WO2019001594A1 - 一种医疗检测和成像的无创诊断系统 - Google Patents

一种医疗检测和成像的无创诊断系统 Download PDF

Info

Publication number
WO2019001594A1
WO2019001594A1 PCT/CN2018/102696 CN2018102696W WO2019001594A1 WO 2019001594 A1 WO2019001594 A1 WO 2019001594A1 CN 2018102696 W CN2018102696 W CN 2018102696W WO 2019001594 A1 WO2019001594 A1 WO 2019001594A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic system
track
medical detection
invasive diagnostic
imaging
Prior art date
Application number
PCT/CN2018/102696
Other languages
English (en)
French (fr)
Inventor
孙雁
张剑平
尉贤林
杨凯
王小波
Original Assignee
华络医疗科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华络医疗科技(苏州)有限公司 filed Critical 华络医疗科技(苏州)有限公司
Publication of WO2019001594A1 publication Critical patent/WO2019001594A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes

Definitions

  • Non-invasive diagnostic system for medical detection and imaging
  • the present invention relates to a medical diagnostic technique, and more particularly to a non-invasive medical diagnostic system for medical detection and imaging of a variety of tissues.
  • embodiments of the present invention provide a non-invasive diagnostic system for medical detection and imaging, including:
  • Positioning adjustable device for position adjustment of one or more detectors for detecting a human breast, the positioning adjustable device comprising one or more tracks distributed along the breast, and an adjustable position disposed on the track One or more detectors;
  • a data obtaining device configured to acquire data from the one or more detectors
  • a data processing device configured to process the acquired data.
  • the non-invasive diagnostic system for medical detection and imaging does not need to be pressed by the tissue to be tested, and can perform all-round detection on the tissue to be tested, and requires less detection.
  • the device can be implemented to more easily, efficiently, economically and efficiently detect and image human breast tissue and reduce patient suffering.
  • the one or more tracks distributed along the breast may be an annular track or a spiral track.
  • the non-invasive diagnostic system further comprises: a light emitting device for optically illuminating the human breast.
  • the light emitting device includes a plurality of light sources that are evenly spaced apart from each other.
  • the uniformly spaced light sources constitute at least one source ring, and the source ring is annular or spiral
  • the one or more tracks distributed along the breast are annular or spiral tracks; the source rings are spaced apart from the track.
  • the arrangement of the above-mentioned light sources is arranged such that the light source effect is better. Detecting the detector along a circular or spiral track reduces the number of detectors required, which in turn reduces costs.
  • the light emitting device and the detector may also constitute an assembly, which is disposed on the track and has an adjustable position. Therefore, the relative position of the light emitting device and the detector is fixed, so that the detection effect of the detector is better and more stable, and since the overall position of the component is adjustable, the number of required detectors is reduced, and the cost is further reduced. Improve the stability of the detection effect.
  • the non-invasive diagnostic system further includes: position determining means for determining the position of the detector.
  • the position determining device may include an angle encoder, or include a scale or mark arranged along the track for indicating the position, or a protractor including a rotation, and a circumference around the protractor is provided Circle tick mark.
  • the signal detected by the detector is combined with the position for a better diagnosis. Therefore, a more accurate determination of the detector position allows the system to obtain more accurate results.
  • the non-invasive diagnostic system may further comprise: means for covering the positioning adjustable device, the data acquisition device, and/or the light emitting device to a human breast.
  • the device for covering the positioning adjustable device, the data acquiring device, and/or the light emitting device to the human breast may be a structure substantially suitable for the shape of the human breast, the positioning One or more tracks of the adjustable device, the data acquisition device, and the light emitting device are fixed to the structure.
  • the structure may be made of a flexible material or, by a non-deformable material (such as a rigid material)
  • the device for covering the positioning adjustable device, the data acquiring device, and/or the light emitting device to the human breast further includes a fixing belt by which the structural body is fixed to On the human breast.
  • the non-invasive diagnostic system may further include: a control arm rotatable about a central axis of the structure, one or more detectors on the track being further mounted on the control arm, Slide on the control arm. It is thus possible to control the movement of the detector along the track by rotating the control arm to facilitate movement and repositioning of the detector.
  • the non-invasive diagnostic system may further include: a cover covering the structure, the cover may be rotated around a central axis of the structure, one or more of the tracks A detector passes through the cover surface and slides radially on the cover surface. It is thus possible to control the movement of the detector along the track by rotating the cover to facilitate the movement and repositioning of the detector.
  • the outer edge of the structure may further include a circular track, the circular track includes a control knob, and the control arm includes a magnetic structure near one end of the circular track.
  • the magnetic structure is magnetically coupled to the control knob. Therefore, when the control knob moves in the outer edge track of the structure, the control arm also rotates around the central axis by means of magnetic coupling. In addition to driving the control arm movement, once the control knob is fixed relative to the outer rail, the magnetic coupling force will cause the control arm to be fixed as well.
  • Embodiments of the present invention also provide a non-invasive diagnostic system for medical detection and imaging, comprising a structure substantially suitable for the shape of a human breast, one or more light emitting devices disposed on the structure, and a plurality of detectors distributed at different positions of the structure; data acquisition means for One or more detectors acquire data; a data processing device for processing the acquired data.
  • the light emitting device includes a plurality of light sources evenly spaced from each other, and the relative positions of the plurality of detectors to the light source are fixed.
  • the uniformly spaced light sources constitute at least one source ring, the source ring is annular or spiral; each of the source rings includes at least one of the detectors.
  • Both the set of schemes and the pre-group scheme achieve light emission and detection suitable for breast shape.
  • the position of the detector and the light source is relatively fixed, so that the data is more stable.
  • the preferred arrangement of the light source and detector allows for more efficient detection.
  • FIG. 1 shows a schematic perspective view of an exemplary non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 2 shows another schematic perspective view of an exemplary non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 3 shows a schematic perspective view of an alternative illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 4 illustrates another schematic perspective view of an exemplary non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 5 illustrates a schematic perspective view of another alternative illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 6 shows a schematic perspective view of yet another alternative illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 7 shows a schematic cross-sectional view of an illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure.
  • FIG. 8 shows a schematic cross-sectional view of an outer edge portion of an illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 9 shows a schematic cross-sectional view of an outer edge portion of another illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure.
  • FIG. 10 illustrates the top of an illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure. perspective;
  • FIG. 11 shows a top perspective view of another exemplary non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure.
  • FIG. 12 illustrates a top perspective view of yet another illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 13 illustrates a top perspective view of yet another illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 14 illustrates an exploded side view of an illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 15 illustrates a top perspective view of an exemplary non-invasive medical diagnostic imaging device component in accordance with an aspect of the present disclosure
  • FIG. 16 shows a schematic diagram of an illustrative medical diagnostic imaging system in accordance with an aspect of the present disclosure
  • FIG. 17 shows a schematic diagram of an illustrative medical diagnostic imaging system in accordance with an aspect of the present disclosure
  • FIG. 18 illustrates a top view of another illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure
  • FIG. 19 shows a schematic diagram of an illustrative medical diagnostic imaging system illustratively used for breast cancer detection and imaging in accordance with an aspect of the present disclosure
  • FIG. 20 shows a schematic block diagram of an illustrative computer system for use in a medical diagnostic imaging system in accordance with an aspect of the present disclosure.
  • breast cancer is a major global health problem.
  • X-ray mammography is often used in screening procedures and significantly reduces mortality due to early detection of breast cancer.
  • the benefits of screening with X-ray mammography are significantly lower than for women over the age of 50. This may be due to the lower incidence of breast cancer at a young age, rapid tumor growth, and dense breasts when young women are irradiated.
  • X-ray mammography is about 88% sensitive to fat breasts in breast cancer testing, but this sensitivity is greatly reduced (ie, 62%) in women with younger breasts (young women). This is an important issue, especially since the risk of breast cancer among young women is increasing.
  • Optical breast imaging is a method that uses near-infrared (NIR) light to evaluate Imaging techniques for the optical properties of tissue (breast tissue) and are expected to play an important role in breast cancer detection.
  • NIR near-infrared
  • This technique dates back several decades: a normal bulb is used to illuminate the breast on one side (transillumination), and after passing through the breast, a shadow is formed on the opposite side.
  • optical breast imaging uses near-infrared (NIR) light in the wavelength range of 600-100 nm to assess the optical properties of the tissue.
  • NIR near-infrared
  • Functional information about tissue components i.e., absorption characteristics of hemoglobin, water, and lipids, can be obtained by combining images acquired at various wavelengths.
  • optical breast imaging without contrast When only intrinsic breast tissue contrast is used in optical breast imaging, this is referred to as optical breast imaging without contrast.
  • contrast agents uses exogenous fluorescent probes that target breast cancer-specific molecules.
  • optical breast imaging As will be readily understood and appreciated by those skilled in the art, in early breast cancer detection, the use of fluorescent probes exhibits great potential because of the ability to image related molecular changes that result in breast cancer.
  • An additional advantage of optical breast imaging is that it is free of ionizing radiation and is relatively inexpensive, which allows for re-use and easy access to the technique. Further advantages: By using the structures, devices, methods and techniques according to the present disclosure, all known modes of optical breast imaging will be more effective.
  • NIR light having a wavelength in the range of 600-1000 nm is typically used because this range allows for sufficient tissue (breast) penetration.
  • the light After passing through the breast, the light is detected and the resulting data can be used to generate an image and make a diagnostic determination. It can be understood that determining the nature of the tissue and its spatial distribution is a complex problem, as the light passes through the breast when it is irregular and the path is relatively long.
  • structures, systems, methods, and devices that promote the determination and spatial distribution of tissue properties, such as those disclosed herein, are a useful supplement to the art.
  • the source and detector ie, the source and photodetector
  • the source and detector are located on opposite sides of the breast. This results in a two-dimensional projection view, comparable to mammography, which typically requires compression of the breast. Such techniques are often less comfortable for the patient.
  • tomography the source and detector are placed on the entire breast surface to detect the entire breast. This makes it possible to obtain a three-dimensional optical image of whole milk.
  • another method uses a manual device that manually places the probe at the location of interest compared to imaging with an ultrasonic probe, obtaining only a local 2D breast image.
  • Time domain techniques use relatively short (50-400 pS) light pulses to estimate the time distribution of photons. In this way, the distinction between scattering and absorption can be distinguished. Compared to other methods of spatial resolution, this technique can collect information about the optical properties of the tissue at most, and thus exhibit better contrast.
  • time domain techniques involve relatively expensive equipment and long acquisition times.
  • the frequency domain device modulates the amplitude of the light that is continuously emitted at high frequencies (50-500 MHz). By measuring the photon phase shift and its amplitude delay - one obtains information about the optical properties of the tissue as compared to the reference signal, and can distinguish between scattering/absorption. If a wide range of frequencies is used, the frequency domain system can produce the same information as the time domain system.
  • the continuous wave system emits light at a constant intensity or at a low frequency (0.1-100 kHz). This is a relatively straightforward technique that measures the attenuation of light transmitted between two points on the surface of the breast. Due to its simplicity, continuous wave devices are relatively inexpensive and image acquisition is relatively fast. However, using this technique makes it difficult to distinguish between scattering and absorption, and data analysis often requires complex reconstruction algorithms and consequent computational effort.
  • optical breast imaging uses NIR light to determine the optical properties of breast tissue. Light absorption at these wavelengths is minimal, allowing for sufficient tissue penetration (up to 15 cm). Importantly, the absorption characteristics of the major components of the breast can be described by a function of wavelength. Various components such as hemoglobin, water and fat can be determined by combining absorption images acquired at various wavelengths concentration.
  • Optical imaging in particular diffuse optical imaging, can be used to identify benign and malignant tumors by measuring the concentration of breast tissue components.
  • the medical diagnostic imaging device 100 generally assumes a "tapered” or "cup” shape and includes a plurality of source loops 110[1], 110[2], 110[3]. Each source ring contains a number of light sources 140 spaced around the ring. There is one detector track 120[1], 120[2], 130[3] between each individual source ring. Each track has one or more detectors 130 spaced apart from one another about the track. The detector 130 can be constructed of a light sensor. At the top end of the device 100 is a cap 150.
  • a plurality of source rings and a plurality of evenly spaced light sources 140 on the source ring constitute a light emitting device.
  • the light emitting device may be in other forms, such as an integral light emitting device.
  • a tapered or cup-shaped device 100 as used herein may also be referred to by other names, including “cups”, and is readily as known to those skilled in the art. Understand: It can be a larger structure of a component, ie a "breast” structure or a “breast”.
  • cups and other bra components may be made from natural and/or synthetic fabrics, including natural and/or synthetic materials and mixtures of metals (steel wires, etc.), and are generally form fit and/or rigid. .
  • the cup described in the present disclosure refers to a shape that is substantially suitable for a human breast.
  • the cup When the cup is made of a material that is more flexible/compliant than the breast tissue, the cup will conform to the shape of the breast.
  • the cup When the cup is made of a material that is not deformed compared to the breast, the breast is substantially in the shape of a cup.
  • a harder plastic or polymer material or an unsuitable non-flexible fabric material is used for constructing the cup.
  • the cups of the present disclosure will generally be sufficiently rigid to allow predictable and reproducible positioning of any source/detector around the cup and provide for the underlying breast tissue. "Normalized" shape. Additional fabric/material can be used with such a rigid cup to provide a degree of comfort to the wearer.
  • Each detector 130 includes an optical fiber 160(s) or line (cable) through which a detector is coupled to a detector system/control system (not specifically shown) to establish communication, specifically Sections will be described later in this disclosure.
  • the light source 140 can be any of a variety of light sources in the art, such as a light source for LEDs, lasers, or near-infrared light, and the like. In the structure shown in Fig. 1, the light source is distributed around the entire circumferential surface of the source ring(s). Although not specifically shown in the figures, in certain embodiments, depending on the diagnostic requirements, the light source can be individually or collectively powered to emit an optical signal under the control of the system.
  • detector 130 may be constructed of any number of detectors that are distributed around a circumferential track.
  • each detector can be moved and positioned adjustably along the track such that the relative position of the detector to the (light) source and (breast) tissue can be adjusted to affect the detector/detection result. More specifically, the detector can be adjusted according to the detection effect of the light, for example, it can be adjusted to the maximum detection signal.
  • the device 100 is substantially conical or cup shaped to conform to the contours of a normal human breast. Therefore, the outermost source ring, 110[1], exhibits the largest radial dimension; while the innermost source ring, 110[3]], exhibits the shortest radial dimension. Similar dimensional characteristics can be observed for the detector track.
  • FIG. 2 shows another schematic perspective view of an illustrative non-invasive medical diagnostic imaging device in accordance with an aspect of the present disclosure. It can be observed from the figure that the detector 130 on the medical diagnostic imaging device 200 is located above the source ring and may have one or more. When constructed in this manner, both the source and detector are relatively fixed in position.
  • FIG. 3 shows a schematic perspective view of an alternative illustrative non-invasive medical diagnostic imaging device 300 in accordance with an aspect of the present disclosure.
  • the device exhibits a conical or cup shape (although not necessarily) configured as a single piece with its helical ring 170 having an increased radial dimension.
  • the source and detector near the top of device 300 are closer to the central axis.
  • the source and detector positioned closer to the bottom of the device are further spaced from the central axis (radially outward, with a longer radius).
  • a series of light sources placed along a spiral ring will exhibit an increased radius dimension relative to the central axis.
  • one or more detector assemblies can be placed on the basic spiral track 180. As will be understood And recognizing, in this particular scenario, the detector can be repositioned along the track such that maximum or desired detection characteristics are achieved. When the system chooses to illuminate one or more of the light sources or a certain group of light sources, the corresponding detection results and imaging effects are obtained.
  • FIG. 4 illustrates another schematic perspective view of an additional illustrative non-invasive medical diagnostic imaging device 400, in accordance with an aspect of the present disclosure.
  • the overall structure of the device shown is substantially similar to that shown in Figure 3.
  • an alternative source/detector component is shown. By combining the source/detector as a unit, it is possible to relocate/reconfigure.
  • Source/detector component 135 (shown to include the detector, communication fiber/wire, and one or more sources) is all configured as a single component. In this manner, the relative position of the source/detector including the individual components will remain fixed while repositioning of the assembly relative to the entire device by repositioning the assembly within the spiral track. Thus, one or more components positioned in the track can be repositioned relative to the tissue being imaged. Note that while the source/detector assembly includes one or more light sources, as previously described, additional light sources positioned along the spiral ring are shown.
  • FIG. 5 shows a schematic perspective view of another alternative illustrative non-invasive medical diagnostic imaging device 500. If it can be observed by preliminary examination of the figure.
  • the device exhibits a substantially conical or cup shape including a spiral ring and a spiral track.
  • a plurality of light sources 140 are disposed along the spiral ring, as described in other embodiments above, which may be any known type of light source, such as an LED, through which light of a desired wavelength may be emitted.
  • a control arm 190 is included, and the control arm 190 is fixed. It is on the device 500 and can be rotated about the central axis of the device (cone or cup).
  • One or more detector or detector assemblies on the track are simultaneously mounted on the control arm and can slide over the control arm. For example, those previously shown, when configured in this manner, as the control arm 190 rotates about the central axis, the detector or detector assembly will simultaneously slide along the control arm and track. Thus, when the control arm tab 195 is pushed to cause the control arm 190 to rotate, the detector or detector assembly will move along the track and its position will change accordingly. Since the position of the track is fixed and the angle of rotation of the control arm is known, the position of the detector or detector assembly can be facilitated after the detector or detector assembly is moved or repositioned relative to the light source and (breast) tissue. , simply determined, and is predictable and repeatable.
  • FIG. 6 illustrates a schematic perspective view of yet another alternative illustrative non-invasive medical diagnostic imaging device 600.
  • the apparatus shown in Fig. 6 is a combination of those substantially shown in Figs. 1 and 5. More specifically, it includes a plurality of source loops 110 [1], 110 [2], 110 [3] inserted between the tracks.
  • a device 130 having a plurality of detectors/components is mounted on the control arm and the control arm 190 is rotatable. So configured, the detector/component is associated with a particular track, and as the control arm rotates, the detector/assembly will also rotate about a central axis within its respective track.
  • the advantage of this configuration is that it allows the detector/assembly to be reconfigured (positioned) with the control arm rotated.
  • FIG. 7 shows a schematic cross-sectional view of an illustrative non-invasive medical diagnostic imaging device 700.
  • a basic conical device is shown in this cross-sectional view, including a spiral source ring 110 and a spiral track 105. Covering the entire device is a cover 106 which may be made of any of various known materials for load bearing, durability, and light blocking properties.
  • a detector/assembly 130 positioned in the spiral track and passing through the cover 106. The detector/assembly 130 can move radially over the cover.
  • FIG. 8 shows a schematic cross-sectional view of an outer edge portion of an illustrative non-invasive medical diagnostic imaging device 800. More specifically, the device includes a cover 106, a base 107, and a control arm 190. Whether it is the overall spiral structure or the multi-ring structure as shown above, it is similar. Interposed between the control arm and the cover and the base is a pad 196(s) that functions to allow the control arm to rotatably slide about the central axis of the device.
  • the liner can be constructed from any of a number of known materials while allowing for easy repositioning/rotation of the control arm, as well as providing sufficient resistance to The control arm does not move unintentionally.
  • FIG. 9 shows a schematic cross-sectional view of an outer edge portion of another illustrative non-invasive medical diagnostic imaging device 900.
  • a control knob 141 that runs at the edge of the entire device.
  • one end of the control arm 190 is a magnetic structure 143 that is magnetically coupled to the control knob.
  • the control arm rotates about the central axis by means of magnetic coupling.
  • the magnetic coupling force causes the control arm to be fixed as well.
  • FIG. 10 illustrates a top perspective view of an illustrative non-invasive medical diagnostic imaging device 1000.
  • the apparatus shown in Fig. 10 similar to the single piece diagram previously shown, has a spiral source ring and a spiral track including a plurality of light sources 140, wherein one or more detectors/assemblies are slidably positioned.
  • Figure 10 further illustrates a scale or indicia 131 by which the detector/assembly can be positioned/repositioned.
  • the detectors/components can be located at specific locations on the track 132, which are identified by the established markers, and in this way can also be located to the origin or other location.
  • there can be multiple unique, repeatable locations in the track because they can be registered by the markers.
  • FIG. 11 illustrates a top perspective view of another exemplary non-invasive medical diagnostic imaging device 11 00.
  • the device shown in FIG. 11 is similar to the above-described scheme, and includes a plurality of source rings, each of which includes a plurality of light sources 140, and a plurality of tracks are respectively inserted between the source rings, wherein one or more tracks are included Detectors/components 130.
  • Detectors/components 130 there are a series of scales or markers 131 defined by regular intervals around the circular track through which the detector/component can be positioned/repositioned.
  • FIG. 12 illustrates a top perspective view of yet another illustrative non-invasive medical diagnostic imaging device 1200. It is a variation of Figure 5 previously shown. It is noted that, in contrast to FIG. 5, in addition to the other structures shown in the figures, FIG. 12 further includes a rotating protractor 193. A series of tick marks are provided around the circumference of the protractor to indicate the relative position of the control arm when rotated 360 degrees. As with the previous embodiments, a rotary protractor positioned at the central axis allows for precise positioning/repositioning of the control arm and detector/assembly relative to the source and tissue. In practical applications, the protractor can also be replaced by a more electronic angle encoder.
  • FIG. 13 shows a top perspective view of yet another illustrative non-invasive medical diagnostic imaging device 1300. It is a variation of the structure shown in Figures 12 and 6.
  • the positioning of the protractor dial 193 at the central axis allows for precise positioning/repositioning of the control arm 190, and the plurality of detectors/assembly 130 are secured to the control arm and positioned within a circumferential track between the source halos.
  • all of the test points have the same radial line position.
  • the position of each detector/component can be indicated by the angle of the protractor dial.
  • FIG. 14 illustrates an exploded side view of an illustrative non-invasive medical diagnostic imaging device 1400. It comprises a base 107 with a spiral track, an intermediate structure 180 with a spiral track covering the base, and a cover 106 covering the intermediate track structure. As can be readily observed, all three components typically assume a substantially conical or cup shape that conforms to the shape of the human breast.
  • FIG. 15 illustrates a top perspective view of a component of an illustrative non-invasive medical diagnostic imaging device component 1500. More specifically, Fig. 15 shows a base member (base) 107 including a spiral track 180 and a series of source light sources 140 disposed along a spiral track. It will be appreciated that the detectors/components (not specifically shown) may be repositioned within the track such that they can detect light emitted from the source. Further showing a spacer/isolator 108, the spacer/isolator 108 provides additional optical isolation between the source and the detector, and also remains between the base member and the cover surface (not specifically shown) Out of the interval.
  • FIG. 16 shows a schematic diagram of an illustrative medical diagnostic imaging system 1600, in accordance with an aspect of the present disclosure.
  • the system includes a source/detector device 1610, a strap 1620 for securing the device to the user to be tested (breast) tissue, an interface cable 1640, and a controller 1630 to control signals via the interface cable 1640.
  • the controller can control the detector device and acquire image data of the tissue from the detector device.
  • the control of the system can be performed by the smart device 1650 (eg, a smartphone, PDA, computer), and further, by the network service/system, including the cloud service/system 1660, the smart device can also provide detailed Data analysis / storage.
  • FIG. 17 shows a schematic diagram of an illustrative medical diagnostic imaging system 1700, in accordance with an aspect of the present disclosure. Similar to Figure 16, shown, the PDA/smartphone is replaced by a local computer system 1670. As shown here in Figure 17, local computer system 1670 is communicatively coupled to system controller 1630, thereby affecting analysis of local computer control/imaging systems and devices.
  • FIG. 18 illustrates a top view 1800 of another illustrative non-invasive medical diagnostic imaging device.
  • Figure 18 is an illustrative apparatus, such as a previously described strap 162 0 for maintaining the (breast) tissue(s) and imaging device relatively fixed in position for inspection.
  • the device is positioned on the examiner's breast by securing the strap around the examiner's upper torso.
  • the strap 1620 can be any of a variety of well known straps for detachably and/or adjustably securing the imaging device to an individual.
  • the top of Figure 18 is a direction indicator 1810 by which the orientation of the imaging device when placed on the body can be located to ensure consistency in each diagnostic position.
  • FIG. 19 shows a schematic diagram of an illustrative medical diagnostic imaging system for portable breast cancer detection and imaging.
  • the portable breast cancer detection system includes mechanical modules (devices) as shown and previously described.
  • the device is communicatively coupled to a system board that can be observed to include a power source, a power management, a light source driver, a processor and communication module, a data acquisition module, and a tracking module.
  • the data acquisition module may also be referred to as a data acquisition module and may include an amplifier, an analog digital signal converter, and the like.
  • the data acquisition module is configured to collect data from each detector, obtain optical detection data, and output the acquired data to a computer system including a data processing (function) module through a communication module for data processing, and finally obtain detection results and generate imaging.
  • a data processing (function) module through a communication module for data processing, and finally obtain detection results and generate imaging.
  • Each of the above mechanical modules, as well as the data acquisition module and the computer system including the data processing function, can be composed of existing modules, and the finished product can be directly purchased.
  • the aforementioned methods of data processing and image formation are well documented in related books or papers on diffusion optical tomography, such as crc press.
  • FIG. 20 illustrates an illustrative computer system 2000 that is implemented in accordance with an aspect of the present disclosure.
  • Methods and systems can be integrated into one other system, such as a router, and can be implemented by discrete components or one or more integrated circuit components.
  • the computer system 2000 includes a processor 2010, a memory 2020, a storage device 2030, and an input/output structure 2040.
  • One or more input/output devices may include display 2045.
  • One or more buses 2050 typically interconnect components 2010, 2020, 2030, and 2040.
  • the processor 2010 can be a single layer or a multi-layer core. Additionally, the system can include an accelerator, etc., and also includes a system on a chip.
  • the processor 2010 executes related instructions, which may be stored in the memory 2020 or the storage device 2030. Data and/or information can be received and output using one or more input/output devices.
  • Memory 2020 can store data and can be a computer readable medium such as a volatile or non-volatile memory.
  • Storage device 2030 can be provided for system storage 2000, such as the methods previously described.
  • storage device 2030 can be a flash memory device, a magnetic disk drive, an optical disk device, or a magnetic tape device that employs magnetic, optical, or other recording technology.
  • Input/output structure 2040 can provide input/output operations for system 2000.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种医疗检测和成像的无创诊断系统,包括定位可调装置,用于对检测人体乳房的一个或多个检测器进行位置调节,该定位可调装置包括沿乳房分布的一个或多个轨道、和设置于轨道上的位置可调的一个或多个检测器;数据获取装置,用于从所述一个或多个检测器获取数据;数据处理装置,用于处理所获取的数据。该医疗检测和成像的无创诊断系统只需较少的检测器即可对待测组织进行全方位的检测,从而能够更方便、有效、经济并高效地对人体乳房组织进行检测和成像,且无需对待测组织进行挤压,减少患者痛苦。

Description

一种医疗检测和成像的无创诊断系统 技术领域
[0001] 本发明涉及一种医疗诊断技术, 特别涉及一种用于多种组织的医疗检测及成像 的非侵入性的医疗诊断系统。
背景技术
[0002] 正如本领域技术人员容易理解的, 尽管当代医学技术和科技对人们的生活质量 和寿命产生了积极深远的影响, 但是如今对各种疾病 (包括癌症) 的医学诊断 通常还是价格昂贵并且是侵入性的方法和技术。
[0003] 鉴于其在当代社会的重要性, 更便宜、 无创的医疗诊断系统和方法, 将会是对 本领域的有益补充。 技术问题
[0004] 本发明的目的在于提供一种医疗检测和成像的无创诊断系统, 使得能够更方便 、 有效、 经济并高效地对人体乳房组织进行检测和成像。
问题的解决方案
技术解决方案
[0005] 为解决上述技术问题, 本发明的实施方式提供了一种医疗检测和成像的无创诊 断系统, 包括:
[0006] 定位可调装置, 用于对检测人体乳房的一个或多个检测器进行位置调节, 该定 位可调装置包括沿乳房分布的一个或多个轨道、 和设置于轨道上的位置可调的 一个或多个检测器;
[0007] 数据获取装置, 用于从所述一个或多个检测器获取数据;
[0008] 数据处理装置, 用于处理所获取的数据。
发明的有益效果
有益效果 [0009] 本发明实施方式相对于现有技术而言, 该医疗检测和成像的无创诊断系统无需 对待测组织进行挤压, 即可对待测组织进行全方位的检测, 且只需较少的检测 器即可实现, 从而能够更方便、 有效、 经济并高效地对人体乳房组织进行检测 和成像, 且减少患者痛苦。
[0010] 作为进一步改进, 所述沿乳房分布的一个或多个轨道可以为环形轨道或螺旋轨 道。
[0011] 作为进一步改进, 该无创诊断系统还包括: 用于光学地照亮人体乳房的光发射 装置。
[0012] 作为进一步改进, 所述光发射装置包括多个彼此均匀间隔开的光源。
[0013] 优选的, 所述均匀间隔开的光源构成至少一个源环, 所述源环呈环形或螺旋形
; 所述沿乳房分布的一个或多个轨道为环形轨道或螺旋轨道; 所述源环与所述 轨道间隔分布。
[0014] 上述光源的排列设置方式使得光源效果更好。 检测器沿环形轨道或螺旋轨道移 动检测, 则减少了检测器需要的数量, 进而降低了成本。
[0015] 作为进一步改进, 所述光发射装置与所述检测器还可以构成一个组件, 设置于 所述轨道上且位置可调。 从而光发射装置与检测器的相对位置是固定的, 使得 检测器的检测效果更佳并且更稳定, 且由于组件整体位置可调, 减少了所需检 测器的数量, 在降低成本的同时, 进一步提高了检测效果的稳定性。
[0016] 作为进一步改进, 该无创诊断系统还包括: 位置确定装置, 用于确定所述检测 器的位置。
[0017] 作为进一步改进, 所述位置确定装置可以包括一个角度编码器, 或者, 包括沿 轨道排布的用于指示位置的标尺或标记, 或者, 包括旋转的量角器, 围绕量角 器的圆周上设置有一圈刻度标记。 检测器检测到的信号与位置结合, 才能做更 好的诊断。 因此检测器位置更精确的确定, 可以使得系统得到更准确的结果。
[0018] 作为进一步改进, 该无创诊断系统还可以包括: 用于将所述定位可调装置、 所 述数据获取装置、 和 /或所述光发射装置覆盖到人体乳房的装置。
[0019] 作为进一步改进, 所述用于将定位可调装置、 数据获取装置、 和 /或光发射装 置覆盖到人体乳房的装置可以为一基本适合人体乳房形状的结构体, 所述定位 可调装置的一个或多个轨道、 所述数据获取装置、 所述光发射装置固定于所述 结构体上。
[0020] 进一步, 所述结构体可以由柔性材料制成, 或者, 由不变形材料 (如刚性材料
) 制成。
[0021] 不同材料的选取, 可以使得装置与人体乳房尽量贴合, 从而可以进一步提升该 设备的检测效果, 并改善了被测者的体验、 提高了检测时的舒适度。
[0022] 作为进一步改进, 所述用于将定位可调装置、 数据获取装置、 和 /或光发射装 置覆盖到人体乳房的装置还包括固定带, 通过所述固定带把所述结构体固定到 人体乳房上。
[0023] 作为进一步改进, 该无创诊断系统还可以包括: 一控制臂, 可围绕所述结构体 的中心轴线旋转, 所述轨道上的一个或多个检测器还安装在所述控制臂上, 在 所述控制臂上滑动。 从而可以通过转动该控制臂, 控制检测器沿轨道移动, 便 于对检测器的位置进行移动和重新定位。
[0024] 作为进一步改进, 该无创诊断系统还可以包括: 覆盖在所述结构体上的盖面, 所述盖面可围绕所述结构体的中心轴线旋转, 所述轨道上的一个或多个检测器 穿过所述盖面, 在所述盖面上径向滑动。 从而可以通过转动盖面, 控制检测器 沿轨道移动, 便于对检测器的位置进行移动和重新定位。
[0025] 作为进一步改进, 在所述结构体的外边缘还可以包括一圆形轨道, 所述圆形轨 道上包括一控制旋钮, 所述控制臂靠近圆形轨道的一端包括一磁结构, 所述磁 结构通过磁耦合到所述控制旋钮。 因此, 当控制旋钮在在结构体的外边缘轨道 内运动时, 控制臂通过磁耦合的方式也会围绕中心轴线旋转。 除了驱动控制臂 运动之外, 一旦控制旋钮相对于外轨道固定, 磁耦合力将使得控制臂也被固定
[0026] 上述几种改进方式, 可以实现自动或手动控制检测器, 使得设备的可操作性变 得更好。
[0027] 本发明的实施方式还提供了一种医疗检测和成像的无创诊断系统, 包括一基本 适合人体乳房形状的结构体, 设置于所述结构体上的一个或多个光发射装置, 以及分布于所述结构体不同位置的多个检测器; 数据获取装置, 用于从所述一 个或多个检测器获取数据; 数据处理装置, 用于处理所获取的数据。 作为进一 步改进, 所述光发射装置包括多个彼此均匀间隔开的光源, 所述多个检测器与 所述光源的相对位置固定。 优选的, 所述均匀间隔开的光源构成至少一个源环 , 所述源环呈环形或螺旋形; 每个所述源环上包括至少一个所述检测器。
[0028] 该组方案与前组方案都实现了适合乳房形状的光发射和检测。 而该方案检测器 与光源的位置相对固定, 使得其获取数据更加稳定。 优选的光源和检测器排布 方式, 可以使得检测效率更高。
对附图的简要说明
附图说明
[0029] 图 1示出了根据本公开的一个方面的示例性非侵入式医疗诊断成像装置的示意 性透视图;
[0030] 图 2示出了根据本公开的一个方面的示例性非侵入式医疗诊断成像装置的另一 示意性透视图;
[0031] 图 3示出了根据本公开的一个方面的替代说明性非侵入式医疗诊断成像装置的 示意性透视图;
[0032] 图 4示出了根据本公开的一个方面的示例性非侵入式医疗诊断成像装置的另一 示意性透视图;
[0033] 图 5示出了根据本公开的一个方面的另一个可替代的说明性非侵入式医疗诊断 成像装置的示意性透视图;
[0034] 图 6示出了根据本公开的一个方面的又一个可选的说明性非侵入式医疗诊断成 像装置的示意性透视图;
[0035] 图 7示出了说明性的非侵入性的医疗诊断成像装置的根据本公开的一个方面的 示意性剖面图。
[0036] 图 8示出了根据本公开的一个方面的说明性非侵入式医疗诊断成像装置的外边 缘部分的示意性横截面图;
[0037] 图 9示出了根据本公开的一个方面的另一说明性非侵入式医疗诊断成像装置的 外边缘部分的示意性横截面图;
[0038] 图 10示出了根据本公开的一个方面的说明性非侵入式医疗诊断成像装置的顶部 透视图;
[0039] 图 11示出了根据本公开的一个方面的另一示例性非侵入式医疗诊断成像装置的 俯视透视图;
[0040] 图 12示出了根据本公开的一个方面的又一说明性非侵入式医疗诊断成像装置的 俯视透视图;
[0041] 图 13示出了根据本公开的一个方面的又一说明性非侵入式医疗诊断成像装置的 俯视透视图;
[0042] 图 14示出了根据本公开的一个方面的说明性非侵入式医疗诊断成像装置的分解 侧视图;
[0043] 图 15示出了根据本公开的一个方面的示例性非侵入式医疗诊断成像装置部件的 顶部透视图;
[0044] 图 16示出了根据本公开的一个方面的说明性医疗诊断成像系统的示意图; [0045] 图 17示出了根据本公开的一个方面的说明性医疗诊断成像系统的示意图; [0046] 图 18示出了根据本公开的一个方面的另一个说明性的非侵入性的医疗诊断成像 装置的顶视图;
[0047] 图 19示出了说明性地用于根据本公开的一个方面的乳腺癌检测和成像的说明性 医疗诊断成像系统的示意图;
[0048] 图 20示出了根据本公开的一个方面的用于医疗诊断成像系统中的说明性计算机 系统的示意性框图。
具体实施方式
[0049] 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明的各 实施方式进行详细的阐述。 然而, 本领域的普通技术人员可以理解, 在本发明 各实施方式中, 为了使读者更好地理解本申请而提出了许多技术细节。 但是, 即使没有这些技术细节和基于以下各实施方式的种种变化和修改, 也可以实现 本申请各权利要求所要求保护的技术方案。
[0050] 以下仅说明本公开的原理。 因此, 应当理解, 本领域技术人员将能够设计出在 本文中没有明确描述或示出但体现本公开的原理并且包括在其精神和范围内的 各种装置。 更具体地, 虽然阐述了许多具体细节, 但是应当理解, 本公开的实 例可以在没有这些具体细节的情况下实施, 并且在某些情况下, 为了不让本公 开破解, 未示出公知的电路, 结构和技术。
[0051] 此外, 本文所述的所有示例和条件语言主旨在仅仅出于教学目的, 以帮助读者 理解本公开的原理和发明人为促进本领域而贡献的概念, 并且将被解释作为不 限于这些具体叙述的示例和条件。
[0052] 此外, 本文中叙述本公开的原理、 角度和实施例以及其具体示例的所有陈述旨 在包括其结构和功能等同物。 另外, 这样的等同物旨在包括当前已知的等同物 以及将来开发的等同物, 即开发的执行相同功能的任何元件, 而不管结构如何
[0053] 因此, 如本领域的技术人员所理解, 本文中的图表体现了本公开原理的说明性 结构的概念视图。
[0054] 作为进一步的背景了解, 我们再次注意到非侵入性医学检测和成像对当代医学 诊断和治疗有相当大的医疗和经济价值。 因为乳腺癌在当下特别普遍并且潜在 的危害也很大。 我们进一步注意到, 如本领域技术人员将容易理解的, 虽然我 们特别强调本公开是应用于乳腺癌的, 但实际上, 我们的公开, 结构、 装置、 方法和技术不限于此并且事实上适用于任何其他疾病、 病症和解剖位置。 对于 这些疾病、 检测和成像是有效的和 /或可以应用。
[0055] 众所周知, 乳腺癌是一个主要的全球健康问题。 截至 21世纪末, 估计每年诊断 出 130万例侵袭性乳腺癌新病例, 全世界约有 465,000名妇女死于这种疾病。 X射 线乳腺摄影常常用于筛査程序, 并且由于乳腺癌的早期检测而显著降低死亡率 。 对于年轻女性, 使用 X射线乳房 X线摄影术进行筛査的好处明显低于 50岁以上 的女性。 这可能是由于年轻时乳腺癌的发病率较低, 肿瘤生长迅速, 并且年轻 妇女辐照时乳房致密。 X射线乳腺摄影在乳腺癌检测中对脂肪乳房的敏感性约 为 88%, 但是在具有更致密乳房的女性 (年轻妇女) 中这种敏感性大大降低 ( 即 62%) 。 这是一个重要的问题, 特别是现在年轻妇女的乳腺癌风险在不断增 加。
[0056] 光学乳房成像 (包括扩散光学断层成像) 是一种使用近红外 (NIR) 光来评估 组织 (乳房组织) 的光学性质的成像技术, 并且预期在乳腺癌检测中起重要作 用。 这种技术可追溯到几十年前: 用一个正常的灯泡在一侧照射乳房 (透照) , 通过乳房后, 在对侧会形成一个阴影。 历史上, 通过这个技术, 可以显示由 于高血管形成的大的恶性病变, 但是该方法没有获得足够的灵敏度和特异性以 便用于常规临床实践。
[0057] 然而, 在过去十年中, 源和检测器技术、 光传播模型和荧光造影剂的进展迅速 , 使得光学成像重新成为热点。 通常, 光学乳房成像使用波长范围在 600-lOOOn m内的近红外 (NIR) 光来评估组织的光学性质。 关于组织成分的功能信息, 即 血红蛋白、 水和脂质的吸收特性可以通过组合在各种波长下获取的图像来获得 。 当在光学乳房成像中仅使用本征乳房组织对比时, 这被称为没有造影剂的光 学乳房成像。 另一种模式, 即使用造影剂的光学乳房成像, 其使用靶向乳腺癌 特异性分子的外源性荧光探针。
[0058] 如本领域技术人员容易理解和认识到的, 在早期乳腺癌检测中, 因为可以对造 成乳腺癌的相关分子变化进行成像, 荧光探针的使用表现出巨大的潜力。 光学 乳房成像的另外的优点是其没有电离辐射并且相对便宜, 这可以实现重复使用 并且容易获得该技术。 进一步的优点: 通过使用根据本公开的结构, 装置, 方 法和技术, 光学乳房成像的所有已知模态将更加有效。
[0059] 一般来说, 光学成像装置通过组织成分传光时会被吸收和散射。 显然, 当执行 乳房组织的光学成像时, 透射光的组织是乳房组织。 我们再次注意到, 虽然我 们在本文中的讨论和所示出和描述的某些结构都是在乳房成像的上下文中完成 的一但是我们的公开不限于此, 并且所公开的结构和技术适用于多种组织和 解剖特征中的任何一种。
[0060] 如前所述, 通常使用波长范围在 600-1000nm内的 NIR光, 因为该范围允许足够 的组织 (乳房) 穿透。 在穿过乳房之后, 检测光并且产生的数据可以用于生成 图像和进行诊断确定。 可以理解, 确定组织性质及其空间分布是一个复杂的问 题, 由于光穿过乳房时是不规则的并且路径相对较长。 因此, 促进组织性质的 确定和空间分布的结构、 系统、 方法和装置 (例如本文所公开的那些) 是对本 领域的有益的补充。 [0061] 回到我们的一般讨论, 注意到, 对于已经用于乳房成像的光学成像系统, 在透 照中, 源和检测器 (即光源和光检测器) 位于乳房的对侧。 这导致二维投影视 图, 与乳房 X射线摄影相当, 通常需要对乳房挤压。 这样的技术对患者而言常常 不太舒适。
[0062] 在断层摄影中, 源和检测器放置在整个乳房表面上, 对乳房整体进行检测。 这 使得能够获取全乳三维光学图像。 最后, 另一种方法采用手动设备, 其与用超 声波探头成像相比, 手动放置探头在感兴趣的位置, 仅获得局部二维乳房图像
[0063] 根据本公开的技术和结构, 将它们应用到已知的成像方法中的任何一种, 都会 使得这些方法更加方便和有效。
[0064] 值得注意的是, 所有光学成像系统通常使用三种不同的照明方法: 时域, 频域 和连续波。 时域技术使用相对短 (50-400pS) 的光脉冲来评估光子的时间分布。 用这种方式可以区分散射和吸收之间的区别。 和其他方法空间分辨率相比, 该 技术可以收集最多关于组织光学性质的信息, 并且因此呈现更好的对比度。
[0065] 如本领域技术人员将容易理解和领会的, 时域技术涉及相对昂贵的设备和较长 的采集时间。 相比之下, 频域装置调制在高频 (50-500MHZ) 连续发射的光的振 幅。 通过测量光子相位偏移及其幅度延迟一与参考信号相比一获取关于组 织的光学性质的信息, 并且可以区分散射 /吸收。 如果采用大范围的频率, 频域 系统可以产生与时域系统相同的信息。
[0066] 最后, 连续波系统以恒定的强度发射光或在低频 (0.1-lOOkHz) 下调制。 这是 一种相对直接的技术, 其测量在乳房表面上的两个点之间传输的光的衰减。 由 于其简单性, 连续波设备相对便宜并且图像采集相对较快。 然而, 使用这种技 术难以区分散射和吸收, 并且数据分析通常需要复杂的重建算法和随之而来更 大的计算量。
[0067] 如前所述, 光学乳房成像 (或通常的光学成像) 使用 NIR光来确定乳房组织的 光学性质。 在这些波长的光吸收是最小的, 允许足够的组织穿透 (高达 15厘米 ) 。 重要的是, 乳房的主要成分的吸收特性都可以用波长的函数的描述。 通过 组合在各种波长处获取的吸收图像, 可以确定血红蛋白、 水和脂肪等各种成分 的浓度。
[0068] 如本领域技术人员已知的, 在恶性肿瘤中, 血红蛋白浓度与血管生成相关, 血 管生成是肿瘤生长和转移所需的因子。 此外, 由于其新陈代谢, 血红蛋白在这 种肿瘤中的比例会发生变化。 通过测量乳房组织成分的浓度, 光学成像一特 别是扩散光学成像可以来辨别良性和恶性肿瘤。
[0069] 有了这个更完整的背景下, 我们现在再看图。 图 1示出了根据本公开的一个方 面的说明性的非侵入性的医疗诊断成像装置的示意性透视图。 如可从图中观察 到。 医疗诊断成像装置 100通常呈现"锥形"或"杯形"形状, 包括多个源环 110[1], 110[2] , 110[3]。 每一个源环都包含围绕环间隔分布的一定数量的光源 140。 每个 单独的源环之间有一个检测器轨道 120[1], 120[2] , 130[3]。 每个轨道具有围绕 所述轨道相互隔开的一个或多个检测器 130。 检测器 130可以由光传感器构成。 在装置 100的最顶端部有一个帽 150。
[0070] 图 1中由多个源环以及源环上的多个均匀间隔开的光源 140构成光发射装置, 在 实际应用中, 光发射装置也可以是其他形态的, 如是一个整体发光装置。
[0071] 值得注意的是一在本文中所使用的锥形或杯形形状的装置 100, 也可以通过 其他名称来表述, 包括"杯"是已知的, 并如本领域的技术人员很容易理解的: 它 可以是一个组件较大的结构一即"胸罩"结构或 "胸罩"。 在根据本公开的具体 实施例中, 杯和其它胸罩部件可由天然和 /或合成的织物制成, 包括天然和 /或合 成材料和金属的混合物 (钢丝等) , 并且通常形状配合和 /或刚性。
[0072] 通常, 本公开中描述的杯是指基本适合人乳房的形状的。 当杯由相较乳房组织 而言更柔性 /顺应的材料制成时, 杯将贴合乳房的形状。 当杯由相较乳房而言不 变形的材料制成时, 乳房基本上呈杯的形状。 例如用更硬的即塑料或聚合物材 料或不适形的非柔性织物材料用于构造杯体时。 对于本领域技术人员将变得显 而易见的是, 本公开中的杯通常将是足够刚性的, 以允许围绕杯子的任何源 /检 测器的可预测和可再现的定位, 并且为下面的乳腺组织提供 "归一化"形状。 附加 的织物 /材料可以与这种刚性杯一起使用以为穿着者提供一定程度的舒适度。
[0073] 在图 1中进一步示出。 每个检测器 130包括光纤 160 (多个) 或线 (缆) , 通过 它们检测器耦合到检测器系统 /控制系统 (未具体示出) 以便建立通信, 具体细 节将在本公开的后面描述。
[0074] 如将容易理解的, 光源 140可以是本领域内任意各种光源, 已知的当中比如可 以是 LED的光源、 激光、 或近红外光等。 在图 1所示的结构中, 光源围绕源环 ( 多个) 的整个圆周表面分布。 虽然未在图中具体显示, 在特定的实施方式中, 根据诊断需求, 光源可以在系统的控制下被单独或集体通电来发射光信号。
[0075] 类似地, 检测器 130可以是由任意数量的检测器构成, 它们围绕圆周轨道分布 。 进一步的优点是, 各个检测器可以沿着轨道可调节地移动和定位, 从而检测 器与 (光) 源和 (乳房) 组织的相对位置可以得到调整, 以影响检测器 /检测结 果。 更具体地, 检测器可以根据光的检测效果来进行调整, 例如, 可以调整为 最大检测信号。
[0076] 我们在此点进一步注意, 虽然我们已经示出的光源 (多个) 140和检测器 (多 个) 130是独立的和不同的, 本领域的技术人员将理解, 也可以构成源 /检测器组 件, 该组件相对于杯体是可调节定位的。
[0077] 如可从图 1中观察到。 装置 100的形状基本上是圆锥形的或杯形的, 比较符合正 常人体乳房的轮廓。 因此, 最外面的源环, 即 110[1], 呈现最大径向尺寸; 而最 内侧源环, 即 110[3]], 显示出最短的径向尺寸。 对于检测器轨道来讲, 都可以 观察到类似的尺寸特性。
[0078] 图 2示出了根据本公开的一个方面的说明性的非侵入性的医疗诊断成像装置的 另一示意性透视图。 从该图可以观察到, 该医疗诊断成像装置 200上的检测器 13 0位于源环之上, 可以有一个或多个。 当以这种方式构造时, 源和检测器两者相 对位置固定。
[0079] 图 3示出了根据本公开的一个方面的替代说明性的非侵入性的医疗诊断成像装 置 300的示意性透视图。 如可以从该图可以观察到, 该装置显示构造为单件的锥 形或杯形 (虽然不一定) , 其螺旋环 170具有增加的径向尺寸。 换句话说, 靠近 装置 300顶部的源和检测器更靠近中心轴。 相反, 位置更靠近装置底部的源和检 测器与中心轴线进一步间隔开 (径向向外, 有更长的半径) 。 当以这种方式构 造时, 沿着螺旋环放置的一系列光源将相对于中心轴呈现增加半径尺寸的情况 。 另外, 基本的螺旋形轨道 180上可以放置一个或多个检测器组件。 如将被理解 和认识到的, 在这个特定的方案中, 可以沿着轨道重新定位检测器, 使得实现 最大或期望的检测特性。 当系统选择点亮其中某一个或多个或某一组光源时, 就会获得对应的检测结果和成像效果。
[0080] 在这一点上, 我们注意到本公开的另一个有利方面。 具体地, 并且如本领域技 术人员将理解的, 对于现有许多类型的成像 (特别是乳房成像) , 通常希望将 待成像的组织按某种方式或以其他已知的特定形进行摆放, 如将组织压平。 以 这种方式, 源 (一个或多个) 和检测器 (一个或多个) 的相对的、 标准化的位 置可以非常精确并可重复, 并且可以适用于不同的多个患者, 但对待检测的组 织进行摆放和挤压, 会对患者带来强烈不适感。 因此, 采用根据本公开的装置 会比较有价值。 同时对材料进行的适当选择, 包括织物、 塑料或其它刚性、 生 物相容性的材料。 提高了被测者的舒适度。 因此, 本领域技术人员应当认识到 , 我们的公开内容不限于任何特定材料, 并且提供上述特性的某些材料实际上 可能是优选的。
[0081] 图 4根据本公开的一个方面示出一个附加的说明性的非侵入性的医疗诊断成像 装置 400的另一示意性透视图。 参照该图 4, 它可被观察到, 示出的装置的总体 结构基本上类似于图 3中所示。 尽管有相似之处, 但显示了一种替代的源 /检测器 组件。 通过组合将源 /检测器作为一个单元, 使得可以重新定位 /重新配置。
[0082] 更具体地, 并且如可以从该图观察到的。 源 /检测器组件 135 (被示为包括检测 器、 通信光纤 /导线, 以及一个或多个源) 全部被配置为单一组件。 以这种方式 , 包括单个组件的源 /检测器的相对位置将保持固定, 同时通过将组件重新定位 在螺旋轨道内, 可以实现组件相对于整个装置的重新定位。 因此, 定位在轨道 中的一个或多个组件可以相对于被成像的组织重新定位。 注意, 虽然源 /检测器 组件包括一个或多个光源, 但是如前所述, 示出了沿螺旋环定位的附加光源。
[0083] 根据本公开的一个方面, 图 5示出了另一个可选的说明性非侵入性医学诊断成 像装置 500的示意性透视图。 如可以由图初步审査观察。 该装置表现出一个基本 圆锥或杯的形状, 包括一个螺旋环和一个螺旋形轨道。 沿着螺旋环设置有多个 光源 140, 如前面其它实施例中所述, 其可以是包括的任何已知类型的光源, 如 LED, 通过源可以发射期望波长的光。 此外, 还包括控制臂 190, 控制臂 190固定 在装置 500上并可以围绕装置 (圆锥或杯) 中心轴线旋转。 轨道上的一个或多个 检测器或检测器组件同时安装在控制臂上, 并可以在控制臂上滑动。 例如前面 所示的那些, 当以这种方式配置时, 在控制臂 190围绕中心轴线旋转时, 检测器 或检测器组件将同时沿着控制臂和轨道滑动。 因此, 当推动控制臂凸片 195使得 控制臂 190发生旋转时, 检测器或检测器组件将沿着轨道移动, 其位置将相应地 改变。 由于轨道的位置是固定的, 并且控制臂的旋转角度是可知的, 如此, 检 测器或检测器组件相对于光源和 (乳房) 组织发生移动或重新定位后, 检测器 或检测器组件位置可以方便、 简单地确定, 并且是可预测和可重复的。
[0084] 根据本公开的一个方面, 图 6示出又一替换说明性的非侵入性的医疗诊断成像 装置 600的示意性透视图。 如图 6示出的装置是大致在图 1和图 5中所示的那些的 组合。 更具体地, 其包括多个源环 110 [1], 110 [2] , 110 [3]插入轨道之间。 有多 个检测器 /组件的装置 130安装在控制臂上, 而控制臂 190可以旋转。 如此配置, 检测器 /组件与特定轨道相关联, 并且当控制臂旋转时, 检测器 /组件将同样围绕 其相应轨道内的中心轴旋转。 这种构造的优点是允许在控制臂旋转的情况下重 新配置 (定位) 检测器 /组件。
[0085] 根据本公开的一个方面, 图 7示出了说明性的非侵入性的医疗诊断成像装置 700 的示意剖视图。 在该横截面图中示出基本的锥形装置, 包括螺旋源环 110和螺旋 轨道 105。 覆盖整个装置的是盖面 106, 其制造材料可以是承重、 耐久性、 遮光 性的各种已知材料中的任一种。 图 7还示出了定位在螺旋轨道中并穿过盖面 106 的检测器 /组件 130。 检测器 /组件 130可在盖面发生径向移动。 虽然未具体示出, 但是将容易理解, 当盖面 106相对于装置 700旋转时, 检测器 /组件 130的位置将沿 着轨道滑动, 从而实现检测器 /组件相对于光源和组织重新定位。
[0086] 根据本公开的一个方面, 图 8示出了说明性的非侵入式医疗诊断成像设备 800的 外边缘部分的示意性横截面图。 更具体地示出了该装置包含盖面 106、 基座 107 、 控制臂 190。 无论是如前所示的整体螺旋构造还是多环构造, 都差不多。 介于 控制臂与盖面和基座之间的是衬垫 196 (多个) , 其作用是允许控制臂围绕装置 的中心轴线可旋转地滑动。 如可以理解的, 衬垫可以由许多已知材料中的任何 一种构成, 同时允许容易地重新定位 /旋转控制臂, 也可以提供足够的阻力, 使 得控制臂不会无意地移动。
[0087] 根据类似于在图中所示的本公开的一个方面, 图 9示出了另一说明性非侵入式 医疗诊断成像装置 900的外边缘部分的示意性横截面图。 在圆形轨道 142中 /上, 有一个控制旋钮 141, 它运行于整个装置的边缘。 靠近所述控制旋钮, 贴着控制 臂 190的一端是磁结构 143, 其通过磁耦合到控制旋钮。 因此, 当控制旋钮在在 装置的外轨道内运动时, 控制臂通过磁耦合的方式也会围绕中心轴线旋转。 除 了驱动控制臂运动之外, 一旦控制旋钮相对于外轨道固定, 磁耦合力导致控制 臂也被固定。
[0088] 根据本公开的一个方面, 图 10示出了说明性的非侵入式医疗诊断成像装置 1000 的俯视透视图。 图 10所示的装置, 类似于先前示出的单件图, 具有包括许多光 源 140的螺旋源环和螺旋轨道, 其中一个或多个检测器 /组件可滑动地定位。 图 10 进一步示出了一种标尺或标记 131, 通过它可实现检测器 /组件的定位 /重新定位 。 以这种方式, 检测器 /组件可以位于轨道 132的特定位置, 这些位置由已定好的 标记来确认, 通过这种方式也可以定位到原点或其他位置。 如可以容易理解的 , 当以这种方式划线时, 因为可以通过标记来配准, 在轨道中可以存在多个独 特的、 可重复的位置。
[0089] 根据本公开的一个方面, 图 11示出了另一示例性非侵入式医疗诊断成像装置 11 00的俯视立体图。 图 11所示的装置和前面所示方案的类似, 包含多个源环, 每 一个源环都包含了多个光源 140, 多个轨道分别插入在源环之间, 其中轨道上有 一个或多个检测器 /组件 130。 如可以观察到的, 围绕环形轨道有一系列按规则间 隔定义的标尺或标记 131, 通过它们可实现检测器 /组件的定位 /重新定位。
[0090] 根据本公开内容, 图 12示出了又一个说明性非侵入式医疗诊断成像装置 1200的 俯视透视图。 它是先前示出的图 5的一个变化。 值得注意的是, 相较于图 5, 除 了图中所示的其他结构, 图 12进一步包括旋转的量角器 193。 围绕量角器的圆周 上设置有一系列刻度标记, 用于指示控制臂 360度旋转时的相对位置。 与前述实 施例一样, 定位在中心轴线处的旋转量角器允许控制臂和检测器 /组件相对于光 源和组织的精确定位 /重新定位。 在实际应用中, 该量角器也可以由更电子化的 角度编码器代替。 [0091] 根据本公开内容, 图 13示出了又一个说明性非侵入式医疗诊断成像装置 1300的 俯视透视图。 它是图 12和图 6中所示结构的一种变化。 值得注意的是, 量角器表 盘 193定位在中心轴线允许控制臂 190的精确定位 /重新定位, 以及多个检测器 /组 件 130固定到控制臂并且定位在介于源光环之间的圆周轨道内。 从所示的这种配 置可以看出, 每个单独的检测器 /组件 130沿着中心轴线在整个装置的圆周上运动 时, 所有的检测点具有相同的径向线定位。 换句话说, 每个检测器 /组件的位置 可以通过量角器刻度盘的角度来标示。
[0092] 根据本公开的一个方面, 图 14示出了说明性的非侵入式医疗诊断成像装置 1400 的分解侧视图。 其包括带有螺旋轨道的基座 107, 恰好覆盖基座的也带有螺旋轨 道的中间结构 180, 以及盖面 106其覆盖在中间轨道结构上。 如可以容易地观察 到的, 所有三个部件通常呈现基本上符合的圆锥形或杯形形状, 这样可以人乳 房形状相符。
[0093] 根据本公开的一个方面, 图 15示出了说明性的非侵入性医学诊断成像装置部件 1500的部件俯视透视图。 更具体地, 图 15示出一个基部部件 (基座) 107包括螺 旋轨道 180和一系列源光源 140沿着螺旋形轨道设置。 可以理解, 检测器 /组件 ( 图中未具体示出) 可重新定位在轨道内, 使得它们可以检测从源发射的光。 进 一步示出间隔件 /隔离器 108, 间隔件 /隔离器 108在源和检测器之间提供额外的光 隔离, 并且, 还为该基部部件和盖面 (图中未具体示出) 之间留出间隔。
[0094] 根据本公开的一个方面, 图 16示出说明性的医疗诊断成像系统 1600的原理图。
如在该示图 16, 该系统包括源 /检测器装置 1610, 用于把装置固定到用户待测 ( 乳房) 组织上的固定带 1620, 接口电缆 1640, 控制器 1630通过接口电缆 1640把 控制信号 /数据耦合 (传输) 到源 /检测器装置 1610; 如本领域技术人员将容易理 解的, 控制器可以控制检测器装置并从检测器装置采集组织的图像数据。 有利 的是, 该系统的控制可以由智能设备 1650来完成 (例如, 智能手机, PDA, 电 脑) , 进一步的, 借由网络服务 /系统, 包括云服务 /系统 1660, 智能设备还可以 提供详细的数据分析 /存储。 此外, 以这种方式配置时, 图像数据 (未具体示出 ) 和结果 /分析可以在多个诊断医生之内 /间分享, 以及提供给用于保存患者病历 的机构共同使用。 [0095] 根据本公开的一个方面, 图 17示出说明性的医疗诊断成像系统 1700的原理图。 类似于所示图 16, 其特征在于, 所述的 PDA /智能电话是由本地计算机系统 1670 取代。 如在此所示图 17, 本地计算机系统 1670通信地耦合到系统控制器 1630, 从而影响本地计算机控制 /成像系统和装置的分析。
[0096] 根据本公开的一个方面, 图 18示出了另一说明性的非侵入性的医疗诊断成像装 置的顶视图 1800。 图 18是一个说明性设备, 如示出之前描述过的一个固定带 162 0, 用于保持 (乳房) 组织 (多个) 和成像装置在位置上相对固定, 以便进行检 査。 如可以容易理解的是, 与乳房组织 (多个) 的情况下, 通过把把固定带环 绕检査者的上身固定, 使得该装置被定位在检査者的乳房上。 值得注意的是, 固定带 1620可以是任何各种公知的条带, 用以将成像装置可拆卸和 /或可调节地 固定到个人的身上。 注意, 图 18图的顶部是一个方向指示器 1810, 通过该指示 器 1810可以定位成像装置摆放到身体上时的方向, 以保证每次诊断位置的一致 性。
[0097] 根据本公开的一个方面, 图 19示出了一个说明性的医疗诊断成像系统的示意图 , 用于便携式乳腺癌检测和成像。 图 19中可容易地观察到, 便携式乳腺癌检测 系统包括机械模块 (装置) , 如所示和先前所描述的。 该装置可通信地耦合到 系统主板, 可观察到, 该机械模块包括电源、 电源管理、 光源驱动器、 处理器 和通信模块、 数据采集模块和跟踪模块。 数据采集模块也可称为数据获取模块 , 可以包括放大器、 模拟数字信号转换器等。 数据采集模块用于从各检测器采 集数据, 获取光检测数据, 并通过通信模块将所获取的数据输出到包含数据处 理 (功能) 模块的计算机系统进行数据处理, 最终得到检测结果并生成成像。 上述各机械模块, 以及数据采集模块、 包含数据处理功能的计算机系统均可以 由现有模块构成, 可直接购入成品。 前述数据处理、 生成成像的方法, 在论述 扩散光学断层成像的相关书籍或论文中多有记载, 例如 crc press
2010年出片反的 (Diffuse Optical Tomography: Principles and Applications)) ~■书。 对本领域技术人员而言, 这些并非本申请的主要技术, 其具体实现方式在此亦 不再赘述。
[0098] 最后, 图 20示出的是说明性计算机系统 2000, 是根据本公开的一个方面实现的 方法和系统。 如可以立即认识到的, 这样的计算机系统可被集成到一个其它系 统诸如路由器, 并且可以通过分立元件或一个或多个集成电路组件来实现。
[0099] 计算机系统 2000包括处理器 2010, 记忆体 2020, 储存设备 2030和输入 /输出结 构 2040。 一个或多个输入 /输出设备可以包括显示 2045。 一个或多个总线 2050典 型地互连组件 2010, 2020, 2030, 和 2040。 处理器 2010可以是单层或多层芯。 此外, 该系统可以包括加速器等, 还包括一个片上系统。
[0100] 处理器 2010执行相关指令, 这样的指令可以存储在存储器 2020或存储设备 2030 。 数据和 /或信息可被接收和使用一个或多个输入 /输出设备输出。
[0101] 记忆体 2020可以存储数据, 并且可以是计算机可读介质, 诸如易失性或非易失 性存储器。 储存设备 2030可提供用于系统存储 2000, 比如先前描述的方法。 在 各种方面中, 存储装置 2030可以是快闪存储器装置、 磁盘驱动器、 光盘设备, 或采用磁、 光、 或其他记录技术的磁带设备。
[0102] 输入 /输出结构 2040可为系统 2000提供输入 /输出操作。
[0103] 在这一点上, 本领域的技术人员将容易理解的是, 尽管本发明的方法、 技术和 结构已经相对有了特定的实现方式和 /或实施例, 但本领域的技术人员对此的认 识将不受本公开的限制。 因此, 本公开的范围应仅由所附的权利要求来限定。

Claims

权利要求书
[权利要求 1] 一种医疗检测和成像的无创诊断系统, 其特征在于, 包括:
定位可调装置, 用于对检测人体乳房的一个或多个检测器进行位置调 节, 所述定位可调装置包括沿乳房分布的一个或多个轨道、 和设置于 所述轨道上的位置可调的一个或多个检测器;
数据获取装置, 用于从所述一个或多个检测器获取数据;
数据处理装置, 用于处理所获取的数据。
[权利要求 2] 根据权利要求 1所述的医疗检测和成像的无创诊断系统, 其特征在于
, 所述沿乳房分布的一个或多个轨道为环形轨道或螺旋轨道。
[权利要求 3] 根据权利要求 1所述的医疗检测和成像的无创诊断系统, 其特征在于
, 还包括: 用于光学地照亮人体乳房的光发射装置。
[权利要求 4] 根据权利要求 3所述的医疗检测和成像的无创诊断系统, 其特征在于
, 所述光发射装置包括多个彼此均匀间隔开的光源。
[权利要求 5] 根据权利要求 4所述的医疗检测和成像的无创诊断系统, 其特征在于
, 所述均匀间隔开的光源构成至少一个源环, 所述源环呈环形或螺旋 形;
所述沿乳房分布的一个或多个轨道为环形轨道或螺旋轨道; 所述源环与所述轨道间隔分布。
[权利要求 6] 根据权利要求 3所述的医疗检测和成像的无创诊断系统, 其特征在于
, 所述光发射装置与所述检测器构成一个组件, 设置于所述轨道上且 位置可调。
[权利要求 7] 根据权利要求 1所述的医疗检测和成像的无创诊断系统, 其特征在于
, 还包括: 位置确定装置, 用于确定所述检测器的位置。
[权利要求 8] 根据权利要求 7所述的医疗检测和成像的无创诊断系统, 其特征在于
, 所述位置确定装置包括: 一个角度编码器, 或者 包括: 沿轨道排布的用于指示位置的标尺或标记; 或者
包括: 旋转的量角器, 围绕量角器的圆周上设置有一圈刻度标记。
[权利要求 9] 根据权利要求 2所述的医疗检测和成像的无创诊断系统, 其特征在于 , 还包括: 用于将所述定位可调装置、 所述数据获取装置、 和 /或所 述光发射装置覆盖到人体乳房的装置。
[权利要求 10] 根据权利要求 9所述的医疗检测和成像的无创诊断系统, 其特征在于 , 所述用于将定位可调装置、 数据获取装置、 和 /或光发射装置覆盖 到人体乳房的装置为一基本适合人体乳房形状的结构体, 所述定位可 调装置的一个或多个轨道、 所述数据获取装置、 所述光发射装置固定 于所述结构体上。
11.根据权利要求 10所述的医疗检测和成像的无创诊断系统, 其特征 在于, 所述结构体由柔性材料制成, 或者, 由不变形材料制成。
12.根据权利要求 9所述的医疗检测和成像的无创诊断系统, 其特征在 于, 所述用于将定位可调装置、 数据获取装置、 和 /或光发射装置覆 盖到人体乳房的装置还包括固定带, 通过所述固定带把所述结构体固 定到人体乳房上。
13.根据权利要求 10所述的医疗检测和成像的无创诊断系统, 其特征 在于, 还包括: 一控制臂, 可围绕所述结构体的中心轴线旋转, 所述 轨道上的一个或多个检测器还安装在所述控制臂上, 在所述控制臂上 滑动。
14.根据权利要求 10所述的医疗检测和成像的无创诊断系统, 其特征 在于, 还包括: 覆盖在所述结构体上的盖面, 所述盖面可围绕所述结 构体的中心轴线旋转, 所述轨道上的一个或多个检测器穿过所述盖面 , 在所述盖面上径向滑动。
15.根据权利要求 13所述的医疗检测和成像的无创诊断系统, 其特征 在于, 在所述结构体的外边缘包括一圆形轨道, 所述圆形轨道上包括 一控制旋钮, 所述控制臂靠近圆形轨道的一端包括一磁结构, 所述磁 结构通过磁耦合到所述控制旋钮。
16.—种医疗检测和成像的无创诊断系统, 其特征在于, 包括: 一基本适合人体乳房形状的结构体, 设置于所述结构体上的一个或多 个光发射装置, 以及分布于所述结构体不同位置的多个检测器; 数据获取装置, 用于从所述一个或多个检测器获取数据;
数据处理装置, 用于处理所获取的数据。
17.根据权利要求 16所述的医疗检测和成像的无创诊断系统, 其特征 在于, 所述光发射装置包括多个彼此均匀间隔开的光源, 所述多个检 测器与所述光源的相对位置固定。
18.根据权利要求 17所述的医疗检测和成像的无创诊断系统, 其特征 在于, 所述均匀间隔开的光源构成至少一个源环, 所述源环呈环形或 螺旋形;
每个所述源环上包括至少一个所述检测器。
PCT/CN2018/102696 2017-06-28 2018-08-28 一种医疗检测和成像的无创诊断系统 WO2019001594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710509006.5 2017-06-28
CN201710509006.5A CN109124569B (zh) 2017-06-28 2017-06-28 一种医疗检测和成像的无创诊断系统

Publications (1)

Publication Number Publication Date
WO2019001594A1 true WO2019001594A1 (zh) 2019-01-03

Family

ID=64741149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102696 WO2019001594A1 (zh) 2017-06-28 2018-08-28 一种医疗检测和成像的无创诊断系统

Country Status (2)

Country Link
CN (1) CN109124569B (zh)
WO (1) WO2019001594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130305A1 (en) * 2020-12-18 2022-06-23 Indian Institute Of Technology Kanpur Sensor patch for cancer screening

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112890869B (zh) * 2021-03-04 2022-02-15 山东第一医科大学附属省立医院(山东省立医院) 一种基于大数据的乳腺外科智能检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040274A1 (en) * 2000-11-24 2010-02-18 U-Systems, Inc. Processing and displaying breast ultrasound information
CN103957815A (zh) * 2011-12-02 2014-07-30 浜松光子学株式会社 乳房摄像装置
CN106667433A (zh) * 2015-11-10 2017-05-17 佳能株式会社 被检体信息获取装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100113921A1 (en) * 2008-06-02 2010-05-06 Uti Limited Partnership Systems and Methods for Object Surface Estimation
EP2352422A4 (en) * 2008-09-10 2015-08-12 Endra Inc DEVICE FOR PHOTOACOUS IMAGING
EP2624749A4 (en) * 2010-10-05 2014-09-10 Jointvue Llc ULTRA-WIDE BAND FREQUENCY IMAGING SYSTEM HAVING A NEW CALIBRATION APPROACH FOR DETECTION OF BREAST CANCER
CN106821315A (zh) * 2017-01-18 2017-06-13 深圳市迪西姆科技开发股份有限公司 新型智能文胸

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040274A1 (en) * 2000-11-24 2010-02-18 U-Systems, Inc. Processing and displaying breast ultrasound information
CN103957815A (zh) * 2011-12-02 2014-07-30 浜松光子学株式会社 乳房摄像装置
CN106667433A (zh) * 2015-11-10 2017-05-17 佳能株式会社 被检体信息获取装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130305A1 (en) * 2020-12-18 2022-06-23 Indian Institute Of Technology Kanpur Sensor patch for cancer screening

Also Published As

Publication number Publication date
CN109124569B (zh) 2022-06-03
CN109124569A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Zou et al. A review of electrical impedance techniques for breast cancer detection
Zhu et al. Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases
JP5685179B2 (ja) 乳房の微小石灰化を検出するための超音波画像のスペクトル分析方法
EP1919273B1 (en) Tissue-characterization probe with effective sensor-to-tissue contact
JP4733264B2 (ja) 胸部腫瘍の検出、画像形成および特徴表示
JPWO2008010604A1 (ja) 血管撮影装置及び血管分布解析システム
JPH03274444A (ja) ヒトの組織を定量検査し高解像度影像を得る方法と装置
CN113143297B (zh) 一种病灶检测系统和方法
Xie et al. Combined photoacoustic and acoustic imaging of human breast specimens in the mammographic geometry
US20210022613A1 (en) Wearable Device for Optical Breast Imaging and Spectroscopic Tissue Analysis
WO2019001594A1 (zh) 一种医疗检测和成像的无创诊断系统
JP6794438B2 (ja) 乳房検診を容易にする装置を備える画像診断システム
Moon et al. Supplemental use of optical diffusion breast imaging for differentiation between benign and malignant breast lesions
Vaartjes et al. First clinical trials of the Twente Photoacoustic Mammoscope (PAM)
RU2532372C1 (ru) Способ дифференциальной диагностики доброкачественных и злокачественных опухолей молочной железы
Lv et al. Effect of vascular haemoglobin concentrations on ultrasound-guided diffuse optical tomography in differentiating benign from malignant breast lesions
Saha et al. Imaging Techniques for Breast Cancer Diagnosis
Kim et al. Optical Imaging of the Breast.
Halter EIT for Imaging of Cancer
Krishnamurthy Using Near Infrared Spectroscopy to Study Static and Dynamic Hemoglobin Contrast Associated with Breast Cancer
Kosik Intraoperative Photoacoustic Imaging of Breast Cancer
Yu et al. Sono-contrast spectroscopy for breast cancer detection
Zhang et al. Application of LED imager for breast cancer diagnosis
Leff A Systematic Review of Near Infrared Spectroscopic Imaging of the Healthy and Diseased Breast
Casali et al. X-REPORT BREAST: IT TOOLS TO EARLY DETECT BREAST CANCER THROUGH OPTICAL IMAGING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823358

Country of ref document: EP

Kind code of ref document: A1