WO2018235161A1 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
WO2018235161A1
WO2018235161A1 PCT/JP2017/022685 JP2017022685W WO2018235161A1 WO 2018235161 A1 WO2018235161 A1 WO 2018235161A1 JP 2017022685 W JP2017022685 W JP 2017022685W WO 2018235161 A1 WO2018235161 A1 WO 2018235161A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
phase control
control plate
heating chamber
heated
Prior art date
Application number
PCT/JP2017/022685
Other languages
French (fr)
Japanese (ja)
Inventor
由文 河村
拓海 杉谷
政毅 半谷
山中 宏治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/022685 priority Critical patent/WO2018235161A1/en
Publication of WO2018235161A1 publication Critical patent/WO2018235161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers

Definitions

  • the present invention relates to a microwave heating apparatus for heating an object to be heated by microwave irradiation such as a microwave oven.
  • Patent Document 1 proposes that a connecting portion is provided on the right wall surface and the upper wall surface, and a waveguide portion connecting each connecting portion is disposed.
  • the microwave heating device disclosed in Patent Document 1 performs heating by substantially circulating a part of the microwave energy supplied from the rotary antenna into the heating chamber through the coupling portion between the waveguide and the heating chamber. The amount of microwave energy reflected from the chamber to the magnetron side can be reduced. In addition, since the supply of the microwaves into the heating chamber is also performed from the coupling portion, the microwaves can be supplied from various directions to the object to be heated. However, even with the microwave heating apparatus configured as described above, there is a problem that high-intensity zones (hot spots) or dead zones of microwaves are generated due to the shape of the heating chamber.
  • This invention solves the above-mentioned subject, and it aims at obtaining the microwave heating device which suppressed generation
  • the microwave heating apparatus is a phase control that is formed of a semiconductor, uses a metamaterial in which unit cells are arranged in a plurality of rows and a plurality of columns, and is mounted on a wall on the heating chamber side of the inner wall in the instrument body A plate and capacitance value changing means for changing the capacitance value of the phase control plate.
  • the phase control plate can arbitrarily change the electric field reflection phase on the metal interface which is the inner wall of the instrument body, and can suppress the hot spot due to the shape of the heating chamber surrounded by the inner wall. Uniform heating can be made possible.
  • FIG. 3 is a three-dimensional layout diagram showing a part of phase control plates 6 a to 6 e in the microwave heating device according to Embodiment 1 of the present invention.
  • FIG. 7 is an equivalent circuit diagram of a unit cell 60 of phase control plates 6 a to 6 e in the microwave heating apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a view showing the relationship between the capacitance value of the variable capacitance element 7 of the unit cell 60 and the reflection phase ⁇ in the phase control plates 6a to 6e in the microwave heating apparatus according to Embodiment 1 of the present invention.
  • Embodiment 1 A microwave heating apparatus such as a microwave oven is heated by irradiating the object to be heated 100 contained in the heating chamber 2 with microwaves, by the electromagnetic properties of the object to be heated 100, that is, dielectric loss, magnetic loss, etc. Configured to be able to
  • the instrument body 1 has an inner wall 3 and an outer wall 4.
  • the inner wall 3 has a bottom wall 3a made of a metal material that reflects microwaves, a left wall 3b, a right wall 3c, a ceiling wall 3d, and a back wall 3e (not shown).
  • the front surface of the inner wall 3 has an opening serving as an inlet / outlet of the heating object 100, and the opening is closed by a door (not shown).
  • the heating chamber 2 encloses the supplied microwaves therein.
  • the antennas 5a to 5c are mounted on the ceiling wall 3d of the inner wall 3 of the instrument body 1, and are supplied from the microwave source (not shown) and transmitted through the waveguide to the heating chamber 2 Do.
  • the microwave source and the waveguide are disposed in a space 1 a formed between the inner wall 3 and the outer wall 4 of the tool body 1.
  • three antennas 5a to 5c are mounted on the ceiling wall 3d of the inner wall 3.
  • one antenna may be used, or the bottom wall 3a, the left wall 3b, the right wall 3c, One or more may be attached to at least one wall of the ceiling wall 3d and the back wall 3e.
  • the phase control plate includes a phase control plate 6a attached to the bottom wall 3a of the inner wall 3 by adhesion or screwing, a phase control plate 6b attached to the left wall 3b by adhesion or screwing, and the right wall 3c.
  • a large number of unit cells 60 are arranged in a plurality of rows and a plurality of columns, and is formed of a metamaterial (Meta-material) formed of a semiconductor.
  • each of the phase control plates 6a to 6e has a metamaterial structure in which unit cells 60 are periodically arranged in the vertical and horizontal directions in a two-dimensional area on the surface of the insulating substrate 61.
  • the periodic arrangement means that a plurality of identical structures are arranged at a constant period, that is, at equal intervals.
  • a table (not shown) made of a low dielectric loss material on which the object to be heated 100 is mounted is disposed on the phase control plate 6a mounted on the bottom wall 3a.
  • Each of the phase control plates 6a to 6e functions as an electromagnetic field distribution adjusting unit, in which the surface on the heating chamber 2 side is a metal interface, and the reflection phase of the electric field at the metal interface is arbitrarily changed.
  • the phase control plates 6a to 6e are not attached to the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3, the bottom wall 3a, the left wall 3b, the right wall 3c, and the ceiling
  • the reflection phase of the electric field at the metal interface which is the wall surface of the wall 3d and the back wall 3e, is always 180 °.
  • the phase control plates 6a to 6e are attached to the wall surfaces of the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 to form the bottom wall 3a and the left wall 3b.
  • the reflection phase of the electric field on the wall surfaces of the right wall 3c, the ceiling wall 3d, and the back wall 3e can be made arbitrary.
  • phase control plates 6a to 6e which is a unique configuration of the microwave heating apparatus according to the first embodiment will be described with reference to FIGS.
  • Each of the phase control plates 6a to 6e is disposed on the entire wall surface of the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e of the inner wall 3 to be attached.
  • the phase control plates 6 a to 6 e will be representatively described as the phase control plate 6.
  • FIG. 2 is a three-dimensional layout diagram showing a portion of the phase control plate 6 in which unit cells 60-11 to 60-22 are arranged in two rows and two columns.
  • FIG. 3 is a cross-sectional view taken along the line iii-iii of FIG.
  • the unit cells 60 are periodically arranged in a large number in the right direction and a large number in the lower direction in FIG.
  • Each of the unit cells 60-11 to 60-22 includes a ground conductor 62 formed on the surface of the insulating substrate 61, a semiconductor 63, and an electrode portion 64 having a cross-shaped plane.
  • the phase control plate 6 is mounted with the back surface of the insulating substrate 61 facing the wall surface of the inner wall 3.
  • the ground conductor 62 is a ground conductor layer 620 formed of an aluminum (Al) layer vapor-deposited on the surface of the insulating substrate 61, and is located in the formation region of the unit cells 60-11 to 60-22.
  • the ground conductor layer 620 is set to the ground potential.
  • the semiconductor 63 is a large band gap gallium nitride (GaN) layer 630 formed on the surface of the ground conductor layer 620.
  • Each electrode portion 64 is formed of an aluminum (Al) layer vapor-deposited on the surface of the GaN layer 630, and is located in the formation region of unit cells 60-11 to 60-22.
  • Each of the electrode portions 64 serves as one electrode of the variable capacitance element 7 which is a varactor diode in each of the unit cells 60-11 to 60-22.
  • Each of the varactor diodes which are the variable capacitance elements 7 is formed in the GaN layer 630 located between the opposing tips in the cross shape of the adjacent electrode parts 64.
  • the varactor diode changes its capacitance value by adjusting the PN junction depletion region, and when the reverse voltage applied between the anode and the cathode increases, the capacitance value decreases and the reverse voltage decreases. Capacity value increases.
  • the opening 621 is formed at a position including the opposing tip of the cross shape of the adjacent electrode portion 64. That is, after an Al layer is formed on the surface of the insulating substrate 61 by vapor deposition, openings 621 are formed on the vertical and horizontal matrixes by etching. As a result, the ground conductor layer 620 remains in the formation region of the unit cells 60-11 to 60-22, and the ground conductor layer 620 in the remaining portion becomes the ground conductor 62 of each unit cell 60-11 to 60-22.
  • Each of the electrode portions 64 is electrically connected by a ground conductor 62 and a contact 65, the center of the cross shape being positioned immediately below the cross shape.
  • the electrode portion 64 and the contact 65 are formed as follows. That is, in the GaN layer 630, the contact holes 63a are formed at respective central positions in the formation regions of the unit cells 60-11 to 60-22. In this state, an Al layer is formed on the surface of the GaN layer 630 by vapor deposition. At this time, Al is buried in contact hole 63a, electrically connected to corresponding ground conductor 62 in ground conductor layer 620, and also electrically connected to the Al layer formed on the surface of GaN layer 630. Contacts 65 are formed. Thereafter, the Al layer is etched to form a plurality of cross-shaped electrode portions 64 formed on the surface of the GaN layer 630 in a plurality of rows and a plurality of columns.
  • the four cross-shaped tips of each of the electrode portions 64 are electrically connected to wiring contacts 66a to 66d electrically connected to corresponding wiring layers (not shown) formed on the back surface of the insulating substrate 61. Ru.
  • the wiring contacts 66a to 66d are formed simultaneously with the electrode portion 64 and the contact 65. That is, through holes are formed in the GaN layer 630 and the insulating substrate 61 at the positions where the cross-shaped four tips of the electrode portion 64 are located. In this state, when an Al layer is formed on the surface of the GaN layer 630 by vapor deposition, Al is embedded in the through holes and electrically connected to the corresponding wiring layer formed on the back surface of the insulating substrate 61. A plurality of wiring contacts 66 electrically connected also to the Al layer formed on the surface of 630 are formed.
  • the variable voltage source 8 is connected between the facing end portions of the adjacent electrode portions 64 via the wiring contacts 66a to 66d and the wiring layer.
  • Each of the variable voltage sources 8 is a DC power supply capable of automatically, continuously and temporally changing the voltage value.
  • the variable voltage source 8 in which the plus electrode is connected to the wiring contact 66a is a wire to which the tip portion of the adjacent electrode portion 64 is connected, whose minus electrode faces the tip portion of the electrode portion 64 to which the brass electrode is connected. It is connected to the contact 66b.
  • the variable voltage source 8 in which the plus electrode is connected to the wiring contact 66c is a wire to which the tip portion of the adjacent electrode portion 64 is connected such that the minus electrode faces the tip portion of the electrode portion 64 to which the brass electrode is connected. It is connected to the contact 66d.
  • variable capacitance element 7 formed between the facing tips of the adjacent electrode parts 64 connected to the variable voltage source 8
  • the volume values also change automatically, continuously and temporally.
  • the reflection phase of the electric field on the surface of the phase control plate 6 facing the inside changes, and the impedance on the surface facing the inside of the heating chamber 2 changes, and the electromagnetic field distribution (the standing wave distribution) ) Changes. Therefore, when microwaves are supplied into the heating chamber 2 from the antennas 5a to 5c, the distribution of the temperature rise of the object to be heated 100 is also changed by the change of the electromagnetic field distribution, and the entire object to be heated 100 is It can be uniformly heated.
  • the variable voltage source 8 serves as capacitance value changing means for changing the capacitance value of the phase control plates 6a to 6e.
  • FIG. 4 shows an equivalent circuit diagram of the unit cell 60 of the phase control plates 6a to 6e, and there are variable capacitance elements 7 extended in four directions from the equivalent circuit formation surface to be the common node 9.
  • An inductive element 10 is present between the common node 9 and the ground conductor 62.
  • the wall surfaces of the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 to which the phase control plates 6a to 6e are attached become the periodic boundary 11.
  • the operating frequency of the microwave supplied from the antennas 5a to 5c into the heating chamber 2 is f0, and the wavelength of the operating frequency is ⁇ .
  • the microwave generation source is operated, the microwaves transmitted through the waveguide are supplied from the antennas 5a to 5c into the heating chamber 2 by the solid line arrows A1 to A3 and the dotted line arrow B1 shown in FIG. As a result, heat loss occurs and the object to be heated 100 is heated.
  • the heating action on the object to be heated 100 is dominated by the dielectric loss of the object to be heated 100 generated by the irradiation of the microwaves. Therefore, the following description will be given focusing on only the electric field components generated from the antennas 5a to 5c.
  • microwaves directly incident on the object to be heated 100 from the antennas 5a to 5c, and microwaves indicated by solid arrows A1 to A3 in FIG. 1 will be described.
  • each of the electric field components E1 to E3 has an arbitrary amplitude and phase at the momentary time, and can be expressed by the following equations (1) to (3) as electric field components at the momentary time.
  • E1
  • E2
  • E3
  • is a propagation constant at the operating frequency f0
  • is an angular frequency derived from the operating frequency f0
  • t is an arbitrary time
  • z1, z2 and z3 are arbitrary positions of the respective antennas 5a to 5c and the object 100 to be heated And the distance.
  • the electric field strength at an arbitrary position of the object to be heated 100 is a combined electric field Etotal of the three electric field components, and can be expressed by the following equation (4).
  • the microwaves A1 to A3 are obtained.
  • the combined electric field Etotal at the position where the light is incident is also different. As a result, the electric field strength varies depending on the position of the object 100 to be heated. The variation in electric field strength causes uneven heating to the object to be heated 100.
  • the microwaves incident on the object to be heated 100 are not only the microwaves A1 to A3 directly incident from the antennas 5a to 5c, but also the bottom wall 3a, the left wall 3b, and the right wall of the inner wall 3 of the tool body 1
  • the microwaves incident on the phase control plates 6a to 6e mounted on the wall surfaces of the ceiling wall 3d and the back wall 3e are also incident on the object to be heated 100.
  • the microwave B1 incident from the antenna 5a is taken as the electric field component E1r of the reflected wave reflected by the phase control plate 6b.
  • the electric field component E1r has an arbitrary amplitude and phase at the momentary time, and can be formulated as the momentary electric field component according to the following equation (5).
  • E1r
  • z1r is the sum of the distance between the antenna 5a and the reflection point of the phase control plate 6b and the distance between this reflection point and an arbitrary position of the object 100
  • is the microwave B1 by the phase control plate 6b. It is a reflection phase when it is reflected.
  • the relationship between the capacitance value of the variable capacitance element 7 of the phase control plate 6b and the reflection phase ⁇ is as shown in FIG.
  • the horizontal axis represents the capacitance value of the variable capacitance element 7, and the vertical axis represents the reflection phase ⁇ .
  • the reflection phase is changed from -150 ° to 130 °. .
  • the capacitance value of the variable capacitance element 7 connected to the variable voltage source 8 is also automatically, continuously and temporally changed. Do. That is, the reflection phase ⁇ can be made variable by continuously controlling the capacitance value of the variable capacitance element 7 by the variable voltage source 8.
  • the reflection phase ⁇ of the electric field at the surface of the phase control plate 6 b facing the inside of the heating chamber 2 changes, and the impedance at the surface of the heating chamber 2 facing the inside changes. Distribution) changes. That is, the electric field component E1r of the reflected wave also changes. Therefore, the dispersion of the combined electric field Etotal at the incident position due to the microwave directly incident on the object to be heated 100 from the antennas 5a to 5c is incident on the phase control plates 6a to 6e from the antennas 5a to 5c and reflected. This can be suppressed by the microwave B incident on the object to be heated 100. As a result, the variation in the electric field strength can be suppressed depending on the position of the object to be heated 100, the heating unevenness to the object to be heated 100 can be suppressed, and uniform heating can be realized.
  • the phases mounted on the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 of the instrument body 1 By electronically operating the reflection characteristics of the microwaves on the wall surface of the inner wall 3 on the heating chamber 2 side using the control plates 6a to 6e, it is possible to suppress hot spots due to the shape of the heating chamber 2.
  • the whole of the article to be heated 100 can be uniformly heated, and uniform heating of the article to be heated 100 can be realized.
  • SYMBOLS 1 Apparatus main body, 2 heating chamber, 3 inner wall, 3a bottom wall, 3b left wall, 3c right wall, 3d ceiling wall, 4 outer wall, 5a to 5c antenna, 6, 6a to 6d phase control plate, 7 variable capacitance element, 8 Variable voltage source, 60, 60-11 to 60-22 unit cells, 62 ground conductors, 63 semiconductors, 64 electrode parts, 65 contacts, 100 heated objects, 620 ground conductor layers, 630 GaN layers, 640 electrode layers.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

In this microwave heating device, phase control plates (6, 6a to 6d) are mounted on wall surfaces of an apparatus main body (1), on the heating chamber (2) side thereof. Each of these phase control plates (6, 6a to 6d) comprises unit cells (60, 60-11 to 60-22) arrayed in a plurality of rows and a plurality of columns and uses a meta-material formed from a semiconductor (63). A capacitance value modifying means (8) varies the capacitance values in each of the phase control plates (6, 6a to 6d).

Description

マイクロ波加熱装置Microwave heating device
 この発明は、電子レンジなどのマイクロ波照射によって被加熱物を加熱するマイクロ波加熱装置に関する。 The present invention relates to a microwave heating apparatus for heating an object to be heated by microwave irradiation such as a microwave oven.
 電子レンジなどのマイクロ波加熱装置において、被加熱物を高効率かつ均一に加熱させることを目的に、加熱室の底壁面の略中央部にマイクロ波を放射する回転アンテナを配設し、左壁面と右壁面及び上壁面に結合部を設けるとともに、各結合部を連結する導波部を配したものが特許文献1にて提案されている。 In a microwave heating apparatus such as a microwave oven, for the purpose of heating the object to be heated efficiently and uniformly, a rotary antenna that radiates microwaves is disposed substantially at the center of the bottom wall surface of the heating chamber. Patent Document 1 proposes that a connecting portion is provided on the right wall surface and the upper wall surface, and a waveguide portion connecting each connecting portion is disposed.
特開2009-16149号公報JP, 2009-16149, A
 特許文献1に示されたマイクロ波加熱装置は、回転アンテナから加熱室内に供給されたマイクロ波エネルギの一部を、結合部を介して導波部と加熱室とを略循環させることにより、加熱室からマグネトロン側へ反射するマイクロ波エネルギ量を減少させることができる。また、加熱室内へのマイクロ波の供給は結合部からも行われるので、被加熱物に対して多方面からマイクロ波の供給が行われることができる。
 しかるに、このように構成されたマイクロ波加熱装置にあっても、加熱室の形状に起因するマイクロ波の高強度地帯(ホットスポット)もしくは不感地帯が生じるという課題があった。
The microwave heating device disclosed in Patent Document 1 performs heating by substantially circulating a part of the microwave energy supplied from the rotary antenna into the heating chamber through the coupling portion between the waveguide and the heating chamber. The amount of microwave energy reflected from the chamber to the magnetron side can be reduced. In addition, since the supply of the microwaves into the heating chamber is also performed from the coupling portion, the microwaves can be supplied from various directions to the object to be heated.
However, even with the microwave heating apparatus configured as described above, there is a problem that high-intensity zones (hot spots) or dead zones of microwaves are generated due to the shape of the heating chamber.
 この発明は上記した課題を解決するものであり、加熱室の形状に起因するホットスポットの発生を抑圧したマイクロ波加熱装置を得ることを目的とする。 This invention solves the above-mentioned subject, and it aims at obtaining the microwave heating device which suppressed generation | occurrence | production of the hot spot resulting from the shape of a heating chamber.
 この発明に係るマイクロ波加熱装置は、半導体にて形成され、ユニットセルが複数行複数列に配列されたメタマテリアルが用いられ、前記器具本体における内壁の加熱室側の壁面に装着される位相制御板と、この位相制御板における容量値を変化させる容量値変更手段とを備える。 The microwave heating apparatus according to the present invention is a phase control that is formed of a semiconductor, uses a metamaterial in which unit cells are arranged in a plurality of rows and a plurality of columns, and is mounted on a wall on the heating chamber side of the inner wall in the instrument body A plate and capacitance value changing means for changing the capacitance value of the phase control plate.
 この発明によれば、位相制御板により器具本体における内壁である金属境界面での電界反射位相を任意に変更でき、内壁により囲われる加熱室の形状に起因するホットスポットを抑圧でき、被加熱物に対して一様な加熱を可能とすることができる。 According to the present invention, the phase control plate can arbitrarily change the electric field reflection phase on the metal interface which is the inner wall of the instrument body, and can suppress the hot spot due to the shape of the heating chamber surrounded by the inner wall. Uniform heating can be made possible.
この発明の実施の形態1に係るマイクロ波加熱装置を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the microwave heating device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るマイクロ波加熱装置における位相制御板6a~6eの一部を示す3次元レイアウト図。FIG. 3 is a three-dimensional layout diagram showing a part of phase control plates 6 a to 6 e in the microwave heating device according to Embodiment 1 of the present invention. 図2におけるIII-III断面図。III-III sectional drawing in FIG. この発明の実施の形態1に係るマイクロ波加熱装置における位相制御板6a~6eのユニットセル60の等価回路図。FIG. 7 is an equivalent circuit diagram of a unit cell 60 of phase control plates 6 a to 6 e in the microwave heating apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1に係るマイクロ波加熱装置における位相制御板6a~6eにおけるユニットセル60の可変容量素子7の容量値と反射位相θとの関係を示した図。FIG. 6 is a view showing the relationship between the capacitance value of the variable capacitance element 7 of the unit cell 60 and the reflection phase θ in the phase control plates 6a to 6e in the microwave heating apparatus according to Embodiment 1 of the present invention.
実施の形態1.
 電子レンジなどのマイクロ波加熱装置は、加熱室2に収容される被加熱物100にマイクロ波を照射することによって、被加熱物100の有する電磁気的物性、すなわち誘電損失や磁気損失などによって加熱することができるように構成される。器具本体1は内壁3と外壁4とを有する。内壁3はマイクロ波を反射させる金属材料からなる底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3e(図示せず)を有する。内壁3の前面に被加熱物100の出し入れ口となる開口を有し、この開口は扉(図示せず)により閉塞される。内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eと開口を閉塞する扉により囲われた空間が加熱室2となる。加熱室2は供給されるマイクロ波を内部に閉じ込める。
Embodiment 1
A microwave heating apparatus such as a microwave oven is heated by irradiating the object to be heated 100 contained in the heating chamber 2 with microwaves, by the electromagnetic properties of the object to be heated 100, that is, dielectric loss, magnetic loss, etc. Configured to be able to The instrument body 1 has an inner wall 3 and an outer wall 4. The inner wall 3 has a bottom wall 3a made of a metal material that reflects microwaves, a left wall 3b, a right wall 3c, a ceiling wall 3d, and a back wall 3e (not shown). The front surface of the inner wall 3 has an opening serving as an inlet / outlet of the heating object 100, and the opening is closed by a door (not shown). A space surrounded by the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 and the door closing the opening becomes the heating chamber 2. The heating chamber 2 encloses the supplied microwaves therein.
 アンテナ5a~5cは器具本体1における内壁3の天井壁3dに装着され、マイクロ波発生源(図示せず)で発生され、導波管を介して伝送されたマイクロ波を加熱室2内に供給する。マイクロ波発生源及び導波管は器具本体1の内壁3と外壁4との間に形成される空間1aに配設される。この実施の形態1では、アンテナ5a~5cを内壁3の天井壁3dに3個装着したものとしたが、1個でも良く、また、内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの少なくとも一つの壁に1個又は複数個装着したものでも良い。 The antennas 5a to 5c are mounted on the ceiling wall 3d of the inner wall 3 of the instrument body 1, and are supplied from the microwave source (not shown) and transmitted through the waveguide to the heating chamber 2 Do. The microwave source and the waveguide are disposed in a space 1 a formed between the inner wall 3 and the outer wall 4 of the tool body 1. In the first embodiment, three antennas 5a to 5c are mounted on the ceiling wall 3d of the inner wall 3. However, one antenna may be used, or the bottom wall 3a, the left wall 3b, the right wall 3c, One or more may be attached to at least one wall of the ceiling wall 3d and the back wall 3e.
 位相制御板は、内壁3の底壁3aに接着もしくはねじ止めにて装着された位相制御板6aと、左壁3bに接着もしくはねじ止めにて装着された位相制御板6bと、右壁3cに接着もしくはねじ止めにて装着された位相制御板6cと、天井壁3dに接着もしくはねじ止めにて装着された位相制御板6dと、奥壁3eに接着もしくはねじ止めにて装着された位相制御板6e(図示せず)とにより構成される。各位相制御板6a~6eはユニットセル60が複数行複数列に多数配列され、半導体にて形成されたメタマテリアル(Meta-material)により構成される。言い換えれば、各位相制御板6a~6eは絶縁基板61の表面上にユニットセル60が2次元領域において縦及び横方向に周期配列されたメタマテリアル構造となる。なお、周期配列とは、複数個の同一の構造体を、一定周期、つまり等間隔に配置することを意味する。底壁3aに装着された位相制御板6a上には被加熱物100が載置される低誘電損失材料からなるテーブル(図示せず)が配置される。 The phase control plate includes a phase control plate 6a attached to the bottom wall 3a of the inner wall 3 by adhesion or screwing, a phase control plate 6b attached to the left wall 3b by adhesion or screwing, and the right wall 3c. A phase control plate 6c attached by adhesion or screwing, a phase control plate 6d attached by adhesion or screwing to the ceiling wall 3d, and a phase control plate attached by adhesion or screwing to the back wall 3e 6e (not shown). In each of the phase control plates 6a to 6e, a large number of unit cells 60 are arranged in a plurality of rows and a plurality of columns, and is formed of a metamaterial (Meta-material) formed of a semiconductor. In other words, each of the phase control plates 6a to 6e has a metamaterial structure in which unit cells 60 are periodically arranged in the vertical and horizontal directions in a two-dimensional area on the surface of the insulating substrate 61. Note that the periodic arrangement means that a plurality of identical structures are arranged at a constant period, that is, at equal intervals. A table (not shown) made of a low dielectric loss material on which the object to be heated 100 is mounted is disposed on the phase control plate 6a mounted on the bottom wall 3a.
 各位相制御板6a~6eは、それぞれが加熱室2側の表面を金属境界面とし、この金属境界面での電界の反射位相を任意に変更する電磁界分布調整手段として機能する。内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面に位相制御板6a~6eを装着しない場合、底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面である金属境界面での電界の反射位相が常に180°になる。これに対して、内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面に位相制御板6a~6eを装着することにより、底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面での電界の反射位相を任意にできる。 Each of the phase control plates 6a to 6e functions as an electromagnetic field distribution adjusting unit, in which the surface on the heating chamber 2 side is a metal interface, and the reflection phase of the electric field at the metal interface is arbitrarily changed. When the phase control plates 6a to 6e are not attached to the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3, the bottom wall 3a, the left wall 3b, the right wall 3c, and the ceiling The reflection phase of the electric field at the metal interface, which is the wall surface of the wall 3d and the back wall 3e, is always 180 °. On the other hand, the phase control plates 6a to 6e are attached to the wall surfaces of the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 to form the bottom wall 3a and the left wall 3b. , And the reflection phase of the electric field on the wall surfaces of the right wall 3c, the ceiling wall 3d, and the back wall 3e can be made arbitrary.
 次に、この実施の形態1に係るマイクロ波加熱装置の特有な構成である各位相制御板6a~6eについて図2から図4を用いて説明する。各位相制御板6a~6eそれぞれは装着される内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面全域に配されるので、縦と横の長さが異なり、配列されるユニットセル60の行数及び列数が異なるだけであり、ユニットセル60の構造を含むその他の点で同じ構造である。
 従って、以下、図2から図4の説明において、各位相制御板6a~6eを代表して位相制御板6として説明する。
Next, each of the phase control plates 6a to 6e which is a unique configuration of the microwave heating apparatus according to the first embodiment will be described with reference to FIGS. Each of the phase control plates 6a to 6e is disposed on the entire wall surface of the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e of the inner wall 3 to be attached. , And only the number of rows and the number of columns of unit cells 60 arranged are different, and the structure is otherwise the same including the structure of unit cells 60.
Therefore, in the following description of FIGS. 2 to 4, the phase control plates 6 a to 6 e will be representatively described as the phase control plate 6.
 図2は位相制御板6において、ユニットセル60-11~60-22が2行2列配列された部分を示す3次元レイアウト図である。図3は図2のiii-iii断面図である。実際には、図2図示右方向に多数、下方向に多数、周期的にユニットセル60が配列される。
 各ユニットセル60-11~60-22は絶縁基板61の表面上に形成された接地導体62と、半導体63と、平面が十字形状の電極部64とを備える。位相制御板6は絶縁基板61の裏面が内壁3の壁面に対向して装着される。接地導体62は絶縁基板61の表面に蒸着されたアルミニウム(Al)層からなる接地導体層620であり、ユニットセル60-11~60-22の形成領域に位置する。接地導体層620が接地電位にされる。
FIG. 2 is a three-dimensional layout diagram showing a portion of the phase control plate 6 in which unit cells 60-11 to 60-22 are arranged in two rows and two columns. FIG. 3 is a cross-sectional view taken along the line iii-iii of FIG. In practice, the unit cells 60 are periodically arranged in a large number in the right direction and a large number in the lower direction in FIG.
Each of the unit cells 60-11 to 60-22 includes a ground conductor 62 formed on the surface of the insulating substrate 61, a semiconductor 63, and an electrode portion 64 having a cross-shaped plane. The phase control plate 6 is mounted with the back surface of the insulating substrate 61 facing the wall surface of the inner wall 3. The ground conductor 62 is a ground conductor layer 620 formed of an aluminum (Al) layer vapor-deposited on the surface of the insulating substrate 61, and is located in the formation region of the unit cells 60-11 to 60-22. The ground conductor layer 620 is set to the ground potential.
 半導体63は接地導体層620の表面に形成されたバンドギャップの大きい窒化ガリウム(GaN)層630である。各電極部64はGaN層630の表面に蒸着されたアルミニウム(Al)層からなり、ユニットセル60-11~60-22の形成領域に位置する。電極部64それぞれは各ユニットセル60-11~60-22におけるバラクタダイオードである可変容量素子7の一方の電極となる。可変容量素子7であるバラクタダイオードそれぞれは隣接する電極部64の十字形状における対向した先端部間に位置するGaN層630に形成される。バラクタダイオードはPN接合された空乏層領域を調整されることにより容量値が変化し、アノード-カソード間に印加する逆方向電圧が高くされることで容量値が小さくなり、逆方向電圧が低くされると容量値が大きくなる。 The semiconductor 63 is a large band gap gallium nitride (GaN) layer 630 formed on the surface of the ground conductor layer 620. Each electrode portion 64 is formed of an aluminum (Al) layer vapor-deposited on the surface of the GaN layer 630, and is located in the formation region of unit cells 60-11 to 60-22. Each of the electrode portions 64 serves as one electrode of the variable capacitance element 7 which is a varactor diode in each of the unit cells 60-11 to 60-22. Each of the varactor diodes which are the variable capacitance elements 7 is formed in the GaN layer 630 located between the opposing tips in the cross shape of the adjacent electrode parts 64. The varactor diode changes its capacitance value by adjusting the PN junction depletion region, and when the reverse voltage applied between the anode and the cathode increases, the capacitance value decreases and the reverse voltage decreases. Capacity value increases.
 接地導体層620は上から投射して見た場合、隣接する電極部64の十字形状における対向した先端部を含む位置に開口621が形成される。つまり、絶縁基板61の表面に蒸着により、Al層を形成した後、エッチングにて開口621が縦横マトリクス上に形成される。その結果、ユニットセル60-11~60-22の形成領域に接地導体層620が残り、この残った部分の接地導体層620が各ユニットセル60-11~60-22の接地導体62となる。 When the ground conductor layer 620 is viewed from above, the opening 621 is formed at a position including the opposing tip of the cross shape of the adjacent electrode portion 64. That is, after an Al layer is formed on the surface of the insulating substrate 61 by vapor deposition, openings 621 are formed on the vertical and horizontal matrixes by etching. As a result, the ground conductor layer 620 remains in the formation region of the unit cells 60-11 to 60-22, and the ground conductor layer 620 in the remaining portion becomes the ground conductor 62 of each unit cell 60-11 to 60-22.
 電極部64それぞれは十字形状の中央がその直下に位置する接地導体62とコンタクト65によって電気的に接続される。電極部64とコンタクト65とは次のようにして形成される。つまり、GaN層630に、ユニットセル60-11~60-22の形成領域における中央位置それぞれにコンタクトホール63aを形成する。この状態にてGaN層630の表面に蒸着により、Al層を形成する。このとき、コンタクトホール63a内にAlが埋め込まれ、接地導体層620における対応した接地導体62と電気的に接続され、GaN層630の表面に形成されたAl層とも電気的に接続された複数のコンタクト65が形成される。その後、Al層をエッチングすることにより、GaN層630の表面に複数行複数列に配列して形成された十字形状の複数の電極部64が形成される。 Each of the electrode portions 64 is electrically connected by a ground conductor 62 and a contact 65, the center of the cross shape being positioned immediately below the cross shape. The electrode portion 64 and the contact 65 are formed as follows. That is, in the GaN layer 630, the contact holes 63a are formed at respective central positions in the formation regions of the unit cells 60-11 to 60-22. In this state, an Al layer is formed on the surface of the GaN layer 630 by vapor deposition. At this time, Al is buried in contact hole 63a, electrically connected to corresponding ground conductor 62 in ground conductor layer 620, and also electrically connected to the Al layer formed on the surface of GaN layer 630. Contacts 65 are formed. Thereafter, the Al layer is etched to form a plurality of cross-shaped electrode portions 64 formed on the surface of the GaN layer 630 in a plurality of rows and a plurality of columns.
 電極部64それぞれは十字形状の4つの先端が、絶縁基板61の裏面に形成された対応する配線層(図示せず)に電気的に接続される配線用コンタクト66a~66dに電気的に接続される。配線用コンタクト66a~66dは電極部64とコンタクト65と同時に形成される。つまり、GaN層630及び絶縁基板61に、電極部64の十字形状の4つの先端が位置する部位それぞれにスルーホールを形成する。この状態にてGaN層630の表面に蒸着により、Al層を形成すると、スルーホール内にAlが埋め込まれ、絶縁基板61の裏面に形成された対応する配線層と電気的に接続され、GaN層630の表面に形成されたAl層とも電気的に接続された複数の配線用コンタクト66が形成される。 The four cross-shaped tips of each of the electrode portions 64 are electrically connected to wiring contacts 66a to 66d electrically connected to corresponding wiring layers (not shown) formed on the back surface of the insulating substrate 61. Ru. The wiring contacts 66a to 66d are formed simultaneously with the electrode portion 64 and the contact 65. That is, through holes are formed in the GaN layer 630 and the insulating substrate 61 at the positions where the cross-shaped four tips of the electrode portion 64 are located. In this state, when an Al layer is formed on the surface of the GaN layer 630 by vapor deposition, Al is embedded in the through holes and electrically connected to the corresponding wiring layer formed on the back surface of the insulating substrate 61. A plurality of wiring contacts 66 electrically connected also to the Al layer formed on the surface of 630 are formed.
 隣接する電極部64の対向する先端部間に配線用コンタクト66a~66d及び配線層を介して可変電圧源8が接続される。可変電圧源8それぞれは自動的、連続的かつ時間的に電圧値を変更できる直流電源である。プラス電極が配線用コンタクト66aに接続される可変電圧源8は、そのマイナス電極がブラス電極が接続された電極部64の先端部に対向する、隣接する電極部64の先端部が接続された配線用コンタクト66bに接続される。プラス電極が配線用コンタクト66cに接続される可変電圧源8は、そのマイナス電極がブラス電極が接続された電極部64の先端部に対向する、隣接する電極部64の先端部が接続された配線用コンタクト66dに接続される。 The variable voltage source 8 is connected between the facing end portions of the adjacent electrode portions 64 via the wiring contacts 66a to 66d and the wiring layer. Each of the variable voltage sources 8 is a DC power supply capable of automatically, continuously and temporally changing the voltage value. The variable voltage source 8 in which the plus electrode is connected to the wiring contact 66a is a wire to which the tip portion of the adjacent electrode portion 64 is connected, whose minus electrode faces the tip portion of the electrode portion 64 to which the brass electrode is connected. It is connected to the contact 66b. The variable voltage source 8 in which the plus electrode is connected to the wiring contact 66c is a wire to which the tip portion of the adjacent electrode portion 64 is connected such that the minus electrode faces the tip portion of the electrode portion 64 to which the brass electrode is connected. It is connected to the contact 66d.
 可変電圧源8の電圧値を自動的、連続的かつ時間的に変化させると、当該可変電圧源8に接続された隣接する電極部64の対向する先端部間に形成される可変容量素子7の容量値も自動的、連続的かつ時間的に変化する。その結果、位相制御板6の加熱室2の内側を向いた面での電界の反射位相が変化し、加熱室2の内側を向いた面におけるインピーダンスが変化し、電磁界分布(定在波分布)が変化する。そのため、アンテナ5a~5cからマイクロ波が加熱室2内に供給されると、電磁界分布が変化していることにより被加熱物100の温度上昇の分布も変化し、被加熱物100の全体を均一に加熱することが出来る。
 可変電圧源8が位相制御板6a~6eにおける容量値を変化させる容量値変更手段となる。
When the voltage value of the variable voltage source 8 is automatically, continuously and temporally changed, the variable capacitance element 7 formed between the facing tips of the adjacent electrode parts 64 connected to the variable voltage source 8 The volume values also change automatically, continuously and temporally. As a result, the reflection phase of the electric field on the surface of the phase control plate 6 facing the inside changes, and the impedance on the surface facing the inside of the heating chamber 2 changes, and the electromagnetic field distribution (the standing wave distribution) ) Changes. Therefore, when microwaves are supplied into the heating chamber 2 from the antennas 5a to 5c, the distribution of the temperature rise of the object to be heated 100 is also changed by the change of the electromagnetic field distribution, and the entire object to be heated 100 is It can be uniformly heated.
The variable voltage source 8 serves as capacitance value changing means for changing the capacitance value of the phase control plates 6a to 6e.
 図4は位相制御板6a~6eのユニットセル60の等価回路図を示しており、共通ノード9となる等価回路形成面から4方向に伸びた可変容量素子7がある。共通ノード9と接地導体62との間に誘導性素子10が存在する。また、位相制御板6a~6eが装着される内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面が周期境界11になる。 FIG. 4 shows an equivalent circuit diagram of the unit cell 60 of the phase control plates 6a to 6e, and there are variable capacitance elements 7 extended in four directions from the equivalent circuit formation surface to be the common node 9. An inductive element 10 is present between the common node 9 and the ground conductor 62. Further, the wall surfaces of the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 to which the phase control plates 6a to 6e are attached become the periodic boundary 11.
 次に、この実施の形態1にかかるマイクロ波加熱装置の動作について図1~図4を参照しながら説明する。なお、アンテナ5a~5cから加熱室2内に供給されるマイクロ波の使用周波数をf0、使用周波数の波長をλとする。
 マイクロ波発生源を動作させると導波管を伝送したマイクロ波はアンテナ5a~5cから図1図示実線矢印A1~A3及び点線矢印B1にて加熱室2内に供給され、被加熱物100に入射して熱損失となり、被加熱物100を加熱する。
Next, the operation of the microwave heating apparatus according to the first embodiment will be described with reference to FIGS. 1 to 4. The operating frequency of the microwave supplied from the antennas 5a to 5c into the heating chamber 2 is f0, and the wavelength of the operating frequency is λ.
When the microwave generation source is operated, the microwaves transmitted through the waveguide are supplied from the antennas 5a to 5c into the heating chamber 2 by the solid line arrows A1 to A3 and the dotted line arrow B1 shown in FIG. As a result, heat loss occurs and the object to be heated 100 is heated.
 被加熱物100に対する加熱作用は、マイクロ波の照射によって生じる被加熱物100の誘電損失が支配的である。従って、以下、アンテナ5a~5cから発生する電界成分のみに着目して説明する。
 まず、アンテナ5a~5cから被加熱物100に対して直接入射するマイクロ波、図1図示実線矢印A1~A3にて示すマイクロ波について説明する。アンテナ5aから出力されるマイクロ波A1の電界成分E1、アンテナ5bから出力されるマイクロ波A2の電界成分E2、アンテナ5cから出力されるマイクロ波A3の電界成分E3とする。このとき、それぞれの電界成分E1~E3は、瞬時時間において任意の振幅及び位相を有し、瞬時時間の電界成分として次式(1)~(3)で現せる。
The heating action on the object to be heated 100 is dominated by the dielectric loss of the object to be heated 100 generated by the irradiation of the microwaves. Therefore, the following description will be given focusing on only the electric field components generated from the antennas 5a to 5c.
First, microwaves directly incident on the object to be heated 100 from the antennas 5a to 5c, and microwaves indicated by solid arrows A1 to A3 in FIG. 1 will be described. The electric field component E1 of the microwave A1 output from the antenna 5a, the electric field component E2 of the microwave A2 output from the antenna 5b, and the electric field component E3 of the microwave A3 output from the antenna 5c. At this time, each of the electric field components E1 to E3 has an arbitrary amplitude and phase at the momentary time, and can be expressed by the following equations (1) to (3) as electric field components at the momentary time.
 E1=|E1|exp(-γ*z1+j*ωt)      (1)
 E2=|E2|exp(-γ*z2+j*ωt)      (2)
 E3=|E3|exp(-γ*z3+j*ωt)      (3)
 ここで、γは使用周波数f0における伝搬定数、ωは使用周波数f0から導出される角周波数、tは任意時間、z1、z2、z3はそれぞれのアンテナ5a~5cと被加熱物100の任意の位置との距離である。
E1 = | E1 | exp (-γ * z1 + j * ωt) (1)
E2 = | E2 | exp (-γ * z2 + j * ωt) (2)
E3 = | E3 | exp (-γ * z3 + j * ωt) (3)
Here, γ is a propagation constant at the operating frequency f0, ω is an angular frequency derived from the operating frequency f0, t is an arbitrary time, z1, z2 and z3 are arbitrary positions of the respective antennas 5a to 5c and the object 100 to be heated And the distance.
 このとき、被加熱物100の任意の位置における電界強度は、上記3つの電界成分の合成電界Etotalとなり、次式(4)で現せる。
 Etotal=E1+E2+E3
       =|E1|exp(-γ*z1+j*ωt)
        +|E2|exp(-γ*z2+j*ωt)
        +|E3|exp(-γ*z3+j*ωt)   (4)
 この式(4)から理解されるように、被加熱物100におけるアンテナ5a~5cからマイクロ波A1~A3が入射された位置毎に距離z1、z2、z3が異なることから、マイクロ波A1~A3が入射された位置における合成電界Etotalも異なる。その結果、被加熱物100の位置によって電界強度にばらつきが生じることになる。電界強度のばらつきは被加熱物100に対して加熱ムラを生じさせる。
At this time, the electric field strength at an arbitrary position of the object to be heated 100 is a combined electric field Etotal of the three electric field components, and can be expressed by the following equation (4).
Etotal = E1 + E2 + E3
= | E1 | exp (-γ * z1 + j * ωt)
+ | E2 | exp (-γ * z2 + j * ωt)
+ | E3 | exp (-γ * z3 + j * ωt) (4)
As understood from the equation (4), since the distances z1, z2 and z3 are different at each position where the microwaves A1 to A3 are incident from the antennas 5a to 5c in the object to be heated 100, the microwaves A1 to A3 are obtained. The combined electric field Etotal at the position where the light is incident is also different. As a result, the electric field strength varies depending on the position of the object 100 to be heated. The variation in electric field strength causes uneven heating to the object to be heated 100.
 しかし、被加熱物100に対して入射されるマイクロ波はアンテナ5a~5cから直接入射されるマイクロ波A1~A3だけではなく、器具本体1の内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面に装着された位相制御板6a~6eに入射され、反射されたマイクロ波も被加熱物100に入射する。
 アンテナ5a~5cから位相制御板6a~6eに入射し、反射され、被加熱物100に入射されたマイクロ波は多数存在するが、考え方は一緒であるので、アンテナ5aから位相制御板6bに入射され、反射されたマイクロ波、図1図示点線B1にて示すマイクロ波について説明を加える。
However, the microwaves incident on the object to be heated 100 are not only the microwaves A1 to A3 directly incident from the antennas 5a to 5c, but also the bottom wall 3a, the left wall 3b, and the right wall of the inner wall 3 of the tool body 1 The microwaves incident on the phase control plates 6a to 6e mounted on the wall surfaces of the ceiling wall 3d and the back wall 3e are also incident on the object to be heated 100.
There are many microwaves that are incident on the phase control plates 6a to 6e from the antennas 5a to 5c, reflected, and incident on the object to be heated 100, but the idea is the same, so the incident on the phase control plate 6b from the antenna 5a The description will be added regarding the reflected and reflected microwaves and the microwaves indicated by dotted line B1 in FIG.
 アンテナ5aから入射されたマイクロ波B1が位相制御板6bに反射された反射波の電界成分E1rとする。このとき、電界成分E1rは、瞬時時間において任意の振幅及び位相を有し、瞬時時間の電界成分として次式(5)に定式化できる。
 E1r=|E1|exp(-γ*z1r+j*ωt+j*θ)  (5)
 ここで、z1rはアンテナ5aと位相制御板6bの反射点との距離と、この反射点と被加熱物100の任意の位置との距離との和、θは位相制御板6bによりマイクロ波B1が反射されたときの反射位相である。
The microwave B1 incident from the antenna 5a is taken as the electric field component E1r of the reflected wave reflected by the phase control plate 6b. At this time, the electric field component E1r has an arbitrary amplitude and phase at the momentary time, and can be formulated as the momentary electric field component according to the following equation (5).
E1r = | E1 | exp (-γ * z1r + j * ωt + j * θ) (5)
Here, z1r is the sum of the distance between the antenna 5a and the reflection point of the phase control plate 6b and the distance between this reflection point and an arbitrary position of the object 100, and θ is the microwave B1 by the phase control plate 6b. It is a reflection phase when it is reflected.
 一方、位相制御板6bの可変容量素子7の容量値と反射位相θとの関係は図5に示すようになる。図5において、横軸は可変容量素子7の容量値、縦軸は反射位相θを示す。この図5から理解されるように、可変容量素子7の容量値が1.4pFから2.0pF、少なくとも1.6pFから1.8pFに変化させると反射位相は-150°から130°に変化する。
 従って、可変電圧源8の電圧値を自動的、連続的かつ時間的に変化させると、当該可変電圧源8に接続された可変容量素子7の容量値も自動的、連続的かつ時間的に変化する。すなわち、可変電圧源8によって可変容量素子7の容量値を連続的に制御することによって、反射位相θを可変にできる。
On the other hand, the relationship between the capacitance value of the variable capacitance element 7 of the phase control plate 6b and the reflection phase θ is as shown in FIG. In FIG. 5, the horizontal axis represents the capacitance value of the variable capacitance element 7, and the vertical axis represents the reflection phase θ. As understood from FIG. 5, when the capacitance value of the variable capacitance element 7 is changed from 1.4 pF to 2.0 pF and at least 1.6 pF to 1.8 pF, the reflection phase is changed from -150 ° to 130 °. .
Therefore, when the voltage value of the variable voltage source 8 is automatically, continuously and temporally changed, the capacitance value of the variable capacitance element 7 connected to the variable voltage source 8 is also automatically, continuously and temporally changed. Do. That is, the reflection phase θ can be made variable by continuously controlling the capacitance value of the variable capacitance element 7 by the variable voltage source 8.
 その結果、位相制御板6bの加熱室2の内側を向いた面での電界の反射位相θが変化し、加熱室2の内側を向いた面におけるインピーダンスが変化し、電磁界分布(定在波分布)が変化する。つまり、反射波の電界成分E1rも変化する。
 ゆえに、アンテナ5a~5cから被加熱物100に対して直接入射するマイクロ波による、入射された位置における合成電界Etotalのばらつきを、アンテナ5a~5cから位相制御板6a~6eに入射し、反射され、被加熱物100に入射されたマイクロ波Bにより抑制できる。その結果、被加熱物100の位置によって電界強度にばらつきを抑えられ、被加熱物100に対しての加熱ムラを抑制でき、一様な加熱を実現することができる。
As a result, the reflection phase θ of the electric field at the surface of the phase control plate 6 b facing the inside of the heating chamber 2 changes, and the impedance at the surface of the heating chamber 2 facing the inside changes. Distribution) changes. That is, the electric field component E1r of the reflected wave also changes.
Therefore, the dispersion of the combined electric field Etotal at the incident position due to the microwave directly incident on the object to be heated 100 from the antennas 5a to 5c is incident on the phase control plates 6a to 6e from the antennas 5a to 5c and reflected. This can be suppressed by the microwave B incident on the object to be heated 100. As a result, the variation in the electric field strength can be suppressed depending on the position of the object to be heated 100, the heating unevenness to the object to be heated 100 can be suppressed, and uniform heating can be realized.
 要するに、実施の形態1係るマイクロ波加熱装置にあっては、器具本体1の内壁3における底壁3a、左壁3b、右壁3c、天井壁3d、及び奥壁3eの壁面に装着された位相制御板6a~6eを用いて、内壁3の加熱室2側の壁面におけるマイクロ波の反射特性を電子的に操作することにより、加熱室2の形状に起因するホットスポットを抑圧することができ、被加熱物100の全体を均一に加熱でき、被加熱物100に対しての一様な加熱を実現することができる。 In short, in the microwave heating apparatus according to the first embodiment, the phases mounted on the bottom wall 3a, the left wall 3b, the right wall 3c, the ceiling wall 3d, and the back wall 3e in the inner wall 3 of the instrument body 1 By electronically operating the reflection characteristics of the microwaves on the wall surface of the inner wall 3 on the heating chamber 2 side using the control plates 6a to 6e, it is possible to suppress hot spots due to the shape of the heating chamber 2. The whole of the article to be heated 100 can be uniformly heated, and uniform heating of the article to be heated 100 can be realized.
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the scope of the present invention, free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment is possible within the scope of the invention. .
 1 器具本体、2 加熱室、3 内壁、3a 底壁、3b 左壁、3c 右壁、3d 天井壁、4 外壁、5a~5c アンテナ、6,6a~6d 位相制御板、7 可変容量素子、8 可変電圧源、60,60-11~60-22 ユニットセル、62 接地導体、63 半導体、64 電極部、65 コンタクト、100 被加熱物、620 接地導体層、630 GaN層、640 電極層。 DESCRIPTION OF SYMBOLS 1 Apparatus main body, 2 heating chamber, 3 inner wall, 3a bottom wall, 3b left wall, 3c right wall, 3d ceiling wall, 4 outer wall, 5a to 5c antenna, 6, 6a to 6d phase control plate, 7 variable capacitance element, 8 Variable voltage source, 60, 60-11 to 60-22 unit cells, 62 ground conductors, 63 semiconductors, 64 electrode parts, 65 contacts, 100 heated objects, 620 ground conductor layers, 630 GaN layers, 640 electrode layers.

Claims (6)

  1.  被加熱物が収容される加熱室を有する器具本体、
     前記加熱室内にマイクロ波を供給するアンテナ、
     半導体にて形成され、ユニットセルが複数行複数列に配列されたメタマテリアルが用いられ、前記器具本体の加熱室側の壁面に装着される位相制御板、
     この位相制御板における容量値を変化させる容量値変更手段、
     を備えたマイクロ波加熱装置。
    An instrument body having a heating chamber in which the object to be heated is accommodated;
    An antenna for supplying microwaves into the heating chamber;
    A phase control plate formed of a semiconductor and using a metamaterial in which unit cells are arranged in a plurality of rows and a plurality of columns and mounted on a wall surface on the heating chamber side of the device body,
    Capacitance value changing means for changing the capacitance value of the phase control plate,
    Microwave heating device.
  2.  前記器具本体は内壁と外壁とを有し、内壁はマイクロ波を反射させる金属材料からなる底壁、左壁、右壁、天井壁、奥壁を有し、前面に前記被加熱物の出し入れ口となる扉により閉塞される開口を有し、
     前記位相制御板が装着される前記器具本体の内壁の壁は、前記底壁、前記左壁、前記右壁、前記天井壁、前記奥壁であることを特徴とする請求項1に記載のマイクロ波加熱装置。
    The device body has an inner wall and an outer wall, and the inner wall has a bottom wall, a left wall, a right wall, a ceiling wall, and a back wall made of a metal material that reflects microwaves, Have an opening closed by the door
    The micro-device according to claim 1, wherein the wall of the inner wall of the device body on which the phase control plate is mounted is the bottom wall, the left wall, the right wall, the ceiling wall, and the back wall. Wave heating device.
  3.  前記メタマテリアルは可変容量素子を有し、
     前記容量値変更手段は前記メタマテリアルの可変容量素子の容量値を時間的に変化させる可変電圧源であることを特徴とする請求項1又は請求項2に記載のマイクロ波加熱装置。
    The metamaterial has a variable capacitance element,
    The microwave heating apparatus according to claim 1 or 2, wherein the capacitance value changing means is a variable voltage source which temporally changes the capacitance value of the variable capacitance element of the metamaterial.
  4.  被加熱物が収容される加熱室を有する器具本体、
     前記加熱室内にマイクロ波を供給するアンテナ、
     絶縁基板と、この絶縁基板の表面に形成された接地導体層と、この接地導体層の表面に形成された窒化ガリウム層と、この窒化ガリウム層の表面に複数行複数列に配列して形成された十字形状の複数の電極部を有し、隣接する電極部の間で可変容量素子を構成する電極層と、それぞれが前記電極層の対応した電極部の中央と前記接地導体層とを電気的に接続する複数のコンタクトとを有し、前記器具本体の加熱室側の壁面に装着される位相制御板、
     この位相制御板における隣接する電極部の先端部に接続され、接続された先端部間に電圧を印加する可変電圧源、
     を備えたマイクロ波加熱装置。
    An instrument body having a heating chamber in which the object to be heated is accommodated;
    An antenna for supplying microwaves into the heating chamber;
    An insulating substrate, a ground conductor layer formed on the surface of the insulating substrate, a gallium nitride layer formed on the surface of the ground conductor layer, and a plurality of rows and columns arranged on the surface of the gallium nitride layer An electrode layer which has a plurality of cross-shaped electrode parts and which constitutes a variable capacitance element between adjacent electrode parts, and electrically connects the center of the electrode parts corresponding to the electrode layer and the ground conductor layer And a plurality of contacts connected to the phase control plate mounted on the wall surface of the tool body on the heating chamber side,
    A variable voltage source connected to the tips of adjacent electrode parts in this phase control plate and applying a voltage between the connected tips,
    Microwave heating device.
  5.   前記器具本体は内壁と外壁とを有し、内壁はマイクロ波を反射させる金属材料からなる底壁、左壁、右壁、天井壁、奥壁を有し、前面に前記被加熱物の出し入れ口となる扉により閉塞される開口を有し、
     前記位相制御板が装着される前記器具本体の内壁の壁は、前記底壁、前記左壁、前記右壁、前記天井壁、前記奥壁であることを特徴とする請求項4に記載のマイクロ波加熱装置。
    The device body has an inner wall and an outer wall, and the inner wall has a bottom wall, a left wall, a right wall, a ceiling wall, and a back wall made of a metal material that reflects microwaves, Have an opening closed by the door
    The micro-device according to claim 4, wherein the wall of the inner wall of the device body on which the phase control plate is mounted is the bottom wall, the left wall, the right wall, the ceiling wall, and the back wall. Wave heating device.
  6.  前記可変電圧源は、前記位相制御板における隣接する電極部における接続された先端部間に印加する電圧を連続的かつ時間的に変化させることを特徴とする請求項4又は請求項5に記載のマイクロ波加熱装置。 6. The variable voltage source according to claim 4, wherein the voltage applied between the connected tips of adjacent electrode portions of the phase control plate is continuously and temporally changed. Microwave heating device.
PCT/JP2017/022685 2017-06-20 2017-06-20 Microwave heating device WO2018235161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022685 WO2018235161A1 (en) 2017-06-20 2017-06-20 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022685 WO2018235161A1 (en) 2017-06-20 2017-06-20 Microwave heating device

Publications (1)

Publication Number Publication Date
WO2018235161A1 true WO2018235161A1 (en) 2018-12-27

Family

ID=64735538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022685 WO2018235161A1 (en) 2017-06-20 2017-06-20 Microwave heating device

Country Status (1)

Country Link
WO (1) WO2018235161A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067158A (en) * 2021-03-02 2021-07-02 中国人民解放军军事科学院国防科技创新研究院 Broadband electromagnetic phase-adjustable super-surface structure
WO2023197906A1 (en) * 2022-04-11 2023-10-19 湖南大学 Method for improving microwave treatment uniformity by using electromagnetic metamaterials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021285A1 (en) * 2011-08-09 2013-02-14 Goji Ltd. Controlling boundary conditions imposed on electromagnetic fields
WO2015133081A1 (en) * 2014-03-03 2015-09-11 パナソニック株式会社 Electromagnetic field distribution adjusting apparatus, control method therefor, and microwave heating apparatus
WO2017081855A1 (en) * 2015-11-10 2017-05-18 パナソニック株式会社 Microwave heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021285A1 (en) * 2011-08-09 2013-02-14 Goji Ltd. Controlling boundary conditions imposed on electromagnetic fields
WO2015133081A1 (en) * 2014-03-03 2015-09-11 パナソニック株式会社 Electromagnetic field distribution adjusting apparatus, control method therefor, and microwave heating apparatus
WO2017081855A1 (en) * 2015-11-10 2017-05-18 パナソニック株式会社 Microwave heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067158A (en) * 2021-03-02 2021-07-02 中国人民解放军军事科学院国防科技创新研究院 Broadband electromagnetic phase-adjustable super-surface structure
CN113067158B (en) * 2021-03-02 2022-06-17 中国人民解放军军事科学院国防科技创新研究院 Broadband electromagnetic phase-adjustable super-surface structure
WO2023197906A1 (en) * 2022-04-11 2023-10-19 湖南大学 Method for improving microwave treatment uniformity by using electromagnetic metamaterials

Similar Documents

Publication Publication Date Title
GB2584566A (en) Dielectric resonator antenna having first and second dielectric portions
WO2017022712A1 (en) Electromagnetic wave heating device
US10863593B2 (en) Electronic oven with reflective energy steering
WO2018235161A1 (en) Microwave heating device
CN110112551B (en) Reconfigurable Bessel antenna with adjustable non-diffraction beam direction
WO2015133081A1 (en) Electromagnetic field distribution adjusting apparatus, control method therefor, and microwave heating apparatus
TW202030930A (en) Antenna system
JP6874687B2 (en) Microwave heating device
Sarkar et al. 60 GHz electronically tunable leaky-wave antenna based on annular surface plasmon polariton media for continuous azimuth scanning
WO2017022711A1 (en) Electromagnetic wave heating device
Diallo et al. Parallel-plate-waveguide Luneburg lens through a holey plate metasurface
EP3651552B1 (en) Microwave processing device
JPWO2017022713A1 (en) Electromagnetic heating device
US20170251530A1 (en) Direct heating through patch antennas
JP6565838B2 (en) Waveguide type variable phase shifter and waveguide slot array antenna apparatus
JPWO2018131440A1 (en) Electromagnetic field distribution adjusting device and microwave heating device
CN109888493B (en) Single-frequency beam scanning antenna based on liquid metal
US11081794B2 (en) Antenna device and method for emitting electromagnetic waves using the antenna device
US11382187B2 (en) Electromagnetic field distribution adjustment device and microwave heating device
JP6978186B2 (en) Two-dimensional, electronically steerable artificial impedance surface antenna
Sun et al. A near-field focused array antenna with reconfigurable elements
Zarifi et al. A high gain ridge gap waveguide fed slot antenna array for 60 GHz applications
KR101952834B1 (en) Waveguide Antenna type Microwave Plasma Source
Moharram et al. Prediction of antennas radiation efficiency in resonance regions via contactless Wheeler cap measurements
Martinez-Ros et al. Static and electronic shaping of the radiated electromagnetic fields in radial arrays of substrate integrated leaky-wave antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP