WO2019002446A1 - Wi-fi system comprising a plurality of transmission/reception stations - Google Patents
Wi-fi system comprising a plurality of transmission/reception stations Download PDFInfo
- Publication number
- WO2019002446A1 WO2019002446A1 PCT/EP2018/067384 EP2018067384W WO2019002446A1 WO 2019002446 A1 WO2019002446 A1 WO 2019002446A1 EP 2018067384 W EP2018067384 W EP 2018067384W WO 2019002446 A1 WO2019002446 A1 WO 2019002446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stations
- reflector
- antenna
- station
- horizontal plane
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2291—Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
- H01Q21/205—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
Definitions
- the technical field of the invention is that of Wi-Fi networks.
- the present invention relates to Wi-Fi coverage and in particular a system using a plurality of Wi-Fi stations to obtain a dense Wi-Fi coverage, particularly for Wi-Fi networks outside.
- Each access point is then connected to other over wired technologies (Ethernet, fiber, xDSL) or via radio links, such as wireless mesh technologies to share a network capable of giving a private IP network / or to an external public network like the Internet.
- wired technologies Ethernet, fiber, xDSL
- radio links such as wireless mesh technologies to share a network capable of giving a private IP network / or to an external public network like the Internet.
- the reduced distance between the locations can result in several access points sharing the frequency medium, which has at least two disadvantages : As the access points can not transmit at the same time, the downstream flows (from the access point to the stations) will be affected; and, depending on existing obstacles below the antenna height, the points of remote access, but captured by the access point to which a ground station is associated, may be "hidden terminals" for that station.
- one aspect of the invention relates to a system comprising a plurality of transmitting / receiving stations.
- Each transmitting / receiving station of the plurality of stations comprises a support on which are fixed a first antenna associated with a first reflector and connected to a first radio configured to transmit and receive on a first Wi-Fi channel; a second antenna associated with a second reflector and connected to a second radio configured to transmit and receive on a second Wi-Fi channel; and a third antenna associated with a third reflector and connected to a third radio configured to transmit and receive on a third Wi-Fi channel; the first, second and third channels being perfectly disjoint from each other.
- the support comprises an equilateral triangular prism and each of the three rectangular faces of said prism constitutes a reflector among the first, second and third reflectors.
- the first, second and third antennas are identical and designed to emit in a main lobe whose opening angle at -6 dB in a horizontal plane parallel to the triangular surfaces of the prism is between 100 ° and 120 °.
- Mean identical antennas antennas whose emission properties (opening angle in the horizontal plane) are equal to plus or minus five percent (5%), preferably plus or minus one percent (1%).
- said antennas are arranged at each station so that their coverage areas are disjoint.
- the stations of the plurality of stations are all oriented identically.
- Identically oriented means that the orientation of the stations are identical to plus or minus five percent (5%), preferably plus or minus one percent (1%). Thanks to the invention, it is possible to suppress frequency sharing situations between Wi-Fi access points.
- the presence of a rear reflector that guarantees insulation at each antenna and the orientation of the latter ( through the orientation of the stations and therefore the premiums) make the system robust to multipath phenomena and make it possible to ensure that antennas using the same channel and radiating one behind the other do not disturb each other.
- no adjustment is necessary during the installation of the station in order to obtain the advantages mentioned above beyond the simple orientation of the stations. Indeed, the orientation of the antennas are easily by a simple rotation of the prism, for example on a fixing axis of the latter.
- the station according to one aspect of the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
- each antenna of each station of the plurality of stations the opening angle at -3 dB of the main lobe in the horizontal plane is between 70 ° and 100 °.
- each reflector of each station of the plurality of stations is designed to provide a rear isolation at the antenna associated with said reflector such that the forward / backward ratio is at least equal to said insulation added to the maximum forward gain in the lobe principal of said antenna.
- the isolation is sufficient to allow two antennas of two different stations assigned to the same channel not to interfere with each other.
- the distance separating two nearest stations is chosen so that the signal level theoretically received from a source emitting at an equivalent isotropic radiated power of 20 dBm at said distance is less than or equal to, preferably equal to rear insulation of each reflector.
- the radiation of a first antenna using a first channel does not disturb another antenna located in front of the first antenna and using the same channel. The risks of interference due to multiple reflections are also reduced.
- each antenna of each station of the plurality of stations the direction for which the power density is maximum forms in an vertical plane perpendicular to the horizontal plane an angle between 3 ° and 6 ° with said horizontal plane.
- each station can be oriented easily so that for each antenna, the direction for which the power density is maximum is oriented towards the ground.
- the ground cover is improved, the energy is mainly directed to the ground from an elevated position.
- the stations of the plurality of stations are arranged so as to form in a plane parallel to the horizontal plane a mesh whose elementary mesh is a diamond mesh.
- the regularity in the distribution of stations contributes to the ease of implementation of the system according to the invention.
- the diamond mesh has two opposite acute angles of 60 °.
- the number of uncovered areas between the stations Si of the plurality of stations Si is minimized while limiting as much as possible the number of stations necessary for said coverage.
- FIG. 1 shows a schematic representation of a system according to one aspect of the invention.
- FIGS. 2A and 2B show a schematic representation of a station of a system according to one aspect of the invention.
- FIG. 3 shows a schematic representation of three disjoint Wi-Fi channels.
- FIG. 4 shows a transmission pattern in the horizontal plane of a base station antenna of a system according to one aspect of the invention.
- FIG. 5 shows a schematic representation of the coverage obtained with a station of a system according to one aspect of the invention.
- FIG. 6 shows a radiation pattern in the vertical plane of an antenna of a station in a system according to an aspect of the invention.
- FIG. 7 shows a schematic representation of a station of a system according to one aspect of the invention.
- Figure 8 shows a schematic representation of two stations of a system according to one aspect of the invention.
- the aperture angle at -3 dB (-6 dB) in a plane is the angle measured between two directions for which the power density is 3 dB (6 dB) lower than the maximum value of said density in said plane.
- the coverage area of an antenna in a plane is defined as the area between two directions for which the power density is 6 dB less than the maximum value of said density in said plane.
- Each station Si of the plurality of stations Si comprises a support S on which are fixed a first antenna A1 associated with a first reflector R1 and connected to a first radio (not shown) configured to transmit and receive on a first Wi-Fi channel; a second antenna A2 associated with a second reflector R2 and connected to a second radio (not shown) configured to transmit and receive on a second Wi-Fi channel; and a third antenna A3 associated with a third reflector R3 and connected to a third radio (not shown) configured to transmit and receive on a third Wi-Fi channel; the first, second and third channels being disjoint from each other.
- the first central channel C1 2.412 GHz, the sixth channel C6 central frequency 2.437 GHz and the eleventh channel C1 1 center frequency 2.462 GHz illustrated in FIG. Figure 3 may be chosen, the latter, with a bandwidth of 22 MHz, being disjoint.
- Radios can be part of the same access point, two of the three radios can be part of the same access point or three radios yet each may belong to a separate access point.
- the support S of each station Si of the plurality of stations Si comprises a triangular prism and each of the three rectangular faces of said prism constitutes a reflector from among the first, second and third reflectors R1, R2, R3.
- the support S serves both antenna support and reflector.
- the prism is an equilateral triangular prism, i.e., a prism whose triangular surfaces are defined by an equilateral triangle. This arrangement facilitates the establishment of Si stations of a system of Si stations according to the invention.
- the first, second and third antennas A1, A2, A3 of each station Si of the plurality of stations Si are identical and designed to emit in a main lobe LP whose opening angle at -6 dB is between 100 ° and 120 ° in a horizontal plane H, said horizontal plane H being parallel to the triangular surfaces of the prism.
- the antenna has an opening angle of -6 dB equal to 1 14 °. It is interesting to note here that the antennas A1, A2, A3 of each station Si are totally passive devices that do not need to be reconfigurable. This simplifies manufacturing and reduces costs.
- each Si station the first, second and third antennas A1, A2, A3 are arranged so that their coverage areas are disjoint (that is, do not overlap).
- a vertical plane V perpendicular to the horizontal plane H is comprising the direction for which the power density is maximum in said horizontal plane H.
- each station Si covers a first coverage area ZC1 associated with the first antenna A1 (and therefore a first channel), a second coverage area ZC2 associated with the second antenna A2 (and therefore a second channel) and a third coverage area ZC3 associated to the third antenna A3 (and thus to a third channel).
- the three coverage areas ZC1, ZC2, ZC3 associated with each station are disjoint (that is, do not overlap) and cover a total coverage area surrounding said station Si.
- the -3 dB aperture angle of the main lobe in the horizontal plane H is between 70 ° and 100 °.
- the antenna has an aperture angle at -3 dB of the main lobe LP in the horizontal plane H equal to 70 °.
- the stations Si of the plurality of stations Si are oriented identically.
- the orientation of a station Si is determined from a first direction given by the normal to the surface of the first reflector R1, a second direction given by the normal to the surface of the second reflector R2 and a third direction given by the normal to the surface of the third reflector R3.
- the stations Si are oriented identically if the first directions of the stations Si are parallel to each other, the second directions of the stations Si are parallel to each other and the third directions of the stations Si are parallel to each other.
- the first direction of the stations Si is oriented North-East, the second direction is South and the third direction is North-West.
- the orientation of the stations can be done using a simple compass which greatly simplifies the installation of a system according to a second aspect of the invention.
- the distance D separating each station Si is constant. In an embodiment illustrated in FIGS.
- each reflector R1, R2, R3 of each station Si of the plurality of stations Si is designed to provide a rear isolation (relative to the direction of transmission of the antenna associated with said reflector) at the level of the 'antenna A1, A2, A3 associated with said reflector such that the front / back ratio is at least equal to said maximum added insulation before gain in the main lobe SL for the antenna A1, A2, A3 associated with said reflector R1, R2, R3.
- the first, second and third antennas A1, A2, A3 of each station Si of the plurality of stations Si are horizontally polarized antennas.
- the first, second and third antennas A1, A2, A3 are vertically polarized antennas.
- the first, second and third antennas A1, A2, A3 are horizontally polarized and vertically polarized antennas, and the main lobes LP associated with each of said polarizations have properties identical to those described above. the main lobe LP in the case of a single polarization.
- each station Si of the plurality of stations Si is oriented so that, for each antenna A1, A2, A3, the direction for which the power density is maximum is oriented towards the ground. .
- This configuration is particularly easy to obtain when each station Si is arranged so that, for each antenna A1, A2, A3, the direction for which the power density is maximum in the vertical plane V forms an angle of between 3 ° and 6 °. ° with the horizontal plane H.
- the horizontal plane H is parallel to the ground or, in other words, that the triangular faces of the prism are parallel to the ground.
- the distance D separating two closest Si stations is chosen so that the signal level theoretically received from a source emitting at an equivalent isotropic radiated power of 20 dBm to said distance D is less than or equal to the back insulation of each reflector R1, R2, R3 (relative to the emission direction of the antenna A1, A2, A3 associated with said reflector R1, R2, R3).
- the distance D between two nearest stations Si will be chosen so that the signal level theoretically received from a source emitting at an equivalent radiated isotropic power of 20 dBm at said distance D is equal to the rear insulation each reflector R1, R2, R3.
- the thus selected distance is sufficient to minimize the interference but still low enough to avoid the occurrence of non-covered areas in the total area covered by the system according to the invention.
- the stations Si of the plurality of stations Si are arranged so as to form, in a plane parallel to the horizontal plane H, a mesh whose elementary mesh is a diamond mesh.
- the projection of each station Si in a plane parallel to the horizontal plane H forms a pattern representing a mesh whose elementary mesh ME is a diamond elemental mesh.
- the ME diamond mesh presents two opposite acute angles of 60 ° so that there is no uncovered area between the stations Si of the plurality of stations If while minimizing the number of If necessary stations to said coverage.
- the overlap between different coverage areas ZC1, ZC2, ZC3 only operates is that between coverage areas ZC1, ZC2, ZC3 assigned to different channels.
- the stations Si of the plurality of stations Si are connected together by means of wired technologies (ie Ethernet, fiber, xDSL). or by means of radio links, for example Wi-Fi mesh technologies so as to share the same network that can provide access to a private IP network and / or to an external public network such as the Internet.
- wired technologies ie Ethernet, fiber, xDSL
- radio links for example Wi-Fi mesh technologies so as to share the same network that can provide access to a private IP network and / or to an external public network such as the Internet.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
The invention concerns a system comprising a plurality of transmission/reception stations (Si), each transmission/reception station (Si) comprising a support on which are fixed a first antenna associated with a first reflector and connected to a first radio configured to transmit and receive on a first Wi-Fi channel; a second antenna associated with a second reflector and connected to a second radio configured to transmit and receive on a second Wi-Fi channel; and a third antenna associated with a third reflector and connected to a third radio configured to transmit and receive on a third Wi-Fi channel; the first, second and third channels being entirely disjoint from one another; the support comprising an equilateral triangular prism and each of the three rectangular faces of said prism constituting a reflector among the first, the second and the third reflectors; the first, second and third antennas being identical, designed so as to transmit in a main lobe, the opening angle of which at -6 dB in a horizontal plane parallel to the triangular surfaces of the prism is between 100° and 120°, and arranged so that their areas of coverage are disjoint; the stations of the plurality of stations (Si) all being orientated in identical manner.
Description
SYSTEME WS-FI COMPRENANT UNE PLURALITE DE STATIONS WS-FI SYSTEM COMPRISING A PLURALITY OF STATIONS
D EMISSION/RECEPTION D EMISSION / RECEPTION
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
Le domaine technique de l'invention est celui des réseaux Wi-Fi. La présente invention concerne la couverture Wi-Fi et en particulier un système utilisant une pluralité de stations Wi-Fi permettant d'obtenir une couverture Wi-Fi dense, notamment pour les réseaux Wi-Fi en extérieur. The technical field of the invention is that of Wi-Fi networks. The present invention relates to Wi-Fi coverage and in particular a system using a plurality of Wi-Fi stations to obtain a dense Wi-Fi coverage, particularly for Wi-Fi networks outside.
ARRIERE-PLAN TECHNOLOGIQUE DE L'INVENTION BACKGROUND OF THE INVENTION
Pour couvrir une étendue en extérieur en Wi-Fi, il est nécessaire de positionner un ou plusieurs points d'accès en différents lieux. Chaque point d'accès est ensuite relié aux autres via des technologies filaires (Ethernet, Fibre, xDSL) ou via des liaisons radio, par exemple des technologies de maillage Wi-Fi afin de partager un même réseau pouvant donner accès un réseau privé IP et/ou à un réseau public externe comme Internet. To cover a large outdoor Wi-Fi, it is necessary to position one or more access points in different places. Each access point is then connected to other over wired technologies (Ethernet, fiber, xDSL) or via radio links, such as wireless mesh technologies to share a network capable of giving a private IP network / or to an external public network like the Internet.
Afin d'assurer un débit compatible avec les usages modernes, il est connu de répartir les stations de sorte à réduire la superficie couverte uniquement par une seule radio Wi-Fi. A cette fin, les antennes doivent être placées à une hauteur réduite en essayant toujours de surplomber la majorité des obstacles. Si cette approche permet d'augmenter le niveau de signal moyen avec une station au sol et de réduire le nombre d'appareils partageant une même fréquence, elle ne permet pas de tirer pleinement parti du gain initial. En effet, en fonction des conditions environnementales (inclinaison du sol, végétations, bâtiments...), la distance réduite entre les lieux d'implantation peut entraîner que plusieurs points d'accès partagent le médium fréquentiel, ce qui présente au moins deux inconvénients : les points d'accès ne pouvant émettre en même temps, les débits descendants (du point d'accès vers les stations) en seront affectés ; et, en fonction des obstacles existants en dessous de la hauteur des antennes, des points d'accès distants, mais captés
par le point d'accès auquel est associée une station au sol, peuvent être des « terminaux cachés » pour cette station. In order to ensure a flow compatible with modern uses, it is known to distribute the stations so as to reduce the area covered only by a single Wi-Fi radio. To this end, the antennas must be placed at a reduced height by trying always overhang the majority of obstacles. If this approach increases the average signal level with a station on the ground and reduces the number of devices sharing the same frequency, it does not allow to take full advantage of the initial gain. Indeed, depending on the environmental conditions (inclination of the soil, vegetation, buildings ...), the reduced distance between the locations can result in several access points sharing the frequency medium, which has at least two disadvantages : As the access points can not transmit at the same time, the downstream flows (from the access point to the stations) will be affected; and, depending on existing obstacles below the antenna height, the points of remote access, but captured by the access point to which a ground station is associated, may be "hidden terminals" for that station.
Une solution peut être d'attribuer une fréquence différente à chaque station. Cependant, il est connu qu'il n'existe que trois canaux parfaitement indépendants (c'est-à-dire sans chevauchement de fréquences) en DSSS et 4 canaux parfaitement indépendants en OFDM. Il est donc difficile d'attribuer un médium fréquentiel unique à chaque point d'accès Wi-Fi dès lors qu'il y a plus de trois lieux d'implantation. Bien sûr, en fonction de la distance entre deux lieux d'implantation, de la présence d'obstacles ainsi que de la topologie géographique, il peut être possible de limiter au maximum le nombre de points d'accès partageant la même fréquence. Néanmoins, il existe des environnements à terrain plat avec peu d'obstacles et/ou des obstacles d'une hauteur maximale bien inférieure à celle des antennes où cela est très difficile, par exemple en bord de mer. One solution may be to assign a different frequency to each station. However, it is known that there are only three fully independent channels (that is to say without overlapping frequencies) in DSSS and 4 fully independent channels in OFDM. It is therefore difficult to assign a unique medium frequency to each wireless access point therefore that there are over three places of implantation. Of course, depending on the distance between two locations, the presence of obstacles and the geographical topology, it may be possible to limit as much as possible the number of access points sharing the same frequency. Nevertheless, there are flat terrain environments with few obstacles and / or obstacles with a maximum height much lower than that of antennas where it is very difficult, for example by the sea.
Une solution pour cette problématique est de recourir à des antennes sectorielles. Celles-ci, correctement orientées vers le sol de façon mécanique, peuvent permettre de réduire le rayonnement non souhaité en direction des autres points d'accès. Néanmoins cette approche nécessite de bien régler l'angle de chaque antenne ce qui rend l'installation et la maintenance dans le temps de celle-ci complexe et onéreuse. De plus, même si ce type de solution réduit fortement le niveau de puissance perçu par l'autre antenne sur la même fréquence, le médium reste quand même partagé. One solution for this problem is to use sectoral antennas. These, properly oriented to the ground mechanically, can reduce unwanted radiation to other access points. Nevertheless, this approach requires a good adjustment of the angle of each antenna which makes the installation and maintenance in time thereof complex and expensive. Moreover, even if this type of solution strongly reduces the level of power perceived by the other antenna on the same frequency, the medium is still shared.
Il existe donc un besoin d'un système facile à installer et permettant d'assurer des débits de transmission élevée tout en proposant une couverture Wi-Fi dense, c'est- à-dire où le rayonnement au sol de lieux d'implantation adjacents se chevauchent de sorte à garantir un niveau signal moyen élevé pour toutes les stations et donc à faciliter l'itinérance (ou roaming en anglais). There is therefore a need for an easy-to-install system that provides high transmission rates while providing dense Wi-Fi coverage, ie, the ground radiation of adjacent locations. overlap so as to guarantee a high average signal level for all the stations and thus to facilitate roaming (or roaming in English).
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
L'invention offre une solution aux problèmes évoqués précédemment, notamment en supprimant les situations de partage fréquentiel entre les points d'accès Wi-Fi.
Pour cela, un aspect de l'invention concerne un système comprenant une pluralité de stations d'émission/réception. Chaque station d'émission/réception de la pluralité de stations comprend un support sur lequel sont fixées une première antenne associée à un premier réflecteur et reliée à une première radio configurée pour émettre et recevoir sur un premier canal Wi-Fi ; une deuxième antenne associée à un deuxième réflecteur et reliée à une deuxième radio configurée pour émettre et recevoir sur un deuxième canal Wi-Fi ; et une troisième antenne associée à un troisième réflecteur et reliée à une troisième radio configurée pour émettre et recevoir sur un troisième canal Wi-Fi ; les premier, deuxième et troisième canaux étant parfaitement disjoints les uns des autres. Pour chaque station le support comprend un prisme triangulaire équilatéral et chacune des trois faces rectangles dudit prisme constitue un réflecteur parmi le premier, le deuxième et le troisième réflecteur. De plus, pour chaque station, les première, deuxième et troisième antennes sont identiques et conçues de sorte à émettre selon un lobe principal dont l'angle d'ouverture à -6 dB dans un plan horizontal parallèle aux surfaces triangulaires du prisme est compris entre 100° et 120°. On entend par antennes identiques des antennes dont les propriétés d'émission (angle d'ouverture dans le plan horizontal) sont égales à plus ou moins cinq pour cent (5%), de préférence plus ou moins un pour cent (1 %). De plus, lesdites antennes sont agencées au niveau de chaque station de sorte que leurs zones de couverture soient disjointes. Enfin, les stations de la pluralité de stations sont toutes orientées de manière identique. On entend par orienté de manière identique que l'orientation des stations sont identique à plus ou moins cinq pour cent (5%), de préférence plus ou moins un pour cent (1 %). Grâce à l'invention, il est possible de supprimer les situations de partage fréquentiel entre les points d'accès Wi-Fi. Notamment, la présence des réflecteurs qui garantisse une isolation arrière au niveau de chaque antenne et l'orientation de ces dernières (au travers de l'orientation des stations et donc des primes) rendent le système robuste aux phénomènes de multitrajets et permettent de s'assurer que les antennes utilisant un même canal et rayonnant les unes derrière les autres ne se perturbent pas entre elles. En outre, aucun réglage n'est nécessaire lors de l'installation de la station afin d'obtenir les avantages évoqués ci-dessus au-delà de la simple orientation des stations. En effet, l'orientation des antennes s'effectue
facilement par une simple rotation du prisme, par exemple sur un axe de fixation de ce dernier. The invention offers a solution to the problems mentioned above, including by removing frequency sharing situations between Wi-Fi hotspots. For this, one aspect of the invention relates to a system comprising a plurality of transmitting / receiving stations. Each transmitting / receiving station of the plurality of stations comprises a support on which are fixed a first antenna associated with a first reflector and connected to a first radio configured to transmit and receive on a first Wi-Fi channel; a second antenna associated with a second reflector and connected to a second radio configured to transmit and receive on a second Wi-Fi channel; and a third antenna associated with a third reflector and connected to a third radio configured to transmit and receive on a third Wi-Fi channel; the first, second and third channels being perfectly disjoint from each other. For each station the support comprises an equilateral triangular prism and each of the three rectangular faces of said prism constitutes a reflector among the first, second and third reflectors. In addition, for each station, the first, second and third antennas are identical and designed to emit in a main lobe whose opening angle at -6 dB in a horizontal plane parallel to the triangular surfaces of the prism is between 100 ° and 120 °. Mean identical antennas antennas whose emission properties (opening angle in the horizontal plane) are equal to plus or minus five percent (5%), preferably plus or minus one percent (1%). In addition, said antennas are arranged at each station so that their coverage areas are disjoint. Finally, the stations of the plurality of stations are all oriented identically. Identically oriented means that the orientation of the stations are identical to plus or minus five percent (5%), preferably plus or minus one percent (1%). Thanks to the invention, it is possible to suppress frequency sharing situations between Wi-Fi access points. In particular, the presence of a rear reflector that guarantees insulation at each antenna and the orientation of the latter ( through the orientation of the stations and therefore the premiums) make the system robust to multipath phenomena and make it possible to ensure that antennas using the same channel and radiating one behind the other do not disturb each other. In addition, no adjustment is necessary during the installation of the station in order to obtain the advantages mentioned above beyond the simple orientation of the stations. Indeed, the orientation of the antennas are easily by a simple rotation of the prism, for example on a fixing axis of the latter.
Outre les caractéristiques qui viennent d'être évoquées dans le paragraphe précédent, la station selon un aspect de l'invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles. In addition to the features that have just been mentioned in the preceding paragraph, the station according to one aspect of the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
Avantageusement, pour chaque antenne de chaque station de la pluralité de stations, l'angle d'ouverture à -3 dB du lobe principal dans le plan horizontal est compris entre 70° et 100°. Ainsi, une meilleure couverture au sol est assurée. Avantageusement, chaque réflecteur de chaque station de la pluralité de stations est conçu pour fournir une isolation arrière au niveau de l'antenne associée audit réflecteur telle que le rapport avant/arrière est au moins égal à ladite isolation additionnée au gain avant maximum dans le lobe principal de ladite antenne. Advantageously, for each antenna of each station of the plurality of stations, the opening angle at -3 dB of the main lobe in the horizontal plane is between 70 ° and 100 °. Thus, better ground coverage is assured. Advantageously, each reflector of each station of the plurality of stations is designed to provide a rear isolation at the antenna associated with said reflector such that the forward / backward ratio is at least equal to said insulation added to the maximum forward gain in the lobe principal of said antenna.
Ainsi, l'isolation est suffisante pour permettre à deux antennes de deux stations différentes affectées au même canal de ne pas interférer entre elles. Thus, the isolation is sufficient to allow two antennas of two different stations assigned to the same channel not to interfere with each other.
Avantageusement, la distance séparant deux stations les plus proches est choisie de sorte que le niveau de signal théoriquement reçu d'une source émettant à une puissance isotrope rayonnée équivalente de 20 dBm à ladite distance est inférieur ou égal, de préférence égal, à l'isolation arrière de chaque réflecteur. Ainsi, le rayonnement d'une première antenne utilisant un premier canal ne perturbe pas une autre antenne située devant la première antenne et utilisant un même canal. Les risques d'interférences dus à des réflexions multiples sont également diminués. Advantageously, the distance separating two nearest stations is chosen so that the signal level theoretically received from a source emitting at an equivalent isotropic radiated power of 20 dBm at said distance is less than or equal to, preferably equal to rear insulation of each reflector. Thus, the radiation of a first antenna using a first channel does not disturb another antenna located in front of the first antenna and using the same channel. The risks of interference due to multiple reflections are also reduced.
Avantageusement, pour chaque antenne de chaque station de la pluralité de stations, la direction pour laquelle la densité de puissance est maximale forme dans un plan vertical perpendiculaire au plan horizontal un angle compris entre 3° et 6° avec ledit plan horizontal. Ainsi, chaque station peut être est orientée facilement de sorte que, pour chaque antenne, la direction pour laquelle la densité de puissance
est maximale est orientée vers le sol. La couverture au sol s'en trouve améliorée, l'énergie étant principalement dirigée vers le sol depuis une position en hauteur. Advantageously, for each antenna of each station of the plurality of stations, the direction for which the power density is maximum forms in an vertical plane perpendicular to the horizontal plane an angle between 3 ° and 6 ° with said horizontal plane. Thus, each station can be oriented easily so that for each antenna, the direction for which the power density is maximum is oriented towards the ground. The ground cover is improved, the energy is mainly directed to the ground from an elevated position.
Avantageusement, les stations de la pluralité de stations sont disposées de sorte à former dans un plan parallèle au plan horizontal un maillage dont la maille élémentaire est une maille losange. Ainsi, la régularité dans la répartition des stations contribue à la facilité de mise en place du système selon l'invention. Advantageously, the stations of the plurality of stations are arranged so as to form in a plane parallel to the horizontal plane a mesh whose elementary mesh is a diamond mesh. Thus, the regularity in the distribution of stations contributes to the ease of implementation of the system according to the invention.
Avantageusement, la maille losange présente deux angles aigus opposés de 60°. Ainsi, le nombre de zones non couvertes entre les stations Si de la pluralité de stations Si est minimisé tout en limitant au maximum le nombre de stations nécessaires à ladite couverture. Advantageously, the diamond mesh has two opposite acute angles of 60 °. Thus, the number of uncovered areas between the stations Si of the plurality of stations Si is minimized while limiting as much as possible the number of stations necessary for said coverage.
L'invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. The invention and its various applications will be better understood from reading the following description and examining the figures that accompany it.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
Les figures sont présentées à titre indicatif et nullement limitatif de l'invention. The figures are presented as an indication and in no way limit the invention.
- La figure 1 montre une représentation schématique d'un système selon un aspect de l'invention. - Figure 1 shows a schematic representation of a system according to one aspect of the invention.
- Les figures 2A et 2B montrent une représentation schématique d'une station d'un système selon un aspect de l'invention. FIGS. 2A and 2B show a schematic representation of a station of a system according to one aspect of the invention.
- La figure 3 montre une représentation schématique de trois canaux Wi-Fi disjoints. - Figure 3 shows a schematic representation of three disjoint Wi-Fi channels.
- La figure 4 montre un diagramme d'émission dans le plan horizontal d'une antenne d'une station d'un système selon un aspect de l'invention. - Figure 4 shows a transmission pattern in the horizontal plane of a base station antenna of a system according to one aspect of the invention.
- La figure 5 montre une représentation schématique de la couverture obtenue à l'aide d'une station d'un système selon un aspect de l'invention. - Figure 5 shows a schematic representation of the coverage obtained with a station of a system according to one aspect of the invention.
- La figure 6 montre un diagramme d'émission dans le plan vertical d'une antenne d'une station d'un système selon un aspect de l'invention. - Figure 6 shows a radiation pattern in the vertical plane of an antenna of a station in a system according to an aspect of the invention.
- La figure 7 montre une représentation schématique d'une station d'un système selon un aspect de l'invention.
- La figure 8 montre une représentation schématique de deux stations d'un système selon un aspect de l'invention. FIG. 7 shows a schematic representation of a station of a system according to one aspect of the invention. - Figure 8 shows a schematic representation of two stations of a system according to one aspect of the invention.
- La figure 9 montre une représentation schématique d'un système selon l'invention. DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION DE L'INVENTION - Figure 9 shows a schematic representation of a system according to the invention. DETAILED DESCRIPTION OF AT LEAST ONE EMBODIMENT OF THE INVENTION
Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique. Dans la suite, l'angle d'ouverture à -3 dB (-6 dB) dans un plan est l'angle mesuré entre deux directions pour lesquelles la densité de puissance est de 3 dB (6 dB) inférieure à la valeur maximale de ladite densité dans ledit plan. De plus, la zone de couverture d'une antenne dans un plan est définie comme la zone comprise entre deux directions pour lesquelles la densité de puissance est de 6 dB inférieure à la valeur maximale de ladite densité dans ledit plan. Dans un premier mode de réalisation illustré aux figures 1 , 2A et 2B, l'invention concerne un système comprenant une pluralité de stations Si d'émission/réception. Chaque station Si de la pluralité de stations Si comprend un support S sur lequel sont fixées une première antenne A1 associée à un premier réflecteur R1 et reliée à une première radio (non représentée) configurée pour émettre et recevoir sur un premier canal Wi-Fi ; une deuxième antenne A2 associée à un deuxième réflecteur R2 et reliée à une deuxième radio (non représentée) configurée pour émettre et recevoir sur un deuxième canal Wi-Fi ; et une troisième antenne A3 associée à un troisième réflecteur R3 et reliée à une troisième radio (non représentée) configurée pour émettre et recevoir sur un troisième canal Wi-Fi ; les premier, deuxième et troisième canaux étant disjoints les uns des autres. Par exemple, dans le cas de l'encodage DSSS (Direct-Sequence Spread Spectrum en anglais ou étalement de spectre à séquence directe en français) et de l'utilisation d'une radio 2.4GHz pour chaque antenne A1 , A2, A3, le premier canal C1 de fréquence centrale 2.412 GHz, le sixième canal C6 de fréquence centrale 2.437 GHz et le onzième canal C1 1 de fréquence centrale 2.462 GHz illustrés à la
figure 3 pourront être choisis, ces derniers, d'une largeur de bande de 22 MHz, étant disjoints. Les radios peuvent faire partie d'un même point d'accès, deux des trois radios peuvent faire partie du même point d'accès ou bien encore les trois radios peuvent appartenir chacune à un point d'accès distinct. Le support S de chaque station Si de la pluralité de stations Si comprend un prisme triangulaire et chacune des trois faces rectangles dudit prisme constitue un réflecteur parmi le premier, le deuxième et le troisième réflecteurs R1 , R2, R3. Le support S sert donc à la fois de support d'antenne et de réflecteur. Dans un mode de réalisation, le prisme est un prisme triangulaire équilatéral, c'est-à-dire un prisme dont les surfaces triangulaires sont définies par un triangle équilatéral. Cette disposition facilite la mise en place des stations Si d'un système de stations Si selon l'invention. Unless otherwise specified, the same element appearing in different figures has a unique reference. In the following, the aperture angle at -3 dB (-6 dB) in a plane is the angle measured between two directions for which the power density is 3 dB (6 dB) lower than the maximum value of said density in said plane. In addition, the coverage area of an antenna in a plane is defined as the area between two directions for which the power density is 6 dB less than the maximum value of said density in said plane. In a first embodiment illustrated in FIGS. 1, 2A and 2B, the invention relates to a system comprising a plurality of transmit / receive stations Si. Each station Si of the plurality of stations Si comprises a support S on which are fixed a first antenna A1 associated with a first reflector R1 and connected to a first radio (not shown) configured to transmit and receive on a first Wi-Fi channel; a second antenna A2 associated with a second reflector R2 and connected to a second radio (not shown) configured to transmit and receive on a second Wi-Fi channel; and a third antenna A3 associated with a third reflector R3 and connected to a third radio (not shown) configured to transmit and receive on a third Wi-Fi channel; the first, second and third channels being disjoint from each other. For example, in the case of Direct-Sequence Spread Spectrum (DSSS) encoding and the use of a 2.4GHz radio for each antenna A1, A2, A3, the first central channel C1 2.412 GHz, the sixth channel C6 central frequency 2.437 GHz and the eleventh channel C1 1 center frequency 2.462 GHz illustrated in FIG. Figure 3 may be chosen, the latter, with a bandwidth of 22 MHz, being disjoint. Radios can be part of the same access point, two of the three radios can be part of the same access point or three radios yet each may belong to a separate access point. The support S of each station Si of the plurality of stations Si comprises a triangular prism and each of the three rectangular faces of said prism constitutes a reflector from among the first, second and third reflectors R1, R2, R3. The support S serves both antenna support and reflector. In one embodiment, the prism is an equilateral triangular prism, i.e., a prism whose triangular surfaces are defined by an equilateral triangle. This arrangement facilitates the establishment of Si stations of a system of Si stations according to the invention.
Les première, deuxième et troisième antennes A1 , A2, A3 de chaque station Si de la pluralité de stations Si sont identiques et conçues de sorte à émettre selon un lobe principal LP dont l'angle d'ouverture à -6 dB est compris entre 100° et 120° dans un plan horizontal H, ledit plan horizontal H étant parallèle aux surfaces triangulaires du prisme. Dans un exemple de réalisation illustré à la figure 4 qui représente le diagramme d'émission d'une antenne parmi la première, deuxième ou troisième antenne A1 , A2, A3 dans le plan horizontal H pour un gain maximal à 9 dBi, l'antenne présente un angle d'ouverture à -6 dB égal à 1 14°. Il est intéressant de noter ici que les antennes A1 , A2, A3 de chaque station Si sont des équipements totalement passifs qui n'ont donc pas besoin d'être reconfigurables. Cela simplifie la fabrication et en réduit les coûts. De plus, dans chaque station Si, les première, deuxième et troisième antennes A1 , A2, A3 sont agencées de sorte que leurs zones de couverture sont disjointes (autrement dit, ne se recouvrent pas). Comme indiqué sur la figure 4, il est également possible de définir un plan vertical V, perpendiculaire au plan horizontal H est comprenant la direction pour laquelle la densité de puissance est maximale dans ledit plan horizontal H. The first, second and third antennas A1, A2, A3 of each station Si of the plurality of stations Si are identical and designed to emit in a main lobe LP whose opening angle at -6 dB is between 100 ° and 120 ° in a horizontal plane H, said horizontal plane H being parallel to the triangular surfaces of the prism. In an exemplary embodiment illustrated in Figure 4 which shows the diagram of transmission of an antenna of the first, second or third antenna A1, A2, A3 in the horizontal plane H for maximum gain 9 dBi, the antenna has an opening angle of -6 dB equal to 1 14 °. It is interesting to note here that the antennas A1, A2, A3 of each station Si are totally passive devices that do not need to be reconfigurable. This simplifies manufacturing and reduces costs. In addition, in each Si station, the first, second and third antennas A1, A2, A3 are arranged so that their coverage areas are disjoint (that is, do not overlap). As indicated in FIG. 4, it is also possible to define a vertical plane V, perpendicular to the horizontal plane H is comprising the direction for which the power density is maximum in said horizontal plane H.
Dans un mode de réalisation illustré à la figure 5, l'angle d'ouverture dans le plan horizontal H à -6 dB de chaque antenne est égal à 120°. Ainsi, la zone entourant une station Si est entièrement couverte. Plus particulièrement, chaque station Si
couvre une première zone de couverture ZC1 associée à la première antenne A1 (et donc à un premier canal), une deuxième zone de couverture ZC2 associée à la deuxième antenne A2 (et donc à un deuxième canal) et une troisième zone de couverture ZC3 associée à la troisième antenne A3 (et donc à un troisième canal). Autrement dit, les trois zones de couverture ZC1 , ZC2, ZC3 associée à chaque station sont disjointes (autrement dit, ne se recouvrent pas) et couvrent une zone totale de couverture entourant ladite station Si. In an embodiment illustrated in FIG. 5, the opening angle in the horizontal plane H at -6 dB of each antenna is equal to 120 °. Thus, the area surrounding a Si station is fully covered. More particularly, each station Si covers a first coverage area ZC1 associated with the first antenna A1 (and therefore a first channel), a second coverage area ZC2 associated with the second antenna A2 (and therefore a second channel) and a third coverage area ZC3 associated to the third antenna A3 (and thus to a third channel). In other words, the three coverage areas ZC1, ZC2, ZC3 associated with each station are disjoint (that is, do not overlap) and cover a total coverage area surrounding said station Si.
Dans un mode de réalisation, l'angle d'ouverture à -3 dB du lobe principal dans le plan horizontal H est compris entre 70° et 100°. Dans l'exemple de réalisation illustré à la figure 4, l'antenne présente un angle d'ouverture à -3 dB du lobe principal LP dans le plan horizontal H égal à 70°. In one embodiment, the -3 dB aperture angle of the main lobe in the horizontal plane H is between 70 ° and 100 °. In the example embodiment illustrated in Figure 4, the antenna has an aperture angle at -3 dB of the main lobe LP in the horizontal plane H equal to 70 °.
En outre, dans un système selon l'invention, les stations Si de la pluralité de stations Si sont orientées de manière identique. L'orientation d'une station Si est déterminée à partir d'une première direction donnée par la normale à la surface du premier réflecteur R1 , une deuxième direction donnée par la normale à la surface du deuxième réflecteur R2 et une troisième direction donnée par la normale à la surface du troisième réflecteur R3. Les stations Si sont orientées de manière identique si les premières directions des stations Si sont parallèles entre elles, les deuxièmes directions des stations Si sont parallèles entre elles et les troisièmes directions des stations Si sont parallèles entre elles. Par exemple, on s'assure lors de la mise en place des stations Si de la pluralité de stations Si que toutes les premières directions sont selon un premier point cardinal, que toutes les deuxièmes directions sont selon un deuxième point cardinal et que toutes les troisièmes directions sont selon un troisième point cardinal. Dans le mode de réalisation illustré à la figure 1 , la première direction des stations Si est orientée Nord-Est, la deuxième direction est orientée Sud et la troisième direction est orienté Nord-Ouest. Ainsi, l'orientation des stations peut se faire à l'aide d'une simple boussole ce qui simplifie grandement l'installation d'un système selon un deuxième aspect de l'invention. De préférence, la distance D séparant chaque station Si est constante. Dans un mode de réalisation illustré aux figures 6 et 7, pour chaque antenne A1 , A2, A3 de chaque station Si, la direction pour laquelle la densité de
puissance est maximale forme, dans le plan vertical V perpendiculaire au plan horizontal H, un angle compris entre 3° et 6° avec le plan horizontal H. Dans un exemple de réalisation illustré à la figure 6 qui représente le diagramme d'émission d'une antenne parmi la première, deuxième ou troisième antenne A1 , A2, A3 dans le plan vertical V pour un gain maximal à 9 dBi, la direction pour laquelle la densité de puissance est maximale forme un angle avec le plan horizontal H égale à 5°. In addition, in a system according to the invention, the stations Si of the plurality of stations Si are oriented identically. The orientation of a station Si is determined from a first direction given by the normal to the surface of the first reflector R1, a second direction given by the normal to the surface of the second reflector R2 and a third direction given by the normal to the surface of the third reflector R3. The stations Si are oriented identically if the first directions of the stations Si are parallel to each other, the second directions of the stations Si are parallel to each other and the third directions of the stations Si are parallel to each other. For example, it is ensured during the establishment of the stations Si of the plurality of stations If all the first directions are in a first cardinal point, that all the second directions are in a second cardinal point and that all the third directions are according to a third cardinal point. In the embodiment illustrated in FIG. 1, the first direction of the stations Si is oriented North-East, the second direction is South and the third direction is North-West. Thus, the orientation of the stations can be done using a simple compass which greatly simplifies the installation of a system according to a second aspect of the invention. Preferably, the distance D separating each station Si is constant. In an embodiment illustrated in FIGS. 6 and 7, for each antenna A1, A2, A3 of each station Si, the direction for which the density of power is maximum forms, in the vertical plane V perpendicular to the horizontal plane H, an angle between 3 ° and 6 ° with the horizontal plane H. In an exemplary embodiment illustrated in Figure 6 which represents the emission diagram of an antenna among the first, second or third antenna A1, A2, A3 in the vertical plane V for a maximum gain of 9 dBi, the direction for which the power density is maximum forms an angle with the horizontal plane H equal to 5 ° .
Dans un mode de réalisation, chaque réflecteur R1 , R2, R3 de chaque station Si de la pluralité de stations Si est conçu pour fournir une isolation arrière (relativement à la direction d'émission de l'antenne associée audit réflecteur) au niveau de l'antenne A1 , A2, A3 associée audit réflecteur telle que le rapport avant/arrière est au moins égal à ladite isolation additionnée au gain avant maximum dans le lobe principal LP de l'antenne A1 , A2, A3 associée audit réflecteur R1 , R2, R3. In one embodiment, each reflector R1, R2, R3 of each station Si of the plurality of stations Si is designed to provide a rear isolation (relative to the direction of transmission of the antenna associated with said reflector) at the level of the 'antenna A1, A2, A3 associated with said reflector such that the front / back ratio is at least equal to said maximum added insulation before gain in the main lobe SL for the antenna A1, A2, A3 associated with said reflector R1, R2, R3.
Dans un mode de réalisation, les première, deuxième et troisième antennes A1 , A2, A3 de chaque station Si de la pluralité de stations Si sont des antennes à polarisation horizontale. Dans un mode de réalisation alternatif, les première, deuxième et troisième antennes A1 , A2, A3 sont des antennes à polarisation verticale. Dans un mode de réalisation alternatif, les première, deuxième et troisième antennes A1 , A2, A3 sont des antennes à polarisation horizontale et à polarisation verticale, et les lobes principaux LP associés à chacune desdites polarisations ont des propriétés identiques à celles énoncées plus haut concernant le lobe principal LP dans le cas d'une seule polarisation. In one embodiment, the first, second and third antennas A1, A2, A3 of each station Si of the plurality of stations Si are horizontally polarized antennas. In an alternative embodiment, the first, second and third antennas A1, A2, A3 are vertically polarized antennas. In an alternative embodiment, the first, second and third antennas A1, A2, A3 are horizontally polarized and vertically polarized antennas, and the main lobes LP associated with each of said polarizations have properties identical to those described above. the main lobe LP in the case of a single polarization.
Dans un mode de réalisation illustré à la figure 8, chaque station Si de la pluralité de stations Si est orientée de sorte que, pour chaque antenne A1 , A2, A3, la direction pour laquelle la densité de puissance est maximale est orientée vers le sol. Cette configuration est particulièrement aisée à obtenir lorsque chaque station Si est agencée de sorte que, pour chaque antenne A1 , A2, A3, la direction pour laquelle la densité de puissance est maximale dans le plan vertical V forme un angle compris entre 3° et 6° avec le plan horizontal H. En effet, il suffit simplement de s'assurer que le plan horizontal H est parallèle au sol ou, autrement dit, que les faces triangulaires du prisme sont parallèles au sol.
Dans un mode de réalisation, afin que le rayonnement d'une antenne A1 , A2, A3 d'une première station Si de la pluralité de stations Si ne vienne pas perturber une autre antenne A1 , A2, A3 d'une deuxième station Si de la pluralité de stations Si émettant sur le même canal et située en aval, la distance D séparant deux stations Si les plus proches est choisie de sorte que le niveau de signal théoriquement reçu d'une source émettant à une puissance isotrope rayonnée équivalente de 20 dBm à ladite distance D est inférieur ou égal à l'isolation arrière de chaque réflecteur R1 , R2, R3 (relativement à la direction d'émission de l'antenne A1 , A2, A3 associée audit réflecteur R1 , R2, R3). De préférence, la distance D séparant deux stations Si les plus proches sera choisie de sorte que le niveau de signal théoriquement reçu d'une source émettant à une puissance isotrope rayonnée équivalente de 20 dBm à ladite distance D est égal à l'isolation arrière chaque réflecteur R1 , R2, R3. En effet, la distance ainsi choisie est suffisante pour limiter au maximum les interférences mais reste suffisamment faible pour éviter l'apparition de secteurs non couverts dans la zone totale couverte par le système selon l'invention. In an embodiment illustrated in FIG. 8, each station Si of the plurality of stations Si is oriented so that, for each antenna A1, A2, A3, the direction for which the power density is maximum is oriented towards the ground. . This configuration is particularly easy to obtain when each station Si is arranged so that, for each antenna A1, A2, A3, the direction for which the power density is maximum in the vertical plane V forms an angle of between 3 ° and 6 °. ° with the horizontal plane H. In fact, it suffices simply to ensure that the horizontal plane H is parallel to the ground or, in other words, that the triangular faces of the prism are parallel to the ground. In one embodiment, so that the radiation of an antenna A1, A2, A3 of a first station Si of the plurality of stations Si does not come to disturb another antenna A1, A2, A3 of a second station Si of the plurality of Si stations transmitting on the same channel and located downstream, the distance D separating two closest Si stations is chosen so that the signal level theoretically received from a source emitting at an equivalent isotropic radiated power of 20 dBm to said distance D is less than or equal to the back insulation of each reflector R1, R2, R3 (relative to the emission direction of the antenna A1, A2, A3 associated with said reflector R1, R2, R3). Preferably, the distance D between two nearest stations Si will be chosen so that the signal level theoretically received from a source emitting at an equivalent radiated isotropic power of 20 dBm at said distance D is equal to the rear insulation each reflector R1, R2, R3. Indeed, the thus selected distance is sufficient to minimize the interference but still low enough to avoid the occurrence of non-covered areas in the total area covered by the system according to the invention.
Dans un mode de réalisation illustré aux figures 1 et 9, les stations Si de la pluralité de stations Si sont disposées de sorte à former dans un plan parallèle au plan horizontal H un maillage dont la maille élémentaire est une maille losange. Autrement dit, la projection de chaque station Si dans un plan parallèle au plan horizontal H forme un motif représentant un maillage dont la maille élémentaire ME est une maille élémentaire losange. De préférence, comme illustré à la figure 9, la maille ME losange présente deux angles aigus opposés de 60° de sorte qu'il n'existe aucune zone non couverte entre les stations Si de la pluralité de stations Si tout en minimisant le nombre de stations Si nécessaires à ladite couverture. De plus, le recouvrement entre différentes zones de couverture ZC1 , ZC2, ZC3 ne s'opère qu'entre des zones de couverture ZC1 , ZC2, ZC3 affectées à des canaux différents. Ce chevauchement permet de garantir un niveau signal moyen élevé pour toutes les stations et donc de faciliter l'itinérance (ou roaming en anglais). Dans un mode de réalisation, les stations Si de la pluralité de stations Si sont connectées entre elles au moyen de technologies filaires (i.e. Ethernet, Fibre, xDSL)
ou au moyen de liaisons radio, par exemple des technologies de maillage Wi-Fi de sorte à partager un même réseau pouvant donner accès un réseau privé IP et/ou à un réseau public externe comme Internet.
In an embodiment illustrated in FIGS. 1 and 9, the stations Si of the plurality of stations Si are arranged so as to form, in a plane parallel to the horizontal plane H, a mesh whose elementary mesh is a diamond mesh. In other words, the projection of each station Si in a plane parallel to the horizontal plane H forms a pattern representing a mesh whose elementary mesh ME is a diamond elemental mesh. Preferably, as illustrated in FIG. 9, the ME diamond mesh presents two opposite acute angles of 60 ° so that there is no uncovered area between the stations Si of the plurality of stations If while minimizing the number of If necessary stations to said coverage. In addition, the overlap between different coverage areas ZC1, ZC2, ZC3 only operates is that between coverage areas ZC1, ZC2, ZC3 assigned to different channels. This overlap ensures a high average signal level for all stations and thus facilitates roaming. In one embodiment, the stations Si of the plurality of stations Si are connected together by means of wired technologies (ie Ethernet, fiber, xDSL). or by means of radio links, for example Wi-Fi mesh technologies so as to share the same network that can provide access to a private IP network and / or to an external public network such as the Internet.
Claims
REVENDICATIONS
Système comprenant une pluralité de station (Si) d'émission/réception caractérisé en ce que chaque station (Si) d'émission/réception comprend un support (S) sur lequel sont fixées une première antenne (A1 ) associée à un premier réflecteur (R1 ) et reliée à une première radio configurée pour émettre et recevoir sur un premier canal Wi-Fi ; une deuxième antenne (A2) associée à un deuxième réflecteur (R2) et reliée à une deuxième radio configurée pour émettre et recevoir sur un deuxième canal Wi-Fi ; et une troisième antenne (A3) associée à un troisième réflecteur (R3) et reliée à une troisième radio configurée pour émettre et recevoir sur un troisième canal Wi-Fi ; les premier, deuxième et troisième canaux étant parfaitement disjoints les uns des autres ; le support (S) comprenant un prisme triangulaire équilatéral et chacune des trois faces rectangles dudit prisme constituant un réflecteur parmi le premier, le deuxième et le troisième réflecteurs (R1 , R2, R3) ; les première, deuxième et troisième antennes (A1 , A2, A3) étant identiques, conçues de sorte à émettre selon un lobe principal dont l'angle d'ouverture à -6 dB dans un plan horizontal (H) parallèle aux surfaces triangulaires du prisme est compris entre 100° et 120° et agencées de sorte que leurs zones de couverture soient disjointes ; les stations (Si) de la pluralité de stations (Si) étant toutes orientées de manière identique. System comprising a plurality of transmitting / receiving stations (Si) characterized in that each transmitting / receiving station (Si) comprises a support (S) on which are fixed a first antenna (A1) associated with a first reflector ( R1) and connected to a first radio configured to transmit and receive on a first Wi-Fi channel; a second antenna (A2) associated with a second reflector (R2) and connected to a second radio configured to transmit and receive on a second Wi-Fi channel; and a third antenna (A3) associated with a third reflector (R3) and connected to a third radio configured to transmit and receive on a third Wi-Fi channel; the first, second and third channels being perfectly disjoint from one another; the support (S) comprising an equilateral triangular prism and each of the three right faces of said prism constituting a reflector among the first, second and third reflectors (R1, R2, R3); the first, second and third antennas (A1, A2, A3) being identical, designed to emit in a main lobe whose opening angle at -6 dB in a horizontal plane (H) parallel to the triangular surfaces of the prism is between 100 ° and 120 ° and arranged so that their coverage areas are disjoint; the stations (Si) of the plurality of stations (Si) being all oriented identically.
Système selon la revendication précédente caractérisé en ce que, pour chaque antenne (A1 , A2, A3) de chaque station (Si) de la pluralité de stations (Si), l'angle d'ouverture à -3 dB du lobe principal dans le plan horizontal (H) est compris entre 70° et 100°. System according to the preceding claim characterized in that, for each antenna (A1, A2, A3) of each station (Si) of the plurality of stations (Si), the opening angle at -3 dB of the main lobe in the horizontal plane (H) is between 70 ° and 100 °.
Système selon l'une des revendications précédentes caractérisé en ce que pour chaque antenne (A1 , A2, A3) de chaque station (Si) de la pluralité de stations (Si), la direction pour laquelle la densité de puissance est maximale forme dans un plan vertical (V) perpendiculaire au plan horizontal (H) un angle compris entre 3° et 6° avec ledit plan horizontal (H).
Système selon l'une des revendications précédentes caractérisé en ce que chaque réflecteur (R1 , R2, R3) de chaque station (Si) de la pluralité de stations (Si) est conçu pour fournir une isolation arrière au niveau de l'antenne (A1 , A2, A3) associée audit réflecteur telle que le rapport avant/arrière est au moins égal à ladite isolation additionnée au gain avant maximum dans le lobe principal de l'antenne associée audit réflecteur (A1 , A2, A3). System according to one of the preceding claims, characterized in that for each antenna (A1, A2, A3) of each station (Si) of the plurality of stations (Si), the direction for which the power density is maximum forms in a vertical plane (V) perpendicular to the horizontal plane (H) an angle between 3 ° and 6 ° with said horizontal plane (H). System according to one of the preceding claims, characterized in that each reflector (R1, R2, R3) of each station (Si) of the plurality of stations (Si) is designed to provide a rear isolation at the antenna (A1 , A2, A3) associated with said reflector such that the forward / backward ratio is at least equal to said insulation added to the maximum forward gain in the main lobe of the antenna associated with said reflector (A1, A2, A3).
Système selon l'une des revendications précédentes caractérisé en ce que les première, deuxième et troisième antennes (A1 , A2, A3) de chaque station (Si) de la pluralité de stations (Si) sont des antennes à polarisation horizontale et/ou à polarisation verticale. System according to one of the preceding claims, characterized in that the first, second and third antennas (A1, A2, A3) of each station (Si) of the plurality of stations (Si) are horizontal polarization antennas and / or vertical polarization.
Système selon l'une des revendications précédentes caractérisé en ce que la distance (D) séparant deux stations (Si) les plus proches est choisie de sorte que le niveau de signal théoriquement reçu d'une source émettant à une puissance isotrope rayonnée équivalente de 20 dBm à ladite distance (D) est inférieur à l'isolation arrière de chaque réflecteur (R1 , R2, R3). System according to one of the preceding claims, characterized in that the distance (D) separating two nearest stations (Si) is chosen so that the signal level theoretically received from a source emitting at an equivalent radiated isotropic power of 20 dBm at said distance (D) is smaller than the rear insulation of each reflector (R1, R2, R3).
Système selon l'une des revendications 1 à 5 caractérisé en ce que la distance (D) séparant deux stations (Si) les plus proches est choisie de sorte que le niveau de signal théoriquement reçu d'une source émettant à une puissance isotrope rayonnée équivalente de 20 dBm à ladite distance (D) est égal à l'isolation arrière de chaque réflecteur (R1 , R2, R3). System according to one of Claims 1 to 5, characterized in that the distance (D) separating two nearest stations (Si) is chosen so that the signal level theoretically received from a source emitting at an equivalent isotropically radiated power. of 20 dBm at said distance (D) is equal to the rear insulation of each reflector (R1, R2, R3).
Système selon l'une des revendications précédentes caractérisé en ce que les stations (Si) de la pluralité de stations (Si) sont disposées de sorte à former dans un plan parallèle au plan horizontal (H) un maillage dont la maille élémentaire (ME) est une maille losange. System according to one of the preceding claims, characterized in that the stations (Si) of the plurality of stations (Si) are arranged so as to form in a plane parallel to the horizontal plane (H) a mesh whose elementary mesh (ME) is a diamond mesh.
9. Système selon la revendication précédente caractérisé en ce que la maille losange (ME) présente deux angles aigus opposés de 60°.
9. System according to the preceding claim characterized in that the diamond mesh (ME) has two opposite acute angles of 60 °.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1756150A FR3068524B1 (en) | 2017-06-30 | 2017-06-30 | WI-FI SYSTEM INCLUDING A PLURALITY OF TRANSMISSION / RECEPTION STATIONS |
FR1756150 | 2017-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019002446A1 true WO2019002446A1 (en) | 2019-01-03 |
Family
ID=60302183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/067384 WO2019002446A1 (en) | 2017-06-30 | 2018-06-28 | Wi-fi system comprising a plurality of transmission/reception stations |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3068524B1 (en) |
WO (1) | WO2019002446A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997040594A1 (en) * | 1996-04-19 | 1997-10-30 | Ericsson Inc. | Dividable transmit antenna array for a cellular base station and associated method |
US20100128670A1 (en) * | 2008-11-27 | 2010-05-27 | Kuang Sheng Yun Ltd. | Base station interference-free antenna module and WiFi base station mesh network system using the antenna module |
US20130335293A1 (en) * | 2011-12-16 | 2013-12-19 | Huawei Technologies Co., Ltd. | Antenna apparatus, antenna device and signal transmitting apparatus |
WO2015120417A2 (en) * | 2014-02-08 | 2015-08-13 | Smart Antenna Systems, Inc | Wideband antenna star array |
-
2017
- 2017-06-30 FR FR1756150A patent/FR3068524B1/en active Active
-
2018
- 2018-06-28 WO PCT/EP2018/067384 patent/WO2019002446A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997040594A1 (en) * | 1996-04-19 | 1997-10-30 | Ericsson Inc. | Dividable transmit antenna array for a cellular base station and associated method |
US20100128670A1 (en) * | 2008-11-27 | 2010-05-27 | Kuang Sheng Yun Ltd. | Base station interference-free antenna module and WiFi base station mesh network system using the antenna module |
US20130335293A1 (en) * | 2011-12-16 | 2013-12-19 | Huawei Technologies Co., Ltd. | Antenna apparatus, antenna device and signal transmitting apparatus |
WO2015120417A2 (en) * | 2014-02-08 | 2015-08-13 | Smart Antenna Systems, Inc | Wideband antenna star array |
Also Published As
Publication number | Publication date |
---|---|
FR3068524A1 (en) | 2019-01-04 |
FR3068524B1 (en) | 2020-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3503431B1 (en) | Method for multi-beam coverage by grouping basic beams of the same colour, and telecommunications payload for implementing such a method | |
EP2434578B1 (en) | Antennal system with two grids of spots with nested complementary meshes | |
EP2688142B1 (en) | Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna | |
EP2532046A1 (en) | Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle | |
EP2099142B1 (en) | Method for establishing radio links by means of a multi-beam satellite | |
EP1955405A1 (en) | Array antenna with irregular mesh and possible cold redundancy | |
FR2964800A1 (en) | MULTIFUNCAL TELECOMMUNICATION ANTENNA ON HIGH CAPACITY SATELLITE AND ASSOCIATED TELECOMMUNICATION SYSTEM | |
FR2861897A1 (en) | MULTI-BEAM HIGH-FREQUENCY ANTENNA SYSTEM | |
CA2290676A1 (en) | Telecommunication system antenna and method for transmitting and receiving using said antenna | |
EP0992128A1 (en) | Telecommunication system | |
EP2843761B1 (en) | Compact antenna system | |
FR2844400A1 (en) | HYDRID ANTENNA REFLECTOR AND SATELLITE SYSTEM | |
EP1291962A1 (en) | Array beamformer for spacecraft | |
CA2994728C (en) | Surface-wave antenna, antenna array and use of an antenna or an antenna array | |
WO2019002446A1 (en) | Wi-fi system comprising a plurality of transmission/reception stations | |
EP3639409B1 (en) | Satellite payload comprising a dual reflective surface reflector | |
EP2104242B1 (en) | Telecommunication network | |
CA2327371C (en) | Radiating source for transmitting and receiving antenna designed for installation on board a satellite | |
EP0844686B1 (en) | System of transmit relay station | |
FR3102311A1 (en) | NETWORK ANTENNA | |
WO2021130072A1 (en) | Multilobe parabolic antenna for troposhperic microwave communications | |
EP2889955B1 (en) | Compact antenna structure for satellite telecommunication | |
EP1993222B1 (en) | Method allowing mobile TV broadcasting on a single frequency and minimising interference with fixed TV receivers | |
WO2017013076A1 (en) | Improved instantaneous wide-frequency-band electronic scanning antenna | |
WO2003003609A1 (en) | Installation for a radiocommunication network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18732818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18732818 Country of ref document: EP Kind code of ref document: A1 |