WO2019001406A1 - 数据传输方法、用户设备和网络设备 - Google Patents

数据传输方法、用户设备和网络设备 Download PDF

Info

Publication number
WO2019001406A1
WO2019001406A1 PCT/CN2018/092792 CN2018092792W WO2019001406A1 WO 2019001406 A1 WO2019001406 A1 WO 2019001406A1 CN 2018092792 W CN2018092792 W CN 2018092792W WO 2019001406 A1 WO2019001406 A1 WO 2019001406A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
cbg
network device
control information
sent
Prior art date
Application number
PCT/CN2018/092792
Other languages
English (en)
French (fr)
Inventor
苏宏家
庞继勇
向铮铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18823512.1A priority Critical patent/EP3633898B1/en
Publication of WO2019001406A1 publication Critical patent/WO2019001406A1/zh
Priority to US16/720,950 priority patent/US20200127775A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to communications technologies, and in particular, to a data transmission method, a user equipment, and a network device.
  • a user equipment cooperation mechanism is introduced in the future 5G communication system.
  • the user equipment cooperation mechanism When the user equipment cooperation mechanism is adopted, one or more user equipments in the central area of the network coverage or in the network environment may assist the network equipment and the users with poor network service quality in the network through end-to-end communication technologies.
  • the device communicates. In this way, the throughput of the user equipment with poor network service quality can be improved, and the throughput of the entire communication system can be improved.
  • the user equipment of the user equipment with poor network service quality in the cell may be referred to as a Cooperative User Equipment (CUE), and the user equipment with poor network service quality in the foregoing cell may be referred to as a target user equipment (Target User Equipment). , TUE).
  • CUE Cooperative User Equipment
  • TUE target User Equipment
  • the network device may multicast the transport block (TB) sent to the TUE to each CUE and TUE.
  • the TB may include at least one Code Block Group (CBG).
  • CBG Code Block Group
  • each CUE can decode the TB.
  • each CUE can retransmit the correct CBG to the TUE, so as to assist the TUE to decode the TB by retransmitting the CBG, thereby improving the probability that the TUE correctly decodes the TB, thereby improving the network quality of the TUE.
  • the embodiment of the present application provides a data transmission method, a sending device, and a receiving device, which are used to improve the efficiency of retransmitting CBG between a CUE and a TUE.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • first control information that is sent by the second user equipment, where the first control information is used to indicate that the first user equipment sends at least one second CBG to the second user equipment, where The second CBG is that the second user equipment receives the failed first CBG from the network device;
  • the first user equipment Transmitting, by the first user equipment, the at least one third CBG to the second user equipment, where the third CBG is that the first user equipment receives a correct first CBG from the network device, and the third CBG Receiving a failed first CBG from the network device for the second user equipment.
  • the first user equipment when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, the first user equipment after receiving the TB sent by the network device to the second user equipment
  • the first user equipment may retransmit the CBG required by the second user equipment to the second user equipment according to the CBG indicated by the second user equipment and the correct CBG received by the second user equipment, and improve the first user equipment and the second user equipment.
  • the efficiency of retransmitting CBG between user equipments improves resource utilization.
  • the first user equipment is a user equipment used to assist communication between the second user equipment and a network device, or the first user equipment and the second device User devices in the same collaboration group.
  • the data transmission method provided by the possible implementation manner, the first user equipment used to assist the second user equipment to communicate with the network equipment, or the first user equipment in the same cooperation group as the second equipment
  • the CBG required by the second user equipment may be retransmitted to the second user equipment according to the CBG indicated by the second user equipment and the correct CBG received by the second user equipment, and the weight between the first user equipment and the second user equipment is increased. Passing the efficiency of CBG, thereby improving the efficiency of user equipment collaboration.
  • the first control information is further used to indicate a time-frequency resource used by the first user equipment to send the at least one second CBG;
  • the first user equipment maps the at least one third CBG to the second user equipment on the time-frequency resource.
  • each first user equipment may be on the same time-frequency resource.
  • the second user equipment sends the same CBG, which improves the probability that the second user equipment correctly receives the CBG, thereby improving the efficiency of retransmitting the CBG between the second user equipment and the multiple first user equipments, thereby improving resource utilization.
  • the first control information is further used to indicate a transmission parameter used by the first user equipment to send the at least one second CBG;
  • the first user equipment sends the at least one third CBG to the second user equipment by using the transmission parameter.
  • the first user equipment when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, the first user equipment may use the transmission parameter indicated by the second user equipment. Communicating with the second user device ensures normal communication between the first user device and the second user device.
  • the transmission parameter includes one or more of the following: a transmission mode, a number of receiving antenna ports, and a modulation and coding mode.
  • the first user equipment when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, the first user equipment may use the transmission parameter indicated by the second user equipment. Communicating with the second user device ensures normal communication between the first user device and the second user device.
  • the method further includes:
  • the first user equipment sends the second control information to the network device, where the second control information is used to indicate that the first user equipment receives the failed first CBG, and/or the second control information is used by The first user equipment is instructed to receive the correct first CBG.
  • each first user equipment when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, each first user equipment sends the second user equipment to the second network device.
  • each first user equipment may send second control information to the network device to indicate, by using the second control information, that the first CBG that failed is received, and/or the first CBG that is correctly received, thereby making the network
  • the device may determine, according to the second control information of all the first user equipments, the first CBG that is not correctly received by all the first user equipments, so that the network equipment may retransmit the first CBGs to the second user equipment. In this way, it is possible to effectively avoid the situation that the first user equipment cannot be assisted by the first user equipment because one or more first CBGs are not correctly received, and the reliability of the user equipment cooperation can be improved.
  • the second control information includes a bitmap, where one bit in the bitmap corresponds to a first CBG, and when the bit is the first value, the bit is indicated.
  • the corresponding first CBG is correctly received by the first user equipment, and when the bit is the second value, the first CBG corresponding to the bit is indicated to be failed by the first user equipment.
  • the first user equipment may indicate that the first CBG that fails to be received by the bitmap, and/or the first CBG that is correctly received, reduces the signaling overhead of the second control information. .
  • the method before the first user equipment receives the transport block sent by the network device to the second user equipment, the method further includes:
  • the method further includes:
  • the first CBG receives the correct first CBG from the network device for the first user equipment;
  • the first user equipment sends the at least one correctly received first CBG mapping on the time-frequency resource to the second user equipment.
  • the first user equipment when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, the first user equipment may send the second user to the same time-frequency resource.
  • the device sends the same CBG, which improves the probability that the second user equipment correctly receives the CBG, thereby improving the efficiency of retransmitting the CBG between the second user equipment and the first user equipment, thereby improving resource utilization.
  • the third control information is further used to indicate a transmission parameter used by the first user equipment when transmitting the transport block;
  • the first user equipment sends the at least one correctly received first CBG to the second user equipment on the time-frequency resource, including:
  • the first user equipment uses the transmission parameter to map the at least one correctly received first CBG to the second user equipment on the time-frequency resource.
  • the first user equipment when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, the first user equipment may use the transmission parameter indicated by the second user equipment. Communicating with the second user device ensures normal communication between the first user device and the second user device.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the network device may refer to the user equipment cooperation mode adopted by the first user equipment and the second user equipment by using the third control information,
  • the application scenario of user equipment cooperation is expanded, and the flexibility of user equipment cooperation is improved.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the second user equipment sends first control information to the at least one first user equipment, where the first control information is used to indicate that each of the first user equipments sends at least one second CBG to the second user equipment;
  • the second CBG is a first CBG that the second user equipment receives a failure from the network device;
  • the first user equipment is a user equipment used to assist communication between the second user equipment and a network device, or the first user equipment and the second device User devices in the same collaboration group.
  • the first control information is further used to indicate a time-frequency resource used by the first user equipment to send the at least one second CBG;
  • the at least one third CBG sent by the at least one first user equipment on the time-frequency resource and according to the at least one third CBG sent by each first user equipment, in the time-frequency
  • the time domain location of the resource determines a second CBG corresponding to the at least one third CBG sent by each first user equipment.
  • the first control information is further used to indicate a transmission parameter used by the first user equipment to send the at least one second CBG;
  • the second user equipment receives the third CBG sent by the at least one first user equipment by using the transmission parameter.
  • the transmission parameter includes one or more of the following: a transmission mode, a number of receiving antenna ports, and a modulation and coding mode.
  • the method further includes:
  • the method before the second user equipment receives the transport block sent by the network device, the method further includes:
  • the method further includes:
  • the CBG determines, at a time domain location of the time-frequency resource, a location of at least one received first CBG received by each first user equipment in the transport block.
  • the third control information is further used to indicate a transmission parameter used by the first user equipment when transmitting the transport block;
  • Receiving, by the second user equipment, the at least one first correct CBG sent by the at least one first user equipment on the time-frequency resource including:
  • the second user equipment uses the transmission parameter to receive, on the time-frequency resource, at least one first correct CBG received by the at least one first user equipment.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the network device multicasts the transport block to the at least one first user equipment and the second user equipment, the transport block including at least one first coded block group CBG;
  • Second control information that is sent by each of the first user equipments, where the second control information is used to indicate that the first user equipment receives a failed first CBG from the network device, and/or The second control information is used to indicate that the first user equipment receives the correct first CBG;
  • the network device determines, according to the second control information that is sent by each of the first user equipments, the at least one fourth CBG, where the at least one fourth CBG is all the first user equipments in the at least one first user equipment. Receiving a failed first CBG from the network device;
  • the network device resends the at least one fourth CBG to the second user equipment.
  • the first user equipment is a user equipment used to assist communication between the second user equipment and a network device, or the first user equipment and the second device User devices in the same collaboration group.
  • the second control information includes a bitmap, where one bit in the bitmap corresponds to a first CBG, and when the bit is the first value, the bit is indicated.
  • the corresponding first CBG is correctly received by the first user equipment, and when the bit is the second value, the first CBG corresponding to the bit is indicated to be failed by the first user equipment.
  • the method before the network device multicasts the transport block to the at least one first user equipment and the second user equipment, the method further includes:
  • the network device sends third control information to the at least one first user equipment and the second user equipment, where the third control information is used to indicate that the first user equipment sends the second user equipment to the second user equipment
  • the time-frequency resource used when transporting the block
  • the third control information is further used to indicate a transmission parameter used by the first user equipment when transmitting the transport block.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the embodiment of the present application provides a user equipment, where the user equipment is a first user equipment, and the first user equipment includes:
  • a receiving module configured to receive a transport block sent by the network device to the second user equipment, and first control information sent by the second user equipment, where the transport block includes at least one first coding block group CBG; a control information is used to indicate that the first user equipment sends at least one second CBG to the second user equipment, and the second CBG is that the second user equipment receives a failed first CBG from the network device;
  • a sending module configured to send, to the second user equipment, at least one third CBG, where the third CBG is that the first user equipment receives a correct first CBG from the network device, and the third CBG is The second user equipment receives the failed first CBG from the network device.
  • the first user equipment is a user equipment used to assist communication between the second user equipment and a network device, or the first user equipment and the second device User devices in the same collaboration group.
  • the first control information is further used to indicate a time-frequency resource used by the first user equipment to send the at least one second CBG;
  • the first user equipment further includes:
  • a processing module configured to determine a time domain location of the at least one third CBG on the time-frequency resource according to an arrangement position of the at least one third CBG in the at least one second CBG;
  • the sending module is configured to send the at least one third CBG mapping on the time-frequency resource to the second user equipment.
  • the first control information is further used to indicate a transmission parameter used by the first user equipment to send the at least one second CBG;
  • the sending module is specifically configured to send the at least one third CBG to the second user equipment by using the transmission parameter.
  • the transmission parameter includes one or more of the following: a transmission mode, a number of receiving antenna ports, and a modulation and coding mode.
  • the sending module is further configured to: after the receiving module receives the transport block sent by the network device to the second user equipment, send the second control information to the network device, where The second control information is used to indicate that the first user equipment receives the failed first CBG, and/or the second control information is used to indicate that the first user equipment receives the correct first CBG.
  • the second control information includes a bitmap, where one bit in the bitmap corresponds to a first CBG, and when the bit is the first value, the bit is indicated.
  • the corresponding first CBG is correctly received by the first user equipment, and when the bit is the second value, the first CBG corresponding to the bit is indicated to be failed by the first user equipment.
  • the receiving module is further configured to: before receiving, by the network device, the third control information sent by the network device, the third control information a time-frequency resource used by the first user equipment to send the transport block to the second user equipment;
  • the first user equipment further includes:
  • a processing module configured to determine, according to at least one received position of the correct first CBG in the transport block, a time domain location of the at least one received correct first CBG on the time-frequency resource;
  • the first CBG receives the correct first CBG from the network device for the first user equipment;
  • the sending module is configured to send the at least one correctly received first CBG mapping on the time-frequency resource to the second user equipment.
  • the third control information is further used to indicate a transmission parameter used by the first user equipment when transmitting the transport block;
  • the sending module is configured to use the transmission parameter to map the at least one correctly received first CBG to the second user equipment on the time-frequency resource.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the embodiment of the present application provides a user equipment, where the user equipment is a second user equipment, and the second user equipment includes:
  • a receiving module configured to receive a transport block sent by the network device, where the transport block includes at least one first coded block group CBG;
  • a sending module configured to send, to the at least one first user equipment, first control information, where the first control information is used to indicate that each of the first user equipments sends at least one second CBG to the second user equipment;
  • the second CBG is that the second user equipment receives the failed first CBG from the network device;
  • the receiving module is further configured to receive the at least one third CBG that is sent by the at least one first user equipment, where the third CBG is that the first user equipment receives a correct first CBG from the network device, and The third CBG is a first CBG that the second user equipment receives a failure from the network device.
  • the first user equipment is a user equipment used to assist communication between the second user equipment and a network device, or the first user equipment and the second device User devices in the same collaboration group.
  • the first control information is further used to indicate a time-frequency resource used by the first user equipment to send the at least one second CBG;
  • the receiving module is configured to receive, by using the time-frequency resource, the at least one third CBG sent by the at least one first user equipment;
  • the second user equipment further includes:
  • a processing module configured to determine, according to the time domain location of the time-frequency resource, the second CBG corresponding to the at least one third CBG sent by each first user equipment, according to the at least one third CBG sent by each first user equipment.
  • the first control information is further used to indicate a transmission parameter used by the first user equipment to send the at least one second CBG;
  • the receiving module is specifically configured to receive, by using the transmission parameter, a third CBG sent by the at least one first user equipment.
  • the transmission parameter includes one or more of the following: a transmission mode, a number of receiving antenna ports, and a modulation and coding mode.
  • the receiving module is further configured to: after receiving the at least one third CBG sent by the at least one first user equipment, receive at least one fourth CBG sent by the network device, where The at least one fourth CBG is that all first user equipments in the at least one first user equipment receive a failed first CBG from the network device.
  • the receiving module is further configured to: before receiving the transport block sent by the network device, receive the third control information sent by the network device, and after receiving the transport block sent by the network device, Receiving, by the at least one first user equipment, the at least one first correct CBG that is sent by the at least one first user equipment, where the third control information is used to indicate that the at least one first user equipment is to the first a time-frequency resource used by the second user equipment to transmit the transport block;
  • the second user equipment further includes:
  • a processing module configured to determine, according to at least one received by the first user equipment, that the correct first first CBG is in a time domain position of the time-frequency resource, to determine that at least one first correct CBG sent by each first user equipment is received The location in the transport block.
  • the third control information is further used to indicate a transmission parameter used by the first user equipment when transmitting the transport block;
  • the receiving module is configured to receive, by using the transmission parameter, at least one of the first CBGs received by the at least one first user equipment on the time-frequency resource.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the embodiment of the present application provides a network device, where the network device includes:
  • a sending module configured to multicast a transport block to at least one first user equipment and a second user equipment, where the transport block includes at least one first coding block group CBG;
  • a receiving module configured to receive second control information sent by each of the first user equipment, where the second control information is used to indicate that the first user equipment receives a failed first CBG from the network device, and Or the second control information is used to indicate that the first user equipment receives the correct first CBG;
  • a processing module configured to determine, according to the second control information sent by each of the first user equipment, at least one fourth CBG, where the at least one fourth CBG is all first users in the at least one first user equipment Receiving, by the device, the failed first CBG from the network device;
  • the sending module is further configured to resend the at least one fourth CBG to the second user equipment.
  • the first user equipment is a user equipment used to assist communication between the second user equipment and a network device, or the first user equipment and the second device User devices in the same collaboration group.
  • the second control information includes a bitmap, where one bit in the bitmap corresponds to a first CBG, and when the bit is the first value, the bit is indicated.
  • the corresponding first CBG is correctly received by the first user equipment, and when the bit is the second value, the first CBG corresponding to the bit is indicated to be failed by the first user equipment.
  • the sending module is further configured to: before the multicasting the transport block to the at least one first user equipment and the second user equipment, to the at least one first user equipment and the second The user equipment sends the third control information, where the third control information is used to indicate the time-frequency resource used by the first user equipment to send the transport block to the second user equipment.
  • the third control information is further used to indicate a transmission parameter used by the first user equipment when transmitting the transport block.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the embodiment of the present application provides a user equipment, where the user equipment is a first user equipment, where the first user equipment includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the a receiver coupled to the processor, the processor controlling a transmitting action of the transmitter, the processor controlling a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the first user equipment to perform the first aspect and the possible implementations of the first aspect Data transmission method.
  • the embodiment of the present application provides a user equipment, where the user equipment is a second user equipment, where the second user equipment includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the a receiver coupled to the processor, the processor controlling a transmitting action of the transmitter, the processor controlling a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the second user equipment to perform the second aspect and the possible implementations of the second aspect Data transmission method.
  • the embodiment of the present application provides a network device, where the network device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are coupled to the processor, and the processing Controlling a sending action of the transmitter, the processor controlling a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the network device to perform data transmission as provided by the third aspect and the possible embodiments of the third aspect method.
  • a tenth aspect of the embodiments of the present application provides a user equipment, comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • An eleventh aspect of the present application provides a user equipment comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a twelfth aspect of the embodiments of the present application provides a network device comprising at least one processing element (or chip) for performing the method of the above third aspect.
  • a thirteenth aspect of the embodiments of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a fourteenth aspect of the embodiments of the present application provides a program for performing the method of the above second aspect when executed by a processor.
  • a fifteenth aspect of the embodiments of the present application provides a program for performing the method of the above third aspect when executed by a processor.
  • a sixteenth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the thirteenth aspect.
  • a seventeenth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the fourteenth aspect.
  • the eighteenth aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the fifteenth aspect.
  • a nineteenth aspect of the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • a twentieth aspect of the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method of the second aspect described above.
  • a twenty-first aspect of the present application provides a computer readable storage medium having instructions stored in a computer readable storage medium to cause the computer to perform the method of the third aspect described above.
  • the data transmission method, the user equipment, and the network device provided by the embodiment of the present application, when the first user equipment uses the user equipment cooperation mechanism to assist the second user equipment to communicate with the network device, the first user equipment sends the network device to the first After the TB of the second user equipment, the first user equipment may retransmit the CBG required by the second user equipment according to the CBG indicated by the second user equipment and the correct CBG received by the second user equipment, and improve the The efficiency of retransmitting CBG between a user equipment and the second user equipment improves resource utilization.
  • FIG. 1 is a frame diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a CBG-based retransmission provided by the present application.
  • FIG. 3 is a schematic diagram of a user equipment cooperation process according to an embodiment of the present disclosure
  • FIG. 4 is a signaling flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of user equipment cooperation according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another user equipment cooperation according to an embodiment of the present application.
  • FIG. 7 is a signaling flowchart of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of still another user equipment according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of still another user equipment according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 20 is a structural block diagram of a user equipment provided by a mobile phone according to an embodiment of the present disclosure.
  • first, second, third, fourth, etc. may be used to describe CBG in embodiments of the invention, these CBGs should not be limited to these terms. These terms are only used to distinguish CBGs from each other.
  • first CBG may also be referred to as a second CBG without departing from the scope of the embodiments of the present application.
  • second CBG may also be referred to as a first CBG.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes: a network device 01 and a user equipment 02.
  • Network device 01 and user device 02 can communicate using one or more air interface technologies.
  • the network device may be the foregoing base station, or various wireless access points, or may refer to a device in the access network that communicates with the user equipment over one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, and a handheld device with wireless connection function. Or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), and the user agent (User Agent) are not limited herein.
  • FIG. 1 shows a schematic diagram of a 5G communication system as an example.
  • the following application documents are all described and described by taking the 5G communication system as an example.
  • a TB is the smallest transmission unit of the physical layer.
  • a TB can be composed of one or more Code Blocks (CBs).
  • CBs Code Blocks
  • LTE Long Term Evolution
  • HARQ Hybrid Automatic Repeat ReQuest
  • the user equipment can A TB-based HARQ feedback mechanism is used to send a feedback message to the network device. That is, the user equipment can feed back the feedback message for the HARQ to the network device by using 1 bit according to the decoding result of the TB.
  • the feedback message may be, for example, an Acknowledgment (ACK) message or a Negative ACK (NACK) message.
  • ACK Acknowledgment
  • NACK Negative ACK
  • the ACK message mentioned here is used to indicate that the user equipment correctly received the TB (ie, successfully decoding the TB).
  • the NACK message is used to indicate that the user equipment failed to receive the TB (ie, the TB decoding error).
  • the network device receives the NACK message, it will resend the TB to the user equipment.
  • the 5G communication system can use more bandwidth, so one TB that the network device sends to the user equipment can include more data. That is to say, one TB may include dozens of CBs.
  • the 5G communication system can support different services, such as enhanced mobile broadband (eMBB) services, massive machine type communication (mMTC) services, and ultra-reliable low-latency communication (Ultra-reliable and low). Latency communications, URLLC) services, Multimedia Broadcast Multicast Service (MBMS) services, and positioning services. Different services have different delay requirements. For example, the URLLC service has a higher latency requirement than the eMBB service has a delay.
  • the 5G communication system allows the service of the service with lower latency and the lower latency requirement to be transmitted.
  • the network device may send URLLC service data to another user equipment on a time-frequency resource that sends eMBB service data to a user equipment.
  • the TB carrying the URLLC service data will suddenly cause strong interference to some CBs in the TB carrying the eMBB service data, and the CBs in the TB carrying the eMBB service data cannot be correctly received by the user equipment receiving the TB. The chance of receiving increases.
  • the 5G communication system proposes the concept of CBG. That is, one TB may include at least one CBG, and one CBG may include at least one CB, and the user equipment may feed back a feedback message (for example, a NACK message) for the HARQ to the network device in units of CBG.
  • the feedback message is used to indicate which CBG reception failures of the TB by the user equipment.
  • the network device may resend the CBG indicated by the feedback message to the user equipment, without retransmitting the entire TB. In this way, the efficiency of retransmission can be improved.
  • FIG. 2 is a schematic diagram of a CBG-based retransmission provided by the present application.
  • the above-mentioned network device sends (initially transmits) a TB including five CBGs to the user equipment in one time slot, and assumes that the user equipment fails to decode CBG1 and CBG4. Therefore, after receiving the feedback message sent by the user equipment for indicating the failure of the CBG1 and CBG4 reception, the network device may retransmit the CBG1 and the CBG4 only to the user equipment without retransmitting the entire TB. In this way, the efficiency of retransmission can be improved.
  • the 5G communication system introduces a user equipment cooperation mechanism.
  • one or more user equipments ie, CUEs
  • CUEs user equipments
  • TUE poor quality of service equipment
  • FIG. 3 is a schematic diagram of a user equipment cooperation process according to an embodiment of the present disclosure.
  • the CUE1 and CUE2 in the cell where the TUE is currently located can assist the TUE to communicate, and the process of cooperation of the user equipment is described. That is, there is a user equipment cooperation relationship between CUE1 and CUE2 and TUE.
  • the network device sends downlink data to the TUE in units of TB.
  • the TB referred to herein may include at least one CBG, and one CBG may include at least one CB.
  • Step 1 When the user equipment cooperation mechanism is adopted, the network device may simultaneously send the TBs sent to the TUE to the CUE1, the CUE2, and the TUE in a multicast manner. After receiving the TB, CUE1, CUE2, and TUE can decode the TB, that is, decode all CBGs included in the TB.
  • the stage in which the network device sends the TB to the CUE1, the CUE2, and the TUE may be referred to as a User Cooperation Downlink Phase (UC DL Phase).
  • UC DL Phase User Cooperation Downlink Phase
  • the foregoing network device may further configure CUE1, CUE2, and TUE into a collaboration group, and assign a cooperation group identifier (CGID) to the collaboration group. Therefore, in the scenario, when the TB is sent, the network device may carry the CGID, so that the CUE1, the CUE2, and the TUE can learn that the TB multicast by the network device is the TB that is sent to the TUE. Alternatively, the network device may indicate, by using control signaling, the identifier of the TUE as the identifier of the collaboration group to the members of the collaboration group (ie, CUE1, CUE2, TUE). In this scenario, when the TB is sent, the network device may carry the identifier of the TUE, so that the CUE1, the CUE2, and the TUE can learn that the TB multicast by the network device is the TB that is sent to the TUE.
  • CGID cooperation group identifier
  • Step 2 CUE1 can send CUE1 to decode the correct CBG to the TUE through the edge link, and CUE2 can send the CUE2 to decode the correct CBG to the TUE through the side link. After receiving the CBGs sent by CUE1 and CUE2, the TUE can decode these CBGs.
  • Step 2 is that CUE1 and CUE2 retransmit CBG to the TUE for the first time.
  • Step 3 If the TUE does not correctly decode one or more CBGs received in step 2, the TUE may send a NACK message to CUE1 and CUE2 to instruct CUE1 and CUE2 to resend the CBG sent in step 2.
  • Step 4 After receiving the NACK message sent by the TUE, CUE1 and CUE2 may resend the CBG sent by step 2 to the TUE through the side link. After receiving the CBGs sent by CUE1 and CUE2, the TUE can decode these CBGs.
  • Step 4 is that CUE1 and CUE2 retransmit CBG to the TUE for the second time.
  • CUE1 and CUE2 may use the same Modulation and Coding Scheme (MCS) to retransmit the CBG to the TUE in steps 2 and 4, or retransmit the CBG to the TUE by using different MCSs.
  • MCS Modulation and Coding Scheme
  • Step 5 If the TUE decodes the CBG sent by the CUE1 and the CUE2, and decodes the TB sent by the network device to successfully obtain the data of the TB, the TUE may send an ACK message to the network device to indicate the TUE to the network device. Successfully received TB.
  • the stage in which the CUE1 and the CUE2 retransmit the CBG to the TUE may be referred to as a User Cooperation Sidelink Phase (UC SL Phase). That is to say, in the user equipment cooperation side link phase, each CUE can retransmit the correct CBG to the TUE, so as to assist the TUE to decode the TB by retransmitting the CBG, thereby improving the probability that the TUE correctly decodes the TB, thereby improving TUE network quality. It should be noted that, in the link phase of the user equipment cooperation, the CUE and the TUE may communicate on the licensed spectrum or on the unlicensed spectrum.
  • FIG. 4 is a signaling flowchart of a data transmission method according to an embodiment of the present application.
  • the embodiment relates to a process in which the first user equipment retransmits the CBG to the second user equipment according to the first control information sent by the second user equipment.
  • the first user equipment may be a CUE
  • the second user equipment may be a TUE.
  • one TUE may correspond to one or more CUEs that assist the TUE in communicating with the network device.
  • the method in the embodiment of the present application is described by taking the TUE corresponding to two CUEs (ie, CUE1 and CUE2) as an example. As shown in FIG. 4, the method may include:
  • the network device multicasts the TB to the CUE1, the CUE2, and the TUE.
  • the network device may send the TB sent to the TUE to the CUE1, the CUE2, and the TUE in a multicast manner, so that the CUE1, the CUE2, and the TUE can be received.
  • the TB may include at least one first CBG, and each of the first CBGs includes at least one CB. This phase is the user assistance down phase described above.
  • FIG. 5 is a schematic diagram of user equipment cooperation according to an embodiment of the present application.
  • the network device sends a TB including CBG1, CBG2, CBG3, CBG4, and CBG5 to the TUE.
  • the network device can multicast the TB to CUE1, CUE2, and TUE.
  • CBG1, CBG2, CBG3, CBG4, and CBG5 are all the first CBGs.
  • the foregoing network device may carry the identifier of the TUE when the multicast TB is used, so that the CUE1, the CUE2, and the TUE can learn that the TB multicast by the network device is the TB that is sent to the TUE by using the identifier of the TUE.
  • the network device may further carry the CGID of the collaboration group when the multicast TB is used, so that CUE1, CUE2, and TUE Through the CGID, it can be known that the TB multicast by the network device is a TB transmitted to the TUE.
  • the TUE sends the first control information to the CUE1 and the CUE2.
  • the TUE may decode the TB. Then, the TUE can learn which first CBG decoding failures of the TB are based on the decoding result of the TB.
  • the first CBG that fails to be decoded is the first CBG that the TUE receives from the network device and fails.
  • the first CBG that fails to decode the TUE is referred to as a second CBG.
  • the TUE may send the first control information to the CUE1 and the CUE2 simultaneously based on the at least one second CBG (ie, the first CBG that the TUE receives the failure) to instruct the CUE1 and the CUE2 to send the at least one second to the TUE by using the first control information.
  • CBG the at least one second CBG
  • the TUE fails to decode the CBG2 and CBG4 of the TB after receiving the TB.
  • CBG2 and CBG4 are the above-mentioned second CBG.
  • the first control information sent by the TUE to the CUE1 and the CUE2 may be used to instruct CUE1 and CUE2 to send CBG2 and CBG4 to the TUE. That is, CUE1 and CUE2 are instructed to retransmit CBG2 and CBG4 to the TUE.
  • the foregoing TUE may be sent to the CUE1 and the CUE2 by carrying the first control information in a physical layer signaling or a medium access control (MAC) packet header.
  • MAC medium access control
  • the first control information may be referred to as edge link control information, for example. It will be understood by those skilled in the art that in the future, the first control information of the mobile communication system may follow the terminology of the side link control information, and other terms may be used. Therefore, the naming of the first control information in each communication system is not limited in the embodiment of the present application.
  • the CUE1 sends at least one third CBG to the TUE.
  • the CUE1 may decode the TB. Then, CUE1 can know which first CBG decoding of the TB is successful according to the decoding result of the TB.
  • the first CBG that is successfully decoded is that CUE1 receives the correct first CBG from the network device. Therefore, after receiving the first control information sent by the TUE, the CUE1 may determine that at least one “received by the CUE1 according to the at least one second CBG indicated by the first control information, and the correct first CBG received by the CUE1 itself.
  • the correct first CBG that failed to receive the TUE For the sake of distinction, the first CBG that is received by CUE1 but is failed to be received by the TUE is referred to as a third CBG.
  • the CUE1 When the at least one second CBG is that the CUE1 receives the correct first CBG, the CUE1 is determined according to the at least one second CBG indicated by the first control information, and the correct first CBG received by the CUE1. At least one third CBG is the at least one second CBG. When a part of the second CBG in the at least one second CBG is that the CUE1 receives the correct first CBG, the CUE1 is configured according to the at least one second CBG indicated by the first control information, and the CUE1 itself receives the correct first CBG. CBG, the determined at least one third CBG is part of the at least one second CBDG.
  • the CUE1 may retransmit the at least one third CBG to the TUE, so that the TUE may receive the at least one third CBG retransmitted by the CUE1. In this way, CUE1 can send the CBG required by the TUE to the TUE, which improves the efficiency of retransmission between the CUE and the TUE. In a specific implementation, the CUE1 may retransmit the at least one third CBG to the TUE by using the edge link.
  • CUE1 successfully decodes CBG1, CBG3, CBG4, and CBG5 of the TB after receiving the TB. That is, CBG1, CBG3, CBG4, and CBG5 are CUE1 receiving the correct first CBG from the network device.
  • the CUE1 may be configured according to at least one second CBDG (ie, CBG2 and CBG4) indicated by the first control information, and CUE1 itself receives the correct first CBG (CBG1, CBG3, CBG4, and CBG5), and determines at least one first CBG (ie, the third CBG) that is received by CUE1 but received by TUE.
  • CBDG ie, CBG2 and CBG4
  • CUE1 itself receives the correct first CBG (CBG1, CBG3, CBG4, and CBG5), and determines at least one first CBG (ie, the third CBG) that is received by CUE1 but received by TUE.
  • the above CUE1 since the above CUE1 only receives the CBG4 in CBG2 and CBG4, the above CUE1 can determine a third CBG, that is, CBG4. At this time, the third CBG determined by CUE1 is a part of the at least one second CBG.
  • the CUE2 sends at least one third CBG to the TUE.
  • the third CBG is that the CUE2 receives the correct first CBG from the network device, and the third CBG is the first CBG that the TUE receives the failure from the network device.
  • the CUE2 may decode the TB. Then, CUE2 can know which first CBG decoding of the TB is successful according to the decoding result of the TB.
  • the first CBG that is successfully decoded is that CUE2 receives the correct first CBG from the network device. Therefore, after receiving the first control information sent by the TUE, the CUE2 may determine that at least one “received correctly by the CUE1 according to the at least one second CBG indicated by the first control information and the correct first CBG received by the CUE2. , but the first CBG that failed to be received by the TUE, that is, the third CBG.
  • At least one second CBG is that the CUE2 receives the correct first CBG
  • the CUE2 is determined according to the at least one second CBG indicated by the first control information, and the correct first CBG received by the CUE2.
  • At least one third CBG is the at least one second CBG.
  • the CUE2 may retransmit the at least one third CBG to the TUE such that the TUE may receive the at least one third CBG retransmitted by the CUE2.
  • CUE2 can also send the CBG required by the TUE to the TUE, which improves the efficiency of retransmission between the CUE and the TUE.
  • the CUE1 may retransmit the at least one third CBG to the TUE by using the edge link.
  • CUE2 successfully decodes CBG1, CBG2, CBG3, and CBG4 of the TB after receiving the TB. That is, CBG1, CBG2, CBG3, and CBG4 are CUE2 that receive the correct first CBG from the network device.
  • the CUE2 may be configured according to the at least one second CBG (ie, CBG2 and CBG4) indicated by the first control information, and CUE2 itself receives the correct first CBG (CBG1, CBG2, CBG3, and CBG4), and determines that at least one first CBG (ie, the third CBG) that is received by CUE1 but is failed to be received by the TUE.
  • the above CUE2 can determine two third CBGs, namely CBG2 and CBG4, by the above manner. At this time, the two third CBGs determined by the CUE2 are all the second CBGs indicated by the TUE.
  • the phase in which the CUE1 and the CUE2 retransmit the at least one third CBG to the TUE according to the first control information sent by the TUE may be the foregoing user assistance side link phase.
  • the data transmission method provided by the embodiment of the present application after adopting the user equipment cooperation mechanism, after receiving the TB sent by the network device to the TUE, the CUE1 and the CUE2 may be correctly received according to the CBG indicated by the TUE.
  • the CBG retransmits the CBG required by the TUE to the TUE, improves the efficiency of retransmitting the CBG between the CUE1 and the CUE2 and the TUE, thereby improving resource utilization.
  • the foregoing first control information is further used to indicate time-frequency resources used when CUE1 and CUE2 send at least one second CBG. That is, the time-frequency resources used by CUE1 and CUE2 when retransmitting the at least one third CBG to the TUE through the edge link.
  • the size of the time-frequency resource is related to the number of at least one second CBG.
  • the time-frequency resource may be a time-frequency resource for transmitting two CBGs.
  • the time-frequency resource may be a time-frequency resource or the like for transmitting three CBGs.
  • the frequency domain width of the time-frequency resource is not limited in the embodiment of the present application.
  • the size of each CBG in the same TB is approximately the same.
  • the length of time each CBG occupies in the time domain can be considered the same. Therefore, after receiving the first control information, the CUE1 may determine, according to the time-frequency resource indicated by the first control information, and the length of time that a CBG occupies the time-frequency resource, determining the at least one second CBG. The time domain location of each second CBG in the time-frequency resource.
  • the CUE1 may determine, according to the determined arrangement position of the at least one third CBG in the at least one second CBG, a time domain position of the at least one third CBG on the time-frequency resource corresponding to the side link (ie, at least one The time domain symbol in which the three CBGs are located). That is, the arrangement position of the at least one third CBG in the sequence formed by the at least one second CBDG is used as the time domain position of the at least one third CBG on the time-frequency resource.
  • the CUE1 may send the at least one third CBG mapping on the time-frequency resource to the TUE according to the time domain location of the at least one third CBG on the time-frequency resource.
  • the TUE can accurately determine at least one CUE1 sent according to the time domain position of the time-frequency resource according to the at least one third CBG sent by the CUE1.
  • a second CBG corresponding to a third CBG.
  • the CUE2 may also send the at least one third CBG determined by the CUE2 to the TUE by using the manner indicated by the CUE1. Since CUE1 and CUE2 both align the arrangement position of the at least one third CBG in the at least one second CBG as the time domain position of the at least one third CBG on the time-frequency resource, so that CUE1 and CUE2 can be on the same time-frequency resource, Sending the same CBG to the TUE improves the probability that the TUE will correctly receive the CBG.
  • FIG. 6 is a schematic diagram of another user equipment cooperation according to an embodiment of the present application.
  • the first control information that is sent by the TUE to the CUE1 and the CUE2 is used to indicate that the CUE1 and the CUE2 send the CBG2 and the CBG4 to the TUE, and the TUE may indicate that the CUE1 and the CUE2 send the CBG2 by using the first control information.
  • the time-frequency resource may be a time-frequency resource for transmitting 2 CBGs.
  • the CUE1 determines a time domain location of the CBG2 and the CBG4 in the at least one second CBG (ie, CBG2 and CBG4) on the time-frequency resource based on the time-frequency resource indicated by the first control information. At this time, CBG2 is located in the first time domain position of the time-frequency resource, and CBG4 is located in the second time domain position of the time-frequency resource. Then, CUE1 can determine a third CBG (ie, CBG4) according to at least one second CBDG (ie, CBG2 and CBG4), and CUE1 itself receives the correct first CBG (CBG1, CBG3, CBG4, and CBG5).
  • CBG4 is located at the second position in at least one second CBG (ie, the sequence formed by CBG2 and CBG4).
  • the CUE1 may determine to map the CBG4 to the second time domain location of the time-frequency resource indicated by the first control information (ie, the time domain location of the determined CBG4).
  • the TUE can accurately know that the CBG is the CBG4 in the at least one second CBG according to the time domain location of the CBG4. It should be noted that since CUE1 does not receive the pair CBG2, CUE1 may not send any information in the first time domain position of the time-frequency resource.
  • the CUE2 determines the time domain location of the CBG2 and the CBG4 in the at least one second CBG (ie, CBG2 and CBG4) on the time-frequency resource based on the time-frequency resource indicated by the first control information. Then, CUE2 can determine a third CBG (ie, CBG2 and CBG4) according to at least one second CBG (ie, CBG2 and CBG4), and CUE2 itself receives the correct first CBG (CBG1, CBG2, CBG3, and CBG4).
  • CBG2 is located at a first position in at least one second CBG (ie, a sequence formed by CBG2 and CBG4)
  • CBG4 is located at a second position in at least one second CBG (ie, a sequence formed by CBG2 and CBG4)
  • the CUE2 may determine to map the CBG2 to the first time domain position of the time-frequency resource indicated by the first control information, and map the CBG4 to the second time of the time-frequency resource indicated by the first control information. Time domain location.
  • the CUE2 maps the CBG2 to the TUE in the first time domain position of the time-frequency resource indicated by the first control information, and maps the CBG4 to the TUE in the second time domain position of the time-frequency resource. According to the time domain location where CBG2 and CBG4 are located, it is possible to accurately know which is CBG2 and which is CBG4.
  • the CUE1 and the CUE2 can send the CBG4 to the TUE in the second time domain position of the time-frequency resource, thereby improving the probability that the TUE correctly receives the CBG4.
  • the CUE1 and the CUE2 can send the same CBG to the TUE on the same time-frequency resource, thereby improving the probability that the TUE correctly receives the CBG, thereby improving the TUE.
  • the foregoing first control information is further used to indicate a transmission parameter used when CUE1 and CUE2 send at least one second CBG.
  • the transmission parameters mentioned herein may include, for example, one or more of the following: a transmission mode, a number of receiving antenna ports, a modulation and coding mode, and the like.
  • the transmission mode mentioned here may be, for example, Multiple-Input Multiple-Output (MIMO), closed-loop MIMO, Multi-User Multiple-Input Multiple-Output (MU-MIMO). ), beamforming, etc.
  • the modulation method mentioned here can be any of the following: Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude (Quadrature Amplitude) Modulation, QAM), 64QAM, and 256QAM.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude (Quadrature Amplitude) Modulation
  • QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM
  • 256QAM 256QAM.
  • the CUE1 and the CUE2 may send the at least one third CBG to the TUE by using the transmission parameter indicated by the first control information.
  • the TUE can receive at least one third CBG sent by CUE1 and CUE2 using the transmission parameter. In this way, CUE1 and CUE2 can be communicated with the TUE using the same transmission parameters, ensuring that normal communication between CUE1 and CUE2 and TUE is not interfered.
  • the CUE1 and the CUE2 can communicate with the TUE according to the transmission parameter indicated by the TUE, and ensure normal communication between the CUE1 and the CUE2 and the TUE.
  • FIG. 7 is a signaling flowchart of another data transmission method according to an embodiment of the present application.
  • the embodiment relates to a process in which the network device retransmits the failed CBGs to both the CUE1 and the CUE2 according to the second control information sent by the CUE1 and the CUE2 to the TUE.
  • the method may further include:
  • the CUE1 sends the second control information to the network device.
  • the CUE1 may decode the TB. Then, CUE1 can know which first CBGs of the TB are successfully decoded (ie, correctly received) according to the decoding result of the TB, and which first CBG decoding of the TB fails (ie, the reception fails). Therefore, the CUE1 may send, according to the decoding result of the TB, a first CBG for indicating CUE1 reception failure to the network device, and/or second control information for instructing the CUE1 to receive the correct first CBG, so that the network device can The reception result of CUE1 is known by the second control information.
  • the foregoing second control information may be, for example, a feedback message for the HARQ, and is carried in the physical layer signaling.
  • the embodiment does not limit the manner that the second control information indicates that the CUE1 fails to receive the first CBG, and/or indicates that the CUE1 receives the correct first CBG.
  • the second control information may include a bitmap to indicate that the CUE1 receives the failed first CBG through the bitmap, and/or instructs the CUE1 to receive the correct first CBG.
  • each bit in the bitmap corresponds to a first CBG.
  • the first CBG corresponding to the bit is correctly received by the first user equipment, and when the certain bit is the second value, the corresponding bit of the bit is indicated.
  • a CBG is failed to be received by the first user equipment.
  • the second value may be 0, or when the first value is 0, the second value may be 1.
  • a table may be preset between the CUE1 and the network device.
  • the table may include multiple CB1s that fail to receive CUE1 reception, and/or CUE1 receives a combination of the correct first CBGs.
  • each combination can correspond to a sequence.
  • the combination of sequence numbers 1 in the table may be that the first first CBG in the TB is to receive the correct first CBG, and the other first CBG is the first CBG that is received incorrectly.
  • the combination of the sequence number 2 in the table may be that the second first CBG in the TB is the first CBG that receives the correct one, and the other first CBG is the first CBG that is received incorrectly. And so on, until all the circumstances are combined.
  • the CUE1 may indicate that the CUE1 receives the failed first CBG by carrying the sequence number in the table in the second control information, and/or instruct the CUE1 to receive the correct first CBG.
  • the serial number of the above table may be expressed in bits.
  • the CUE1 may occupy 5 bit positions in the second control information to indicate any one of the 32 serial numbers. For example, "00001" represents the sequence number 1 in the table, and "00010" represents the sequence number 2 and the like.
  • FIG. 8 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application. Referring to Figures 8 and 9, the reception failure is indicated by a bit of 0, and a bit of 1 indicates that reception is correct.
  • the TB that includes CBG1, CBG2, CBG3, CBG4, and CBG5 is sent to the TUE as an example. In this case, CBG1, CBG2, CBG3, CBG4, and CBG5 are all the first CBGs.
  • CUE1 successfully decodes CBG1, CBG3, CBG4, and CBG5 of the TB after receiving the TB. That is, CBG1, CBG3, CBG4, and CBG5 are CUE1 receiving the correct first CBG from the network device, and CBG2 is the first CBG that CUE1 receives from the network device and fails.
  • the CUE1 may send the second control information carrying the bitmap “10111” to the network device, so that the CBG1, CBG3, CBG4, and CBG5 receive correctly through the bitmap, and the CBG2 reception fails.
  • the first control information sent by the foregoing TUE to the CUE may also include a bitmap to indicate, by using a bitmap, that the TUE receives the failed first CBG (ie, the second CBG), and/or, The TUE is instructed to receive the correct first CBG, thereby implicitly indicating that the TUE requires at least one second CBG retransmitted by CUE1 and CUE2.
  • the reception failure is indicated by a bit of 0, and a bit of 1 indicates that reception is correct. It is assumed that the TUE successfully decodes the CBG1, CBG3, and CBG5 of the TB after receiving the TB. That is, CBG1, CBG3, and CBG5 are TUEs that receive the correct first CBG from the network device, and CBG2 and CBG4 receive the failed first CBG from the network device for the TUE. In this scenario, the TUE may send the first control information carrying the bitmap “10101” to the CUE1 and the CUE2 to implicitly instruct the CUE1 and the CUE2 to retransmit the CBG2 and the CBG4 to the TUE through the bitmap.
  • the CUE2 sends the second control information to the network device.
  • the CUE2 may decode the TB. Then, CUE2 can know which first CBGs of the TB are successfully decoded (ie, correctly received) according to the decoding result of the TB, and which first CBG decoding of the TB fails (ie, the reception fails). Therefore, the CUE2 may send, according to the decoding result of the TB, a first CBG for indicating that the CUE2 receives the failure, and/or second control information for instructing the CUE2 to receive the correct first CBG, so that the network device can The reception result of CUE2 is obtained by the second control information.
  • the reception failure is indicated by the bit being 0, and the bit being 1 indicates that the reception is correct.
  • CUE2 successfully decodes CBG1, CBG3, CBG4, and CBG5 of the TB after receiving the TB. That is, CBG1, CBG3, CBG4, and CBG5 are CUE2 receiving the correct first CBG from the network device, and CBG2 is the first CBG that CUE2 receives from the network device and fails.
  • the CUE2 may send the second control information carrying the bitmap “10111” to the network device, so that the CBG1, CBG3, CBG4, and CBG5 receive correctly through the bitmap, and the CBG2 reception fails.
  • the network device determines, according to the second control information sent by the CUE1 and the second control information sent by the CUE2, the at least one fourth CBG.
  • the network device can obtain the decoding result of the CUE1 and the CUE2, so that the network device can determine whether there is any CUE (ie, CUE1 and CUE2). ) receiving the failed first CBG.
  • the first CBG that fails reception of all CUEs ie, CUE1 and CUE2 is referred to as a fourth CBG.
  • the above CBG2 is a CBG in which CUE1 and CUE2 receive failure, and therefore, CBG2 is the above-mentioned fourth CBG.
  • the network device resends at least one fourth CBG to the TUE.
  • the TUE may receive the at least one fourth CBG correctly.
  • the network device may directly resend the at least one fourth CBG to the TUE before receiving the feedback message for the HARQ sent by the TUE, so that the TUE may receive the at least one of the network device retransmissions.
  • the four CBGs improve the probability that the TUE correctly receives the at least one fourth CBG, thereby improving the probability that the TUE correctly decodes the TB, thereby improving the network quality of the TUE. In this way, it is possible to effectively avoid the situation that CUE1 and CUE2 cannot assist the TUE because one or more first CBGs are not correctly received by CUE1 and CUE2, and the reliability of user equipment cooperation can be improved.
  • the TUE may continue to adopt the method shown in FIG. 4 after receiving the TB sent by the network device, The CUE1 and/or CUE2 are instructed to retransmit these first CBGs.
  • FIG. 10 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • the TUE can be directed to CUE1 and CUE2 transmits first control information to instruct CUE1 and CUE2 to send CBG2 and CBG4 to the TUE.
  • the CUE1 and the CUE2 may send the second control information to the network device, so that the network device learns, by using the second control information, that the CBG2 is not correctly received by all the CUEs.
  • CUE1 and CUE2 can retransmit CBG4 to the TUE through the edge link in the manner shown in FIG.
  • the network device retransmits the CBG2 to the TUE through the downlink in the manner of the existing retransmission CBG, so that the TUE can acquire the CBG2 from the network device and the CBG4 from the CUE1 and the CUE2.
  • the CUE1 and the CUE2 may send the second control information to the network device by using the uplink
  • the TUE may send the first control information to the CUE1 and the CUE2 by using the edge link
  • the uplink and the edge link occupy different Band, or, the side link uses the unlicensed band
  • the uplink uses the licensed band
  • CUE1 and CUE2 can be the user equipment that supports both the edge link and the uplink communication (ie, CUE1 and CUE2 can use full double Work mode, which can receive information while sending information).
  • the network device determines, according to the decoding result of the CUE1 and the CUE2, that there is no CUE (ie, CUE1 and CUE2) receives the failed first CBG. That is to say, all the CBGs of the TB are correctly received by the CUE1 and/or the CUE2, and the network device may not perform the retransmission operation to the TUE again, and only the CUE1 and the CUE2 retransmit to the TUE in the manner shown in FIG.
  • the CBG required for TUE can be. In this way, the number of times that the network device performs the retransmission operation can be reduced, and the overhead of the downlink transmission is saved.
  • FIG. 11 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • the TBs including CBG1, CBG2, CBG3, CBG4, and CBG5 are continuously transmitted to the TUE by the network device.
  • CBG1, CBG2, CBG3, CBG4, and CBG5 are all the first CBGs.
  • CUE1 successfully decodes CBG1, CBG3, CBG4, and CBG5 of the TB after receiving the TB. That is, CBG1, CBG3, CBG4, and CBG5 are CUE1 receiving the correct first CBG from the network device, and CBG2 is the first CBG that CUE1 receives from the network device and fails. In this scenario, the CUE1 may send the second control information carrying the bitmap “10111” to the network device.
  • CUE2 After receiving the TB, CUE2 successfully decodes CBG1, CBG2, CBG4 and CBG5 of the TB. That is, CBG1, CBG2, CBG4, and CBG5 are that CUE2 receives the correct first CBG from the network device, and CBG3 receives the first CBG that CUE2 fails from the network device.
  • the CUE2 may send the second control information carrying the bitmap “11011” to the network device.
  • CBG1, CBG3, and CBG5 are TUEs that receive the correct first CBG from the network device, and CBG and CBG4 receive the failed first CBG (ie, the second CBG) from the network device for the TUE.
  • CUE1 does not correctly receive CBG2
  • CBG2 is correctly received by CUE2.
  • CBG3 is correctly received by CUE1. That is to say, through CUE1 and CUE2, all the first CBGs of the TB can be obtained. Therefore, after receiving the second control information sent by the CUE1 and the CUE2, the network device can learn through the two second control information that there is no first CBG that is failed to be received by all CUEs. Therefore, the foregoing network device may not perform the retransmission operation to the TUE, and after receiving the first indication information for sending the CBG2 and the CBG4 sent by the TUE, the CUE1 and the CUE2 adopt the manner shown in FIG.
  • CUE1 retransmits CBG4 to the TUE
  • CUE2 retransmits CBG2 and CBG4 to the TUE. In this way, the number of times that the network device performs the retransmission operation can be reduced, and the overhead of the downlink transmission is saved.
  • the data transmission method provided by the embodiment of the present application after adopting the user equipment cooperation mechanism, after receiving the TB sent by the network device to the TUE, the CUE1 and the CUE2 may send the second control information to the network device to pass the second
  • the control information indicates that it receives the failed first CBG, and/or the correctly received first CBG, so that the network device can determine, according to the second control information of CUE1 and CUE2, at least one that is not correctly received by CUE1 and CUE2.
  • a CBG which in turn allows the network device to retransmit these first CBGs to the TUE. In this way, it is possible to effectively avoid the situation that CUE1 and CUE2 cannot assist the TUE because one or more first CBGs are not correctly received by CUE1 and CUE2, and the reliability of user equipment cooperation can be improved.
  • the data transmission method provided by the embodiment of the present application is introduced by taking the CUE1 and the CUE2 based on the first control information sent by the TUE and retransmitting the CBG to the TUE.
  • the following embodiments will focus on the process in which the CUE1 and the CUE2 actively retransmit the CBG to the TUE according to the decoding result of the TB after receiving the TB transmitted by the network device.
  • the CUE1 and the CUE2 may re-transmit the CBG to the TUE based on the first control information sent by the TUE, and the CUE1 and the CUE2 are based on the TB.
  • the manner of actively retransmitting the CBG to the TUE may be referred to as a CUE-triggered user equipment cooperation mode.
  • the method may further include:
  • the network device sends third control information to CUE1, CUE2, and TUE.
  • the foregoing third control information may be used to indicate time-frequency resources used when CUE1 and CUE2 communicate with the TUE using the side link. That is, the time-frequency resources used by CUE1 and CUE2 when retransmitting the first CBG in the TB to the TUE through the edge link.
  • the size of the time-frequency resource is related to the number of the first CBG included in the TB. For example, when the TB includes five first CBGs, the time-frequency resource may be a time-frequency resource for transmitting five CBGs. When the TB includes four first CBGs, the time-frequency resource may be a time-frequency resource for transmitting four CBGs, or the like.
  • the frequency domain width of the time-frequency resource is not limited in the embodiment of the present application.
  • the foregoing network device may carry the foregoing third control information in physical layer signaling, system information block (SIB) signaling, resource control (Radio Resource Control, RRC) signaling, MAC packet header, and downlink. In control signaling or the like, it is transmitted to CUE1, CUE2, and TUE.
  • SIB system information block
  • RRC Radio Resource Control
  • the third control information may be referred to as cooperative control information or downlink control information, for example. It will be understood by those skilled in the art that in the future, the third control information of the mobile communication system may follow the terminology of the downlink control information, and other terms may be used. Therefore, the naming of the third control information in each communication system is not limited in the embodiment of the present application.
  • the method may further include:
  • the CUE1 may decode the TB. Then, CUE1 can know which first CBG decoding of the TB is successful according to the decoding result of the TB.
  • the first CBG that is successfully decoded is that CUE1 receives the correct first CBG from the network device. Therefore, the CUE1 may determine the time domain location of the first CBG that is successfully decoded on the time-frequency resource corresponding to the side link according to the arrangement position of the first CBG in the TB. That is, the arrangement position of the first CBG that is successfully decoded in the TB is used as the time domain position of the first CBG that is successfully decoded on the time-frequency resource.
  • the CUE1 may send the successfully decoded first CBG mapping to the TUE according to the time domain location of the first CBG that is successfully decoded on the time-frequency resource.
  • the TUE can accurately determine the CUE1 transmission according to the time domain location of the time-frequency resource that is successfully decoded by the first CBG sent by the CUE1. Which is the first CBG?
  • the CUE2 may also be configured to transmit the first CBG mapping successfully decoded by the CUE2 to the TUE on the time-frequency resource. Since CUE1 and CUE2 both use the ranked position of the first CBG that is successfully decoded in the TB as the time domain location of the first CBG that is successfully decoded on the time-frequency resource, so that CUE1 and CUE2 can be on the same time-frequency resource to the TUE. Sending the same CBG increases the probability that the TUE will correctly receive the CBG.
  • FIG. 13 is a schematic diagram of still another user equipment cooperation according to an embodiment of the present application.
  • the TBs including CBG1, CBG2, CBG3, CBG4, and CBG5 are sent to the TUE by the network device as an example.
  • CBG1, CBG2, CBG3, CBG4, and CBG5 are all the first CBGs.
  • the network device may send the third control information to the CUE1, the CUE2, and the TUE before the network device multicasts the TB to the CUE1, the CUE2, and the TUE, where the third control information is used to instruct the CUE1 and the CUE2 to send the TB.
  • Time-frequency resources used in CBG may be a time-frequency resource including five CBG time domain resources.
  • CUE1 Under the user assistance mechanism, after the network device multicasts the TB to CUE1, CUE2, and TUE, it is assumed that the CUE1 itself receives the correct first CBG as CBG1, CBG3, CBG4, and CBG5, and the CUE1 can determine the first time in the time-frequency resource.
  • CBG1 is transmitted in one time domain position
  • CBG3 is transmitted in the third time domain position
  • CBG4 is transmitted in the fourth time domain position
  • CBG5 is transmitted in the fifth time domain position. Since CUE1 does not receive the pair CBG2, CUE1 may not send any information in the second time domain position of the time-frequency resource.
  • the CUE2 may determine that the CBG1 is transmitted in the first time domain position of the time-frequency resource, and the CBG2 is transmitted in the second time domain position.
  • the CBG3 is transmitted in the third time domain position
  • the CBG4 is transmitted in the fourth time domain position. Since CUE2 does not receive the pair CBG5, CUE2 may not send any information in the 5th time domain position of the time-frequency resource.
  • CUE1 and CUE2 can send the same CBG to the TUE on the same time-frequency resource, which improves the probability that the TUE correctly receives the CBG.
  • the CUE1 and the CUE2 can send the same CBG to the TUE on the same time-frequency resource, thereby improving the probability that the TUE correctly receives the CBG, thereby improving the TUE.
  • the foregoing third control information is further used to indicate a transmission parameter used when CUE1 and CUE2 send the first CBG in the TB.
  • the transmission parameters mentioned herein may include, for example, one or more of the following: a transmission mode, a number of receiving antenna ports, a modulation and coding mode, and the like.
  • the CUE1 and the CUE2 may send the first CBG that is correctly decoded by the TUE by using the transmission parameter indicated by the third control information.
  • the TUE can use the transmission parameter to receive the first CBG that CUE1 and CUE2 send and decode correctly. In this way, CUE1 and CUE2 can be communicated with the TUE using the same transmission parameters, ensuring normal communication between CUE1 and CUE2 and TUE.
  • the CUE1 and the CUE2 can communicate with the TUE according to the transmission parameter indicated by the TUE, and ensure normal communication between the CUE1 and the CUE2 and the TUE.
  • the network device when the foregoing communication system supports the TUE-triggered user equipment cooperation mode and the CUE-triggered user equipment cooperation mode, the network device may further indicate CUE1, CUE2, and the third control information. User equipment cooperation mode between TUEs.
  • the network device may indicate a user equipment cooperation mode between CUE1, CUE2, and TUE by using one bit in the third control information.
  • the bit When the bit is 0, it indicates that the user equipment cooperation mode between CUE1, CUE2, and TUE is a TUE-triggered user equipment cooperation mode.
  • the bit When the bit is 1, it indicates user equipment cooperation between CUE1, CUE2, and TUE.
  • the mode is a user equipment cooperation mode triggered by CUE.
  • the bit when the bit is 1, the user equipment cooperation mode between the CUE1, the CUE2, and the TUE is a user equipment cooperation mode triggered by the TUE, and when the bit is 0, the user between the CUE1, the CUE2, and the TUE is indicated.
  • the device cooperation mode is a user equipment cooperation mode triggered by CUE.
  • the foregoing third control information when used to indicate that the user equipment cooperation mode between the CUE1, the CUE2, and the TUE is a CUE-triggered user equipment cooperation mode, the foregoing third control information may further indicate CUE1, CUE2, and TUE. Time-frequency resources and/or transmission parameters used when communicating using edge links.
  • the third control information is used to indicate that the user equipment cooperation mode between the CUE1, the CUE2, and the TUE is a TUE-triggered user equipment cooperation mode
  • the time-frequency resources used by the CUE1 and the CUE2 and the TUE to communicate using the side link are used.
  • the transmission parameter may be indicated by the TUE through the aforementioned first control information, and details are not described herein again.
  • the network device may indicate the user equipment cooperation mode adopted by the CUE1, the CUE2, and the TUE by using the third control information, thereby expanding the cooperation of the user equipment.
  • Application scenarios improve the flexibility of user device collaboration.
  • FIG. 14 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the user equipment may be a first user equipment.
  • the first user equipment may include: a receiving module 11 and a sending module 12. among them,
  • the receiving module 11 is configured to receive a transport block that is sent by the network device to the second user equipment, and first control information that is sent by the second user equipment, where the transport block includes at least one first coded block group CBG;
  • the first control information is used to indicate that the first user equipment sends at least one second CBG to the second user equipment, and the second CBG is that the second user equipment receives the failed first CBG from the network device.
  • the first user equipment may be a user equipment for facilitating communication between the second user equipment and the network device, or the first user equipment and the second device are in the same collaboration group. User equipment.
  • the sending module 12 is configured to send, to the second user equipment, at least one third CBG, where the third CBG is that the first user equipment receives the correct first CBG from the network device, and the third CBG Receiving a failed first CBG from the network device for the second user equipment.
  • the foregoing first control information is further used to indicate a time-frequency resource used by the first user equipment to send the at least one second CBG;
  • a user equipment may further include: a processing module 13.
  • the processing module 13 is configured to determine, according to an arrangement position of the at least one third CBG in the at least one second CBG, a time domain location of the at least one third CBG on the time-frequency resource;
  • the sending module is configured to send the at least one third CBG mapping on the time-frequency resource to the second user equipment.
  • the foregoing first control information is further used to indicate a transmission parameter used by the first user equipment to send the at least one second CBG.
  • the foregoing transmission parameter may include, for example, one or more of the following: a transmission mode, a number of receiving antenna ports, and a modulation and coding mode.
  • the sending module 12 is specifically configured to send the at least one third CBG to the second user equipment by using the transmission parameter.
  • the sending module 12 is further configured to: after the receiving module 11 receives the transport block sent by the network device to the second user equipment, send the second control information to the network device, where The second control information is used to indicate that the first user equipment receives the failed first CBG, and/or the second control information is used to indicate that the first user equipment receives the correct first CBG.
  • the foregoing second control information may include a bitmap, where one bit in the bitmap corresponds to a first CBG, and when the bit is the first value, the first CBG corresponding to the bit is indicated. Receiving correctly by the first user equipment, when the bit is the second value, indicating that the first CBG corresponding to the bit is received by the first user equipment fails.
  • the receiving module 11 is further configured to receive third control information sent by the network device, before receiving, by the network device, the third control The information is used to indicate the time-frequency resource used by the first user equipment to send the transport block to the second user equipment.
  • the first user equipment may further include: a processing module 13.
  • the processing module 13 is configured to determine, according to at least one received position of the first first CBG in the transport block, a time domain location of the at least one received correct first CBG on the time-frequency resource;
  • the correct first CBG receives the correct first CBG from the network device for the first user equipment, and the sending module 12 is configured to map the at least one correctly received first CBG to the time-frequency resource. And sent to the second user equipment.
  • the foregoing third control information is further used to indicate a transmission parameter used by the first user equipment to send the transport block, where the foregoing transmission parameter may include, for example, one of the following or Multiple: transmission mode, number of receiving antenna ports, modulation and coding mode.
  • the sending module 12 is specifically configured to use the transmission parameter to map the at least one correctly received first CBG mapping on the time-frequency resource to the second user equipment.
  • the foregoing third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the first user equipment provided by the embodiment of the present application may perform the action of the first user equipment in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • the user equipment may be a second user equipment.
  • the second user equipment may include: a receiving module 21 and a sending module 22. among them,
  • the receiving module 21 is configured to receive a transport block sent by the network device, where the transport block includes at least one first coded block group CBG;
  • the sending module 22 is configured to send the first control information to the at least one first user equipment, where the first control information is used to indicate that each of the first user equipments sends at least one second CBG to the second user equipment;
  • the second CBG is a first CBG that the second user equipment receives from the network device, where the first user equipment is configured to assist the second user equipment to communicate with the network device.
  • the user equipment, or the first user equipment and the second device are user equipments in the same collaboration group.
  • the receiving module 21 is further configured to receive the at least one third CBG that is sent by the at least one first user equipment, where the third CBG is that the first user equipment receives the correct first CBG from the network device, And the third CBG is that the second user equipment receives the first CBG that fails from the network device.
  • the foregoing first control information is further used to indicate a time-frequency resource used by the first user equipment to send the at least one second CBG;
  • the module 21 is configured to receive the at least one third CBG sent by the at least one first user equipment on the time-frequency resource.
  • the second user equipment may further include: a processing device 23.
  • the processing module 23 is configured to determine, according to the time domain location of the time-frequency resource, the at least one third CBG sent by each first user equipment, corresponding to the at least one third CBG that is sent by each first user equipment. Two CBG.
  • the foregoing first control information is further used to indicate a transmission parameter used by the first user equipment to send the at least one second CBG, where the foregoing transmission parameters may include, for example, the following One or more: transmission mode, number of receiving antenna ports, modulation and coding mode.
  • the receiving module 21 is specifically configured to receive, by using the transmission parameter, a third CBG sent by the at least one first user equipment.
  • the receiving module 21 is further configured to: after receiving the at least one third CBG sent by the at least one first user equipment, receive the at least one fourth CBG sent by the network device,
  • the at least one fourth CBG is a first CBG that is received by the first one of the at least one first user equipment from the network device.
  • the receiving module 21 is further configured to: before receiving the transport block sent by the network device, receive the third control information sent by the network device, and after receiving the transport block sent by the network device, And receiving, by the at least one first user equipment, the at least one first correct CBG that is sent by the at least one first user equipment; and correspondingly, the foregoing second user equipment may further include: the processing device 23.
  • the processing module 23 is configured to determine, according to at least one received by the first user equipment, that the correct first first CBG is in a time domain position of the time-frequency resource, and determine that at least one sent by each first user equipment is correctly received. a location of the first CBG in the transport block, where the third control information is used to indicate a time-frequency resource used by the at least one first user equipment to send the transport block to the second user equipment .
  • the third control information is further used to indicate a transmission parameter used by the first user equipment to send the transport block, where the foregoing transmission parameter may include, for example, one of the following: Or multiple: transmission mode, number of receiving antenna ports, modulation and coding mode.
  • the receiving module 21 is configured to receive, by using the transmission parameter, at least one first CBG that is received by the at least one first user equipment on the time-frequency resource.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the second user equipment provided by the embodiment of the present application may perform the action of the second user equipment in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device may include: a sending module 31, a receiving module 32, and a processing module 33. among them,
  • the sending module 31 is configured to multicast a transport block to the at least one first user equipment and the second user equipment, where the transport block includes at least one first coding block group CBG, where the first user equipment may be used for assistance a user equipment that communicates between the second user equipment and the network device, or the first user equipment and the second device are user equipments in the same collaboration group;
  • the receiving module 32 is configured to receive second control information that is sent by each of the first user equipments, where the second control information is used to indicate that the first user equipment receives a failed first CBG from the network device, and Or the second control information is used to indicate that the first user equipment receives the correct first CBG;
  • the processing module 33 is configured to determine, according to the second control information sent by each of the first user equipment, at least one fourth CBG, where the at least one fourth CBG is all the first ones of the at least one first user equipment Receiving, by the user equipment, the failed first CBG from the network device;
  • the sending module 31 is further configured to resend the at least one fourth CBG to the second user equipment.
  • the second control information includes a bitmap, where one bit in the bitmap corresponds to a first CBG, and when the bit is the first value, the bit is indicated.
  • the first CBG corresponding to the bit is correctly received by the first user equipment, and when the bit is the second value, indicating that the first CBG corresponding to the bit is received by the first user equipment fails.
  • the sending module 31 is further configured to: before the multicasting the transport block to the at least one first user equipment and the second user equipment, to the at least one first user equipment and the The second user equipment sends the third control information, where the third control information is used to indicate the time-frequency resource used by the first user equipment to send the transport block to the second user equipment.
  • the third control information is further used to indicate a transmission parameter used by the first user equipment to send the transport block.
  • the third control information is further used to indicate a user cooperation mode used between the first user equipment and the second user equipment.
  • the network device provided by the embodiment of the present application may perform the action of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the above implementation of the first user equipment, the second user equipment, and the network equipment may be a transmitter, and the receiving module may be a receiver when actually implemented, and the processing module may process the component by software.
  • the form implementation of the call can also be implemented in the form of hardware.
  • the processing module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above processing module.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit that has signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 17 is a schematic structural diagram of still another user equipment according to an embodiment of the present application.
  • the user equipment may be a first user equipment, and the first user equipment may include: a processor 41 (eg, a CPU), a memory 42, a receiver 43, and a transmitter 44; a receiver 43 and a transmitter 44. Coupled to the processor 41, the processor 41 controls the receiving operation of the receiver 43, and the processor 41 controls the transmitting operation of the transmitter 44.
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • NVM non-volatile memory
  • the first user equipment involved in the embodiment of the present application may further include: a power source 45, a communication bus 46, and a communication port 47.
  • the receiver 43 and the transmitter 44 may be integrated in the transceiver of the first user equipment, or may be independent transceiver antennas on the first user equipment.
  • Communication bus 46 is used to implement a communication connection between components.
  • the communication port 47 is used to implement connection communication between the first user equipment and other peripheral devices.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 41 to perform the processing action of the first user equipment in the foregoing method embodiment.
  • the transmitter 44 is configured to perform the sending operation of the first user equipment in the foregoing method embodiment, so that the receiver 43 performs the receiving operation of the first user equipment in the foregoing method embodiment, and the implementation principle and technical effects thereof are similar, and details are not described herein again. .
  • FIG. 18 is a schematic structural diagram of still another user equipment according to an embodiment of the present application.
  • the user equipment may be a second user equipment, and the second user equipment may include: a processor 51 (for example, a CPU), a memory 52, a receiver 53, and a transmitter 54, a receiver 53 and a transmitter 54. Coupled to the processor 51, the processor 51 controls the receiving operation of the receiver 53, and the processor 51 controls the transmitting operation of the transmitter 54.
  • the memory 52 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • NVM non-volatile memory
  • the second user equipment involved in the embodiment of the present application may further include: a power source 55, a communication bus 56, and a communication port 57.
  • the receiver 53 and the transmitter 54 may be integrated in the transceiver of the second user equipment, or may be independent transceiver antennas on the second user equipment.
  • Communication bus 56 is used to implement a communication connection between the components.
  • the communication port 57 is used to implement connection communication between the second user equipment and other peripheral devices.
  • the memory 52 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 51 to perform the processing action of the second user equipment in the foregoing method embodiment.
  • the transmitter 54 performs the sending action of the second user equipment in the foregoing method embodiment, so that the receiver 53 performs the receiving action of the second user equipment in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again. .
  • FIG. 19 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • the network device may include a processor 61 (eg, a CPU), a memory 62, a receiver 63, and a transmitter 64; a receiver 63 and a transmitter 64 are coupled to the processor 61, and the processor 61 controls the receiver.
  • the receiving operation of 63 and the processor 61 control the transmitting operation of the transmitter 64.
  • the memory 62 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the network device involved in the embodiment of the present application may further include: a power source 65, a communication bus 66, and a communication port 67.
  • the receiver 63 and the transmitter 64 may be integrated in the transceiver of the network device or may be an independent transceiver antenna on the network device.
  • Communication bus 66 is used to implement a communication connection between components.
  • the communication port 67 is used to implement connection communication between the network device and other peripheral devices.
  • the foregoing memory 62 is configured to store computer executable program code, and the program code includes instructions; when the processor 61 executes the instruction, the instruction causes the processor 61 to perform the processing action of the network device in the foregoing method embodiment, so that The transmitter 64 performs the sending action of the network device in the foregoing method embodiment, so that the receiver 63 performs the receiving action of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the user equipment in the embodiment of the present application may be a wireless terminal such as a mobile phone or a tablet computer. Therefore, the user equipment is used as a mobile phone as an example.
  • FIG. 20 is a structural block diagram of the user equipment provided by the embodiment of the present application. .
  • the mobile phone may include: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and processing.
  • RF radio frequency
  • the structure of the handset shown in FIG. 20 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the RF circuit 1110 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. For example, after receiving the downlink information of the base station, the processing is performed by the processor 1180. In addition, the uplink data is sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 1110 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1180 is provided and can receive commands from the processor 1180 and execute them.
  • the touch panel 1131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can be overlaid on the display panel 1141. When the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 is The type of touch event provides a corresponding visual output on display panel 1141.
  • touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 10, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the light sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the acceleration sensor can detect the acceleration of each direction (usually three axes). When it is still, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games).
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer repeat .
  • Audio circuitry 1160, speaker 1161, and microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1170, which provides users with wireless broadband Internet access.
  • FIG. 20 shows the WiFi module 1170, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the embodiment of the present application.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; for example, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the handset also includes a power supply 1190 (such as a battery) that powers the various components.
  • a power supply 1190 (such as a battery) that powers the various components.
  • the power supply can be logically coupled to the processor 1180 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone can also include a camera 1200, which can be a front camera or a rear camera.
  • the mobile phone may further include a Bluetooth module, a GPS module, and the like, and details are not described herein again.
  • the processor 1180 included in the mobile phone may be used to perform the foregoing data transmission method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the embodiment of the present application further provides a chip, including a processor and an interface.
  • the interface is used for data or instructions processed by the input and output processors.
  • the processor is operative to perform the methods provided in the above method embodiments.
  • the chip can be applied to user equipment as well as to network equipment.
  • the embodiment of the present application further provides a program, when executed by a processor, is used to execute the method provided by the foregoing method embodiment.
  • the embodiment of the present application further provides a program product, such as a computer readable storage medium, in which instructions are stored, and when executed on a computer, cause the computer to execute the method provided by the foregoing method embodiments.
  • a program product such as a computer readable storage medium, in which instructions are stored, and when executed on a computer, cause the computer to execute the method provided by the foregoing method embodiments.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、用户设备和网络设备,该方法包括:第一用户设备接收网络设备发送给第二用户设备的传输块,传输块包括至少一个CBG;第一用户设备接收第二用户设备发送的第一控制信息,第一控制信息用于指示第一用户设备向第二用户设备发送至少一个第二CBG,第二CBG为第二用户设备从网络设备接收失败的第一CBG;第一用户设备向第二用户设备发送至少一个第三CBG,第三CBG为第一用户设备从网络设备接收正确的第一CBG、且第三CBG为第二用户设备从网络设备接收失败的第一CBG。本申请实施例提供的数据传输方法、用户设备和网络设备,能够提高第一用户设备与第二用户设备之间重传CBG的效率。

Description

数据传输方法、用户设备和网络设备
本申请要求于2017年06月29日提交中国专利局、申请号为201710517230.9、申请名称为“数据传输方法、用户设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种数据传输方法、用户设备和网络设备。
背景技术
未来5G通信系统中引入了用户设备协作机制。在采用用户设备协作机制时,处于网络覆盖范围中心区域、或、处于网络环境较好的一个或多个用户设备,可以通过端到端的通信技术,协助网络设备与小区中网络服务质量差的用户设备进行通信。通过这种方式,可以提高网络服务质量差的用户设备的吞吐率,进而能够提高整个通信系统的吞吐率。其中,上述协助小区中网络服务质量差的用户设备的用户设备可以称为协作用户设备(Cooperation User Equipment,CUE),上述小区中网络服务质量差的用户设备可以称为目标用户设备(Target User Equipment,TUE)。
具体地,基于上述用户设备协作机制,网络设备可以向各CUE和TUE组播发送给TUE的传输块(Transport Block,TB)。其中,该TB可以包括至少一个编码块组(Code Block Group,CBG)。各CUE在接收到该TB后,可以对该TB进行解码。然后,各CUE可以将自己解码正确的CBG重传给TUE,以通过重传CBG的方式协助TUE解码TB,提高了TUE正确解码TB的概率,进而提高TUE的网络质量。
然而,由于各CUE和TUE在网络中所处的位置不同,因此,各CUE和TUE所接收到的正确的CBG可能不同。因此,在采用用户设备协作机制时,CUE如何向TUE重传CBG是一个亟待解决的问题。
发明内容
本申请实施例提供一种数据传输方法、发送设备和接收设备,用于提高CUE与TUE之间重传CBG的效率。
第一方面,本申请实施例提供一种数据传输方法,该方法包括:
第一用户设备接收网络设备发送给第二用户设备的传输块,所述传输块包括至少一个第一编码块组CBG;
所述第一用户设备接收所述第二用户设备发送的第一控制信息,所述第一控制信息用于指示所述第一用户设备向所述第二用户设备发送至少一个第二CBG,所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
所述第一用户设备向所述第二用户设备发送至少一个第三CBG,所述第三CBG为所 述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
通过第一方面提供的数据传输方法,在第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,第一用户设备在接收到网络设备发送给第二用户设备的TB之后,第一用户设备可以根据第二用户设备所指示的CBG,以及,自己所接收正确的CBG,向第二用户设备重传第二用户设备所需的CBG,提高了第一用户设备与第二用户设备之间重传CBG的效率,从而提高了资源利用率。
在一种可能的实施方式中,所述第一用户设备为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
通过该可能的实施方式提供的数据传输方法,用于协助第二用户设备与网络设备之间进行通信的第一用户设备、或者,与所述第二设备为同一协作组中的第一用户设备可以根据第二用户设备所指示的CBG,以及,自己所接收正确的CBG,向第二用户设备重传第二用户设备所需的CBG,提高了第一用户设备与第二用户设备之间重传CBG的效率,从而提高了用户设备协作的效率。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
所述第一用户设备向所述第二用户设备发送至少一个第三CBG,包括:
所述第一用户设备根据所述至少一个第三CBG在所述至少一个第二CBG中的排列位置,确定所述至少一个第三CBG在所述时频资源上的时域位置;
所述第一用户设备将所述至少一个第三CBG映射在所述时频资源上发送给所述第二用户设备。
通过该可能的实施方式提供的数据传输方法,在多个第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,各第一用户设备可以在相同的时频资源上向第二用户设备发送相同的CBG,提高了第二用户设备正确接收该CBG的几率,进而提高了第二用户设备与多个第一用户设备之间重传CBG的效率,从而提高了资源利用率。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
所述第一用户设备向所述第二用户设备发送至少一个第三CBG,包括:
所述第一用户设备使用所述传输参数,向所述第二用户设备发送所述至少一个第三CBG。
通过该可能的实施方式提供的数据传输方法,在第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,第一用户设备可以根据第二用户设备所指示的传输参数,与第二用户设备进行通信,确保了第一用户设备与第二用户设备之间的正常通信。
在一种可能的实施方式中,所述传输参数包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。
通过该可能的实施方式提供的数据传输方法,在第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,第一用户设备可以根据第二用户设备所指示的 传输参数,与第二用户设备进行通信,确保了第一用户设备与第二用户设备之间的正常通信。
在一种可能的实施方式中,所述第一用户设备接收网络设备发送给第二用户设备的传输块之后,所述方法还包括:
所述第一用户设备向所述网络设备发送第二控制信息,所述第二控制信息用于指示所述第一用户设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG。
通过该可能的实施方式提供的数据传输方法,在多个第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,各第一用户设备在接收到网络设备发送给第二用户设备的TB之后,各第一用户设备可以向网络设备发送第二控制信息,以通过第二控制信息指示自己接收失败的第一CBG,和/或,正确接收的第一CBG,从而使得网络设备可以根据所有第一用户设备的第二控制信息,确定至少一个均未被所有第一用户设备正确接收的第一CBG,进而使得网络设备可以向第二用户设备重传这些第一CBG。通过这种方式,可以有效避免因一个或多个第一CBG没有被任一第一用户设备接收正确而导致第一用户设备无法协助第二用户设备的情况,能够提高用户设备协作的可靠性。
在一种可能的实施方式中,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
通过该可能的实施方式提供的数据传输方法,第一用户设备可以通过位图指示自己接收失败的第一CBG,和/或,正确接收的第一CBG,减少了第二控制信息的信令开销。
在一种可能的实施方式中,所述第一用户设备接收网络设备发送给第二用户设备的传输块之前,所述方法还包括:
所述第一用户设备接收所述网络设备发送的第三控制信息,所述第三控制信息用于指示所述第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源;
所述第一用户设备接收网络设备发送给第二用户设备的传输块之后,所述方法还包括:
所述第一用户设备根据至少一个接收正确的第一CBG在传输块中的排列位置,确定所述至少一个接收正确的第一CBG在所述时频资源上的时域位置;所述接收正确的第一CBG为所述第一用户设备从所述网络设备接收正确的第一CBG;
所述第一用户设备将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备。
通过该可能的实施方式提供的数据传输方法,在第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,第一用户设备可以在相同的时频资源上向第二用户设备发送相同的CBG,提高了第二用户设备正确接收该CBG的几率,进而提高了第二用户设备与第一用户设备之间重传CBG的效率,从而提高了资源利用率。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数;
所述第一用户设备将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备,包括:
所述第一用户设备使用所述传输参数,将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备。
通过该可能的实施方式提供的数据传输方法,在第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,第一用户设备可以根据第二用户设备所指示的传输参数,与第二用户设备进行通信,确保了第一用户设备与第二用户设备之间的正常通信。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
通过该可能的实施方式提供的数据传输方法,在通信系统支持多种用户设备协作模式时,网络设备可以通过第三控制信息指第一用户设备和第二用户设备所采用的用户设备协作模式,扩大了用户设备协作的应用场景,提高了用户设备协作的灵活性。
第二方面,本申请实施例提供一种数据传输方法,该方法包括:
第二用户设备接收网络设备发送的传输块,所述传输块包括至少一个第一编码块组CBG;
所述第二用户设备向至少一个第一用户设备发送第一控制信息,所述第一控制信息用于指示每个所述第一用户设备向所述第二用户设备发送至少一个第二CBG;所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
在一种可能的实施方式中,所述第一用户设备为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG,包括:
所述第二用户设备在所述时频资源上接收所述至少一个第一用户设备发送的至少一个第三CBG,并根据每个第一用户设备发送的至少一个第三CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个第三CBG对应的第二CBG。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG,包括:
所述第二用户设备使用所述传输参数,接收所述至少一个第一用户设备发送的第三CBG。
在一种可能的实施方式中,所述传输参数包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。
在一种可能的实施方式中,所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG之后,所述方法还包括:
所述第二用户设备接收所述网络设备发送的至少一个第四CBG,所述至少一个第四 CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG。
在一种可能的实施方式中,所述第二用户设备接收网络设备发送的传输块之前,所述方法还包括:
所述第二用户设备接收所述网络设备发送的第三控制信息,所述第三控制信息用于指示所述至少一个第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源;
所述第二用户设备接收网络设备发送的传输块之后,所述方法还包括:
所述第二用户设备在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG,并根据每个第一用户设备发送的至少一个接收正确的第一CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个接收正确的第一CBG在所述传输块中的位置。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数;
所述第二用户设备在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG,包括:
所述第二用户设备使用所述传输参数,在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
上述第二方面以及第二方面的各可能的实施方式所提供的数据传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第三方面,本申请实施例提供一种数据传输方法,该方法包括:
网络设备向至少一个第一用户设备和第二用户设备组播传输块,所述传输块包括至少一个第一编码块组CBG;
所述网络设备接收每个所述第一用户设备发送的第二控制信息,所述第二控制信息用于指示所述第一用户设备从所述网络设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG;
所述网络设备根据每个所述第一用户设备发送的第二控制信息,确定至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG;
所述网络设备向所述第二用户设备重新发送所述至少一个第四CBG。
在一种可能的实施方式中,所述第一用户设备为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
在一种可能的实施方式中,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
在一种可能的实施方式中,所述网络设备向至少一个第一用户设备和第二用户设备 组播传输块之前,所述方法还包括:
所述网络设备向所述至少一个第一用户设备和所述第二用户设备发送第三控制信息,所述第三控制信息用于指示所述第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
上述第三方面以及第三方面的各可能的实施方式所提供的数据传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请实施例提供一种用户设备,所述用户设备为第一用户设备,所述第一用户设备包括:
接收模块,用于接收网络设备发送给第二用户设备的传输块,以及,所述第二用户设备发送的第一控制信息,所述传输块包括至少一个第一编码块组CBG;所述第一控制信息用于指示所述第一用户设备向所述第二用户设备发送至少一个第二CBG,所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
发送模块,用于向所述第二用户设备发送至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
在一种可能的实施方式中,所述第一用户设备为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
所述第一用户设备,还包括:
处理模块,用于根据所述至少一个第三CBG在所述至少一个第二CBG中的排列位置,确定所述至少一个第三CBG在所述时频资源上的时域位置;
所述发送模块,具体用于将所述至少一个第三CBG映射在所述时频资源上发送给所述第二用户设备。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
所述发送模块,具体用于使用所述传输参数,向所述第二用户设备发送所述至少一个第三CBG。
在一种可能的实施方式中,所述传输参数包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。
在一种可能的实施方式中,所述发送模块,还用于在所述接收模块接收网络设备发送给第二用户设备的传输块之后,向所述网络设备发送第二控制信息,所述第二控制信息用于指示所述第一用户设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG。
在一种可能的实施方式中,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
在一种可能的实施方式中,所述接收模块,还用于在接收网络设备发送给第二用户设备的传输块之前,接收所述网络设备发送的第三控制信息,所述第三控制信息用于指示所述第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源;
所述第一用户设备还包括:
处理模块,用于根据至少一个接收正确的第一CBG在传输块中的排列位置,确定所述至少一个接收正确的第一CBG在所述时频资源上的时域位置;所述接收正确的第一CBG为所述第一用户设备从所述网络设备接收正确的第一CBG;
所述发送模块,具体用于将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数;
所述发送模块,具体用于使用所述传输参数,将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
上述第四方面以及第四方面的各可能的实施方式所提供的第一用户设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请实施例提供一种用户设备,所述用户设备为第二用户设备,所述第二用户设备包括:
接收模块,用于接收网络设备发送的传输块,所述传输块包括至少一个第一编码块组CBG;
发送模块,用于向至少一个第一用户设备发送第一控制信息,所述第一控制信息用于指示每个所述第一用户设备向所述第二用户设备发送至少一个第二CBG;所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
所述接收模块,还用于接收所述至少一个第一用户设备发送的至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
在一种可能的实施方式中,所述第一用户设备为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
所述接收模块,具体用于在所述时频资源上接收所述至少一个第一用户设备发送的至少一个第三CBG;
所述第二用户设备,还包括:
处理模块,用于根据每个第一用户设备发送的至少一个第三CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个第三CBG对应的第二CBG。
在一种可能的实施方式中,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
所述接收模块,具体用于使用所述传输参数,接收所述至少一个第一用户设备发送的第三CBG。
在一种可能的实施方式中,所述传输参数包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。
在一种可能的实施方式中,所述接收模块,还用于在接收所述至少一个第一用户设备发送的至少一个第三CBG之后,接收所述网络设备发送的至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG。
在一种可能的实施方式中,所述接收模块,还用于在接收网络设备发送的传输块之前,接收所述网络设备发送的第三控制信息,并在接收网络设备发送的传输块之后,在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG;其中,所述第三控制信息用于指示所述至少一个第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源;
所述第二用户设备还包括:
处理模块,用于根据每个第一用户设备发送的至少一个接收正确的第一CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个接收正确的第一CBG在所述传输块中的位置。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数;
所述接收模块,具体用于使用所述传输参数,在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
上述第五方面以及第五方面的各可能的实施方式所提供的第二用户设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括:
发送模块,用于向至少一个第一用户设备和第二用户设备组播传输块,所述传输块包括至少一个第一编码块组CBG;
接收模块,用于接收每个所述第一用户设备发送的第二控制信息,所述第二控制信息用于指示所述第一用户设备从所述网络设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG;
处理模块,用于根据每个所述第一用户设备发送的第二控制信息,确定至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG;
所述发送模块,还用于向所述第二用户设备重新发送所述至少一个第四CBG。
在一种可能的实施方式中,所述第一用户设备为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
在一种可能的实施方式中,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
在一种可能的实施方式中,所述发送模块,还用于在向至少一个第一用户设备和第二用户设备组播传输块之前,向所述至少一个第一用户设备和所述第二用户设备发送第三控制信息,所述第三控制信息用于指示所述第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数。
在一种可能的实施方式中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
上述第六方面以及第六方面的各可能的实施方式所提供的网络设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第七方面,本申请实施例提供一种用户设备,所述用户设备为第一用户设备,所述第一用户设备包括:处理器、存储器、发送器和接收器;所述发送器和所述接收器耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述第一用户设备执行如第一方面和第一方面的各可能的实施方式所提供的数据传输方法。
第八方面,本申请实施例提供一种用户设备,所述用户设备为第二用户设备,所述第二用户设备包括:处理器、存储器、发送器和接收器;所述发送器和所述接收器耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述第二用户设备执行如第二方面和第二方面的各可能的实施方式所提供的数据传输方法。
第九方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器、发送器和接收器;所述发送器和所述接收器耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述网络设备执行如第三方面和第三方面的各可能的实施方式所提供的数据传输方法。
本申请实施例第十方面提供一种用户设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十一方面提供一种用户设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十二方面提供一种网络设备,包括用于执行以上第三方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十三方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请实施例第十四方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本申请实施例第十五方面提供一种程序,该程序在被处理器执行时用于执行以上第三方面的方法。
本申请实施例第十六方面提供一种程序产品,例如计算机可读存储介质,包括第十三方面的程序。
本申请实施例第十七方面提供一种程序产品,例如计算机可读存储介质,包括第十四方面的程序。
本申请实施例第十八方面提供一种程序产品,例如计算机可读存储介质,包括第十五方面的程序。
本申请实施例第十九方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
本申请实施例第二十方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
本申请实施例第二十一方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面的方法。
本申请实施例提供的数据传输方法、用户设备和网络设备,在第一用户设备采用用户设备协作机制协助第二用户设备与网络设备进行通信时,第一用户设备在接收到网络设备发送给第二用户设备的TB之后,第一用户设备可以根据第二用户设备所指示的CBG,以及,自己所接收正确的CBG,向第二用户设备重传第二用户设备所需的CBG,提高了第一用户设备与第二用户设备之间重传CBG的效率,从而提高了资源利用率。
附图说明
图1为本申请实施例所涉及的一种通信系统的框架图;
图2为本申请提供的一种基于CBG的重传示意图;
图3为本申请实施例提供的一种用户设备协作流程示意图;
图4为本申请实施例提供的一种数据传输方法的信令流程图;
图5为本申请实施例提供的一种用户设备协作的示意图;
图6为本申请实施例提供的另一种用户设备协作的示意图;
图7为本申请实施例提供的另一种数据传输方法的信令流程图;
图8为本申请实施例提供的又一种用户设备协作的示意图;
图9为本申请实施例提供的又一种用户设备协作的示意图;
图10为本申请实施例提供的又一种用户设备协作的示意图;
图11为本申请实施例提供的又一种用户设备协作的示意图;
图12为本申请实施例提供的又一种用户设备协作的示意图;
图13为本申请实施例提供的又一种用户设备协作的示意图;
图14为本申请实施例提供的一种用户设备的结构示意图;
图15为本申请实施例提供的另一种用户设备的结构示意图;
图16为本申请实施例提供的一种网络设备的结构示意图;
图17为本申请实施例提供的又一种用户设备的结构示意图;
图18为本申请实施例提供的又一种用户设备的结构示意图;
图19为本申请实施例提供的另一种网络设备的结构示意图;
图20为本申请实施例提供的用户设备为手机时的结构框图。
具体实施方式
应当理解,本申请实施例中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语第一、第二、第三、第四等来描述CBG,但这些CBG不应限于这些术语。这些术语仅用来将CBG彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一CBG也可以被称为第二CBG,类似地,第二CBG也可以被称为第一CBG。
图1为本申请实施例所涉及的一种通信系统的框架图。如图1所示,该通信系统包括:网络设备01和用户设备02。网络设备01和用户设备02可以使用一个或多个空口技术进行通信。
网络设备:可以是前述基站,或者各种无线接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与用户设备进行通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站gNB等,在此并不限定。
用户设备:也称为终端设备,该终端设备可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session  Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。
需要说明的是,上述通信系统可以是LTE通信系统,也可以是未来其他通信系统,在此不作限制。图1示出的是以5G通信系统为例的示意图。下述申请文件均以5G通信系统为例进行说明和介绍。
TB是物理层最小的传输单元。一个TB可以由一个或多个编码块(Code Block,CB)组成的。以下行传输为例,在长期演进(Long Term Evolution,LTE)系统中,网络设备在采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)技术向用户设备发送一个TB的数据之后,用户设备可以采用基于TB的HARQ反馈机制向网络设备发送反馈消息。即用户设备可以根据对该TB的解码结果,使用1个比特向网络设备反馈针对HARQ的反馈消息。其中,该反馈消息例如可以为确认(Acknowledgment,ACK)消息或否定(Negative ACK,NACK)消息。这里所说的ACK消息用于表示用户设备正确接收到了该TB(即对TB解码成功)。NACK消息用于表示用户设备对该TB接收失败(即对TB解码错误)。网络设备在接收到NACK消息时,会向用户设备重新发送该TB。
5G通信系统可以使用更大的带宽,因此,网络设备向用户设备发送的一个TB可以包括更多的数据。也就是说,一个TB可能包括几十个CB。另外,5G通信系统可以支持不同的业务,例如增强的移动宽带(enhanced Mobile Broadband,eMBB)业务、海量机器类型通信(massive Machine Type Communication,mMTC)业务、超可靠低延迟通信(Ultra-reliable and low latency communications,URLLC)业务、多媒体广播多播(Multimedia Broadcast Multicast Service,MBMS)业务和定位业务等。其中,不同的业务对时延的要求不同,例如:URLLC业务对时延的要求高于eMBB业务对时延的要求。
因此,为了确保时延要求较高的业务对时延的要求,5G通信系统允许时延要求较高的业务抢占时延要求较低的业务的资源进行发送。以下行数据为例,网络设备可以在向某一用户设备发送eMBB业务数据的时频资源上,向另一用户设备发送URLLC业务数据。这样,承载URLLC业务数据的TB会突发地对承载eMBB业务数据的TB中的某几个CB造成强干扰,导致承载eMBB业务数据的TB中这几个CB不能被接收该TB的用户设备正确接收的几率增加。
在这种场景下,若对于上述小部分CB接收错误的情况,仍然采用重传整个TB方式进行重传,则会导致重传的效率较低。因此,5G通信系统提出了CBG的概念。即,一个TB可以包括至少一个CBG,一个CBG可以包括至少一个CB,用户设备可以以CBG为单位向网络设备反馈针对HARQ的反馈消息(例如:NACK消息)。其中,该反馈消息用于表示用户设备对该TB的哪些CBG接收失败。网络设备在接收到反馈消息后,可以向用户设备重新发送该反馈消息所指示的CBG,不用重传整个TB。通过这种方式,可以提高重传的效率。
图2为本申请提供的一种基于CBG的重传示意图。如图2所示,以上述网络设备在一个时隙向用户设备发送(初传)了一个包括5个CBG的TB为例,假定用户设备对CBG1 和CBG4解码失败。因此,网络设备在接收到用户设备发送的用于指示CBG1和CBG4接收失败的反馈消息之后,网络设备可以只向用户设备重传CBG1和CBG4,不用重传整个TB。通过这种方式,可以提高重传的效率。
基于上述基于CBG的重传,下面对5G通信系统中的用户设备协作进行介绍。具体地:
继续参照图1,当用户设备处于网络覆盖范围的边缘时、或者、用户设备周围的环境对网络服务干扰比较大时,用户设备的网络服务质量会比较差,使得用户体验低。因此,5G通信系统引入了用户设备协作机制。在采用用户设备协作时,处于网络覆盖范围中心区域、或、处于网络环境较好的一个或多个用户设备(即CUE),可以协助网络设备向小区中网络服务质量差的用户设备(即TUE)重传TB中的CBG,以提高TUE正确解码TB的概率,进而提高TUE的网络质量。本领域技术人员可以理解的是,在未来移动通信系统可能沿用CUE和TUE的术语,也可能采用其他的术语。因此,本申请实施例对CUE和TUE在各个通信系统中的命名不作限定。
图3为本申请实施例提供的一种用户设备协作流程示意图。参照图1和图3,下面以TUE当前所在小区中的CUE1和CUE2可以协助TUE进行通信为例,对用户设备协作的流程进行说明。即,CUE1和CUE2与TUE之间具有用户设备协作关系。其中,网络设备以TB为传输单位向TUE发送下行数据。这里所说的TB可以包括至少一个CBG,一个CBG可以包括至少一个CB。
步骤1、在采用用户设备协作机制时,网络设备可以以组播的方式,将发送给TUE的TB同时发送给CUE1、CUE2和TUE。CUE1、CUE2和TUE在接收到该TB后,可以对TB进行解码,即对上述TB所包含的所有CBG进行解码。
其中,网络设备向CUE1、CUE2和TUE发送TB这个阶段可以称为用户设备协作下行阶段(User Cooperation Downlink Phase,UC DL Phase)。
可选的,在一些实施例中,上述网络设备还可以将CUE1、CUE2、TUE配置成一个协作组,并为该协作组分配一个协作组标识(Cooperation Group ID,CGID)。因此,在该场景下,上述网络设备在发送上述TB时,可以携带有CGID,以使得CUE1、CUE2、TUE可以通过该CGID,获知网络设备所组播的TB为发送给TUE的TB。或者,上述网络设备可以通过控制信令向协作组的成员(即CUE1、CUE2、TUE)指示采用TUE的标识作为协作组的标识。在该场景下,上述网络设备在发送上述TB时,可以携带有TUE的标识,以使得CUE1、CUE2、TUE可以通过该TUE的标识,获知网络设备所组播的TB为发送给TUE的TB。
步骤2、CUE1可以通过边链路向TUE发送CUE1解码正确的CBG,同时,CUE2可以通过边链路向TUE发送CUE2解码正确的CBG。TUE在接收到CUE1、CUE2发送的CBG后,可以对这些CBG进行解码。
其中,步骤2为CUE1和CUE2第一次向TUE重传CBG。
步骤3、若TUE没有正确解码在步骤2所接收到的一个或多个CBG,则TUE可以向CUE1和CUE2发送NACK消息,以指示CUE1和CUE2重新发送在步骤2所发送的CBG。
步骤4、CUE1和CUE2在接收到TUE发送的NACK消息之后,可以通过边链路向TUE重新发送步骤2所发送的CBG。TUE在接收到CUE1、CUE2发送的CBG后,可以对这些CBG进行解码。
其中,步骤4为CUE1和CUE2第二次向TUE重传CBG。可选的,CUE1和CUE2在步骤2和步骤4可以采用同一调制与编码策略(Modulation and Coding Scheme,MCS)向TUE重传CBG,也可以采用不同的MCS向TUE重传CBG。
步骤5、若TUE通过对CUE1、CUE2发送的CBG进行解码,以及,通过对网络设备发送的TB进行解码,成功得到TB的数据,则TUE可以向网络设备发送ACK消息,以向网络设备指示TUE成功接收到TB。
其中,CUE1和CUE2向TUE重传CBG的阶段可以称为用户设备协作边链路阶段(User Cooperation Sidelink Phase,UC SL Phase)。也就是说,在用户设备协作边链路阶段,各CUE可以将自己解码正确的CBG重传给TUE,以通过重传CBG的方式协助TUE解码TB,提高了TUE正确解码TB的概率,进而提高TUE的网络质量。需要说明的是,在用户设备协作边链路阶段,CUE与TUE可以在授权频谱上进行通信,也可以在非授权频谱上进行通信。
然而,由于上述CUE1和CUE2接收到的正确的CBG可能不同,且CUE1和CUE2之间又不能获知对方的接收情况。因此,在采用用户设备协作机制时,CUE1和CUE2如何向TUE重传CBG是一个亟待解决的问题。
下面以上述图1所示的通信系统为例,通过一些实施例对本申请实施例的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的一种数据传输方法的信令流程图。本实施例涉及的是第一用户设备根据第二用户设备发送的第一控制信息,向第二用户设备重传CBG的过程。其中,第一用户设备可以为CUE,第二用户设备可以为TUE。在用户设备协作时,一个TUE可以对应一个或多个协助TUE与网络设备进行通信的CUE。本申请实施例以TUE对应两个CUE(即CUE1和CUE2)为例,对本申请实施例的方法进行说明。如图4所示,该方法可以包括:
S101、网络设备向CUE1、CUE2和TUE组播TB。
具体的,网络设备与TUE在采用用户协助机制进行通信时,网络设备可以将发送给TUE的TB,以组播的方式发送给CUE1、CUE2和TUE,以使得CUE1、CUE2和TUE均可以接收到该TB。其中,该TB可以包括至少一个第一CBG,每个第一CBG包括至少一个CB。这个阶段即为前述所说的用户协助下行阶段。
图5为本申请实施例提供的一种用户设备协作的示意图。如图5所示,以网络设备向TUE发送包括CBG1、CBG2、CBG3、CBG4、CBG5的TB为例,则在用户协助机制下,网络设备可以向CUE1、CUE2、TUE组播该TB。此时,CBG1、CBG2、CBG3、CBG4、CBG5均为第一CBG。
上述网络设备可以在组播TB时,携带有TUE的标识,以使得CUE1、CUE2、TUE可以通过该TUE的标识,获知网络设备所组播的TB为发送给TUE的TB。可选的,在一些实施例中,当上述CUE1、CUE2、TUE被配置成一个协作组时,上述网络设备还可以在组播TB时携带有该协作组的CGID,以使得CUE1、CUE2、TUE可以通过该CGID,获知网络设备所组播的TB为发送给TUE的TB。
S102、TUE向CUE1、CUE2发送第一控制信息。
具体的,TUE在接收到网络设备发送的TB之后,可以对TB进行解码。然后,TUE可以根据TB的解码结果,获知对TB的哪些第一CBG解码失败。被解码失败的第一CBG即为TUE从网络设备接收失败的第一CBG。在本实施例中,为了便于区分,将TUE解码失败的第一CBG称为第二CBG。因此,TUE可以基于至少一个第二CBG(即TUE接收失败的第一CBG),同时向CUE1和CUE2发送第一控制信息,以通过第一控制信息指示CUE1和CUE2向TUE发送该至少一个第二CBG。
继续参照图5所示的示例,假定TUE在接收到该TB之后,对TB的CBG2和CBG4解码失败。此时,CBG2和CBG4即为上述所说的第二CBG。在该场景下,上述TUE向CUE1和CUE2发送的第一控制信息,可以用于指示CUE1和CUE2向TUE发送CBG2和CBG4。即,指示CUE1和CUE2向TUE重传CBG2和CBG4。
具体实现时,上述TUE可以将上述第一控制信息携带在物理层信令或媒体接入控制(Medium Access Control,MAC)包头中发送给CUE1和CUE2。
在一些实施例中,上述第一控制信息例如可以称为边链路控制信息。本领域技术人员可以理解的是,在未来移动通信系统上述第一控制信息可能沿用边链路控制信息的术语,也可能采用其他的术语。因此,本申请实施例对第一控制信息在各个通信系统中的命名不作限定。
S103、CUE1向TUE发送至少一个第三CBG。
具体的,CUE1在接收到网络设备发送的TB之后,可以对TB进行解码。然后,CUE1可以根据TB的解码结果,获知自己对TB的哪些第一CBG解码成功。被解码成功的第一CBG即为CUE1从网络设备接收正确的第一CBG。因此,CUE1在接收到TUE发送的第一控制信息之后,可以根据第一控制信息所指示的至少一个第二CBG,以及,CUE1自己所接收正确的第一CBG,确定出至少一个“被CUE1接收正确的、但被TUE接收失败的第一CBG”。为了便于区分,将被CUE1接收正确的、但被TUE接收失败的第一CBG称为第三CBG。
在上述至少一个第二CBG均为CUE1接收正确的第一CBG时,则上述CUE1根据第一控制信息所指示的至少一个第二CBG,以及,CUE1自己所接收正确的第一CBG,所确定出来的至少一个第三CBG就是该至少一个第二CBG。在上述至少一个第二CBG中的部分第二CBG为CUE1接收正确的第一CBG时,则上述CUE1根据第一控制信息所指示的至少一个第二CBG,以及,CUE1自己所接收正确的第一CBG,所确定出来的至少一个第三CBG为该至少一个第二CBG的一部分。
在确定出上述至少一个第三CBG之后,CUE1可以向TUE重传该至少一个第三CBG,以使得TUE可以接收到CUE1重传的至少一个第三CBG。通过这种方式,使得CUE1可以向TUE发送TUE所需的CBG,提高了CUE与TUE之间重传的效率。具体实现时,上述CUE1可以通过边链路向TUE重传该至少一个第三CBG。
继续参照图5所示的示例,假定CUE1在接收到该TB之后,对TB的CBG1、CBG3、CBG4和CBG5解码成功。也就是说,CBG1、CBG3、CBG4和CBG5即为CUE1从网络设备接收正确的第一CBG。在该场景下,上述CUE1在接收到TUE发送的用于指示发送CBG2和CBG4的第一控制信息之后,可以根据第一控制信息所指示的至少一个第二CBG(即CBG2和CBG4),以及,CUE1自己接收正确的第一CBG(CBG1、CBG3、CBG4 和CBG5),确定至少一个被CUE1接收正确的、但被TUE接收失败的第一CBG(即第三CBG)。
在该示例下,由于上述CUE1仅接收对了CBG2和CBG4中的CBG4,因此,上述CUE1可以确定出一个第三CBG,即CBG4。此时,CUE1所确定出来的第三CBG为上述至少一个第二CBG的一部分。
S104、CUE2向TUE发送至少一个第三CBG。
其中,第三CBG为CUE2从网络设备接收正确的第一CBG、且第三CBG为TUE从网络设备接收失败的第一CBG。
具体的,CUE2在接收到网络设备发送的TB之后,可以对TB进行解码。然后,CUE2可以根据TB的解码结果,获知自己对TB的哪些第一CBG解码成功。被解码成功的第一CBG即为CUE2从网络设备接收正确的第一CBG。因此,CUE2在接收到TUE发送的第一控制信息之后,可以根据第一控制信息所指示的至少一个第二CBG,以及,CUE2自己所接收正确的第一CBG,确定至少一个“被CUE1接收正确的、但被TUE接收失败的第一CBG”,即第三CBG。
在上述至少一个第二CBG均为CUE2接收正确的第一CBG时,则上述CUE2根据第一控制信息所指示的至少一个第二CBG,以及,CUE2自己所接收正确的第一CBG,所确定出来的至少一个第三CBG就是该至少一个第二CBG。在上述至少一个第二CBG中的部分第二CBG为CUE2接收正确的第一CBG时,则上述CUE2根据第一控制信息所指示的至少一个第二CBG,以及,CUE2自己所接收正确的第一CBG,所确定出来的至少一个第三CBG为该至少一个第二CBG的一部分。
在确定出至少一个第三CBG之后,CUE2可以向TUE重传该至少一个第三CBG,以使得TUE可以接收到CUE2重传的至少一个第三CBG。通过这种方式,使得CUE2也可以向TUE发送TUE所需的CBG,提高了CUE与TUE之间重传的效率。具体实现时,上述CUE1可以通过边链路向TUE重传该至少一个第三CBG。
继续参照图5所示的示例,假定CUE2在接收到该TB之后,对TB的CBG1、CBG2、CBG3和CBG4解码成功。也就是说,CBG1、CBG2、CBG3和CBG4即为CUE2从网络设备接收正确的第一CBG。在该场景下,上述CUE2在接收到TUE发送的用于指示发送CBG2和CBG4的第一控制信息之后,可以根据第一控制信息所指示的至少一个第二CBG(即CBG2和CBG4),以及,CUE2自己接收正确的第一CBG(CBG1、CBG2、CBG3和CBG4),确定至少一个被CUE1接收正确的、但被TUE接收失败的第一CBG(即第三CBG)。
在该示例下,由于上述CUE2将CBG2和CBG4全部接收正确,因此,上述CUE2通过上述方式,可以确定出两个第三CBG,即CBG2和CBG4。此时,CUE2所确定出来的两个第三CBG即为上述TUE所指示的全部第二CBG。
其中,CUE1和CUE2根据TUE发送的第一控制信息,向TUE重传至少一个第三CBG的阶段可以为前述所说的用户协助边链路阶段。
本申请实施例提供的数据传输方法,在采用用户设备协作机制时,CUE1和CUE2在接收到网络设备发送给TUE的TB之后,CUE1和CUE2可以根据TUE所指示的CBG,以及,自己所接收正确的CBG,向TUE重传TUE所需的CBG,提高了CUE1和CUE2 与TUE之间重传CBG的效率,从而提高了资源利用率。
可选的,在一些实施例中,上述第一控制信息还用于指示CUE1和CUE2发送至少一个第二CBG时所使用的时频资源。即CUE1和CUE2在通过边链路向TUE重传该至少一个第三CBG时所使用的时频资源。其中,上述时频资源的大小与至少一个第二CBG的个数有关。例如,当至少一个第二CBG包括2个第二CBG时,上述时频资源可以为用于发送2个CBG的时频资源。当至少一个第二CBG包括3个第二CBG时,上述时频资源可以为用于发送3个CBG的时频资源等。可选的,本申请实施例对上述时频资源的频域宽度不进行限定。
以CUE1为例,在5G通信系统中,同一个TB中的各CBG的大小近似相同。在将CBG映射至具有相同频率宽度的时频资源上时,每个CBG在时域上占用的时间长度可以视为相同。因此,上述CUE1在接收到第一控制信息之后,可以根据第一控制信息所指示的时频资源,以及,一个CBG在该时频资源上所占的时间长度,确定至少一个第二CBG中的每个第二CBG在时频资源的时域位置。
然后,上述CUE1可以根据所确定的至少一个第三CBG在至少一个第二CBG中的排列位置,确定至少一个第三CBG在边链路对应的时频资源上的时域位置(即至少一个第三CBG所在的时域符号)。即,将至少一个第三CBG在至少一个第二CBG所形成的序列中的排列位置作为至少一个第三CBG在时频资源上的时域位置。
最后,CUE1可以根据至少一个第三CBG在该时频资源上的时域位置,将至少一个第三CBG映射在时频资源上发送给TUE。相应地,TUE在该时频资源上接收到CUE1发送的至少一个第三CBG后,可以根据CUE1发送的至少一个第三CBG在该时频资源的时域位置,准确的确定出CUE1发送的至少一个第三CBG对应的第二CBG。
相应地,上述CUE2在确定出至少一个第三CBG之后,也可以采用上述CUE1所示的方式,将CUE2所确定的至少一个第三CBG映射在时频资源上发送给TUE。由于CUE1和CUE2均将至少一个第三CBG在至少一个第二CBG中的排列位置作为至少一个第三CBG在时频资源上的时域位置,使得CUE1和CUE2可以在相同的时频资源上,向TUE发送相同的CBG,提高了TUE正确接收该CBG的几率。
图6为本申请实施例提供的另一种用户设备协作的示意图。参照图5和图6,以TUE向CUE1和CUE2发送的第一控制信息,用于指示CUE1和CUE2向TUE发送CBG2和CBG4为例,则上述TUE可以通过第一控制信息指示CUE1和CUE2发送CBG2和CBG4时所使用的时频资源。在该示例下,该时频资源可以为用于发送2个CBG的时频资源。
CUE1基于第一控制信息所指示的时频资源,确定至少一个第二CBG(即CBG2和CBG4)中的CBG2和CBG4在时频资源上的时域位置。此时,CBG2位于时频资源的第1个时域位置,CBG4位于时频资源的第2个时域位置。然后,CUE1根据至少一个第二CBG(即CBG2和CBG4),以及,CUE1自己接收正确的第一CBG(CBG1、CBG3、CBG4和CBG5),可以确定出一个第三CBG(即CBG4)。其中,CBG4位于至少一个第二CBG(即CBG2和CBG4所形成的序列)中的第2个位置。在该示例下,上述CUE1可以确定将该CBG4映射在第一控制信息所指示的时频资源的第2个时域位置上(即上述所确定的CBG4的时域位置上)。这样,CUE1将该CBG4映射在该时频资源的第2个时域位置上发送给TUE后,TUE可以根据CBG4所在的时域位置,准确的获知该CBG为至少一个第 二CBG中的CBG4。需要说明的是,由于CUE1并没有接收对CBG2,因此,CUE1可以在时频资源的第1个时域位置上不发送任何信息。
相应地,CUE2基于第一控制信息所指示的时频资源,确定至少一个第二CBG(即CBG2和CBG4)中的CBG2和CBG4在时频资源上的时域位置。然后,CUE2根据至少一个第二CBG(即CBG2和CBG4),以及,CUE2自己接收正确的第一CBG(CBG1、CBG2、CBG3和CBG4),可以确定出一个第三CBG(即CBG2和CBG4)。其中,CBG2位于至少一个第二CBG(即CBG2和CBG4所形成的序列)中的第1个位置、CBG4位于至少一个第二CBG(即CBG2和CBG4所形成的序列)中的第2个位置。在该示例下,上述CUE2可以确定将CBG2映射在第一控制信息所指示的时频资源的第1个时域位置上,将CBG4映射在第一控制信息所指示的时频资源的第2个时域位置上。这样,CUE2在将CBG2映射在第一控制信息所指示的时频资源的第1个时域位置上、将该CBG4映射在该时频资源的第2个时域位置上发送给TUE后,TUE可以根据CBG2和CBG4所在的时域位置,准确的获知哪个是CBG2,哪个是CBG4。
通过上述方式,使得上述CUE1和CUE2可以在时频资源的第2个时域位置上,都向TUE发送CBG4,提高了TUE正确接收该CBG4的几率。
本申请实施例提供的数据传输方法,在采用用户设备协作机制时,CUE1和CUE2可以在相同的时频资源上向TUE发送相同的CBG,提高了TUE正确接收该CBG的几率,进而提高了TUE与CUE1和CUE2之间重传CBG的效率,从而提高了资源利用率。
可选的,在一些实施例中,上述第一控制信息还用于指示CUE1和CUE2发送至少一个第二CBG时所使用的传输参数。其中,这里所说的传输参数例如可以包括下述一项或多项:传输模式、接收天线端口数、调制编码方式等。这里所说的传输模式例如可以为开环多入多出技术(Multiple-Input Multiple-Output,MIMO)、闭环MIMO、多用户多入多出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)、波束赋形(Beamforming)等。这里所说的调制方式可以为以下任意一种:二进制相移键控(Binary Phase Shift Keying,BPSK),正交相移键控(Quadrature Phase Shift Keying,QPSK),16正交幅度调制(Quadrature Amplitude Modulation,QAM),64QAM、和256QAM等。
则上述CUE1和CUE2在向TUE发送至少一个第三CBG时,可以使用第一控制信息所指示的传输参数,向TUE发送至少一个第三CBG。相应地,TUE可以使用该传输参数,接收CUE1和CUE2发送的至少一个第三CBG。通过这种方式,可以使CUE1和CUE2与TUE之间采用相同的传输参数进行通信,确保了CUE1和CUE2与TUE之间的正常通信不被干扰。
本申请实施例提供的数据传输方法,在采用用户设备协作机制时,CUE1和CUE2可以根据TUE所指示的传输参数,与TUE进行通信,确保了CUE1和CUE2与TUE之间的正常通信。
图7为本申请实施例提供的另一种数据传输方法的信令流程图。本实施例涉及的是网络设备根据CUE1和CUE2发送的第二控制信息,向TUE重传CUE1和CUE2均接收失败的CBG的过程。如图7所示,在上述S101之后,该方法还可以包括:
S201、CUE1向网络设备发送第二控制信息。
具体的,上述CUE1在接收到网络设备发送的TB之后,可以对TB进行解码。然后, CUE1可以根据TB的解码结果,获知自己对TB的哪些第一CBG解码成功(即正确接收),对TB的哪些第一CBG解码失败(即接收失败)。因此,CUE1可以基于TB的解码结果,向网络设备发送用于指示CUE1接收失败的第一CBG,和/或,用于指示CUE1接收正确的第一CBG的第二控制信息,以使得网络设备可以通过第二控制信息,获知CUE1的接收结果。可选的,上述第二控制信息例如可以称为针对HARQ的反馈消息,携带在物理层信令中。
其中,本实施例不限定上述第二控制信息指示CUE1接收失败的第一CBG,和/或,指示CUE1接收正确的第一CBG的方式。例如,上述第二控制信息可以包括位图(Bitmap),以通过位图指示CUE1接收失败的第一CBG,和/或,指示CUE1接收正确的第一CBG。其中,位图中的每一个比特位对应一个第一CBG。示例性的,当某一比特位为第一值时,指示该比特位对应的第一CBG被第一用户设备正确接收,当某一比特位为第二值时,指示该比特位对应的第一CBG被所述第一用户设备接收失败。可选的,当第一值为1时,第二值可以为0,或者,当第一值为0时,第二值可以为1。
可选地,上述CUE1和网络设备之间还可以预设有一个表格(Table)。其中,该表格可以包括多种CUE1接收失败的第一CBG,和/或,CUE1接收正确的第一CBG的组合。在表格中,每种组合可以对应一个序列。示例性的,表格中的序号1对应的组合,可以为TB中的第一个第一CBG为接收正确的第一CBG,其他的第一CBG为错误接收的第一CBG。表格中的序号2对应的组合,可以为TB中的第二个第一CBG为接收正确的第一CBG,其他的第一CBG为错误接收的第一CBG。以此类推,直至排列组合所有的情况。这样,上述CUE1通过在上述第二控制信息中携带该表格中的序号,即可指示CUE1接收失败的第一CBG,和/或,指示CUE1接收正确的第一CBG。
具体实现时,上述表格的序号可以采用比特的方式表达。以上述CUE1和网络设备之间预设的表格包括32个序号为例,则上述CUE1可以在第二控制信息中占用5个比特位置来指示该32个序号中的任一符号。例如,“00001”表示表格中的序号1,“00010”表示序号2等。
图8为本申请实施例提供的又一种用户设备协作的示意图。图9为本申请实施例提供的又一种用户设备协作的示意图。参照图8和图9,以比特位为0表示接收失败,比特位为1表示接收正确。继续以网络设备向TUE发送包括CBG1、CBG2、CBG3、CBG4、CBG5的TB为例,此时,CBG1、CBG2、CBG3、CBG4、CBG5均为第一CBG。
假定CUE1在接收到该TB之后,对TB的CBG1、CBG3、CBG4和CBG5解码成功。也就是说,CBG1、CBG3、CBG4和CBG5即为CUE1从网络设备接收正确的第一CBG,CBG2为CUE1从网络设备接收失败的第一CBG。在该场景下,上述CUE1可以向网络设备发送携带有位图“10111”的第二控制信息,以通过该位图表示CBG1、CBG3、CBG4和CBG5接收正确,CBG2接收失败。
可选的,在一些实施例中,上述TUE向CUE所发送的第一控制信息也可以包括位图,以通过位图指示TUE接收失败的第一CBG(即第二CBG),和/或,指示TUE接收正确的第一CBG,从而隐式的指示TUE需要CUE1和CUE2重传的至少一个第二CBG。
参照图8和图9,以比特位为0表示接收失败,比特位为1表示接收正确。假定TUE在接收到该TB之后,对TB的CBG1、CBG3和CBG5解码成功。也就是说,CBG1、CBG3 和CBG5即为TUE从网络设备接收正确的第一CBG,CBG2和CBG4为TUE从网络设备接收失败的第一CBG。在该场景下,上述TUE可以向CUE1和CUE2发送携带有位图“10101”的第一控制信息,以通过该位图来隐式的指示CUE1和CUE2向TUE重传CBG2和CBG4。
S202、CUE2向网络设备发送第二控制信息。
具体的,上述CUE2在接收到网络设备发送的TB之后,可以对TB进行解码。然后,CUE2可以根据TB的解码结果,获知自己对TB的哪些第一CBG解码成功(即正确接收),对TB的哪些第一CBG解码失败(即接收失败)。因此,CUE2可以基于TB的解码结果,向网络设备发送用于指示CUE2接收失败的第一CBG,和/或,用于指示CUE2接收正确的第一CBG的第二控制信息,以使得网络设备可以通过第二控制信息,获知CUE2的接收结果。
继续以上述第二控制信息包括位图为例,参照图8和图9,以比特位为0表示接收失败,比特位为1表示接收正确。假定CUE2在接收到该TB之后,对TB的CBG1、CBG3、CBG4和CBG5解码成功。也就是说,CBG1、CBG3、CBG4和CBG5即为CUE2从网络设备接收正确的第一CBG,CBG2为CUE2从网络设备接收失败的第一CBG。在该场景下,上述CUE2可以向网络设备发送携带有位图“10111”的第二控制信息,以通过该位图表示CBG1、CBG3、CBG4和CBG5接收正确,CBG2接收失败。
S203、网络设备根据CUE1发送的第二控制信息和CUE2发送的第二控制信息,确定至少一个第四CBG。
具体的,网络设备在接收到CUE1发送的第二控制信息和CUE2发送的第二控制信息后,可以获知CUE1和CUE2的解码结果,从而使得网络设备可以确定是否存在被所有CUE(即CUE1和CUE2)接收失败的第一CBG。为了便于区分,将所有CUE(即CUE1和CUE2)接收失败的第一CBG称为第四CBG。
继续参照上述S201和S202的示例,如上述示例所说,上述CBG2为CUE1和CUE2接收失败的CBG,因此,CBG2即为上述所说的第四CBG。
S204、网络设备向TUE重新发送至少一个第四CBG。
具体的,由于CUE1和CUE2的网络质量优于TUE,因此,在CUE1和CUE2都没有正确接收该至少一个第四CBG时,TUE正确接收该至少一个第四CBG的可能较低。在这种场景下,网络设备可以在未接收到TUE发送的针对HARQ的反馈消息之前,直接向TUE重新发送该至少一个第四CBG,以使得TUE可以接收到网络设备重传的该至少一个第四CBG,提高了TUE正确接收该至少一个第四CBG的几率,从而提高了TUE正确解码TB的概率,进而提高TUE的网络质量。通过这种方式,可以有效避免因一个或多个第一CBG没有被CUE1和CUE2接收正确而导致CUE1和CUE2无法协助TUE的情况,能够提高用户设备协作的可靠性。
由于除至少一个第四CBG之外的其他第一CBG已经被CUE1和/或CUE2正确接收。因此,若除至少一个第四CBG之外的其他第一CBG中存在未被TUE正确接收的第一CBG,则TUE可以在接收到网络设备发送的TB之后,继续采用图4所示的方法,指示CUE1和/或CUE2重传这些第一CBG。
图10为本申请实施例提供的又一种用户设备协作的示意图。参照图8、图9和图10,在网络设备向CUE1、CUE2和TUE组播TB之后,由于CBG2未被CUE1和CUE2正确 接收,CBG2和CBG4未被TUE正确接收,因此,TUE可以向CUE1和CUE2发送第一控制信息,以指示CUE1和CUE2向TUE发送CBG2和CBG4。同时,CUE1和CUE2可以向网络设备发送第二控制信息,以使得网络设备通过该第二控制信息获知CBG2未被所有的CUE正确接收。在该场景下,CUE1和CUE2可以采用图4所示的方式,通过边链路向TUE重传CBG4。网络设备则采用现有的重传CBG的方式,通过下行链路向TUE重传CBG2,从而使得TUE可以从网络设备获取到CBG2,从CUE1和CUE2获取到CBG4。
具体实现时,上述CUE1和CUE2可以通过上行链路向网络设备发送第二控制信息,TUE可以通过边链路向CUE1和CUE2发送第一控制信息,其中,上行链路与边链路占用不同的频带,或者,边链路使用非授权频段进行、上行链路使用授权频段进行,或者,CUE1和CUE2可以为同时支持边链路和上行链路通信的用户设备(即CUE1和CUE2可以采用全双工模式,在发送信息的同时可以接收信息)。
可选的,在上述S202之后,若网络设备在接收到CUE1发送的第二控制信息和CUE2发送的第二控制信息后,根据CUE1和CUE2的解码结果,确定不存在被所有CUE(即CUE1和CUE2)接收失败的第一CBG。也就是说,TB的所有CBG都被CUE1和/或CUE2正确接收,则上述网络设备可以不用再向TUE执行重传的操作,仅由CUE1和CUE2采用图4所示的方式,向TUE重传TUE所需的CBG即可。通过这种方式,可以减少网络设备执行重传操作的次数,节省了下行传输的开销。
图11为本申请实施例提供的又一种用户设备协作的示意图。图12为本申请实施例提供的又一种用户设备协作的示意图。如图11和图12所示,继续以网络设备向TUE发送包括CBG1、CBG2、CBG3、CBG4、CBG5的TB为例,此时,CBG1、CBG2、CBG3、CBG4、CBG5均为第一CBG。
假定CUE1在接收到该TB之后,对TB的CBG1、CBG3、CBG4和CBG5解码成功。也就是说,CBG1、CBG3、CBG4和CBG5即为CUE1从网络设备接收正确的第一CBG,CBG2为CUE1从网络设备接收失败的第一CBG。在该场景下,上述CUE1可以向网络设备发送携带有位图“10111”的第二控制信息。
假定CUE2在接收到该TB之后,对TB的CBG1、CBG2、CBG4和CBG5均解码成功。也就是说,CBG1、CBG2、CBG4和CBG5即为CUE2从网络设备接收正确的第一CBG,CBG3为CUE2从网络设备接收失败的第一CBG。在该场景下,上述CUE2可以向网络设备发送携带有位图“11011”的第二控制信息。
假定TUE在接收到该TB之后,对TB的CBG1、CBG3和CBG5均解码成功。也就是说,CBG1、CBG3和CBG5即为TUE从网络设备接收正确的第一CBG,CBG和CBG4为TUE从网络设备接收失败的第一CBG(即第二CBG)。
通过上述信息可知,虽然CUE1没有正确接收CBG2,但是CBG2被CUE2正确接收,相应地,虽然CUE2没有正确接收CBG3,但是CBG3被CUE1正确接收。也就是说,通过CUE1和CUE2,可以得到该TB所有的第一CBG。因此,上述网络设备在接收到CUE1和CUE2发送的第二控制信息之后,可以通过这两个第二控制信息获知,不存在被所有CUE接收失败的第一CBG。所以上述网络设备可以不用再向TUE执行重传的操作,仅由CUE1和CUE2在接收到TUE发送的用于发送CBG2和CBG4的第一指示信息后,采用图4所示的方式,向TUE重传TUE所需的CBG即可。在该示例下,CUE1向TUE重传CBG4, CUE2向TUE重传CBG2和CBG4。通过这种方式,可以减少网络设备执行重传操作的次数,节省了下行传输的开销。
本申请实施例提供的数据传输方法,在采用用户设备协作机制时,CUE1和CUE2在接收到网络设备发送给TUE的TB之后,CUE1和CUE2可以向网络设备发送第二控制信息,以通过第二控制信息指示自己接收失败的第一CBG,和/或,正确接收的第一CBG,从而使得网络设备可以根据CUE1和CUE2的第二控制信息,确定至少一个均未被CUE1和CUE2正确接收的第一CBG,进而使得网络设备可以向TUE重传这些第一CBG。通过这种方式,可以有效避免因一个或多个第一CBG没有被CUE1和CUE2接收正确而导致CUE1和CUE2无法协助TUE的情况,能够提高用户设备协作的可靠性。
在前述实施例中,均以CUE1和CUE2基于TUE发送的第一控制信息,向TUE重传CBG为例,对本申请实施例提供的数据传输方法进行了介绍。下述实施例将重点介绍CUE1和CUE2在接收到网络设备发送的TB之后,根据自己对TB的解码结果,主动向TUE重传CBG的过程。在本申请实施例中,为了便于区分,上述CUE1和CUE2基于TUE发送的第一控制信息,向TUE重传CBG的方式可以称为TUE触发的用户设备协作模式,上述CUE1和CUE2基于自己对TB的解码结果,主动向TUE重传CBG的方式可以称为CUE触发的用户设备协作模式。
在上述S101之前,该方法还可以包括:
网络设备向CUE1、CUE2和TUE发送第三控制信息。
具体的,上述第三控制信息可以用于指示CUE1和CUE2与TUE使用边链路进行通信时所使用的时频资源。即CUE1和CUE2在通过边链路向TUE重传TB中的第一CBG时所使用的时频资源。其中,上述时频资源的大小与TB所包括的第一CBG的个数有关。例如,当TB包括5个第一CBG时,上述时频资源可以为用于发送5个CBG的时频资源。当TB包括4个第一CBG时,上述时频资源可以为用于发送4个CBG的时频资源等。可选的,本申请实施例对上述时频资源的频域宽度不进行限定。
具体实现时,上述网络设备可以将上述第三控制信息携带在物理层信令、系统信息块(System Information Block,SIB)信令、资源控制(Radio Resource Control,RRC)信令、MAC包头、下行控制信令等中,发送给CUE1、CUE2和TUE。
在一些实施例中,上述第三控制信息例如可以称为协作控制信息或下行控制信息。本领域技术人员可以理解的是,在未来移动通信系统上述第三控制信息可能沿用下行控制信息的术语,也可能采用其他的术语。因此,本申请实施例对第三控制信息在各个通信系统中的命名不作限定。
则在该实现方式下,上述S101之后,该方法还可以包括:
以CUE1为例,上述CUE1在接收到网络设备发送的TB之后,可以对TB进行解码。然后,CUE1可以根据TB的解码结果,获知自己对TB的哪些第一CBG解码成功。被解码成功的第一CBG即为CUE1从网络设备接收正确的第一CBG。因此,上述CUE1可以根据解码成功的第一CBG在TB中的排列位置,确定解码成功的第一CBG在边链路对应的时频资源上的时域位置。即,将解码成功的第一CBG在TB中的排列位置作为解码成功的第一CBG在时频资源上的时域位置。
然后,CUE1可以根据解码成功的第一CBG在该时频资源上的时域位置,将解码成功 的第一CBG映射在时频资源上发送给TUE。相应地,TUE在该时频资源上接收到CUE1发送的解码成功的第一CBG后,可以根据CUE1发送的解码成功的第一CBG在该时频资源的时域位置,准确的确定出CUE1发送的第一CBG是哪一个。
相应地,上述CUE2也可以采用上述CUE1所示的方式,将CUE2解码成功的第一CBG映射在时频资源上发送给TUE。由于CUE1和CUE2均将解码成功的第一CBG在TB中的排列位置作为解码成功的第一CBG在时频资源上的时域位置,使得CUE1和CUE2可以在相同的时频资源上,向TUE发送相同的CBG,提高了TUE正确接收该CBG的几率。
图13为本申请实施例提供的又一种用户设备协作的示意图。参照图5和图13,以网络设备向TUE发送包括CBG1、CBG2、CBG3、CBG4、CBG5的TB为例,此时,CBG1、CBG2、CBG3、CBG4、CBG5均为第一CBG。
则在网络设备向CUE1、CUE2、TUE组播该TB之前,网络设备可以向CUE1、CUE2、TUE发送上述第三控制信息,其中,该第三控制信息用于指示CUE1和CUE2发送该TB中的CBG时所使用的时频资源。在本示例中,该时频资源可以为包括5个CBG时域资源的时频资源。
在用户协助机制下,网络设备在向CUE1、CUE2、TUE组播该TB之后,假定CUE1自己接收正确的第一CBG为CBG1、CBG3、CBG4和CBG5,则上述CUE1可以确定在时频资源的第1个时域位置上发送CBG1、在第3个时域位置上发送CBG3、在第4个时域位置上发送CBG4、在第5个时域位置上发送CBG5。由于CUE1并没有接收对CBG2,因此,CUE1可以在时频资源的第2个时域位置上不发送任何信息。
假定CUE2自己接收正确的第一CBG为CBG1、CBG2、CBG3和CBG4,则上述CUE2可以确定在时频资源的第1个时域位置上发送CBG1、在第2个时域位置上发送CBG2、在第3个时域位置上发送CBG3、在第4个时域位置上发送CBG4。由于CUE2并没有接收对CBG5,因此,CUE2可以在时频资源的第5个时域位置上不发送任何信息。
通过上述方式,可以使CUE1和CUE2在相同的时频资源上,向TUE发送同一个CBG,提高了TUE正确接收该CBG的几率。
本申请实施例提供的数据传输方法,在采用用户设备协作机制时,CUE1和CUE2可以在相同的时频资源上向TUE发送相同的CBG,提高了TUE正确接收该CBG的几率,进而提高了TUE与CUE1和CUE2之间重传CBG的效率,从而提高了资源利用率。
可选的,在一些实施例中,上述第三控制信息还用于指示CUE1和CUE2发送TB中的第一CBG时所使用的传输参数。其中,这里所说的传输参数例如可以包括下述一项或多项:传输模式、接收天线端口数、调制编码方式等。
则上述CUE1和CUE2在向TUE发送自己解码正确的第一CBG时,可以使用第三控制信息所指示的传输参数,向TUE发送自己解码正确的第一CBG。相应地,TUE可以使用该传输参数,接收CUE1和CUE2发送的自己解码正确的第一CBG。通过这种方式,可以使CUE1和CUE2与TUE之间采用相同的传输参数进行通信,确保了CUE1和CUE2与TUE之间的正常通信。
本申请实施例提供的数据传输方法,在采用用户设备协作机制时,CUE1和CUE2可以根据TUE所指示的传输参数,与TUE进行通信,确保了CUE1和CUE2与TUE之间的正常通信。
可选的,在一些实施例中,当上述通信系统既支持TUE触发的用户设备协作模式、又支持CUE触发的用户设备协作模式时,上述网络设备还可以通过第三控制信息指示CUE1、CUE2和TUE之间的用户设备协作模式。
例如,上述网络设备可以通过第三控制信息中的一个比特位,来指示CUE1、CUE2和TUE之间的用户设备协作模式。当该比特位为0时,表示CUE1、CUE2和TUE之间的用户设备协作模式为TUE触发的用户设备协作模式,当该比特位为1时,表示CUE1、CUE2和TUE之间的用户设备协作模式为CUE触发的用户设备协作模式。或者,当该比特位为1时,表示CUE1、CUE2和TUE之间的用户设备协作模式为TUE触发的用户设备协作模式,当该比特位为0时,表示CUE1、CUE2和TUE之间的用户设备协作模式为CUE触发的用户设备协作模式。
需要说明的是,仅在上述第三控制信息用于指示CUE1、CUE2和TUE之间的用户设备协作模式为CUE触发的用户设备协作模式时,上述第三控制信息还可以指示CUE1和CUE2与TUE使用边链路进行通信时所使用的时频资源,和/或传输参数。当上述第三控制信息用于指示CUE1、CUE2和TUE之间的用户设备协作模式为TUE触发的用户设备协作模式时,上述CUE1和CUE2与TUE使用边链路进行通信时所使用的时频资源,和/或传输参数可以由TUE通过前述所说的第一控制信息进行指示,对此不再赘述。
本申请实施例提供的数据传输方法,在通信系统支持多种用户设备协作模式时,网络设备可以通过第三控制信息指示CUE1、CUE2和TUE所采用的用户设备协作模式,扩大了用户设备协作的应用场景,提高了用户设备协作的灵活性。
图14为本申请实施例提供的一种用户设备的结构示意图。如图14所示,该用户设备可以为第一用户设备。该第一用户设备可以包括:接收模块11和发送模块12。其中,
接收模块11,用于接收网络设备发送给第二用户设备的传输块,以及,所述第二用户设备发送的第一控制信息,所述传输块包括至少一个第一编码块组CBG;所述第一控制信息用于指示所述第一用户设备向所述第二用户设备发送至少一个第二CBG,所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;其中,上述第一用户设备可以为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
发送模块12,用于向所述第二用户设备发送至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
可选的,在一些实施例中,上述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;则在该实现方式下,上述第一用户设备,还可以包括:处理模块13。其中,处理模块13,用于根据所述至少一个第三CBG在所述至少一个第二CBG中的排列位置,确定所述至少一个第三CBG在所述时频资源上的时域位置;则上述发送模块,具体用于12将所述至少一个第三CBG映射在所述时频资源上发送给所述第二用户设备。
可选的,在一些实施例中,上述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数。其中,上述传输参数例如可以包括下述一项或 多项:传输模式、接收天线端口数、调制编码方式。则在该实现方式下,上述发送模块12,具体用于使用所述传输参数,向所述第二用户设备发送所述至少一个第三CBG。
可选的,在一些实施例中,上述发送模块12,还用于在所述接收模块11接收网络设备发送给第二用户设备的传输块之后,向所述网络设备发送第二控制信息,所述第二控制信息用于指示所述第一用户设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG。示例性的,上述第二控制信息可以包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
可选的,在一些实施例中,上述接收模块11,还用于在接收网络设备发送给第二用户设备的传输块之前,接收所述网络设备发送的第三控制信息,所述第三控制信息用于指示所述第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源;则在该实现方式下,上述第一用户设备还可以包括:处理模块13。其中,处理模块13用于根据至少一个接收正确的第一CBG在传输块中的排列位置,确定所述至少一个接收正确的第一CBG在所述时频资源上的时域位置;所述接收正确的第一CBG为所述第一用户设备从所述网络设备接收正确的第一CBG;上述发送模块12,具体用于将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备。
可选的,在一些实施例中,上述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数;其中,上述传输参数例如可以包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。则在该实现方式下,上述发送模块12,具体用于使用所述传输参数,将所述至少一个接收正确的第一CBG映射在所述时频资源上发送给所述第二用户设备。
可选的,在一些实施例中,上述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
本申请实施例提供的第一用户设备,可以执行上述方法实施例中第一用户设备的动作,其实现原理和技术效果类似,在此不再赘述。
图15为本申请实施例提供的另一种用户设备的结构示意图。如图15所示,该用户设备可以为第二用户设备。该第二用户设备可以包括:接收模块21和发送模块22。其中,
接收模块21,用于接收网络设备发送的传输块,所述传输块包括至少一个第一编码块组CBG;
发送模块22,用于向至少一个第一用户设备发送第一控制信息,所述第一控制信息用于指示每个所述第一用户设备向所述第二用户设备发送至少一个第二CBG;所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;其中,上述第一用户设备可以为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备。
所述接收模块21,还用于接收所述至少一个第一用户设备发送的至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
可选的,在一些实施例中,上述第一控制信息还用于指示所述第一用户设备发送所述 至少一个第二CBG时所使用的时频资源;则在该实现方式下,上述接收模块21,具体用于在所述时频资源上接收所述至少一个第一用户设备发送的至少一个第三CBG;相应地,上述第二用户设备还可以包括:处理设备23。其中,处理模块23,用于根据每个第一用户设备发送的至少一个第三CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个第三CBG对应的第二CBG。
可选的,在一些实施例中,上述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;其中,上述传输参数例如可以包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。则在该实现方式下,上述接收模块21,具体用于使用所述传输参数,接收所述至少一个第一用户设备发送的第三CBG。
可选的,在一些实施例中,上述接收模块21,还用于在接收所述至少一个第一用户设备发送的至少一个第三CBG之后,接收所述网络设备发送的至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG。
可选的,在一些实施例中,上述接收模块21,还用于在接收网络设备发送的传输块之前,接收所述网络设备发送的第三控制信息,并在接收网络设备发送的传输块之后,在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG;相应地,上述第二用户设备还可以包括:处理设备23。其中,处理模块23,用于根据每个第一用户设备发送的至少一个接收正确的第一CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个接收正确的第一CBG在所述传输块中的位置;其中,所述第三控制信息用于指示所述至少一个第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源。
可选的,在一些实施例中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数;其中,上述传输参数例如可以包括下述一项或多项:传输模式、接收天线端口数、调制编码方式。则在该实现方式下,上述接收模块21,具体用于使用所述传输参数,在所述时频资源上接收所述至少一个第一用户设备发送的至少一个接收正确的第一CBG。
可选的,在一些实施例中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
本申请实施例提供的第二用户设备,可以执行上述方法实施例中第二用户设备的动作,其实现原理和技术效果类似,在此不再赘述。
图16为本申请实施例提供的一种网络设备的结构示意图。如图16所示,该网络设备可以包括:发送模块31、接收模块32和处理模块33。其中,
发送模块31,用于向至少一个第一用户设备和第二用户设备组播传输块,所述传输块包括至少一个第一编码块组CBG;其中,上述第一用户设备可以为用于协助所述第二用户设备与网络设备之间进行通信的用户设备,或,所述第一用户设备和所述第二设备为同一协作组中的用户设备;
接收模块32,用于接收每个所述第一用户设备发送的第二控制信息,所述第二控制信息用于指示所述第一用户设备从所述网络设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG;
处理模块33,用于根据每个所述第一用户设备发送的第二控制信息,确定至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG;
所述发送模块31,还用于向所述第二用户设备重新发送所述至少一个第四CBG。
可选的,在一些实施例中,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
可选的,在一些实施例中,上述发送模块31,还用于在向至少一个第一用户设备和第二用户设备组播传输块之前,向所述至少一个第一用户设备和所述第二用户设备发送第三控制信息,所述第三控制信息用于指示所述第一用户设备向所述第二用户设备发送所述传输块时所使用的时频资源。
可选的,在一些实施例中,所述第三控制信息还用于指示所述第一用户设备发送所述传输块时所使用的传输参数。
可选的,在一些实施例中,所述第三控制信息还用于指示所述第一用户设备与第二用户设备之间所使用的用户协作模式。
本申请实施例提供的网络设备,可以执行上述方法实施例中网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上第一用户设备、第二用户设备、网络设备的发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器,而处理模块可以以软件通过处理元件调用的形式实现、也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述设备的存储器中,由上述设备的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图17为本申请实施例提供的又一种用户设备的结构示意图。如图17所示,该用户设备可以为第一用户设备,该第一用户设备可以包括:处理器41(例如CPU)、存储器42、接收器43和发送器44;接收器43和发送器44耦合至处理器41,处理器41控制接收器43的接收动作、处理器41控制发送器44的发送动作。存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本 申请实施例涉及的第一用户设备还可以包括:电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在第一用户设备的收发信机中,也可以为第一用户设备上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现第一用户设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使处理器41执行上述方法实施例中第一用户设备的处理动作,使发送器44执行上述方法实施例中第一用户设备的发送动作,使接收器43执行上述方法实施例中第一用户设备的接收动作,其实现原理和技术效果类似,在此不再赘述。
图18为本申请实施例提供的又一种用户设备的结构示意图。如图18所示,该用户设备可以为第二用户设备,该第二用户设备可以包括:处理器51(例如CPU)、存储器52、接收器53和发送器54;接收器53和发送器54耦合至处理器51,处理器51控制接收器53的接收动作、处理器51控制发送器54的发送动作。存储器52可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器52中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的第二用户设备还可以包括:电源55、通信总线56以及通信端口57。接收器53和发送器54可以集成在第二用户设备的收发信机中,也可以为第二用户设备上独立的收发天线。通信总线56用于实现元件之间的通信连接。上述通信端口57用于实现第二用户设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器52用于存储计算机可执行程序代码,程序代码包括指令;当处理器51执行指令时,指令使处理器51执行上述方法实施例中第二用户设备的处理动作,使发送器54执行上述方法实施例中第二用户设备的发送动作,使接收器53执行上述方法实施例中第二用户设备的接收动作,其实现原理和技术效果类似,在此不再赘述。
图19为本申请实施例提供的另一种网络设备的结构示意图。如图19所示,该网络设备可以包括:处理器61(例如CPU)、存储器62、接收器63和发送器64;接收器63和发送器64耦合至处理器61,处理器61控制接收器63的接收动作、处理器61控制发送器64的发送动作。存储器62可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器62中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络设备还可以包括:电源65、通信总线66以及通信端口67。接收器63和发送器64可以集成在网络设备的收发信机中,也可以为网络设备上独立的收发天线。通信总线66用于实现元件之间的通信连接。上述通信端口67用于实现网络设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器62用于存储计算机可执行程序代码,程序代码包括指令;当处理器61执行指令时,指令使处理器61执行上述方法实施例中网络设备的处理动作,使发送器64执行上述方法实施例中网络设备的发送动作,使接收器63执行上述方法实施例中网络设备的接收动作,其实现原理和技术效果类似,在此不再赘述。
正如上述实施例,本申请实施例涉及的用户设备可以是手机、平板电脑等无线终端,因此,以用户设备为手机为例:图20为本申请实施例提供的用户设备为手机时的结构框 图。参考图20,该手机可以包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图20中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图20对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,例如,将基站的下行信息接收后,给处理器1180处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖于显示面板1141之上,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处 理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图10中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,光传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161以及传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图20示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变本申请实施例的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;例如,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),可选的,电源可以通过电源管理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头1200,该摄像头可以为前置摄像头,也可以为后置摄像头。尽管未示出,手机还可以包括蓝牙模块、GPS模块等,在此不再赘述。
在本申请实施例中,该手机所包括的处理器1180可以用于执行上述数据传输方法实施例,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种芯片,包括处理器和接口。其中接口用于输入输出处理器所处理的数据或指令。处理器用于执行以上方法实施例中提供的方法。该芯片可以应用于用户设备中也可以应用于网络设备中。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行以上方法实施例提供的方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,该程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例提供的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (22)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一用户设备接收网络设备发送给第二用户设备的传输块,所述传输块包括至少一个第一编码块组CBG;
    所述第一用户设备接收所述第二用户设备发送的第一控制信息,所述第一控制信息用于指示所述第一用户设备向所述第二用户设备发送至少一个第二CBG,所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
    所述第一用户设备向所述第二用户设备发送至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
    所述第一用户设备向所述第二用户设备发送至少一个第三CBG,包括:
    所述第一用户设备根据所述至少一个第三CBG在所述至少一个第二CBG中的排列位置,确定所述至少一个第三CBG在所述时频资源上的时域位置;
    所述第一用户设备将所述至少一个第三CBG映射在所述时频资源上发送给所述第二用户设备。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
    所述第一用户设备向所述第二用户设备发送至少一个第三CBG,包括:
    所述第一用户设备使用所述传输参数,向所述第二用户设备发送所述至少一个第三CBG。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一用户设备接收网络设备发送给第二用户设备的传输块之后,所述方法还包括:
    所述第一用户设备向所述网络设备发送第二控制信息,所述第二控制信息用于指示所述第一用户设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG。
  5. 根据权利要求4所述的方法,其特征在于,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
  6. 一种数据传输方法,其特征在于,所述方法包括:
    第二用户设备接收网络设备发送的传输块,所述传输块包括至少一个第一编码块组CBG;
    所述第二用户设备向至少一个第一用户设备发送第一控制信息,所述第一控制信息用于指示每个所述第一用户设备向所述第二用户设备发送至少一个第二CBG;所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
    所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG,所述第 三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
  7. 根据权利要求6所述的方法,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
    所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG,包括:
    所述第二用户设备在所述时频资源上接收所述至少一个第一用户设备发送的至少一个第三CBG,并根据每个第一用户设备发送的至少一个第三CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个第三CBG对应的第二CBG。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
    所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG,包括:
    所述第二用户设备使用所述传输参数,接收所述至少一个第一用户设备发送的第三CBG。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述第二用户设备接收所述至少一个第一用户设备发送的至少一个第三CBG之后,所述方法还包括:
    所述第二用户设备接收所述网络设备发送的至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG。
  10. 一种数据传输方法,其特征在于,所述方法包括:
    网络设备向至少一个第一用户设备和第二用户设备组播传输块,所述传输块包括至少一个第一编码块组CBG;
    所述网络设备接收每个所述第一用户设备发送的第二控制信息,所述第二控制信息用于指示所述第一用户设备从所述网络设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG;
    所述网络设备根据每个所述第一用户设备发送的第二控制信息,确定至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG;
    所述网络设备向所述第二用户设备重新发送所述至少一个第四CBG。
  11. 根据权利要求10所述的方法,其特征在于,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
  12. 一种用户设备,其特征在于,所述用户设备为第一用户设备,所述第一用户设备包括:
    接收模块,用于接收网络设备发送给第二用户设备的传输块,以及,所述第二用户设备发送的第一控制信息,所述传输块包括至少一个第一编码块组CBG;所述第一控制信息用于指示所述第一用户设备向所述第二用户设备发送至少一个第二CBG,所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
    发送模块,用于向所述第二用户设备发送至少一个第三CBG,所述第三CBG为所述 第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
  13. 根据权利要求12所述的设备,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
    所述第一用户设备,还包括:
    处理模块,用于根据所述至少一个第三CBG在所述至少一个第二CBG中的排列位置,确定所述至少一个第三CBG在所述时频资源上的时域位置;
    所述发送模块,具体用于将所述至少一个第三CBG映射在所述时频资源上发送给所述第二用户设备。
  14. 根据权利要求12或13所述的设备,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
    所述发送模块,具体用于使用所述传输参数,向所述第二用户设备发送所述至少一个第三CBG。
  15. 根据权利要求12-14任一项所述的设备,其特征在于,
    所述发送模块,还用于在所述接收模块接收网络设备发送给第二用户设备的传输块之后,向所述网络设备发送第二控制信息,所述第二控制信息用于指示所述第一用户设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG。
  16. 根据权利要求15所述的设备,其特征在于,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
  17. 一种用户设备,其特征在于,所述用户设备为第二用户设备,所述第二用户设备包括:
    接收模块,用于接收网络设备发送的传输块,所述传输块包括至少一个第一编码块组CBG;
    发送模块,用于向至少一个第一用户设备发送第一控制信息,所述第一控制信息用于指示每个所述第一用户设备向所述第二用户设备发送至少一个第二CBG;所述第二CBG为所述第二用户设备从所述网络设备接收失败的第一CBG;
    所述接收模块,还用于接收所述至少一个第一用户设备发送的至少一个第三CBG,所述第三CBG为所述第一用户设备从所述网络设备接收正确的第一CBG、且所述第三CBG为所述第二用户设备从所述网络设备接收失败的第一CBG。
  18. 根据权利要求17所述的设备,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的时频资源;
    所述接收模块,具体用于在所述时频资源上接收所述至少一个第一用户设备发送的至少一个第三CBG;
    所述第二用户设备,还包括:
    处理模块,用于根据每个第一用户设备发送的至少一个第三CBG在所述时频资源的时域位置,确定每个第一用户设备发送的至少一个第三CBG对应的第二CBG。
  19. 根据权利要求17或18所述的设备,其特征在于,所述第一控制信息还用于指示所述第一用户设备发送所述至少一个第二CBG时所使用的传输参数;
    所述接收模块,具体用于使用所述传输参数,接收所述至少一个第一用户设备发送的第三CBG。
  20. 根据权利要求17-19任一项所述的设备,其特征在于,
    所述接收模块,还用于在接收所述至少一个第一用户设备发送的至少一个第三CBG之后,接收所述网络设备发送的至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG。
  21. 一种网络设备,其特征在于,所述网络设备包括:
    发送模块,用于向至少一个第一用户设备和第二用户设备组播传输块,所述传输块包括至少一个第一编码块组CBG;
    接收模块,用于接收每个所述第一用户设备发送的第二控制信息,所述第二控制信息用于指示所述第一用户设备从所述网络设备接收失败的第一CBG,和/或,所述第二控制信息用于指示所述第一用户设备接收正确的第一CBG;
    处理模块,用于根据每个所述第一用户设备发送的第二控制信息,确定至少一个第四CBG,所述至少一个第四CBG为所述至少一个第一用户设备中的所有第一用户设备从所述网络设备接收失败的第一CBG;
    所述发送模块,还用于向所述第二用户设备重新发送所述至少一个第四CBG。
  22. 根据权利要求21所述的设备,其特征在于,所述第二控制信息包括位图,所述位图中的一个比特位对应一个第一CBG,当所述比特位为第一值时,指示所述比特位对应的第一CBG被所述第一用户设备正确接收,当所述比特位为第二值时,指示所述比特位对应的第一CBG被所述第一用户设备接收失败。
PCT/CN2018/092792 2017-06-29 2018-06-26 数据传输方法、用户设备和网络设备 WO2019001406A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18823512.1A EP3633898B1 (en) 2017-06-29 2018-06-26 Data transmission method, user equipment and network device
US16/720,950 US20200127775A1 (en) 2017-06-29 2019-12-19 Data transmission method, user equipment, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710517230.9A CN109217988B (zh) 2017-06-29 2017-06-29 数据传输方法、用户设备和网络设备
CN201710517230.9 2017-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/720,950 Continuation US20200127775A1 (en) 2017-06-29 2019-12-19 Data transmission method, user equipment, and network device

Publications (1)

Publication Number Publication Date
WO2019001406A1 true WO2019001406A1 (zh) 2019-01-03

Family

ID=64741111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092792 WO2019001406A1 (zh) 2017-06-29 2018-06-26 数据传输方法、用户设备和网络设备

Country Status (4)

Country Link
US (1) US20200127775A1 (zh)
EP (1) EP3633898B1 (zh)
CN (1) CN109217988B (zh)
WO (1) WO2019001406A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164458A1 (en) * 2019-02-11 2020-08-20 Huawei Technologies Co., Ltd. Systems and methods for user equipment cooperation with sidelink harq feedback
WO2021025964A1 (en) * 2019-08-02 2021-02-11 Qualcomm Incorporated Transmit resource handling under power constraints for sidelink relay
WO2021025917A1 (en) * 2019-08-02 2021-02-11 Qualcomm Incorporated Operation modes for sidelink relay
CN114175526A (zh) * 2019-08-02 2022-03-11 高通股份有限公司 用于侧链路中继的技术

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565089A (zh) * 2019-02-13 2020-08-21 索尼公司 电子装置、无线通信方法和计算机可读介质
US11870594B2 (en) * 2019-05-13 2024-01-09 At&T Intellectual Property I, L.P. Facilitating a group hybrid automatic repeat request procedure for sidelink group case in advanced networks
CN110519022B (zh) * 2019-08-30 2021-06-18 北京紫光展锐通信技术有限公司 数据传输方法、用户终端及计算机可读存储介质
CN114846755A (zh) * 2019-12-31 2022-08-02 华为技术有限公司 一种数据的反馈方法及装置
US11678392B2 (en) * 2020-03-21 2023-06-13 Qualcomm Incorporated Sidelink communication recovery
CN114337736A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种上行协作传输方法及其装置
US11765703B2 (en) * 2021-06-14 2023-09-19 Qualcomm Incorporated Joint relaying of a transport block
US20230397182A1 (en) * 2022-06-03 2023-12-07 Qualcomm Incorporated Network coding with user equipment cooperation
WO2024011468A1 (zh) * 2022-07-13 2024-01-18 北京小米移动软件有限公司 链路确定方法、装置、存储介质及芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002657A1 (en) * 2009-03-25 2012-01-05 Fujitsu Limited Radio communication system, mobile station apparatus, base station apparatus, and radio communication method in radio communication system
WO2012093783A2 (ko) * 2011-01-05 2012-07-12 엘지전자 주식회사 무선 접속 시스템에서 단말 간 협력적 통신을 수행하기 위한 방법 및 장치
CN104662817A (zh) * 2012-10-05 2015-05-27 华为技术有限公司 无线网络中基于终端的分组虚拟发送和接收
CN106888074A (zh) * 2017-03-24 2017-06-23 宇龙计算机通信科技(深圳)有限公司 一种码块的重传方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634763B2 (en) * 2008-04-22 2014-01-21 Intel Corporation Cooperative communications techniques
WO2011086236A1 (en) * 2010-01-15 2011-07-21 Nokia Corporation Multicast service
US9172512B2 (en) * 2012-12-18 2015-10-27 Futurewei Technologies, Inc. System and method for terminal-group based HARQ for cellular integrated D2D communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002657A1 (en) * 2009-03-25 2012-01-05 Fujitsu Limited Radio communication system, mobile station apparatus, base station apparatus, and radio communication method in radio communication system
WO2012093783A2 (ko) * 2011-01-05 2012-07-12 엘지전자 주식회사 무선 접속 시스템에서 단말 간 협력적 통신을 수행하기 위한 방법 및 장치
CN104662817A (zh) * 2012-10-05 2015-05-27 华为技术有限公司 无线网络中基于终端的分组虚拟发送和接收
CN106888074A (zh) * 2017-03-24 2017-06-23 宇龙计算机通信科技(深圳)有限公司 一种码块的重传方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633898A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164458A1 (en) * 2019-02-11 2020-08-20 Huawei Technologies Co., Ltd. Systems and methods for user equipment cooperation with sidelink harq feedback
US10833811B2 (en) 2019-02-11 2020-11-10 Huawei Technologies Co., Ltd. Systems and methods for user equipment cooperation with sidelink HARQ feedback
EP3921964B1 (en) * 2019-02-11 2024-04-03 Huawei Technologies Co., Ltd. Systems and methods for user equipment cooperation with sidelink harq feedback
US11496250B2 (en) 2019-02-11 2022-11-08 Huawei Technologies Co., Ltd. Systems and methods for user equipment cooperation with sidelink HARQ feedback
CN113273116A (zh) * 2019-02-11 2021-08-17 华为技术有限公司 具有侧行链路harq反馈的用户设备协作的系统和方法
CN114208072A (zh) * 2019-08-02 2022-03-18 高通股份有限公司 用于侧行链路中继的操作模式
CN114175526A (zh) * 2019-08-02 2022-03-11 高通股份有限公司 用于侧链路中继的技术
US11438899B2 (en) 2019-08-02 2022-09-06 Qualcomm Incorporated Transmit resource handling for sidelink relay
WO2021025917A1 (en) * 2019-08-02 2021-02-11 Qualcomm Incorporated Operation modes for sidelink relay
US11792781B2 (en) 2019-08-02 2023-10-17 Qualcomm Incorporated Transmit resource handling for sidelink relay
WO2021025964A1 (en) * 2019-08-02 2021-02-11 Qualcomm Incorporated Transmit resource handling under power constraints for sidelink relay
US11985083B2 (en) 2019-08-02 2024-05-14 Qualcomm Incorporated Operation modes for sidelink relay
CN114208072B (zh) * 2019-08-02 2024-08-16 高通股份有限公司 用于侧行链路中继的操作模式

Also Published As

Publication number Publication date
EP3633898A1 (en) 2020-04-08
US20200127775A1 (en) 2020-04-23
CN109217988B (zh) 2021-07-09
EP3633898A4 (en) 2020-06-24
CN109217988A (zh) 2019-01-15
EP3633898B1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
EP3633898B1 (en) Data transmission method, user equipment and network device
US12096427B2 (en) Methods, devices, and systems for device to device (D2D) data transmission and retransmission
WO2019196690A1 (zh) 旁链路的传输方法和终端
US11546091B2 (en) Method for determining HARQ-ACK codebook and user equipment
CN114025388A (zh) 一种数据传输的方法、相关设备以及系统
WO2009096392A1 (ja) 無線通信システム、送信装置、受信装置、無線通信方法
WO2020048256A1 (zh) 确定方法、终端设备及网络设备
TWI759471B (zh) 數據重傳控制方法及相關產品
CN113473610B (zh) 一种反馈方法及设备
US10958329B2 (en) Data transmission method, terminal device, and network device
US20220360373A1 (en) Method for reporting channel state information (csi), terminal, and computer-readable storage medium
WO2016045062A1 (zh) 数据包传输的装置、系统及方法
CN109565645B (zh) 组播业务传输方法、终端、基站和通信系统
WO2022213378A1 (zh) 确定harq码本的方法、harq反馈信息的接收方法、及其装置
WO2019154358A1 (zh) Harq-ack码本的确定方法和终端
WO2022022349A1 (zh) 一种通信方法、装置及系统
WO2021088926A1 (zh) 数据传输方法、设备及介质
CN113645009A (zh) 一种数据处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823512

Country of ref document: EP

Effective date: 20191231