WO2018235200A1 - Optical waveguide, optical circuit and semiconductor laser - Google Patents

Optical waveguide, optical circuit and semiconductor laser Download PDF

Info

Publication number
WO2018235200A1
WO2018235200A1 PCT/JP2017/022882 JP2017022882W WO2018235200A1 WO 2018235200 A1 WO2018235200 A1 WO 2018235200A1 JP 2017022882 W JP2017022882 W JP 2017022882W WO 2018235200 A1 WO2018235200 A1 WO 2018235200A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
core
face
optical waveguide
Prior art date
Application number
PCT/JP2017/022882
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/022882 priority Critical patent/WO2018235200A1/en
Priority to JP2017564942A priority patent/JPWO2018235200A1/en
Publication of WO2018235200A1 publication Critical patent/WO2018235200A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • the present invention relates to an optical waveguide, an optical circuit, and a semiconductor laser for propagating light in a multimode.
  • the functional component including the optical waveguide includes a reduction in light intensity, that is, a coupling efficiency due to optical coupling between the optical waveguide, the optical element that causes light to enter the optical waveguide, and the optical element that receives the light emitted from the optical waveguide. It is desirable that the decrease can be reduced. As the miniaturization or integration of the optical communication device is promoted, the loss of coupling efficiency due to a slight positional deviation between the optical waveguide and the optical element becomes remarkable.
  • the optical multiplexer / demultiplexer which is a functional component including an optical waveguide for propagating light in a multimode mode, relieves the tolerance of the positional deviation between the optical waveguide and the optical element in the direction parallel to the surface of the semiconductor substrate.
  • the technology to make it happen is proposed.
  • the width of the core of the optical waveguide in the direction parallel to the plane of the semiconductor substrate is expanded to allow light to propagate in multimode.
  • the length of the optical waveguide is set such that the intensity pattern of each waveguide mode at the time of incidence to the optical waveguide is reproduced at the time of emission from the optical waveguide.
  • the optical multiplexer / demultiplexer can reduce the loss of coupling efficiency by correcting the eccentricity with the optical element that receives the light emitted from the optical waveguide.
  • the height of the core of the optical waveguide in the direction perpendicular to the surface of the semiconductor substrate is set to propagate light in a single mode.
  • it is difficult for the functional component to obtain high coupling efficiency because the positional deviation allowed between the optical waveguide and the optical element is extremely small.
  • the present invention is made in view of the above, and an object of the present invention is to obtain an optical waveguide that can realize high coupling efficiency in a functional component including the optical waveguide.
  • an optical waveguide according to the present invention comprises a first end face and a second end face, and a plurality of optical waveguides are provided between the first end face and the second end face.
  • the core in which the light of the guided mode propagates.
  • the width of the core in a second direction perpendicular to the first direction which is a direction from the first end face to the second end face, is W, and in a third direction perpendicular to the first direction and the second direction
  • the height of the core is H
  • the refractive index of the core is n
  • the wave number of light propagating through the core is k 0
  • the length of the core in the first direction is an integral multiple of 2k 0 nW 2 / ⁇ and 2k 0 nH It is included in the range of 0.98 times to 1.02 times the length which is an integral multiple of 2 / ⁇ .
  • the optical waveguide according to the present invention has an effect that high coupling efficiency can be realized in a functional component including the optical waveguide.
  • FIG. 6 is a diagram showing an example of electric field distribution of light by propagation simulation for the optical waveguide according to the first embodiment.
  • the figure which shows the example of the effective refractive index in the core of the light of the waveguide mode of each order calculated by the propagation simulation shown in FIG. 2, and the propagation constant calculated from the effective refractive index The figure which shows the structure of the optical circuit concerning the modification 1 of Embodiment 1.
  • FIG. 6 shows a configuration of a semiconductor laser according to a first modification of the second embodiment.
  • FIG. 16 shows a configuration of a semiconductor laser according to a second modification of the second embodiment.
  • a diagram showing a configuration of an optical multiplexer / demultiplexer as an optical circuit according to a third embodiment of the present invention The figure which expanded a part of reflection type grating shown in FIG. 12
  • FIG. 1 is a diagram showing the configuration of an optical circuit 10 according to a first embodiment of the present invention.
  • the optical circuit 10 includes an optical waveguide 1, a light emitting element 2 which is a first optical element for causing light to be incident on the optical waveguide 1, and a condensing lens which is a second optical element for receiving light emitted from the optical waveguide 1. 3 and an optical fiber 4.
  • the optical circuit 10 is a functional component that includes the optical waveguide 1.
  • the optical waveguide 1 is a multimode optical waveguide that propagates light of a plurality of guided modes.
  • the optical waveguide 1 includes a semiconductor substrate 11, a columnar core 12 through which light propagates, and a cladding formed around the core 12.
  • illustration of the clad is omitted.
  • Si is used as the material of the core 12.
  • SiO 2 which is a material having a refractive index lower than that of the core 12 is used.
  • the light incident on the core 12 propagates in the core 12 by repeating total reflection at the interface between the core 12 and the cladding.
  • the core 12 is disposed on the surface of the semiconductor substrate 11 which is a clad.
  • the optical waveguide 1 may be provided with a lower cladding layer which is a cladding and an upper cladding layer.
  • the lower cladding layer is provided between the semiconductor substrate 11 and the core 12.
  • the upper cladding layer covers the core 12 on the lower cladding layer.
  • the optical waveguide 1 may have a flat core 12, and the core 12 may be sandwiched between the lower cladding layer and the upper cladding layer. In FIG. 1, the lower cladding layer and the upper cladding layer are not shown.
  • the core 12 has a first end face 13 and a second end face 14 which are both ends of a light propagation path in the optical waveguide 1.
  • light of a plurality of guided modes propagates between the first end face 13 and the second end face 14.
  • An AR (Anti-Reflection) coating which is an anti-reflection film, is applied to the first end face 13 and the second end face 14. In FIG. 1, the illustration of the AR coating is omitted.
  • the light emitting element 2 is a semiconductor laser.
  • the light emitting element 2 causes the light 15 to be incident on the first end face 13.
  • the condenser lens 3 converges the light 16 from the second end face 14 into the optical fiber 4.
  • the optical fiber 4 propagates the light 16 incident from the condenser lens 3.
  • the optical fiber 4 is a single mode optical fiber.
  • the materials and shapes of the semiconductor substrate 11, the core 12, and the cladding of the optical waveguide 1 are not limited to those described in the first embodiment, and are arbitrary.
  • the positional relationship among the optical waveguide 1, the light emitting element 2, the condensing lens 3, and the optical fiber 4 is not limited to that shown in FIG. 1 and is arbitrary.
  • the direction from the first end face 13 to the second end face 14 is a z direction which is a first direction.
  • the z direction is parallel to the surface 17 of the semiconductor substrate 11 on which the core 12 is provided.
  • a direction perpendicular to the z direction and parallel to the surface 17 and indicated by an arrow in the drawing is taken as an x direction which is a second direction.
  • a direction perpendicular to the z direction and the x direction and indicated by an arrow in the drawing is a y direction which is a third direction.
  • the y direction is the direction perpendicular to the surface 17.
  • the width of the core 12 in the x direction is expanded compared to the case of a single mode optical waveguide that propagates light of a single guided mode, and light of a plurality of guided modes in the direction parallel to the plane 17 It is possible to propagate. Further, the height of the core 12 in the y direction is expanded as compared with the case of a single mode optical waveguide, and light of a plurality of waveguide modes can be propagated in the direction perpendicular to the surface 17.
  • the length L of the core 12 in the z direction satisfies the following equation (1).
  • n is a parameter indicating the refractive index of the core 12.
  • k 0 is a parameter indicating the number of waves of light propagating through the core 12.
  • N is an arbitrary natural number.
  • the value of the function f (x, y) is the least common multiple of x and y.
  • W is a parameter which shows the width
  • H is a parameter indicating the height of the core 12 in the y direction.
  • the width W is an effective width including a range in which an evanescent component of light propagating through the core 12 occurs.
  • the width W is an average value of virtual widths including a range in which evanescent components of light of a plurality of guided modes occur in the x direction.
  • the height H is an effective height including the range in which the evanescent component of the light propagating through the core 12 occurs.
  • the height H is an average value of virtual widths including a range in which evanescent components of light of a plurality of guided modes occur in the y direction.
  • Equation (1) has a length L is, indicating that a 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / an integral multiple length of [pi of [pi.
  • ⁇ i (x, y) represents the electromagnetic field distribution of the guided mode of order i.
  • ⁇ i is the propagation coefficient in the z direction of the guided mode of order i.
  • a i is an amplitude coefficient of the guided mode of the order i.
  • ⁇ i is a parameter indicating the initial phase of the guided mode of order i.
  • j represents an imaginary unit.
  • Equation (4-1) is a variation of equation (4-1) using Taylor expansion. In the equation (4-2), higher order terms are omitted.
  • the electromagnetic field distribution ⁇ (x, y, L) of the light having propagated the length L from the first end face 13 is obtained by substituting the equation (4-2) into the equation (2) above, and the following equation (5) It is expressed as shown in).
  • the electromagnetic field distribution ⁇ (x, y, L) represents the electromagnetic field distribution of light when propagating through the optical waveguide 1 by the length L.
  • i and j are integers greater than or equal to 0, and M is an arbitrary integer.
  • Expression (6) is a condition under which the distribution of the same pattern as the incident light appears. In the optical waveguide 1, a distribution of a pattern symmetrical to the incident light may appear.
  • the phase difference of the light of each guided mode need not be 2 ⁇ ⁇ M, and the odd function mode which is a guided mode when i is an even number and the even function which is a guided mode when i is an odd number All the phase differences between the modes should be 2 ⁇ ⁇ M. Therefore, the length L may be determined so that all phase differences between the odd function mode and the even function mode are 2 ⁇ ⁇ M + ⁇ .
  • the length L is expressed as shown in the following equation (7).
  • the length L of the optical waveguide 1 satisfies the equation (7), the distribution of light in the x direction of the first end face 13 is reproduced at the second end face 14.
  • the wave equation can be considered in the y-direction as well as in the x-direction, since variable separation is possible.
  • the height H which is the effective height including the range in which the evanescent component occurs, the length L is expressed as shown in the following equation (8).
  • the length L of the optical waveguide 1 is an integral multiple of the value represented by the equation (7), a pattern identical or symmetrical to the light distribution in the x direction of the first end surface 13 at the second end surface 14 Is reproduced. Also in the case where the length L of the optical waveguide 1 is an integral multiple of the value represented by the equation (8), a pattern identical or symmetrical to the light distribution in the y direction of the first end face 13 at the second end face 14 Is reproduced.
  • equation (1) has a length L is, indicating that a 2k 0 nW 2 / an integral multiple and the length is an integer multiple of 2k 0 nH 2 / ⁇ of [pi.
  • the light emitting element 2 emits light having a unimodal distribution.
  • the second end face 14 reproduces the distribution of light having a single peak.
  • eccentricity occurs in the distribution of light at the first end face 13 due to the positional deviation between the light emitting element 2 and the optical waveguide 1 due to the positional deviation between the light emitting element 2 and the optical waveguide 1, the distribution of light including such eccentricity is reproduced at the second end face 14 Be done.
  • the optical circuit 10 can correct eccentricity by active alignment of the condenser lens 3 and the optical fiber 4. Thus, the optical circuit 10 can reduce the loss of coupling efficiency.
  • the optical waveguide 1 reproduces the distribution and eccentricity of light having unimodality at the first end face 13 at the second end face 14.
  • the emission of the light at the second end face 14 if unimodality can be ensured.
  • the positional deviation is about 10 ⁇ m
  • the coupling efficiency is about -3 dB.
  • the optical circuit 10 can obtain the effect of reducing the loss of the coupling efficiency, as in the case where the displacement amount of the incident position of the light on the first end face 13 is 10 ⁇ m.
  • the optical circuit 10 can reduce the positioning accuracy of the optical waveguide 1 and the light emitting element 2.
  • the incident position of the light from the light emitting element 2 on the first end face 13 may vary depending on the accuracy of crystal growth or polishing at the time of manufacturing the semiconductor substrate 11.
  • the variation in the incident position on the first end face 13 may occur depending on the mounting position accuracy when mounting the optical waveguide 1 and the light emitting element 2. Since the positioning accuracy of the optical waveguide 1 and the light emitting element 2 can be relaxed, the accuracy of the semiconductor substrate 11 can also be relaxed.
  • the width and height of the core 12 are expanded as compared with the single mode optical waveguide.
  • the evanescent component decreases.
  • the roughness of the surface of the optical waveguide 1 due to the manufacturing process has less influence on the light propagating through the optical waveguide 1 as compared with the single mode optical waveguide. Thereby, the optical waveguide 1 can reduce the loss of light when propagating the optical waveguide 1.
  • FIG. 2 is a view showing an example of an electric field distribution of light by propagation simulation for the optical waveguide 1 according to the first embodiment.
  • the optical waveguide 1 is an optical waveguide of PLC (Planar Lightwave Circuit) which uses Si and SiO 2 as materials.
  • the refractive index of the core 12 of the optical waveguide 1 is 1.466
  • the refractive index of the cladding is 1.46
  • the width W and height H of the core 12 are 46.5 ⁇ m.
  • the light incident on the first end face 13 of the optical waveguide 1 is a Gaussian beam whose full width at half maximum (FWHM) is 15.0 ⁇ m.
  • FWHM full width at half maximum
  • the position of incident light indicates the position of a Gaussian peak.
  • the pattern of the electric field distribution may be referred to as "field pattern" as appropriate.
  • FIG. 3 is a diagram showing propagation distance dependency of overlap integral of the electric field of light propagating through the optical waveguide 1 and the electric field of incident light in the first embodiment.
  • the vertical axis in FIG. 3 represents overlap integration
  • the horizontal axis represents the propagation distance in the z direction from the position P 0 of the first end face 13.
  • FIG. 3 shows the case where the shift amount between the incident light and the center position O is 0 ⁇ m, 5 ⁇ m, 7.5 ⁇ m, and 10 ⁇ m.
  • the upper end of the vertical axis represents that the overlap component is 100% at the time of incidence.
  • FIG. 4 is a view showing an example of the effective refractive index in the core 12 of light of the waveguide mode of each order i calculated by the propagation simulation shown in FIG. 2 and the propagation constant calculated from the effective refractive index .
  • the width W which is the effective waveguide width obtained from the average of the effective refractive indices for all the waveguide modes shown in FIG. 4 into the above equation (7), the same field pattern as the field pattern at the time of incidence is reproduced
  • the length L is 19.34 mm, and it can be seen that it matches well with the result of the above-mentioned propagation simulation.
  • the overlap integral in each propagation distance dependency shown in FIG. 3 is 0.5 or more.
  • the optical waveguide 1 50% of the light at the time of incidence will be obtained at the time of emission, and there is no problem in practical use.
  • the length L can tolerate an error of ⁇ 2% from the value obtained by the equation (1) above.
  • the optical waveguide 1, 2k 0 nW 2 / ⁇ integer multiples and 2k 0 nH 2 / ⁇ length L to be within the range of 0.98 times the length of 1.02 times the integral multiple of By being set, the loss of coupling efficiency can be reduced, and high coupling efficiency can be obtained.
  • the width W and height H of the core 12, the refractive index of the core 12, and the refractive index of the cladding are not limited to those described above. If the length L can be set to the value obtained by the above equation (1) or a value within the range of 0.98 times to 1.02 times the value obtained by the equation (1), the width W and H and each refractive index can be set arbitrarily.
  • the optical waveguide 1 is not limited to one included in the PLC, and may be included in an optical circuit other than the PLC.
  • the optical waveguide 1 may include bending or bending between the first end face 13 and the second end face 14.
  • the z direction is a direction along the center position O of the core 12.
  • the optical waveguide 1 is not limited to the case of a PLC optical waveguide including Si that is the core 12 and SiO 2 that is the cladding.
  • the material of the semiconductor substrate 11, the core 12 and the cladding constituting the optical waveguide 1 is not limited to Si or SiO 2 , and semiconductor materials such as SiN, SiON, GaAs, InP, dielectric materials LiO 3 Nb, or polymer materials It may be
  • m1 and m2 are arbitrary natural numbers.
  • the square of the width W is an integral multiple of the square of the height H, or the square of the height H is an integral multiple of the square of the width W.
  • FIGS. 5 to 8 a modification of the optical circuit 10 according to the first embodiment will be described with reference to FIGS. 5 to 8.
  • the combination of the first optical element and the second optical element is different from the example shown in FIG. 5 to 8 show the first optical element, the second optical element, and the core 12 of the optical waveguide 1 when the optical circuit 10 is viewed from the y direction, and the semiconductor substrate 11 is not shown.
  • the description of the components common to the components shown in FIG. 1 will be omitted as appropriate.
  • FIG. 5 is a diagram showing the configuration of the optical circuit 10 according to the first modification of the first embodiment.
  • the optical circuit 10 includes an optical fiber 5 which is a first optical element, a condenser lens 3 which is a second optical element, and an optical fiber 4.
  • the light 15 having passed through the optical fiber 5 is incident on the first end face 13.
  • the light 16 emitted from the second end face 14 passes through the condenser lens 3 and enters the optical fiber 4.
  • FIG. 6 is a diagram showing the configuration of the optical circuit 10 according to the second modification of the first embodiment.
  • the optical circuit 10 includes a light emitting element 2 which is a first optical element, and an optical fiber 4 which is a second optical element.
  • the configuration of the modification 2 is the same as the configuration shown in FIG. 1 except that the condenser lens 3 is omitted.
  • the optical fiber 4 and the second end face 14 are directly optically coupled.
  • FIG. 7 is a diagram showing the configuration of the optical circuit 10 according to the third modification of the first embodiment.
  • the optical circuit 10 includes an optical fiber 5 which is a first optical element, and a light receiving element 6 which is a second optical element.
  • the light receiving element 6 is an element for detecting light, and one example is a photodiode (PD).
  • PD photodiode
  • the light 15 having passed through the optical fiber 5 is incident on the first end face 13.
  • the light 16 emitted from the second end face 14 is incident on the light receiving element 6.
  • FIG. 8 is a diagram showing the configuration of the optical circuit 10 according to the fourth modification of the first embodiment.
  • the optical circuit 10 includes a light emitting element 2 which is a first optical element, and a light receiving element 6 which is a second optical element.
  • the light 16 emitted from the second end face 14 is incident on the light receiving element 6.
  • the condenser lens 3 may be provided between the second end face 14 and the light receiving element 6.
  • the first optical element includes one of the light emitting element 2 and the optical fiber 5.
  • the second optical element includes one of the optical fiber 4 and the light receiving element 6.
  • the second optical element may include a condenser lens 3 between the second end face 14 and the optical fiber 4.
  • the optical fibers 4 and 5 may propagate light by either single mode or multi mode.
  • the first optical element and the second optical element may include optical waveguides other than the optical fiber instead of the optical fibers 4 and 5.
  • loss of coupling efficiency can be reduced.
  • the optical waveguide 1 has an effect of being able to realize high coupling efficiency in the functional components including the optical waveguide 1.
  • the optical circuit 10 can realize high coupling efficiency by including the optical waveguide 1.
  • FIG. 9 is a view showing the configuration of a semiconductor laser 20 according to a second embodiment of the present invention.
  • the semiconductor laser 20 is an optical waveguide 1, an optical amplifier 21 which is a first optical element for causing light to be incident on the first end face 13, and a second optical element for receiving the light reaching the second end face 14. And a mirror 22.
  • the semiconductor laser 20 is a functional component provided with the optical waveguide 1. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
  • the optical amplifier 21 amplifies light in a certain wavelength range, and emits the amplified light 23 to the first end face 13.
  • the optical amplifier 21 receives the light 23 from the first end face 13 and uses the received light 23 for amplification.
  • the optical amplifier 21 amplifies light by current injection or light excitation.
  • the end face 25 of the optical amplifier 21 optically coupled to the first end face 13 is provided with an AR coating for reducing the reflection of the light 23 from the optical waveguide 1.
  • a structure for preventing reflection may be provided on the end face 25.
  • One example of a structure for preventing reflection is a structure including a surface inclined to the chief ray of light 23. In FIG. 9, illustration of the AR coating and the structure for preventing reflection is omitted.
  • the optical amplifier 21 includes a partially transmitting mirror provided at the end face 26 opposite to the end face 25.
  • the partially transmitting mirror transmits a part of the incident light and reflects the other light.
  • the optical amplifier 21 emits the light 24 transmitted through the partial transmission mirror from the end face 26.
  • illustration of the partially transmitting mirror provided on the end face 26 is omitted.
  • the mirror 22 is a layer of highly reflective material and is provided at the second end face 14.
  • the mirror 22 has a high reflectance for light in a wide wavelength range.
  • the material of the mirror 22 is gold, silver or aluminum which is a highly reflective metal material.
  • the mirror 22 is formed by vapor deposition of a metal material on the second end face 14.
  • the material of the mirror 22 may be a highly reflective material other than a metal material.
  • the mirror 22 may be formed by a method other than vapor deposition. Note that other examples of the mirror 22 will be described later.
  • the light 23 emitted from the end face 25 of the optical amplifier 21 enters the first end face 13.
  • the light propagating through the core 12 from the first end face 13 to the second end face 14 reaches the second end face 14 and is reflected by the mirror 22.
  • the light reflected by the mirror 22 propagates in the core 12 from the second end face 14 toward the first end face 13.
  • the light 23 emitted from the first end face 13 enters the end face 25 of the optical amplifier 21.
  • Part of the light propagated inside the optical amplifier 21 is reflected by the partially transmitting mirror.
  • the light reciprocating between the mirror 22 and the partial transmission mirror of the optical amplifier 21 is amplified inside the optical amplifier 21.
  • the semiconductor laser 20 emits the light 24 transmitted through the partial transmission mirror of the optical amplifier 21 among the amplified light.
  • the length L is set to satisfy the above equation (1). That is, the length L is an integer multiple of 2k 0 nW 2 / an integral multiple and 2k of ⁇ 0 nH 2 / ⁇ . Alternatively, the length L is set to be in the 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / an integral multiple of the length range from 1.02 times 0.98 times the ⁇ of ⁇ .
  • the optical waveguide 1 can reduce the loss of coupling efficiency, and can obtain high coupling efficiency.
  • the semiconductor laser 20 can reduce the loss of light to be reciprocated by reducing the influence of the surface roughness of the optical waveguide 1 on the light propagating through the optical waveguide 1, and the efficiency is high. Can emit light. Further, the semiconductor laser 20 can reduce the current supply to the optical amplifier 21 by reducing the gain required for laser oscillation. Thereby, the semiconductor laser 20 can reduce power consumption.
  • the shape and material of the optical waveguide 1 are arbitrary as in the case of the first embodiment. Also, as in the first embodiment, the square of the width W of the core 12 is an integral multiple of the square of the height H, or the square of the height H is an integral multiple of the square of the width W. Also good.
  • the mirror 22 By making the mirror 22 a layer of a highly reflective material, it is possible to form the mirror 22 having high reflectance for light in a wide wavelength range relatively easily and inexpensively.
  • the mirror 22 is not limited to being a layer of highly reflective material.
  • the mirror 22 may be a wavelength selection mirror that selectively reflects light in a specific wavelength range.
  • the mirror 22 absorbs or transmits light other than light of a specific wavelength range.
  • a reflective grating, a ring resonator, or a dichroic mirror is used.
  • FIG. 10 and FIG. 10 and 11 show the first optical element, the second optical element, and the core 12 of the optical waveguide 1 when the semiconductor laser 20 is viewed from the y direction, and the semiconductor substrate 11 is not shown. Do.
  • FIG. 10 is a view showing the configuration of a semiconductor laser 20 according to the first modification of the second embodiment.
  • the first optical element includes the optical fiber 5 provided between the optical amplifier 21 and the first end face 13.
  • the light 23 emitted from the end face 25 of the optical amplifier 21 enters the optical fiber 5.
  • the light 23 having passed through the optical fiber 5 is incident on the first end face 13.
  • the light 23 emitted from the first end face 13 passes through the optical fiber 5 and then enters the end face 25 of the optical amplifier 21.
  • the semiconductor laser 20 can install the optical amplifier 21 and the optical waveguide 1 at mutually separated positions. Thereby, the semiconductor laser 20 can improve the degree of freedom of the arrangement of the optical amplifier 21 and the optical waveguide 1.
  • FIG. 11 is a view showing the configuration of a semiconductor laser 20 according to the second modification of the second embodiment.
  • the second optical element includes a mirror 27 and a light receiving element 6.
  • the mirror 27 is a partially transmitting mirror that transmits part of the light reaching the second end face 14 and reflects the other light.
  • the light 28 transmitted through the mirror 27 is incident on the light receiving element 6.
  • the light receiving element 6 detects the light 28.
  • the semiconductor laser 20 can monitor the intensity of light reciprocating within the optical waveguide 1 and the optical amplifier 21 from the intensity of the light 28 detected by the light receiving element 6. Between the mirror 27 and the light receiving element 6, a wavelength filter that transmits light in a specific wavelength range may be provided. Thereby, the semiconductor laser 20 can monitor the oscillation wavelength.
  • the optical fiber 5 may be provided as in the first modification.
  • the semiconductor laser 20 a core length of 12, 2k 0 nW 2 / an integral multiple and 2k 0 nH 2/1 from 0.98 times the length of an integer multiple of [pi of [pi.
  • the loss of coupling efficiency can be reduced.
  • the semiconductor laser 20 has an effect that high coupling efficiency can be realized.
  • FIG. 12 is a diagram showing the configuration of an optical multiplexer / demultiplexer 30 which is an optical circuit according to the third embodiment of the present invention.
  • the optical multiplexer / demultiplexer 30 comprises a plurality of first optical waveguides 31 for propagating a plurality of optical signals in different wavelength regions, a second optical waveguide 32 for propagating a multiple wavelength signal, and a multiple wavelength signal from a plurality of optical signals.
  • an optical multiplexing / demultiplexing unit 33 for demultiplexing the multiplexed or multiplexed wavelength signal into a plurality of optical signals.
  • the optical multiplexer / demultiplexer 30 is a functional component that includes the first optical waveguide 31, the second optical waveguide 32, and the optical multiplexer / demultiplexer 33.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
  • the optical multiplexer / demultiplexer 30 includes a plurality of light emitting elements 2 as a first optical element optically coupled to the first end face 13 of the plurality of first optical waveguides 31 and a second optical waveguide 32.
  • a condenser lens 3 and an optical fiber 4 which are second optical elements optically coupled to the end face 14 of the second lens 2 are provided.
  • the plurality of first optical waveguides 31 and the plurality of second optical waveguides 32 are multimode optical waveguides for propagating light of a plurality of waveguide modes.
  • the optical multiplexing / demultiplexing unit 33 is formed in the slab optical waveguide 35 connected between the plurality of first optical waveguides 31 and the second optical waveguide 32 and the slab optical waveguide 35, and diffracts the plurality of optical signals by diffraction. And a reflection type grating 34 for reflecting and emitting a multiple wavelength signal or reflecting a multiple wavelength signal by diffraction and emitting a plurality of optical signals.
  • the slab optical waveguide 35 is a multimode optical waveguide that propagates light of a plurality of guided modes.
  • the slab optical waveguide 35 includes a flat core 12 sandwiched between an upper clad layer and a lower clad layer which are clads.
  • the second end faces 14 of the plurality of first optical waveguides 31 are connected to the slab optical waveguide 35.
  • the first end face 13 of the second optical waveguide 32 is connected to the slab optical waveguide 35.
  • the plurality of first optical waveguides 31, the second optical waveguide 32, the light coupling / splitting unit 33, and the plurality of light emitting elements 2 are provided on the semiconductor substrate 11.
  • the first optical waveguide 31, the second optical waveguide 32, and the slab optical waveguide 35 include a core 12 and a cladding through which light of a plurality of waveguide modes propagate.
  • the optical multiplexer / demultiplexer 30 is configured as a PLC made of Si and SiO 2 .
  • the optical multiplexer / demultiplexer 30 can function as any of an optical multiplexer that multiplexes a plurality of optical signals in different wavelength bands and an optical demultiplexer that divides the multiplexed optical signal according to the difference in wavelength bands. It is a circuit.
  • the optical multiplexer / demultiplexer 30 is an optical multiplexer is taken as an example.
  • the input and output of the optical signal in the optical demultiplexer are opposite to the input and output of the optical signal in the optical multiplexer.
  • the optical multiplexer / demultiplexer 30 When the optical multiplexer / demultiplexer 30 is an optical multiplexer, light incident on the slab optical waveguide 35 from the plurality of first optical waveguides 31 propagates through the plurality of propagation paths 36 in the slab optical waveguide 35. The light propagating through the plurality of propagation paths 36 is reflected by the reflective grating 34 and is incident on the first end face 13 of the second optical waveguide 32.
  • the optical multiplexer / demultiplexer 30 is an optical demultiplexer
  • light incident on the slab optical waveguide 35 from the second optical waveguide 32 is reflected by the reflective grating 34 and propagates through a plurality of propagation paths 36 .
  • the light propagated through the plurality of propagation paths 36 is incident on the second end face 14 of the plurality of first optical waveguides 31.
  • the light emitting element 2 includes four light emitting elements 2A, 2B, 2C, and 2D that emit light signals having different wavelength ranges.
  • the first optical waveguide 31 includes four first optical waveguides 31A, 31B, 31C, and 31D into which optical signals from the four light emitting elements 2A, 2B, 2C, and 2D enter for each wavelength range.
  • the plurality of propagation paths 36 include four propagation paths 36A, 36B, 36C, and 36D.
  • the number of first optical waveguides 31 and the number of light emitting elements 2 are not limited to four, and may be two, three, or five or more.
  • FIG. 13 is an enlarged view of a part of the reflective grating 34 shown in FIG.
  • the reflective grating 34 is a sawtooth-shaped diffraction grating structure formed on the side surface of the slab optical waveguide 35.
  • the reflective grating 34 reflects the plurality of optical signals from the plurality of propagation paths 36, and The light is collected on the end face 13 of FIG.
  • the optical multiplexing / demultiplexing unit 33 multiplexes a plurality of optical signals.
  • the reflective grating 34 reflects the multi-wavelength signal and distributes the plurality of optical signals to the plurality of propagation paths 36.
  • the optical multiplexing / demultiplexing unit 33 divides the multiple wavelength signal into a plurality of optical signals.
  • the length L1 of the first optical waveguides 31A, 31B, 31C, 31D satisfies the following equation (9).
  • W is a parameter indicating the width of the core 12 of the first optical waveguides 31A, 31B, 31C, 31D.
  • n is a parameter indicating the refractive index of the core 12.
  • k 0 is a parameter indicating the number of waves of light propagating through the core 12.
  • M 1 is an arbitrary natural number.
  • the length L2 of the second optical waveguide 32 satisfies the following equation (10).
  • W is a parameter indicating the width of the core 12 of the second optical waveguide 32.
  • n is a parameter indicating the refractive index of the core 12.
  • k ave is an average of wave numbers k 0 in vacuum of light emitted from the light emitting elements 2A, 2B, 2C, 2D.
  • M 2 is an arbitrary natural number.
  • the width W is an effective width including the range in which the evanescent component of the light propagating through the core 12 occurs.
  • the width W is an average value of virtual widths including the range in which evanescent components of light of a plurality of guided modes occur.
  • the propagation path lengths L 1 + L slab + L 2 of the plurality of optical signals in the first optical waveguides 31A, 31 B, 31 C, 31 D, the optical multiplexing / demultiplexing unit 33 and the second optical waveguide 32 The expression (11) of The length L 1 + L slab + L 2, the first optical waveguide 31A, 31B, 31C, and the length L 1 of the 31D, propagation path 36A, 36B, 36C, and the length L slab of 36D, a second optical waveguide 32 is the sum of the length L 2.
  • H is a parameter indicating the height of the core 12 in the first optical waveguides 31A, 31B, 31C, 31D, the second optical waveguide 32, and the slab optical waveguide 35.
  • n is a parameter indicating the refractive index of the core 12.
  • k 0 is a parameter indicating the number of waves of light propagating through the core 12.
  • M 3 is an arbitrary natural number.
  • the height H is an effective height including the range in which the evanescent component of the light propagating through the core 12 occurs.
  • the height H is an average value of virtual widths including the range in which evanescent components of light of a plurality of guided modes occur.
  • the length L 1 is set to an integral multiple of 2k 0 nW 2 / ⁇ . Further, as in the first embodiment, since there is no practical problem even if an error of ⁇ 2% is allowed, the length L 1 is 0.98 times the integral multiple of 2k 0 nW 2 / ⁇ . It may be set to be included in the range of 1.02 times.
  • the length L 2 is set to an integral multiple of 2 k ave n W 2 / ⁇ . Further, as in the first embodiment, since there is no practical problem even if an error of ⁇ 2% is allowed, the length L 2 is 2 k ave n W 2 / ⁇ as in the first embodiment. It may be set to fall within the range of 0.98 times to 1.02 times the integral multiple.
  • the length L 1 + L slab + L 2 is set to an integral multiple of 2k 0 nH 2 / ⁇ . Further, as in the first embodiment, there is no practical problem even if an error of ⁇ 2% is allowed, so that the length L 1 + L slab + L 2 is 2 k 0 nH as in the first embodiment. It may be set to be included in the range of 0.98 times to 1.02 times the length of integer multiple of 2 / ⁇ . As a result, the loss of coupling efficiency of the first optical waveguides 31A, 31B, 31C, 31D, the second optical waveguide 32, and the slab optical waveguide 35 can be reduced, and high coupling efficiency can be obtained. .
  • the width and height of the core 12 of the plurality of first optical waveguides 31 and the second optical waveguide 32 are expanded as compared to a single mode optical waveguide.
  • the height of the core 12 is expanded compared to a single mode slab optical waveguide.
  • the expanded width and height or height of the core 12 reduces the evanescent component. Since the surface roughness of the plurality of first optical waveguides 31, the second optical waveguide 32, and the slab optical waveguide 35 has less influence on the propagating light, the optical multiplexer / demultiplexer 30 The loss of wave or demultiplexed light can be reduced.
  • the second optical waveguide 32 When the length L 2 satisfies the equation (10), the second optical waveguide 32, like the first optical waveguide 31, distributes the light at the first end face 13 at the second end face 14. to recreate.
  • the wave number k ave of the core 12 of the second optical waveguide 32 is an average of the wave numbers k 0 of a plurality of optical signals, whereby the second optical waveguide 32 can be obtained after multiplexing. For light, the distribution of light can be reproduced.
  • the optical multiplexer / demultiplexer 30 has a distribution of light generated due to the positional deviation between the respective first optical waveguides 31 and the respective light emitting elements 2 in the direction parallel to the surface 17 and in the direction perpendicular to the surface 17.
  • the eccentricity of the second optical waveguide 32 can be reproduced at the second end face 14 of the second optical waveguide 32.
  • the optical multiplexer / demultiplexer 30 can correct eccentricity by active alignment between the condenser lens 3 and the optical fiber 4. Thereby, the optical multiplexer / demultiplexer 30 can reduce the loss of coupling efficiency.
  • the optical multiplexer / demultiplexer 30 has a distribution of light having unimodality at the first end face 13 of the first optical waveguide 31 at the second end face 14 of the second optical waveguide 32. Reproduce eccentricity.
  • the second end face 14 of the second optical waveguide 32 is condensed by the condensing lens 3 and the light is made incident on the optical fiber 4, if the unimodal property can be secured, the second The coupling efficiency is about -3 dB even if the deviation of the light emission position at the end face 14 is about 10 ⁇ m.
  • the optical multiplexer / demultiplexer 30 has the effect of reducing the loss of coupling efficiency, as in the case where the amount of deviation allowed for the incident position of light at the first end face 13 of the first optical waveguide 31 is 10 ⁇ m. You can get
  • the plurality of first optical waveguides 31 and the second optical waveguides 32 may include a curve or a bend between the first end surface 13 and the second end surface 14.
  • the plurality of first optical waveguides 31 and the second optical waveguide 32 can reduce the loss of the coupling efficiency not only in the case of the linear shape but also in the case of the shape including the bending or bending, thereby achieving high coupling efficiency. You can get it.
  • the shape of the slab optical waveguide 35 may be a shape other than the shape shown in FIG.
  • the width W and height H of the core 12, the refractive index of the core 12, and the refractive index of the cladding can be arbitrarily set as long as the lengths L 1 , L slab and L 2 can be set to
  • the plurality of first optical waveguides 31, the second optical waveguide 32, and the slab optical waveguide 35 are limited to the optical waveguides of PLC including Si as the core 12 and SiO 2 as the cladding. Absent.
  • semiconductor materials such as SiN, SiON, GaAs, InP, dielectric materials LiO 3 Nb, and polymers are used. Any of the materials may be used.
  • the plurality of light emitting elements 2 are not limited to those individually formed on the semiconductor substrate 11, but may be integrated on one substrate. When a plurality of light emitting elements 2 are integrated, the same amount of positional deviation with the first optical waveguide 31 occurs in all of the plurality of light emitting elements 2. It becomes possible to make the eccentricity amount in the 2nd end face 14 of 2nd optical waveguide 32 equal.
  • the optical multiplexer / demultiplexer 30 may include the optical fiber 5 which is the first optical element, and the condenser lens 3 may be omitted.
  • the optical multiplexer / demultiplexer 30 may include the light receiving element 6 which is a second optical element.
  • the first optical element includes one of the light emitting element 2 and the optical fiber 5.
  • the second optical element includes one of the optical fiber 4 and the light receiving element 6.
  • the optical fibers 4 and 5 may propagate light by either single mode or multi mode.
  • the first optical element and the second optical element may include optical waveguides other than the optical fiber instead of the optical fibers 4 and 5.
  • the optical multiplexer / demultiplexer 30 has a plurality of first optical waveguides of a length included in 0.98 times to 1.02 times the length which is an integral multiple of 2k 0 nW 2 / ⁇ . 31 and a second optical waveguide 32.
  • the lengths of the propagation paths of the plurality of optical signals in the plurality of first optical waveguides 31, the second optical waveguide 32, and the optical multiplexing / demultiplexing unit 33 are integer multiples of 2k 0 nH 2 / ⁇ . It is included in the range of 0.98 times to 1.02 times the length.
  • the optical multiplexer / demultiplexer 30 has a coupling efficiency of It is possible to reduce the loss. As a result, the optical multiplexer / demultiplexer 30 has an effect that high coupling efficiency can be realized.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Abstract

An optical waveguide (1) includes a core (12) through which light in a plurality of waveguide modes propagates between a first end face (13) and a second end face (14). When the width of the core in a second direction perpendicular to a first direction from the first end face toward the second end face is denoted by W, the height of the core in a third direction perpendicular to the first direction and the second direction is denoted by H, the refractive index of the core is denoted by n, and the wave number of the light propagating through the core is k0, the length of the core in the first direction falls within the range of 0.98-1.02 times the length of an integral multiple of 2k0nW2/π and an integral multiple of 2k0nH2/π.

Description

光導波路、光回路および半導体レーザOptical waveguide, optical circuit and semiconductor laser
 本発明は、マルチモードで光を伝搬させる光導波路、光回路および半導体レーザに関する。 The present invention relates to an optical waveguide, an optical circuit, and a semiconductor laser for propagating light in a multimode.
 光通信デバイスにおいて、半導体基板に機能部品を集積させる技術が知られている。光導波路を備える機能部品は、光導波路と、光導波路へ光を入射させる光学素子と、光導波路から出射された光を受ける光学素子との間の光結合による光強度の低下、すなわち結合効率の低下を少なくできることが望まれている。光通信デバイスの小型化あるいは集積化が推進されるほど、光導波路と光学素子とのわずかな位置ずれによる結合効率の損失が顕著となる。 In optical communication devices, techniques for integrating functional components on a semiconductor substrate are known. The functional component including the optical waveguide includes a reduction in light intensity, that is, a coupling efficiency due to optical coupling between the optical waveguide, the optical element that causes light to enter the optical waveguide, and the optical element that receives the light emitted from the optical waveguide. It is desirable that the decrease can be reduced. As the miniaturization or integration of the optical communication device is promoted, the loss of coupling efficiency due to a slight positional deviation between the optical waveguide and the optical element becomes remarkable.
 特許文献1には、マルチモードで光を伝搬させる光導波路を備える機能部品である光合分波器について、半導体基板の面に平行な方向における光導波路と光学素子との位置ずれの許容度を緩和させるための技術が提案されている。半導体基板の面に平行な方向における光導波路のコアの幅は、マルチモードで光を伝搬可能に拡大されている。光導波路への入射時における各導波モードの強度パターンが光導波路からの出射時に再現されるように、光導波路の長さが設定されている。光導波路の入射端面における光の分布に偏芯が生じた場合に、偏芯を含む分布が光導波路の出射端面にて再現される。光導波路から出射された光を受ける光学素子にて偏芯を補正することで、光合分波器は、結合効率の損失を低減できる。 In Patent Document 1, the optical multiplexer / demultiplexer, which is a functional component including an optical waveguide for propagating light in a multimode mode, relieves the tolerance of the positional deviation between the optical waveguide and the optical element in the direction parallel to the surface of the semiconductor substrate. The technology to make it happen is proposed. The width of the core of the optical waveguide in the direction parallel to the plane of the semiconductor substrate is expanded to allow light to propagate in multimode. The length of the optical waveguide is set such that the intensity pattern of each waveguide mode at the time of incidence to the optical waveguide is reproduced at the time of emission from the optical waveguide. When eccentricity occurs in the distribution of light at the incident end face of the optical waveguide, the distribution including the eccentricity is reproduced at the output end face of the optical waveguide. The optical multiplexer / demultiplexer can reduce the loss of coupling efficiency by correcting the eccentricity with the optical element that receives the light emitted from the optical waveguide.
特開2012-242654号公報JP, 2012-242654, A
 特許文献1の技術において、半導体基板の面に垂直な方向における光導波路のコアの高さは、シングルモードで光を伝搬させるように設定されている。半導体基板の面に垂直な方向については、光導波路と光学素子とに許容される位置ずれがきわめて小さいことから、機能部品は、高い結合効率を得ることが困難となる。 In the technology of Patent Document 1, the height of the core of the optical waveguide in the direction perpendicular to the surface of the semiconductor substrate is set to propagate light in a single mode. In the direction perpendicular to the surface of the semiconductor substrate, it is difficult for the functional component to obtain high coupling efficiency because the positional deviation allowed between the optical waveguide and the optical element is extremely small.
 本発明は、上記に鑑みてなされたものであって、光導波路を含む機能部品での高い結合効率を実現可能とする光導波路を得ることを目的とする。 The present invention is made in view of the above, and an object of the present invention is to obtain an optical waveguide that can realize high coupling efficiency in a functional component including the optical waveguide.
 上述した課題を解決し、目的を達成するために、本発明にかかる光導波路は、第1の端面と第2の端面とを備え、第1の端面と第2の端面との間にて複数の導波モードの光が伝搬するコアを含む。第1の端面から第2の端面へ向かう方向である第1の方向に垂直な第2の方向におけるコアの幅をW、第1の方向と第2の方向とに垂直な第3の方向におけるコアの高さをH、コアの屈折率をn、コアを伝搬する光の波数をkとして、第1の方向におけるコアの長さは、2knW/πの整数倍かつ2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれる。 In order to solve the problems described above and to achieve the object, an optical waveguide according to the present invention comprises a first end face and a second end face, and a plurality of optical waveguides are provided between the first end face and the second end face. The core in which the light of the guided mode propagates. The width of the core in a second direction perpendicular to the first direction, which is a direction from the first end face to the second end face, is W, and in a third direction perpendicular to the first direction and the second direction Assuming that the height of the core is H, the refractive index of the core is n, and the wave number of light propagating through the core is k 0 , the length of the core in the first direction is an integral multiple of 2k 0 nW 2 / π and 2k 0 nH It is included in the range of 0.98 times to 1.02 times the length which is an integral multiple of 2 / π.
 本発明にかかる光導波路は、光導波路を含む機能部品での高い結合効率を実現できるという効果を奏する。 The optical waveguide according to the present invention has an effect that high coupling efficiency can be realized in a functional component including the optical waveguide.
本発明の実施の形態1にかかる光回路の構成を示す図The figure which shows the structure of the optical circuit concerning Embodiment 1 of this invention. 実施の形態1にかかる光導波路についての伝搬シミュレーションによる光の電界分布の例を示す図FIG. 6 is a diagram showing an example of electric field distribution of light by propagation simulation for the optical waveguide according to the first embodiment. 実施の形態1における光導波路を伝搬する光の電界と入射光の電界との重なり積分の伝搬距離依存性を示す図The figure which shows the propagation distance dependence of the overlap integral of the electric field of the light which propagates the optical waveguide in Embodiment 1, and the electric field of incident light. 図2に示す伝搬シミュレーションにて計算された各次数の導波モードの光のコアにおける有効屈折率と、有効屈折率から算出された伝搬定数との例を示す図The figure which shows the example of the effective refractive index in the core of the light of the waveguide mode of each order calculated by the propagation simulation shown in FIG. 2, and the propagation constant calculated from the effective refractive index 実施の形態1の変形例1にかかる光回路の構成を示す図The figure which shows the structure of the optical circuit concerning the modification 1 of Embodiment 1. 実施の形態1の変形例2にかかる光回路の構成を示す図The figure which shows the structure of the optical circuit concerning the modification 2 of Embodiment 1 実施の形態1の変形例3にかかる光回路の構成を示す図The figure which shows the structure of the optical circuit concerning the modification 3 of Embodiment 1 実施の形態1の変形例4にかかる光回路の構成を示す図The figure which shows the structure of the optical circuit concerning the modification 4 of Embodiment 1 本発明の実施の形態2にかかる半導体レーザの構成を示す図The figure which shows the structure of the semiconductor laser concerning Embodiment 2 of this invention. 実施の形態2の変形例1にかかる半導体レーザの構成を示す図FIG. 6 shows a configuration of a semiconductor laser according to a first modification of the second embodiment. 実施の形態2の変形例2にかかる半導体レーザの構成を示す図FIG. 16 shows a configuration of a semiconductor laser according to a second modification of the second embodiment. 本発明の実施の形態3にかかる光回路である光合分波器の構成を示す図A diagram showing a configuration of an optical multiplexer / demultiplexer as an optical circuit according to a third embodiment of the present invention 図12に示す反射型グレーティングの一部を拡大した図The figure which expanded a part of reflection type grating shown in FIG. 12
 以下に、本発明の実施の形態にかかる光導波路、光回路および半導体レーザを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an optical waveguide, an optical circuit, and a semiconductor laser according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる光回路10の構成を示す図である。光回路10は、光導波路1と、光導波路1へ光を入射させる第1の光学素子である発光素子2と、光導波路1から出射された光を受ける第2の光学素子である集光レンズ3と光ファイバ4とを備える。光回路10は、光導波路1を備える機能部品である。
Embodiment 1
FIG. 1 is a diagram showing the configuration of an optical circuit 10 according to a first embodiment of the present invention. The optical circuit 10 includes an optical waveguide 1, a light emitting element 2 which is a first optical element for causing light to be incident on the optical waveguide 1, and a condensing lens which is a second optical element for receiving light emitted from the optical waveguide 1. 3 and an optical fiber 4. The optical circuit 10 is a functional component that includes the optical waveguide 1.
 光導波路1は、複数の導波モードの光を伝搬させるマルチモードの光導波路である。光導波路1は、半導体基板11と、光が伝搬する柱状のコア12と、コア12の周囲に形成されたクラッドとを含む。図1では、クラッドの図示を省略する。1つの例では、コア12の材料には、Siが使用されている。クラッドの材料には、コア12より屈折率が低い材料であるSiOが使用されている。コア12へ入射された光は、コア12とクラッドとの界面での全反射を繰り返すことにより、コア12内を伝搬する。 The optical waveguide 1 is a multimode optical waveguide that propagates light of a plurality of guided modes. The optical waveguide 1 includes a semiconductor substrate 11, a columnar core 12 through which light propagates, and a cladding formed around the core 12. In FIG. 1, illustration of the clad is omitted. In one example, Si is used as the material of the core 12. As a material of the cladding, SiO 2 which is a material having a refractive index lower than that of the core 12 is used. The light incident on the core 12 propagates in the core 12 by repeating total reflection at the interface between the core 12 and the cladding.
 1つの例では、光導波路1において、クラッドである半導体基板11の面上にコア12が配置されている。この他、光導波路1は、クラッドである下部クラッド層と上部クラッド層とを備えるものであっても良い。下部クラッド層は、半導体基板11とコア12との間に設けられる。上部クラッド層は、下部クラッド層の上にてコア12を覆う。光導波路1は、平板状のコア12を備え、下部クラッド層と上部クラッド層とでコア12を挟み込んだものとしても良い。図1では、下部クラッド層と上部クラッド層との図示を省略する。 In one example, in the optical waveguide 1, the core 12 is disposed on the surface of the semiconductor substrate 11 which is a clad. In addition to this, the optical waveguide 1 may be provided with a lower cladding layer which is a cladding and an upper cladding layer. The lower cladding layer is provided between the semiconductor substrate 11 and the core 12. The upper cladding layer covers the core 12 on the lower cladding layer. The optical waveguide 1 may have a flat core 12, and the core 12 may be sandwiched between the lower cladding layer and the upper cladding layer. In FIG. 1, the lower cladding layer and the upper cladding layer are not shown.
 コア12は、光導波路1における光の伝搬経路の両端である第1の端面13と第2の端面14とを備える。コア12では、第1の端面13と第2の端面14との間にて複数の導波モードの光が伝搬する。第1の端面13と第2の端面14とには、反射防止膜であるAR(Anti-Reflection)コーティングが施されている。図1では、ARコーティングの図示を省略する。 The core 12 has a first end face 13 and a second end face 14 which are both ends of a light propagation path in the optical waveguide 1. In the core 12, light of a plurality of guided modes propagates between the first end face 13 and the second end face 14. An AR (Anti-Reflection) coating, which is an anti-reflection film, is applied to the first end face 13 and the second end face 14. In FIG. 1, the illustration of the AR coating is omitted.
 発光素子2は、半導体レーザである。発光素子2は、第1の端面13へ光15を入射させる。集光レンズ3は、第2の端面14からの光16を光ファイバ4へ収束させる。光ファイバ4は、集光レンズ3から入射した光16を伝搬させる。光ファイバ4は、シングルモードの光ファイバである。なお、光導波路1の半導体基板11、コア12およびクラッドの材料と形状とは、実施の形態1にて述べるものに限られず、任意であるものとする。光導波路1と、発光素子2と、集光レンズ3と、光ファイバ4との位置関係は、図1に示すものに限られず、任意であるものとする。 The light emitting element 2 is a semiconductor laser. The light emitting element 2 causes the light 15 to be incident on the first end face 13. The condenser lens 3 converges the light 16 from the second end face 14 into the optical fiber 4. The optical fiber 4 propagates the light 16 incident from the condenser lens 3. The optical fiber 4 is a single mode optical fiber. The materials and shapes of the semiconductor substrate 11, the core 12, and the cladding of the optical waveguide 1 are not limited to those described in the first embodiment, and are arbitrary. The positional relationship among the optical waveguide 1, the light emitting element 2, the condensing lens 3, and the optical fiber 4 is not limited to that shown in FIG. 1 and is arbitrary.
 図1において、第1の端面13から第2の端面14へ向かう方向を、第1の方向であるz方向とする。z方向は、半導体基板11のうちコア12が設けられている側の面17に平行である。また、z方向に垂直、かつ面17に平行な方向であって図中矢印で示す方向を、第2の方向であるx方向とする。z方向とx方向とに垂直な方向であって図中矢印で示す方向を、第3の方向であるy方向とする。y方向は、面17に垂直な方向である。 In FIG. 1, the direction from the first end face 13 to the second end face 14 is a z direction which is a first direction. The z direction is parallel to the surface 17 of the semiconductor substrate 11 on which the core 12 is provided. Further, a direction perpendicular to the z direction and parallel to the surface 17 and indicated by an arrow in the drawing is taken as an x direction which is a second direction. A direction perpendicular to the z direction and the x direction and indicated by an arrow in the drawing is a y direction which is a third direction. The y direction is the direction perpendicular to the surface 17.
 x方向におけるコア12の幅は、単一の導波モードの光を伝搬させるシングルモードの光導波路の場合に比べて拡張されており、面17に平行な方向において複数の導波モードの光を伝搬可能とされている。また、y方向におけるコア12の高さは、シングルモードの光導波路の場合に比べて拡張されており、面17に垂直な方向において複数の導波モードの光を伝搬可能とされている。 The width of the core 12 in the x direction is expanded compared to the case of a single mode optical waveguide that propagates light of a single guided mode, and light of a plurality of guided modes in the direction parallel to the plane 17 It is possible to propagate. Further, the height of the core 12 in the y direction is expanded as compared with the case of a single mode optical waveguide, and light of a plurality of waveguide modes can be propagated in the direction perpendicular to the surface 17.
 実施の形態1において、z方向におけるコア12の長さLは、次の式(1)を満足する。 In the first embodiment, the length L of the core 12 in the z direction satisfies the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、nは、コア12の屈折率を示すパラメータである。kは、コア12を伝搬する光の波数を示すパラメータである。実施の形態1では、kは、発光素子2から出射された光の真空中における波数である。真空中の波長をλとすると、k=2π/λが成り立つ。Nは、任意の自然数とする。 In Equation (1), n is a parameter indicating the refractive index of the core 12. k 0 is a parameter indicating the number of waves of light propagating through the core 12. In the first embodiment, k 0 is the wave number in vacuum of the light emitted from the light emitting element 2. Assuming that the wavelength in vacuum is λ 0 , k 0 = 2π / λ 0 holds. N is an arbitrary natural number.
 f(W,H)は、xとyとを変数とするある関数f(x,y)に、x=Wおよびy=Hが代入されたものとする。関数f(x,y)は、S,Tを任意の自然数として、Sx=Tyを満足するときのSxとTyとの最小値を表す。xとyとが整数である場合、関数f(x,y)の値はxとyとの最小公倍数となる。また、例を挙げると、x=0.5およびy=0,2である場合、S=2およびT=5であるときにSxとTyとは最小となり、f(0.5,0.2)=1.0となる。x=1.2かつy=1.8である場合、S=3およびT=2であるときにSxとTyとは最小となり、f(1.2,1.8)=3.6となる。 In f (W 2 , H 2 ), it is assumed that x = W 2 and y = H 2 are substituted for a certain function f (x, y) having x and y as variables. The function f (x, y) represents the minimum value of Sx and Ty when Sx = Ty is satisfied, where S and T are arbitrary natural numbers. When x and y are integers, the value of the function f (x, y) is the least common multiple of x and y. Also, to give an example, when x = 0.5 and y = 0,2, when S = 2 and T = 5, Sx and Ty become minimum, and f (0.5, 0.2 ) = 1.0. When x = 1.2 and y = 1.8, Sx and Ty are minimum when S = 3 and T = 2, and f (1.2,1.8) = 3.6 .
 また、式(1)において、Wは、x方向におけるコア12の幅を示すパラメータである。Hは、y方向におけるコア12の高さを示すパラメータである。幅Wは、コア12を伝搬する光のエバネッセント成分が生じる範囲を含めた実効幅である。幅Wは、x方向において複数の導波モードの光のエバネッセント成分が生じる範囲を含めた仮想的な幅の平均値とする。高さHは、コア12を伝搬する光のエバネッセント成分が生じる範囲を含めた実効高さである。高さHは、y方向において複数の導波モードの光のエバネッセント成分が生じる範囲を含めた仮想的な幅の平均値とする。 Moreover, in Formula (1), W is a parameter which shows the width | variety of the core 12 in ax direction. H is a parameter indicating the height of the core 12 in the y direction. The width W is an effective width including a range in which an evanescent component of light propagating through the core 12 occurs. The width W is an average value of virtual widths including a range in which evanescent components of light of a plurality of guided modes occur in the x direction. The height H is an effective height including the range in which the evanescent component of the light propagating through the core 12 occurs. The height H is an average value of virtual widths including a range in which evanescent components of light of a plurality of guided modes occur in the y direction.
 式(1)は、長さLが、2knW/πの整数倍かつ2knH/πの整数倍の長さであることを表している。光回路10は、式(1)を満足することにより、光導波路1と発光素子2との位置ずれによる結合効率の低下を低減可能とする。 Equation (1) has a length L is, indicating that a 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / an integral multiple length of [pi of [pi. By satisfying the formula (1), the optical circuit 10 can reduce the decrease in coupling efficiency due to the positional deviation between the optical waveguide 1 and the light emitting element 2.
 次に、光導波路1により結合効率の低下を低減可能となる原理を説明する。発光素子2からの光が光導波路1の第1の端面13へ入射すると、次の式(2)に示すように、光の電磁界分布φ(x,y,z)は、次数ごとの導波モードへ基底展開される。 Next, the principle by which the decrease in coupling efficiency can be reduced by the optical waveguide 1 will be described. When light from the light emitting element 2 is incident on the first end face 13 of the optical waveguide 1, the electromagnetic field distribution φ (x, y, z) of the light is conducted for each order as shown in the following equation (2) Base expanded to wave mode.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、φ(x,y)は、次数iの導波モードの電磁界分布を表す。βは、次数iの導波モードのz方向の伝搬係数である。aは、次数iの導波モードの振幅係数である。θは、次数iの導波モードの初期位相を示すパラメータである。jは、虚数単位を表す。 In equation (2), φ i (x, y) represents the electromagnetic field distribution of the guided mode of order i. β i is the propagation coefficient in the z direction of the guided mode of order i. a i is an amplitude coefficient of the guided mode of the order i. θ i is a parameter indicating the initial phase of the guided mode of order i. j represents an imaginary unit.
 z方向の伝搬係数βと、x方向における波数kとの関係は、次の式(3)に示すように表される。 The relationship between the propagation coefficient β in the z direction and the wave number k x in the x direction is expressed as shown in the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 エバネッセント成分が生じる範囲を含めた実効幅を示す幅Wを用いると、次数iの導波モードにおいて、波数kはπ(i+1)/Wとなる。次数iの導波モードにおけるz方向の伝搬係数βとは、次の式(4-1)に示すように表される。式(4-2)は、テイラー展開を用いて式(4-1)を変形したものである。式(4-2)では、高次の項を省略する。 When a width W indicating an effective width including a range in which an evanescent component occurs is used, the wave number k x is π (i + 1) / W in the guided mode of the order i. The propagation coefficient β in the z direction in the guided mode of order i is expressed as shown in the following equation (4-1). Equation (4-2) is a variation of equation (4-1) using Taylor expansion. In the equation (4-2), higher order terms are omitted.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 第1の端面13から長さLを伝搬した光の電磁界分布φ(x,y,L)は、上記の式(2)へ式(4-2)を代入して、次の式(5)に示すように表される。電磁界分布φ(x,y,L)は、長さLだけ光導波路1を伝搬したときの光の電磁界分布を表す。 The electromagnetic field distribution φ (x, y, L) of the light having propagated the length L from the first end face 13 is obtained by substituting the equation (4-2) into the equation (2) above, and the following equation (5) It is expressed as shown in). The electromagnetic field distribution φ (x, y, L) represents the electromagnetic field distribution of light when propagating through the optical waveguide 1 by the length L.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)において、各導波モードの全ての位相差が2πの整数倍である場合、全ての導波モードの光の位相関係が、第1の端面13への入射時と同じとなる。入射光と同じ光の分布が光導波路1の中に出現する。そのときの長さLの条件は、次の式(6)に示すように表される。 In Formula (5), when all the phase differences of each waveguide mode are integral multiples of 2 (pi), the phase relationship of the light of all the waveguide modes becomes the same as the time of incidence to the 1st end face 13. FIG. The same light distribution as the incident light appears in the optical waveguide 1. The condition of the length L at that time is expressed as shown in the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)において、i,jは0以上の整数、Mは任意の整数である。式(6)は、入射光と同一のパターンの分布が出現する条件である。光導波路1には、入射光と対称なパターンの分布が出現しても良い。各導波モードの光の位相差が2π×Mではなくても良く、iが偶数であるときの導波モードである奇関数モードと、iが奇数であるときの導波モードである偶関数モード同士の位相差が全て2π×Mとなれば良い。したがって、奇関数モードと偶関数モードとの位相差が全て2π×M+πとなるように、長さLが定められれば良い。長さLは、次の式(7)に示すように表される。 In Formula (6), i and j are integers greater than or equal to 0, and M is an arbitrary integer. Expression (6) is a condition under which the distribution of the same pattern as the incident light appears. In the optical waveguide 1, a distribution of a pattern symmetrical to the incident light may appear. The phase difference of the light of each guided mode need not be 2π × M, and the odd function mode which is a guided mode when i is an even number and the even function which is a guided mode when i is an odd number All the phase differences between the modes should be 2π × M. Therefore, the length L may be determined so that all phase differences between the odd function mode and the even function mode are 2π × M + π. The length L is expressed as shown in the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 光導波路1の長さLが式(7)を満たすとき、第2の端面14では、第1の端面13のx方向における光の分布が再現される。波動方程式は、変数分離が可能であるため、y方向についてもx方向と同様に考えることができる。エバネッセント成分が生じる範囲を含めた実効高さである高さHを用いると、長さLは、次の式(8)に示すように表される。 When the length L of the optical waveguide 1 satisfies the equation (7), the distribution of light in the x direction of the first end face 13 is reproduced at the second end face 14. The wave equation can be considered in the y-direction as well as in the x-direction, since variable separation is possible. Using the height H which is the effective height including the range in which the evanescent component occurs, the length L is expressed as shown in the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 光導波路1の長さLが、式(7)に示される値の整数倍である場合も、第2の端面14では、第1の端面13のx方向における光の分布と同一あるいは対称なパターンが再現される。光導波路1の長さLが、式(8)に示される値の整数倍である場合も、第2の端面14では、第1の端面13のy方向における光の分布と同一あるいは対称なパターンが再現される。したがって、式(7)に示される値の整数倍、かつ式(8)に示される値の整数倍となるように長さLが定められる場合、すなわち長さLが式(1)を満足する場合に、光導波路1は、x方向とy方向とにおける光の分布と同一あるいは対称なパターンを再現できる。なお、式(1)は、長さLが、2knW/πの整数倍かつ2knH/πの整数倍である長さであることを表している。 Also in the case where the length L of the optical waveguide 1 is an integral multiple of the value represented by the equation (7), a pattern identical or symmetrical to the light distribution in the x direction of the first end surface 13 at the second end surface 14 Is reproduced. Also in the case where the length L of the optical waveguide 1 is an integral multiple of the value represented by the equation (8), a pattern identical or symmetrical to the light distribution in the y direction of the first end face 13 at the second end face 14 Is reproduced. Therefore, when length L is determined to be an integral multiple of the value shown in equation (7) and an integral multiple of the value shown in equation (8), that is, length L satisfies equation (1) In this case, the optical waveguide 1 can reproduce the same or symmetrical pattern as the light distribution in the x direction and the y direction. Note that equation (1) has a length L is, indicating that a 2k 0 nW 2 / an integral multiple and the length is an integer multiple of 2k 0 nH 2 / π of [pi.
 発光素子2は、単峰性を持つ分布の光を出射する。第2の端面14では、単峰性を持つ光の分布が再現される。発光素子2と光導波路1との位置ずれに起因して、第1の端面13における光の分布に偏芯が生じた場合に、かかる偏芯を含む光の分布が第2の端面14に再現される。光回路10は、集光レンズ3と光ファイバ4とのアクティブな調芯により、偏芯を補正可能とする。これにより、光回路10は、結合効率の損失を低減できる。 The light emitting element 2 emits light having a unimodal distribution. The second end face 14 reproduces the distribution of light having a single peak. When eccentricity occurs in the distribution of light at the first end face 13 due to the positional deviation between the light emitting element 2 and the optical waveguide 1, the distribution of light including such eccentricity is reproduced at the second end face 14 Be done. The optical circuit 10 can correct eccentricity by active alignment of the condenser lens 3 and the optical fiber 4. Thus, the optical circuit 10 can reduce the loss of coupling efficiency.
 比較例として、半導体基板に設けられたシングルモードの光導波路と発光素子とを直接光学的に結合させる場合、光導波路と発光素子との位置ずれ量が0.5μm程度となると、結合効率が-3dB程度より低下する。一方、マルチモードの光導波路が用いられる場合、例えば光導波路の幅が15μmである場合に、光導波路と発光素子との位置ずれ量が10μm程度となっても、発光素子の光はおよそ無損失で光導波路へ入射させることができる。 As a comparative example, in the case where a single mode optical waveguide provided on a semiconductor substrate and a light emitting element are directly optically coupled, when the positional deviation between the optical waveguide and the light emitting element is about 0.5 μm, the coupling efficiency is − It falls below about 3 dB. On the other hand, when a multimode optical waveguide is used, for example, when the width of the optical waveguide is 15 μm, even if the positional deviation between the optical waveguide and the light emitting element is about 10 μm, the light of the light emitting element is almost lossless Can be incident on the optical waveguide.
 実施の形態1では、光導波路1は、第2の端面14にて、第1の端面13における単峰性を持つ光の分布と偏芯とを再現させる。第2の端面14から出射した光を集光レンズ3で集光させて、光ファイバ4へ光を入射させるときに、単峰性が確保できていれば、第2の端面14における光の出射位置のずれが10μm程度であっても、結合効率は-3dB程度となる。これにより、光回路10は、第1の端面13における光の入射位置について許容されるずれ量が10μmである場合と同様に、結合効率の損失を低減させる効果を得ることができる。 In the first embodiment, the optical waveguide 1 reproduces the distribution and eccentricity of light having unimodality at the first end face 13 at the second end face 14. When the light emitted from the second end face 14 is condensed by the condensing lens 3 and the light is made incident on the optical fiber 4, the emission of the light at the second end face 14 if unimodality can be ensured. Even if the positional deviation is about 10 μm, the coupling efficiency is about -3 dB. Thereby, the optical circuit 10 can obtain the effect of reducing the loss of the coupling efficiency, as in the case where the displacement amount of the incident position of the light on the first end face 13 is 10 μm.
 光回路10は、光導波路1と発光素子2の位置決め精度を緩和することができる。第1の端面13における発光素子2からの光の入射位置は、半導体基板11の製造時における結晶成長あるいは研磨の精度に依存してばらつきが生じ得る。また、第1の端面13における入射位置のばらつきは、光導波路1と発光素子2とを実装する際の実装位置精度にも依存して生じ得る。光導波路1と発光素子2の位置決め精度を緩和できることで、かかる半導体基板11の精度についても緩和することができる。 The optical circuit 10 can reduce the positioning accuracy of the optical waveguide 1 and the light emitting element 2. The incident position of the light from the light emitting element 2 on the first end face 13 may vary depending on the accuracy of crystal growth or polishing at the time of manufacturing the semiconductor substrate 11. In addition, the variation in the incident position on the first end face 13 may occur depending on the mounting position accuracy when mounting the optical waveguide 1 and the light emitting element 2. Since the positioning accuracy of the optical waveguide 1 and the light emitting element 2 can be relaxed, the accuracy of the semiconductor substrate 11 can also be relaxed.
 また、実施の形態1では、シングルモードの光導波路に比べて、コア12の幅と高さとが拡張されている。コア12のxy断面が大きくされていることで、エバネッセント成分が少なくなる。光導波路1は、シングルモードの光導波路に比べて、製造工程に起因する光導波路1の面の粗さが、光導波路1を伝搬する光へ及ぼす影響が少なくなる。これにより、光導波路1は、光導波路1を伝搬する際における光の損失を低減できる。 Further, in the first embodiment, the width and height of the core 12 are expanded as compared with the single mode optical waveguide. As the xy cross section of the core 12 is enlarged, the evanescent component decreases. In the optical waveguide 1, the roughness of the surface of the optical waveguide 1 due to the manufacturing process has less influence on the light propagating through the optical waveguide 1 as compared with the single mode optical waveguide. Thereby, the optical waveguide 1 can reduce the loss of light when propagating the optical waveguide 1.
 次に、長さLが式(1)を満足するときに、第1の端面13への入射光の分布が第2の端面14にて再現される作用効果について計算例を説明する。図2は、実施の形態1にかかる光導波路1についての伝搬シミュレーションによる光の電界分布の例を示す図である。ここでは、光導波路1は、SiおよびSiOを材料とするPLC(Planar Lightwave Circuit)の光導波路である。光導波路1のコア12の屈折率は1.466、クラッドの屈折率は1.46、コア12の幅Wおよび高さHは46.5μmとする。図2における縦軸はx方向の位置、横軸はz方向の位置を表す。光導波路1の第1の端面13へ入射する光は、半値全幅(Full Width at Half Maximum,FWHM)が15.0μmであるガウシアンビームとする。図2の説明にて、入射光の位置とは、ガウシアンのピークの位置を表す。電界分布のパターンを、適宜「フィールドパターン」と称することがある。 Next, when the length L satisfies the equation (1), a calculation example will be described regarding the operation and effect that the distribution of incident light to the first end face 13 is reproduced at the second end face 14. FIG. 2 is a view showing an example of an electric field distribution of light by propagation simulation for the optical waveguide 1 according to the first embodiment. Here, the optical waveguide 1 is an optical waveguide of PLC (Planar Lightwave Circuit) which uses Si and SiO 2 as materials. The refractive index of the core 12 of the optical waveguide 1 is 1.466, the refractive index of the cladding is 1.46, and the width W and height H of the core 12 are 46.5 μm. The vertical axis in FIG. 2 represents the position in the x direction, and the horizontal axis represents the position in the z direction. The light incident on the first end face 13 of the optical waveguide 1 is a Gaussian beam whose full width at half maximum (FWHM) is 15.0 μm. In the description of FIG. 2, the position of incident light indicates the position of a Gaussian peak. The pattern of the electric field distribution may be referred to as "field pattern" as appropriate.
 図2には、図中矢印で示す入射光の位置が、光導波路1のコア12の中心位置Oと一致している場合、すなわち入射光と中心位置Oとの間のずれ量が0μmである場合と、入射光と中心位置Oとのずれが5μm、7.5μm、10μmである場合とを示している。 In FIG. 2, when the position of the incident light indicated by the arrow in the figure coincides with the center position O of the core 12 of the optical waveguide 1, that is, the deviation between the incident light and the center position O is 0 μm. The case and the case where the shift between the incident light and the center position O is 5 μm, 7.5 μm, and 10 μm are shown.
 図2によると、入射光の中心位置Oからのずれ量に関わらず、第1の端面13の位置P0からz方向へ9.68mm先の位置P1にて、位置P0におけるフィールドパターンに対称なフィールドパターンが出現している。また、位置P0からz方向へ19.36mm先の位置P2にて入射光と同じフィールドパターンが出現している。なお、実施の形態1では、x方向とz方向との関係と同様に、y方向とz方向との関係においても、入射光の中心位置Oからのずれ量にかかわらず、位置P0におけるフィールドパターンに対称なフィールドパターンが位置P1にて出現し、位置P0におけるフィールドパターンと同じフィールドパターンが位置P2にて出現する。 According to FIG. 2, regardless of the amount of deviation of the incident light from the center position O, a field symmetrical to the field pattern at the position P0 at the position P1 which is 9.68 mm ahead in the z direction from the position P0 of the first end face 13 A pattern has appeared. The same field pattern as the incident light appears at a position P2 which is 19.36 mm ahead in the z direction from the position P0. In the first embodiment, similarly to the relationship between the x direction and the z direction, the field pattern at the position P0 is also in the relationship between the y direction and the z direction regardless of the amount of deviation of the incident light from the center position O. A symmetrical field pattern appears at position P1, and the same field pattern as the field pattern at position P0 appears at position P2.
 図3は、実施の形態1における光導波路1を伝搬する光の電界と入射光の電界との重なり積分の伝搬距離依存性を示す図である。図3における縦軸は重なり積分、横軸は第1の端面13の位置P0からのz方向における伝搬距離を表す。図3では、図2と同様に、入射光と中心位置Oとのずれ量が0μm、5μm、7.5μm、10μmである場合を示している。0μm、5μm、7.5μm、10μmの各伝搬距離依存性において、縦軸の上端は、重なり成分が入射時の100%であることを表す。 FIG. 3 is a diagram showing propagation distance dependency of overlap integral of the electric field of light propagating through the optical waveguide 1 and the electric field of incident light in the first embodiment. The vertical axis in FIG. 3 represents overlap integration, and the horizontal axis represents the propagation distance in the z direction from the position P 0 of the first end face 13. Similar to FIG. 2, FIG. 3 shows the case where the shift amount between the incident light and the center position O is 0 μm, 5 μm, 7.5 μm, and 10 μm. In the propagation distance dependencies of 0 μm, 5 μm, 7.5 μm, and 10 μm, the upper end of the vertical axis represents that the overlap component is 100% at the time of incidence.
 図3では、入射時におけるフィールドパターンと対称なフィールドパターンが再現される位置は明らかとなっていない。入射時におけるフィールドパターンと同じフィールドパターンが再現される位置は、0μm、5μm、7.5μm、10μmの各関係において、円で囲んで示すように、重なり積分の明確なピークとなって示されている。入射光の中心位置Oからのずれ量にかかわらず、位置P0からの距離が19.36mmの位置P2で、重なり積分が入射時の96%となり、最大となる。これは、入射時における光の96%が出射時にて得られることを示す。また、結合効率の損失は、入射光の強度の4%(-0.18dB)となり、最小となることを示す。 In FIG. 3, it is not clear where the field pattern symmetrical to the field pattern at the time of incidence is reproduced. The position where the same field pattern as the field pattern at the time of incidence is reproduced is shown as a clear peak of the overlap integral, as indicated by the circle in the relation of 0 μm, 5 μm, 7.5 μm, and 10 μm. There is. Regardless of the amount of deviation of the incident light from the center position O, the overlap integral becomes 96% at the time of incidence at the position P2 at a distance of 19.36 mm from the position P0, and becomes maximum. This indicates that 96% of the light on entry is obtained on exit. Also, the loss of coupling efficiency is 4% (−0.18 dB) of the intensity of incident light, which is a minimum.
 図4は、図2に示す伝搬シミュレーションにて計算された各次数iの導波モードの光のコア12における有効屈折率と、有効屈折率から算出された伝搬定数との例を示す図である。図4に示す全ての導波モードについての有効屈折率の平均から求めた実効導波路幅である幅Wを上記の式(7)に代入すると、入射時におけるフィールドパターンと同じフィールドパターンが再現される長さLは、19.34mmとなり上述の伝搬シミュレーションの結果とよく一致することがわかる。 FIG. 4 is a view showing an example of the effective refractive index in the core 12 of light of the waveguide mode of each order i calculated by the propagation simulation shown in FIG. 2 and the propagation constant calculated from the effective refractive index . Substituting the width W, which is the effective waveguide width obtained from the average of the effective refractive indices for all the waveguide modes shown in FIG. 4, into the above equation (7), the same field pattern as the field pattern at the time of incidence is reproduced The length L is 19.34 mm, and it can be seen that it matches well with the result of the above-mentioned propagation simulation.
 この場合において、長さLのずれ量が±0.376mm程度の範囲内である場合に、図3に示す各伝搬距離依存性における重なり積分は、0.5以上となる。この場合に、光導波路1は、入射時における光の50%が出射時にて得られることとなり、実用上は問題がない。このことは、長さLが、上記の式(1)により得られる値から±2%の誤差を許容できることに相当する。したがって、光導波路1は、2knW/πの整数倍かつ2knH/πの整数倍の長さの0.98倍から1.02倍の範囲に含まれるように長さLが設定されることで、結合効率の損失を低減でき、高い結合効率を得ることが可能となる。 In this case, when the shift amount of the length L is in the range of about ± 0.376 mm, the overlap integral in each propagation distance dependency shown in FIG. 3 is 0.5 or more. In this case, in the optical waveguide 1, 50% of the light at the time of incidence will be obtained at the time of emission, and there is no problem in practical use. This corresponds to the fact that the length L can tolerate an error of ± 2% from the value obtained by the equation (1) above. Accordingly, the optical waveguide 1, 2k 0 nW 2 / π integer multiples and 2k 0 nH 2 / π length L to be within the range of 0.98 times the length of 1.02 times the integral multiple of By being set, the loss of coupling efficiency can be reduced, and high coupling efficiency can be obtained.
 なお、コア12の幅Wおよび高さHと、コア12の屈折率と、クラッドの屈折率とは、上記のものには限られない。上記式(1)で求められる値、あるいは式(1)で求められる値の0.98倍から1.02倍の範囲内の値に長さLを設定可能であれば、幅Wと、高さHと、各屈折率とは任意に設定可能である。光導波路1は、PLCに含まれるものに限られず、PLC以外の光回路に含まれるものであっても良い。 The width W and height H of the core 12, the refractive index of the core 12, and the refractive index of the cladding are not limited to those described above. If the length L can be set to the value obtained by the above equation (1) or a value within the range of 0.98 times to 1.02 times the value obtained by the equation (1), the width W and H and each refractive index can be set arbitrarily. The optical waveguide 1 is not limited to one included in the PLC, and may be included in an optical circuit other than the PLC.
 光導波路1は、第1の端面13と第2の端面14との間に湾曲あるいは折り曲げを含むものであっても良い。この場合、z方向は、コア12の中心位置Oに沿った方向とする。光導波路1は、直線形状である場合のみならず、湾曲あるいは折り曲げを含む形状である場合も、結合効率の損失を低減でき、高い結合効率を得ることができる。 The optical waveguide 1 may include bending or bending between the first end face 13 and the second end face 14. In this case, the z direction is a direction along the center position O of the core 12. Not only when the optical waveguide 1 has a linear shape, but also when it has a shape including bending or bending, the loss of coupling efficiency can be reduced, and high coupling efficiency can be obtained.
 光導波路1は、コア12であるSiとクラッドであるSiOとを含めたPLCの光導波路である場合に限られない。光導波路1を構成する半導体基板11、コア12およびクラッドの材料は、SiあるいはSiOに限られず、半導体材料であるSiN、SiON、GaAs、InP、誘電体材料であるLiONb、あるいはポリマー材料であっても良い。 The optical waveguide 1 is not limited to the case of a PLC optical waveguide including Si that is the core 12 and SiO 2 that is the cladding. The material of the semiconductor substrate 11, the core 12 and the cladding constituting the optical waveguide 1 is not limited to Si or SiO 2 , and semiconductor materials such as SiN, SiON, GaAs, InP, dielectric materials LiO 3 Nb, or polymer materials It may be
 コア12の幅Wと高さHとは、W=m1×H、あるいはH=m2×Wの関係を満足するものであっても良い。m1とm2とは、任意の自然数とする。言い換えると、幅Wの二乗は、高さHの二乗の整数倍であるか、高さHの二乗は、幅Wの二乗の整数倍である。 The width W and the height H of the core 12 may satisfy the relationship of W 2 = m 1 × H 2 or H 2 = m 2 × W 2 . m1 and m2 are arbitrary natural numbers. In other words, the square of the width W is an integral multiple of the square of the height H, or the square of the height H is an integral multiple of the square of the width W.
 例を挙げると、W=0.5およびH=0.2である場合、上述するようにf(0.5,0.2)=1.0となる。また、W=0.5およびH=0.25として、WがHの2倍である場合は、S=1およびT=2であるときにS×WとT×Hとは最小となり、f(0.5,0.25)=0.5となる。上記の式(1)より、f(W,H)が小さくなることで、長さLは小さくなる。このように、WをHの整数倍、あるいはHをWの整数倍とすることで、コア12の長さLを短く設計することができる。 By way of example, if W 2 = 0.5 and H 2 = 0.2, then f (0.5,0.2) = 1.0, as described above. Also, if W 2 = 0.5 and H 2 = 0.25, and if W 2 is twice H 2 , then S × W 2 and T × H 2 when S = 1 and T = 2. Is the minimum, and f (0.5, 0.25) = 0.5. From the above equation (1), the length L becomes smaller as f (W 2 , H 2 ) becomes smaller. Thus, the W 2 integral multiple of H 2, or of H 2 by an integral multiple of W 2, it can be designed shorter length L of the core 12.
 次に、図5から図8を参照して、実施の形態1にかかる光回路10の変形例を説明する。各変形例では、第1の光学素子と第2の光学素子との組み合わせが、図1に示す例とは異なる。図5から図8では、y方向から光回路10を見た場合における第1の光学素子と、第2の光学素子と、光導波路1のコア12とを示し、半導体基板11の図示を省略する。また、図1に示す構成要素と共通の構成要素についての説明は、適宜省略する。 Next, a modification of the optical circuit 10 according to the first embodiment will be described with reference to FIGS. 5 to 8. In each modification, the combination of the first optical element and the second optical element is different from the example shown in FIG. 5 to 8 show the first optical element, the second optical element, and the core 12 of the optical waveguide 1 when the optical circuit 10 is viewed from the y direction, and the semiconductor substrate 11 is not shown. . Also, the description of the components common to the components shown in FIG. 1 will be omitted as appropriate.
 図5は、実施の形態1の変形例1にかかる光回路10の構成を示す図である。光回路10は、第1の光学素子である光ファイバ5と、第2の光学素子である集光レンズ3と光ファイバ4とを備える。光ファイバ5を通過した光15は、第1の端面13へ入射する。第2の端面14から出射した光16は、集光レンズ3を透過して、光ファイバ4へ入射する。 FIG. 5 is a diagram showing the configuration of the optical circuit 10 according to the first modification of the first embodiment. The optical circuit 10 includes an optical fiber 5 which is a first optical element, a condenser lens 3 which is a second optical element, and an optical fiber 4. The light 15 having passed through the optical fiber 5 is incident on the first end face 13. The light 16 emitted from the second end face 14 passes through the condenser lens 3 and enters the optical fiber 4.
 図6は、実施の形態1の変形例2にかかる光回路10の構成を示す図である。光回路10は、第1の光学素子である発光素子2と、第2の光学素子である光ファイバ4とを備える。変形例2の構成は、集光レンズ3が省略されている以外は、図1に示す構成と同様である。光ファイバ4と第2の端面14とは、直接光学的に結合されている。光導波路1からの光を直接光ファイバ4へ入射させることで、光回路10は、部品点数を削減でき、製造の容易化とコストの低減とを図り得る。 FIG. 6 is a diagram showing the configuration of the optical circuit 10 according to the second modification of the first embodiment. The optical circuit 10 includes a light emitting element 2 which is a first optical element, and an optical fiber 4 which is a second optical element. The configuration of the modification 2 is the same as the configuration shown in FIG. 1 except that the condenser lens 3 is omitted. The optical fiber 4 and the second end face 14 are directly optically coupled. By causing the light from the optical waveguide 1 to directly enter the optical fiber 4, the number of parts of the optical circuit 10 can be reduced, and the manufacture can be facilitated and the cost can be reduced.
 図7は、実施の形態1の変形例3にかかる光回路10の構成を示す図である。光回路10は、第1の光学素子である光ファイバ5と、第2の光学素子である受光素子6とを備える。受光素子6は、光を検出する素子であって、1つの例はフォトダイオード(Photodiode,PD)である。光ファイバ5を通過した光15は、第1の端面13へ入射する。第2の端面14から出射した光16は、受光素子6へ入射する。 FIG. 7 is a diagram showing the configuration of the optical circuit 10 according to the third modification of the first embodiment. The optical circuit 10 includes an optical fiber 5 which is a first optical element, and a light receiving element 6 which is a second optical element. The light receiving element 6 is an element for detecting light, and one example is a photodiode (PD). The light 15 having passed through the optical fiber 5 is incident on the first end face 13. The light 16 emitted from the second end face 14 is incident on the light receiving element 6.
 図8は、実施の形態1の変形例4にかかる光回路10の構成を示す図である。光回路10は、第1の光学素子である発光素子2と、第2の光学素子である受光素子6とを備える。第2の端面14から出射した光16は、受光素子6へ入射する。変形例3と変形例4では、第2の端面14と受光素子6との間に集光レンズ3が設けられても良い。 FIG. 8 is a diagram showing the configuration of the optical circuit 10 according to the fourth modification of the first embodiment. The optical circuit 10 includes a light emitting element 2 which is a first optical element, and a light receiving element 6 which is a second optical element. The light 16 emitted from the second end face 14 is incident on the light receiving element 6. In the third modification and the fourth modification, the condenser lens 3 may be provided between the second end face 14 and the light receiving element 6.
 このように、第1の光学素子は、発光素子2と光ファイバ5との一方を含む。第2の光学素子は、光ファイバ4と受光素子6との一方を含む。第2の光学素子は、第2の端面14と光ファイバ4との間の集光レンズ3を含んでも良い。光ファイバ4,5は、シングルモードとマルチモードとのいずれにより光を伝搬させるものであっても良い。第1の光学素子と第2の光学素子とは、光ファイバ4,5に代えて、光ファイバ以外の光導波路を含むものであっても良い。 Thus, the first optical element includes one of the light emitting element 2 and the optical fiber 5. The second optical element includes one of the optical fiber 4 and the light receiving element 6. The second optical element may include a condenser lens 3 between the second end face 14 and the optical fiber 4. The optical fibers 4 and 5 may propagate light by either single mode or multi mode. The first optical element and the second optical element may include optical waveguides other than the optical fiber instead of the optical fibers 4 and 5.
 実施の形態1によると、光導波路1は、第1の方向におけるコア12の長さLを、2knW/πの整数倍かつ2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含めたことで、結合効率の損失を低減可能とする。これにより、光導波路1は、光導波路1を含む機能部品での高い結合効率を実現できるという効果を奏する。光回路10は、光導波路1を含むことにより、高い結合効率を実現できる。 According to the first embodiment, the optical waveguide 1, the length L of the core 12 in the first direction, 2k 0 nW 2 / an integral multiple and 2k 0 nH 2/0 the length of an integer multiple of π for π By including in the range of .98 times to 1.02 times, loss of coupling efficiency can be reduced. As a result, the optical waveguide 1 has an effect of being able to realize high coupling efficiency in the functional components including the optical waveguide 1. The optical circuit 10 can realize high coupling efficiency by including the optical waveguide 1.
実施の形態2.
 図9は、本発明の実施の形態2にかかる半導体レーザ20の構成を示す図である。半導体レーザ20は、光導波路1と、第1の端面13へ光を入射させる第1の光学素子である光増幅器21と、第2の端面14へ到達した光を受ける第2の光学素子であるミラー22とを備える。半導体レーザ20は、光導波路1を備える機能部品である。上記の実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
Second Embodiment
FIG. 9 is a view showing the configuration of a semiconductor laser 20 according to a second embodiment of the present invention. The semiconductor laser 20 is an optical waveguide 1, an optical amplifier 21 which is a first optical element for causing light to be incident on the first end face 13, and a second optical element for receiving the light reaching the second end face 14. And a mirror 22. The semiconductor laser 20 is a functional component provided with the optical waveguide 1. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
 光増幅器21は、ある波長域の光を増幅して、増幅された光23を第1の端面13へ出射する。また、光増幅器21は、第1の端面13からの光23を受けて、受けた光23を増幅に利用する。光増幅器21は、電流注入あるいは光励起により光を増幅する。光増幅器21のうち第1の端面13に光学的に結合された端面25には、光導波路1からの光23の反射を低減するARコーティングが施されている。または、反射防止のための構造が端面25に設けられていても良い。反射防止のための構造の1つの例は、光23の主光線に対し傾けられた面を含む構造である。図9では、ARコーティングと、反射防止のための構造との図示を省略する。 The optical amplifier 21 amplifies light in a certain wavelength range, and emits the amplified light 23 to the first end face 13. The optical amplifier 21 receives the light 23 from the first end face 13 and uses the received light 23 for amplification. The optical amplifier 21 amplifies light by current injection or light excitation. The end face 25 of the optical amplifier 21 optically coupled to the first end face 13 is provided with an AR coating for reducing the reflection of the light 23 from the optical waveguide 1. Alternatively, a structure for preventing reflection may be provided on the end face 25. One example of a structure for preventing reflection is a structure including a surface inclined to the chief ray of light 23. In FIG. 9, illustration of the AR coating and the structure for preventing reflection is omitted.
 光増幅器21は、端面25とは逆側の端面26に設けられた部分透過ミラーを備える。部分透過ミラーは、入射した光のうち一部の光を透過して、その他の光を反射する。光増幅器21は、部分透過ミラーを透過した光24を端面26から出射する。図9では、端面26に設けられた部分透過ミラーの図示を省略する。 The optical amplifier 21 includes a partially transmitting mirror provided at the end face 26 opposite to the end face 25. The partially transmitting mirror transmits a part of the incident light and reflects the other light. The optical amplifier 21 emits the light 24 transmitted through the partial transmission mirror from the end face 26. In FIG. 9, illustration of the partially transmitting mirror provided on the end face 26 is omitted.
 1つの例では、ミラー22は、高反射性材料の層であって、第2の端面14に設けられている。ミラー22は、広い波長域の光について高い反射率を持つ。ミラー22の材料には、高反射性の金属材料である金、銀、あるいはアルミニウムが使用される。ミラー22は、第2の端面14への金属材料の蒸着により形成される。ミラー22の材料は、金属材料以外の高反射性材料であっても良い。ミラー22は、蒸着以外の手法により形成されたものであっても良い。なお、その他のミラー22の例については後述する。 In one example, the mirror 22 is a layer of highly reflective material and is provided at the second end face 14. The mirror 22 has a high reflectance for light in a wide wavelength range. The material of the mirror 22 is gold, silver or aluminum which is a highly reflective metal material. The mirror 22 is formed by vapor deposition of a metal material on the second end face 14. The material of the mirror 22 may be a highly reflective material other than a metal material. The mirror 22 may be formed by a method other than vapor deposition. Note that other examples of the mirror 22 will be described later.
 光増幅器21の端面25から出射した光23は、第1の端面13へ入射する。第1の端面13から第2の端面14へ向けてコア12を伝搬した光は、第2の端面14に到達して、ミラー22で反射する。ミラー22で反射した光は、第2の端面14から第1の端面13へ向けてコア12を伝搬する。第1の端面13を出射した光23は、光増幅器21の端面25へ入射する。光増幅器21の内部を伝搬した光の一部は、部分透過ミラーで反射する。ミラー22と、光増幅器21の部分透過ミラーとの間を往復する光は、光増幅器21の内部で増幅される。半導体レーザ20は、増幅された光のうち光増幅器21の部分透過ミラーを透過した光24を出射する。 The light 23 emitted from the end face 25 of the optical amplifier 21 enters the first end face 13. The light propagating through the core 12 from the first end face 13 to the second end face 14 reaches the second end face 14 and is reflected by the mirror 22. The light reflected by the mirror 22 propagates in the core 12 from the second end face 14 toward the first end face 13. The light 23 emitted from the first end face 13 enters the end face 25 of the optical amplifier 21. Part of the light propagated inside the optical amplifier 21 is reflected by the partially transmitting mirror. The light reciprocating between the mirror 22 and the partial transmission mirror of the optical amplifier 21 is amplified inside the optical amplifier 21. The semiconductor laser 20 emits the light 24 transmitted through the partial transmission mirror of the optical amplifier 21 among the amplified light.
 実施の形態2においても、長さLは、実施の形態1と同様に、上記の式(1)を満足するように設定されている。すなわち、長さLは、2knW/πの整数倍かつ2knH/πの整数倍である。あるいは、長さLは、2knW/πの整数倍かつ2knH/πの整数倍の長さの0.98倍から1.02倍の範囲に含まれるように設定されている。光導波路1は、結合効率の損失を低減でき、高い結合効率を得ることが可能となる。 Also in the second embodiment, as in the first embodiment, the length L is set to satisfy the above equation (1). That is, the length L is an integer multiple of 2k 0 nW 2 / an integral multiple and 2k of π 0 nH 2 / π. Alternatively, the length L is set to be in the 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / an integral multiple of the length range from 1.02 times 0.98 times the π of π . The optical waveguide 1 can reduce the loss of coupling efficiency, and can obtain high coupling efficiency.
 実施の形態1と同様に、光導波路1の面の粗さが、光導波路1を伝搬する光へ及ぼす影響が少なくなることで、半導体レーザ20は、往復させる光の損失を低減でき、高い効率で光を出射できる。また、半導体レーザ20は、レーザ発振に必要な利得を少なくできることで、光増幅器21への電流供給を低減できる。これにより、半導体レーザ20は、消費電力を低減できる。なお、光導波路1の形状と材料とは、実施の形態1の場合と同様に、任意とする。また、実施の形態1の場合と同様に、コア12の幅Wの二乗が高さHの二乗の整数倍であるか、高さHの二乗が幅Wの二乗の整数倍であるようにしても良い。 As in the first embodiment, the semiconductor laser 20 can reduce the loss of light to be reciprocated by reducing the influence of the surface roughness of the optical waveguide 1 on the light propagating through the optical waveguide 1, and the efficiency is high. Can emit light. Further, the semiconductor laser 20 can reduce the current supply to the optical amplifier 21 by reducing the gain required for laser oscillation. Thereby, the semiconductor laser 20 can reduce power consumption. The shape and material of the optical waveguide 1 are arbitrary as in the case of the first embodiment. Also, as in the first embodiment, the square of the width W of the core 12 is an integral multiple of the square of the height H, or the square of the height H is an integral multiple of the square of the width W. Also good.
 ミラー22を高反射性材料の層とすることで、比較的容易かつ安価に、広い波長域の光について高い反射率を持つミラー22を形成できる。ミラー22は、高反射性材料の層であるものに限られない。ミラー22は、特定の波長域の光を選択的に反射する波長選択ミラーであっても良い。ミラー22は、特定の波長域の光以外の光を吸収あるいは透過する。波長選択ミラーには、反射型グレーティング、リング共振器、あるいはダイクロイックミラーが用いられる。波長選択ミラーであるミラー22が設けられることで、半導体レーザ20の発振波長を限定することができる。 By making the mirror 22 a layer of a highly reflective material, it is possible to form the mirror 22 having high reflectance for light in a wide wavelength range relatively easily and inexpensively. The mirror 22 is not limited to being a layer of highly reflective material. The mirror 22 may be a wavelength selection mirror that selectively reflects light in a specific wavelength range. The mirror 22 absorbs or transmits light other than light of a specific wavelength range. For the wavelength selection mirror, a reflective grating, a ring resonator, or a dichroic mirror is used. By providing the mirror 22 which is a wavelength selection mirror, the oscillation wavelength of the semiconductor laser 20 can be limited.
 次に、図10と図11とを参照して、実施の形態2にかかる半導体レーザ20の変形例を説明する。図10と図11とでは、y方向から半導体レーザ20を見た場合における第1の光学素子と、第2の光学素子と、光導波路1のコア12とを示し、半導体基板11の図示を省略する。 Next, a modification of the semiconductor laser 20 according to the second embodiment will be described with reference to FIG. 10 and FIG. 10 and 11 show the first optical element, the second optical element, and the core 12 of the optical waveguide 1 when the semiconductor laser 20 is viewed from the y direction, and the semiconductor substrate 11 is not shown. Do.
 図10は、実施の形態2の変形例1にかかる半導体レーザ20の構成を示す図である。変形例1において、第1の光学素子は、光増幅器21と第1の端面13との間に設けられた光ファイバ5を含む。光増幅器21の端面25から出射した光23は、光ファイバ5へ入射する。光ファイバ5を通過した光23は、第1の端面13へ入射する。また、第1の端面13から出射した光23は、光ファイバ5を通過してから、光増幅器21の端面25へ入射する。 FIG. 10 is a view showing the configuration of a semiconductor laser 20 according to the first modification of the second embodiment. In the first modification, the first optical element includes the optical fiber 5 provided between the optical amplifier 21 and the first end face 13. The light 23 emitted from the end face 25 of the optical amplifier 21 enters the optical fiber 5. The light 23 having passed through the optical fiber 5 is incident on the first end face 13. The light 23 emitted from the first end face 13 passes through the optical fiber 5 and then enters the end face 25 of the optical amplifier 21.
 変形例1によると、半導体レーザ20は、光ファイバ5が設けられたことで、光増幅器21と光導波路1とを互いに離れた位置に設置することが可能となる。これにより、半導体レーザ20は、光増幅器21と光導波路1との配置の自由度を向上できる。 According to the first modification, with the optical fiber 5 provided, the semiconductor laser 20 can install the optical amplifier 21 and the optical waveguide 1 at mutually separated positions. Thereby, the semiconductor laser 20 can improve the degree of freedom of the arrangement of the optical amplifier 21 and the optical waveguide 1.
 図11は、実施の形態2の変形例2にかかる半導体レーザ20の構成を示す図である。変形例2において、第2の光学素子は、ミラー27と受光素子6とを含む。ミラー27は、第2の端面14へ到達した光のうちの一部の光を透過して、その他の光を反射する部分透過ミラーである。 FIG. 11 is a view showing the configuration of a semiconductor laser 20 according to the second modification of the second embodiment. In the second modification, the second optical element includes a mirror 27 and a light receiving element 6. The mirror 27 is a partially transmitting mirror that transmits part of the light reaching the second end face 14 and reflects the other light.
 第1の端面13からコア12を伝搬して、第2の端面14へ入射した光は、ミラー27へ入射する。ミラー27を入射した光のうちの一部の光は、ミラー27で反射して、第1の端面13へ向けてコア12を伝搬する。ミラー27を透過した光28は、受光素子6へ入射する。受光素子6は、光28を検出する。半導体レーザ20は、受光素子6で検出された光28の強度から、光導波路1と光増幅器21との内部を往復している光の強度をモニタすることができる。ミラー27と受光素子6との間には、特定の波長域の光を透過する波長フィルタが設けられていても良い。これにより、半導体レーザ20は、発振波長をモニタすることができる。なお、変形例2においても、変形例1と同様に光ファイバ5が設けられていても良い。 The light propagating through the core 12 from the first end face 13 and entering the second end face 14 enters the mirror 27. A part of the light incident on the mirror 27 is reflected by the mirror 27 and propagates toward the first end face 13 through the core 12. The light 28 transmitted through the mirror 27 is incident on the light receiving element 6. The light receiving element 6 detects the light 28. The semiconductor laser 20 can monitor the intensity of light reciprocating within the optical waveguide 1 and the optical amplifier 21 from the intensity of the light 28 detected by the light receiving element 6. Between the mirror 27 and the light receiving element 6, a wavelength filter that transmits light in a specific wavelength range may be provided. Thereby, the semiconductor laser 20 can monitor the oscillation wavelength. In the second modification, the optical fiber 5 may be provided as in the first modification.
 実施の形態2によると、半導体レーザ20は、コア12の長さを、2knW/πの整数倍かつ2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含めたことで、結合効率の損失を低減可能とする。これにより、半導体レーザ20は、高い結合効率を実現できるという効果を奏する。 According to the second embodiment, the semiconductor laser 20, a core length of 12, 2k 0 nW 2 / an integral multiple and 2k 0 nH 2/1 from 0.98 times the length of an integer multiple of [pi of [pi. By including in the range of 02 times, the loss of coupling efficiency can be reduced. As a result, the semiconductor laser 20 has an effect that high coupling efficiency can be realized.
実施の形態3.
 図12は、本発明の実施の形態3にかかる光回路である光合分波器30の構成を示す図である。光合分波器30は、波長域が異なる複数の光信号が伝搬する複数の第1の光導波路31と、多重波長信号が伝搬する第2の光導波路32と、複数の光信号から多重波長信号へ合波あるいは多重波長信号から複数の光信号へ分波させる光合分波部33とを備える。光合分波器30は、第1の光導波路31と、第2の光導波路32と、光合分波部33とを備える機能部品である。上記の実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
Third Embodiment
FIG. 12 is a diagram showing the configuration of an optical multiplexer / demultiplexer 30 which is an optical circuit according to the third embodiment of the present invention. The optical multiplexer / demultiplexer 30 comprises a plurality of first optical waveguides 31 for propagating a plurality of optical signals in different wavelength regions, a second optical waveguide 32 for propagating a multiple wavelength signal, and a multiple wavelength signal from a plurality of optical signals. And an optical multiplexing / demultiplexing unit 33 for demultiplexing the multiplexed or multiplexed wavelength signal into a plurality of optical signals. The optical multiplexer / demultiplexer 30 is a functional component that includes the first optical waveguide 31, the second optical waveguide 32, and the optical multiplexer / demultiplexer 33. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
 光合分波器30は、複数の第1の光導波路31の第1の端面13に光学的に結合された第1の光学素子である複数の発光素子2と、第2の光導波路32の第2の端面14に光学的に結合された第2の光学素子である集光レンズ3および光ファイバ4とを備える。複数の第1の光導波路31と第2の光導波路32とは、複数の導波モードの光を伝搬させるマルチモードの光導波路である。 The optical multiplexer / demultiplexer 30 includes a plurality of light emitting elements 2 as a first optical element optically coupled to the first end face 13 of the plurality of first optical waveguides 31 and a second optical waveguide 32. A condenser lens 3 and an optical fiber 4 which are second optical elements optically coupled to the end face 14 of the second lens 2 are provided. The plurality of first optical waveguides 31 and the plurality of second optical waveguides 32 are multimode optical waveguides for propagating light of a plurality of waveguide modes.
 光合分波部33は、複数の第1の光導波路31と第2の光導波路32との間に接続されたスラブ光導波路35と、スラブ光導波路35に形成され、複数の光信号を回折により反射して多重波長信号を出射、あるいは多重波長信号を回折により反射して複数の光信号を出射する反射型グレーティング34とを備える。スラブ光導波路35は、複数の導波モードの光を伝搬させるマルチモードの光導波路である。スラブ光導波路35は、クラッドである上部クラッド層と下部クラッド層との間に挟み込まれた平板状のコア12を備える。複数の第1の光導波路31の第2の端面14は、スラブ光導波路35に接続されている。第2の光導波路32の第1の端面13は、スラブ光導波路35に接続されている。複数の第1の光導波路31と、第2の光導波路32と、光合分波部33と、複数の発光素子2とは、半導体基板11上に設けられている。 The optical multiplexing / demultiplexing unit 33 is formed in the slab optical waveguide 35 connected between the plurality of first optical waveguides 31 and the second optical waveguide 32 and the slab optical waveguide 35, and diffracts the plurality of optical signals by diffraction. And a reflection type grating 34 for reflecting and emitting a multiple wavelength signal or reflecting a multiple wavelength signal by diffraction and emitting a plurality of optical signals. The slab optical waveguide 35 is a multimode optical waveguide that propagates light of a plurality of guided modes. The slab optical waveguide 35 includes a flat core 12 sandwiched between an upper clad layer and a lower clad layer which are clads. The second end faces 14 of the plurality of first optical waveguides 31 are connected to the slab optical waveguide 35. The first end face 13 of the second optical waveguide 32 is connected to the slab optical waveguide 35. The plurality of first optical waveguides 31, the second optical waveguide 32, the light coupling / splitting unit 33, and the plurality of light emitting elements 2 are provided on the semiconductor substrate 11.
 図1の光導波路1と同様に、第1の光導波路31と第2の光導波路32とスラブ光導波路35は、複数の導波モードの光が伝搬するコア12とクラッドとを含む。光合分波器30は、SiおよびSiOを材料とするPLCとして構成されている。 Similar to the optical waveguide 1 of FIG. 1, the first optical waveguide 31, the second optical waveguide 32, and the slab optical waveguide 35 include a core 12 and a cladding through which light of a plurality of waveguide modes propagate. The optical multiplexer / demultiplexer 30 is configured as a PLC made of Si and SiO 2 .
 光合分波器30は、波長域の異なる複数の光信号を多重化させる光合波器、および多重化された光信号を波長域の違いにより分割する光分波器のいずれとしても機能し得る光回路である。実施の形態3では、主に、光合分波器30が光合波器である場合を例とする。光分波器における光信号の入力および出力は、光合波器における光信号の入力および出力とは逆となる。 The optical multiplexer / demultiplexer 30 can function as any of an optical multiplexer that multiplexes a plurality of optical signals in different wavelength bands and an optical demultiplexer that divides the multiplexed optical signal according to the difference in wavelength bands. It is a circuit. In the third embodiment, mainly, the case where the optical multiplexer / demultiplexer 30 is an optical multiplexer is taken as an example. The input and output of the optical signal in the optical demultiplexer are opposite to the input and output of the optical signal in the optical multiplexer.
 光合分波器30が光合波器である場合、複数の第1の光導波路31からスラブ光導波路35へ入射した光は、スラブ光導波路35内の複数の伝搬経路36を伝搬する。複数の伝搬経路36を伝搬した光は、反射型グレーティング34で反射して、第2の光導波路32の第1の端面13へ入射する。一方、光合分波器30が光分波器である場合、第2の光導波路32からスラブ光導波路35へ入射した光は、反射型グレーティング34で反射して、複数の伝搬経路36を伝搬する。複数の伝搬経路36を伝搬した光は、複数の第1の光導波路31の第2の端面14へ入射する。 When the optical multiplexer / demultiplexer 30 is an optical multiplexer, light incident on the slab optical waveguide 35 from the plurality of first optical waveguides 31 propagates through the plurality of propagation paths 36 in the slab optical waveguide 35. The light propagating through the plurality of propagation paths 36 is reflected by the reflective grating 34 and is incident on the first end face 13 of the second optical waveguide 32. On the other hand, when the optical multiplexer / demultiplexer 30 is an optical demultiplexer, light incident on the slab optical waveguide 35 from the second optical waveguide 32 is reflected by the reflective grating 34 and propagates through a plurality of propagation paths 36 . The light propagated through the plurality of propagation paths 36 is incident on the second end face 14 of the plurality of first optical waveguides 31.
 実施の形態3において、発光素子2は、波長域が互いに異なる光信号を出射する4つの発光素子2A,2B,2C,2Dを含む。第1の光導波路31は、4つの発光素子2A,2B,2C,2Dからの波長域ごとの光信号が入射する4つの第1の光導波路31A,31B,31C,31Dを含む。複数の伝搬経路36は、4つの伝搬経路36A,36B,36C,36Dを含む。第1の光導波路31の数と発光素子2の数とは、4つである場合に限られず、2つ、3つ、あるいは5つ以上であっても良い。 In the third embodiment, the light emitting element 2 includes four light emitting elements 2A, 2B, 2C, and 2D that emit light signals having different wavelength ranges. The first optical waveguide 31 includes four first optical waveguides 31A, 31B, 31C, and 31D into which optical signals from the four light emitting elements 2A, 2B, 2C, and 2D enter for each wavelength range. The plurality of propagation paths 36 include four propagation paths 36A, 36B, 36C, and 36D. The number of first optical waveguides 31 and the number of light emitting elements 2 are not limited to four, and may be two, three, or five or more.
 図13は、図12に示す反射型グレーティング34の一部を拡大した図である。反射型グレーティング34は、スラブ光導波路35の側面に形成された鋸歯形状の回折格子構造である。複数の光信号の波長域を基に溝の形状が設定されることにより、反射型グレーティング34は、複数の伝搬経路36からの複数の光信号を反射して、第2の光導波路32の第1の端面13に集光する。これにより、光合分波部33は、複数の光信号を多重化させる。また、光分波を行う場合は、反射型グレーティング34は、多重波長信号を反射して、複数の光信号を複数の伝搬経路36へ振り分ける。これにより、光合分波部33は、多重波長信号を、複数の光信号へ分割する。 FIG. 13 is an enlarged view of a part of the reflective grating 34 shown in FIG. The reflective grating 34 is a sawtooth-shaped diffraction grating structure formed on the side surface of the slab optical waveguide 35. By setting the shape of the groove based on the wavelength range of the plurality of optical signals, the reflective grating 34 reflects the plurality of optical signals from the plurality of propagation paths 36, and The light is collected on the end face 13 of FIG. Thus, the optical multiplexing / demultiplexing unit 33 multiplexes a plurality of optical signals. Further, in the case of performing optical demultiplexing, the reflective grating 34 reflects the multi-wavelength signal and distributes the plurality of optical signals to the plurality of propagation paths 36. Thus, the optical multiplexing / demultiplexing unit 33 divides the multiple wavelength signal into a plurality of optical signals.
 実施の形態3では、第1の光導波路31A,31B,31C,31Dの長さLは、次の式(9)を満足する。 In the third embodiment, the length L1 of the first optical waveguides 31A, 31B, 31C, 31D satisfies the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(9)において、Wは、第1の光導波路31A,31B,31C,31Dのコア12の幅を示すパラメータである。nは、コア12の屈折率を示すパラメータである。kは、コア12を伝搬する光の波数を示すパラメータである。実施の形態3では、kは、発光素子2から出射された光の真空中における波数である。真空中の波長をλとすると、k=2π/λが成り立つ。Mは、任意の自然数とする。 In the equation (9), W is a parameter indicating the width of the core 12 of the first optical waveguides 31A, 31B, 31C, 31D. n is a parameter indicating the refractive index of the core 12. k 0 is a parameter indicating the number of waves of light propagating through the core 12. In the third embodiment, k 0 is the wave number in vacuum of the light emitted from the light emitting element 2. Assuming that the wavelength in vacuum is λ 0 , k 0 = 2π / λ 0 holds. M 1 is an arbitrary natural number.
 また、第2の光導波路32の長さLは、次の式(10)を満足する。 Further, the length L2 of the second optical waveguide 32 satisfies the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)において、Wは、第2の光導波路32のコア12の幅を示すパラメータである。nは、コア12の屈折率を示すパラメータである。kaveは、発光素子2A,2B,2C,2Dから出射される光の真空中における波数kの平均である。Mは、任意の自然数とする。 In the equation (10), W is a parameter indicating the width of the core 12 of the second optical waveguide 32. n is a parameter indicating the refractive index of the core 12. k ave is an average of wave numbers k 0 in vacuum of light emitted from the light emitting elements 2A, 2B, 2C, 2D. M 2 is an arbitrary natural number.
 式(9)および式(10)において、幅Wは、コア12を伝搬する光のエバネッセント成分が生じる範囲を含めた実効幅である。幅Wは、複数の導波モードの光のエバネッセント成分が生じる範囲を含めた仮想的な幅の平均値とする。 In the equations (9) and (10), the width W is an effective width including the range in which the evanescent component of the light propagating through the core 12 occurs. The width W is an average value of virtual widths including the range in which evanescent components of light of a plurality of guided modes occur.
 さらに、第1の光導波路31A,31B,31C,31Dと、光合分波部33と、第2の光導波路32とにおける複数の光信号の伝搬経路の長さL+Lslab+Lは、次の式(11)を満足する。長さL+Lslab+Lは、第1の光導波路31A,31B,31C,31Dの長さLと、伝搬経路36A,36B,36C,36Dの長さLslabと、第2の光導波路32の長さLとの和である。 Furthermore, the propagation path lengths L 1 + L slab + L 2 of the plurality of optical signals in the first optical waveguides 31A, 31 B, 31 C, 31 D, the optical multiplexing / demultiplexing unit 33 and the second optical waveguide 32 The expression (11) of The length L 1 + L slab + L 2, the first optical waveguide 31A, 31B, 31C, and the length L 1 of the 31D, propagation path 36A, 36B, 36C, and the length L slab of 36D, a second optical waveguide 32 is the sum of the length L 2.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(11)において、Hは、第1の光導波路31A,31B,31C,31Dと、第2の光導波路32と、スラブ光導波路35とにおけるコア12の高さを示すパラメータである。nは、コア12の屈折率を示すパラメータである。kは、コア12を伝搬する光の波数を示すパラメータである。Mは、任意の自然数とする。高さHは、コア12を伝搬する光のエバネッセント成分が生じる範囲を含めた実効高さである。高さHは、複数の導波モードの光のエバネッセント成分が生じる範囲を含めた仮想的な幅の平均値とする。 In Formula (11), H is a parameter indicating the height of the core 12 in the first optical waveguides 31A, 31B, 31C, 31D, the second optical waveguide 32, and the slab optical waveguide 35. n is a parameter indicating the refractive index of the core 12. k 0 is a parameter indicating the number of waves of light propagating through the core 12. M 3 is an arbitrary natural number. The height H is an effective height including the range in which the evanescent component of the light propagating through the core 12 occurs. The height H is an average value of virtual widths including the range in which evanescent components of light of a plurality of guided modes occur.
 式(9)に示されるように、長さLは、2knW/πの整数倍に設定されている。また、実施の形態1と同様に、±2%の誤差を許容しても実用上の問題がないことから、長さLは、2knW/πの整数倍の0.98倍から1.02倍の範囲に含まれるように設定されていても良い。 As shown in equation (9), the length L 1 is set to an integral multiple of 2k 0 nW 2 / π. Further, as in the first embodiment, since there is no practical problem even if an error of ± 2% is allowed, the length L 1 is 0.98 times the integral multiple of 2k 0 nW 2 / π. It may be set to be included in the range of 1.02 times.
 式(10)に示されるように、長さLは、2kavenW/πの整数倍に設定されている。また、実施の形態1と同様に、±2%の誤差を許容しても実用上の問題がないことから、長さLは、実施の形態1と同様に、2kavenW/πの整数倍の0.98倍から1.02倍の範囲に含まれるように設定されていても良い。 As shown in equation (10), the length L 2 is set to an integral multiple of 2 k ave n W 2 / π. Further, as in the first embodiment, since there is no practical problem even if an error of ± 2% is allowed, the length L 2 is 2 k ave n W 2 / π as in the first embodiment. It may be set to fall within the range of 0.98 times to 1.02 times the integral multiple.
 式(11)に示されるように、長さL+Lslab+Lは、2knH/πの整数倍に設定されている。また、実施の形態1と同様に、±2%の誤差を許容しても実用上の問題がないことから、長さL+Lslab+Lは、実施の形態1と同様に、2knH/πの整数倍の長さの0.98倍から1.02倍の範囲に含まれるように設定されていても良い。これにより、第1の光導波路31A,31B,31C,31Dと、第2の光導波路32と、スラブ光導波路35とは、結合効率の損失を低減でき、高い結合効率を得ることが可能となる。 As shown in equation (11), the length L 1 + L slab + L 2 is set to an integral multiple of 2k 0 nH 2 / π. Further, as in the first embodiment, there is no practical problem even if an error of ± 2% is allowed, so that the length L 1 + L slab + L 2 is 2 k 0 nH as in the first embodiment. It may be set to be included in the range of 0.98 times to 1.02 times the length of integer multiple of 2 / π. As a result, the loss of coupling efficiency of the first optical waveguides 31A, 31B, 31C, 31D, the second optical waveguide 32, and the slab optical waveguide 35 can be reduced, and high coupling efficiency can be obtained. .
 複数の第1の光導波路31と第2の光導波路32とは、シングルモードの光導波路に比べて、コア12の幅と高さとが拡張されている。スラブ光導波路35は、シングルモードのスラブ光導波路に比べて、コア12の高さが拡張されている。コア12の幅と高さ、あるいは高さが拡張されていることで、エバネッセント成分が少なくなる。複数の第1の光導波路31と、第2の光導波路32と、スラブ光導波路35との面の粗さが、伝搬する光へ及ぼす影響が少なくなることで、光合分波器30は、合波あるいは分波させる光の損失を低減できる。 The width and height of the core 12 of the plurality of first optical waveguides 31 and the second optical waveguide 32 are expanded as compared to a single mode optical waveguide. In the slab optical waveguide 35, the height of the core 12 is expanded compared to a single mode slab optical waveguide. The expanded width and height or height of the core 12 reduces the evanescent component. Since the surface roughness of the plurality of first optical waveguides 31, the second optical waveguide 32, and the slab optical waveguide 35 has less influence on the propagating light, the optical multiplexer / demultiplexer 30 The loss of wave or demultiplexed light can be reduced.
 次に、長さL,Lslab,Lが上記の式(9),(10),(11)を満足することによる作用効果について説明する。長さLが式(9)を満足することで、面17に平行な方向について、各第1の光導波路31と各発光素子2との間の位置ずれにより生じた光の分布の偏芯が、各第1の光導波路31からスラブ光導波路35への入射位置にて再現される。単峰性を持つ光がスラブ光導波路35へ入射されることで、スラブ光導波路35から第2の光導波路32へ入射する光も単峰性を持つ。第2の光導波路32には、各発光素子2から出射した各波長域の単峰性を持つ光が、偏芯を含む分布を保存したまま入射される。 Next, the operation and effect of the lengths L 1 , L slab , and L 2 by satisfying the above formulas (9), (10), and (11) will be described. When the length L 1 satisfies the equation (9), the eccentricity of the distribution of light generated due to the positional deviation between the respective first optical waveguides 31 and the respective light emitting elements 2 in the direction parallel to the surface 17 Is reproduced at the incident position from each first optical waveguide 31 to the slab optical waveguide 35. When light having a single peak is incident on the slab optical waveguide 35, light incident on the second optical waveguide 32 from the slab optical waveguide 35 also has a single peak. The light having a single peak of each wavelength range emitted from each light emitting element 2 is input to the second optical waveguide 32 while maintaining the distribution including the eccentricity.
 長さLが式(10)を満足することで、第2の光導波路32は、第1の光導波路31と同様に、第1の端面13における光の分布を第2の端面14にて再現させる。式(10)では、第2の光導波路32のコア12についての波数kaveを、複数の光信号についての波数kの平均とすることで、第2の光導波路32は、合波後の光について、光の分布を再現することができる。 When the length L 2 satisfies the equation (10), the second optical waveguide 32, like the first optical waveguide 31, distributes the light at the first end face 13 at the second end face 14. to recreate. In the equation (10), the wave number k ave of the core 12 of the second optical waveguide 32 is an average of the wave numbers k 0 of a plurality of optical signals, whereby the second optical waveguide 32 can be obtained after multiplexing. For light, the distribution of light can be reproduced.
 一方、面17に垂直な方向については、式(11)を満足することで、各第1の光導波路31と各発光素子2との間の位置ずれにより生じた光の分布の偏芯が、第2の光導波路32の第2の端面14にて再現される。 On the other hand, in the direction perpendicular to the surface 17, by satisfying the equation (11), the eccentricity of the distribution of light generated due to the positional deviation between each first optical waveguide 31 and each light emitting element 2 is It is reproduced at the second end face 14 of the second optical waveguide 32.
 これにより、光合分波器30は、面17に平行な方向と面17に垂直な方向とについて、各第1の光導波路31と各発光素子2との間の位置ずれにより生じた光の分布の偏芯を、第2の光導波路32の第2の端面14にて再現させることができる。光合分波器30は、集光レンズ3と光ファイバ4とのアクティブな調芯により、偏芯を補正可能とする。これにより、光合分波器30は、結合効率の損失を低減できる。 Thereby, the optical multiplexer / demultiplexer 30 has a distribution of light generated due to the positional deviation between the respective first optical waveguides 31 and the respective light emitting elements 2 in the direction parallel to the surface 17 and in the direction perpendicular to the surface 17. The eccentricity of the second optical waveguide 32 can be reproduced at the second end face 14 of the second optical waveguide 32. The optical multiplexer / demultiplexer 30 can correct eccentricity by active alignment between the condenser lens 3 and the optical fiber 4. Thereby, the optical multiplexer / demultiplexer 30 can reduce the loss of coupling efficiency.
 比較例として、半導体基板に設けられたシングルモードの光導波路と発光素子とを直接光学的に結合させる場合、光導波路と発光素子との位置ずれ量が0.5μm程度となると、結合効率が-3dB程度より低下する。一方、マルチモードの光導波路が用いられる場合、例えば光導波路の幅が15μmである場合に、光導波路と発光素子との位置ずれ量が10μm程度となっても、発光素子の光はおよそ無損失で光導波路へ入射させることができる。 As a comparative example, in the case where a single mode optical waveguide provided on a semiconductor substrate and a light emitting element are directly optically coupled, when the positional deviation between the optical waveguide and the light emitting element is about 0.5 μm, the coupling efficiency is − It falls below about 3 dB. On the other hand, when a multimode optical waveguide is used, for example, when the width of the optical waveguide is 15 μm, even if the positional deviation between the optical waveguide and the light emitting element is about 10 μm, the light of the light emitting element is almost lossless Can be incident on the optical waveguide.
 実施の形態3では、光合分波器30は、第2の光導波路32の第2の端面14にて、第1の光導波路31の第1の端面13における単峰性を持つ光の分布と偏芯とを再現させる。第2の光導波路32の第2の端面14から出射した光を集光レンズ3で集光させて、光ファイバ4へ光を入射させるときに、単峰性が確保できていれば、第2の端面14における光の出射位置のずれが10μm程度であっても、結合効率は-3dB程度となる。これにより、光合分波器30は、第1の光導波路31の第1の端面13における光の入射位置について許容されるずれ量が10μmである場合と同様に、結合効率の損失を低減させる効果を得ることができる。 In the third embodiment, the optical multiplexer / demultiplexer 30 has a distribution of light having unimodality at the first end face 13 of the first optical waveguide 31 at the second end face 14 of the second optical waveguide 32. Reproduce eccentricity. When the light emitted from the second end face 14 of the second optical waveguide 32 is condensed by the condensing lens 3 and the light is made incident on the optical fiber 4, if the unimodal property can be secured, the second The coupling efficiency is about -3 dB even if the deviation of the light emission position at the end face 14 is about 10 μm. As a result, the optical multiplexer / demultiplexer 30 has the effect of reducing the loss of coupling efficiency, as in the case where the amount of deviation allowed for the incident position of light at the first end face 13 of the first optical waveguide 31 is 10 μm. You can get
 なお、複数の第1の光導波路31と第2の光導波路32とは、第1の端面13と第2の端面14との間に湾曲あるいは折り曲げを含むものであっても良い。複数の第1の光導波路31と第2の光導波路32とは、直線形状である場合のみならず、湾曲あるいは折り曲げを含む形状である場合も、結合効率の損失を低減でき、高い結合効率を得ることができる。スラブ光導波路35の形状は、図12に示す形状以外の形状であっても良い。 The plurality of first optical waveguides 31 and the second optical waveguides 32 may include a curve or a bend between the first end surface 13 and the second end surface 14. The plurality of first optical waveguides 31 and the second optical waveguide 32 can reduce the loss of the coupling efficiency not only in the case of the linear shape but also in the case of the shape including the bending or bending, thereby achieving high coupling efficiency. You can get it. The shape of the slab optical waveguide 35 may be a shape other than the shape shown in FIG.
 上記式(9),(10),(11)で求められる値、あるいは式(9),(10),(11)で求められる値の0.98倍から1.02倍の範囲内の値に長さL,Lslab,Lを設定可能であれば、コア12の幅Wおよび高さHと、コア12の屈折率と、クラッドの屈折率とは、任意に設定可能である。複数の第1の光導波路31と、第2の光導波路32と、スラブ光導波路35とは、コア12であるSiとクラッドであるSiOとを含めたPLCの光導波路である場合に限られない。複数の第1の光導波路31と、第2の光導波路32と、スラブ光導波路35との材料には、半導体材料であるSiN、SiON、GaAs、InP、誘電体材料であるLiONb、ポリマー材料のいずれが用いられていても良い。 Values obtained by the above formulas (9), (10), (11), or values within the range of 0.98 times to 1.02 times the values obtained by the formulas (9), (10), (11) The width W and height H of the core 12, the refractive index of the core 12, and the refractive index of the cladding can be arbitrarily set as long as the lengths L 1 , L slab and L 2 can be set to The plurality of first optical waveguides 31, the second optical waveguide 32, and the slab optical waveguide 35 are limited to the optical waveguides of PLC including Si as the core 12 and SiO 2 as the cladding. Absent. As materials of the plurality of first optical waveguides 31, the second optical waveguide 32, and the slab optical waveguide 35, semiconductor materials such as SiN, SiON, GaAs, InP, dielectric materials LiO 3 Nb, and polymers are used. Any of the materials may be used.
 複数の発光素子2は、半導体基板11に個別に形成されたものに限られず、1つの基板に集積されたものであっても良い。複数の発光素子2が集積されている場合、複数の発光素子2のすべてについて、第1の光導波路31との間に同じ量の位置ずれが生じることとなるため、複数の光信号について、第2の光導波路32の第2の端面14における偏芯量を揃えることが可能となる。 The plurality of light emitting elements 2 are not limited to those individually formed on the semiconductor substrate 11, but may be integrated on one substrate. When a plurality of light emitting elements 2 are integrated, the same amount of positional deviation with the first optical waveguide 31 occurs in all of the plurality of light emitting elements 2. It becomes possible to make the eccentricity amount in the 2nd end face 14 of 2nd optical waveguide 32 equal.
 実施の形態1の変形例と同様に、光合分波器30は、第1の光学素子である光ファイバ5を備えても良く、集光レンズ3が省略されても良い。また、光合分波器30は、第2の光学素子である受光素子6を備えても良い。第1の光学素子は、発光素子2と光ファイバ5との一方を含む。第2の光学素子は、光ファイバ4と受光素子6との一方を含む。光ファイバ4,5は、シングルモードとマルチモードとのいずれにより光を伝搬させるものであっても良い。第1の光学素子と第2の光学素子とは、光ファイバ4,5に代えて、光ファイバ以外の光導波路を含むものであっても良い。 As in the modification of the first embodiment, the optical multiplexer / demultiplexer 30 may include the optical fiber 5 which is the first optical element, and the condenser lens 3 may be omitted. In addition, the optical multiplexer / demultiplexer 30 may include the light receiving element 6 which is a second optical element. The first optical element includes one of the light emitting element 2 and the optical fiber 5. The second optical element includes one of the optical fiber 4 and the light receiving element 6. The optical fibers 4 and 5 may propagate light by either single mode or multi mode. The first optical element and the second optical element may include optical waveguides other than the optical fiber instead of the optical fibers 4 and 5.
 実施の形態3によると、光合分波器30は、2knW/πの整数倍である長さの0.98倍から1.02倍に含まれる長さの複数の第1の光導波路31と第2の光導波路32とを備える。また、複数の第1の光導波路31と、第2の光導波路32と、光合分波部33とにおける複数の光信号の伝搬経路の長さが、2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれる。このように複数の第1の光導波路31と、第2の光導波路32と、光合分波部33との伝搬経路の長さが設定されたことで、光合分波器30は、結合効率の損失を低減可能とする。これにより、光合分波器30は、高い結合効率を実現できるという効果を奏する。 According to the third embodiment, the optical multiplexer / demultiplexer 30 has a plurality of first optical waveguides of a length included in 0.98 times to 1.02 times the length which is an integral multiple of 2k 0 nW 2 / π. 31 and a second optical waveguide 32. In addition, the lengths of the propagation paths of the plurality of optical signals in the plurality of first optical waveguides 31, the second optical waveguide 32, and the optical multiplexing / demultiplexing unit 33 are integer multiples of 2k 0 nH 2 / π. It is included in the range of 0.98 times to 1.02 times the length. As described above, by setting the propagation path lengths of the plurality of first optical waveguides 31, the second optical waveguide 32, and the optical multiplexing / demultiplexing unit 33, the optical multiplexer / demultiplexer 30 has a coupling efficiency of It is possible to reduce the loss. As a result, the optical multiplexer / demultiplexer 30 has an effect that high coupling efficiency can be realized.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
 1 光導波路、2,2A,2B,2C,2D 発光素子、3 集光レンズ、4,5 光ファイバ、6 受光素子、10 光回路、11 半導体基板、12 コア、13 第1の端面、14 第2の端面、15,16,23,24,28 光、17 面、20 半導体レーザ、21 光増幅器、22 ミラー、25,26 端面、30 光合分波器、31,31A,31B,31C,31D 第1の光導波路、32 第2の光導波路、33 光合分波部、34 反射型グレーティング、35 スラブ光導波路、36,36A,36B,36C,36D 伝搬経路。 DESCRIPTION OF SYMBOLS 1 optical waveguide, 2, 2A, 2B, 2C, 2D light emitting element, 3 condensing lens, 4, 5 optical fiber, 6 light receiving element, 10 optical circuit, 11 semiconductor substrate, 12 core, 13 1st end face, 14 first 2, end faces 15, 16, 23, 24, 28 light, 17 faces, 20 semiconductor lasers, 21 optical amplifiers, 22 mirrors, 25 and 26 end faces, 30 optical multiplexers / demultiplexers, 31, 31A, 31B, 31C, 31D 1 optical waveguide, 32 second optical waveguide, 33 light combining / splitting parts, 34 reflective grating, 35 slab optical waveguides, 36, 36A, 36B, 36C, 36D propagation paths.

Claims (21)

  1.  第1の端面と第2の端面との間にて複数の導波モードの光が伝搬するコアを含み、
     前記第1の端面から前記第2の端面へ向かう方向である第1の方向に垂直な第2の方向における前記コアの幅をW、前記第1の方向と前記第2の方向とに垂直な第3の方向における前記コアの高さをH、前記コアの屈折率をn、前記コアを伝搬する光の波数をkとして、
     前記第1の方向における前記コアの長さは、2knW/πの整数倍かつ2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれる
     ことを特徴とする光導波路。
    A core for propagating light of a plurality of guided modes between the first end face and the second end face,
    The width of the core in a second direction perpendicular to the first direction, which is the direction from the first end face to the second end face, is W, perpendicular to the first direction and the second direction Let H be the height of the core in the third direction, n be the refractive index of the core, and k 0 be the wave number of light propagating through the core
    The length of the first of said core in the direction contained in the 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / range 0.98 times the length of an integer multiple 1.02 times the π of π An optical waveguide characterized by
  2.  前記幅と前記高さとは、前記複数の導波モードの光のエバネッセント成分が生じる範囲を含めた前記コアの幅と高さとであることを特徴とする請求項1に記載の光導波路。 The optical waveguide according to claim 1, wherein the width and the height are the width and the height of the core including a range in which an evanescent component of light of the plurality of guided modes is generated.
  3.  前記幅の二乗は、前記高さの二乗の整数倍であることを特徴とする請求項1または2に記載の光導波路。 The optical waveguide according to claim 1 or 2, wherein the square of the width is an integral multiple of the square of the height.
  4.  前記高さの二乗は、前記幅の二乗の整数倍であることを特徴とする請求項1または2に記載の光導波路。 The optical waveguide according to claim 1 or 2, wherein the square of the height is an integral multiple of the square of the width.
  5.  第1の端面と第2の端面との間にて複数の導波モードの光が伝搬するコアを含む光導波路を有し、
     前記第1の端面から前記第2の端面へ向かう方向である第1の方向に垂直な第2の方向における前記コアの幅をW、前記第1の方向と前記第2の方向とに垂直な第3の方向における前記コアの高さをH、前記コアの屈折率をn、前記コアを伝搬する光の波数をkとして、
     前記第1の方向における前記コアの長さは、2knW/πの整数倍かつ2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれる
     ことを特徴とする光回路。
    An optical waveguide including a core through which light of a plurality of guided modes propagates between the first end face and the second end face;
    The width of the core in a second direction perpendicular to the first direction, which is the direction from the first end face to the second end face, is W, perpendicular to the first direction and the second direction Let H be the height of the core in the third direction, n be the refractive index of the core, and k 0 be the wave number of light propagating through the core
    The length of the first of said core in the direction contained in the 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / range 0.98 times the length of an integer multiple 1.02 times the π of π An optical circuit characterized by
  6.  前記第1の端面へ光を入射させる第1の光学素子と、
     前記第2の端面から出射された光を受ける第2の光学素子と
     を備えることを特徴とする請求項5に記載の光回路。
    A first optical element for causing light to enter the first end face;
    The optical circuit according to claim 5, further comprising: a second optical element that receives the light emitted from the second end face.
  7.  前記第1の光学素子は、発光素子を含むことを特徴とする請求項6に記載の光回路。 The optical circuit according to claim 6, wherein the first optical element includes a light emitting element.
  8.  前記第1の光学素子は、光ファイバを含むことを特徴とする請求項6または7に記載の光回路。 The optical circuit according to claim 6, wherein the first optical element includes an optical fiber.
  9.  前記第2の光学素子は、光ファイバを含むことを特徴とする請求項6から8のいずれか1つに記載の光回路。 The optical circuit according to any one of claims 6 to 8, wherein the second optical element comprises an optical fiber.
  10.  前記第2の光学素子は、前記第2の端面と前記光ファイバとの間のレンズを含むことを特徴とする請求項9に記載の光回路。 The optical circuit according to claim 9, wherein the second optical element includes a lens between the second end face and the optical fiber.
  11.  前記第2の光学素子は、光を検出する受光素子を含むことを特徴とする請求項6から10のいずれか1つに記載の光回路。 The optical circuit according to any one of claims 6 to 10, wherein the second optical element includes a light receiving element that detects light.
  12.  第1の端面と第2の端面との間にて複数の導波モードの光が伝搬するコアを含む光導波路を有し、
     前記第1の端面から前記第2の端面へ向かう方向である第1の方向に垂直な第2の方向における前記コアの幅をW、前記第1の方向と前記第2の方向とに垂直な第3の方向における前記コアの高さをH、前記コアの屈折率をn、前記コアを伝搬する光の波数をkとして、
     前記第1の方向における前記コアの長さは、2knW/πの整数倍かつ2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれる
     ことを特徴とする半導体レーザ。
    An optical waveguide including a core through which light of a plurality of guided modes propagates between the first end face and the second end face;
    The width of the core in a second direction perpendicular to the first direction, which is the direction from the first end face to the second end face, is W, perpendicular to the first direction and the second direction Let H be the height of the core in the third direction, n be the refractive index of the core, and k 0 be the wave number of light propagating through the core
    The length of the first of said core in the direction contained in the 2k 0 nW 2 / an integral multiple and 2k 0 nH 2 / range 0.98 times the length of an integer multiple 1.02 times the π of π Semiconductor laser characterized by
  13.  前記第1の端面へ光を入射させる第1の光学素子と、
     前記第2の端面へ到達した光を受ける第2の光学素子と
     を備えることを特徴とする請求項12に記載の半導体レーザ。
    A first optical element for causing light to enter the first end face;
    13. The semiconductor laser according to claim 12, further comprising: a second optical element that receives the light that has reached the second end face.
  14.  前記第1の光学素子は、前記第1の端面から出射した光を受けて、前記光導波路からの光を増幅させて出射する光増幅器を含み、
     前記第2の光学素子は、前記第2の端面へ到達した光を反射するミラーを含む
     ことを特徴とする請求項13に記載の半導体レーザ。
    The first optical element includes an optical amplifier that receives the light emitted from the first end face, amplifies the light from the optical waveguide, and emits the amplified light.
    The semiconductor laser according to claim 13, wherein the second optical element includes a mirror that reflects the light that has reached the second end face.
  15.  前記ミラーは、前記第2の端面に設けられた高反射性材料の層であることを特徴とする請求項14に記載の半導体レーザ。 15. The semiconductor laser according to claim 14, wherein the mirror is a layer of a highly reflective material provided on the second end face.
  16.  前記ミラーは、特定の波長域の光を選択的に反射するミラーであることを特徴とする請求項14に記載の半導体レーザ。 The semiconductor laser according to claim 14, wherein the mirror is a mirror that selectively reflects light in a specific wavelength range.
  17.  前記ミラーは、前記第2の端面へ到達した光のうちの一部の光を透過して、その他の光を反射するミラーであって、
     前記第2の光学素子は、前記ミラーを透過した光を検出する受光素子を備えることを特徴とする請求項14または16に記載の半導体レーザ。
    The mirror is a mirror that transmits part of the light reaching the second end face and reflects the other light,
    The semiconductor laser according to claim 14, wherein the second optical element includes a light receiving element that detects light transmitted through the mirror.
  18.  複数の導波モードの光が伝搬するコアを含み、波長域が異なる複数の光信号が伝搬する複数の第1の光導波路と、
     複数の導波モードの光が伝搬するコアを含み、多重化された前記複数の光信号である多重波長信号が伝搬する第2の光導波路と、
     前記複数の光信号から前記多重波長信号へ合波、あるいは前記多重波長信号から前記複数の光信号へ分波させる光合分波部と
     を含み、
     前記コアの幅をW、前記コアの高さをH、前記コアの屈折率をn、前記コアを伝搬する光の波数をkとして、
     前記複数の第1の光導波路の前記コアの長さと、前記第2の光導波路の前記コアの長さとは、2knW/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれ、かつ
     前記複数の第1の光導波路と、前記第2の光導波路と、前記光合分波部とにおける前記複数の光信号の伝搬経路の長さが、2knH/πの整数倍である長さの0.98倍から1.02倍の範囲に含まれる
     ことを特徴とする光回路。
    A plurality of first optical waveguides including a core through which light of a plurality of guided modes propagates, and a plurality of optical signals of different wavelength regions propagating;
    A second optical waveguide including a core through which light of a plurality of guided modes propagates, and through which a multiple wavelength signal which is the plurality of multiplexed optical signals propagates;
    An optical multiplexer / demultiplexer configured to multiplex the plurality of optical signals into the multiple wavelength signal or to split the multiple wavelength signal into the plurality of optical signals;
    The width of the core is W, the height of the core is H, the refractive index of the core is n, and the wave number of light propagating through the core is k,
    The length of the core of the plurality of first optical waveguides and the length of the core of the second optical waveguide are 0.98 times the length which is an integral multiple of 2k 0 nW 2 / π. The propagation path length of the plurality of optical signals in the plurality of first optical waveguides, the second optical waveguide, and the optical multiplexing / demultiplexing unit included in the range of 02 times is 2 k 0 nH An optical circuit characterized by being included in a range of 0.98 times to 1.02 times the length which is an integral multiple of 2 / π.
  19.  前記第2の光導波路の前記コアについての前記波数は、前記複数の光信号についての波数の平均であることを特徴とする請求項18に記載の光回路。 19. The optical circuit according to claim 18, wherein the wave number of the core of the second optical waveguide is an average of wave numbers of the plurality of optical signals.
  20.  前記複数の第1の光導波路の第1の端面に光学的に結合された第1の光学素子と、
     前記第2の光導波路の第2の端面に光学的に結合された第2の光学素子と
     を備えることを特徴とする請求項18または19に記載の光回路。
    A first optical element optically coupled to first end faces of the plurality of first optical waveguides;
    20. The optical circuit according to claim 18, further comprising: a second optical element optically coupled to a second end face of the second optical waveguide.
  21.  前記光合分波部は、
     前記複数の第1の光導波路の第2の端面と前記第2の光導波路の第1の端面とに接続されたスラブ光導波路と、
     前記スラブ光導波路に形成され、前記複数の光信号を回折により反射して前記多重波長信号を出射、あるいは前記多重波長信号を回折により反射して前記複数の光信号を出射する反射型グレーティングと
     を備えることを特徴とする請求項18から20のいずれか1つに記載の光回路。
    The optical multiplexing / demultiplexing unit
    A slab optical waveguide connected to a second end surface of the plurality of first optical waveguides and a first end surface of the second optical waveguide;
    A reflection type grating formed in the slab optical waveguide, and reflecting the plurality of optical signals by diffraction to emit the multiple wavelength signal, or reflecting the multiple wavelength signal by diffraction to emit the plurality of optical signals; 21. A light circuit as claimed in any one of claims 18 to 20 comprising.
PCT/JP2017/022882 2017-06-21 2017-06-21 Optical waveguide, optical circuit and semiconductor laser WO2018235200A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/022882 WO2018235200A1 (en) 2017-06-21 2017-06-21 Optical waveguide, optical circuit and semiconductor laser
JP2017564942A JPWO2018235200A1 (en) 2017-06-21 2017-06-21 Optical waveguide, optical circuit and semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022882 WO2018235200A1 (en) 2017-06-21 2017-06-21 Optical waveguide, optical circuit and semiconductor laser

Publications (1)

Publication Number Publication Date
WO2018235200A1 true WO2018235200A1 (en) 2018-12-27

Family

ID=64736963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022882 WO2018235200A1 (en) 2017-06-21 2017-06-21 Optical waveguide, optical circuit and semiconductor laser

Country Status (2)

Country Link
JP (1) JPWO2018235200A1 (en)
WO (1) WO2018235200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047740A1 (en) * 2022-08-30 2024-03-07 日本電信電話株式会社 Waveguide device inspection system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136890A (en) * 1985-12-10 1987-06-19 Sharp Corp Semiconductor laser device
JP2002098847A (en) * 2000-09-21 2002-04-05 Fuji Photo Film Co Ltd Optical waveguide element and semiconductor laser device
JP2003084150A (en) * 2001-09-12 2003-03-19 Ntt Advanced Technology Corp Optical waveguide device
US20040076394A1 (en) * 2000-10-27 2004-04-22 Federico Carniel Hybrid buried/ridge planar waveguides
JP2004361692A (en) * 2003-04-07 2004-12-24 Dow Corning Asia Ltd Curable organopolysiloxane resin composition for optical transmission components, optical transmission components consisting of organopolysiloxane resin cured product, and method for fabricating optical transmission components
JP2005274664A (en) * 2004-03-23 2005-10-06 Jsr Corp Photo-sensitive resin composition for forming optical waveguide, and optical waveguide
JP2006030593A (en) * 2004-07-16 2006-02-02 Fuji Xerox Co Ltd Optical waveguide, ferrule for optical waveguide, and optical connector
JP2008501987A (en) * 2004-06-04 2008-01-24 エネブレンス インコーポレイテッド Two-stage optical bidirectional transceiver
JP2008209904A (en) * 2007-01-30 2008-09-11 Nec Corp Bidirectional optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
US7450309B1 (en) * 2006-06-13 2008-11-11 Optonet, Inc. Integrated signal manipulator for manipulating optical signals
JP2010171252A (en) * 2009-01-23 2010-08-05 Fujitsu Ltd Optical transmission device
JP2017050660A (en) * 2015-08-31 2017-03-09 日本電信電話株式会社 Optical transmission system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136890A (en) * 1985-12-10 1987-06-19 Sharp Corp Semiconductor laser device
JP2002098847A (en) * 2000-09-21 2002-04-05 Fuji Photo Film Co Ltd Optical waveguide element and semiconductor laser device
US20040076394A1 (en) * 2000-10-27 2004-04-22 Federico Carniel Hybrid buried/ridge planar waveguides
JP2003084150A (en) * 2001-09-12 2003-03-19 Ntt Advanced Technology Corp Optical waveguide device
JP2004361692A (en) * 2003-04-07 2004-12-24 Dow Corning Asia Ltd Curable organopolysiloxane resin composition for optical transmission components, optical transmission components consisting of organopolysiloxane resin cured product, and method for fabricating optical transmission components
JP2005274664A (en) * 2004-03-23 2005-10-06 Jsr Corp Photo-sensitive resin composition for forming optical waveguide, and optical waveguide
JP2008501987A (en) * 2004-06-04 2008-01-24 エネブレンス インコーポレイテッド Two-stage optical bidirectional transceiver
JP2006030593A (en) * 2004-07-16 2006-02-02 Fuji Xerox Co Ltd Optical waveguide, ferrule for optical waveguide, and optical connector
US7450309B1 (en) * 2006-06-13 2008-11-11 Optonet, Inc. Integrated signal manipulator for manipulating optical signals
JP2008209904A (en) * 2007-01-30 2008-09-11 Nec Corp Bidirectional optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
JP2010171252A (en) * 2009-01-23 2010-08-05 Fujitsu Ltd Optical transmission device
JP2017050660A (en) * 2015-08-31 2017-03-09 日本電信電話株式会社 Optical transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047740A1 (en) * 2022-08-30 2024-03-07 日本電信電話株式会社 Waveguide device inspection system

Also Published As

Publication number Publication date
JPWO2018235200A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6089077B1 (en) Waveguide type optical diffraction grating and optical wavelength filter
WO2013021421A1 (en) Semiconductor optical element
US20100092128A1 (en) Optical Transceiver module
JP5304158B2 (en) Optical resonator and tunable laser
JP6124731B2 (en) Wavelength monitor and optical module
JPH11271541A (en) Wavelength branching filter circuit
KR20120070836A (en) Multi-wavelength optical source generator
JP6003069B2 (en) Grating element and optical element
US6556749B2 (en) Array waveguide grating and method of manufacture thereof
WO2018235200A1 (en) Optical waveguide, optical circuit and semiconductor laser
JPH0685374A (en) Wavelength multiplexing transmitter/receiver for optical communication
JP5880087B2 (en) Grating element and optical element
JP2023047302A (en) Multi-mode devices for multiplexing and demultiplexing
JP5751008B2 (en) Optical multiplexer / demultiplexer and optical multiplexing / demultiplexing method
JP5561304B2 (en) Optical element
JP5312309B2 (en) Optical multiplexer / demultiplexer
JP2003066269A (en) Multi-wavelength demultiplexing optical device and wavelength multiplexed light transmission module
KR100695769B1 (en) Optical multiplexer/demultiplexer
EP1436657A2 (en) Optical filter
JP6127079B2 (en) Optical wavelength filter
WO2018042663A1 (en) Optical component and optical module
JP3196785B2 (en) Waveguide type laser
US6690856B2 (en) Optical waveguide filter using multi-mode interference
JP4097545B2 (en) Optical filter and optical filter module
JP4759973B2 (en) Demultiplexer and wavelength division multiplexing optical transmission module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564942

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914565

Country of ref document: EP

Kind code of ref document: A1