WO2019001409A1 - 数据传输的方法、接入网设备和终端设备 - Google Patents

数据传输的方法、接入网设备和终端设备 Download PDF

Info

Publication number
WO2019001409A1
WO2019001409A1 PCT/CN2018/092800 CN2018092800W WO2019001409A1 WO 2019001409 A1 WO2019001409 A1 WO 2019001409A1 CN 2018092800 W CN2018092800 W CN 2018092800W WO 2019001409 A1 WO2019001409 A1 WO 2019001409A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
access network
resource
information
network device
Prior art date
Application number
PCT/CN2018/092800
Other languages
English (en)
French (fr)
Inventor
苏宏家
朱俊
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18822695.5A priority Critical patent/EP3629652A4/en
Publication of WO2019001409A1 publication Critical patent/WO2019001409A1/zh
Priority to US16/725,889 priority patent/US20200137782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to communications technologies, and in particular, to a data transmission method, an access network device, and a terminal device.
  • Ultra-Reliable and Low Latency Communications is one of the most important application scenarios for 5G mobile communication systems.
  • Low latency and high stability are the two most important features of URLLC.
  • the stability requirement of URLLC is 1-10 -5 , which is a huge improvement compared with 1-10 - 2 of LTE.
  • the end-to-end delay requirement is even lower than 1 ms.
  • LTE Long Term Evolution
  • a solution that is currently used is to perform multiple consecutive transmissions of downlink URLLC data. As shown in FIG. 1 , this method can enhance the probability of the edge device receiving the downlink URL LC data (for example, the sender sends the data multiple times.
  • the receiving end can be combined to increase the probability of correct reception, and can rely on multiple transmissions without the need for an Acknowledgement (ACK) or Negative Acknowledgment (Negative Acknowledgment)
  • ACK Acknowledgement
  • Negative Acknowledgment Negative Acknowledgment
  • the feedback of the NACK reduces the delay associated with the Hybrid Automatic Repeat Request (HARQ) mechanism and satisfies the delay requirements of the URLLC scenario.
  • HARQ Hybrid Automatic Repeat Request
  • the uplink and downlink configuration base stations are configured in advance, that is, the terminal equipment performs downlink reception and uplink according to the proportion of uplink and downlink time slots that the network side equipment has configured. send. If the network side device sends the URLLC downlink data in the last downlink position (DL slot) of the uplink and downlink configuration, only one DL slot of the network side device can send the URLLC downlink data, and there is no additional DL slot for the continuous continuous URLLC downlink data. Secondary transmission. Therefore, in this scenario, the above prior art solution cannot improve the probability that the terminal device correctly receives the URLLC data.
  • the present invention provides a data transmission method, an access network device, and a terminal device, which are used to solve the problem that the terminal device cannot correctly receive the URLLC data when there is no additional DL slot for performing consecutive multiple transmissions of the URLLC downlink data.
  • the technical problem of probability is not limited to.
  • the application provides a data transmission method, including:
  • the access network device sends the first control information to the first terminal device, where the first control information is used to indicate that the first terminal device receives the downlink data that is to be received from the access network device, and passes the side link (Sidelink, Referred to as SL), it is transmitted to the second terminal device multiple times;
  • the access network device sends downlink data to the first terminal device.
  • the first control information is sent to the first terminal device by the access network device, so that the first terminal device passes the downlink data received from the access network device according to the first control information.
  • the method is transmitted to the second terminal device multiple times, thereby increasing the probability that the second terminal device correctly receives the downlink data, which is not limited to the impact of the uplink and downlink configuration of the access network device.
  • the downlink data is the downlink URL LC data
  • the method of the present application The reliability of the URLLC data is further enhanced and the requirement for low transmission of data transmission in the URLLC scenario is ensured.
  • the first control information includes: a coordinated transmission indication, first resource information, and second resource information;
  • the cooperative transmission indication is used to instruct the first terminal device to use the downlink data received by the first terminal according to the first resource information to pass the side link multiple times according to the second resource information. Transmitted to the second terminal device.
  • the method provided by the possible design enables the first terminal device to know whether it is to perform cooperative transmission (ie, transmit data to the second terminal device multiple times through the side link) through clear communication transmission indication, and clearly
  • the resources used for collaborative transmission ensure the accuracy of the first terminal device for cooperative transmission.
  • the method further includes:
  • the access network device forms the second resource information according to the uplink scheduling resource to be cancelled.
  • the method further includes:
  • the access network device sends the second control information to the terminal device in the coverage area of the access network device, where the second control information carries an uplink scheduling cancellation indication, and the uplink scheduling cancellation indication is used to indicate the access
  • the network device cancels the uplink scheduling resource for the terminal device.
  • the method further includes
  • the access network device forms the second resource information according to the new uplink resource allocated by the access network device to the second terminal device, where the new uplink resource and the access network device The uplink resources that have been scheduled are different.
  • the access network device may allocate a new uplink resource for the data transmission of the edge link, and form the second resource information, to assist the first terminal device to transmit the received downlink data multiple times to Second terminal device.
  • the access network device may also cancel the uplink scheduling resource of the scheduled terminal device, and use the canceled uplink scheduling resource as the data transmission resource of the edge link, to assist the first terminal device to transmit the received downlink data to the multiple times.
  • Second terminal device Second terminal device. Therefore, the foregoing method may not be affected by the uplink and downlink configuration adopted by the access network device, which may increase the probability that the second terminal device correctly receives the downlink data, improve the network service quality of the second terminal device, and ensure data transmission. Stability and reliability.
  • the first control information is downlink control information DCI after the access network device uses the group identifier of the terminal device group or the identifier of the second terminal device;
  • the terminal device group includes the first terminal device and the second terminal device.
  • the method provided by the possible design obtains the first control information by using the identifier of the terminal device group or the identifier of the second terminal device to scramble the DCI (the DCI is DCI format X in the following embodiment), so that the first control information is obtained.
  • a terminal device can accurately receive the first control information, and prevent the first terminal device from erroneously receiving control information of other terminal devices.
  • the second control information is downlink control information DCI after the access network device uses the group identifier of the terminal device group or the identifier of the terminal device;
  • the terminal device group includes the first terminal device and the second terminal device.
  • the method provided by the possible design obtains the first control information by using the identifier of the terminal device group or the identifier of the terminal device covered by the access network device to scramble the DCI (the DCI is DCI format Y in the following embodiment). Therefore, the terminal device can accurately receive the second control information, and prevent the terminal device from erroneously receiving the control information of the other terminal device.
  • the application provides a data transmission method, including:
  • the first terminal device transmits the downlink data received by the first terminal device from the access network device to the second terminal device multiple times through the edge link according to the first control information.
  • the first control information includes: a coordinated transmission indication, a first resource information, and a second resource information; the first terminal device, according to the first control information, the first terminal
  • the downlink data that is received by the device from the access network device is transmitted to the second terminal device multiple times through the edge link, and specifically includes:
  • the first terminal device transmits the downlink data to the second terminal device multiple times through the edge link according to the coordinated transmission indication and the second resource information.
  • the second resource information is information formed by the access network device according to an uplink scheduling resource to be cancelled.
  • the second resource information is information formed by the access network device according to the new uplink resource allocated by the access network device to the second terminal device, the new The uplink resource is different from the uplink resource that the access network device has scheduled.
  • the second resource information includes: when the first terminal device sends the downlink data to the second terminal device multiple times First time-frequency resource configuration information and first transmission configuration information;
  • the first transmission configuration information includes a modulation coding policy MCS parameter, an antenna configuration information, a transmission number, and a version number of the data retransmission used when the first terminal device sends the downlink data to the second terminal device. At least one of the information.
  • the first terminal device can clearly know how to transmit downlink data to the second terminal device multiple times through the edge link, and ensure the transmission of the side link. Accuracy and improved transmission efficiency.
  • the first resource information includes: second time-frequency resource configuration information and second transmission configuration information that are used by the first terminal device when receiving the downlink data;
  • the second transmission configuration information includes at least one of a modulation and coding policy MCS related parameter and antenna configuration information used by the first terminal device when receiving the downlink data.
  • the first terminal device can clearly know how to receive the downlink data delivered by the access network device, and ensure the receiving accuracy of the downlink data.
  • the application provides an access network device, including: a unit or means for performing the steps of the above first aspect.
  • the application provides a terminal device, including: a unit or means for performing the steps of the second aspect above.
  • the present application provides an access network device including at least one processing element for storing programs and data, and at least one processing element for performing the present application The method provided by the first aspect.
  • the present application provides a terminal device including at least one processing element for storing a program and data, and at least one storage element for performing the second application of the present application Aspects of the methods provided.
  • the application provides an access network device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • the present application provides a terminal device comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • the present application provides a program for data transfer, the program being used to execute the method of the above first aspect when executed by a processor.
  • the present application provides a program for data transfer, the program being used to execute the method of the above second aspect when executed by a processor.
  • the application provides a program product, such as a computer readable storage medium, comprising the program of the ninth aspect.
  • the present application provides a program product, such as a computer readable storage medium, comprising the program of the tenth aspect.
  • the first control information is sent to the first terminal device by the access network device, so that the first terminal device passes the downlink data received from the access network device through the side link according to the first control information.
  • the method is further transmitted to the second terminal device, thereby increasing the probability that the second terminal device correctly receives the downlink data, which is not limited to the impact of the uplink and downlink configuration of the access network device.
  • the downlink data is the downlink URLLC data
  • the method of the present application is further enhanced. The reliability of the URLLC data and the requirement of low latency for data transmission in the URLLC scenario.
  • FIG. 1 is a schematic diagram of consecutive multiple transmissions of downlink URL LC data in the prior art provided by the present application;
  • FIG. 2 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 3 is a signaling flowchart of Embodiment 1 of a data transmission method provided by the present application
  • FIG. 4 is a schematic diagram of an uplink and downlink configuration provided by the present application.
  • FIG. 5 is a signaling flowchart of Embodiment 2 of a data transmission method provided by the present application.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of an access network device according to the present application.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a terminal device according to the present application.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of an access network device according to the present application.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a terminal device provided by the present application.
  • the method for data transmission provided by the present application can be applied to the schematic diagram of the communication system shown in FIG. 2.
  • the communication system includes: an access network device and a plurality of terminal devices, assuming that the plurality of terminal devices include the terminal device 1, the terminal device 2, the terminal device 3, and the terminal device 4 in the figure.
  • the communication system shown in FIG. 2 can be applied to different network standards. For example, it can be applied to Global System of Mobile communication (GSM) and Code Division Multiple Access (Code Division Multiple Access). CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE) ) System and future network standards such as 5G.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • the foregoing communication system may be a system in a scenario of Ultra-Reliable
  • the foregoing base station may be a base transceiver (Base Transceiver Station, BTS for short) and/or a base station controller in GSM or CDMA, or may be a base station (NodeB, NB for short) and/or wireless network control in WCDMA.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • WCDMA Wireless Cellular System
  • RNC Radio Network Controller
  • the above terminal device may be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core network devices via a Radio Access Network (RAN), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile terminal.
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • the wireless terminal may also be a personal communication service (PCS) phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a Wireless Local Loop (WLL) station. , Personal Digital Assistant (PDA) and other devices.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the foregoing terminal device may also be a smart watch, a tablet computer, or the like.
  • the access network device transmits downlink data to the terminal, wherein the downlink data is encoded by channel coding, and the channel-encoded data is transmitted to the terminal after constellation modulation; the terminal device transmits uplink data and uplink data to the access network device. It can also be encoded by channel coding, and the encoded data is modulated by the constellation and transmitted to the base station. Communication between multiple terminal devices can be cooperative.
  • some terminal devices are at the edge of the network coverage, or the surrounding environment interferes with the network service, and the network service quality of the terminal devices is caused. Relatively low.
  • the terminal device 2 in FIG. 2 the terminal device 2 is located at the edge of the network coverage, the network quality is poor, and the terminal device 1 is located at the center of the network coverage, and the network quality is relatively good.
  • the stability requirement of URLLC is 1-10 -5 , which is a huge improvement compared with 1-10 - 2 of LTE.
  • the end-to-end delay requirement is even lower than 1 ms.
  • the prior art adopts a scheme of continuous multiple transmission of downlink URLLC data, as shown in FIG.
  • the method can not only receive the probability of receiving the downlink URLLC data of the terminal device 2, but also rely on multiple transmissions without confirming the feedback of the ACK or the NACK, thereby reducing the delay associated with the application of the HARQ mechanism and satisfying the URLLC scenario. Delay request.
  • the access network device sends the URLLC downlink data in the last downlink position (DL slot) of the uplink and downlink configuration, only one DL slot of the network side device can send the URLLC downlink data, but no The additional DL slot performs consecutive multiple transmissions of URLLC downlink data. Therefore, in this scenario, the prior art solution cannot improve the probability that the terminal device 2 correctly receives the URLLC data.
  • the “last downlink position (DL slot)” mentioned above refers to the last downlink time slot before the downlink to uplink in the uplink and downlink configuration, that is, the last one before the special time slot. Downlink time slot.
  • the method of data transmission provided by the present application aims to solve the above technical problems of the prior art.
  • FIG. 3 is a signaling flowchart of Embodiment 1 of a method for data transmission provided by the present application.
  • the first terminal device sends the downlink data received from the access network device to the second terminal device multiple times through the device-to-device (D2D).
  • D2D device-to-device
  • the first terminal device and the second terminal device are first introduced.
  • the first terminal device is the terminal device 1, and the second terminal device is the terminal device 2.
  • the first terminal device and the second terminal device may constitute a collaboration group.
  • the access network device can be configured to form the first terminal device and the second terminal device as a collaboration group, or the first terminal device and the second terminal device can negotiate to become a collaboration group through D2D communication interaction with each other.
  • different collaboration groups in the cell correspond to one collaboration group identifier, and the collaboration group identifier may be configured by the access network device and notify all members in the collaboration group.
  • the access network device can multicast a downlink data by using the collaboration group identifier, and the final destination address of the downlink data is the second terminal device, that is, the second terminal device is the target user of the downlink data.
  • the following method embodiments mainly involve the first terminal device transmitting the downlink data to the second terminal setting device by using the side link multiple times after receiving the downlink data, thereby helping the second terminal device to correctly decode the data. increase.
  • the access network device may configure the collaboration group identifier for the collaboration group, or may not configure the collaboration group identifier for the collaboration group, which is not limited in this embodiment.
  • the method includes the following steps:
  • the access network device sends first control information to the first terminal device, where the first control information is used to indicate that the first terminal device receives downlink data from the access network device, and The second transmission is to the second terminal device.
  • the access network device needs to send the downlink data to the first terminal device.
  • the access network device needs to send the first control information to the first terminal device, where the first control information may be used to indicate that the first terminal device receives the downlink data from the access network device, and passes the edge link. Transfer to the second terminal device multiple times.
  • the first control information may include information used to indicate that the first terminal device receives the downlink data, and may further include: instructing the first terminal device to transmit the downlink data to the second terminal by using the edge link.
  • the information of the resources used by the device is not limited in the form of the first control information.
  • the downlink data sent by the access network device may be downlink URLLC data.
  • the first terminal device receives the first control information sent by the access network device.
  • S103 The access network device sends downlink data to the first terminal device.
  • the first terminal device transmits, according to the first control information, downlink data received by the first terminal device from the access network device to the second terminal device by using a side link.
  • the first terminal device transmits the received downlink data to the second terminal by using the edge link multiple times according to the first control information. device.
  • the “multiple transmission” may be that the first terminal device transmits the downlink data of the same retransmission version to the second terminal device at a time, and may also be that the first terminal device transmits the data to the second terminal device each time.
  • the downlink data of different retransmission versions is combined for processing by the second terminal device. Based on this, the second terminal device can receive the downlink data transmitted by the first terminal device on the side link multiple times, thereby improving the probability that the second terminal device correctly decodes the downlink data.
  • the downlink data mentioned in the present application refers to data sent by the access network device to the terminal device;
  • the uplink data refers to data sent by the terminal device to the access network device;
  • the edge link data refers to The data that the terminal device sends to the terminal device.
  • the data transmitted by the first terminal device to the second terminal device by using the edge link may be referred to as side link data, and the content of the edge link data is substantially the first terminal device from the access network.
  • the access network device determines which uplink and downlink configuration to adopt according to the service requirement and the scheduling request of the terminal device. For example, referring to the uplink and downlink configuration shown in FIG. 4, it is assumed that the access network device allocates the last DL slot for downlink transmission of the second terminal device, and assumes that four consecutive UL slots after the last DL slot are used for the first Uplink transmission of the terminal device (ie, the terminal device 1 in FIG. 2), the second terminal device (ie, the terminal device 2 in FIG. 2), the terminal device 3, and the terminal device 4.
  • the uplink scheduling transmission of the four UL slots herein may be any terminal device, and the terminal device 1, the terminal device 2, the terminal device 3, and the terminal device 4 are only an example, and the access network device may schedule any The terminal device performs uplink transmission on these UL slots.
  • the downlink data arrives at the access network device, and since the access network device only has the last DL slot remaining, the DL in the prior art
  • the multiple transmission mechanism of the URLLC transmission cannot send the DL URLLC data to the second terminal device multiple times, so that the probability that the second communication device correctly receives the downlink data cannot be improved; however, in the present application, when the first terminal device receives the access, After the downlink data is sent by the network device, the downlink data is transmitted to the second terminal device multiple times through the edge link according to the first control information sent by the access network device.
  • the multiple transmissions here may utilize the resources of the subsequent several UL slots shown in FIG.
  • the side link data may use part or all of the resources of the UL slots during transmission, and may also be exclusively allocated to the D2D by using the access network equipment.
  • the new uplink resource is transmitted, and the downlink data is transmitted to the second terminal device multiple times through the edge link. At this time, the side link data may use part or all of the new uplink resource during transmission.
  • the data transmission method provided by the present application can improve the probability that the second terminal device correctly receives and decodes the downlink data in the scenario of the uplink and downlink configuration shown in FIG. 4, when the downlink data is downlink.
  • the method of the present application further enhances the reliability of the URLLC data and ensures the low latency of data transmission in the URLLC scenario.
  • the embodiment of the present application is not only applicable to the scenario in which the access network device shown in FIG. 4 sends downlink data in the last downlink time slot after the downlink data arrives, which may also be applied to the following Scenario:
  • the access network device can send downlink data in any DL slot after the downlink data reaches the access network device.
  • the downlink data may be sent in the penultimate downlink time slot before the special time slot, or
  • the downlink data and the like are transmitted before the third downlink data before the time slot.
  • the first solution of the present application can be used to The side link between the terminal device and the second terminal device performs downlink transmission of the downlink data to improve the probability that the second terminal device correctly receives the downlink data.
  • the access network device uses multiple downlink time slots to While the second terminal device transmits the downlink data multiple times, the first terminal device may also use the edge link to send the downlink data to the second terminal device multiple times.
  • the downlink data sent by the access network device to the second terminal device multiple times and the first terminal device use the same transmission by sending the downlink data to the second terminal device multiple times through the edge link. Configure information and the same time-frequency resource location to avoid data interference.
  • the first terminal device assists multiple downlink transmissions of the access network device by multiple transmissions in the edge link phase, which further increases the probability that the second terminal device correctly receives downlink data.
  • the data transmission method provided by the present application sends the first control information to the first terminal device by using the access network device, so that the first terminal device passes the downlink data received from the access network device through the edge chain according to the first control information.
  • the method is transmitted to the second terminal device multiple times, thereby increasing the probability that the second terminal device correctly receives the downlink data, which is not limited to the impact of the uplink and downlink configuration of the access network device.
  • the downlink data is the downlink URL LC data
  • the method of the present application The reliability of the URLLC data is further enhanced and the requirement for low transmission of data transmission in the URLLC scenario is ensured.
  • FIG. 5 is a signaling flowchart of Embodiment 2 of a method for data transmission provided by the present application.
  • the embodiment relates to a specific process of how the first terminal device performs downlink data reception according to the first control information and how to transmit downlink data to the second terminal device multiple times according to the first control information.
  • the method may specifically include the following steps:
  • the access network device sends the first control information to the first terminal device, where the first control information includes a coordinated transmission indication, a first resource information, and a second resource information, where the coordinated transmission indication is used to indicate that the first terminal device is configured according to the
  • the second resource information is used to transmit the downlink data received by the first terminal according to the first resource information to the second terminal device multiple times through the edge link.
  • S202 The first terminal device receives the first control information sent by the access network device.
  • the first terminal device and the second terminal device form a collaboration group.
  • the collaboration group may be referred to as a terminal device group.
  • the access network device may allocate a group identifier to the terminal device group, or may not assign a group identifier to the terminal device group.
  • the group identifier may be a user cooperation group-Radio Network Temporary Identity (UCG-RNTI), and may also be an identifier of other formats. This embodiment does not limit this.
  • the access network device may bind the group identifier of the terminal device group to Downlink Control Information (DCI) to form the first control information.
  • DCI Downlink Control Information
  • the “binding” here may be that the DCI is scrambled by using the group identifier of the terminal device group.
  • the first control information is a DCI scrambled by the access network device using the group identifier of the terminal device group, and the DCI may be represented as DCI Format X.
  • the first terminal device that belongs to the terminal device group detects that the identifier of the terminal device group exists in the first control information, the first terminal device receives the first control information, and then parses the first control information to obtain the a cooperative transmission indication, first resource information, and second resource information in the first control information.
  • the access network device may be the target user of the terminal device group (ie, the second terminal device).
  • the identifier is bound to the DCI, and the first control information is formed and sent to the first terminal device.
  • the “binding” herein may be scrambling the DCI by using the identifier of the second terminal device. That is, the first control information is a DCI after the access network device scrambles the identifier of the second terminal device.
  • the first terminal device When the first terminal device that belongs to the terminal device group detects that the identifier of the second terminal device exists in the first control information, the first terminal device receives the first control information, and then parses the first control information to obtain the a cooperative transmission indication, first resource information, and second resource information in the first control information.
  • the second resource information may include: first time-frequency resource configuration information and first transmission configuration information used by the first terminal device to send downlink data to the second terminal device multiple times.
  • the first transmission configuration information may include a Modulation and Coding Scheme (MCS) parameter, an antenna configuration information, a transmission number, and a data retransmission version used by the first terminal device to send downlink data to the second terminal device. At least one of the related information.
  • MCS Modulation and Coding Scheme
  • the foregoing first resource information may include: second time-frequency resource configuration information and second transmission configuration information used by the first terminal device to receive downlink data; the second transmission configuration information may include receiving by the first terminal device At least one of a modulation coding strategy MCS parameter and antenna configuration information used in the downlink data.
  • S203 The access network device sends downlink data to the first terminal device.
  • the first terminal device receives the downlink data sent by the access network device according to the first resource information.
  • the first terminal device transmits the downlink data to the second terminal device multiple times through the edge link according to the coordinated transmission indication and the second resource information.
  • the first terminal device parses the coordinated transmission indication, the first resource information, and the second resource information in the first control information, the first terminal device knows that the user wants to pass the edge link to the second terminal by using the coordinated transmission indication.
  • the device transmits the received downlink data multiple times.
  • the first terminal device may receive the downlink data according to the content of the first resource information at the corresponding time-frequency resource location, and then according to the coordinated transmission indication and the The content in the two resource information transmits the received downlink data to the second terminal device multiple times through the edge link.
  • the access network device may form the second resource information according to the new uplink resource allocated by the access network device to the second terminal device, where the new uplink resource is different from the uplink resource scheduled by the access network device.
  • the time-frequency resource indicated by the first time-frequency resource configuration information in the second resource information may be a new uplink resource allocated by the access network device, and the first terminal device may use the new uplink resource.
  • the access network device since the access network device allocates new uplink resources for the transmission of the edge link, the access network device does not need to cancel uplink scheduling for other terminal devices.
  • the access network device may further form the foregoing second resource information according to the uplink scheduling resource to be cancelled.
  • the access network device cancels the uplink scheduling resource to be canceled, part or all of the cancelled uplink scheduling resource is used for the transmission of the edge link between the first terminal device and the second terminal device.
  • the access network device may send the second terminal device to the terminal device that is covered by the access network device.
  • control information where the second control information carries an uplink scheduling cancellation indication, to notify the terminal equipment that the access network device has canceled the uplink scheduling resource for the part of the terminal equipment.
  • the first terminal when the first terminal sends the edge link data to the second terminal, since the access network device has used the uplink resource for the scheduling terminal to perform uplink transmission, it is necessary to cancel at least a part of the uplink scheduling resource as the edge link scheduling resource.
  • the first terminal performs the edge link communication with the second terminal, and the need to cancel at least a part of the uplink scheduling resource is referred to as “uplink scheduling resource to be cancelled” in the present application.
  • the access network device when the access network device allocates the group identifier to the terminal device group where the first terminal device and the second terminal device are located, if the access network device cancels the uplink scheduling resource of the member in the terminal device group, the access network device The network device can bind the group identifier of the terminal device group to the DCI (the DCI can be represented as DCI Format Y, and the DCI Format Y is different from the DCI Format X) to form the second control information.
  • the “binding” here may be that the DCI Format Y is scrambled by using the group identifier of the terminal device group. That is, the second control information is a DCI after the access network device scrambles the group identifier of the terminal device group.
  • the member of the terminal device group When the member of the terminal device group detects that the identifier of the terminal device group exists in the second control information, the member of the terminal device group receives the second control information, and then parses the second control information to obtain an uplink scheduling cancellation indication. It should be noted that, when the second control information is scrambled by using the group identifier of the terminal device group, only the members in the terminal device group can receive the second control information, thereby obtaining that the access network device cancels the self. Upstream scheduling resources.
  • the access network device when the access network device does not allocate the group identifier for the terminal device group where the first terminal device and the second terminal device are located, if the access network device cancels the uplink scheduling resource of some terminal devices, the access network device
  • the identifier of each terminal device in the terminal device may be bound to the DCI Format Y to obtain a plurality of second control information, and sent to the terminal device covered by the access network device.
  • the terminal device detects that the second control information carries its own identifier, the terminal device receives the second control information and performs parsing, so as to learn that the access network device is cancelled according to the uplink scheduling cancellation indication in the second control information.
  • the uplink scheduling resource for the terminal device when the access network device does not allocate the group identifier for the terminal device group where the first terminal device and the second terminal device are located, if the access network device cancels the uplink scheduling resource of some terminal devices, the access network device The identifier of each terminal device in the terminal device may be bound to the DCI Format Y to obtain
  • the identifier of the terminal device may be a Radio Network Temporary Identity (RNTI) of the terminal device. That is to say, the identifier of the one or more second control information that is sent by the access network device, indicating that the access network device cancels the uplink scheduling resource for the user.
  • RNTI Radio Network Temporary Identity
  • the access network device may be the first terminal device, or all terminal devices in the terminal device group, or terminal devices in the non-terminal device group.
  • the foregoing access network device sends the second control information, which may specifically include two situations:
  • the first type the access terminal device itself performs uplink scheduling only on the first terminal device (that is, only the first terminal device is allocated the uplink scheduling resource, and the other terminal devices are not allocated), and the first terminal device serves as the auxiliary second.
  • the terminal device increases the probability of correctly receiving the probability of downlink data (ie, the first terminal device can be regarded as a collaborative user).
  • the first terminal device After the first terminal device receives the downlink data according to the first resource information, the first terminal device itself knows that it is the user who assists the second terminal device.
  • the uplink scheduling resource of the first terminal device is sufficient for multiple transmissions, the first terminal device
  • the terminal device can directly use its own uplink scheduling resource to transmit downlink data to the second terminal device multiple times through the edge link. At this time, the access network device does not need to send the second control information to the first terminal device.
  • the second type is as shown in FIG. 2 above. It is assumed that the access network device not only schedules the uplink of the first terminal device (the terminal device 1) but also the uplink of the second terminal device (the terminal device 2) and the terminal device 3.
  • the first terminal device acts as a device for assisting the second terminal device to improve the probability of correctly receiving downlink data (ie, the first terminal device can be regarded as a cooperative user). After the first terminal device receives the downlink data according to the first resource information, the first terminal device itself knows that it is the user who assists the second terminal device, and when the uplink scheduling resource of the first terminal device is insufficient for multiple transmissions, the access is performed.
  • the network device needs to cancel the uplink scheduling resources of the terminal device 2 and the terminal device 3, and then combine the uplink scheduling resources of the terminal device 1, the second terminal device 2, and the terminal device 3 to form an uplink scheduling total resource, and then the uplink. Part or all of the total resources are scheduled to be transmitted as resources of the side link.
  • the access network device needs to separately send the second control information to the terminal device 2 and the terminal device 3 to notify the terminal device 2 and the terminal device 3, and the access network device cancels the uplink scheduling of the terminal device 2 and the terminal device 3. Resources.
  • the second control information sent to the terminal device 2 may be DCI fomat Y scrambled by the group identifier of the terminal device group, or may be sent to the terminal by DCI fomat Y scrambled by the identifier of the terminal device.
  • the second control information of the device 3 may be DCI fomat Y scrambled by the identity of the terminal device 3.
  • the access network device can allocate a new uplink resource for the data transmission of the edge link to form the second resource information, so as to assist the first terminal device to transmit the received downlink data to the second terminal device multiple times.
  • the access network device may also cancel the uplink scheduling resource of the scheduled terminal device, and use the canceled uplink scheduling resource as the data transmission resource of the edge link, to assist the first terminal device to transmit the received downlink data to the multiple times.
  • Second terminal device. Therefore, the method provided by the present application may not be affected by the uplink and downlink configuration adopted by the access network device, which may increase the probability that the second terminal device correctly receives the downlink data, and improve the network service quality of the second terminal device. Ensure the stability and reliability of data transmission.
  • the uplink scheduling resource that is cancelled in the embodiment of the present application is not limited to the edge link transmission, and may also be used for downlink transmission.
  • the access network device performs uplink scheduling on the terminal device 1, the terminal device 2, and the terminal device 3.
  • the terminal device 1 and the terminal device 2 form a terminal device group, and the access network device allocates the terminal device group.
  • the group ID In combination with the scenario of the uplink and downlink configuration shown in FIG. 4, the three time slots after the special time slot are all uplink time slots (UL slots), before the last downlink time slot (DL slot) before the special time slot (S). (ie, at time T1 in FIG. 4), the downlink data arrives at the access network device, and the access network device transmits the downlink data on the last DL slot.
  • the access network device Before the downlink data is sent, the access network device needs to send the first control information to the first terminal device, where the first control information includes the coordinated transmission indication, the first resource information, and the second resource information.
  • the terminal device 2 is a user with poor network service quality and is called a target user.
  • the terminal device 1 is a user with good network service quality and is called a collaborative user.
  • the terminal device 1 After the terminal device 1 detects that the group identifier of the terminal device group or the identifier of the terminal device 2 exists in the first control information, the terminal device 1 determines to receive the first control information, and then obtains a cooperative transmission indication in the first control information, A resource information and second resource information.
  • the terminal device 1 receives the downlink data sent by the access network device by using the first resource information, and learns that it needs to transmit the received downlink data to the terminal device 2 multiple times according to the coordinated transmission indication. Then, the terminal device 1 transmits the downlink data to the terminal device 2 through the side link at the specified time-frequency resource location and according to the specified transmission configuration information by using the content indicated by the second resource information.
  • the terminal device 1 does not perform the transmission processing on the corresponding uplink scheduling resource, so that the terminal device 1 can use the uplink scheduling resource to perform the edge link or D2D transmission.
  • the time-frequency resource indicated by the first time-frequency resource configuration information in the second resource information includes an uplink scheduling resource of the terminal device 1.
  • the terminal device 2 After the terminal device 2 detects that the group identifier of the terminal device group or the identifier of the terminal device 2 exists in the first control information, the terminal device 2 determines to receive the first control information, and then obtains a coordinated transmission indication in the first control information, A resource information and second resource information. The terminal device 2 learns that the terminal device 1 wants to transmit downlink data to itself multiple times according to the coordinated transmission indication, and then the terminal device 2 performs downlink data according to the specified transmission configuration information according to the content of the second resource information at the specified time-frequency resource location. Multiple receptions.
  • the terminal device 2 can also receive the second control information by detecting the identifier of the terminal device 2 or the identifier of the terminal device group, and according to the uplink scheduling cancellation indication in the second control information, it is learned that the access network device has canceled its own In the uplink scheduling, the terminal device 2 does not perform uplink transmission processing on the uplink scheduling resource.
  • the time-frequency resource indicated by the first time-frequency resource configuration information in the second resource information also includes an uplink scheduling resource that is cancelled by the terminal device 2.
  • the terminal device 3 since the first control information is not bound to the identifier of the terminal device 3, the terminal device 3 does not need to receive the first control information. However, since the access network device cancels the uplink scheduling resource for the terminal device 3, the terminal device 3 determines to receive the second control information bound to the identifier of the terminal device 3 by detecting the identity of the terminal device, and then the terminal device 3 according to the The uplink scheduling cancellation indication in the second control information indicates that the access network device has cancelled the uplink scheduling for the terminal device 3, and the terminal device 3 does not perform the uplink transmission processing on the cancelled uplink scheduling resource. Therefore, the time-frequency resource indicated by the first time-frequency resource configuration information in the second resource information may also include an uplink scheduling resource that is cancelled by the terminal device 3.
  • the access network device prepares the uplink scheduling resources of the terminal device 1, the terminal device 2, and the terminal device 3 for the transmission of the edge link, and then the terminal device 1 can utilize the uplink scheduling resources to pass the edge link to the second terminal.
  • the device transmits the downlink data multiple times, which greatly increases the probability that the second terminal device correctly receives the downlink data, and the solution is not limited by the uplink and downlink configuration adopted by the access network device, thereby ensuring the stability and reliability of the data transmission. Sex.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of an access network device according to the present application. As shown in FIG. 6, the access network device includes a sending module 11 and a processing module 12.
  • the sending module 11 is configured to send first control information to the first terminal device, and send downlink data to the first terminal device, where the first control information is used to indicate that the first terminal device
  • the downlink data received by the access network device is transmitted to the second terminal device multiple times through the edge link;
  • the first control information includes: a coordinated transmission indication, first resource information, and second resource information;
  • the cooperative transmission indication is used to instruct the first terminal device to use the downlink data received by the first terminal according to the first resource information to pass the side link multiple times according to the second resource information. Transmitted to the second terminal device.
  • the processing module 12 is configured to form the second resource information according to an uplink scheduling resource to be cancelled.
  • the sending module 11 is further configured to send the second control information to the terminal device in the coverage area of the access network device, where the second control information carries an uplink scheduling cancellation indication; the uplink scheduling cancellation indication And configured to instruct the access network device to cancel an uplink scheduling resource for the terminal device.
  • the processing module 12 is further configured to form the second resource information according to the new uplink resource allocated by the access network device to the second terminal device; where the new uplink is The resource is different from the uplink resource that the access network device has scheduled.
  • the first control information is downlink control information DCI after the access network device uses the group identifier of the terminal device group or the identifier of the second terminal device; wherein the terminal device group The first terminal device and the second terminal device are included.
  • the second control information is downlink control information DCI after the access network device uses the group identifier of the terminal device group or the identifier of the terminal device; wherein the terminal device group includes The first terminal device and the second terminal device are described.
  • the second resource information includes: first time-frequency resource configuration information and first transmission configuration information that are used by the first terminal device to send the downlink data to the second terminal device multiple times;
  • the first transmission configuration information includes a modulation coding policy MCS parameter, an antenna configuration information, a transmission number, and a version number of the data retransmission used when the first terminal device sends the downlink data to the second terminal device. At least one of the information.
  • the first resource information includes: second time-frequency resource configuration information and second transmission configuration information that are used by the first terminal device when receiving the downlink data;
  • the second transmission configuration information includes at least one of a modulation and coding policy MCS parameter and antenna configuration information used by the first terminal device when receiving the downlink data.
  • the access network device provided by the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a terminal device provided by the present application.
  • the terminal device may be the first terminal device in the foregoing method embodiment.
  • the first terminal device includes: a receiving module 22 and a sending module 21.
  • the receiving module 22 is configured to receive first control information sent by the access network device.
  • the sending module 21 is configured to transmit downlink data received by the receiving module 22 from the access network device to the second terminal device multiple times according to the first control information.
  • the first control information includes: a coordinated transmission indication, first resource information, and second resource information;
  • the receiving module 22 is further configured to receive downlink data sent by the access network device according to the first resource information
  • the sending module 21 is specifically configured to transmit the downlink data to the second terminal device multiple times through the edge link according to the coordinated transmission indication and the second resource information.
  • the second resource information is information formed by the access network device according to an uplink scheduling resource to be cancelled.
  • the second resource information is information formed by the access network device according to the new uplink resource allocated by the access network device to the second terminal device, where the new uplink resource and the The uplink resources that have been scheduled by the access network device are different.
  • the second resource information includes: first time-frequency resource configuration information and first transmission configuration information that are used by the sending module 21 to send the downlink data to the second terminal device multiple times;
  • the first transmission configuration information includes a modulation and coding policy MCS parameter, an antenna configuration information, a transmission number, and a version number related information of a data retransmission used when the sending module 21 sends the downlink data to the second terminal device. At least one of them.
  • the first resource information includes: second time-frequency resource configuration information and second transmission configuration information that are used by the receiving module 22 when receiving the downlink data;
  • the second transmission configuration information includes at least one of a modulation and coding policy MCS related parameter and antenna configuration information used by the receiving module 22 when receiving the downlink data.
  • the terminal device provided by the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of an access network device provided by the present application.
  • the access network device may include a transmitter 31, a processor 32, and a memory 33.
  • Memory 33 may include high speed RAM memory, and may also include non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiments.
  • the transmitter 31 in this embodiment may be a radio frequency module or a baseband module on the access network device.
  • the transmitter 31 is configured to send first control information to the first terminal device, and send downlink data to the first terminal device, where the first control information is used to indicate the first terminal device.
  • the downlink data received from the access network device is transmitted to the second terminal device multiple times through the edge link;
  • the first control information includes: a coordinated transmission indication, first resource information, and second resource information;
  • the cooperative transmission indication is used to instruct the first terminal device to use the downlink data received by the first terminal according to the first resource information to pass the side link multiple times according to the second resource information. Transmitted to the second terminal device.
  • the processor 32 is configured to form the second resource information according to an uplink scheduling resource to be cancelled.
  • the transmitter 31 is further configured to send second control information to the terminal device in the coverage area of the access network device, where the second control information carries an uplink scheduling cancellation indication; the uplink scheduling cancellation indication And configured to instruct the access network device to cancel an uplink scheduling resource for the terminal device.
  • the processor 32 is further configured to form the second resource information according to the new uplink resource allocated by the access network device to the second terminal device, where the new uplink is The resource is different from the uplink resource that the access network device has scheduled.
  • the first control information is downlink control information DCI after the access network device uses the group identifier of the terminal device group or the identifier of the second terminal device; wherein the terminal device group The first terminal device and the second terminal device are included.
  • the second control information is downlink control information DCI after the access network device uses the group identifier of the terminal device group or the identifier of the terminal device; wherein the terminal device group includes The first terminal device and the second terminal device are described.
  • the second resource information includes: first time-frequency resource configuration information and first transmission configuration information that are used by the first terminal device to send the downlink data to the second terminal device multiple times;
  • the first transmission configuration information includes a modulation coding policy MCS parameter, an antenna configuration information, a transmission number, and a version number of the data retransmission used when the first terminal device sends the downlink data to the second terminal device. At least one of the information.
  • the first resource information includes: second time-frequency resource configuration information and second transmission configuration information that are used by the first terminal device when receiving the downlink data;
  • the second transmission configuration information includes at least one of a modulation and coding policy MCS parameter and antenna configuration information used by the first terminal device when receiving the downlink data.
  • the access network device provided by the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a terminal device provided by the present application.
  • the terminal device may be the first terminal device in the foregoing method embodiment.
  • the terminal device may include a receiver 40, a transmitter 41, a processor 42, and a memory 43.
  • Memory 43 may include high speed RAM memory, and may also include non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiments.
  • the receiver 40 and the transmitter 41 in this embodiment may be a radio frequency module or a baseband module on the terminal device.
  • the receiver 40 and transmitter 41 can be integrated into a transceiver.
  • the receiver 40 is configured to receive first control information sent by the access network device.
  • the transmitter 41 is configured to transmit the downlink data received by the receiver 30 from the access network device to the second terminal device multiple times according to the first control information.
  • the first control information includes: a coordinated transmission indication, first resource information, and second resource information;
  • the receiver 40 is further configured to receive downlink data sent by the access network device according to the first resource information
  • the transmitter 41 is configured to transmit the downlink data to the second terminal device multiple times by using an edge link according to the coordinated transmission indication and the second resource information.
  • the second resource information is information formed by the access network device according to an uplink scheduling resource to be cancelled.
  • the second resource information is information formed by the access network device according to the new uplink resource allocated by the access network device to the second terminal device, where the new uplink resource and the The uplink resources that have been scheduled by the access network device are different.
  • the second resource information includes: first time-frequency resource configuration information and first transmission configuration information that are used by the sender 41 to send the downlink data to the second terminal device multiple times;
  • the first transmission configuration information includes a modulation and coding policy MCS parameter, an antenna configuration information, a transmission number, and a version number related information of a data retransmission used when the transmitter 41 sends the downlink data to the second terminal device. At least one of them.
  • the first resource information includes: second time-frequency resource configuration information and second transmission configuration information that are used by the receiver 40 to receive the downlink data;
  • the second transmission configuration information includes at least one of a modulation and coding policy MCS related parameter and antenna configuration information used by the receiver 40 when receiving the downlink data.
  • the terminal device provided by the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输的方法、接入网设备和终端设备。该方法包括:接入网设备向第一终端设备发送第一控制信息,所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备;所述接入网设备向所述第一终端设备发送下行数据。本申请的方法,增加了第二终端设备正确接收下行数据的概率,其不限于接入网设备上下行配置的影响。

Description

数据传输的方法、接入网设备和终端设备
本申请要求于2017年6月30日提交中国专利局、申请号为201710522431.8、申请名称为“数据传输的方法、接入网设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种数据传输的方法、接入网设备和终端设备。
背景技术
高可靠低时延通信(Ultra-Reliable and Low Latency Communications,简称URLLC)是5G移动通信系统最重要的应用场景之一。低时延和高稳定性是URLLC最重要的两个特征。URLLC对稳定性的要求在1-10 -5,相较于LTE的1-10 -2有着巨大的提升,某些应用场景对于端到端时延的要求甚至要低于1ms。如果使用传统的长期演进(Long Term Evolution,简称LTE)通信系统进行URLLC传输,则无法保证满足URLLC业务的要求。因此,目前常采用的一种方案是进行下行URLLC数据的连续多次传输,如图1所示,这种方法既可以增强边缘设备对于下行URLLC数据的接收概率(例如,发送端通过多次发送相同或不同重传版本的数据,可以使得接收端进行合并处理,增大正确接收的概率),又可以依靠多次传输而不需要确认回答(Acknowledgement,简称ACK)或者否定回答(Negative Acknowledgment,简称NACK)的反馈,进而减少应用混合自动重传请求(Hybrid Automatic Repeat Request,简称HARQ)机制所带来相关的时延,满足URLLC场景的时延要求。
但是,在时分双工(Time Division Duplexing,简称TDD)模式下,由于上下行配置基站已经提前配置完成,即终端设备会按照网络侧设备已经配置好的上下行时隙的比例进行下行接收和上行发送。如果网络侧设备在上下行配置的最后一个下行位置(DL slot)发送URLLC下行数据,此时网络侧设备只有一个DL slot可以发送URLLC下行数据,而没有额外的DL slot进行URLLC下行数据的连续多次传输。因此,在该场景下,上述现有技术的方案无法提升终端设备正确接收所述URLLC数据的概率。
发明内容
本申请提供一种数据传输的方法、接入网设备和终端设备,用以解决现有技术中在没有额外的DL slot进行URLLC下行数据的连续多次传输时,无法提升终端设备正确接收URLLC数据的概率的技术问题。
第一方面,本申请提供一种数据传输的方法,包括:
接入网设备向第一终端设备发送第一控制信息,所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路(Sidelink,简称SL)多次传 输给第二终端设备;
所述接入网设备向所述第一终端设备发送下行数据。
上述第一方面所提供的方法,通过接入网设备向第一终端设备发送第一控制信息,使得第一终端设备根据该第一控制信息,将从接入网设备接收的下行数据通过边链路多次传输给第二终端设备,从而增加了第二终端设备正确接收下行数据的概率,其不限于接入网设备上下行配置的影响,当下行数据为下行URLLC数据时,本申请的方法进一步增强了URLLC数据的可靠性并保证URLLC场景下的数据传输低时延的要求。
在一种可能的设计中,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
所述协作传输指示,用于指示所述第一终端设备根据所述第二资源信息,将所述第一终端根据所述第一资源信息接收到的所述下行数据,通过边链路多次传输给所述第二终端设备。
该可能的设计所提供的方法,通过明确的协作传输指示,使得第一终端设备可以获知自身是否要进行协作传输(即通过边链路向第二终端设备多次传输数据),并且明确了进行协作传输所使用的资源,确保了第一终端设备进行协作传输的准确性。
在一种可能的设计中,所述方法还包括:
所述接入网设备根据待取消的上行调度资源,形成所述第二资源信息。
在一种可能的设计中,所述方法还包括:
所述接入网设备向所述接入网设备覆盖范围下的终端设备发送第二控制信息,所述第二控制信息携带上行调度取消指示;所述上行调度取消指示用于指示所述接入网设备取消对所述终端设备的上行调度资源。
在一种可能的设计中,所述方法还包括
所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源,形成所述第二资源信息;其中,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
上述各可能的设计所提供的方法,接入网设备可以为边链路的数据传输分配新的上行资源,形成第二资源信息,以协助第一终端设备将接收到的下行数据多次传输给第二终端设备。接入网设备还可以将已调度的终端设备的上行调度资源取消,将取消的上行调度资源作为边链路的数据传输的资源,以协助第一终端设备将接收到的下行数据多次传输给第二终端设备。因此,上述方法可以不受限于接入网设备采用的上下行配置的影响,其均可以增加第二终端设备正确接收下行数据的概率,提高第二终端设备的网络服务质量,确保数据传输的稳定性和可靠性。
在一种可能的设计中,所述第一控制信息为所述接入网设备采用终端设备组的组标识或者所述第二终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
该可能的设计所提供的方法,通过利用终端设备组的标识或者第二终端设备的标识加扰DCI(该DCI为下述实施例中的DCI format X),得到第一控制信息,从而使得第一终端设备能够准确接收第一控制信息,避免第一终端设备误接收其他终端设备的控制信息。
在一种可能的设计中,所述第二控制信息为所述接入网设备采用终端设备组的组标识或者所述终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所 述第一终端设备和所述第二终端设备。
该可能的设计所提供的方法,通过利用终端设备组的标识或者接入网设备覆盖的终端设备的标识加扰DCI(该DCI为下述实施例中的DCI format Y),得到第一控制信息,从而使得终端设备能够准确接收第二控制信息,避免终端设备误接收其他终端设备的控制信息。
第二方面,本申请提供一种数据传输的方法,包括:
第一终端设备接收接入网设备发送的第一控制信息;
所述第一终端设备根据所述第一控制信息,将所述第一终端设备从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。
在一种可能的设计中,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;所述第一终端设备根据所述第一控制信息,将所述第一终端设备从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备,具体包括:
所述第一终端设备根据所述第一资源信息接收所述接入网设备发送的下行数据;
所述第一终端设备根据所述协作传输指示和所述第二资源信息,将所述下行数据通过边链路多次传输给所述第二终端设备。
在一种可能的设计中,所述第二资源信息为所述接入网设备根据待取消的上行调度资源所形成的信息。
在一种可能的设计中,所述第二资源信息为所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源所形成的信息,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
上述第二方面以及第二方面的各可能的设计所提供的方法,其有益效果可以参见上述第一方面以及第一方面的各可能的设计所提供的方法所带来的有益效果,在此不再赘述。
结合上述第一方面和第二方面,在一种可能的设计中,所述第二资源信息包括:所述第一终端设备向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
所述第一传输配置信息包括所述第一终端设备向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
该可能的设计所提供的方法,通过第二资源信息中所包含的内容,第一终端设备可以明确获知如何通过边链路多次向第二终端设备传输下行数据,确保了边链路传输的准确性,提高了传输效率。
在一种可能的设计中,所述第一资源信息包括:所述第一终端设备接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
所述第二传输配置信息包括所述第一终端设备接收所述下行数据时所采用的调制编码策略MCS相关参数、天线配置信息的中的至少一种。
该可能的设计所提供的方法,通过第一资源信息中所包含的内容,第一终端设备可以明确获知如何接收接入网设备下发的下行数据,确保了下行数据的接收准确性。
第三方面,本申请提供一种接入网设备,包括:包括用于执行以上第一方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种终端设备,包括:包括用于执行以上第二方面各个步骤的单元或手段(means)。
第五方面,本申请提供一种接入网设备,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第一方面提供的方法。
第六方面,本申请提供一种终端设备,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第二方面提供的方法。
第七方面,本申请提供一种接入网设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第八方面,本申请提供一种终端设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
第九方面,本申请提供一种数据传输的程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第十方面,本申请提供一种数据传输的程序,该程序在被处理器执行时用于执行以上第二方面的方法。
第十一方面,本申请提供一种程序产品,例如计算机可读存储介质,包括第九方面的程序。
第十二方面,本申请提供一种程序产品,例如计算机可读存储介质,包括第十方面的程序。
相较于现有技术,通过接入网设备向第一终端设备发送第一控制信息,使得第一终端设备根据该第一控制信息,将从接入网设备接收的下行数据通过边链路多次传输给第二终端设备,从而增加了第二终端设备正确接收下行数据的概率,其不限于接入网设备上下行配置的影响,当下行数据为下行URLLC数据时,本申请的方法进一步增强了URLLC数据的可靠性并保证URLLC场景下的数据传输低时延的要求。
附图说明
图1为本申请提供的现有技术中下行URLLC数据的连续多次传输的示意图;
图2为本申请提供的通信系统架构示意图;
图3为本申请提供的数据传输的方法实施例一的信令流程图;
图4为本申请提供的一种上下行配置示意图;
图5为本申请提供的数据传输的方法实施例二的信令流程图;
图6为本申请提供的接入网设备实施例一的结构示意图;
图7为本申请提供的终端设备实施例一的结构示意图;
图8为本申请提供的接入网设备实施例二的结构示意图;
图9为本申请提供的终端设备实施例二的结构示意图。
具体实施方式
本申请提供的数据传输的方法,可以适用于图2所示的通信系统架构示意图。如图2所示,该通信系统包括:接入网设备以及多个终端设备,假设多个终端设备包括图中的终端设备1、终端设备2、终端设备3和终端设备4。需要说明的是,图2所示的通信系统可以适用于不同的网络制式,例如,可以适用于全球移动通讯(Global System of Mobile communication,简称GSM)、码分多址(Code Division Multiple Access,简称CDMA)、宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,简称TD-SCDMA)、长期演进(Long Term Evolution,简称LTE)系统及未来的5G等网络制式。可选的,上述通信系统可以为5G通信系统中高可靠低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)传输的场景中的系统。
故而,可选的,上述基站可以是GSM或CDMA中的基站(Base Transceiver Station,简称BTS)和/或基站控制器,也可以是WCDMA中的基站(NodeB,简称NB)和/或无线网络控制器(Radio Network Controller,简称RNC),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站(gNB)等,本申请在此并不限定。
上述终端设备可以是无线终端也可以是有线终端。无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网设备进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。再例如,无线终端还可以是个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。可选的,上述终端设备还可以是智能手表、平板电脑等设备。
在具体通信时,接入网设备向终端传输下行数据,其中下行数据采用信道编码进行编码,信道编码后的数据经过星座调制后传输给终端;终端设备向接入网设备传输上行数据,上行数据也可以采用信道编码进行编码,编码后的数据经过星座调制后传输给基站。多个终端设备之间可以协作进行通信。
需要说明的是,在上述图2所示的通信系统中,某些终端设备由于处在网络覆盖范围的边缘,或者,周围环境对网络服务干扰比较大等因素,导致这些终端设备的网络服务质量比较低。例如,图2中的终端设备2,该终端设备2位于网络覆盖的边缘,网络质量较差,终端设备1位于网络覆盖的中心,网络质量比较好。
基于上述提到的5G中的URLLC场景,低时延和高稳定性是URLLC最重要的两个特征。URLLC对稳定性的要求在1-10 -5,相较于LTE的1-10 -2有着巨大的提升,某 些应用场景对于端到端时延的要求甚至要低于1ms。为了解决终端设备2在网络质量比较较差的情况仍然可以满足上述稳定的接收和低时延的要求,现有技术中采用下行URLLC数据的连续多次传输的方案,如图1所示,这种方法既可以终端设备2对于下行URLLC数据的接收概率,又可以依靠多次传输而不需要确认回答ACK或者NACK的反馈,进而减少应用HARQ机制所带来相关的时延,满足URLLC场景的时延要求。但是,该种方案在TDD模式下,如果接入网设备在上下行配置的最后一个下行位置(DL slot)发送URLLC下行数据,此时网络侧设备只有一个DL slot可以发送URLLC下行数据,而没有额外的DL slot进行URLLC下行数据的连续多次传输。因此,在该场景下,现有技术的方案无法提升终端设备2正确接收所述URLLC数据的概率。另外,需要说明的是,上述提及的“最后一个下行位置(DL slot)”指的是在上下行配置中,下行转上行前的最后一个下行时隙,即位于特殊时隙前的最后一个下行时隙。
本申请提供的数据传输的方法,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图3为本申请提供的数据传输的方法实施例一的信令流程图。本实施例涉及的是第一终端设备将从接入网设备接收到的下行数据,通过端到端(Device-to-Device,简称D2D)方式,多次发送给第二终端设备,从而提高第二终端设备正确接收下行数据的概率的具体过程。在介绍具体的实施例之前,先对第一终端设备和第二终端设备进行介绍。
参见上述图2所示,假设第一终端设备为终端设备1,第二终端设备为终端设备2。第一终端设备和第二终端设备可以构成一个协作组。接入网设备可以配置第一终端设备和第二终端设备组成为一个协作组,或者,第一终端设备和第二终端设备可以通过相互之间的D2D通信交互来协商成为一个协作组。可选的,对于协作组而言,小区内不同的协作组对应一个协作组标识,该协作组标识可以由接入网设备配置并通知协作组内所有成员。接入网设备可以通过协作组标识来组播一个下行数据,该下行数据的最终目的地址为第二终端设备,即第二终端设备为下行数据的目标用户。下述方法实施例主要涉及第一终端设备在接收到下行数据后,通过边链路多次将下行数据传输给第二终端设设备,从而帮助第二终端设备,使之正确解码数据的概率大幅增加。
需要说明的是,接入网设备可以为协作组配置协作组标识,也可以不为协作组配置协作组标识,本实施例对此并不做限定。
如图3所示,该方法包括如下步骤:
S101:接入网设备向第一终端设备发送第一控制信息,所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。
具体的,当下行数据到达接入网设备时,接入网设备需要将该下行数据发送给第一终端设备。在发送下行数据之前,接入网设备需要向第一终端设备发送第一控制信息,该第一控制信息可以用于指示第一终端设备将从接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。可选的,该第一控制信息可以包括用于指示第一终端设备接收下行数据所采用的资源的信息,还可以包括用于指示第一终端设备将下行数据通过边链路传输 给第二终端设备所采用的资源的信息,本申请实施例对第一控制信息的形式并不做限定。
可选的,上述接入网设备发送的下行数据可以为下行URLLC数据。
S102:第一终端设备接收接入网设备发送的第一控制信息。
S103:接入网设备向所述第一终端设备发送下行数据。
S104:第一终端设备根据所述第一控制信息,将所述第一终端设备从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。
具体的,当第一终端设备接收到接入网设备发送的下行数据后,第一终端设备根据上述第一控制信息,将所接收到的下行数据,通过边链路多次传输给第二终端设备。可选的,这里的“多次传输”,可以是第一终端设备每次向给第二终端设备传输相同重传版本的下行数据,还可以是第一终端设备每次向第二终端设备传输不同重传版本的下行数据,供第二终端设备合并处理。基于此,第二终端设备可以多次接收到第一终端设备在边链路上传输的下行数据,从而提高了第二终端设备正确解码下行数据的概率。需要说明的是,本申请中提到的下行数据指的是接入网设备发送给终端设备的数据;上行数据指的是终端设备发送给接入网设备的数据;边链路数据指的是终端设备发送给终端设备的数据。本申请实施例涉及的第一终端设备通过边链路传输给第二终端设备的数据实际上可以称为边链路数据,该边链路数据的内容实质上是第一终端设备从接入网设备上接收到的下行数据的内容。
在TDD模式下,针对图4所示的上下行配置场景:在T1时刻,接入网设备根据业务需求和终端设备的调度请求确定采用哪一种上下行配置。例如,参见图4所示的上下行配置,假设接入网设备分配最后一个DL slot用于第二终端设备的下行传输,假设该最后一个DL slot后的连续4个UL slot分别用于第一终端设备(即图2中的终端设备1)、第二终端设备(即图2中的终端设备2)、终端设备3和终端设备4的上行传输。可选的,这里的4个UL slot的上行调度传输,可以是任意的终端设备,终端设备1、终端设备2、终端设备3和终端设备4仅是一种示例,接入网设备可以调度任意的终端设备在这些UL slot上进行上行传输。
继续参见图4所示,在T2时刻(T1时刻后,最后一个DL slot开始之前),下行数据到达接入网设备处,由于接入网设备只剩余最后一个DL slot,现有技术中的DL URLLC传输的多次传输机制无法进行多次向第二终端设备发送DL URLLC数据,从而无法提高第二通信设备正确接收下行数据的概率;但是,本申请中,当第一终端设备接收到接入网设备发送的下行数据后,根据接入网设备发送的第一控制信息将下行数据,通过边链路多次传输给第二终端设备。这里的多次传输可以利用图4所示的后续几个UL slot的资源,边链路数据在传输时可以采用这些UL slot的资源的部分或者全部,还可以利用接入网设备专门分配给D2D传输的新的上行资源,将下行数据通过边链路多次传输给第二终端设备,此时边链路数据在传输时可以采用该新的上行资源的部分或者全部。
由上述描述可知,本申请提供的数据传输的方法,在上述图4所示的上下行配置的场景中,其可以提高第二终端设备正确接收并解码下行数据的概率,当上述下行数据为下行URLLC数据时,本申请的方法进一步增强了URLLC数据的可靠性并保证URLLC场景下的数据传输低时延的要求。
另外,需要说明的是,本申请实施例并不仅仅适用于图4所示的接入网设备在下行数据到达后,在最后一个下行时隙发送下行数据的场景,其还可以适用于如下的场景:即接 入网设备可以在下行数据到达接入网设备后的任一DL slot内发送下行数据,例如,可以是在特殊时隙之前的倒数第二个下行时隙发送下行数据,或者特殊时隙前的倒数第三个下行数据前发送下行数据等。也就是说,当接入网设备多次发送下行数据的下行时隙的个数或者下行时隙对应的资源无法满足下行数据的稳定性和可靠性要求,其可以利用本申请的方案通过第一终端设备和第二终端设备之间的边链路进行多次传输下行数据,以提高第二终端设备正确接收下行数据的概率。
另外,当接入网设备多次发送下行数据的下行时隙的个数或者下行时隙对应的资源可以满足下行数据的稳定性和可靠性要求,在接入网设备利用多个下行时隙向第二终端设备多次传输下行数据的同时,也可以利用第一终端设备通过边链路多次向第二终端设备发送下行数据。在接下来的下行数据的多次发送中,接入网设备多次向第二终端设备发送的下行数据和第一终端设备通过边链路多次向第二终端设备发送下行数据使用相同的发送配置信息和相同的时频资源位置,避免产生数据的干扰。利用该方案,也就相当于第一终端设备通过边链路阶段的多次发送协助了接入网设备的多次下行传输,进一步增加了第二终端设备正确接收下行数据的概率。
本申请提供的数据传输的方法,通过接入网设备向第一终端设备发送第一控制信息,使得第一终端设备根据该第一控制信息,将从接入网设备接收的下行数据通过边链路多次传输给第二终端设备,从而增加了第二终端设备正确接收下行数据的概率,其不限于接入网设备上下行配置的影响,当下行数据为下行URLLC数据时,本申请的方法进一步增强了URLLC数据的可靠性并保证URLLC场景下的数据传输低时延的要求。
图5为本申请提供的数据传输的方法实施例二的信令流程图。本实施例涉及的是第一终端设备如何根据第一控制信息进行下行数据的接收以及如何根据第一控制信息向第二终端设备多次传输下行数据的具体过程。可选的,本实施例中,上述
如图5所述,该方法具体可以包括如下步骤:
S201:接入网设备向第一终端设备发送第一控制信息,该第一控制信息包括协作传输指示、第一资源信息和第二资源信息;该协作传输指示,用于指示第一终端设备根据所述第二资源信息,将所述第一终端根据所述第一资源信息接收到的所述下行数据,通过边链路多次传输给所述第二终端设备。
S202:第一终端设备接收接入网设备发送的第一控制信息。
具体的,如上述实施例所描述的,第一终端设备和第二终端设备构成了一个协作组,本实施例中,该协作组可以称为终端设备组。可选的,接入网设备可以为该终端设备组分配组标识,也可以不为该终端设备组分配组标识。
当接入网设备为终端设备组分配了组标识后,该组标识可以用户协作组无线网络临时身份(UE Cooperation Group-Radio Network Temporary Identity,简称UCG-RNTI),还可以为其他格式的标识,本实施例对此并不做限制。当接入网设备需要下发第一控制信息时,接入网设备可以将该终端设备组的组标识与下行链路控制信息(Downlink Control Information,简称DCI)进行绑定,形成第一控制信息后下发给第一终端设备。可选的,这里的“绑定”可以是利用终端设备组的组标识对DCI进行加扰。也就是说,上述第一控制信息为接入网设备采用终端设备组的组标识加扰后的DCI,该DCI可以表示为DCI Format  X。当属于该终端设备组的第一终端设备监测到第一控制信息中存在该终端设备组的标识,则第一终端设备就会接收该第一控制信息,进而解析该第一控制信息,得到该第一控制信息中的协作传输指示、第一资源信息和第二资源信息。
当接入网设备没有为终端设备组分配组标识时,当接入网设备需要下发第一控制信息时,接入网设备可以将该终端设备组的目标用户(即第二终端设备)的标识与DCI进行绑定,形成第一控制信息后下发给第一终端设备。可选的,这里的“绑定”可以是利用第二终端设备的标识对DCI进行加扰(Scrambling)。也就是说,上述第一控制信息为接入网设备采用第二终端设备的标识加扰后的DCI。当属于该终端设备组的第一终端设备监测到第一控制信息中存在第二终端设备的标识,则第一终端设备就会接收该第一控制信息,进而解析该第一控制信息,得到该第一控制信息中的协作传输指示、第一资源信息和第二资源信息。
可选的,该第二资源信息可以包括:第一终端设备向第二终端设备多次发送下行数据时所采用的第一时频资源配置信息和第一传输配置信息。该第一传输配置信息可以包括第一终端设备向第二终端设备发送下行数据时所采用的调制编码策略(Modulation and Coding Scheme,简称MCS)参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
可选的,上述第一资源信息可以包括:第一终端设备接收下行数据时所采用的第二时频资源配置信息和第二传输配置信息;该第二传输配置信息可以包括第一终端设备接收所述下行数据时所采用的调制编码策略MCS参数、天线配置信息的中的至少一种。
S203:接入网设备向所述第一终端设备发送下行数据。
S204:第一终端设备根据所述第一资源信息接收所述接入网设备发送的下行数据。
S205:第一终端设备根据所述协作传输指示和所述第二资源信息,将所述下行数据通过边链路多次传输给所述第二终端设备。
具体的,当第一终端设备解析得到第一控制信息中的协作传输指示、第一资源信息和第二资源信息后,第一终端设备通过协作传输指示知道自身要通过边链路向第二终端设备多次传输所接收到的下行数据。
因此,当接入网设备向第一终端设备发送下行数据之后,第一终端设备可以根据上述第一资源信息的内容在对应的时频资源位置上接收该下行数据,然后根据协作传输指示和第二资源信息中的内容,将接收到的下行数据通过边链路多次传输给第二终端设备。
可选的,接入网设备可以根据接入网设备为第二终端设备分配的新的上行资源,形成上述第二资源信息,该新的上行资源与接入网设备已调度过的上行资源不同。也就是说,上述第二资源信息中的第一时频资源配置信息所指示的时频资源,可以为接入网设备所分配的新的上行资源,第一终端设备可以利用该新的上行资源,向第二终端设备通过边链路多次发送下行数据。该可选的方式下,由于接入网设备为边链路的传输分配了新的上行资源,因此接入网设备无需取消对其他终端设备的上行调度。
可选的,接入网设备还可以根据待取消的上行调度资源,形成上述第二资源信息。即接入网设备将待取消的上行调度资源取消后,将取消的上行调度资源的部分或者全部用于第一终端设备和第二终端设备之间边链路的传输。可选的,接入网设备取消接入网设备覆盖下的部分终端设备(一个或者多个)的上行调度资源后,接入网设备可以向接入网设备 覆盖下的部分终端设备发送第二控制信息,该第二控制信息中携带上行调度取消指示,以用于告知这部分终端设备,接入网设备已取消对这部分终端设备的上行调度资源。需要说明的是,第一终端向第二终端发送边链路数据时,由于接入网设备已经将上行资源用于调度终端进行上行传输,故此需要取消至少一部分上行调度资源作为边链路调度资源供第一终端向和第二终端进行边链路通信,所述需要取消至少一部分上行调度资源称作本申请中的“待取消的上行调度资源”。
可选的,当接入网设备为第一终端设备和第二终端设备所在的终端设备组分配了组标识时,若接入网设备取消了终端设备组中的成员的上行调度资源,接入网设备可以将该终端设备组的组标识与DCI(该DCI可以表示为DCI Format Y,DCI Format Y与上述DCI Format X不同)进行绑定,形成第二控制信息后进行下发。可选的,这里的“绑定”可以是利用终端设备组的组标识对DCI Format Y进行加扰。也就是说,上述第二控制信息为接入网设备采用终端设备组的组标识加扰后的DCI。当终端设备组的成员监测到第二控制信息中存在该终端设备组的标识,则终端设备组的成员就会接收该第二控制信息,进而解析该第二控制信息,得到上行调度取消指示。需要说明的是,当第二控制信息是利用终端设备组的组标识进行加扰时,仅有该终端设备组中的成员能够接收该第二控制信息,进而获知接入网设备取消了对自身的上行调度资源。
可选的,当接入网设备没有为第一终端设备和第二终端设备所在的终端设备组分配组标识时,若接入网设备取消了部分终端设备的上行调度资源后,接入网设备可以将这部分终端设备中的每个终端设备的标识与DCI Format Y进行绑定,从而得到多个第二控制信息,并发给接入网设备所覆盖的终端设备。当终端设备检测到第二控制信息中携带有自身的标识,该终端设备接收该第二控制信息,并进行解析,从而根据该第二控制信息中的上行调度取消指示,获知接入网设备取消了对该终端设备的上行调度资源。可选的,该终端设备的标识可以为终端设备的无线网络临时身份(Radio Network Temporary Identity,简称RNTI)。也就是说,接入网设备在下发的一个或者多个第二控制信息中,携带了谁的标识,就表明接入网设备取消了对谁的上行调度资源。
需要说明的是,接入网设备覆盖下的部分终端设备可以是第一终端设备,还可以是终端设备组中的所有终端设备,还可以是非终端设备组中的终端设备。上述接入网设备发送第二控制信息,具体可以包括两种情况:
第一种:假设接入网设备本身仅对第一终端设备进行了上行调度(即仅为第一终端设备分配了上行调度资源,其他终端设备均没有分配),第一终端设备作为辅助第二终端设备提高正确接收下行数据概率的设备(即第一终端设备可以看作是协作用户)。第一终端设备在根据第一资源信息接收到下行数据之后,第一终端设备本身知道自己是协助第二终端设备的用户,当第一终端设备的上行调度资源足够进行多次传输时,第一终端设备可以直接利用自己的上行调度资源,通过边链路将下行数据多次传输给第二终端设备。此时,接入网设备无需向第一终端设备发送第二控制信息。
第二种:参见上述图2所示,假设接入网设备不仅调度了第一终端设备(终端设备1)的上行,也调度了第二终端设备(终端设备2)和终端设备3的上行,第一终端设备作为辅助第二终端设备提高正确接收下行数据概率的设备(即第一终端设备可以看作是协作用户)。第一终端设备在根据第一资源信息接收到下行数据之后,第一终端设备本身知道自 己是协助第二终端设备的用户,当第一终端设备的上行调度资源不够进行多次传输时,接入网设备就需要取消终端设备2和终端设备3的上行调度资源,然后将终端设备1、第二终端设备2和终端设备3的上行调度资源组合在一起,形成上行调度总资源,然后将该上行调度总资源中的部分或者全部,作为边链路传输的资源。此时,接入网设备需要向终端设备2和终端设备3分别发送第二控制信息,以告知终端设备2和终端设备3,接入网设备取消了对终端设备2和终端设备3的上行调度资源。可选的,发送给终端设备2的第二控制信息可以是通过终端设备组的组标识加扰后的DCI fomat Y,还可以是通过终端设备的标识加扰后的DCI fomat Y,发送给终端设备3的第二控制信息可以是通过终端设备3的标识加扰后的DCI fomat Y。
由上述描述可知,接入网设备可以为边链路的数据传输分配新的上行资源,形成第二资源信息,以协助第一终端设备将接收到的下行数据多次传输给第二终端设备。接入网设备还可以将已调度的终端设备的上行调度资源取消,将取消的上行调度资源作为边链路的数据传输的资源,以协助第一终端设备将接收到的下行数据多次传输给第二终端设备。因此,本申请提供的方法,可以不受限于接入网设备采用的上下行配置的影响,其均可以增加第二终端设备正确接收下行数据的概率,提高第二终端设备的网络服务质量,确保数据传输的稳定性和可靠性。
另外,需要说明的是,本申请实施例中取消的上行调度资源不仅仅限于边链路传输,也可以用于下行传输。
为了更清楚的介绍本申请,下述以一个简单的例子,来对本申请实施例的具体过程进行介绍。
该例子中,设接入网设备对终端设备1、终端设备2和终端设备3均进行了上行调度,终端设备1和终端设备2构成一个终端设备组,接入网设备为该终端设备组分配了组标识。结合图4所示的上下行配置的场景,特殊时隙后的3个时隙均为上行时隙(UL slot,)在特殊时隙(S)前的最后一个下行时隙(DL slot)前(即图4中的T1时刻),下行数据到达接入网设备,接入网设备在最后一个DL slot上发送下行数据。在发送下行数据之前,接入网设备需要向第一终端设备发送第一控制信息,该第一控制信息中包含协作传输指示、第一资源信息和第二资源信息。上述终端设备2为网络服务质量不好的用户,称为目标用户,终端设备1为网络服务质量好的用户,称之为协作用户。
当终端设备1检测到第一控制信息中存在终端设备组的组标识或者终端设备2的标识后,终端设备1确定接收该第一控制信息,然后得到第一控制信息中的协作传输指示、第一资源信息和第二资源信息。终端设备1采用第一资源信息接收接入网设备发送的下行数据,并根据协作传输指示得知自身要将所接收到的下行数据多次传输给终端设备2。然后终端设备1利用第二资源信息所指示的内容,在指定的时频资源位置、按照指定的传输配置信息通过边链路将下行数据多次传输给终端设备2。同时,终端设备1由于得知自己要进行边链路的传输,因此终端设备1在对应的上行调度资源上不进行发送处理,从而使得终端设备1可以利用这部分上行调度资源进行边链路或者D2D传输。上述第二资源信息中的第一时频资源配置信息所指示的时频资源包含终端设备1的上行调度资源。
当终端设备2检测到第一控制信息中存在终端设备组的组标识或者终端设备2的标识后,终端设备2确定接收该第一控制信息,然后得到第一控制信息中的协作传输指示、第 一资源信息和第二资源信息。终端设备2根据该协作传输指示获知终端设备1要向自己多次传输下行数据,然后终端设备2根据第二资源信息的内容,在指定的时频资源位置,按照指定的传输配置信息进行下行数据的多次接收。另外,终端设备2还可以通过检测终端设备2的标识或者终端设备组的标识来接收第二控制信息,并根据第二控制信息中的上行调度取消指示,获知接入网设备已经取消对自己的上行调度,终端设备2在该上行调度资源上不再进行上行发送处理。上述第二资源信息中的第一时频资源配置信息所指示的时频资源也包含终端设备2被取消的上行调度资源。
同理,上述第一控制信息中由于没有与终端设备3的标识绑定,因此终端设备3无需接收第一控制信息。但是,由于接入网设备取消了对终端设备3的上行调度资源,因此,终端设备3通过检测自身的标识确定接收与终端设备3的标识绑定的第二控制信息,然后终端设备3根据该第二控制信息中的上行调度取消指示,获知接入网设备已经取消对终端设备3的上行调度,终端设备3在该被取消的上行调度资源上不再进行上行发送处理。因此,上述第二资源信息中的第一时频资源配置信息所指示的时频资源也可以包含终端设备3被取消的上行调度资源。
基于此,接入网设备为边链路的传输准备了终端设备1、终端设备2和终端设备3的上行调度资源,然后终端设备1可以利用这些上行调度资源,通过边链路向第二终端设备多次传输下行数据,大大增加了第二终端设备正确接收下行数据的概率,并且,本方案不受限于接入网设备采用的上下行配置的影响,确保了数据传输的稳定性和可靠性。
图6为本申请提供的接入网设备实施例一的结构示意图。如图6所示,该接入网设备包括发送模块11和处理模块12。
具体的,发送模块11,用于向第一终端设备发送第一控制信息,以及,向所述第一终端设备发送下行数据;所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备;
可选的,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
所述协作传输指示,用于指示所述第一终端设备根据所述第二资源信息,将所述第一终端根据所述第一资源信息接收到的所述下行数据,通过边链路多次传输给所述第二终端设备。
可选的,所述处理模块12,用于根据待取消的上行调度资源,形成所述第二资源信息。
可选的,所述发送模块11,还用于向所述接入网设备覆盖范围下的终端设备发送第二控制信息,所述第二控制信息携带上行调度取消指示;所述上行调度取消指示用于指示所述接入网设备取消对所述终端设备的上行调度资源。
可选的,所述处理模块12,还可以用于根据所述接入网设备为所述第二终端设备分配的新的上行资源,形成所述第二资源信息;其中,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
进一步地,所述第一控制信息为所述接入网设备采用终端设备组的组标识或者所述第二终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
进一步地,所述第二控制信息为所述接入网设备采用终端设备组的组标识或者所述终 端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
可选的,所述第二资源信息包括:所述第一终端设备向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
所述第一传输配置信息包括所述第一终端设备向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
可选的,所述第一资源信息包括:所述第一终端设备接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
所述第二传输配置信息包括所述第一终端设备接收所述下行数据时所采用的调制编码策略MCS参数、天线配置信息的中的至少一种。
本申请提供的接入网设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图7为本申请提供的终端设备实施例一的结构示意图。该终端设备可以为上述方法实施例中的第一终端设备。如图7所示,该第一终端设备包括:接收模块22和发送模块21。
具体的,接收模块22,用于接收接入网设备发送的第一控制信息;
发送模块21,用于根据所述第一控制信息,将所述接收模块22从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。
可选的,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
所述接收模块22,还用于根据所述第一资源信息接收所述接入网设备发送的下行数据;
所述发送模块21,具体用于根据所述协作传输指示和所述第二资源信息,将所述下行数据通过边链路多次传输给所述第二终端设备。
可选的,所述第二资源信息为所述接入网设备根据待取消的上行调度资源所形成的信息。
可选的,所述第二资源信息为所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源所形成的信息,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
可选的,所述第二资源信息包括:所述发送模块21向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
所述第一传输配置信息包括所述发送模块21向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
可选的,所述第一资源信息包括:所述接收模块22接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
所述第二传输配置信息包括所述接收模块22接收所述下行数据时所采用的调制编码策略MCS相关参数、天线配置信息的中的至少一种。
本申请提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图8为本申请提供的接入网设备实施例二的结构示意图。如图8所示,该接入网设备可以包括发送器31、处理器32、存储器33。存储器33可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器33中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。可选的,本实施例中的发送器31可以为接入网设备上的射频模块或者基带模块。
本实施例中,发送器31,用于向第一终端设备发送第一控制信息,以及,向所述第一终端设备发送下行数据;所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备;
可选的,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
所述协作传输指示,用于指示所述第一终端设备根据所述第二资源信息,将所述第一终端根据所述第一资源信息接收到的所述下行数据,通过边链路多次传输给所述第二终端设备。
可选的,所述处理器32,用于根据待取消的上行调度资源,形成所述第二资源信息。
可选的,所述发送器31,还用于向所述接入网设备覆盖范围下的终端设备发送第二控制信息,所述第二控制信息携带上行调度取消指示;所述上行调度取消指示用于指示所述接入网设备取消对所述终端设备的上行调度资源。
可选的,所述处理器32,还可以用于根据所述接入网设备为所述第二终端设备分配的新的上行资源,形成所述第二资源信息;其中,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
进一步地,所述第一控制信息为所述接入网设备采用终端设备组的组标识或者所述第二终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
进一步地,所述第二控制信息为所述接入网设备采用终端设备组的组标识或者所述终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
可选的,所述第二资源信息包括:所述第一终端设备向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
所述第一传输配置信息包括所述第一终端设备向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
可选的,所述第一资源信息包括:所述第一终端设备接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
所述第二传输配置信息包括所述第一终端设备接收所述下行数据时所采用的调制编码策略MCS参数、天线配置信息的中的至少一种。
本申请提供的接入网设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图9为本申请提供的终端设备实施例二的结构示意图。如图9所示,该终端设备 可以为上述方法实施例中的第一终端设备。该终端设备可以包括接收器40、发送器41、处理器42、存储器43。存储器43可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器43中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。可选的,本实施例中的接收器40和发送器41可以为终端设备上的射频模块或者基带模块。该接收器40和发送器41可以集成在一起,成为收发器。
本实施例中,接收器40,用于接收接入网设备发送的第一控制信息;
发送器41,用于根据所述第一控制信息,将所述接收器30从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。
可选的,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
所述接收器40,还用于根据所述第一资源信息接收所述接入网设备发送的下行数据;
所述发送器41,具体用于根据所述协作传输指示和所述第二资源信息,将所述下行数据通过边链路多次传输给所述第二终端设备。
可选的,所述第二资源信息为所述接入网设备根据待取消的上行调度资源所形成的信息。
可选的,所述第二资源信息为所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源所形成的信息,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
可选的,所述第二资源信息包括:所述发送器41向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
所述第一传输配置信息包括所述发送器41向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
可选的,所述第一资源信息包括:所述接收器40接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
所述第二传输配置信息包括所述接收器40接收所述下行数据时所采用的调制编码策略MCS相关参数、天线配置信息的中的至少一种。
本申请提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。

Claims (30)

  1. 一种数据传输的方法,其特征在于,包括:
    接入网设备向第一终端设备发送第一控制信息,所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备;
    所述接入网设备向所述第一终端设备发送下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
    所述协作传输指示,用于指示所述第一终端设备根据所述第二资源信息,将所述第一终端根据所述第一资源信息接收到的所述下行数据,通过边链路多次传输给所述第二终端设备。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据待取消的上行调度资源,形成所述第二资源信息。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述接入网设备覆盖范围下的终端设备发送第二控制信息,所述第二控制信息携带上行调度取消指示;所述上行调度取消指示用于指示所述接入网设备取消对所述终端设备的上行调度资源。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括
    所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源,形成所述第二资源信息;其中,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一控制信息为所述接入网设备采用终端设备组的组标识或者所述第二终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
  7. 根据权利要求4所述的方法,其特征在于,所述第二控制信息为所述接入网设备采用终端设备组的组标识或者所述终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,所述第二资源信息包括:所述第一终端设备向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
    所述第一传输配置信息包括所述第一终端设备向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述第一资源信息包括:所述第一终端设备接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
    所述第二传输配置信息包括所述第一终端设备接收所述下行数据时所采用的调制编码策略MCS参数、天线配置信息的中的至少一种。
  10. 一种数据传输的方法,其特征在于,包括:
    第一终端设备接收接入网设备发送的第一控制信息;
    所述第一终端设备根据所述第一控制信息,将所述第一终端设备从所述接入网设备接 收的下行数据,通过边链路多次传输给第二终端设备。
  11. 根据权利要求10所述的方法,其特征在于,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;所述第一终端设备根据所述第一控制信息,将所述第一终端设备从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备,具体包括:
    所述第一终端设备根据所述第一资源信息接收所述接入网设备发送的下行数据;
    所述第一终端设备根据所述协作传输指示和所述第二资源信息,将所述下行数据通过边链路多次传输给所述第二终端设备。
  12. 根据权利要求11所述的方法,其特征在于,所述第二资源信息为所述接入网设备根据待取消的上行调度资源所形成的信息。
  13. 根据权利要求11所述的方法,其特征在于,所述第二资源信息为所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源所形成的信息,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第二资源信息包括:所述第一终端设备向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
    所述第一传输配置信息包括所述第一终端设备向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,所述第一资源信息包括:所述第一终端设备接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
    所述第二传输配置信息包括所述第一终端设备接收所述下行数据时所采用的调制编码策略MCS相关参数、天线配置信息的中的至少一种。
  16. 一种接入网设备,其特征在于,包括:
    发送模块,用于向第一终端设备发送第一控制信息,以及,向所述第一终端设备发送下行数据;
    所述第一控制信息用于指示所述第一终端设备将从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备;
  17. 根据权利要求16所述的接入网设备,其特征在于,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
    所述协作传输指示,用于指示所述第一终端设备根据所述第二资源信息,将所述第一终端根据所述第一资源信息接收到的所述下行数据,通过边链路多次传输给所述第二终端设备。
  18. 根据权利要求17所述的接入网设备,其特征在于,所述装置还包括:处理模块;
    所述处理模块,用于根据待取消的上行调度资源,形成所述第二资源信息。
  19. 根据权利要求18所述的接入网设备,其特征在于,所述发送模块,还用于向所述接入网设备覆盖范围下的终端设备发送第二控制信息,所述第二控制信息携带上行调度取消指示;所述上行调度取消指示用于指示所述接入网设备取消对所述终端设备的上行调 度资源。
  20. 根据权利要求17所述的接入网设备,其特征在于,所述装置还包括:处理模块;
    所述处理模块,用于根据所述接入网设备为所述第二终端设备分配的新的上行资源,形成所述第二资源信息;其中,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
  21. 根据权利要求16-20任一项所述的接入网设备,其特征在于,所述第一控制信息为所述接入网设备采用终端设备组的组标识或者所述第二终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
  22. 根据权利要求19所述的接入网设备,其特征在于,所述第二控制信息为所述接入网设备采用终端设备组的组标识或者所述终端设备的标识加扰后的下行链路控制信息DCI;其中,所述终端设备组包括所述第一终端设备和所述第二终端设备。
  23. 根据权利要求17-22任一项所述的接入网设备,其特征在于,所述第二资源信息包括:所述第一终端设备向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
    所述第一传输配置信息包括所述第一终端设备向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
  24. 根据权利要求17-23任一项所述的接入网设备,其特征在于,所述第一资源信息包括:所述第一终端设备接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
    所述第二传输配置信息包括所述第一终端设备接收所述下行数据时所采用的调制编码策略MCS参数、天线配置信息的中的至少一种。
  25. 一种终端设备,其特征在于,所述终端设备为第一终端设备,包括:
    接收模块,用于接收接入网设备发送的第一控制信息;
    发送模块,用于根据所述第一控制信息,将所述接收模块从所述接入网设备接收的下行数据,通过边链路多次传输给第二终端设备。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第一控制信息包括:协作传输指示、第一资源信息和第二资源信息;
    所述接收模块,还用于根据所述第一资源信息接收所述接入网设备发送的下行数据;
    所述发送模块,具体用于根据所述协作传输指示和所述第二资源信息,将所述下行数据通过边链路多次传输给所述第二终端设备。
  27. 根据权利要求26所述的终端设备,其特征在于,所述第二资源信息为所述接入网设备根据待取消的上行调度资源所形成的信息。
  28. 根据权利要求26所述的终端设备,其特征在于,所述第二资源信息为所述接入网设备根据所述接入网设备为所述第二终端设备分配的新的上行资源所形成的信息,所述新的上行资源与所述接入网设备已调度过的上行资源不同。
  29. 根据权利要求26-28任一项所述的终端设备,其特征在于,所述第二资源信息包括:所述发送模块向所述第二终端设备多次发送所述下行数据时所采用的第一时频资源配置信息和第一传输配置信息;
    所述第一传输配置信息包括所述发送模块向所述第二终端设备发送所述下行数据时所采用的调制编码策略MCS参数、天线配置信息、传输次数、数据重传的版本号相关信息中的至少一种。
  30. 根据权利要求26-29任一项所述的终端设备,其特征在于,所述第一资源信息包括:所述接收模块接收所述下行数据时所采用的第二时频资源配置信息和第二传输配置信息;
    所述第二传输配置信息包括所述接收模块接收所述下行数据时所采用的调制编码策略MCS相关参数、天线配置信息的中的至少一种。
PCT/CN2018/092800 2017-06-30 2018-06-26 数据传输的方法、接入网设备和终端设备 WO2019001409A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18822695.5A EP3629652A4 (en) 2017-06-30 2018-06-26 DATA TRANSFER METHOD, ACCESS NETWORK DEVICE AND TERMINAL
US16/725,889 US20200137782A1 (en) 2017-06-30 2019-12-23 Data transmission method, access network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710522431.8A CN109217989B (zh) 2017-06-30 2017-06-30 数据传输的方法、接入网设备和终端设备
CN201710522431.8 2017-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/725,889 Continuation US20200137782A1 (en) 2017-06-30 2019-12-23 Data transmission method, access network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2019001409A1 true WO2019001409A1 (zh) 2019-01-03

Family

ID=64740416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092800 WO2019001409A1 (zh) 2017-06-30 2018-06-26 数据传输的方法、接入网设备和终端设备

Country Status (4)

Country Link
US (1) US20200137782A1 (zh)
EP (1) EP3629652A4 (zh)
CN (1) CN109217989B (zh)
WO (1) WO2019001409A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965441A4 (en) * 2019-04-28 2022-06-29 Datang Mobile Communications Equipment Co., Ltd. Direct link transmission method and terminal
CN114731683A (zh) * 2019-11-21 2022-07-08 华为技术有限公司 一种数据传输的方法、装置和系统
EP4024995A4 (en) * 2019-09-02 2022-10-19 Huawei Technologies Co., Ltd. COMMUNICATION APPARATUS AND METHOD
US12022543B2 (en) 2018-07-05 2024-06-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data in Internet of Vehicles and terminal device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257810B (zh) * 2017-07-12 2022-05-10 华为技术有限公司 一种功率控制方法和终端设备
CA3105316A1 (en) * 2018-07-05 2020-01-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data in internet of vehicles, and terminal device
CN111866814A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 通信方法和装置
WO2020226399A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 Nr v2x에서 전송 자원을 선택하는 방법 및 장치
US11432291B2 (en) 2019-06-21 2022-08-30 Huawei Technologies Co., Ltd. System and scheme on group based identity and scrambling for UE cooperation transmission
WO2021007685A1 (zh) * 2019-07-12 2021-01-21 Oppo广东移动通信有限公司 用于传输侧行数据的方法、终端设备和网络设备
CN112311493B (zh) * 2019-07-23 2023-04-04 华为技术有限公司 协作传输方法、装置及设备
WO2021062701A1 (en) * 2019-09-30 2021-04-08 Zte Corporation Time-frequency block cancellation
CN112714441B (zh) * 2019-10-24 2024-06-14 华为技术有限公司 一种数据传输方法、通信装置及通信系统
US11818737B2 (en) * 2019-12-18 2023-11-14 Qualcomm Incorporated Methods and apparatuses for data retransmission using sidelink diversity
WO2021134356A1 (zh) * 2019-12-30 2021-07-08 华为技术有限公司 一种通信方法及通信装置
CN111345099B (zh) * 2020-02-05 2023-01-24 北京小米移动软件有限公司 一种覆盖增强方法及装置
WO2022222105A1 (zh) * 2021-04-22 2022-10-27 Oppo广东移动通信有限公司 无线通信方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
WO2016120686A1 (en) * 2015-01-30 2016-08-04 Huawei Technologies Co., Ltd. System and method for coordinating device-to-device communications
US20170054540A1 (en) * 2015-08-19 2017-02-23 Electronics And Telecommunications Research Institute Method and apparatus for opportunistic data transmission
WO2017049595A1 (zh) * 2015-09-25 2017-03-30 富士通株式会社 边链路信息传输装置、方法以及通信系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664700A (zh) * 2014-09-25 2017-05-10 夏普株式会社 对于副链路通信中的模式切换的延迟减少
CN105917733B (zh) * 2014-12-17 2020-01-21 华为技术有限公司 用户设备、基站及d2d通信的方法
CN106454687B (zh) * 2015-07-21 2021-08-03 大唐移动通信设备有限公司 一种分配资源的方法和设备
WO2017026970A1 (en) * 2015-08-12 2017-02-16 Intel Corporation Methods to enable high data rate relay operation using d2d air-interface
CN106792890B (zh) * 2016-07-29 2019-07-02 北京展讯高科通信技术有限公司 D2d直接发现资源的选择方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
WO2016120686A1 (en) * 2015-01-30 2016-08-04 Huawei Technologies Co., Ltd. System and method for coordinating device-to-device communications
US20170054540A1 (en) * 2015-08-19 2017-02-23 Electronics And Telecommunications Research Institute Method and apparatus for opportunistic data transmission
WO2017049595A1 (zh) * 2015-09-25 2017-03-30 富士通株式会社 边链路信息传输装置、方法以及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3629652A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12022543B2 (en) 2018-07-05 2024-06-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data in Internet of Vehicles and terminal device
EP3965441A4 (en) * 2019-04-28 2022-06-29 Datang Mobile Communications Equipment Co., Ltd. Direct link transmission method and terminal
EP4258581A3 (en) * 2019-04-28 2023-12-20 Datang Mobile Communications Equipment Co., Ltd. Direct link transmission method and terminal
EP4024995A4 (en) * 2019-09-02 2022-10-19 Huawei Technologies Co., Ltd. COMMUNICATION APPARATUS AND METHOD
CN114731683A (zh) * 2019-11-21 2022-07-08 华为技术有限公司 一种数据传输的方法、装置和系统

Also Published As

Publication number Publication date
CN109217989B (zh) 2022-02-18
EP3629652A1 (en) 2020-04-01
EP3629652A4 (en) 2020-05-13
CN109217989A (zh) 2019-01-15
US20200137782A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2019001409A1 (zh) 数据传输的方法、接入网设备和终端设备
US9521669B2 (en) HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems
US11140731B2 (en) Data transmission method, communication device, and data transmission system
RU2710991C1 (ru) Узел радиосети, устройство беспроводной связи и осуществляемые в них способы
WO2018127131A1 (zh) 信息传输方法、终端设备及接入网设备
US9775148B2 (en) Method, system and device for determining transmission link type
RU2701044C1 (ru) Узел радиосети, беспроводное устройство и способы, выполняемые в них
WO2018233470A1 (zh) 一种数据传输方法、通信设备和数据传输系统
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
US20200177315A1 (en) Communication method, access network device, and terminal
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
WO2020140289A1 (zh) 资源分配的方法、终端设备和网络设备
TW201424442A (zh) 用於蜂巢式網路下的設備到設備通信的訊號傳輸方法
WO2018059466A1 (zh) 传输控制信息的方法、用户设备和网络设备
WO2021062609A1 (zh) 通信方法和通信装置
US20220209905A1 (en) Method and apparatus for sidelink resource allocation
WO2020133445A1 (zh) 无线通信方法、终端设备和网络设备
WO2018081999A1 (zh) 传输信息的方法、网络设备和终端设备
WO2022061661A1 (zh) 无线通信的方法、终端设备和网络设备
US20240008054A1 (en) Method and apparatus for hybrid automatic retransmission request
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
CN115039482A (zh) 针对在具有不同优先级的harq-ack码本之间的复用的信令和时间线要求
WO2017084095A1 (zh) 传输数据的方法、终端和基站
WO2019114730A1 (zh) 数据收发的方法、装置和通信系统
CN108702258B (zh) 一种harq应答信息传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018822695

Country of ref document: EP

Effective date: 20191221