WO2018235600A1 - Polymer composition - Google Patents
Polymer composition Download PDFInfo
- Publication number
- WO2018235600A1 WO2018235600A1 PCT/JP2018/021704 JP2018021704W WO2018235600A1 WO 2018235600 A1 WO2018235600 A1 WO 2018235600A1 JP 2018021704 W JP2018021704 W JP 2018021704W WO 2018235600 A1 WO2018235600 A1 WO 2018235600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyoxalate
- polymer composition
- diol
- polymer
- carboxyl group
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/16—Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
Definitions
- the present invention relates to a polymer composition comprising polyoxalate as polymer component.
- the polyoxalate is a polyester comprising an acid structural unit derived from oxalic acid and a diol structural unit derived from a diol.
- Polyoxalate has excellent hydrolyzability, and its use in various applications is being considered. For example, in the field of agriculture, use in the form of films, sheets, trays, pots, etc. is being considered. In the environmental field, use as a water purification material or a soil purification material in the form of powder or pellet is being studied. In the field of resource mining such as shale gas, use in the form of powder, spherical particles, fibers or the like in addition to fracturing fluid, finishing fluid, etc. is being studied.
- polyoxalate is an environmentally friendly biodegradable resin, and it is difficult to perform post-treatment work in wells and the like, and it is necessary to have water even in a low temperature (100 ° C. or less) environment Because it can be expected to hydrolyze with nature, studies are actively conducted.
- polyoxalate is low in heat resistance and has a problem that it is easily thermally decomposed at the time of melt molding such as spinning, extrusion molding, injection molding and the like.
- melt molding such as spinning, extrusion molding, injection molding and the like.
- polyoxalate has a disadvantage that the molecular weight is reduced. There is.
- Patent Document 1 proposes a polyester polymer having a number average molecular weight of 10,000 or more in terms of polystyrene measured by GPC, and such a polyester polymer Polyoxalate is disclosed.
- This polyoxalate has a high thermal decomposition temperature and is excellent in heat resistance.
- the present applicant previously proposed a polyoxalate copolymer using a total of two or more of ethylene glycol and other diols as a diol in Japanese Patent Application No. 2016-035585 (Japanese Patent Laid-Open No. 201-149892). doing.
- Such a polyoxalate copolymer has heat resistance, and the reduction in molecular weight at the time of thermoforming is suppressed.
- hydrolysis starts within several days from the start of use, and hydrolysis is thereafter rapidly.
- the polyoxalate copolymers of the prior application also possess adequate hydrolytic properties.
- the polyoxalate copolymer of the prior application is limited in the type of diol to be used, and the degree of freedom in designing the structure of polyoxalate is low depending on the application, use environment, etc. is necessary.
- an object of the present invention is a polymer composition containing polyoxalate as a polymer component, in which the reduction in molecular weight during molding of polyoxalate is effectively suppressed and the hydrolyzability of polyoxalate is maintained.
- a polymer composition comprising, as polymer component, a polyoxalate having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid
- a polymer composition comprising a terminal carboxyl group capping agent as a molding stabilizer and having a 5% weight loss temperature by TG-DTA of 300 ° C. or less.
- the terminal carboxyl group capping agent is a carbodiimide compound or a polycarbodiimide.
- the diol is butanediol or ethylene glycol.
- the diol is butanediol.
- the 5% weight loss temperature is 220 to 300 ° C.
- a molded article obtained by thermoforming the above-mentioned polymer composition. It is preferred that the above-mentioned molded body has a fiber or granular form.
- the polymer composition of the present invention contains polyoxalate as a polymer component, and is an important feature in that a terminal carboxyl group capping agent is blended as a molding stabilizer. That is, when polyoxalate is held for a long time at a certain temperature or higher, decomposition of the terminal carboxyl group occurs. In addition, hydrolysis occurs when high temperature polyoxalate is introduced into water due to underwater cutting and the like, and a carboxyl group is present at the end of the molecule generated by hydrolysis. Thus, degradation of the polyoxalate results in a reduction in molecular weight during molding of the polyoxalate.
- a terminal carboxyl group capping agent is blended, and the terminal of the carboxyl group is protected by this capping agent, thermal decomposition of polyoxalate is suppressed, and further polyoxalate accompanied by hydrolysis. Chain decomposition is effectively suppressed.
- the 5% weight loss temperature by TG-DTA is in the range of 300 ° C. or less (preferably 220 to 300 ° C.).
- the 5% weight loss temperature is prepared by the compounding amount of the terminal carboxyl group capping agent, and when the compounding amount of the sealant is increased, the 5% weight loss temperature becomes high, and when the compounding amount is decreased, the 5% weight component is reduced. The reduced temperature is lower.
- the amount of the terminal carboxyl group capping agent is adjusted so that the 5% weight loss temperature is in the above range, the initial hydrolysis of polyoxalate in a water-containing environment at high temperature is although it is suppressed, once hydrolysis occurs, hydrolysis proceeds rapidly, as with normal polyoxalate. That is, at the time of molding such as under water cutting, hydrolysis is suppressed and the lowering of the molecular weight is prevented, but the obtained molded product is a molded product of polyoxalate in which the terminal carboxyl group capping agent is not blended. It will exhibit the same hydrolyzability. For example, when the terminal carboxyl group capping agent is blended so that the 5% weight loss temperature is higher than the above range, the polyoxalate is excessively stabilized and the hydrolyzability of the polyoxalate is impaired. It will be
- the polyoxalate used in the present invention is a polyester having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid, and an esterification polymerization reaction by reacting a diol and oxalic acid, or an alkyl oxalate Obtained by a polymerization reaction involving transesterification using
- This polyoxalate has an oxalate repeating unit represented by the following formula.
- n is a positive number representing the degree of polymerization
- A is an organic group derived from a diol, and a plurality of organic groups A may be identical to one another or may be different from one another.
- the alkyl oxalate is preferably a dialkyl oxalate, more preferably a dialkyl oxalate consisting of an alkyl group having 1 to 4 carbon atoms such as dimethyl oxalate, diethyl oxalate, propyl oxalate, dimethyl oxalate and diethyl oxalate Particularly preferred.
- diols examples include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, dodecanediol, neopentyl glycol, bisphenol A, cyclohexane dimethanol and the like, but it is easy to obtain appropriate hydrolyzability.
- linear dihydric alcohols such as ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, dodecanediol are preferred, butanediol or ethylene glycol is more preferred, and butanediol is particularly preferred.
- the polyoxalate used in the present invention may be a copolymer containing other ester units as long as it has the above-mentioned oxalate repeating unit, but preferably, 80 mol% or more of the above-mentioned oxalate repeating unit Particularly, it is preferable that 90 mol% or more is contained.
- the weight average molecular weight (Mw) of the polyoxalate described above is preferably 30,000 to 200,000, more preferably 50,000 to 150,000, and still more preferably 50,000 to 100,000, from the viewpoint of facilitating acquisition of appropriate hydrolysability and molding processability. It is. Even if the molecular weight exceeds the above upper limit value, the performance is not affected at all, but since the polymerization time becomes long, there is a concern that the productivity may be lowered.
- Terminal carboxyl group capping agent used together with the above polyoxalate in the polymer composition of the present invention is a compound or polymer having a functional group which can be bonded to a carboxyl group to function as a protective group.
- carbodiimide compound monocarbodiimide having one carbodiimide group in the molecule, for example, N, N'-diisopropylcarbodiimide, N, N'-di-tert-butylcarbodiimide, N- (3-dimethylaminopropyl) -N Aliphatic monocarbodiimides such as' -ethylcarbodiimide, N, N'-dicyclohexylcarbodiimide; N, N'-diphenylcarbodiimide, N, N'-di-p-tolylcarbodiimide, N, N'-bis (dimethylphenyl) carbodiimide N, N'-bis (methoxyphenyl) carbodiimide, N, N'-bis (nitrophenyl) carbodiimide, N, N'-bis (2,6-diisopropylphenyl) carbodiimide, N, N'-bis (tri
- polycarbodiimides having two or more carbodiimide groups in the molecule for example, aliphatic polycarbodiimides such as poly (4,4'-dicyclohexylmethanecarbodiimide); poly (p -Phenylene carbodiimide), poly (m-phenylene carbodiimide), poly (methyl phenylene carbodiimide), poly (diisopropyl phenylene carbodiimide), poly (methyl diisopropyl phenylene carbodiimide), poly (1, 3, 5- triisopropyl phenylene carbodiimide), poly Aromatic polycarbodiimides such as (1,3,5-triisopropylphenylene-co-1,5-diisopropylphenylene carbodiimide), poly (4,4'-diphenylmethane carbodiimide), etc.
- aliphatic polycarbodiimides such as poly (4,4'-dicyclohexylmethan
- polycarbodiimides aliphatic polycarbodiimides are preferable because they can efficiently protect carboxyl groups.
- Various types of polycarbodiimides such as those described above are marketed by Nisshinbo Chemical Co., Ltd. under the trade name of Carbodilite. This carbodiimide is a polymer obtained by decarboxylative condensation of diisocyanate.
- such terminal carboxyl group capping agent is determined such that the 5% weight loss temperature (Td 5%) by TG-DTA of the polymer composition is 300 ° C. or less, more preferably 220 to 300 ° C. Be done.
- Td 5% 5% weight loss temperature
- the higher the Td 5% value the more stable the polyoxalate, but the lower the hydrolyzability.
- Td5% becomes high, so that the compounding quantity of terminal carboxyl group blocking agent increases.
- a polymer composition having a Td of 5% in the above-mentioned range has the adequate hydrolyzability required for polyoxalate while having sufficient stability to withstand molding.
- the blending amount of the terminal carboxyl group capping agent for securing a value of 5% of Td as described above varies depending on the type of the sealant, the structure of polyoxalate, etc. It is 1,000 to 50,000 ppm, in particular 1,000 to 20,000 ppm, relative to polyoxalate.
- additives of terminal carboxyl group capping agent such as plasticizer, light stabilizer, antioxidant, UV absorber, flame retardant, colorant, pigment, filler, filler And mold release agents, antistatic agents, perfumes, lubricants, foaming agents, antibacterial and antifungal agents, nucleation agents, layered borates, crosslinkers, enzymes and the like.
- biodegradable resin compositions other than polyoxalate for example, aliphatic polyester, polyvinyl alcohol, and celluloses may be blended together as required.
- the polymer composition of the present invention is subjected to an esterification polymerization reaction such as dehydration reaction or transesterification reaction by a known method to polymerize the polyoxalate, and the terminal carboxyl group capping agent is stirred in the obtained polyoxalate. It is manufactured by mixing.
- known catalysts can be used, if necessary.
- known catalysts include titanium alkoxides such as titanium tetrabutoxide, antimony compounds such as antimony trioxide, and tin compounds such as dibutyltin oxide and butyltin dilaurate, but in addition to this, P, Ge, Examples thereof include Zn, Fe, Mn, Co, Zr, V and compounds of various rare earth metals.
- Organic solvents include aromatic hydrocarbon-based organic solvents such as benzene, toluene and xylene; aliphatic hydrocarbon-based organic solvents such as pentane, hexane, cyclohexane, heptane, decalin and tetralin; ether-based organic solvents such as ethyl ether and tetrahydrofuran Solvents; Chlorinated hydrocarbon-based organic solvents such as chloroform, chlorobenzene, carbon tetrachloride, etc .;
- polystyrene resin As a specific polymerization method of polyoxalate, for example, there is a method of proceeding an esterification polymerization reaction in two steps of normal pressure polymerization and reduced pressure polymerization using a diol and an alkyl oxalate. Such a two-step polymerization method can be carried out without using an organic solvent and in the absence of a solvent. The implementation without solvent is advantageous in terms of production cost and the like.
- the two-stage polymerization method may be carried out using a batch-type polymerization reactor shown in FIG.
- the polymerization reactor 1 is provided with a stirrer 3 and a distillation pipe 5.
- the distillation pipe 5 has a top A, and also has a reflux portion 5a in the region from the polymerization reactor 1 to the top A and a distillation 5b downstream of the top A.
- the distillation section 5b is provided with a cooling pipe 5c such as a heat exchanger so that the liquid to be distilled is condensed and discharged quickly.
- a heating pipe or a cooling pipe may be appropriately attached to the reflux portion 5a so that the temperature of the top A can be adjusted.
- the reaction liquid 10 (alkyl oxalate, diol and optionally used catalyst and organic solvent) is supplied into the polymerization reactor 1, and alcohol, unreacted diol, oligomer and the like by-produced in the esterification polymerization reaction are distilled off.
- the distillation portion 5 b is distilled off as a distillate 15 through the reflux portion 5 a of the last tube 5.
- the two-step polymerization method is carried out while adjusting the distillation conditions.
- the amount of diol charged in the reaction solution is 0.8 to 1.2 moles, preferably 1.0 to 1.2 moles, per mole of alkyl oxalate, from the viewpoint of rapidly advancing an atmospheric pressure polymerization reaction.
- Atmospheric pressure polymerization is carried out by displacing the inside of the polymerization reactor 1 to a nitrogen gas atmosphere, charging the reaction solution and heating it to a range of 110 to 200 ° C. while stirring, whereby the low polymerization degree
- the distillation of the alcohol stops the normal pressure polymerization is stopped and the next reduced pressure polymerization is performed.
- Low pressure polymerization The low pressure polymerization is to maintain the reaction liquid 10 containing low polymerization degree polyoxalate generated by atmospheric pressure polymerization at 180 to 210 ° C. while maintaining the pressure in the polymerization reactor 1 at 0.1 to 1 kPa under reduced pressure. It is done by The polymerization is allowed to proceed further while removing the diol remaining in the reaction liquid 10 by the reduced pressure polymerization, to obtain a further polymerized polyoxalate.
- the reflux portion 5a of the distillation pipe 5 in order to accelerate the removal of the residual diol, it is preferable to keep the reflux portion 5a of the distillation pipe 5 at 90 to 140 ° C.
- the reduced pressure polymerization step may be ended when removal of the residual diol is stopped.
- the termination of removal of the residual diol can be confirmed by monitoring the temperature at the top of the head A of the distillation pipe 5, for example.
- the reduced pressure polymerization following the normal pressure polymerization the content of impurities such as by-product alcohol and unreacted diol is suppressed, and a polyoxalate having a higher molecular weight than at the time of normal pressure polymerization can be obtained.
- the above description does not limit the polymerization method of polyoxalate in the present invention, and the polymerization may be performed by other methods.
- the terminal carboxyl group capping agent is charged into the molten polyoxalate, and the mixture is stirred and mixed.
- the stirring and mixing may be performed according to known conditions and means, but when stirring and mixing is performed under a reduced pressure of 10 kPa or more and less than 1000 kPa, impurities such as residual diol and by-product alcohol can be removed. ,preferable.
- the terminal carboxyl group capping agent is uniformly mixed in the polyoxalate, whereby a part of the capping agent reacts with the terminal carboxyl group of the polyoxalate to seal the carboxyl group. Be done.
- the mixing time is generally about 0.5 to 3 hours.
- the capping of the terminal carboxyl group by the polyoxalate can be confirmed by the decrease in the acid value of the polyoxalate, the decrease in initial hydrolyzability, and the like.
- the terminal carboxyl group capping agent can also be mixed with the polyoxalate as a liquid dissolved or dispersed in a blend, a solvent, or the like, which is melt mixed with another polymer.
- polyoxalate may be reduced in molecular weight in the stirring and mixing step of the carboxyl group-binding compound, in that case, it is preferable to polymerize the polyoxalate in advance assuming the lowering of molecular weight in the stirring and mixing step. .
- the terminal carboxyl group capping agent can also be mixed with the polyoxalate in the kneading section of the extruder.
- the polio chelate and the terminal carboxyl group capping agent may be simultaneously supplied from the hopper to the kneading section of the extruder, or the polyoxalate is first supplied from the hopper and melted, and the terminal carboxyl is added to the middle of the extruder A base sealant may be supplied.
- the polymer composition of the present invention has heat resistance, and hydrolysis in water is suppressed if it is a short time as in a molding process. This means that the polymer composition is held at 150 ° C. for 5 minutes, and the weight average molecular weight when immersed in water at 25 ° C. for 1 minute is measured, and the molecular weight retention is calculated, the polymer composition of the present invention In this case, it is clear from showing 90% or more, especially 92% or more.
- the polymer composition of the present invention has moderate hydrolyzability after molding, similar to known polyoxalate.
- the appropriate hydrolyzability can be confirmed from the hydrolysis behavior of the polymer composition of the present invention even if the hydrolysis behavior of the molded body is not confirmed. That is, a sample obtained by pulverizing the polymer composition is put into distilled water at 90 ° C. and hydrolyzed for one week, and then the weight (weight after hydrolysis) of the remaining sample is measured, and the residual ratio is determined by the following equation.
- the residual ratio of the polymer composition of the present invention is 10% or less, 8% or less in a preferred embodiment, and 5% or less in a particularly preferred embodiment.
- Residual rate (%) W2 (weight g after hydrolysis) / W1 (initial input amount g) ⁇ 100
- the polymer composition of the present invention having the characteristics as described above is applied to applications such as extrusion molding, injection molding, and the like which are required to be hydrolyzable as a thermoformed product obtained by molding the melt into a predetermined shape. Be done.
- those thermoformed in the form of fibers or pellets are suitably applied to mining dispersions represented by fracturing fluids and finishing fluids.
- the hydrolyzability of the polymer composition (polyoxalate composition) it is suitably formed into a film, sheet, tray, container, etc. form by thermoforming mixed with other polymers, It is degradable and can be used as an environmentally friendly molding.
- fibers of 0.1 to 5 cm in length obtained from the polymer composition of the present invention are dispersed in water to prepare a dispersion for drilling and the dispersion for drilling is pressed into the ground, such fibrous
- the shaped bodies are hydrolyzed after a suitable period of time at a temperature of 40-80.degree. Therefore, it is possible to mine underground resources such as shale gas by hydraulic fracturing using such a dispersion as a fracturing fluid.
- the polymer compositions of the present invention are illustrated by the following examples. In addition, various measurements were performed by the following methods.
- Td 5% ⁇ 5% weight loss temperature (Td 5%)>
- Device TG / DTA7220 manufactured by Hitachi High-Tech Science Co., Ltd.
- Sample preparation sample amount 5 to 10 mg Measurement conditions: Measured in a range of 40 to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. The temperature at which 5% weight decreased relative to the initial weight was taken as Td 5%.
- Example 1 The following polycarbodiimide was prepared as a terminal carboxyl group capping agent. Nisshinbo Chemical Co., Ltd. Carbodilight HMV-15CA; Softening temperature 70 ° C, 5% weight loss temperature 350 ° C. Dibutyl oxalate 354 g (3 mol), 1,4-butanediol 270 g (3 mol), dibutyltin oxide 0 in a 1 L separable flask equipped with a mantle heater, liquid temperature thermometer, stirrer, nitrogen inlet tube and distillation column The solution temperature in the flask was heated to 120 ° C. under nitrogen flow to carry out atmospheric pressure polymerization.
- Example 2 Polymer 2 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 1.75 g (0.5% by weight).
- Example 3 Polymer 3 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 3.5 g (1.0% by weight).
- Example 4 Polymer 4 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 17.5 g (5.0% by weight).
- Example 5 Polymer 5 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 35 g (10.0% by weight).
- Example 6 295 g (2.5 mol) of dimethyl oxalate, 171 g (2.76 mol) of ethylene glycol, 0 g of dibutyl tin oxide in a 1 L separable flask equipped with a mantle heater, liquid temperature thermometer, stirrer, nitrogen inlet tube and distillation column The solution temperature in the flask was gradually raised to 180 ° C. under a nitrogen stream, and polymerization was carried out under normal pressure. Thereafter, the liquid temperature in the flask was raised to 190 ° C., and polymerization was performed under reduced pressure at a reduced pressure of 0.1 to 0.8 kPa for 6 hours.
- Comparative Example 1 Polymer 7 was obtained in the same manner as in Example 1 except that carbodilite was not used. That is, atmospheric pressure polymerization and reduced pressure polymerization were performed in the same manner as in Example 1 to obtain polymer 7.
- Comparative Example 2 Polymer 8 was obtained in the same manner as in Example 6, except that carbodilite was not used. That is, atmospheric pressure polymerization and reduced pressure polymerization were performed in the same manner as in Example 6, to obtain polymer 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
This polymer composition contains a polymer component that is a polyoxylate having a diol-derived diol constituent unit and an oxalic acid-derived acid constituent unit. The polymer composition is characterized by containing a terminal carboxyl group sealant as a molding stabilizer in addition to the polyoxylate, and by having a 5% weight loss temperature of 300°C or less as measured by TG-DTA.
Description
本発明は、ポリオキサレートをポリマー成分として含むポリマー組成物に関する。
The present invention relates to a polymer composition comprising polyoxalate as polymer component.
ポリオキサレートは、シュウ酸に由来する酸構成単位とジオールに由来するジオール構成単位とからなるポリエステルである。ポリオキサレートは、優れた加水分解性を有しており、種々の用途での使用が検討されている。例えば農業分野ではフィルム、シート、トレイ、ポット等の形態での使用が検討されている。環境分野では粉体やペレットの形態での水浄化材や土壌浄化材としての使用が検討されている。シェールガス等の資源採掘分野では、粉体や球状粒子、繊維の形態でフラクチュアリング流体や仕上げ流体等に添加しての使用が検討されている。特に資源採掘の分野では、ポリオキサレートが環境に優しい生分解性樹脂であり、また、坑井内等の後処理作業を行うのが難しく且つ低温(100℃以下)の環境下でも水さえあれば自然と加水分解することが期待できるため、検討が盛んに行われている。
The polyoxalate is a polyester comprising an acid structural unit derived from oxalic acid and a diol structural unit derived from a diol. Polyoxalate has excellent hydrolyzability, and its use in various applications is being considered. For example, in the field of agriculture, use in the form of films, sheets, trays, pots, etc. is being considered. In the environmental field, use as a water purification material or a soil purification material in the form of powder or pellet is being studied. In the field of resource mining such as shale gas, use in the form of powder, spherical particles, fibers or the like in addition to fracturing fluid, finishing fluid, etc. is being studied. Particularly in the field of resource mining, polyoxalate is an environmentally friendly biodegradable resin, and it is difficult to perform post-treatment work in wells and the like, and it is necessary to have water even in a low temperature (100 ° C. or less) environment Because it can be expected to hydrolyze with nature, studies are actively conducted.
ところで、ポリオキサレートは、耐熱性が低く、紡糸、押出成形、射出成形等の溶融成形時に熱分解しやすいという問題を有している。例えば、アンダーウォーターカッティングのように、水中にポリオキサレートを溶融押出し、溶融押出物を直ちにカッティングするような成形手段の場合にも、ポリオキサレートは低分子量化されてしまうという欠点を有している。
By the way, polyoxalate is low in heat resistance and has a problem that it is easily thermally decomposed at the time of melt molding such as spinning, extrusion molding, injection molding and the like. For example, even in the case of forming means such as melt extrusion of polyoxalate in water and immediate cutting of the melt extrusion, such as under water cutting, polyoxalate has a disadvantage that the molecular weight is reduced. There is.
熱分解性が改善されたポリオキサレートとして、特許文献1には、GPCにより測定したポリスチレン換算での数平均分子量が10,000以上であるポリエステル重合体が提案されており、かかるポリエステル重合体としてポリオキサレートが開示されている。このポリオキサレートは、熱分解温度が高く耐熱性に優れている。
As a polyoxalate whose thermal decomposability has been improved, Patent Document 1 proposes a polyester polymer having a number average molecular weight of 10,000 or more in terms of polystyrene measured by GPC, and such a polyester polymer Polyoxalate is disclosed. This polyoxalate has a high thermal decomposition temperature and is excellent in heat resistance.
しかるに、上記のポリオキサレートは、高結晶性であるため、加水分解を起こしにくい。このため、ポリオキサレートの加水分解性を利用する用途には、適用し難いという問題がある。
例えば、上記の資源採掘分野でポリオキサレートを使用する場合、このポリオキサレートは水中に投入され、一定期間経過後に速やかに加水分解することが求められるが、特許文献1のポリオキサレートは、一定期間経過後もなかなか加水分解しないという欠点があった。 However, since the above polyoxalate is highly crystalline, it does not easily cause hydrolysis. For this reason, there is a problem that it is difficult to apply to applications that utilize the hydrolyzability of polyoxalate.
For example, when polyoxalate is used in the above-mentioned resource mining field, this polyoxalate is introduced into water and required to be rapidly hydrolyzed after a certain period of time, but the polyoxalate ofPatent Document 1 is There is a drawback that hydrolysis does not occur easily even after a certain period of time.
例えば、上記の資源採掘分野でポリオキサレートを使用する場合、このポリオキサレートは水中に投入され、一定期間経過後に速やかに加水分解することが求められるが、特許文献1のポリオキサレートは、一定期間経過後もなかなか加水分解しないという欠点があった。 However, since the above polyoxalate is highly crystalline, it does not easily cause hydrolysis. For this reason, there is a problem that it is difficult to apply to applications that utilize the hydrolyzability of polyoxalate.
For example, when polyoxalate is used in the above-mentioned resource mining field, this polyoxalate is introduced into water and required to be rapidly hydrolyzed after a certain period of time, but the polyoxalate of
本特許出願人は、先に、特願2016-035585号(特開2017-149892号公報)において、ジオールとしてエチレングリコールとその他のジオールの計2種以上を使用したポリオキサレート共重合体を提案している。かかるポリオキサレート共重合体は、耐熱性を有しており、熱成形時の低分子量化が抑制されている。更に、坑井内等の低温(100℃以下)環境下でも十分の水さえあれば、使用開始から数日程度で加水分解し始め、以後速やかに加水分解する。このように、先願のポリオキサレート共重合体は適度な加水分解特性も持っている。
The present applicant previously proposed a polyoxalate copolymer using a total of two or more of ethylene glycol and other diols as a diol in Japanese Patent Application No. 2016-035585 (Japanese Patent Laid-Open No. 201-149892). doing. Such a polyoxalate copolymer has heat resistance, and the reduction in molecular weight at the time of thermoforming is suppressed. Furthermore, if sufficient water is present even in a low temperature (100 ° C. or lower) environment such as in a well, hydrolysis starts within several days from the start of use, and hydrolysis is thereafter rapidly. Thus, the polyoxalate copolymers of the prior application also possess adequate hydrolytic properties.
しかしながら、先願のポリオキサレート共重合体は、使用するジオールの種類が限定されており、用途や使用環境等に応じてポリオキサレートの構造を設計する際の自由度が低く、さらなる改善が必要である。
However, the polyoxalate copolymer of the prior application is limited in the type of diol to be used, and the degree of freedom in designing the structure of polyoxalate is low depending on the application, use environment, etc. is necessary.
従って、本発明の目的は、ポリオキサレートをポリマー成分として含み、ポリオキサレートの成形時の低分子量化が有効に抑制されており且つポリオキサレートの加水分解性が維持されているポリマー組成物を提供することである。
Therefore, an object of the present invention is a polymer composition containing polyoxalate as a polymer component, in which the reduction in molecular weight during molding of polyoxalate is effectively suppressed and the hydrolyzability of polyoxalate is maintained. To provide.
本発明によれば、ポリマー成分として、ジオール由来のジオール構成単位とシュウ酸由来の酸構成単位を有するポリオキサレートを含むポリマー組成物において、
前記ポリオキサレートと共に、成形安定剤として、末端カルボキシル基封止剤を含んでおり、TG-DTAによる5%重量減少温度が300℃以下であることを特徴とするポリマー組成物が提供される。 According to the invention, in a polymer composition comprising, as polymer component, a polyoxalate having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid,
In addition to the polyoxalate, there is provided a polymer composition comprising a terminal carboxyl group capping agent as a molding stabilizer and having a 5% weight loss temperature by TG-DTA of 300 ° C. or less.
前記ポリオキサレートと共に、成形安定剤として、末端カルボキシル基封止剤を含んでおり、TG-DTAによる5%重量減少温度が300℃以下であることを特徴とするポリマー組成物が提供される。 According to the invention, in a polymer composition comprising, as polymer component, a polyoxalate having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid,
In addition to the polyoxalate, there is provided a polymer composition comprising a terminal carboxyl group capping agent as a molding stabilizer and having a 5% weight loss temperature by TG-DTA of 300 ° C. or less.
本発明のポリマー組成物においては、以下の態様が好適である。
(1)前記末端カルボキシル基封止剤が、カルボジイミド化合物またはポリカルボジイミドであること。
(2)前記ジオールが、ブタンジオールまたはエチレングリコールであること。
(3)前記ジオールが、ブタンジオールであること。
(4)前記5%重量減少温度が、220~300℃であること。
(5)90℃の蒸留水中に1週間浸漬して加水分解させた時、下記式で表される残存率が10%以下である請求項1に記載のポリマー組成物。
残存率(%)=W2(加水分解後の重量g)/W1(初期投入量g)×100 In the polymer composition of the present invention, the following embodiments are preferred.
(1) The terminal carboxyl group capping agent is a carbodiimide compound or a polycarbodiimide.
(2) The diol is butanediol or ethylene glycol.
(3) The diol is butanediol.
(4) The 5% weight loss temperature is 220 to 300 ° C.
(5) The polymer composition according toclaim 1, wherein the residual ratio represented by the following formula is 10% or less when immersed in distilled water at 90 ° C. for 1 week for hydrolysis.
Residual rate (%) = W2 (weight g after hydrolysis) / W1 (initial input amount g) × 100
(1)前記末端カルボキシル基封止剤が、カルボジイミド化合物またはポリカルボジイミドであること。
(2)前記ジオールが、ブタンジオールまたはエチレングリコールであること。
(3)前記ジオールが、ブタンジオールであること。
(4)前記5%重量減少温度が、220~300℃であること。
(5)90℃の蒸留水中に1週間浸漬して加水分解させた時、下記式で表される残存率が10%以下である請求項1に記載のポリマー組成物。
残存率(%)=W2(加水分解後の重量g)/W1(初期投入量g)×100 In the polymer composition of the present invention, the following embodiments are preferred.
(1) The terminal carboxyl group capping agent is a carbodiimide compound or a polycarbodiimide.
(2) The diol is butanediol or ethylene glycol.
(3) The diol is butanediol.
(4) The 5% weight loss temperature is 220 to 300 ° C.
(5) The polymer composition according to
Residual rate (%) = W2 (weight g after hydrolysis) / W1 (initial input amount g) × 100
本発明によれば、また、上記ポリマー組成物を熱成形して得られる成形体が提供される。
上記の成形体は、繊維または粒状の形態を有することが好適である。 According to the present invention, there is also provided a molded article obtained by thermoforming the above-mentioned polymer composition.
It is preferred that the above-mentioned molded body has a fiber or granular form.
上記の成形体は、繊維または粒状の形態を有することが好適である。 According to the present invention, there is also provided a molded article obtained by thermoforming the above-mentioned polymer composition.
It is preferred that the above-mentioned molded body has a fiber or granular form.
本発明のポリマー組成物は、ポリオキサレートをポリマー成分として含むものであるが、末端カルボキシル基封止剤が成形安定剤として配合されている点に重要な特徴である。
即ち、ポリオキサレートは、一定温度以上に長時間保持されると、末端のカルボキシル基の分解が生じる。また、アンダーウォーターカッティングなどのため、高温のポリオキサレートが水中に投入される加水分解が生じ、加水分解により生成した分子の末端には、カルボキシル基が存在する。このようにしてポリオキサレートの分解により、ポリオキサレートの成形時に分子量の低下が生じる。
しかるに、本発明では、ポリオキサレートが後述する比較例1及び2に示されているように、ポリオキサレートを融点に近い温度に保持したとき、その分子量は10%以上低下する。しかるに、本発明に従い、末端カルボキシル基封止剤(ポリカルボジイミド)が配合されている場合には、実施例1~6に示されているように、ポリオキサレートの分子量の低下が6%以下に抑制される。このことから理解されるように、本発明のポリオキサレートを含むポリマー組成物では、ポリオキサレートの溶融成形時の熱による分解が有効に抑制される。 The polymer composition of the present invention contains polyoxalate as a polymer component, and is an important feature in that a terminal carboxyl group capping agent is blended as a molding stabilizer.
That is, when polyoxalate is held for a long time at a certain temperature or higher, decomposition of the terminal carboxyl group occurs. In addition, hydrolysis occurs when high temperature polyoxalate is introduced into water due to underwater cutting and the like, and a carboxyl group is present at the end of the molecule generated by hydrolysis. Thus, degradation of the polyoxalate results in a reduction in molecular weight during molding of the polyoxalate.
However, in the present invention, as polyoxalate is shown in Comparative Examples 1 and 2 described later, when polyoxalate is kept at a temperature close to the melting point, its molecular weight decreases by 10% or more. Therefore, according to the present invention, when the terminal carboxyl group capping agent (polycarbodiimide) is blended, the reduction of the molecular weight of the polyoxalate is 6% or less, as shown in Examples 1 to 6. Be suppressed. As understood from this, in the polymer composition containing the polyoxalate of the present invention, the thermal decomposition during melt molding of the polyoxalate is effectively suppressed.
即ち、ポリオキサレートは、一定温度以上に長時間保持されると、末端のカルボキシル基の分解が生じる。また、アンダーウォーターカッティングなどのため、高温のポリオキサレートが水中に投入される加水分解が生じ、加水分解により生成した分子の末端には、カルボキシル基が存在する。このようにしてポリオキサレートの分解により、ポリオキサレートの成形時に分子量の低下が生じる。
しかるに、本発明では、ポリオキサレートが後述する比較例1及び2に示されているように、ポリオキサレートを融点に近い温度に保持したとき、その分子量は10%以上低下する。しかるに、本発明に従い、末端カルボキシル基封止剤(ポリカルボジイミド)が配合されている場合には、実施例1~6に示されているように、ポリオキサレートの分子量の低下が6%以下に抑制される。このことから理解されるように、本発明のポリオキサレートを含むポリマー組成物では、ポリオキサレートの溶融成形時の熱による分解が有効に抑制される。 The polymer composition of the present invention contains polyoxalate as a polymer component, and is an important feature in that a terminal carboxyl group capping agent is blended as a molding stabilizer.
That is, when polyoxalate is held for a long time at a certain temperature or higher, decomposition of the terminal carboxyl group occurs. In addition, hydrolysis occurs when high temperature polyoxalate is introduced into water due to underwater cutting and the like, and a carboxyl group is present at the end of the molecule generated by hydrolysis. Thus, degradation of the polyoxalate results in a reduction in molecular weight during molding of the polyoxalate.
However, in the present invention, as polyoxalate is shown in Comparative Examples 1 and 2 described later, when polyoxalate is kept at a temperature close to the melting point, its molecular weight decreases by 10% or more. Therefore, according to the present invention, when the terminal carboxyl group capping agent (polycarbodiimide) is blended, the reduction of the molecular weight of the polyoxalate is 6% or less, as shown in Examples 1 to 6. Be suppressed. As understood from this, in the polymer composition containing the polyoxalate of the present invention, the thermal decomposition during melt molding of the polyoxalate is effectively suppressed.
即ち、本発明では、末端カルボキシル基封止剤が配合されており、この封止剤によりカルボキシル基の末端が保護され、ポリオキサレートの熱分解が抑制され、さらには加水分解を伴うポリオキサレートの連鎖的な分解が有効に抑制されるわけである。
That is, in the present invention, a terminal carboxyl group capping agent is blended, and the terminal of the carboxyl group is protected by this capping agent, thermal decomposition of polyoxalate is suppressed, and further polyoxalate accompanied by hydrolysis. Chain decomposition is effectively suppressed.
また、本発明のポリマー組成物では、TG-DTAによる5%重量減少温度が300℃以下(好ましくは、220~300℃)の範囲にある。かかる5%重量減少温度は、末端カルボキシル基封止剤の配合量により調製され、この封止剤の配合量を多くすると、5%重量減少温度は高くなり、配合量を少なくすると、5%重量減少温度は低くなる。
In the polymer composition of the present invention, the 5% weight loss temperature by TG-DTA is in the range of 300 ° C. or less (preferably 220 to 300 ° C.). The 5% weight loss temperature is prepared by the compounding amount of the terminal carboxyl group capping agent, and when the compounding amount of the sealant is increased, the 5% weight loss temperature becomes high, and when the compounding amount is decreased, the 5% weight component is reduced. The reduced temperature is lower.
即ち、本発明では、5%重量減少温度が上記範囲となるように、末端カルボキシル基封止剤の量が調整されているため、高温での含水環境下でのポリオキサレートの初期加水分解は抑制されるが、一旦、加水分解が生じると、通常のポリオキサレートと同様、速やかに加水分解が進行する。即ち、アンダーウォーターカッティングなどの成形時には、加水分解が抑制され、その低分子量化が防止されるが、得られる成形体は、末端カルボキシル基封止剤が配合されていないポリオキサレートの成形体と同等の加水分解性を示すこととなる。
例えば、5%重量減少温度が上記範囲よりも高くなるように末端カルボキシル基封止剤が配合されていると、ポリオキサレートが過度に安定化されてしまい、ポリオキサレートの加水分解性が損なわれてしまうこととなる。 That is, in the present invention, since the amount of the terminal carboxyl group capping agent is adjusted so that the 5% weight loss temperature is in the above range, the initial hydrolysis of polyoxalate in a water-containing environment at high temperature is Although it is suppressed, once hydrolysis occurs, hydrolysis proceeds rapidly, as with normal polyoxalate. That is, at the time of molding such as under water cutting, hydrolysis is suppressed and the lowering of the molecular weight is prevented, but the obtained molded product is a molded product of polyoxalate in which the terminal carboxyl group capping agent is not blended. It will exhibit the same hydrolyzability.
For example, when the terminal carboxyl group capping agent is blended so that the 5% weight loss temperature is higher than the above range, the polyoxalate is excessively stabilized and the hydrolyzability of the polyoxalate is impaired. It will be
例えば、5%重量減少温度が上記範囲よりも高くなるように末端カルボキシル基封止剤が配合されていると、ポリオキサレートが過度に安定化されてしまい、ポリオキサレートの加水分解性が損なわれてしまうこととなる。 That is, in the present invention, since the amount of the terminal carboxyl group capping agent is adjusted so that the 5% weight loss temperature is in the above range, the initial hydrolysis of polyoxalate in a water-containing environment at high temperature is Although it is suppressed, once hydrolysis occurs, hydrolysis proceeds rapidly, as with normal polyoxalate. That is, at the time of molding such as under water cutting, hydrolysis is suppressed and the lowering of the molecular weight is prevented, but the obtained molded product is a molded product of polyoxalate in which the terminal carboxyl group capping agent is not blended. It will exhibit the same hydrolyzability.
For example, when the terminal carboxyl group capping agent is blended so that the 5% weight loss temperature is higher than the above range, the polyoxalate is excessively stabilized and the hydrolyzability of the polyoxalate is impaired. It will be
このように、本発明によれば、ポリオキサレートの加水分解性を損なうことなく、加熱溶融などによる熱履歴を生じる成形時の分解(分子量の低下)を有効に抑制することができる。
As described above, according to the present invention, it is possible to effectively suppress decomposition (reduction in molecular weight) at the time of molding which causes a heat history due to heating and melting and the like without impairing the hydrolyzability of polyoxalate.
<ポリオキサレート>
本発明において使用されるポリオキサレートは、ジオール由来のジオール構成単位とシュウ酸由来の酸構成単位を有するポリエステルであり、ジオールとシュウ酸とを反応させてのエステル化重合反応、或いはシュウ酸アルキルとジオールとを用いてのエステル交換を伴う重合反応により得られる。
このポリオキサレートは、下記式で表されるオキサレート繰り返し単位を有している。
-(-CO-CO-O-A-O-)n-
式中、nは重合度を表す正の数であり、Aは、ジオール由来の有機基であり、複数存在する有機基Aは、互いに同一であってもよいし、互いに異なっていてもよい。 <Polyoxalate>
The polyoxalate used in the present invention is a polyester having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid, and an esterification polymerization reaction by reacting a diol and oxalic acid, or an alkyl oxalate Obtained by a polymerization reaction involving transesterification using
This polyoxalate has an oxalate repeating unit represented by the following formula.
-(-CO-CO-O-A-O-) n-
In the formula, n is a positive number representing the degree of polymerization, A is an organic group derived from a diol, and a plurality of organic groups A may be identical to one another or may be different from one another.
本発明において使用されるポリオキサレートは、ジオール由来のジオール構成単位とシュウ酸由来の酸構成単位を有するポリエステルであり、ジオールとシュウ酸とを反応させてのエステル化重合反応、或いはシュウ酸アルキルとジオールとを用いてのエステル交換を伴う重合反応により得られる。
このポリオキサレートは、下記式で表されるオキサレート繰り返し単位を有している。
-(-CO-CO-O-A-O-)n-
式中、nは重合度を表す正の数であり、Aは、ジオール由来の有機基であり、複数存在する有機基Aは、互いに同一であってもよいし、互いに異なっていてもよい。 <Polyoxalate>
The polyoxalate used in the present invention is a polyester having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid, and an esterification polymerization reaction by reacting a diol and oxalic acid, or an alkyl oxalate Obtained by a polymerization reaction involving transesterification using
This polyoxalate has an oxalate repeating unit represented by the following formula.
-(-CO-CO-O-A-O-) n-
In the formula, n is a positive number representing the degree of polymerization, A is an organic group derived from a diol, and a plurality of organic groups A may be identical to one another or may be different from one another.
シュウ酸アルキルとしては、シュウ酸ジアルキルが好ましく、シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸プロピル等の炭素数1~4のアルキル基からなるシュウ酸ジアルキルがより好ましく、シュウ酸ジメチルとシュウ酸ジエチルが特に好ましい。ジオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、ビスフェノールA、シクロヘキサンジメタノールなどを例示することができるが、適度な加水分解性を獲得しやすいので、直鎖の2価アルコール、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ドデカンジオールが好ましく、ブタンジオールまたはエチレングリコールがより好ましく、ブタンジオールが特に好ましい。発明を損なわない範囲で、シュウ酸以外を共重合してもよく、脂肪族、脂肪族環や芳香族環を有するジカルボン酸、ヒドロキシ酸が共重合されていてもよい。
The alkyl oxalate is preferably a dialkyl oxalate, more preferably a dialkyl oxalate consisting of an alkyl group having 1 to 4 carbon atoms such as dimethyl oxalate, diethyl oxalate, propyl oxalate, dimethyl oxalate and diethyl oxalate Particularly preferred. Examples of diols include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, dodecanediol, neopentyl glycol, bisphenol A, cyclohexane dimethanol and the like, but it is easy to obtain appropriate hydrolyzability. Thus, linear dihydric alcohols such as ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, dodecanediol are preferred, butanediol or ethylene glycol is more preferred, and butanediol is particularly preferred. In the range which does not impair invention, you may copolymerize except oxalic acid, and the dicarboxylic acid which has an aliphatic, an aliphatic ring and an aromatic ring, and a hydroxy acid may be copolymerized.
本発明において使用されるポリオキサレートは、上述のオキサレート繰り返し単位を有している限り、他のエステル単位を含むコポリマーであってもよいが、好ましくは、上記のオキサレート繰り返し単位が80モル%以上、特に90モル%以上含まれているとよい。
The polyoxalate used in the present invention may be a copolymer containing other ester units as long as it has the above-mentioned oxalate repeating unit, but preferably, 80 mol% or more of the above-mentioned oxalate repeating unit Particularly, it is preferable that 90 mol% or more is contained.
上述したポリオキサレートの重量平均分子量(Mw)は、適度な加水分解性と成形加工性を獲得しやすくする観点から、好ましくは30000~200000、より好ましくは50000~150000、さらに好ましくは50000~100000である。分子量が上記上限値以上になっても性能には何ら影響はないが、重合時間が長くなってしまうため、生産性が低下してしまう懸念がある。
The weight average molecular weight (Mw) of the polyoxalate described above is preferably 30,000 to 200,000, more preferably 50,000 to 150,000, and still more preferably 50,000 to 100,000, from the viewpoint of facilitating acquisition of appropriate hydrolysability and molding processability. It is. Even if the molecular weight exceeds the above upper limit value, the performance is not affected at all, but since the polymerization time becomes long, there is a concern that the productivity may be lowered.
<末端カルボキシル基封止剤>
本発明のポリマー組成物において、上記のポリオキサレートと共に使用される末端カルボキシル基封止剤は、カルボキシル基に結合して保護基として機能し得る官能基を有する化合物もしくはポリマーである。 <Terminal carboxyl group capping agent>
The terminal carboxyl group capping agent used together with the above polyoxalate in the polymer composition of the present invention is a compound or polymer having a functional group which can be bonded to a carboxyl group to function as a protective group.
本発明のポリマー組成物において、上記のポリオキサレートと共に使用される末端カルボキシル基封止剤は、カルボキシル基に結合して保護基として機能し得る官能基を有する化合物もしくはポリマーである。 <Terminal carboxyl group capping agent>
The terminal carboxyl group capping agent used together with the above polyoxalate in the polymer composition of the present invention is a compound or polymer having a functional group which can be bonded to a carboxyl group to function as a protective group.
このような官能基を化合物としては、例えば、カルボジイミド基(-N=C=N-)を有するカルボジイミド化合物、エポキシ基を有するエポキシ化合物、オキサゾリン基を有するオキサゾリン化合物、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等を挙げることができるが、副生物が生成せず添加時に発泡の心配がないので、カルボジイミド化合物が好ましい。
Examples of such a functional group include a carbodiimide compound having a carbodiimide group (-N = C = N-), an epoxy compound having an epoxy group, an oxazoline compound having an oxazoline group, a monocarboxylic acid, a monoamine, an acid anhydride Substances, monoisocyanates, mono acid halides, monoesters, monoalcohols, etc., but carbodiimide compounds are preferred because they do not form by-products and there is no concern about foaming upon addition.
カルボジイミド化合物としては、分子中にカルボジイミド基を1つ有するモノカルボジイミド、例えば、N,N’-ジイソプロピルカルボジイミド、N,N’-ジ-tert-ブチルカルボジイミド、N-(3-ジメチルアミノプロピル)-N’-エチルカルボジイミド、N,N’-ジシクロヘキシルカルボジイミド等の脂肪族モノカルボジイミド;N,N’-ジフェニルカルボジイミド、N,N’-ジ-p-トリルカルボジイミド、N,N’-ビス(ジメチルフェニル)カルボジイミド、N,N’-ビス(メトキシフェニル)カルボジイミド、N,N’-ビス(ニトロフェニル)カルボジイミド、N,N’-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、N,N’-ビス(トリフェニルシリル)カルボジイミド等の芳香族モノカルボジイミド;などがある。
As a carbodiimide compound, monocarbodiimide having one carbodiimide group in the molecule, for example, N, N'-diisopropylcarbodiimide, N, N'-di-tert-butylcarbodiimide, N- (3-dimethylaminopropyl) -N Aliphatic monocarbodiimides such as' -ethylcarbodiimide, N, N'-dicyclohexylcarbodiimide; N, N'-diphenylcarbodiimide, N, N'-di-p-tolylcarbodiimide, N, N'-bis (dimethylphenyl) carbodiimide N, N'-bis (methoxyphenyl) carbodiimide, N, N'-bis (nitrophenyl) carbodiimide, N, N'-bis (2,6-diisopropylphenyl) carbodiimide, N, N'-bis (triphenyl) Aromatic groups such as silyl) carbodiimide Carbodiimide; and the like.
また、上記のような官能基を有するポリマーとしては、分子中にカルボジイミド基を2つ以上有するポリカルボジイミド、例えば、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)等の脂肪族ポリカルボジイミド;ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(メチルフェニレンカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(1,3,5-トリイソプロピルフェニレンカルボジイミド)、ポリ(1,3,5-トリイソプロピルフェニレン-co-1,5-ジイソプロピルフェニレンカルボジイミド)、ポリ(4,4’-ジフェニルメタンカルボジイミド)等の芳香族ポリカルボジイミド;などがある。
効率よくカルボキシル基を保護できるので、上記のポリカルボジイミドの中では、脂肪族ポリカルボジイミドが好ましい。
尚、上記のようなポリカルボジイミドは、日清紡ケミカル株式会社により、カルボジライトの商品名で各種のタイプのものが市販されている。このカルボジライトは、ジイソシアネートを脱炭酸縮合して得られるポリマーである。 Further, as the polymer having a functional group as described above, polycarbodiimides having two or more carbodiimide groups in the molecule, for example, aliphatic polycarbodiimides such as poly (4,4'-dicyclohexylmethanecarbodiimide); poly (p -Phenylene carbodiimide), poly (m-phenylene carbodiimide), poly (methyl phenylene carbodiimide), poly (diisopropyl phenylene carbodiimide), poly (methyl diisopropyl phenylene carbodiimide), poly (1, 3, 5- triisopropyl phenylene carbodiimide), poly Aromatic polycarbodiimides such as (1,3,5-triisopropylphenylene-co-1,5-diisopropylphenylene carbodiimide), poly (4,4'-diphenylmethane carbodiimide), etc. That.
Among the above polycarbodiimides, aliphatic polycarbodiimides are preferable because they can efficiently protect carboxyl groups.
Various types of polycarbodiimides such as those described above are marketed by Nisshinbo Chemical Co., Ltd. under the trade name of Carbodilite. This carbodiimide is a polymer obtained by decarboxylative condensation of diisocyanate.
効率よくカルボキシル基を保護できるので、上記のポリカルボジイミドの中では、脂肪族ポリカルボジイミドが好ましい。
尚、上記のようなポリカルボジイミドは、日清紡ケミカル株式会社により、カルボジライトの商品名で各種のタイプのものが市販されている。このカルボジライトは、ジイソシアネートを脱炭酸縮合して得られるポリマーである。 Further, as the polymer having a functional group as described above, polycarbodiimides having two or more carbodiimide groups in the molecule, for example, aliphatic polycarbodiimides such as poly (4,4'-dicyclohexylmethanecarbodiimide); poly (p -Phenylene carbodiimide), poly (m-phenylene carbodiimide), poly (methyl phenylene carbodiimide), poly (diisopropyl phenylene carbodiimide), poly (methyl diisopropyl phenylene carbodiimide), poly (1, 3, 5- triisopropyl phenylene carbodiimide), poly Aromatic polycarbodiimides such as (1,3,5-triisopropylphenylene-co-1,5-diisopropylphenylene carbodiimide), poly (4,4'-diphenylmethane carbodiimide), etc. That.
Among the above polycarbodiimides, aliphatic polycarbodiimides are preferable because they can efficiently protect carboxyl groups.
Various types of polycarbodiimides such as those described above are marketed by Nisshinbo Chemical Co., Ltd. under the trade name of Carbodilite. This carbodiimide is a polymer obtained by decarboxylative condensation of diisocyanate.
本発明において、このような末端カルボキシル基封止剤は、ポリマー組成物のTG-DTAによる5%重量減少温度(Td5%)が300℃以下、より好ましくは220~300℃となるように、決定される。Td5%の値が高いほどポリオキサレートは安定となるが、加水分解性の低下を生じる。既に述べたように、末端カルボキシル基封止剤の配合量が増えるほどTd5%は高くなる。
Td5%が上記範囲にあるポリマー組成物は、成形に耐えられるだけの十分な安定性を有していながらも、ポリオキサレートに要求される適度な加水分解性を有している。 In the present invention, such terminal carboxyl group capping agent is determined such that the 5% weight loss temperature (Td 5%) by TG-DTA of the polymer composition is 300 ° C. or less, more preferably 220 to 300 ° C. Be done. The higher the Td 5% value, the more stable the polyoxalate, but the lower the hydrolyzability. As already mentioned, Td5% becomes high, so that the compounding quantity of terminal carboxyl group blocking agent increases.
A polymer composition having a Td of 5% in the above-mentioned range has the adequate hydrolyzability required for polyoxalate while having sufficient stability to withstand molding.
Td5%が上記範囲にあるポリマー組成物は、成形に耐えられるだけの十分な安定性を有していながらも、ポリオキサレートに要求される適度な加水分解性を有している。 In the present invention, such terminal carboxyl group capping agent is determined such that the 5% weight loss temperature (
A polymer composition having a Td of 5% in the above-mentioned range has the adequate hydrolyzability required for polyoxalate while having sufficient stability to withstand molding.
本発明において、上記のようなTd5%の値を確保するための末端カルボキシル基封止剤の配合量は、その封止剤の種類やポリオキサレートの構造等によって異なるが、一般的には、ポリオキサレートに対し1,000~50,000ppm、特に、1000~20000ppmである。
In the present invention, the blending amount of the terminal carboxyl group capping agent for securing a value of 5% of Td as described above varies depending on the type of the sealant, the structure of polyoxalate, etc. It is 1,000 to 50,000 ppm, in particular 1,000 to 20,000 ppm, relative to polyoxalate.
<その他の配合剤>
本発明では、その効果を妨げない限り、末端カルボキシル基封止剤の添加剤、例えば、可塑剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤、層状硅酸塩、架橋剤、酵素などがある。また、必要に応じてポリオキサレート以外の生分解性樹脂組成物、例えば、脂肪族ポリエステル、ポリビニルアルコール、セルロース類を併せて配合してもよい。 <Other ingredients>
In the present invention, as long as the effect is not impaired, additives of terminal carboxyl group capping agent such as plasticizer, light stabilizer, antioxidant, UV absorber, flame retardant, colorant, pigment, filler, filler And mold release agents, antistatic agents, perfumes, lubricants, foaming agents, antibacterial and antifungal agents, nucleation agents, layered borates, crosslinkers, enzymes and the like. In addition, biodegradable resin compositions other than polyoxalate, for example, aliphatic polyester, polyvinyl alcohol, and celluloses may be blended together as required.
本発明では、その効果を妨げない限り、末端カルボキシル基封止剤の添加剤、例えば、可塑剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤、層状硅酸塩、架橋剤、酵素などがある。また、必要に応じてポリオキサレート以外の生分解性樹脂組成物、例えば、脂肪族ポリエステル、ポリビニルアルコール、セルロース類を併せて配合してもよい。 <Other ingredients>
In the present invention, as long as the effect is not impaired, additives of terminal carboxyl group capping agent such as plasticizer, light stabilizer, antioxidant, UV absorber, flame retardant, colorant, pigment, filler, filler And mold release agents, antistatic agents, perfumes, lubricants, foaming agents, antibacterial and antifungal agents, nucleation agents, layered borates, crosslinkers, enzymes and the like. In addition, biodegradable resin compositions other than polyoxalate, for example, aliphatic polyester, polyvinyl alcohol, and celluloses may be blended together as required.
<ポリマー組成物の製造>
本発明のポリマー組成物は、公知の方法により、脱水反応やエステル交換反応といったエステル化重合反応を行ってポリオキサレートを重合し、得られたポリオキサレート中に末端カルボキシル基封止剤を撹拌混合して製造される。 <Production of Polymer Composition>
The polymer composition of the present invention is subjected to an esterification polymerization reaction such as dehydration reaction or transesterification reaction by a known method to polymerize the polyoxalate, and the terminal carboxyl group capping agent is stirred in the obtained polyoxalate. It is manufactured by mixing.
本発明のポリマー組成物は、公知の方法により、脱水反応やエステル交換反応といったエステル化重合反応を行ってポリオキサレートを重合し、得られたポリオキサレート中に末端カルボキシル基封止剤を撹拌混合して製造される。 <Production of Polymer Composition>
The polymer composition of the present invention is subjected to an esterification polymerization reaction such as dehydration reaction or transesterification reaction by a known method to polymerize the polyoxalate, and the terminal carboxyl group capping agent is stirred in the obtained polyoxalate. It is manufactured by mixing.
ポリオキサレートを得るためのエステル化重合反応には、必要に応じて公知の触媒を用いることができる。公知の触媒としては、例えば、チタンテトラブトキシド等のチタンアルコキシド、三酸化アンチモン等のアンチモン化合物、ジブチルスズオキシドやジラウリン酸ブチルスズ等のスズ化合物が代表的であるが、これ以外にも、P,Ge、Zn,Fe,Mn,Co,Zr,V及び各種希土類金属の化合物などを挙げることができる。
For the esterification polymerization reaction to obtain polyoxalate, known catalysts can be used, if necessary. Examples of known catalysts include titanium alkoxides such as titanium tetrabutoxide, antimony compounds such as antimony trioxide, and tin compounds such as dibutyltin oxide and butyltin dilaurate, but in addition to this, P, Ge, Examples thereof include Zn, Fe, Mn, Co, Zr, V and compounds of various rare earth metals.
エステル化重合反応は無溶媒で行ってもよいが、有機溶媒を適宜使用してもよい。有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素系有機溶媒;ペンタン、ヘキサン、シクロヘキサン、ヘプタン、デカリン、テトラリン等の脂肪族炭化水素系有機溶媒;エチルエーテル、テトラヒドロフラン等のエーテル系有機溶媒;クロロホルム、クロロベンゼン、四塩化炭素等の塩素化炭化水素系有機溶媒;などがある。
The esterification polymerization reaction may be carried out without a solvent, but an organic solvent may be suitably used. Organic solvents include aromatic hydrocarbon-based organic solvents such as benzene, toluene and xylene; aliphatic hydrocarbon-based organic solvents such as pentane, hexane, cyclohexane, heptane, decalin and tetralin; ether-based organic solvents such as ethyl ether and tetrahydrofuran Solvents; Chlorinated hydrocarbon-based organic solvents such as chloroform, chlorobenzene, carbon tetrachloride, etc .;
具体的なポリオキサレートの重合方法としては、例えば、ジオールとシュウ酸アルキルを使用して常圧重合と減圧重合の2段階でエステル化重合反応を進める方法がある。かかる2段階重合法は、有機溶媒を使用せず無溶媒下でも実施することができる。無溶媒下での実施は、製造コスト等の点で有利である。
As a specific polymerization method of polyoxalate, for example, there is a method of proceeding an esterification polymerization reaction in two steps of normal pressure polymerization and reduced pressure polymerization using a diol and an alkyl oxalate. Such a two-step polymerization method can be carried out without using an organic solvent and in the absence of a solvent. The implementation without solvent is advantageous in terms of production cost and the like.
2段階重合法は、図1に示すバッチ式の重合反応器を用いて行うとよい。図1を参照すると、重合反応器1には、攪拌機3と留去管5が備えられている。留去管5は頭頂部Aを有しており、また、重合反応器1から頭頂部Aまでの領域の還流部5aと頭頂部Aより下流側の留去部5bとを有している。留去部5bには、熱交換器等の冷却管5cが設けられており、留出する液が速やかに凝縮して排出されるようになっている。還流部5aにも適宜加温管や冷却管を取り付け、頭頂部Aの温度を調整できるようにしてもよい。
The two-stage polymerization method may be carried out using a batch-type polymerization reactor shown in FIG. Referring to FIG. 1, the polymerization reactor 1 is provided with a stirrer 3 and a distillation pipe 5. The distillation pipe 5 has a top A, and also has a reflux portion 5a in the region from the polymerization reactor 1 to the top A and a distillation 5b downstream of the top A. The distillation section 5b is provided with a cooling pipe 5c such as a heat exchanger so that the liquid to be distilled is condensed and discharged quickly. A heating pipe or a cooling pipe may be appropriately attached to the reflux portion 5a so that the temperature of the top A can be adjusted.
重合反応器1内に反応液10(シュウ酸アルキル、ジオール及び必要により使用される触媒や有機溶媒)を供給し、エステル化重合反応に際して副生するアルコール、未反応のジオール、オリゴマー等を、留去管5の還流部5aを通して留去部5bから留出液15として留去する。2段階重合法は、この留去条件を調整しながら実施する。
The reaction liquid 10 (alkyl oxalate, diol and optionally used catalyst and organic solvent) is supplied into the polymerization reactor 1, and alcohol, unreacted diol, oligomer and the like by-produced in the esterification polymerization reaction are distilled off. The distillation portion 5 b is distilled off as a distillate 15 through the reflux portion 5 a of the last tube 5. The two-step polymerization method is carried out while adjusting the distillation conditions.
反応液中のジオールの仕込み量は、常圧重合反応を速やかに進める観点から、シュウ酸アルキル1モルあたり0.8~1.2モルとし、好ましくは1.0~1.2モルとする。
The amount of diol charged in the reaction solution is 0.8 to 1.2 moles, preferably 1.0 to 1.2 moles, per mole of alkyl oxalate, from the viewpoint of rapidly advancing an atmospheric pressure polymerization reaction.
1.常圧重合
常圧重合は、重合反応器1内を窒素ガス雰囲気に置換し、反応液を仕込み、これを撹拌しながら110~200℃の範囲に加熱することで行われ、これにより低重合度のポリオキサレートが得られる。反応温度が高すぎると、生成する低重合度ポリオキサレートが分解する虞がある。反応温度が低すぎると、反応速度が遅く、効果的に重合を行うことができない虞がある。
アルコールの留出が停止した時点で常圧重合をやめ、次の減圧重合を行う。 1. Atmospheric pressure polymerization Atmospheric pressure polymerization is carried out by displacing the inside of thepolymerization reactor 1 to a nitrogen gas atmosphere, charging the reaction solution and heating it to a range of 110 to 200 ° C. while stirring, whereby the low polymerization degree The polyoxalate of If the reaction temperature is too high, the low polymerization degree polyoxalate to be produced may be decomposed. If the reaction temperature is too low, the reaction rate is slow, and there is a possibility that the polymerization can not be carried out effectively.
When the distillation of the alcohol stops, the normal pressure polymerization is stopped and the next reduced pressure polymerization is performed.
常圧重合は、重合反応器1内を窒素ガス雰囲気に置換し、反応液を仕込み、これを撹拌しながら110~200℃の範囲に加熱することで行われ、これにより低重合度のポリオキサレートが得られる。反応温度が高すぎると、生成する低重合度ポリオキサレートが分解する虞がある。反応温度が低すぎると、反応速度が遅く、効果的に重合を行うことができない虞がある。
アルコールの留出が停止した時点で常圧重合をやめ、次の減圧重合を行う。 1. Atmospheric pressure polymerization Atmospheric pressure polymerization is carried out by displacing the inside of the
When the distillation of the alcohol stops, the normal pressure polymerization is stopped and the next reduced pressure polymerization is performed.
2.減圧重合
減圧重合は、重合反応器1内を0.1~1kPaに減圧・保持しながら、常圧重合により生成した低重合度ポリオキサレートを含む反応液10を180~210℃に維持することにより行われる。減圧重合により、反応液10中に残存するジオールを除去しながら重合をさらに進行させ、さらに高分子量化されたポリオキサレートを得る。 2. Low pressure polymerization The low pressure polymerization is to maintain thereaction liquid 10 containing low polymerization degree polyoxalate generated by atmospheric pressure polymerization at 180 to 210 ° C. while maintaining the pressure in the polymerization reactor 1 at 0.1 to 1 kPa under reduced pressure. It is done by The polymerization is allowed to proceed further while removing the diol remaining in the reaction liquid 10 by the reduced pressure polymerization, to obtain a further polymerized polyoxalate.
減圧重合は、重合反応器1内を0.1~1kPaに減圧・保持しながら、常圧重合により生成した低重合度ポリオキサレートを含む反応液10を180~210℃に維持することにより行われる。減圧重合により、反応液10中に残存するジオールを除去しながら重合をさらに進行させ、さらに高分子量化されたポリオキサレートを得る。 2. Low pressure polymerization The low pressure polymerization is to maintain the
減圧重合において、反応液温度が低すぎると、高分子量化が不十分となり、得られるポリオキサレートの加水分解性が過度に大きくなり、例えば水に混合したときに一気に加水分解する。反応液温度が高すぎると、生成したポリオキサレートの分解が生じる。
In the low pressure polymerization, when the temperature of the reaction liquid is too low, the high molecular weight formation is insufficient, and the hydrolyzability of the resulting polyoxalate becomes excessively large, and, for example, when mixed with water, it hydrolyzes at once. When the reaction solution temperature is too high, decomposition of the formed polyoxalate occurs.
減圧重合工程では、残存ジオールの除去を促進するために、留去管5の還流部5aを90~140℃に保温することが好ましい。
In the reduced pressure polymerization step, in order to accelerate the removal of the residual diol, it is preferable to keep the reflux portion 5a of the distillation pipe 5 at 90 to 140 ° C.
減圧重合工程は、残存ジオールの除去が停止したときに終了すればよい。残存ジオールの除去の停止は、例えば留去管5の頭頂部Aの温度をモニタリングして確認できる。
The reduced pressure polymerization step may be ended when removal of the residual diol is stopped. The termination of removal of the residual diol can be confirmed by monitoring the temperature at the top of the head A of the distillation pipe 5, for example.
常圧重合に続いての減圧重合により、副生アルコールや未反応ジオール等の不純物含有量が抑制され、且つ、常圧重合時より高分子量化したポリオキサレートが得られる。
By the reduced pressure polymerization following the normal pressure polymerization, the content of impurities such as by-product alcohol and unreacted diol is suppressed, and a polyoxalate having a higher molecular weight than at the time of normal pressure polymerization can be obtained.
当然のことであるが、上記記載は本発明におけるポリオキサレートの重合方法を限定するものではなく、それ以外の方法で重合しても構わない。
As a matter of course, the above description does not limit the polymerization method of polyoxalate in the present invention, and the polymerization may be performed by other methods.
続いて、溶融状態のポリオキサレートに末端カルボキシル基封止剤を投入し、撹拌混合をする。撹拌混合は、公知の条件および手段により行えばよいが、10kPa以上1000kPa未満の減圧下で撹拌混合を行うと、残存ジオールや副生アルコール等の不純物が含まれていたときにこれらを除去できるので、好ましい。
Subsequently, the terminal carboxyl group capping agent is charged into the molten polyoxalate, and the mixture is stirred and mixed. The stirring and mixing may be performed according to known conditions and means, but when stirring and mixing is performed under a reduced pressure of 10 kPa or more and less than 1000 kPa, impurities such as residual diol and by-product alcohol can be removed. ,preferable.
撹拌混合は、末端カルボキシル基封止剤がポリオキサレート中に均一に混合され、これにより、該封止剤の一部がポリオキサレートの末端カルボキシル基と反応して、該カルボキシル基が封止される。混合時間は、一般には、0.5~3時間程度である。
尚、ポリオキサレートによる末端カルボキシル基の封止は、ポリオキサレートの酸価の低下や初期加水分解性の低下などにより確認することができる。
また、この末端カルボキシル基封止剤は、適宜、他のポリマーと溶融混合したブレンド物や溶剤等に溶解乃至分散させた液として、ポリオキサレートと混合することもできる。 In the stirring and mixing, the terminal carboxyl group capping agent is uniformly mixed in the polyoxalate, whereby a part of the capping agent reacts with the terminal carboxyl group of the polyoxalate to seal the carboxyl group. Be done. The mixing time is generally about 0.5 to 3 hours.
The capping of the terminal carboxyl group by the polyoxalate can be confirmed by the decrease in the acid value of the polyoxalate, the decrease in initial hydrolyzability, and the like.
The terminal carboxyl group capping agent can also be mixed with the polyoxalate as a liquid dissolved or dispersed in a blend, a solvent, or the like, which is melt mixed with another polymer.
尚、ポリオキサレートによる末端カルボキシル基の封止は、ポリオキサレートの酸価の低下や初期加水分解性の低下などにより確認することができる。
また、この末端カルボキシル基封止剤は、適宜、他のポリマーと溶融混合したブレンド物や溶剤等に溶解乃至分散させた液として、ポリオキサレートと混合することもできる。 In the stirring and mixing, the terminal carboxyl group capping agent is uniformly mixed in the polyoxalate, whereby a part of the capping agent reacts with the terminal carboxyl group of the polyoxalate to seal the carboxyl group. Be done. The mixing time is generally about 0.5 to 3 hours.
The capping of the terminal carboxyl group by the polyoxalate can be confirmed by the decrease in the acid value of the polyoxalate, the decrease in initial hydrolyzability, and the like.
The terminal carboxyl group capping agent can also be mixed with the polyoxalate as a liquid dissolved or dispersed in a blend, a solvent, or the like, which is melt mixed with another polymer.
尚、カルボキシル基結合性化合物の撹拌混合工程において、ポリオキサレートが低分子量化することがあるので、その場合は、予め撹拌混合工程での低分子量化を想定し、ポリオキサレートを重合するとよい。
In addition, since polyoxalate may be reduced in molecular weight in the stirring and mixing step of the carboxyl group-binding compound, in that case, it is preferable to polymerize the polyoxalate in advance assuming the lowering of molecular weight in the stirring and mixing step. .
尚、末端カルボキシル基封止剤は、押出機の混練部でポリオキサレートと混合することもできる。例えば、ポリオキレートと末端カルボキシル基封止剤とをホッパーから同時に押出機の混練部に供給してもよいし、先にポリオキサレートをホッパーから供給して溶融させ、押出機の途中から末端カルボキシル基封止剤を供給してもよい。
The terminal carboxyl group capping agent can also be mixed with the polyoxalate in the kneading section of the extruder. For example, the polio chelate and the terminal carboxyl group capping agent may be simultaneously supplied from the hopper to the kneading section of the extruder, or the polyoxalate is first supplied from the hopper and melted, and the terminal carboxyl is added to the middle of the extruder A base sealant may be supplied.
本発明のポリマー組成物は、耐熱性を有し、また、成形工程のように短時間であれば水中での加水分解が抑制される。このことは、ポリマー組成物を、150℃で5分間保持し、25℃の水中に1分間浸漬させたときの重量平均分子量を測定し、分子量保持率を算出したとき、本発明のポリマー組成物の場合、90%以上、特に92%以上を示すことから明らかである。
The polymer composition of the present invention has heat resistance, and hydrolysis in water is suppressed if it is a short time as in a molding process. This means that the polymer composition is held at 150 ° C. for 5 minutes, and the weight average molecular weight when immersed in water at 25 ° C. for 1 minute is measured, and the molecular weight retention is calculated, the polymer composition of the present invention In this case, it is clear from showing 90% or more, especially 92% or more.
更に、本発明のポリマー組成物は、成形後においては、公知のポリオキサレートと同様、適度な加水分解性を有する。この適度な加水分解性については、わざわざ成形体の加水分解挙動を確認しなくとも、本発明のポリマー組成物の加水分解挙動から確認可能である。即ち、ポリマー組成物を粉砕した試料を、90℃の蒸留水中に投入し、1週間かけて加水分解させた後、残存試料の重量(加水分解後の重量)を測定し、下記式により残存率を算出すると、本発明のポリマー組成物の残存率は、10%以下、好適な態様においては8%以下、特に好適な態様においては5%以下である。
残存率(%)=W2(加水分解後の重量g)/W1(初期投入量g)×100
このように本発明のポリマー組成物は、成形前の時点で1週間以内の残存率が低い値を示すのであるから、成形後、数日程度経過した後には、十分量の水と接した時に速やかに加水分解が進むことは自明である。 Furthermore, the polymer composition of the present invention has moderate hydrolyzability after molding, similar to known polyoxalate. The appropriate hydrolyzability can be confirmed from the hydrolysis behavior of the polymer composition of the present invention even if the hydrolysis behavior of the molded body is not confirmed. That is, a sample obtained by pulverizing the polymer composition is put into distilled water at 90 ° C. and hydrolyzed for one week, and then the weight (weight after hydrolysis) of the remaining sample is measured, and the residual ratio is determined by the following equation. The residual ratio of the polymer composition of the present invention is 10% or less, 8% or less in a preferred embodiment, and 5% or less in a particularly preferred embodiment.
Residual rate (%) = W2 (weight g after hydrolysis) / W1 (initial input amount g) × 100
Thus, since the polymer composition of the present invention shows a low value within 1 week before molding, when it has been in contact with a sufficient amount of water several days after molding, It is self-evident that hydrolysis proceeds rapidly.
残存率(%)=W2(加水分解後の重量g)/W1(初期投入量g)×100
このように本発明のポリマー組成物は、成形前の時点で1週間以内の残存率が低い値を示すのであるから、成形後、数日程度経過した後には、十分量の水と接した時に速やかに加水分解が進むことは自明である。 Furthermore, the polymer composition of the present invention has moderate hydrolyzability after molding, similar to known polyoxalate. The appropriate hydrolyzability can be confirmed from the hydrolysis behavior of the polymer composition of the present invention even if the hydrolysis behavior of the molded body is not confirmed. That is, a sample obtained by pulverizing the polymer composition is put into distilled water at 90 ° C. and hydrolyzed for one week, and then the weight (weight after hydrolysis) of the remaining sample is measured, and the residual ratio is determined by the following equation. The residual ratio of the polymer composition of the present invention is 10% or less, 8% or less in a preferred embodiment, and 5% or less in a particularly preferred embodiment.
Residual rate (%) = W2 (weight g after hydrolysis) / W1 (initial input amount g) × 100
Thus, since the polymer composition of the present invention shows a low value within 1 week before molding, when it has been in contact with a sufficient amount of water several days after molding, It is self-evident that hydrolysis proceeds rapidly.
上記のような特徴を有する本発明のポリマー組成物は、押出成形、射出成形等、その溶融物を所定形状に成形することにより得られる熱成形体として、加水分解性が要求される用途に適用される。例えば、繊維状或いはペレット状に熱成形されたものは、フラクチュアリング流体や仕上げ流体に代表される採掘用分散液に好適に適用される。
また、ポリマー組成物(ポリオキサレート組成物)の加水分解性を活用させるため、適宜、他のポリマーと混合しての熱成形により、フィルム乃至シート、トレイ、容器などの形態に成形し、加水分解性が付与され、環境に優しい成形体として使用することもできる。 The polymer composition of the present invention having the characteristics as described above is applied to applications such as extrusion molding, injection molding, and the like which are required to be hydrolyzable as a thermoformed product obtained by molding the melt into a predetermined shape. Be done. For example, those thermoformed in the form of fibers or pellets are suitably applied to mining dispersions represented by fracturing fluids and finishing fluids.
Also, in order to make use of the hydrolyzability of the polymer composition (polyoxalate composition), it is suitably formed into a film, sheet, tray, container, etc. form by thermoforming mixed with other polymers, It is degradable and can be used as an environmentally friendly molding.
また、ポリマー組成物(ポリオキサレート組成物)の加水分解性を活用させるため、適宜、他のポリマーと混合しての熱成形により、フィルム乃至シート、トレイ、容器などの形態に成形し、加水分解性が付与され、環境に優しい成形体として使用することもできる。 The polymer composition of the present invention having the characteristics as described above is applied to applications such as extrusion molding, injection molding, and the like which are required to be hydrolyzable as a thermoformed product obtained by molding the melt into a predetermined shape. Be done. For example, those thermoformed in the form of fibers or pellets are suitably applied to mining dispersions represented by fracturing fluids and finishing fluids.
Also, in order to make use of the hydrolyzability of the polymer composition (polyoxalate composition), it is suitably formed into a film, sheet, tray, container, etc. form by thermoforming mixed with other polymers, It is degradable and can be used as an environmentally friendly molding.
例えば、本発明のポリマー組成物から得られた長さ0.1~5cmの繊維を水に分散させて掘削用分散液を調整し、かかる掘削用分散液を地下に圧入した場合、かかる繊維状の成形体は、40~80℃の温度で適度な時間経過後に加水分解される。そのため、かかる分散液をフラクチュアリング流体として用いての水圧破砕により、シェールガス等の地下資源の採掘を行うことができる。
For example, when fibers of 0.1 to 5 cm in length obtained from the polymer composition of the present invention are dispersed in water to prepare a dispersion for drilling and the dispersion for drilling is pressed into the ground, such fibrous The shaped bodies are hydrolyzed after a suitable period of time at a temperature of 40-80.degree. Therefore, it is possible to mine underground resources such as shale gas by hydraulic fracturing using such a dispersion as a fracturing fluid.
本発明のポリマー組成物について、以下の実施例により説明する。尚、各種の測定は、以下の方法で行った。
The polymer compositions of the present invention are illustrated by the following examples. In addition, various measurements were performed by the following methods.
<ポリブチレンオキサレートの分子量の測定>
装置:ゲル浸透クロマトグラフ GPC
検出器:示差屈折率検出器RI
カラム:SuperMultipore HZ-M(2本)
溶媒:クロロホルム
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約10mgに溶媒3mLを加え、室温で放置した。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した。スタンダードはポリスチレンを用いた。 <Measurement of Molecular Weight of Polybutylene Oxalate>
Device: gel permeation chromatograph GPC
Detector: Differential Refractive Index Detector RI
Column: SuperMultipore HZ-M (two)
Solvent: chloroform flow rate: 0.5 mL / min
Column temperature: 40 ° C
Sample preparation: 3 mL of a solvent was added to about 10 mg of a sample and left at room temperature. After confirmation of dissolution by visual observation, the solution was filtered through a 0.45 μm filter. The standard used polystyrene.
装置:ゲル浸透クロマトグラフ GPC
検出器:示差屈折率検出器RI
カラム:SuperMultipore HZ-M(2本)
溶媒:クロロホルム
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約10mgに溶媒3mLを加え、室温で放置した。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した。スタンダードはポリスチレンを用いた。 <Measurement of Molecular Weight of Polybutylene Oxalate>
Device: gel permeation chromatograph GPC
Detector: Differential Refractive Index Detector RI
Column: SuperMultipore HZ-M (two)
Solvent: chloroform flow rate: 0.5 mL / min
Column temperature: 40 ° C
Sample preparation: 3 mL of a solvent was added to about 10 mg of a sample and left at room temperature. After confirmation of dissolution by visual observation, the solution was filtered through a 0.45 μm filter. The standard used polystyrene.
<ポリエチレンオキサレートの分子量の測定>
装置:ゲル浸透クロマトグラフ GPC
検出器:示差屈折率検出器RI
カラム:Shodex HFIP-LG(1本)、HFIP-806M(2本)(昭和電工)
溶媒:ヘキサフルオロイソプロパノール(5mMトリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約1.5mgに溶媒5mLを加え、室温で緩やかに攪拌した(試料濃度約0.03%)。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した。スタンダードはポリメチルメタクリレートを用いた。 <Measurement of Molecular Weight of Polyethylene Oxalate>
Device: gel permeation chromatograph GPC
Detector: Differential Refractive Index Detector RI
Column: Shodex HFIP-LG (one), HFIP-806M (two) (Showa Denko)
Solvent: Hexafluoroisopropanol (5 mM sodium trifluoroacetate added)
Flow rate: 0.5mL / min
Column temperature: 40 ° C
Sample preparation: 5 mL of a solvent was added to about 1.5 mg of a sample and gently stirred at room temperature (sample concentration about 0.03%). After confirmation of dissolution by visual observation, the solution was filtered through a 0.45 μm filter. The standard used polymethyl methacrylate.
装置:ゲル浸透クロマトグラフ GPC
検出器:示差屈折率検出器RI
カラム:Shodex HFIP-LG(1本)、HFIP-806M(2本)(昭和電工)
溶媒:ヘキサフルオロイソプロパノール(5mMトリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約1.5mgに溶媒5mLを加え、室温で緩やかに攪拌した(試料濃度約0.03%)。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した。スタンダードはポリメチルメタクリレートを用いた。 <Measurement of Molecular Weight of Polyethylene Oxalate>
Device: gel permeation chromatograph GPC
Detector: Differential Refractive Index Detector RI
Column: Shodex HFIP-LG (one), HFIP-806M (two) (Showa Denko)
Solvent: Hexafluoroisopropanol (5 mM sodium trifluoroacetate added)
Flow rate: 0.5mL / min
Column temperature: 40 ° C
Sample preparation: 5 mL of a solvent was added to about 1.5 mg of a sample and gently stirred at room temperature (sample concentration about 0.03%). After confirmation of dissolution by visual observation, the solution was filtered through a 0.45 μm filter. The standard used polymethyl methacrylate.
<5%重量減少温度(Td5%)>
装置:株式会社日立ハイテクサイエンス社製 TG/DTA7220
試料調整:試料量5~10mg
測定条件:窒素雰囲気下、10℃/minの昇温速度で40~300℃の範囲で測定。
初期重量に対して、5%重量が減少した温度をTd5%とした。 <5% weight loss temperature (Td 5%)>
Device: TG / DTA7220 manufactured by Hitachi High-Tech Science Co., Ltd.
Sample preparation:sample amount 5 to 10 mg
Measurement conditions: Measured in a range of 40 to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere.
The temperature at which 5% weight decreased relative to the initial weight was taken asTd 5%.
装置:株式会社日立ハイテクサイエンス社製 TG/DTA7220
試料調整:試料量5~10mg
測定条件:窒素雰囲気下、10℃/minの昇温速度で40~300℃の範囲で測定。
初期重量に対して、5%重量が減少した温度をTd5%とした。 <5% weight loss temperature (
Device: TG / DTA7220 manufactured by Hitachi High-Tech Science Co., Ltd.
Sample preparation:
Measurement conditions: Measured in a range of 40 to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere.
The temperature at which 5% weight decreased relative to the initial weight was taken as
<残存率測定>
容量50mlのバイアル瓶に目開き16meshのフィルターを通過した試料300mgと蒸留水20mlを加え、90℃の電気オーブン内で1週間加水分解させた。
その後、上澄み液を取り除き、80℃の電気オーブン内で2時間以上乾燥させ、残存試料量を測定し、下記式に基づき残存率を算出した。
残存率(%)=W2(残存試料量mg)/W1(初期試料量mg)×100 <Measurement of residual rate>
In a 50 ml vial, 300 mg of a sample passed through a filter with 16 mesh openings and 20 ml of distilled water were added and hydrolyzed in an electric oven at 90 ° C. for 1 week.
Thereafter, the supernatant was removed and dried in an electric oven at 80 ° C. for 2 hours or more, the amount of remaining sample was measured, and the remaining rate was calculated based on the following equation.
Residual rate (%) = W2 (remaining sample amount mg) / W1 (initial sample amount mg) × 100
容量50mlのバイアル瓶に目開き16meshのフィルターを通過した試料300mgと蒸留水20mlを加え、90℃の電気オーブン内で1週間加水分解させた。
その後、上澄み液を取り除き、80℃の電気オーブン内で2時間以上乾燥させ、残存試料量を測定し、下記式に基づき残存率を算出した。
残存率(%)=W2(残存試料量mg)/W1(初期試料量mg)×100 <Measurement of residual rate>
In a 50 ml vial, 300 mg of a sample passed through a filter with 16 mesh openings and 20 ml of distilled water were added and hydrolyzed in an electric oven at 90 ° C. for 1 week.
Thereafter, the supernatant was removed and dried in an electric oven at 80 ° C. for 2 hours or more, the amount of remaining sample was measured, and the remaining rate was calculated based on the following equation.
Residual rate (%) = W2 (remaining sample amount mg) / W1 (initial sample amount mg) × 100
<分子量保持率の測定>
試料100mgを、150℃の電気オーブン内で5分間保持し、温度25℃の水中に1分間浸漬させた。その後、試料を取り出して80℃の電気オーブン内で2時間乾燥させた。乾燥後の試料の分子量を、上述の分子量の測定方法と同様にして測定し、下記式に基づき残存率を算出した。
分子量保持率(%)
=Mw2(処理後の重量平均分子量)/Mw1(処理前の重量平均分子量) <Measurement of molecular weight retention>
100 mg of the sample was held for 5 minutes in an electric oven at 150 ° C. and immersed in water at a temperature of 25 ° C. for 1 minute. The sample was then removed and dried in an 80 ° C. electric oven for 2 hours. The molecular weight of the sample after drying was measured in the same manner as the above-described method of measuring the molecular weight, and the residual ratio was calculated based on the following equation.
Molecular weight retention (%)
= Mw 2 (weight average molecular weight after treatment) / Mw 1 (weight average molecular weight before treatment)
試料100mgを、150℃の電気オーブン内で5分間保持し、温度25℃の水中に1分間浸漬させた。その後、試料を取り出して80℃の電気オーブン内で2時間乾燥させた。乾燥後の試料の分子量を、上述の分子量の測定方法と同様にして測定し、下記式に基づき残存率を算出した。
分子量保持率(%)
=Mw2(処理後の重量平均分子量)/Mw1(処理前の重量平均分子量) <Measurement of molecular weight retention>
100 mg of the sample was held for 5 minutes in an electric oven at 150 ° C. and immersed in water at a temperature of 25 ° C. for 1 minute. The sample was then removed and dried in an 80 ° C. electric oven for 2 hours. The molecular weight of the sample after drying was measured in the same manner as the above-described method of measuring the molecular weight, and the residual ratio was calculated based on the following equation.
Molecular weight retention (%)
= Mw 2 (weight average molecular weight after treatment) / Mw 1 (weight average molecular weight before treatment)
<実施例1>
末端カルボキシル基封止剤として、下記のポリカルボジイミドを用意した。
日清紡ケミカル社製カルボジライトHMV-15CA;
軟化温度70℃、5%重量減少温度350℃。
マントルヒーター、液温の温度計、攪拌装置、窒素導入管および留出カラムを取り付けた1Lのセパラブルフラスコにシュウ酸ジメチル354g(3mol)、1,4-ブタンジオール270g(3mol)、ジブチルスズオキシド0.05gを入れ窒素気流下でフラスコ内の液温を120℃に加温し、常圧重合を行った。メタノールの留去が開始後、少しずつ液温を150℃まで昇温し常圧重合した。最終的に72mlの留出液を得た。
フラスコ内の液温を段階的に200℃に昇温し、0.1~0.8kPaの減圧度で5時間減圧重合した。その後、圧力を常圧に戻し、カルボジライト0.35g(ポリカルボジイミドはポリマー収量に対して0.1重量%)を加え、10kPa以上の減圧度で1時間撹拌し、ポリマー1を得た。 Example 1
The following polycarbodiimide was prepared as a terminal carboxyl group capping agent.
Nisshinbo Chemical Co., Ltd. Carbodilight HMV-15CA;
Softening temperature 70 ° C, 5% weight loss temperature 350 ° C.
Dibutyl oxalate 354 g (3 mol), 1,4-butanediol 270 g (3 mol),dibutyltin oxide 0 in a 1 L separable flask equipped with a mantle heater, liquid temperature thermometer, stirrer, nitrogen inlet tube and distillation column The solution temperature in the flask was heated to 120 ° C. under nitrogen flow to carry out atmospheric pressure polymerization. After distillation of methanol started, the liquid temperature was gradually raised to 150 ° C., and polymerization was carried out under normal pressure. Finally, 72 ml of distillate was obtained.
The temperature of the liquid in the flask was raised stepwise to 200 ° C., and polymerization was carried out under reduced pressure at a reduced pressure of 0.1 to 0.8 kPa for 5 hours. Thereafter, the pressure was returned to normal pressure, 0.35 g of carbodilite (polycarbodiimide was 0.1% by weight with respect to the polymer yield) was added, and stirring was carried out at a reduced pressure of 10 kPa or more for 1 hour to obtainpolymer 1.
末端カルボキシル基封止剤として、下記のポリカルボジイミドを用意した。
日清紡ケミカル社製カルボジライトHMV-15CA;
軟化温度70℃、5%重量減少温度350℃。
マントルヒーター、液温の温度計、攪拌装置、窒素導入管および留出カラムを取り付けた1Lのセパラブルフラスコにシュウ酸ジメチル354g(3mol)、1,4-ブタンジオール270g(3mol)、ジブチルスズオキシド0.05gを入れ窒素気流下でフラスコ内の液温を120℃に加温し、常圧重合を行った。メタノールの留去が開始後、少しずつ液温を150℃まで昇温し常圧重合した。最終的に72mlの留出液を得た。
フラスコ内の液温を段階的に200℃に昇温し、0.1~0.8kPaの減圧度で5時間減圧重合した。その後、圧力を常圧に戻し、カルボジライト0.35g(ポリカルボジイミドはポリマー収量に対して0.1重量%)を加え、10kPa以上の減圧度で1時間撹拌し、ポリマー1を得た。 Example 1
The following polycarbodiimide was prepared as a terminal carboxyl group capping agent.
Nisshinbo Chemical Co., Ltd. Carbodilight HMV-15CA;
Softening temperature 70 ° C, 5% weight loss temperature 350 ° C.
Dibutyl oxalate 354 g (3 mol), 1,4-butanediol 270 g (3 mol),
The temperature of the liquid in the flask was raised stepwise to 200 ° C., and polymerization was carried out under reduced pressure at a reduced pressure of 0.1 to 0.8 kPa for 5 hours. Thereafter, the pressure was returned to normal pressure, 0.35 g of carbodilite (polycarbodiimide was 0.1% by weight with respect to the polymer yield) was added, and stirring was carried out at a reduced pressure of 10 kPa or more for 1 hour to obtain
<実施例2>
カルボジライトの添加量を1.75g(0.5重量%)に変更した以外は、実施例1と同様の方法でポリマー2を得た。 Example 2
Polymer 2 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 1.75 g (0.5% by weight).
カルボジライトの添加量を1.75g(0.5重量%)に変更した以外は、実施例1と同様の方法でポリマー2を得た。 Example 2
Polymer 2 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 1.75 g (0.5% by weight).
<実施例3>
カルボジライトの添加量を3.5g(1.0重量%)に変更した以外は、実施例1と同様の方法でポリマー3を得た。 Example 3
Polymer 3 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 3.5 g (1.0% by weight).
カルボジライトの添加量を3.5g(1.0重量%)に変更した以外は、実施例1と同様の方法でポリマー3を得た。 Example 3
<実施例4>
カルボジライトの添加量を17.5g(5.0重量%)に変更した以外は、実施例1と同様の方法でポリマー4を得た。 Example 4
Polymer 4 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 17.5 g (5.0% by weight).
カルボジライトの添加量を17.5g(5.0重量%)に変更した以外は、実施例1と同様の方法でポリマー4を得た。 Example 4
Polymer 4 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 17.5 g (5.0% by weight).
<実施例5>
カルボジライトの添加量を35g(10.0重量%)に変更した以外は、実施例1と同様の方法でポリマー5を得た。 Example 5
Polymer 5 was obtained in the same manner as in Example 1 except that the amount of carbodilite added was changed to 35 g (10.0% by weight).
カルボジライトの添加量を35g(10.0重量%)に変更した以外は、実施例1と同様の方法でポリマー5を得た。 Example 5
<実施例6>
マントルヒーター、液温の温度計、攪拌装置、窒素導入管および留出カラムを取り付けた1Lのセパラブルフラスコにシュウ酸ジメチル295g(2.5mol)、エチレングリコール171g(2.76mol)、ジブチルスズオキシド0.062gを入れ窒素気流下でフラスコ内の液温を180℃まで徐々に昇温し常圧重合した。
その後、フラスコ内の液温を190℃に昇温し、0.1~0.8kPaの減圧度で6時間減圧重合した。その後、圧力を常圧に戻し、カルボジライト2.5g(ポリカルボジイミドはポリマー収量に対して1.0重量%)を加え、10kPa以上の減圧度で1時間撹拌し、ポリマー6を得た。 Example 6
295 g (2.5 mol) of dimethyl oxalate, 171 g (2.76 mol) of ethylene glycol, 0 g of dibutyl tin oxide in a 1 L separable flask equipped with a mantle heater, liquid temperature thermometer, stirrer, nitrogen inlet tube and distillation column The solution temperature in the flask was gradually raised to 180 ° C. under a nitrogen stream, and polymerization was carried out under normal pressure.
Thereafter, the liquid temperature in the flask was raised to 190 ° C., and polymerization was performed under reduced pressure at a reduced pressure of 0.1 to 0.8 kPa for 6 hours. Thereafter, the pressure was returned to normal pressure, 2.5 g of carbodilite (polycarbodiimide was 1.0% by weight with respect to the polymer yield) was added, and stirring was carried out at a reduced pressure of 10 kPa or more for 1 hour to obtain polymer 6.
マントルヒーター、液温の温度計、攪拌装置、窒素導入管および留出カラムを取り付けた1Lのセパラブルフラスコにシュウ酸ジメチル295g(2.5mol)、エチレングリコール171g(2.76mol)、ジブチルスズオキシド0.062gを入れ窒素気流下でフラスコ内の液温を180℃まで徐々に昇温し常圧重合した。
その後、フラスコ内の液温を190℃に昇温し、0.1~0.8kPaの減圧度で6時間減圧重合した。その後、圧力を常圧に戻し、カルボジライト2.5g(ポリカルボジイミドはポリマー収量に対して1.0重量%)を加え、10kPa以上の減圧度で1時間撹拌し、ポリマー6を得た。 Example 6
295 g (2.5 mol) of dimethyl oxalate, 171 g (2.76 mol) of ethylene glycol, 0 g of dibutyl tin oxide in a 1 L separable flask equipped with a mantle heater, liquid temperature thermometer, stirrer, nitrogen inlet tube and distillation column The solution temperature in the flask was gradually raised to 180 ° C. under a nitrogen stream, and polymerization was carried out under normal pressure.
Thereafter, the liquid temperature in the flask was raised to 190 ° C., and polymerization was performed under reduced pressure at a reduced pressure of 0.1 to 0.8 kPa for 6 hours. Thereafter, the pressure was returned to normal pressure, 2.5 g of carbodilite (polycarbodiimide was 1.0% by weight with respect to the polymer yield) was added, and stirring was carried out at a reduced pressure of 10 kPa or more for 1 hour to obtain polymer 6.
<比較例1>
カルボジライトを使用しなかった点以外は、実施例1と同様の方法でポリマー7を得た。即ち、実施例1と同様の方法で、常圧重合および減圧重合を行い、ポリマー7を得た。 Comparative Example 1
Polymer 7 was obtained in the same manner as in Example 1 except that carbodilite was not used. That is, atmospheric pressure polymerization and reduced pressure polymerization were performed in the same manner as in Example 1 to obtain polymer 7.
カルボジライトを使用しなかった点以外は、実施例1と同様の方法でポリマー7を得た。即ち、実施例1と同様の方法で、常圧重合および減圧重合を行い、ポリマー7を得た。 Comparative Example 1
Polymer 7 was obtained in the same manner as in Example 1 except that carbodilite was not used. That is, atmospheric pressure polymerization and reduced pressure polymerization were performed in the same manner as in Example 1 to obtain polymer 7.
<比較例2>
カルボジライトを使用しなかった点以外は、実施例6と同様の方法でポリマー8を得た。即ち、実施例6と同様の方法で、常圧重合および減圧重合を行い、ポリマー8を得た。 Comparative Example 2
Polymer 8 was obtained in the same manner as in Example 6, except that carbodilite was not used. That is, atmospheric pressure polymerization and reduced pressure polymerization were performed in the same manner as in Example 6, to obtain polymer 8.
カルボジライトを使用しなかった点以外は、実施例6と同様の方法でポリマー8を得た。即ち、実施例6と同様の方法で、常圧重合および減圧重合を行い、ポリマー8を得た。 Comparative Example 2
Polymer 8 was obtained in the same manner as in Example 6, except that carbodilite was not used. That is, atmospheric pressure polymerization and reduced pressure polymerization were performed in the same manner as in Example 6, to obtain polymer 8.
1:重合反応器
3:攪拌機
5:留去管
A:頭頂部
5a:還流部
5b:留去部
5c:冷却管
10:反応液
15:留出液 1: Polymerization reactor 3: Stirrer 5: Distillation pipe A: Head top 5a:Reflux part 5b: Distillation part 5c: Cooling pipe 10: Reaction liquid 15: Distillation liquid
3:攪拌機
5:留去管
A:頭頂部
5a:還流部
5b:留去部
5c:冷却管
10:反応液
15:留出液 1: Polymerization reactor 3: Stirrer 5: Distillation pipe A: Head top 5a:
Claims (7)
- ポリマー成分として、ジオール由来のジオール構成単位とシュウ酸由来の酸構成単位を有するポリオキサレートを含むポリマー組成物において、
前記ポリオキサレートと共に、成形安定剤として、末端カルボキシル基封止剤を含んでおり、TG-DTAによる5%重量減少温度が300℃以下であることを特徴とするポリマー組成物。 A polymer composition comprising, as a polymer component, a polyoxalate having a diol constituent unit derived from a diol and an acid constituent unit derived from oxalic acid,
A polymer composition comprising a terminal carboxyl group capping agent as a molding stabilizer together with the polyoxalate, and having a 5% weight loss temperature by TG-DTA of 300 ° C. or less. - 前記末端カルボキシル基封止剤が、カルボジイミド基を分子中に有する化合物もしくはポリマーである請求項1に記載のポリマー組成物。 The polymer composition according to claim 1, wherein the terminal carboxyl group capping agent is a compound or polymer having a carbodiimide group in the molecule.
- 前記ジオールが、ブタンジオールまたはエチレングリコールである、請求項1に記載のポリマー組成物。 The polymer composition according to claim 1, wherein the diol is butanediol or ethylene glycol.
- 前記ジオールが、ブタンジオールである、請求項3に記載のポリマー組成物。 The polymer composition according to claim 3, wherein the diol is butanediol.
- 前記5%重量減少温度が、220~300℃である、請求項1に記載のポリマー組成物。 The polymer composition according to claim 1, wherein the 5% weight loss temperature is from 220 to 300 属 C.
- 90℃の蒸留水中に1週間浸漬して加水分解させた時、下記式で表される残存率が10%以下である請求項1に記載のポリマー組成物。
残存率(%)=W2(加水分解後の重量g)/W1(初期投入量g)×100 The polymer composition according to claim 1, wherein the residual ratio represented by the following formula is 10% or less when immersed in distilled water at 90 ° C for 1 week for hydrolysis.
Residual rate (%) = W2 (weight g after hydrolysis) / W1 (initial input amount g) × 100 - 請求項1に記載のポリマー組成物を熱成形して得られる成形体。 The molded object obtained by thermoforming the polymer composition of Claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017120796A JP2020128449A (en) | 2017-06-20 | 2017-06-20 | Polyoxalate polymerization composition and molded article |
JP2017-120796 | 2017-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018235600A1 true WO2018235600A1 (en) | 2018-12-27 |
Family
ID=64737578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021704 WO2018235600A1 (en) | 2017-06-20 | 2018-06-06 | Polymer composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2020128449A (en) |
TW (1) | TW201905036A (en) |
WO (1) | WO2018235600A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143400A (en) * | 2002-03-25 | 2004-05-20 | Ube Ind Ltd | High molecular weight polyoxalate and method for producing the same |
JP2005097606A (en) * | 2003-09-05 | 2005-04-14 | Ube Ind Ltd | Biodegradable injection molded item |
JP2006290937A (en) * | 2005-04-06 | 2006-10-26 | Yamaguchi Univ | Cellulosic waste-polyoxalate composite |
WO2015098926A1 (en) * | 2013-12-24 | 2015-07-02 | 東洋製罐グループホールディングス株式会社 | Polyoxalate and method for producing same |
WO2016080142A1 (en) * | 2014-11-19 | 2016-05-26 | 東洋製罐グループホールディングス株式会社 | Mining method for underground resources, and hydrolyzable blocking agent for use in said method |
WO2016129501A1 (en) * | 2015-02-12 | 2016-08-18 | 東洋製罐グループホールディングス株式会社 | Method for mining underground resources using hydrolyzable particles |
JP2016190950A (en) * | 2015-03-31 | 2016-11-10 | 富士ゼロックス株式会社 | Resin composition and resin molded article |
WO2017145539A1 (en) * | 2016-02-26 | 2017-08-31 | 東洋製罐グループホールディングス株式会社 | Polyoxalate copolymer and production process therefor |
-
2017
- 2017-06-20 JP JP2017120796A patent/JP2020128449A/en active Pending
-
2018
- 2018-06-06 WO PCT/JP2018/021704 patent/WO2018235600A1/en active Application Filing
- 2018-06-14 TW TW107120431A patent/TW201905036A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143400A (en) * | 2002-03-25 | 2004-05-20 | Ube Ind Ltd | High molecular weight polyoxalate and method for producing the same |
JP2005097606A (en) * | 2003-09-05 | 2005-04-14 | Ube Ind Ltd | Biodegradable injection molded item |
JP2006290937A (en) * | 2005-04-06 | 2006-10-26 | Yamaguchi Univ | Cellulosic waste-polyoxalate composite |
WO2015098926A1 (en) * | 2013-12-24 | 2015-07-02 | 東洋製罐グループホールディングス株式会社 | Polyoxalate and method for producing same |
WO2016080142A1 (en) * | 2014-11-19 | 2016-05-26 | 東洋製罐グループホールディングス株式会社 | Mining method for underground resources, and hydrolyzable blocking agent for use in said method |
WO2016129501A1 (en) * | 2015-02-12 | 2016-08-18 | 東洋製罐グループホールディングス株式会社 | Method for mining underground resources using hydrolyzable particles |
JP2016190950A (en) * | 2015-03-31 | 2016-11-10 | 富士ゼロックス株式会社 | Resin composition and resin molded article |
WO2017145539A1 (en) * | 2016-02-26 | 2017-08-31 | 東洋製罐グループホールディングス株式会社 | Polyoxalate copolymer and production process therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2020128449A (en) | 2020-08-27 |
TW201905036A (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220033572A1 (en) | Polyoxalate copolymer and method of producing the same | |
WO2013017044A1 (en) | New biodegradable masterbatch and preparation method thereof | |
CN103261260A (en) | Method for improving thermal stability of polypropylene carbonate | |
US20100120957A1 (en) | Processes for making copolymers using macrocyclic oligoesters, and copolymers therefrom | |
KR101412516B1 (en) | Biodegradable resin composition including polylactic acid and method for manufacturing thereof | |
KR102693406B1 (en) | Hyperbranched polylactide resin composition | |
JP2008248184A (en) | Polylactic acid composition | |
KR101637399B1 (en) | Polyorganosiloxane compound and copolycarbonate resin containing the same | |
US4116925A (en) | Poly(tetramethylene terephthalate)-polyether block | |
WO2018235600A1 (en) | Polymer composition | |
CN110776628B (en) | Preparation method of bio-based full-biodegradable copolyester | |
JP2009019135A (en) | Polyester resin composition for laser welding and molded product using the same | |
TWI726310B (en) | Preparation method of oligomer or polymer with carbonate segment chemical structure | |
CN118085323B (en) | High-strength degradable polyester composite material and preparation method thereof | |
KR101731397B1 (en) | Thermoplastic elastomer | |
KR102004594B1 (en) | Polycarbonate copolymer and method of manufacturing the same | |
JP2006265503A (en) | Method for producing aliphatic polyester | |
KR101881331B1 (en) | Polyesteramide and method of preparing the same | |
KR100365689B1 (en) | Preparation method of chitosan-containing biodegradable polymer | |
CN118541428A (en) | Polybutylene adipate-terephthalate resin composition and preparation method thereof | |
KR20240117160A (en) | Polymeric carbodiimide, process for its preparation and uses thereof | |
KR101566837B1 (en) | Method for preparing polyorganosiloxane compound and copolycarbonate resin containing the same | |
TW202115184A (en) | Resin composition, molded body, and method for producing said molded body | |
TW202039622A (en) | Oligomer or polymer with carbonate segment chemical structure applicable to the fields of automobile industry, medical equipment, wire and cable, etc. | |
JP2008248182A (en) | Polylactic acid composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18821194 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18821194 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |