活物質と、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第1の基とを含み、
     前記非水電解質は、六フッ化リン酸リチウムと、PF2(=O)O-、PF(=O)(O-2及びこれらの組み合わせからなる群より選択される第2の基とを含み、
     前記正極材料層における前記第1の基の含有割合C1は、0.3質量%以上2質量%以下であり、
     前記非水電解質における前記第2の基の含有割合C2は、0.1質量%以上1.5質量%以下であり、
     前記含有割合C1は、前記含有割合C2よりも大きい非水電解質電池。
    A positive electrode including a positive electrode material layer,
    A negative electrode,
    And at least a non-aqueous electrolyte held in the positive electrode material layer,
    The positive electrode material layer includes a positive electrode active material, and a first group selected from the group consisting of PF 2 (OO) O , PF (OO) (O ) 2, and a combination thereof.
    The non-aqueous electrolyte comprises lithium hexafluorophosphate and a second group selected from the group consisting of PF 2 (= O) O , PF (= O) (O ) 2, and a combination thereof Including
    The content ratio C1 of the first group in the positive electrode material layer is 0.3% by mass or more and 2% by mass or less,
    The content ratio C2 of the second group in the non-aqueous electrolyte is 0.1% by mass or more and 1.5% by mass or less,
    The nonaqueous electrolyte battery in which the content ratio C1 is larger than the content ratio C2.
  2.  前記正極材料層は、前記第1の基を有する第1の化合物を含み、
     前記非水電解質は、前記第2の基を有する第2の化合物を含む請求項1に記載の非水電解質電池。
    The positive electrode material layer includes a first compound having the first group,
    The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte comprises a second compound having the second group.
  3.  前記第1の化合物は、前記第2の化合物と同じである、又は前記第2の化合物と異なる請求項2に記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 2, wherein the first compound is the same as or different from the second compound.
  4.  前記負極は、負極材料層を含み、
     前記負極材料層は、作動電位が0.7V(vs.Li/Li+)以上である負極活物質を含む請求項1~3の何れか1項に記載の非水電解質電池。
    The negative electrode includes a negative electrode material layer,
    The non-aqueous electrolyte battery according to any one of claims 1 to 3, wherein the negative electrode material layer contains a negative electrode active material having an operating potential of 0.7 V (vs. Li / Li + ) or more.
  5.  請求項1~4の何れか1項に記載の非水電解質電池を具備する電池パック。 A battery pack comprising the non-aqueous electrolyte battery according to any one of claims 1 to 4.
PCT/JP2017/024228 2017-06-30 2017-06-30 Nonaqueous electrolyte battery and battery pack WO2019003440A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526115A JP6946429B2 (en) 2017-06-30 2017-06-30 Non-aqueous electrolyte batteries and battery packs
PCT/JP2017/024228 WO2019003440A1 (en) 2017-06-30 2017-06-30 Nonaqueous electrolyte battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024228 WO2019003440A1 (en) 2017-06-30 2017-06-30 Nonaqueous electrolyte battery and battery pack

Publications (1)

Publication Number Publication Date
WO2019003440A1 true WO2019003440A1 (en) 2019-01-03

Family

ID=64740488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024228 WO2019003440A1 (en) 2017-06-30 2017-06-30 Nonaqueous electrolyte battery and battery pack

Country Status (2)

Country Link
JP (1) JP6946429B2 (en)
WO (1) WO2019003440A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165292A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and secondary battery using it
JP2008270199A (en) * 2007-03-29 2008-11-06 Mitsubishi Chemicals Corp Lithium secondary battery and positive electrode for lithium secondary battery used in the same
WO2014155989A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017059390A (en) * 2015-09-16 2017-03-23 株式会社東芝 Electrode, nonaqueous electrolyte battery and battery pack
JP6130053B1 (en) * 2015-09-16 2017-05-17 株式会社東芝 Battery pack and battery pack
JP2017098100A (en) * 2015-11-25 2017-06-01 太平洋セメント株式会社 Oxide based negative electrode active material for secondary battery and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165292A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and secondary battery using it
JP2008270199A (en) * 2007-03-29 2008-11-06 Mitsubishi Chemicals Corp Lithium secondary battery and positive electrode for lithium secondary battery used in the same
WO2014155989A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017059390A (en) * 2015-09-16 2017-03-23 株式会社東芝 Electrode, nonaqueous electrolyte battery and battery pack
JP6130053B1 (en) * 2015-09-16 2017-05-17 株式会社東芝 Battery pack and battery pack
JP2017098100A (en) * 2015-11-25 2017-06-01 太平洋セメント株式会社 Oxide based negative electrode active material for secondary battery and manufacturing method of the same

Also Published As

Publication number Publication date
JP6946429B2 (en) 2021-10-06
JPWO2019003440A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
EP2784854B1 (en) Nonaqueous electrolyte battery and battery pack
JP4439456B2 (en) Battery pack and automobile
US10553868B2 (en) Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
US10141575B2 (en) Electrode, nonaqueous electrolyte battery, battery pack, and vehicle
US11527751B2 (en) Nonaqueous electrolyte battery and battery pack
US10505177B2 (en) Nonaqueous electrolyte battery electrode, nonaqueous electrolyte battery, and battery pack
KR20180032158A (en) Nonaqueous electrolyte battery, battery pack and vehicle
JPWO2018020667A1 (en) Non-aqueous electrolyte battery and battery pack
JP6776439B2 (en) Non-aqueous electrolyte batteries, battery packs and battery systems
JPWO2016038716A1 (en) Nonaqueous electrolyte secondary battery and battery pack provided with the same
EP3780219B1 (en) Nonaqueous electrolyte battery, and battery pack
JP6054540B2 (en) Positive electrode active material, non-aqueous electrolyte battery, and battery pack
JP6952883B2 (en) Electrode group, non-aqueous electrolyte battery and battery pack
JP6946429B2 (en) Non-aqueous electrolyte batteries and battery packs
JP7106749B2 (en) Electrodes, batteries and battery packs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915306

Country of ref document: EP

Kind code of ref document: A1