WO2019000064A1 - Chitosan and/or nanochitosan foam-based filter equipment - Google Patents

Chitosan and/or nanochitosan foam-based filter equipment Download PDF

Info

Publication number
WO2019000064A1
WO2019000064A1 PCT/BR2018/050166 BR2018050166W WO2019000064A1 WO 2019000064 A1 WO2019000064 A1 WO 2019000064A1 BR 2018050166 W BR2018050166 W BR 2018050166W WO 2019000064 A1 WO2019000064 A1 WO 2019000064A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
foam
nanoquitosan
chitosan
quitosane
Prior art date
Application number
PCT/BR2018/050166
Other languages
French (fr)
Portuguese (pt)
Inventor
Graciela DE MUNIZ
Helton ALVES
Luciana ELLENDERSEN
Izabel ZADINELO
Lilian DOS SANTOS
Maria MILINSK
Michael FEROLDI
Original Assignee
Universidade Federal Do Paraná
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal Do Paraná filed Critical Universidade Federal Do Paraná
Publication of WO2019000064A1 publication Critical patent/WO2019000064A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • [001] Refers to an equipment composed of an external structure that can be sized to the various systems and sizes, also constituted by an internal part with chitosan and / or nanochitosan foam (product referring to the patent process BR1020150292597).
  • the equipment may be used for the filtration of miscellaneous media, such as water from fish tanks, crustaceans and other aquatic animals, for the treatment of muddy water, or having any kind of organic, inorganic and biological particles and substances, cleaning and purification of biodiesel, the equipment can be used in aqueous media or for the removal of gas impurities, by the adsorbent functionality of the material packaged in the filter.
  • the filter material can be reused and is biodegradable.
  • adsorption is the transfer of molecules present in a fluid, liquid or gas that spontaneously accumulates on a solid surface.
  • Baraka ⁇ (201 1, Arabian Journal of Chemistry, v.4, pp. 361-377) suggests that there are three main steps for the adsorption of particles in the adsorbent: 1 - transporting the particle of the solution to the surface of the adsorbent material; 2 - adsorption to the surface particle; and 3 - transport with the adsorbent particle.
  • the choice of the adsorbent is carried out in function of the technical applicability and cost effective.
  • Biopolymers as adsorptive agents are industrially attractive because of their characteristics of removing metals from small to high concentrations, their ample disposition, and being environmentally safe.
  • these biopolymers are made up of different functional groups, such as hydroxyls and amines, which increase the adsorption efficiency by the metal (Barakat, 201, Arabian Journal of Chemistry, v. 4, pp. 361-377)).
  • adsorbents should be the low cost, being mostly derived from agricultural or industrial waste, from natural materials, or modified biopolymers. They have a high effectiveness, decrease the production of chemical and / or biological sludge, and with some adsorbents it is still possible to reuse and recover the adsorbed material if it is a material of interest (SIVAKAMI et al., 2013, Internatitonal Journal of Biological Macromolecules, v. 57, pp. 204-212).
  • the material applied to the filter based on chitosan foam can be produced with either the chitosan in the original structure size or the chitosan can be used in whole or in part at the nanometer size.
  • nanomaterials are available as aqueous solutions or in powder form, so that they can be used as adsorbents to be fixed on substrates that allow their application and removal during and after the treatment of contaminated water (LATA and SAMADDER, 2016 , Journal of Environmental Management, v. 166, pp. 387-406).
  • Nanoparticle-directed research has shown that the adsorbent effect, when compared to a non-nanometric material, has a shorter equilibrium time (Reddy and Yun, 2016, Coordination Chemistry Reviews, v. 315, p.90-1-1).
  • the process by which the chitosan or nanoquitosan used in the filter is to pass is by drying by the foam layer method, process protected by patent application no. BR1020150292597.
  • This process allows to provide to the chitosan / nanoquitosana a carrier for its use in the filtering apparatus without loss of adsorbent material to the medium to be filtered.
  • This drying consists of increasing the heat transfer, lowering the process temperature and expanding the porous structure of the product. Due to the porous structure of the formed foams, the mass transfer is improved by reducing the drying time and consequently forming products of better quality (FRANCO et al., 2015, Journal of Food Engineering, 158, pp. 48-57).
  • the foam-drying method was developed with the aim of increasing the drying rate of liquid and semi-liquid foods from a larger surface area exposed to the drying air. This method involves the incorporation of a foaming agent into liquid or pasty foods with subsequent beating to form a stable foam (FALADE, KO, ADEYANJU, KI, UZO-PETERS, PI European Food Research and Technology, v.217, p.486 -491, 2003).
  • the foam is defined as a colloidal dispersion in which the gas is dispersed in a continuous liquid phase.
  • the foam air bubbles ranging in size from 10 ⁇ to several millimeters and having a density of 300 to 600 kg.nr 3 , are thin liquid films called lamellas (SANGAMITHRA, A., SIVAKUMAR V., SWAMY, GJ, KANNAN, K. Journal of Food Processing and Preservation, 2014).
  • the variables that affect the formation, density and stability of the foam are influenced by the chemical nature of the product, the percentage of soluble solids, type and concentration of foaming / stabilizing agent, interaction between solution and foaming agents, as well as the beat time required for the incorporation of air (SANGAMITHRA et al., 2014).
  • Chitosan is a derivative of deacetylation of chitin, the second most abundant polysaccharide in nature after cellulose. It is present in the exoskeleton of discarded crustaceans as a residue of the fishing industry, which is estimated to be 1/4 of the total production (RINAUDO, M. Progress in Polymer Science, v. 31, n.7, p.603-632, 2006).
  • the degree of deacetylation of chitosan is between 50 and 100%, this variation gives it different properties, such as degree of solubility, cationic interaction among others, as well as promoting different characteristics to the product in which it is used as a greater or lesser flexibility in movies.
  • chitosan is an industrial waste, a renewable natural material, biodegradable and with characteristics of adsorbents, we apply the chitosan as a structural part of the filter, valorizing it and reducing the industrial residue.
  • Nanoquitosan can be obtained by different methods, such as ionic gelation, atomization in spray dryer, among others (SIVA AMI, MS; GOMATHI, L; VEN ATESAN, J .; JEONG, HK; SUDHA, PN, International Journal of Biological Macromolecules, v. 57, pp. 204-212, 2013).
  • This invention provides a novel type of filter, due to its composition, of chitosan and / or nanoquitosan foam which are stable to the flow of water, or gaseous medium, highly adsorbent to organic, inorganic and biological materials and substances, is reusable and biodegradable .
  • the total amount of water on the land surface is approximately 71%, but much of this water is polluted by human action from population expansion, urbanization, technological and industrial expansion (SIVAKAMI et al., 2013, Internatitonal Jpurnal of Biological Macromolecules , v. 57, pp. 204-212).
  • the adsorbent material must present high efficiency, fast adsorption, low cost, non-toxic to the environment, stability, preferably being reusable and easily separable from the material to be adsorbed, since the recovery of the adsorbed material is an important step, as well as the destination to be given to this material so that it is no longer a polluting product (REDDY and YUN, 2016, Coordination Chemistry Reviews, v. 315, p.90-111).
  • the chitosan foam filter is a viable equipment for the removal of particles and organic, inorganic and biological materials from water, solutions, aqueous and gaseous media.
  • the proportion of the chitosan / nanoquitosan and the foaming agent, the concentration and the type of foaming agent are important factors before the foam is dried, since it needs sufficient stability so that bubbles do not collapse of the structure (syneresis), releasing the liquid of the emulsion which is deposited on the bottom of the support where the foam is and makes it difficult to dry the material.
  • it is caramelized to form a layer which prevents the heating from penetrating into parts of the surrounding foam and thus increasing the drying time, preventing the formation of the chitosan foam.
  • the proportion of chitosan / foaming agent is also important, because chitosan is the major responsible for the adsorption of the materials of interest, maintaining a minimum concentration of chitosan, which is functional so that the use of the filter is efficient.
  • the choice of the type of foaming agent is fundamental as it has the function of maintaining the stability of the foam inside the filter, retaining the chitosan and preventing the foam from disintegrating in the flow of the solution to be filtered. Depending on the type of foaming agent, the interaction of this with the chitosan in the foam, allows a greater power of adsorption of the filter.
  • the thickness of the foam for drying is a critical point for the formation of the foam, because if it is very thin, it prevents the formation of a double layer formed by the process, a layer of chitosan and another of the foaming agent, this structure allows the arrangement of the adsorbent groups of both materials for effective filter functionality. If the layer of foam for drying is very thick, syneresis occurs, a phenomenon already explained.
  • the arrangement and size of the material, chitosan foam, inside the filter is related to the efficiency of the equipment.
  • Foam plates when arranged in small pieces for packaging the filter exhibit increased contact surface area of the solution to be filtered and the adsorbent material, increasing the retention efficiency of the material or substance of interest, but there are cases where the retention time of the filtrate must be higher, thus it is possible to use the layered foam inside the filter, or when it is a gas to be filtered, the foam mat may be packed in ie, the size, shape and packaging of the foam is variable according to the material to be filtered.
  • the disintegration of the foam occurs, further contaminating the filtered medium.
  • the disintegration of the filter may not prevent an increase in the concentration of ammonia produced leading to instability of the medium pH and death of the fish.
  • the filter based on chitosan and / or nanochitosan foam can be used for the adsorption of various substances and organic, inorganic and biological compounds, as well as for the treatment of water, in a breeding tank of aquatic animals for the reduction of ammonia, phosphorus and nitrite, can be used in water contaminated with metals, heavy metals, sludge, clay and clay minerals, oils, petroleum, diesel or biodiesel, adsorption of metals in solutions of variable pH, to filter solutions in general for the removal of impurities from gases, etc.
  • the filter is composed of a biopolymer, a chitosan foam (Patent Process: BR1020150292597) obtained from the solution of chitosan and / or nanoquitosan added with a foaming agent.
  • the foaming agent gives the chitosan and / or nanoquitosan a support layer, this allows the arrangement of the chitosan formed strands to be highly porous; this interaction forms a biopolymer with two layers of distinct polarities, an apolar layer (foaming agent) and a polar layer (chitosan).
  • apolar layer a polar layer
  • the layer has pores that allow the passage of the solution, but it retains it for a longer period, so that the contact time between adsorbent agent and the material to be adsorbed is enough for the reaction between materials and the adsorption desired.
  • the filter has a large capacity for removal of various types of organic, inorganic (polar and apoolar) and biological compounds, being able to remove several types of contaminants. It has low density, keeps contaminants inside its pores on its internal and external surface.
  • the filter material the chitosan / nanoquitosan foam
  • the filter material becomes saturated with the material being adsorbed, in cases when this material is volatile, it is possible to disassemble the filter, remove the foam, arrange it on a surface and take it to the stove or the sun, the material by the action of heat will evaporate along with the moisture contained in the foam and it can be wrapped up again in the filter and used again.
  • the adsorbed material can be recovered by calcining the foam at suitable temperatures which prevent the melting of the metals, thus, the foam is decomposed and only the metals remain. [050].
  • this foam can be removed from the filter and used as fertilizer in plantations, more specifically as a source of nitrogen, carbon, phosphorus, potassium and calcium.
  • Figure 1 Displays (1) inlet aperture; (2) the filter body; (3) outlet opening.
  • Figure 2 Model of vertical cut of the filter, with different possibilities of foam packaging:
  • Conductive structure of the solution to be filtered this structure can be a tube, an inlet cavity, a valve, or any other structure that receives the solution or gas to be filtered with the particles to be adsorbed, has the function of conducting the liquid, gas or other type of material to the filter itself;
  • inert material to prevent compaction inert materials such as glass beads are wrapped between protections of the internal material of the filter (2 and 6), between the inlet and the are filled with this material in order to avoid compaction of the adsorbent foams at the ends of the filter, facilitating the flow of the material being filtered.
  • This layer is optional depending on the type of material to be filtered;
  • Foam may be produced from either the chitosan in its original structural form, such as nanochitosan, or the mixture of both. These undergo the foam layer drying methodology where the chitosan or nanoquitosan solution is added with a foaming agent and then the foam undergoes a drying process (Patent Process No: 1020150292597). After completion of the drying process, the foam is removed from the trays, and manipulated according to the characteristics of the filtrate, the mats or pieces are packed as filter core, adsorption function of the material of interest, material to be dried. removed from the medium being filtered. In figure 2 some possibilities of format of the foam are presented, as in small pieces, layers, or whole. (7) Leading structure of the filtered solution: this structure can be a tube, an inlet cavity, a valve, or any other structure that allows the leakage of the filtered liquid, has the function of driving the liquid outlet of the filter itself said.
  • Figure 3 cross-sectional view of the filter having: (1) the inlet or outlet cavity; (2) Protection layer of internal filter material; (3) filter body.
  • Figure 4 cross-sectional view of the filter having: (1) inert material; (2) filter body.
  • Figure 5 Cross-sectional view of the filter showing: (1) some possibilities of packaging the chitosan foam into pieces, in layers or in a coiled-up mat; (2) filter body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to equipment capable of filtering and adsorbing organic, inorganic and biological substances and particles from various media, such as aqueous and gaseous media. The invention comprises a process for adsorbing pollutant elements or elements of interest from the filtered medium. The equipment is composed of: 1 - an input opening; 2 - a protective layer; 3 - inert material (optional); 4 - a chitosan and/or nanochitosan foam column; 5 - inert material (optional); 6 - a protective layer; and 7 - an output opening. The filtering material is biodegradable and can be reused after heat treatment. Once its service life as a filtering material has come to an end, the chitosan and/or nanochitosan foam can still be used as compost for crops, more specifically as a source of nitrogen, carbon, phosphorus, sulphur, potassium and calcium, depending on the composition of the medium it was in contact with. When used for adsorbing metals, these can be recovered by subjecting the foam to heat, chemical or physical treatment.

Description

EQUIPAMENTO - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU  EQUIPMENT - QUITOSANA FOAM FILTER AND / OR
NANOQUITOSANA  NANOQUITOSANA
[001 ]. Refere-se α um equipamento composto por uma estrutura externa que pode ser dimensionada à diversos sistemas e tamanhos, também constituído por uma parte interna com espuma de quitosana e/ou nanoquitosana (produto referente ao processo de patente BR1020150292597). O equipamento pode ser utilizado para a filtração de meios diversos como água de tanques de cultivo de peixes, crustáceos e outros animais aquáticos, para o tratamento de águas lodosas, ou que apresentam qualquer tipo de partículas e substâncias orgânicas, inorgânicas e biológicas, limpeza e purificação de biodiesel, o equipamento pode utilizado em meios aquosos ou para a remoção de impurezas de gases, pela funcionalidade adsorvente do material empacotado no filtro. O material filtrante pode ser reutilizado e é biodegradável. [001]. Refers to an equipment composed of an external structure that can be sized to the various systems and sizes, also constituted by an internal part with chitosan and / or nanochitosan foam (product referring to the patent process BR1020150292597). The equipment may be used for the filtration of miscellaneous media, such as water from fish tanks, crustaceans and other aquatic animals, for the treatment of muddy water, or having any kind of organic, inorganic and biological particles and substances, cleaning and purification of biodiesel, the equipment can be used in aqueous media or for the removal of gas impurities, by the adsorbent functionality of the material packaged in the filter. The filter material can be reused and is biodegradable.
Campo da Invenção  Field of the Invention
[002]. O uso de um material adsorvente e biodegradável produzido de resíduo industrial em um equipamento que pode ser utilizado como filtro está relacionado ao campo técnico da funcionalidade e do desenvolvimento de equipamentos. A filtração de soluções, meios aquosos e gases é uma prática encontrada em diversas áreas com diversos objetivos que podemos observar nos seguintes artigos: filtros biológicos utilizados na aquicultura (HAMLIN et al. 2008, Aquacultural Engineering, v. 38, p. 79-92; RIJIN et al. 2006, Aquacultural Engineering, v. 34, p. 364-376); no tratamento de água de resíduos para retirada de óleo (HAN, 2000, Environmental Protection of Chemical Industry, v. 20, n. 5, p. 19-22); filtração por membranas (ALOTHMAN et al, 2015, Desalination and Water Treatment, v. 53, n. 13, p. 3457-3465); filtros de polarização (LIU, 2015, IEEE Photonics Journal, v. 7, n. 1 ), filtros magnéticos (YUVA UMAR et al., 2015, Journal of Nanoscience and Nanotechnology, v. 15, n. 3, p. 2523-2530); filtros de adsorção (HUA et al., 2015, Water Research, v. 71 , p. 32-41 ). [002]. The use of an adsorbent and biodegradable material produced from industrial waste in equipment that can be used as a filter is related to the technical field of functionality and equipment development. The filtration of solutions, aqueous media and gases is a practice found in several areas with several objectives that can be observed in the following articles: biological filters used in aquaculture (HAMLIN et al., 2008, Aquacultural Engineering, v. 38, 79-92 , RIJIN et al., 2006, Aquacultural Engineering, v. 34, pp. 364-376); in the treatment of waste water for oil withdrawal (HAN, 2000, Environmental Protection of Chemical Industry, v. 20, no. 5, pp. 19-22); membrane filtration (ALOTHMAN et al, 2015, Desalination and Water Treatment, v. 53, No 13, pp. 3457-3465); polarization filters (LIU, 2015, IEEE Photonics Journal, v. 7, n. 1), filters (YUVA UMAR et al., 2015, Journal of Nanoscience and Nanotechnology, v. 15, no. 3, p.2523-2530); adsorption filters (HUA et al., 2015, Water Research, v. 71, pp. 32-41).
[003]. Constitui-se de um pedido de patente sobre o equipamento e sua funcionalidade, filtro a base de espuma de quitosana e/ou nanoquitosana, sendo a característica essencial deste equipamento a adsorção de partículas e substâncias de matéria orgânica, inorgânica ou biológica de meios aquosos e gasosos.  [003]. It is a patent application on the equipment and its functionality, filter based on chitosan and / or nanochitosan foam, the essential characteristic of this equipment being the adsorption of particles and substances of organic, inorganic or biological material from aqueous media and gaseous.
Fundamentos da Invenção e Estado da Técnica  Background of the Invention and State of the Art
[004]. O processo de adsorção vem ganhando espaço entre as pesquisas para o tratamento de águas contaminadas com mercúrio (JOHARI et al. 2016, International Biodeterioration & Biodegradation, v. 109, p. 45-52); amónia (WANG e PENG, 2010, Chemical Engineering Journal, v. 156, p. 1 1 -24); corantes ácidos (CHEUNG, SZETO, MCKAY, 2009, Biorecource Technology, v. 100, p. 1 143-1 148); corantes (TAN et al. 2015, Separation and Purification Technology, v. 150, p. 229-242; ZHOU et al. 2014, Journal of Food Engineering, v. 126, p. 133-141 ); arsénico (LARA e SAMADDER, 2016, Journal of Environmental Management, v. 166, p. 387-406), óleos (YU et al. 2015, Journal of Magnetism and Magnetic Materials, v. 394, p. 14-21 ; XIAOBING, CHUNJUAN, JIONGTIAN, 2010, Mining Science and Technology, v. 20, p. 778-781 ), petróleo (ESMAEILI e SAREMNIA, 2016, Journal of the Taiwan Institute of Chemical Engineers, v. 61 , p. 276-286), metais pesados (ANNADURAI, JUANG e LEE, 2002, Water Science and Technology, v. 47, n. 1 , p. 185-190; YANG et al. 2016, Applied Clay Science, v. 123, p. 134-140; ZHU et al. 2016, Applied Clay Science, v. 123, p. 239-258), entre outros.  [004]. The adsorption process has been gaining ground among research for the treatment of water contaminated with mercury (JOHARI et al., 2016, International Biodeterioration & Biodegradation, v. 109, pp. 45-52); ammonia (WANG and PENG, 2010, Chemical Engineering Journal, v. 156, pp. 11-24); acid dyes (CHEUNG, SZETO, MCKAY, 2009, Biorecource Technology, v. 100, pp. 143-1 148); dyes (TAN et al., 2015, Separation and Purification Technology, v. 150, pp. 229-242, ZHOU et al., 2014, Journal of Food Engineering, 126, pp. 133-141); arsenic (LARA and SAMADDER, 2016, Journal of Environmental Management, v. 166, pp. 387-406), oils (YU et al., 2015, Journal of Magnetism and Magnetic Materials, v. 394, pp. 14-21, XIAOBING , Chunjuan, Jiongtian, 2010, Mining Science and Technology, v. 20, pp. 778-781), petroleum (ESMAEILI and SAREMNIA, 2016, Journal of the Taiwan Institute of Chemical Engineers, 61, pp. 276-286) , heavy metals (ANNADURAI, JUANG and LEE, 2002, Water Science and Technology, v. 47, n.1, p.185-190; YANG et al., 2016, Applied Clay Science, v. 123, pp. 134-140 , ZHU et al., 2016, Applied Clay Science, v. 123, pp. 239-258), among others.
[005]. Segundo Coelho et al. (2014, Journal of Agronomic Sciences, v. 3, p. 291 -31 7), a adsorção é a transferência de moléculas presentes em um fluido, líquido ou gás que se acumulam espontaneamente sobre uma superfície sólida. [006]. Baraka† (201 1 , Arabian Journal of Chemistry, v. 4, p. 361 -377) sugere que existem três etapas principais para a adsorção de partículas no adsorvente: 1 - o transporte da partícula da solução para a superfície do material adsorvente; 2 - adsorção à partícula superficial; e 3 - transporte com a partícula adsorvente. E, a escolha do adsorvente é realizada em função da aplicabilidade técnica e custo efetivo. [005]. According to Coelho et al. (2014, Journal of Agronomic Sciences, v. 3, pp. 291-31), adsorption is the transfer of molecules present in a fluid, liquid or gas that spontaneously accumulates on a solid surface. [006]. Baraka † (201 1, Arabian Journal of Chemistry, v.4, pp. 361-377) suggests that there are three main steps for the adsorption of particles in the adsorbent: 1 - transporting the particle of the solution to the surface of the adsorbent material; 2 - adsorption to the surface particle; and 3 - transport with the adsorbent particle. And, the choice of the adsorbent is carried out in function of the technical applicability and cost effective.
[007]. Os biopolímeros como agentes de adsorção são industrialmente atrativos por suas características de remover os metais de pequenas à altas concentrações, por sua ampla disposição, e por ser ambientalmente seguro. Normalmente estes biopolímeros são constituídos de diferentes grupos funcionais, como hidroxilas e aminas, que aumentam a eficiência de adsorção pelo metal (BARAKAT, 201 1 , Arabian Journal of Chemistry, v. 4, p. 361 -377)).  [007]. Biopolymers as adsorptive agents are industrially attractive because of their characteristics of removing metals from small to high concentrations, their ample disposition, and being environmentally safe. Typically these biopolymers are made up of different functional groups, such as hydroxyls and amines, which increase the adsorption efficiency by the metal (Barakat, 201, Arabian Journal of Chemistry, v. 4, pp. 361-377)).
[008]. Existem duas possibilidades de preparação dos adsorventes que contém polissacarídeos: por reação de reticulação, quando ocorre a reação entre a hidroxila ou o grupo amina com um agente ligante para formar redes de água-material insolúvel; e, imobilização de polissacarídeos em matrizes insolúveis gerando um material híbrido (Crini, 2005 in: BARAKAT, 201 1 , Arabian Journal of Chemistry, v. 4, p. 361 - 377) .  [008]. There are two possibilities for preparing the adsorbents containing polysaccharides: by crosslinking reaction, when the reaction occurs between the hydroxyl or the amine group with a binding agent to form water-insoluble material nets; and, immobilization of polysaccharides into insoluble matrices yielding a hybrid material (Crini, 2005 in: BARAKAT, 201, Arabian Journal of Chemistry, v.4, pp. 361-377).
[009]. A grande vantagem do uso de adsorventes deve ser o baixo custo, sendo em sua maioria derivados de resíduo agrícola ou industrial, de materiais naturais, ou biopolímeros modificados. Apresentam alta efetividade, diminuem a produção de lama química e/ou biológica, e com alguns adsorventes ainda é possível a sua reutilização e a recuperação do material adsorvido, se for um material de interesse (SIVAKAMI et al., 2013, Internatitonal Journal of Biological Macromolecules, v. 57, p. 204-212).  [009]. The great advantage of the use of adsorbents should be the low cost, being mostly derived from agricultural or industrial waste, from natural materials, or modified biopolymers. They have a high effectiveness, decrease the production of chemical and / or biological sludge, and with some adsorbents it is still possible to reuse and recover the adsorbed material if it is a material of interest (SIVAKAMI et al., 2013, Internatitonal Journal of Biological Macromolecules, v. 57, pp. 204-212).
[010]. O uso de materiais nanométricos é considerável, pois adsorventes de dimensões nanométricas apresentam boa performance devido d alta área especifica de superfície e aumento da aderência de íons metálicos (SIVAKAMI et al., 2013, Internatitonal Jpurnal of Biological Macromolecules, v. 57, p. 204-212). [010]. The use of nanometric materials is considerable, since adsorbents of nanometric dimensions present good performance due to the high specific surface area and increased adhesion of metallic ions (Sivakami et al., 2013, Internatitonal Jpurnal of Biological Macromolecules, v. 57, pp. 204-212).
[01 1 ]. O material aplicado no filtro a base de espuma de quitosana, pode ser produzido tanto com a quitosana em tamanho de estrutura original como pode ser utilizada a quitosana em parte ou totalmente no tamanho nanométrico.  [01 1]. The material applied to the filter based on chitosan foam can be produced with either the chitosan in the original structure size or the chitosan can be used in whole or in part at the nanometer size.
[012]. A maioria dos nanomateriais estão disponíveis como soluções aquosas ou em forma de pó, portanto, para que possam ser utilizados como adsorventes precisam ser fixados em suportes que permitam a sua aplicação e remoção durante e após o tratamento de águas contaminadas (LATA e SAMADDER, 2016, Journal of Environmental Management, v. 166, p. 387-406) .  [012]. Most nanomaterials are available as aqueous solutions or in powder form, so that they can be used as adsorbents to be fixed on substrates that allow their application and removal during and after the treatment of contaminated water (LATA and SAMADDER, 2016 , Journal of Environmental Management, v. 166, pp. 387-406).
[013]. Após a aplicação e saturação dos adsorventes, é importante verificar os métodos de regeneração de sua funcionalidade, o que reduz o custo, o classifica como ecologicamente correto e permite sua reutilização e o aproveitamento do material coletado (LATA e SAMADDER, 2016, Journal of Environmental Management, v. 166, p. 387-406).  [013]. After application and saturation of the adsorbents, it is important to verify the regeneration methods of its functionality, which reduces the cost, classifies it as ecologically correct and allows its reuse and the use of the collected material (LATA and SAMADDER, 2016, Journal of Environmental Management, v. 166, pp. 387-406).
[014]. As pesquisas direcionadas com nanopartículas vêm mostrando que o efeito adsorvente, quando comparado à um material não nanométrico, apresenta um menor tempo de equilíbrio (REDDY e YUN, 2016, Coordination Chemistry Reviews, v. 315, p. 90-1 1 1 ).  [014]. Nanoparticle-directed research has shown that the adsorbent effect, when compared to a non-nanometric material, has a shorter equilibrium time (Reddy and Yun, 2016, Coordination Chemistry Reviews, v. 315, p.90-1-1).
[015]. O processo pelo qual a quitosana ou nanoquitosana utilizada no filtro deve passar é o da secagem pelo método de camada de espuma, processo protegido pelo pedido de patente n° BR1020150292597. Este processo permite proporcionar à quitosana/nanoquitosana um suporte para sua utilização no equipamento filtrador sem que haja perda de material adsorvente para o meio a ser filtrado. [016]. Esta secagem consiste em aumentar a transferência de calor, diminuir a temperatura do processo e expandir a estrutura porosa do produto. Devido à estrutura porosa das espumas formadas, a transferência de massa é aprimorada reduzindo o tempo de secagem e consequentemente formando produtos com melhor qualidade (FRANCO et al., 2015, Journal of Food Engineering, v. 158, p. 48-57) . [015]. The process by which the chitosan or nanoquitosan used in the filter is to pass is by drying by the foam layer method, process protected by patent application no. BR1020150292597. This process allows to provide to the chitosan / nanoquitosana a carrier for its use in the filtering apparatus without loss of adsorbent material to the medium to be filtered. [016]. This drying consists of increasing the heat transfer, lowering the process temperature and expanding the porous structure of the product. Due to the porous structure of the formed foams, the mass transfer is improved by reducing the drying time and consequently forming products of better quality (FRANCO et al., 2015, Journal of Food Engineering, 158, pp. 48-57).
[017]. O método de secagem por camada de espuma foi desenvolvido com o objetivo de aumentar a taxa de secagem de alimentos líquidos e semilíquidos a partir de uma maior área de superfície exposta ao ar de secagem. Este método envolve a incorporação de um agente espumante em alimentos líquidos ou pastosos com subsequente batimento para formação de uma espuma estável (FALADE, K. O., ADEYANJU, K. I., UZO-PETERS, P. I. European Food Research and Technology, v.217, p.486-491 , 2003) .  [017]. The foam-drying method was developed with the aim of increasing the drying rate of liquid and semi-liquid foods from a larger surface area exposed to the drying air. This method involves the incorporation of a foaming agent into liquid or pasty foods with subsequent beating to form a stable foam (FALADE, KO, ADEYANJU, KI, UZO-PETERS, PI European Food Research and Technology, v.217, p.486 -491, 2003).
[018]. Na maioria das vezes a espuma formada é disposta sobre bandejas em finas camadas e por corrente de ar a pressão atmosférica (FALADE et al., 2003, European Food Research and Technology, v.21 7, p.486-491 ) .  [018]. Most often the foam formed is laid on trays in thin layers and by air stream at atmospheric pressure (FALADE et al., 2003, European Food Research and Technology, v. 21, p.486-491).
[019]. A espuma é definida como uma dispersão coloidal na qual o gás é disperso em uma fase liquida contínua. Entre as bolhas de ar da espuma, que tem tamanho variando de 10 μΐτι até vários milímetros e com densidade de 300 a 600 kg.nr3, encontram-se finos filmes líquidos denominados lamelas (SANGAMITHRA, A., SIVAKUMAR V., SWAMY, G. J.; KANNAN, K. Journal of Food Processing and Preservation, 2014) . [019]. The foam is defined as a colloidal dispersion in which the gas is dispersed in a continuous liquid phase. Among the foam air bubbles, ranging in size from 10 μΐτι to several millimeters and having a density of 300 to 600 kg.nr 3 , are thin liquid films called lamellas (SANGAMITHRA, A., SIVAKUMAR V., SWAMY, GJ, KANNAN, K. Journal of Food Processing and Preservation, 2014).
[020]. Durante a secagem por camada de espuma as bolhas da massa de espuma são expostas por sua grande área superficial para a evaporação da umidade. A formação de espuma torna a massa para secagem extremamente porosa e mais favorável para a secagem do interior da camada. Esta técnica pode ser usada para produtos sensíveis ao calor, viscosos, pegajosos e com alto teor de carboidratos. A perda de umidade através dos poros da espuma faz com que a secagem em camada de espuma seja aproximadamente três vezes mais rápida do que a secagem de uma camada similar de líquido (SANGAMITHRA et al., 2014). [020]. During layer drying of foam the bubbles of the foam mass are exposed by their large surface area for evaporation of moisture. Foaming makes the drying mass extremely porous and more favorable for drying the interior of the layer. This technique can be used for heat sensitive, viscous, sticky and high carbohydrate products. Loss of moisture through the pores of the foam causes the foam-layer drying to be approximately three times faster than drying of a similar layer of liquid (SANGAMITHRA et al., 2014).
[021 ]. Neste processo a desidratação é rápida, à baixa temperatura, gerando um produto final com cor e sabor, no caso de alimentos, superiores àqueles obtidos por processos convencionais de secagem, devido ao mínimo dano causado pelo calor (RAJKUMAR, P., KAILAPPAN, R., VISWANATHAN, R., RAGHAVAN, G. S. V. Journal of Food Engineering, v. 79, p.1452-1459, 2007).  [021]. In this process the dehydration is fast, at low temperature, generating a final product with color and flavor, in the case of foods, higher than those obtained by conventional drying processes, due to the minimum heat damage (RAJKUMAR, P., KAILAPPAN, R , VISWANATHAN, R., RAGHAVAN, GSV Journal of Food Engineering, v. 79, p.1452-1459, 2007).
[022]. As vantagens de produtos secos pelo método de camada de espuma consistem em alta estabilidade contra deterioração microbiológica e às reações químicas e bioquímicas; redução de custos com manuseio, embalagem, armazenamento e transporte (RAJKUMAR et al., 2007).  [022]. The advantages of dry products by the foam layer method consist of high stability against microbiological deterioration and chemical and biochemical reactions; reduction of handling, packing, storage and transport costs (RAJKUMAR et al., 2007).
[023]. Apesar das vantagens apresentadas pela metodologia de secagem em camada de espuma, existe a dificuldade de adequar o método à pouca estabilidade mecânica/térmica da espuma durante o ciclo de batimento e/ou aquecimento para obtenção do pó. Se a espuma não se mantém estável, por pelo menos uma hora após o batimento, ocorre o colapso da estrutura porosa, resultando em prejuízos ao processo de secagem e na deterioração da qualidade do produto final, que pode apresentar características inferiores de cor, sabor, odor, valor nutricional e propriedades de solubilidade (SANGAMITHRA et al., 2014).  [023]. Despite the advantages presented by the foam layer drying methodology, it is difficult to adapt the method to the poor mechanical / thermal stability of the foam during the pulping and / or heating cycle to obtain the powder. If the foam does not remain stable for at least an hour after the beating, the porous structure collapses, resulting in damage to the drying process and deterioration of the quality of the final product, which may exhibit inferior characteristics of color, taste, odor, nutritional value and solubility properties (SANGAMITHRA et al., 2014).
[024]. As variáveis que afetam a formação, densidade e estabilidade da espuma são influenciadas pela natureza química do produto, pelo percentual de sólidos solúveis, tipo e concentração de agente espumante/estabilizante, interação entre os compostos da solução e os agentes espumantes, bem como o tempo de batimento necessário para a incorporação de ar (SANGAMITHRA et al., 2014). [024]. The variables that affect the formation, density and stability of the foam are influenced by the chemical nature of the product, the percentage of soluble solids, type and concentration of foaming / stabilizing agent, interaction between solution and foaming agents, as well as the beat time required for the incorporation of air (SANGAMITHRA et al., 2014).
[025]. O alcance e manutenção da estabilidade da espuma durante o batimento ou na etapa de secagem é um desafio no processo de secagem por camada de espuma, por isso, na formulação de espumas, um dos principais objetivos tecnológicos é a seleção e utilização de um agente espumante/estabilizante, que apresente boa correlação estrutural com a matéria-prima/material de estudo, apropriado para melhorar a estabilidade, além de controlar as taxas de processo que promovem a instabilidade (SANGAMITHRA et al., 2014) .  [025]. The stability and maintenance of the foam stability during the beating or drying step is a challenge in the foam layer drying process, so in the foaming formulation one of the main technological objectives is the selection and use of a foaming agent / stabilizer, which presents a good structural correlation with the raw material / study material, suitable to improve stability, besides controlling the process rates that promote the instability (SANGAMITHRA et al., 2014).
[026]. A quitosana é um derivado da desacetilação da quitina, o segundo polissacarídeo mais abundante na natureza depois da celulose. Presente no exoesqueleto de crustáceos descartados como resíduo da indústria pesqueira, resíduo estimado em ¼ da produção total (RINAUDO, M. Progress in Polymer Science, v. 31 , n. 7, p. 603-632, 2006). O grau de desacetilação da quitosana encontra-se entre 50 a 100%, esta variação lhe confere diferentes propriedades, como grau de solubilidade, de interação catiônica entre outras, assim como promove características diferentes ao produto em que é utilizada como maior ou menor flexibilidade em filmes.  [026]. Chitosan is a derivative of deacetylation of chitin, the second most abundant polysaccharide in nature after cellulose. It is present in the exoskeleton of discarded crustaceans as a residue of the fishing industry, which is estimated to be 1/4 of the total production (RINAUDO, M. Progress in Polymer Science, v. 31, n.7, p.603-632, 2006). The degree of deacetylation of chitosan is between 50 and 100%, this variation gives it different properties, such as degree of solubility, cationic interaction among others, as well as promoting different characteristics to the product in which it is used as a greater or lesser flexibility in movies.
[027]. Entre as peculiaridades da quitosana, sua estrutura físico- química favorece a formação de géis e filmes, apresenta atividades antimicrobianas e fungistáticas e é solúvel em diluições ácidas (RINAUDO, 2006).  [027]. Among the peculiarities of chitosan, its physicochemical structure favors the formation of gels and films, presents antimicrobial and fungistatic activities and is soluble in acidic dilutions (RINAUDO, 2006).
[028]. Como a quitosana é um resíduo industrial, um material natural renovável, biodegradável e com características de adsorventes, aplicamos a quitosana como parte estrutural do filtro, valorizando-a e diminuindo o resíduo industrial.  [028]. As chitosan is an industrial waste, a renewable natural material, biodegradable and with characteristics of adsorbents, we apply the chitosan as a structural part of the filter, valorizing it and reducing the industrial residue.
[029]. A transformação da quitosana em nanoquitosana amplia sua aplicação pela possível modificação de suas propriedades. Nanopartículas são aquelas com tamanho entre 10 a 100 nanômetros (nm), suas características e efeitos são variáveis e diferentes em relação à sua unidade de tamanho original, devido à particularidade de seu tamanho, área de superfície e condição de ligação com demais partículas e elementos do meio. A nanoquitosana pode ser obtida por diferentes métodos, como geleificação iônica, atomização em spray dryer, entre outros (SIVA AMI, M. S.; GOMATHI, L; VEN ATESAN, J.; JEONG, H-K; SUDHA, P. N.. International Journal of Biological Macromolecules, v. 57, p. 204-212, 2013). [029]. The transformation of chitosan into nanoquitosana extends its application by the possible modification of its properties. Nanoparticles are those with a size between 10 and 100 nanometers (nm), their characteristics and effects are variable and different in relation to their unit of original size, due to the particularity of their size, surface area and condition of connection with other particles and elements the middle one. Nanoquitosan can be obtained by different methods, such as ionic gelation, atomization in spray dryer, among others (SIVA AMI, MS; GOMATHI, L; VEN ATESAN, J .; JEONG, HK; SUDHA, PN, International Journal of Biological Macromolecules, v. 57, pp. 204-212, 2013).
[030]. Esta invenção fornece um novo tipo de filtro, devido a sua composição, de espuma de quitosana e/ou nanoquitosana que são estáveis ao fluxo de água, ou meio gasoso, altamente adsorvente à materiais e substâncias orgânicas, inorgânicas e biológicas, é reutilizável e biodegradável.  [030]. This invention provides a novel type of filter, due to its composition, of chitosan and / or nanoquitosan foam which are stable to the flow of water, or gaseous medium, highly adsorbent to organic, inorganic and biological materials and substances, is reusable and biodegradable .
Descrição da abordagem do problema técnico  Description of approach to the technical problem
[031 ]. O total de água na superfície terrestre é de aproximadamente 71 %, porém, grande parte dessa água encontra-se poluída pela ação humana proveniente da expansão populacional, urbanização, expansão tecnológica e industrial (SIVAKAMI et al., 2013, Internatitonal Jpurnal of Biological Macromolecules, v. 57, p. 204-212) .  [031]. The total amount of water on the land surface is approximately 71%, but much of this water is polluted by human action from population expansion, urbanization, technological and industrial expansion (SIVAKAMI et al., 2013, Internatitonal Jpurnal of Biological Macromolecules , v. 57, pp. 204-212).
[032]. O impacto dos poluentes no ambiente, na saúde pública e na economia vem sendo uma constante preocupação nas últimas décadas. O tipo de poluente e a concentração são dependentes da atividade industrial (HERRERA et al., 201 1 ) .  [032]. The impact of pollutants on the environment, public health and the economy has been a constant concern in recent decades. The type of pollutant and the concentration are dependent on the industrial activity (HERRERA et al., 201 1).
[033]. Normalmente, as técnicas que utilizam adsorventes para a limpeza da água, são caracterizadas por alta eficiência, são acessíveis, e de conceito e aplicação ecológica (REDDY e YUN, 2016, Coordination Chemistry Reviews, v. 315, p. 90-1 1 1 ).  [033]. Typically, the techniques that use adsorbents for water cleaning are characterized by high efficiency, are accessible, and ecological concept and application (REDDY and YUN, 2016, Coordination Chemistry Reviews, v. 315, pp. 90-111 ).
[034]. Já o material adsorvente deve apresentar alta eficiência, rápida adsorção, baixo custo, não ser tóxico ao ambiente, apresentar estabilidade, de preferência ser reutilizável e de fácil separação do material a ser adsorvido, pois a recuperação do material adsorvido é uma etapa importante, assim como o destino a ser dado a este material para que não seja mais um produto poluente (REDDY e YUN, 2016, Coordination Chemistry Reviews, v. 315, p. 90-1 1 1 ) . [034]. The adsorbent material must present high efficiency, fast adsorption, low cost, non-toxic to the environment, stability, preferably being reusable and easily separable from the material to be adsorbed, since the recovery of the adsorbed material is an important step, as well as the destination to be given to this material so that it is no longer a polluting product (REDDY and YUN, 2016, Coordination Chemistry Reviews, v. 315, p.90-111).
[035]. A recuperação do material adsorvente para sua reutilização, segundo Reddy e Yun, (2016, Coordination Chemistry Reviews, v. 315, p. 90-1 1 1 ) pode ser feita por meios ácidos, básicos, solventes orgânicos, agentes quelantes ou ainda por regeneração térmica.  [035]. The recovery of adsorbent material for reuse, according to Reddy and Yun (2016, Coordination Chemistry Reviews, v. 315, pp. 90-111) can be done by acidic means, basic means, organic solvents, chelating agents or by thermal regeneration.
[036]. A grande maioria dos adsorventes apresenta a inconveniência do alto custo, pouca estabilidade do material no meio, dificuldade de remover o material do meio que está sendo descontaminado e dificuldade da separação do material contaminante do adsorvente.  [036]. The great majority of adsorbents present the inconvenience of high cost, poor stability of the material in the medium, difficulty to remove material from the medium being decontaminated and difficulty in separating the contaminating material from the adsorbent.
[037]. Sendo assim, o filtro a base de espuma de quitosana é um equipamento viável para a remoção de partículas e materiais orgânicos, inorgânicos e biológicos de águas, soluções, meios aquosos e gasosos.  [037]. Therefore, the chitosan foam filter is a viable equipment for the removal of particles and organic, inorganic and biological materials from water, solutions, aqueous and gaseous media.
[038]. Durante o estudo sobre a funcionalidade e composição do filtro, a interação quitosana/agente espumante, concentração em função da proporção do material, espessura da espuma antes da secagem, a da disposição do material no equipamento, foi notada a complexidade de aliar a funcionalidade adsorvente a estabilidade do produto em meio aquoso.  [038]. During the study on the functionality and composition of the filter, the chitosan / foaming agent interaction, concentration as a function of the proportion of the material, thickness of the foam before drying, the arrangement of the material in the equipment, the complexity of allying the adsorbent functionality the stability of the product in aqueous medium.
[039]. Quanto a composição do filtro, a proporção da quitosana/nanoquitosana e o agente espumante, a concentração e o tipo de agente espumante são fatores importantes antes da secagem da espuma, pois esta precisa de estabilidade suficiente para que não ocorra o colapso das bolhas da estrutura (sinérese), liberando o líquido da emulsão que se deposita no fundo do suporte onde está a espuma e dificulta a secagem do material. Dependendo da temperatura utilizada e do tipo de material, este se carameliza formando uma camada que impede que o aquecimento penetre em partes da espuma próxima e assim aumentando o tempo de secagem, impedindo a formação da espuma de quitosana. [039]. As for the composition of the filter, the proportion of the chitosan / nanoquitosan and the foaming agent, the concentration and the type of foaming agent are important factors before the foam is dried, since it needs sufficient stability so that bubbles do not collapse of the structure (syneresis), releasing the liquid of the emulsion which is deposited on the bottom of the support where the foam is and makes it difficult to dry the material. Depending on the temperature used and the type of material, it is caramelized to form a layer which prevents the heating from penetrating into parts of the surrounding foam and thus increasing the drying time, preventing the formation of the chitosan foam.
[040]. Após a secagem, a proporção de quitosana/agente espumante também é importante, pois a quitosana é a maior responsável pela adsorção dos materiais de interesse, manter uma concentração de quitosana mínima, que seja funcional para que permita que o uso do filtro seja eficiente.  [040]. After drying, the proportion of chitosan / foaming agent is also important, because chitosan is the major responsible for the adsorption of the materials of interest, maintaining a minimum concentration of chitosan, which is functional so that the use of the filter is efficient.
[041 ]. A escolha do tipo de agente espumante é fundamental, pois este tem a função de manter a estabilidade da espuma dentro do filtro, reter a quitosana e impedir que a espuma se desintegre no fluxo da solução a ser filtrada. Dependendo do tipo de agente espumante, a interação deste com a quitosana na espuma, permite um poder maior de adsorção do filtro.  [041]. The choice of the type of foaming agent is fundamental as it has the function of maintaining the stability of the foam inside the filter, retaining the chitosan and preventing the foam from disintegrating in the flow of the solution to be filtered. Depending on the type of foaming agent, the interaction of this with the chitosan in the foam, allows a greater power of adsorption of the filter.
[042]. A espessura da espuma para secagem é um ponto crítico para a formação da espuma, pois se muito fina, impede a formação de uma dupla camada formada pelo processo, uma camada de quitosana e outra do agente espumante, esta estrutura permite a disposição dos grupos adsorventes de ambos os materiais para a efetiva funcionalidade do filtro. Se a camada de espuma para secagem for muito espessa, ocorre a sinérese, fenómeno já explicado.  [042]. The thickness of the foam for drying is a critical point for the formation of the foam, because if it is very thin, it prevents the formation of a double layer formed by the process, a layer of chitosan and another of the foaming agent, this structure allows the arrangement of the adsorbent groups of both materials for effective filter functionality. If the layer of foam for drying is very thick, syneresis occurs, a phenomenon already explained.
[043]. A disposição e tamanho do material, espuma de quitosana, no interior do filtro está relacionada à eficiência do equipamento. As placas de espuma quando dispostas em pedaços pequenos para o empacotamento do filtro, apresentam aumento da área de superfície de contato da solução a ser filtrada e o material adsorvente, aumentando a eficácia de retenção do material ou substância de interesse, mas existem casos em que o tempo de retenção do material filtrado deve ser maior, assim, é possível utilizar a espuma em camadas dentro do filtro, ou quando se trata de um gás a ser filtrado, o tapete de espuma pode ser acondicionado em espiral, ou seja, o tamanho, formato e acondicionamento da espuma é variável de acordo com o material a ser filtrado. [043]. The arrangement and size of the material, chitosan foam, inside the filter is related to the efficiency of the equipment. Foam plates when arranged in small pieces for packaging the filter exhibit increased contact surface area of the solution to be filtered and the adsorbent material, increasing the retention efficiency of the material or substance of interest, but there are cases where the retention time of the filtrate must be higher, thus it is possible to use the layered foam inside the filter, or when it is a gas to be filtered, the foam mat may be packed in ie, the size, shape and packaging of the foam is variable according to the material to be filtered.
[044]. Quando não ocorre a estabilidade da espuma no interior do filtro, ocorre, a desintegração da espuma, contaminando ainda mais o meio filtrado. No caso de um tanque de criação de peixes, a desintegração do filtro pode não evitar o aumento da concentração de amónia produzida levando à instabilidade do pH do meio e morte dos peixes.  [044]. When there is no stability of the foam inside the filter, the disintegration of the foam occurs, further contaminating the filtered medium. In the case of a fish breeding tank, the disintegration of the filter may not prevent an increase in the concentration of ammonia produced leading to instability of the medium pH and death of the fish.
[045]. O filtro a base de espuma de quitosana e/ou nanoquitosana poderá ser utilizado para a adsorção de variadas substâncias e compostos orgânicos, inorgânicos e biológicos, como para o tratamento de água, em tanque de criação de animais aquáticos para a redução de amónia, fósforo e nitrito, pode ser utilizado em água contaminada com metais, metais pesados, lama, particulados de argilas e argilominerais, óleos, petróleo, diesel ou biodiesel, fazer a adsorção de metais em soluções de pH variável, para filtrar soluções em geral, para a remoção de impurezas de gases, etc.  [045]. The filter based on chitosan and / or nanochitosan foam can be used for the adsorption of various substances and organic, inorganic and biological compounds, as well as for the treatment of water, in a breeding tank of aquatic animals for the reduction of ammonia, phosphorus and nitrite, can be used in water contaminated with metals, heavy metals, sludge, clay and clay minerals, oils, petroleum, diesel or biodiesel, adsorption of metals in solutions of variable pH, to filter solutions in general for the removal of impurities from gases, etc.
Descrição Detalhada da Invenção e desenhos  Detailed Description of the Invention and Drawings
[046]. Os objetivos, melhorias funcionais e vantagens do filtro, objeto da presente invenção, serão aparentes aos técnicos no assunto a partir da descrição a seguir que faz referência às figuras anexas. As figuras são esquemáticas, e suas dimensões ou proporções podem não corresponder à realidade, uma vez que visam apenas a descrever a invenção de forma didática, sem impor quaisquer limitações além daquelas definidas nas reivindicações mais adiante. [047]. O filtro é composto por um biopolímero, uma espuma de quitosana (Processo de patente: BR1020150292597) obtida a partir da solução de quitosana e/ou nanoquitosana adicionada de um agente espumante. Esta interação entre a quitosana e o agente espumante adequado é de extrema importância para o filtro, primeiramente, o agente espumante oferece à quitosana e/ou nanoquitosana uma camada de sustentação, isto permite que o arranjo das cadeias formadas de quitosana seja altamente poroso; esta interação forma um biopolímero com duas camadas de polaridades distintas, uma camada apolar (agente espumante) e outra polar (quitosana). Apesar de apolar, a camada possui poros que permitem a passagem da solução, porém a retém por um período maior, fazendo com que o tempo de contato entre agente adsorvente e o material a ser adsorvido seja o suficiente para a reação entre materiais e a adsorção desejada. [046]. The objects, functional improvements and advantages of the filter object of the present invention will be apparent to those skilled in the art from the following description with reference to the accompanying drawings. The figures are schematic, and their dimensions or proportions may not correspond to reality since they are only intended to describe the invention in a didactic manner without imposing any limitations other than those defined in the claims below. [047]. The filter is composed of a biopolymer, a chitosan foam (Patent Process: BR1020150292597) obtained from the solution of chitosan and / or nanoquitosan added with a foaming agent. This interaction between the chitosan and the suitable foaming agent is of utmost importance for the filter; first, the foaming agent gives the chitosan and / or nanoquitosan a support layer, this allows the arrangement of the chitosan formed strands to be highly porous; this interaction forms a biopolymer with two layers of distinct polarities, an apolar layer (foaming agent) and a polar layer (chitosan). Despite apolar, the layer has pores that allow the passage of the solution, but it retains it for a longer period, so that the contact time between adsorbent agent and the material to be adsorbed is enough for the reaction between materials and the adsorption desired.
[048]. O filtro possui uma ampla capacidade de remoção de vários tipos de compostos orgânicos, inorgânicos (polares e apoiares) e biológicos, sendo capaz de remover diversos tipos de contaminantes. Apresenta baixa densidade, mantém concentrados os contaminantes no interior dos seus poros em sua superfície interna e externa.  [048]. The filter has a large capacity for removal of various types of organic, inorganic (polar and apoolar) and biological compounds, being able to remove several types of contaminants. It has low density, keeps contaminants inside its pores on its internal and external surface.
[049]. Após um certo tempo de uso, o material filtrador, a espuma de quitosana/nanoquitosana, torna-se saturado do material que está sendo adsorvido, em casos quando este material é volátil, é possível desmontar o filtro, retirar a espuma, arranjá-la sobre uma superfície e leva-la à estufa ou ao sol, o material pela ação do calor irá evaporar juntamente com a umidade contida na espuma e esta pode ser acondicionada novamente no filtro e este ser utilizado novamente. No caso da adsorção de metais, o material adsorvido pode ser recuperado através da calcinação da espuma em temperaturas adequadas que impeçam a fusão dos metais, assim, a espuma é decomposta e sobram apenas os metais. [050]. Após α vida útil da espuma ter acabado como agente adsorvente, se esta foi utilizada para filtrar água proveniente de aquicultura, por exemplo, ou tratar outros efluentes contendo espécies adsorvidos que não sejam nocivas ao meio ambiente, esta espuma pode ser retirada do filtro e utilizada como adubo em plantações, mais especificamente como fonte de nitrogénio, carbono, fósforo, potássio e cálcio. [049]. After a certain time of use, the filter material, the chitosan / nanoquitosan foam, becomes saturated with the material being adsorbed, in cases when this material is volatile, it is possible to disassemble the filter, remove the foam, arrange it on a surface and take it to the stove or the sun, the material by the action of heat will evaporate along with the moisture contained in the foam and it can be wrapped up again in the filter and used again. In the case of adsorption of metals, the adsorbed material can be recovered by calcining the foam at suitable temperatures which prevent the melting of the metals, thus, the foam is decomposed and only the metals remain. [050]. After the shelf life of the foam has ended up as adsorbent, if it has been used to filter aquaculture water, for example, or to treat other effluents containing adsorbed species that are not harmful to the environment, this foam can be removed from the filter and used as fertilizer in plantations, more specifically as a source of nitrogen, carbon, phosphorus, potassium and calcium.
Breve Descrição dos Desenhos Brief Description of Drawings
[051 ]. O desenho do filtro pode ser visualizado na página de desenhos e a seguir é apresentada a descrição detalhada do filtro:  [051]. The drawing of the filter can be viewed on the drawings page and the following is a detailed description of the filter:
[052]. Figura 1 : Apresenta ( 1 ) abertura de entrada; (2) o corpo do filtro; (3) abertura de saída.  [052]. Figure 1: Displays (1) inlet aperture; (2) the filter body; (3) outlet opening.
[053]. Figura 2: Modelo de corte vertical do filtro, com diferentes possibilidades de empacotamento da espuma:  [053]. Figure 2: Model of vertical cut of the filter, with different possibilities of foam packaging:
(1 ) Estrutura condutora da solução a ser filtrada: esta estrutura pode ser um tubo, uma cavidade de entrada, uma válvula, ou qualquer outra estrutura que recebe a solução ou gás a ser filtrado com as partículas a serem adsorvidas, tem a função de conduzir o líquido, gás ou outro tipo de material ao filtro propriamente dito;  (1) Conductive structure of the solution to be filtered: this structure can be a tube, an inlet cavity, a valve, or any other structure that receives the solution or gas to be filtered with the particles to be adsorbed, has the function of conducting the liquid, gas or other type of material to the filter itself;
(2 e 6) Proteção do material interno do filtro: materiais como telas, membranas, filtros laminares ou não, peneiras, entre outros que são posicionados na entrada e na saída do filtro, transversalmente ao fluxo do material que está sendo filtrado, e são responsáveis por impedir a saída do material acondicionado no interior do filtro;  (2 and 6) Protection of the internal material of the filter: materials such as screens, membranes, laminar filters or not, sieves, among others that are positioned at the inlet and outlet of the filter, transversely to the flow of the material being filtered, and are responsible for preventing the exit of the material contained inside the filter;
(3 e 5) Material inerte com função de impedir a compactação: materiais inertes como pérolas de vidro são acondicionados entre proteções do material interno do filtro (2 e 6), entre a entrada e a saída do filtro são preenchidas com este material com a função de evitar a compactação das espumas adsorventes nas extremidades do filtro, facilitando o fluxo do material que está sendo filtrado. Esta camada é opcional dependente do tipo de material a ser filtrado; (3 and 5) Inert material to prevent compaction: inert materials such as glass beads are wrapped between protections of the internal material of the filter (2 and 6), between the inlet and the are filled with this material in order to avoid compaction of the adsorbent foams at the ends of the filter, facilitating the flow of the material being filtered. This layer is optional depending on the type of material to be filtered;
(4) Espuma de quitosana e/ou nanoquitosana: a espuma pode ser produzida tanto da quitosana em sua forma estrutural original, como a nanoquitosana, ou a mistura de ambas. Estas sofrem a metodologia de secagem em camada de espuma onde a solução de quitosana ou nanoquitosana é adicionada de um agente espumante e em seguida a espuma sofre um processo de secagem (Processo de patente n: BR 1020150292597) . Após a finalização do processo de secagem, a espuma é retirada das bandejas, e manipulada de acordo com a característica do material filtrado, os tapetes ou pedaços são acondicionados como miolo do filtro, tem a função de adsorção do material de interesse, material a ser removido do meio que está sendo filtrado. Na figura 2 são apresentadas algumas possibilidades de formato da espuma, como em pedaços pequenos, camadas, ou inteira. (7) Estrutura condutora de saída da solução filtrada: esta estrutura pode ser um tubo, uma cavidade de entrada, uma válvula, ou qualquer outra estrutura que permite a saída do líquido filtrado, tem a função de conduzir a saída do líquido do filtro propriamente dito.  (4) Chitosan and / or nanochitosan foam: Foam may be produced from either the chitosan in its original structural form, such as nanochitosan, or the mixture of both. These undergo the foam layer drying methodology where the chitosan or nanoquitosan solution is added with a foaming agent and then the foam undergoes a drying process (Patent Process No: 1020150292597). After completion of the drying process, the foam is removed from the trays, and manipulated according to the characteristics of the filtrate, the mats or pieces are packed as filter core, adsorption function of the material of interest, material to be dried. removed from the medium being filtered. In figure 2 some possibilities of format of the foam are presented, as in small pieces, layers, or whole. (7) Leading structure of the filtered solution: this structure can be a tube, an inlet cavity, a valve, or any other structure that allows the leakage of the filtered liquid, has the function of driving the liquid outlet of the filter itself said.
[054]. Figura 3: corte transversal do filtro apresentando: (1 ) a cavidade de entrada ou saída; (2) Camada da proteção do material interno do filtro; (3) corpo do filtro.  [054]. Figure 3: cross-sectional view of the filter having: (1) the inlet or outlet cavity; (2) Protection layer of internal filter material; (3) filter body.
[055]. Figura 4: corte transversal do filtro apresentando: (1 ) material inerte; (2) corpo do filtro. [056]. Figura 5: Corte transversal do filtro apresentando: (1 ) algumas possibilidades de empacotamento da espuma de quitosana em pedaços, em camadas ou em tapete enrolado em espiral; (2) corpo do filtro. [055]. Figure 4: cross-sectional view of the filter having: (1) inert material; (2) filter body. [056]. Figure 5: Cross-sectional view of the filter showing: (1) some possibilities of packaging the chitosan foam into pieces, in layers or in a coiled-up mat; (2) filter body.

Claims

REIVINDICAÇÕES
1 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado por uma parte externa que compreende: 1 - uma estrutura condutora da solução a ser filtrada paraA QUITOSAN AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized by an outer part comprising: 1 - a conductive structure of the solution to be filtered to
0 filtro propriamente dito, com diâmetro menor que a estrutura do filtro, sendo dimensionada para se encaixar de forma justa no filtro; 2 - Filtro propriamente dito, dotado de paredes laterais, tem diâmetro maior que as estruturas de condução de entrada e saída dos líquidos; 3 - Estrutura condutora de saída da solução filtrada com diâmetro menor que a estrutura do filtro, sendo dimensionado para se encaixar de forma justa no filtro. The filter itself, smaller in diameter than the filter structure, is sized to fit snugly into the filter; 2 - Filter itself, provided with lateral walls, has a larger diameter than the conduction structures of entry and exit of liquids; 3 - Leading structure of the filtered solution with a smaller diameter than the filter structure, being sized to fit tightly on the filter.
2 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, de acordo com a reivindicação 1 , caracterizado como parte interna do filtro propriamente dito, dividida em 5 camadas:A QUITOSANE AND / OR NANOQUITOSAN FOAM BASED FILTER according to claim 1, characterized as an inner part of the filter itself, divided into 5 layers:
1 e 5 - Duas proteções para impedir a saída da espuma de quitosana do filtro, uma na entrada do filtro e outra na saída, permeáveis à solução filtrante, que ficam em posição transversal ao fluxo do líquido passante, com diâmetro maior que a estrutura condutora de entrada e saída da solução filtrante e ajustadas a encaixar no filtro em posição transversal a entrada; 2 e 4 - Duas porções de material inerte acondicionados entre as proteções do material interno do filtro, entre a camada de proteção do material interno, entre a entrada e a saída do filtro; 3 - Centro. 1 and 5 - Two protections to prevent the exit of the chitosan foam from the filter, one at the filter inlet and one at the outlet, permeable to the filter solution, which are in a transverse position to the flow of the passing liquid, with a larger diameter than the conducting structure inlet and outlet of the filter solution and adjusted to engage the filter in the transverse position of the inlet; 2 and 4 - Two portions of inert material packed between the protections of the internal material of the filter, between the protective layer of the internal material, between the inlet and the outlet of the filter; 3 - Center.
3 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado de acordo com a reivindicação 2, o centro consiste na espuma de quitosana e/ou nanoquitosana, com função adsorvente, realizando a função do filtro propriamente dito, acondicionada entre as camadas de material inerte. 4 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado por seu elemento filtrante ser um material biodegradável. A QUITOSANE AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized in accordance with claim 2, the center consists of the chitosan and / or nanoquitosan foam, with adsorbent function, performing the function of the filter itself, packaged between the layers of inert material. A QUITOSANE AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized in that its filter element is a biodegradable material.
5 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado por ser um filtro reutilizável. 5. A QUITOSAN FOAM BASED FILTER AND / OR NANOQUITOSAN, characterized in that it is a reusable filter.
6 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado como próprio para o uso em sistemas aquícolas para a filtração de nitrogénio, fósforo, nitrito e outras substâncias classificadas como orgânicas, inorgânicas ou biológicas. 6 - QUITOSANA FOAM FILTER AND / OR NANOQUITOSAN, which is suitable for use in aquaculture systems for the filtration of nitrogen, phosphorus, nitrite and other substances classified as organic, inorganic or biological.
7 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado pela aplicação do centro do filtro, a espuma de quitosana e/ou nanoquitosana em solos como adubo e fonte de carbono, nitrogénio, fósforo, potássio e cálcio após seu uso como agente adsorvente de filtros em sistemas aquícolas. 7 - QUITOSANA FOAM FILTER AND / OR NANOQUITOSAN, characterized by the application of the filter center, chitosan and / or nanochitosan foam in soils as fertilizer and source of carbon, nitrogen, phosphorus, potassium and calcium after its use as adsorbing agent of filters in aquaculture systems.
8 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado pela aplicação somente do centro do filtro, a espuma de quitosana e/ou nanoquitosana como agente filtrante e/ou adsorvente. 8. QUITOSANE AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized by applying only the center of the filter, the chitosan and / or nanoquitosan foam as a filtering agent and / or adsorbent.
9 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado como próprio para o uso como equipamento filtrante e/ou adsorvente para metais diversos, principalmente metais pesados. A QUITOSAN AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized as suitable for use as filtering and / or adsorbent equipment for various metals, especially heavy metals.
10 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado como próprio para o uso como equipamento filtrante ou adsorvente para o tratamento de águas lodosas, ou que apresentam qualquer tipo de partículas e substâncias orgânicas, inorgânicas e biológicas. A QUITOSAN AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized as suitable for use as filtering or adsorbent equipment for the treatment of muddy water or any kind of organic, inorganic and biological particles and substances.
1 1 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado para a filtração de água, soluções, alimentos, combustíveis, materiais orgânicos e inorgânicos, líquidos, sólidos ou gasosos (amónia, H2S, etc) . 1 - QUITOSAN FOAM FILTER AND / OR NANOQUITOSAN FOAM FILTER, characterized for the filtration of water, solutions, food, fuels, organic and inorganic materials, liquids, solids or gases (ammonia, H 2 S, etc.).
12 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado por apresentar variadas formas de empacotamento da espuma de quitosana e/ou nanoquitosana, como em camadas ordenadas, desordenadas, espuma picada e prensada, entre outras que permitam a funcionalidade do filtro. A QUITOSANE AND / OR NANOQUITOSAN FOAM BASED FILTER, characterized in that it exhibits various forms of packaging of the chitosan and / or nanoquitosan foam, such as in orderly, disordered layers, chopped and pressed foam, among others, which allow filter functionality .
13 - FILTRO A BASE DE ESPUMA DE QUITOSANA E/OU NANOQUITOSANA, caracterizado por apresentar a espuma de quitosana em diferentes tamanhos e formatos, como quadrado, circular, retangular, em forma de rolo, entre outros que permitam a funcionalidade do filtro. 13 - QUITOSANA FOAM FILTER AND / OR NANOQUITOSAN, characterized by presenting the chitosan foam in different sizes and shapes, such as square, circular, rectangular, roller-shaped, among others that allow filter functionality.
PCT/BR2018/050166 2017-06-26 2018-05-21 Chitosan and/or nanochitosan foam-based filter equipment WO2019000064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102017013807-0 2017-06-26
BR102017013807-0A BR102017013807A2 (en) 2017-06-26 2017-06-26 equipment - chitosan and / or nanoquitosan foam filter

Publications (1)

Publication Number Publication Date
WO2019000064A1 true WO2019000064A1 (en) 2019-01-03

Family

ID=64740211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050166 WO2019000064A1 (en) 2017-06-26 2018-05-21 Chitosan and/or nanochitosan foam-based filter equipment

Country Status (2)

Country Link
BR (1) BR102017013807A2 (en)
WO (1) WO2019000064A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533940A (en) * 1967-06-02 1970-10-13 Quintin P Peniston Method for treating an aqueous medium with chitosan and derivatives of chitin to remove an impurity
US5707513A (en) * 1992-05-13 1998-01-13 Jowett; E. Craig Wastewater treatment method and apparatus
US20060163137A1 (en) * 2005-01-25 2006-07-27 Ricura Technologies, Llc Granular filtration device for water
US20080096268A1 (en) * 2006-10-20 2008-04-24 Biorem Technologies Inc. Biotrickling filter packing material and systems and methods of using same to remove odour causing compounds from waste gas streams
CN201288103Y (en) * 2008-11-10 2009-08-12 郑州大学 Industrial waste water treatment apparatus
WO2017088038A1 (en) * 2015-11-23 2017-06-01 Universidade Federal Do Paraná Use and production of chitosan and/or nanochitosan dry foam and powder by foam layer drying method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533940A (en) * 1967-06-02 1970-10-13 Quintin P Peniston Method for treating an aqueous medium with chitosan and derivatives of chitin to remove an impurity
US5707513A (en) * 1992-05-13 1998-01-13 Jowett; E. Craig Wastewater treatment method and apparatus
US20060163137A1 (en) * 2005-01-25 2006-07-27 Ricura Technologies, Llc Granular filtration device for water
US20080096268A1 (en) * 2006-10-20 2008-04-24 Biorem Technologies Inc. Biotrickling filter packing material and systems and methods of using same to remove odour causing compounds from waste gas streams
CN201288103Y (en) * 2008-11-10 2009-08-12 郑州大学 Industrial waste water treatment apparatus
WO2017088038A1 (en) * 2015-11-23 2017-06-01 Universidade Federal Do Paraná Use and production of chitosan and/or nanochitosan dry foam and powder by foam layer drying method

Also Published As

Publication number Publication date
BR102017013807A2 (en) 2019-01-15

Similar Documents

Publication Publication Date Title
Brião et al. Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption
Siyal et al. A review on recent developments in the adsorption of surfactants from wastewater
Sasidharan et al. Transport and retention of bacteria and viruses in biochar-amended sand
Jiang et al. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels
Basar et al. Removal of surfactants by powdered activated carbon and microfiltration
Sarkar et al. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly (acrylic acid)
Iqbal et al. Adsorption of dyes from aqueous solutions on activated charcoal
ES2365082B1 (en) PROCEDURE FOR OBTAINING MATERIALS WITH SUPERPARAMAGNETIC BEHAVIOR
Jethave et al. Facile synthesis of Lead Doped Zinc-Aluminum Oxide Nanoparticles (LD-ZAO-NPs) for efficient adsorption of anionic dye: Kinetic, isotherm and thermodynamic behaviors
Zhang et al. Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics
Escudero-Oñate et al. A review of chitosan-based materials for the removal of organic pollution from water and bioaugmentation
Rajamohan et al. Equilibrium, kinetic and thermodynamic studies on the removal of Aluminum by modified Eucalyptus camaldulensis barks
Cusioli et al. Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water
Rytwo et al. Use of CV-and TPP-montmorillonite for the removal of priority pollutants from water
Pouya et al. Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: Kinetic, isotherm and thermodynamic studies
Bentahar et al. Physico-chemical characterization and valorization of swelling and non-swelling Moroccan clays in basic dye removal from aqueous solutions
Ara et al. Removal of remazol red from textile waste water using treated sawdust-an effective way of effluent treatment
Azman et al. Effect of adsorption parameter on the removal of aspirin using tyre waste adsorbent
Aljeboree et al. Removal of textile dye (methylene blue mb) from aqueous solution by activated carbon as a model (corn-cob source waste of plant): As a model of environmental enhancement
Chen et al. Synthesis of ultralight chitosan/activated biochar composite aerogel globules for ketoprofen removal from aqueous solution
Peres et al. Bio-nanosilica obtained from rice husk using ultrasound and its potential for dye removal
Azadeh et al. Surfactant-modified wheat straw: preparation, characterization and its application for methylene blue adsorption from aqueous solution
Zhang et al. Evaluation of functional group content of N-methylimidazolium anion exchange resin on the adsorption of methyl orange and alizarin red
WO2019000064A1 (en) Chitosan and/or nanochitosan foam-based filter equipment
Rehman et al. Facile synthesis of highly macroporous Gum Arabic hydrophilic cryogel for dyes adsorption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825470

Country of ref document: EP

Kind code of ref document: A1