WO2019001828A1 - Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour la mise en œuvre dudit procédé - Google Patents

Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour la mise en œuvre dudit procédé Download PDF

Info

Publication number
WO2019001828A1
WO2019001828A1 PCT/EP2018/062468 EP2018062468W WO2019001828A1 WO 2019001828 A1 WO2019001828 A1 WO 2019001828A1 EP 2018062468 W EP2018062468 W EP 2018062468W WO 2019001828 A1 WO2019001828 A1 WO 2019001828A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
communication
communication devices
topology
ring topology
Prior art date
Application number
PCT/EP2018/062468
Other languages
German (de)
English (en)
Inventor
Franz-Josef GÖTZ
Marcel Kiessling
Jürgen Schmitt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2019001828A1 publication Critical patent/WO2019001828A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0095Ring

Definitions

  • An industrial automation system typically comprises a plurality of on an industrial Kommunikati ⁇ onsnetz networked automation devices and serves as part of a production or process automation for control or regulation of systems, machines or devices. Due to time-critical framework conditions in technical systems automated by means of industrial automation systems, in industrial communication networks for communication between automation devices predominantly real-time communication protocols such as PROFINET, PROFIBUS or real-time Ethernet are used.
  • real-time communication protocols such as PROFINET, PROFIBUS or real-time Ethernet are used.
  • Interruptions of communication links between computer units of an industrial automation system or automation devices can lead to an undesired or unnecessary repetition of a transmission of a service request. This causes additional utilization of communication links of the industrial automation system, which can lead to further system faults or errors.
  • a special problem results in indust ⁇ terial automation systems on a regular basis from a message traffic with a relatively large number, but relatively short messages, which the above problems are amplified.
  • problems with Ethernet-based communication networks can arise when network resources are used to transmit short data frames with real-time requirements due to their use for often very different applications. be competitively claimed for a transmission of data frames with large user data content. This can lead to a delayed transmission of the data frames with real-time requirements or even to a loss of individual such data frames.
  • each data frame (frame) is duplicated by a sending communication device and sent to a receiver in two different ways .
  • redundant data frames representing duplicates are filtered out of a received data stream.
  • Media Redundancy Protocol is defined in the standard IEC 62439-2 and enables the compensation of individual connection failures in networks with a simple ring topology in the event of a bursty redundant transmission of data frames. Accordingly Media Redundancy Protocol a two-port switch within the ring topology, a redundancy manager is delivered assigns ⁇ which monitors the network connection failures and possibly initiate a switching action for a ring closure. In normal operating state of the redundancy manager checks on the basis of test data frames, if ei ⁇ ne interrupt has occurred within the ring topology. Data frame with user data is forwarded to the switch assigned to the redundancy manager. Do not continue from one port to the other port.
  • MRP Media Redundancy Protocol
  • the topology is linear.
  • the two line ends are connected to a redundancy manager, which separates the two line ends in error-free case, while the two line ends are connected in the event of an error.
  • the redundancy manager feeds test telegrams into the two line ends at predetermined time intervals and derives from the reception at the respective other end of the line within a predetermined time interval a command for a separation of the two line ends. If no test telegram has been received within a given time interval, the redundancy manager derives a command for a connection of the two line ends.
  • a method for filtering redundant data frames in a network node with at least two ports comprising a transmitting and a Empfangsein ⁇ direction.
  • the data frames each have at least one MAC source address, one data frame ID and one CRC. Value.
  • the transmitting devices each comprise a transmitting ⁇ list, are stored in the data to be transmitted frames.
  • the receiving devices each have a receiving memory for storing received data frames.
  • a communication device for a redundantly operable in ⁇ industrial communication network comprises according to EP 2 661 023 Bl a first and second transmitting and receiving unit, the data packets within the industrial communication network either bumpy or bumpless transfer and selectively in a bumpy or bumpless transmission mode can be switched.
  • an evaluation unit is connected, the shock-liable ⁇ or bum-free detected within the industrial Kommunikati ⁇ onsnetzes to be transmitted data packets.
  • a redundancy handling unit and a filter unit for received redundant data packets are deactivated.
  • the first and second transmitting and receiving unit is a spoke pure ⁇ standardized associated moving the shock-prone transmission mode minimum buffers a shock subject to überffenndes data packet during a predetermined time period.
  • EP 2713563 Al relates to a redundant operable industri ⁇ elles communication system having a plurality of inside a ring or tree topology redundantly connected to an industrial communication network communication devices.
  • a furnished as part of ring redundancy manager within the line topology communi ⁇ cation device comprises a monitoring and Steuerungsein- integrated, which detects an interruption in the line topology based shipped test messages and Wei ⁇ shut off any messages containing user data between two of the line topology associated terminals of the communication device set up as a partial ring redundancy manager controls a detected interruption.
  • the first and the second communication device to send within the monontopolo ⁇ energy received test messages to the furnished as part of the ring redundancy manager communication device or send test messages to the furnished as part of the ring redundancy manager communication device.
  • each ring communication device has two ring ports and periodically test frames for detecting interruptions within the ring topology sends.
  • each ring communication device has two ring ports and periodically test frames for detecting interruptions within the ring topology sends.
  • each ring communication device has two ring ports and periodically test frames for detecting interruptions within the ring topology sends.
  • Gesen ⁇ Deten test frames at a respective target ring port of the ring communication device within a predetermined time ⁇ space, sends the respective target ring port, an error-Mel ⁇ -making at the lack of receiving the test frames to the respective source-ring port.
  • a sub ⁇ interruption detected within the ring topology A ring- .
  • Forwarding rules for the ring communication devices are basically defined by means of received frames derived or independently learned forwarding tables according to standard Ethernet concepts. In particular, the forwarding tables are not predetermined exclusively by a network controller.
  • DE 10 2011 082965 A1 describes a method for operating a network arrangement with a plurality of network devices coupled to one another in a ring structure.
  • a respective network device has a control device and a switch device with at least two ports for coupling to a communication path.
  • at least two VLANs are simultaneously provided in the ring structure, and a data packet is sent by the controller of a selected network device via a port of the switch device to one of the two VLANs.
  • the other port of the switch device of the selected network device is deactivated for the one VLAN.
  • telegrams to unknown users are generally forwarded via all ports of a switch.
  • Sender addresses of telegrams are stored in Source Address Tables, which are later used for port-selective switching.
  • Source Address Tables which are later used for port-selective switching.
  • a forwarding of telegrams is limited to a way learned on the basis of the respective sender address.
  • MRP is used as a ring redundancy protocol
  • the source address tables must be deleted in the event of topology changes or switching processes controlled by a redundancy manager and then refilled.
  • the present invention has for its object to provide a method which allows th topology changes in an efficient implementation of a redundant communication in a communication network and to any position maschten Rekonfigurationszei- low, and to provide a Kommunikati ⁇ ons réelle for its implementation.
  • This object is achieved by a method with the features specified in claim 1 and by a communication device with the features specified in claim 9.
  • Advantageous developments of the present invention are specified in the dependent claims.
  • the communication network comprises within a ring topology interconnectable communication 0
  • a selected communication device which is operated, for example, as a ring redundancy manager, comprises an activated monitoring and control unit. These monitoring and control unit detects an interruption in ei ⁇ ner ring topology based by the selected Kommunikati ⁇ ons réelle shipped and again received test messages. A missing test message preferably indicates an interrupt within the ring topology.
  • the monitoring and control unit controls a forward ⁇ line of messages with payload data between the ring terminals of the selected communication device as a function of a detected interruption.
  • a forwarding of messages with user data between the ring terminals of the selected communication device is activated by the monitoring and control unit of ⁇ selected communication device in an interruption within the ring topology.
  • the communication network has a meshed topology.
  • each of two disjoint paths are determined within a ring topology ⁇ from the meshed topology.
  • the communication devices are logically connected to each other via the determined disjoint paths within the ring topology.
  • corresponding forwarding rules messages are forwarded via the ring terminals of the communication ⁇ devices.
  • the two disjoint paths between two communication devices within the ring topology extend in particular via opposite ring directions.
  • several selected Medunikationsge- include councils each one activatable monitoring and control ⁇ unit.
  • the miteinan ⁇ connected within the ring topology communication devices are preferably for an independent state transition of a blocked after an interruption connection in a payload forwarding
  • Dij kstra algorithm Bellman-Ford algorithm or Floyd Warshall algorithm determined.
  • the disjoint paths can be determined within the ring topology, for example, by the activated monitoring and Steue ⁇ approximately unity, by a central entity within the indus- trial communications network or through the respective communication devices.
  • the communication device is seen to perform a method according to foregoing prior ⁇ and comprises at least a first and a second terminal for connection with other communication devices in a ring topology.
  • the communica tion ⁇ device to a coupling member through which the first and the second terminal are connected to each other switchable.
  • An activatable monitoring and control unit of the communi ⁇ cation device is configured and arranged to detect an interruption in a ring topology based ship ⁇ ter and again received test messages and forwarding of messages with payload data between the first and the second terminal in response to to to control a detected interruption.
  • the communication apparatus of this is is accessible- tet and arranged to detect redundant communication links ⁇ gene between two communication devices of a meshed topology two disjoint paths within an annular combustion topology.
  • the communication devices are located via the determined disjoint paths within the ring topology.
  • the communication device is designed and set up for forwarding messages via the first and the second connection in accordance with forwarding rules that correspond to disjunct paths between in each case two communication devices within the ring topology.
  • the disjunctive paths for redundant communication links between two communication devices are provided within the ring topology.
  • the monitoring and control unit is designed and set up for switching through exactly one communication connection between two communication devices via one of the two disjoint paths.
  • Figure 1 is a schematic illustration of a redundant be ⁇ drivable industrial communication network having a plurality within a ring topology of interconnected communication equipment before failure of a ring node,
  • FIG. 2 shows the communication network according to FIG. 1
  • the communication network shown in Figure 1 comprises several ⁇ re switches 101-108 that are connected in a ring topology MITEI ⁇ Nander.
  • the communication network can have a meshed topology.
  • the switches are 101-108 logically connected to one another via determined disjoint paths in ⁇ nerrenz the ring topology.
  • To the switches 105 and 107 are present exemplary embodiments. Game each connected to a programmable controller 200 of an industrial automation system.
  • Programmable logic controllers 200 typically each comprise a communication module, a central unit and at least one input / output unit (I / O module). Via the communication module, the respective entréepro ⁇ programmable controller 200 is, for example, is additionally connected to ei ⁇ nem fieldbus.
  • the input / output unit serves to exchange control and measured variables between the programmable logic controller 200 and a machine or device 300 controlled by the programmable logic controller 200, in particular via the fieldbus.
  • Entranc ⁇ be I / O units can be designed as a decentralized peripheral modules in principle, which are located away from a programmable logic controller.
  • the central unit is provided, in particular, for determining suitable control variables from recorded measured variables.
  • the above components of the programmable logic controllers 200 are connected to each other in the present embodiment via a backplane bus system.
  • the switches 101-108 include in the present varietiessbei ⁇ play each having a first ring connector 111, 121, 131, 141, 151, 161, 171, 181, a second ring connector 112, 122, 132, 142, 152, 162, 172, 182 and designed as a backplane switch coupling element 113, 123, 133, 143, 153, 163, 173, 183.
  • the respective first and second ring connection via the coupling element of the respective switches 101- 108 are switchable interconnected.
  • a selected switch 104 has an activated ring redundancy manager 145 formed by a control and monitoring unit.
  • the Ring redundancy manager 145 detects an interrupt within the ring topology based on sent test messages and controls forwarding of messages with payload data between the first and second ring ports 141-142 of the selected switch 104 in response to a detected interrupt.
  • a lack of test message indicates an interruption within the Ringtopolo ⁇ energy.
  • redirection of messages with payload data between the ring ports 141, 142 of the selected switch 104 is activated by the ring redundancy manager 145.
  • one of the two ring terminals 141, 142 of the selected switch 104 is in a blocked state with respect to a forwarding of messages with user data, so that preferably only test messages are forwarded.
  • the ring redundancy manager 145 initiates a transition of the previously blocked ring terminal 141 or 142 into a message with payload forwarding status.
  • all switches 101-108 within the ring topology can include an activatable ring redundancy manager.
  • switches 101-108 will detect each other the selected Switch with Ring Redundancy Manager enabled. For example, this can be done automatically based on a comparison of device identifiers or priorities assigned to the switches.
  • the switches 101-108 each include a Au ⁇ to-manager function unit 114, 124, 134, 144, 154, 164, 174, 184 to select the switches with activated ring redundancy manager. For redundant communication connections between two switches within the ring topology, two disjoint paths are determined.
  • an ERS ter path extends counterclockwise through the switches 108, 101, 102, 103, 104 and two part- ⁇ paths 11, includes 12th
  • a second path 20 extends clockwise through the switch 106.
  • the disjoint paths may be determined optionally by the activated ring redundancy manager, by a central entity within the industrial communications network, or by the respective switches within the ring topology.
  • Messages with user data are forwarded corresponding to the determined paths corresponding forwarding rules on the ring terminals of the switches 101-108.
  • the ring redundancy manager 145 of the selected switch 104 interrupts the first path from the switch 107 to the switch 105 in the present exemplary embodiment, so that forwarding of messages with user data occurs only via a first subpath 11, which switches the switches 108, 101, 102 includes.
  • a second partial path 12 which includes the switch 104, there is no forwarding of messages with user data in this case.
  • the second path 20 is switched through from the switch 107 to the switch 105.
  • the ring redundancy manager 145 of the selected switch 104 Occurs, for example, by a failure of the switch 106 egg ⁇ ne topology change, this is detected by the ring redundancy manager 145 of the selected switch 104.
  • the first ring terminal 141 and the second ring terminal 142 of the selected switches 104 ⁇ it will go connected together for forwarding of messages with payload data, so that the first path with the two partial paths 11, 12 is switched through. Even after failure of the second path 20 thus exactly one path from the switch 107 to the switch 105 is turned on.
  • the ring redundancy manager 145 of the selected switch 104 basically always passes through exactly one communication connection between two switches via one of two disjoint paths.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Small-Scale Networks (AREA)

Abstract

L'invention vise à transmettre des messages dans un réseau de communication industriel pouvant fonctionner de manière redondante, ledit réseau de communication comprenant des appareils de communication qui peuvent être interconnectés à l'intérieur d'une topologie en anneau. A cet effet, une unité de surveillance et de commande activée d'un appareil de communication sélectionné détecte une interruption à l'intérieur d'une topologie en anneau, au moyen de messages d'essai envoyés par l'appareil de communication sélectionné et reçus en retour. En fonction d'une interruption détectée, une transmission de messages comportant des données utiles est pilotée entre les connexions en anneau de l'appareil de communication sélectionné. Deux chemins disjoints sont déterminés dans chaque cas pour des liaisons de communication redondantes entre deux appareils de communication à l'intérieur de la topologie en anneau. L'unité de surveillance et de commande de l'appareil de communication sélectionné établit dans chaque cas avec précision une liaison de communication entre deux appareils de communication, par l'intermédiaire d'un des deux chemins disjoints.
PCT/EP2018/062468 2017-06-30 2018-05-15 Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour la mise en œuvre dudit procédé WO2019001828A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17178996.9 2017-06-30
EP17178996.9A EP3422641A1 (fr) 2017-06-30 2017-06-30 Procédé de transmission de nouvelles dans un réseau de communication industriel à fonctionnement redondant et appareil destiné à son exécution

Publications (1)

Publication Number Publication Date
WO2019001828A1 true WO2019001828A1 (fr) 2019-01-03

Family

ID=59312995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/062468 WO2019001828A1 (fr) 2017-06-30 2018-05-15 Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour la mise en œuvre dudit procédé

Country Status (2)

Country Link
EP (1) EP3422641A1 (fr)
WO (1) WO2019001828A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3846395A1 (fr) 2019-12-30 2021-07-07 Siemens Aktiengesellschaft Procédé de transmission redondante des flux de données dans un réseau de communication, appareil d'infrastructure de réseau et terminal de communication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062787B1 (fr) 1998-03-11 2003-08-27 Siemens Aktiengesellschaft Reseau local, notamment reseau ethernet, ayant des proprietes de redondance et un gestionnaire de redondance
EP2001170A2 (fr) 2006-03-28 2008-12-10 Nippon Telegraph & Telephone Corporation Procede de controle de voie de communication redondante en boucle
EP2127329A1 (fr) 2007-03-02 2009-12-02 Siemens Aktiengesellschaft Filtrage de trames redondantes dans un noeud de réseau
EP2148473A1 (fr) * 2008-07-22 2010-01-27 ABB Research Ltd Noeuds de commutation pour réseaux à forte disponibilité
DE102011082965A1 (de) 2011-09-19 2013-01-24 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Netzwerkanordnung und Netzwerkanordnung
EP2713563A1 (fr) 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Système de communication industriel pouvant fonctionner de manière redondante, appareil de communication et procédé de fonctionnement redondant d'un système de communication industriel
EP2661023B1 (fr) 2012-04-30 2015-01-14 Siemens Aktiengesellschaft Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062787B1 (fr) 1998-03-11 2003-08-27 Siemens Aktiengesellschaft Reseau local, notamment reseau ethernet, ayant des proprietes de redondance et un gestionnaire de redondance
EP2001170A2 (fr) 2006-03-28 2008-12-10 Nippon Telegraph & Telephone Corporation Procede de controle de voie de communication redondante en boucle
EP2127329A1 (fr) 2007-03-02 2009-12-02 Siemens Aktiengesellschaft Filtrage de trames redondantes dans un noeud de réseau
EP2148473A1 (fr) * 2008-07-22 2010-01-27 ABB Research Ltd Noeuds de commutation pour réseaux à forte disponibilité
DE102011082965A1 (de) 2011-09-19 2013-01-24 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Netzwerkanordnung und Netzwerkanordnung
EP2661023B1 (fr) 2012-04-30 2015-01-14 Siemens Aktiengesellschaft Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication
EP2713563A1 (fr) 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Système de communication industriel pouvant fonctionner de manière redondante, appareil de communication et procédé de fonctionnement redondant d'un système de communication industriel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3846395A1 (fr) 2019-12-30 2021-07-07 Siemens Aktiengesellschaft Procédé de transmission redondante des flux de données dans un réseau de communication, appareil d'infrastructure de réseau et terminal de communication

Also Published As

Publication number Publication date
EP3422641A1 (fr) 2019-01-02

Similar Documents

Publication Publication Date Title
EP2661023B1 (fr) Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication
EP2838220B1 (fr) Procédé de transmission redondante de messages dans un réseau de communication industriel et appareil de communication
EP2634973B1 (fr) Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication
EP2034668B1 (fr) Système de communication hautement disponible
EP2688249B1 (fr) Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
EP2302841B1 (fr) Procédé et dispositif de communication orientée vers la sécurité dans le réseau de communication d'une installation d'automatisation
EP2712124B1 (fr) Système de communication industriel pouvant fonctionner de manière redondante et procédé de fonctionnement dudit système
EP3211838B1 (fr) Systeme de communication industriel pouvant fonctionner de maniere redondante, son procede de fonctionnement et station emettrice/receptrice radio
WO2004021641A1 (fr) Methode d'essai de chemins de messages dans des reseaux de communication et element de reseau
DE102007015539A1 (de) Verfahren zum Rekonfigurieren eines Kommunikationsnetzwerks
EP3211962B1 (fr) Systeme de radiocommunication pour un systeme d'automatisation industriel, son procede de fonctionnement et station emettrice/receptrice radio
EP3427538A1 (fr) Système de communication industriel utilisable de manière redondante, procédé permettant de faire fonctionner ledit système et station d'abonné radio
EP3151476B1 (fr) Procede de trafic transversal entre deux esclaves d'un reseau de donnees en boucle
EP2670078B1 (fr) Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication
EP2784988B1 (fr) Module d'interface de communication pour un dispositif de commande modulaire d'un système industriel d'automatisation
DE102013211406A1 (de) Kommunikationsgerät zur Verbindung eines Feldgeräts eines industriellen Automatisierungssystems mit einer ausfallgesicherten Steuerungseinheit und industrielles Automatisierungssystem
WO2017036508A1 (fr) Dispositif de communication pour un réseau de communication industriel à fonctionnement redondant et procédé de fonctionnement d'un dispositif de communication
EP3881506B1 (fr) Procédé de fonctionnement d'un système de communication doté de routeurs redondants et routeurs
EP2704370A1 (fr) Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
WO2019001828A1 (fr) Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour la mise en œuvre dudit procédé
EP3787237B1 (fr) Procédé de transmission de données dans un réseau de communication à fonctionnement redondant et appareil de communication par couplage
EP2854345B1 (fr) Procédé et appareil de communication couplé pour la transmission de messages dans un réseau de communication industriel à fonctionnement redondant
EP2750310A1 (fr) Procédé de synchronisation d'horloges locales dans un réseau de communication d'un système d'automatisation industriel et appareil d'infrastructure de réseau
EP3629550A1 (fr) Procédé de transmission de données dans un réseau de communication industrielle et dispositif de communication couplée
EP2645624B1 (fr) Appareil de connexion, redondant réseau de communication industriel, et procédé d' opération ledit réseau de communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18727191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18727191

Country of ref document: EP

Kind code of ref document: A1