WO2018234688A1 - Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse - Google Patents

Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse Download PDF

Info

Publication number
WO2018234688A1
WO2018234688A1 PCT/FR2018/051470 FR2018051470W WO2018234688A1 WO 2018234688 A1 WO2018234688 A1 WO 2018234688A1 FR 2018051470 W FR2018051470 W FR 2018051470W WO 2018234688 A1 WO2018234688 A1 WO 2018234688A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fibrous texture
texture
porous material
fibrous
Prior art date
Application number
PCT/FR2018/051470
Other languages
English (en)
Inventor
Martine Marie-José DAUCHIER
François TROCHU
Edu RUIZ
Vincent Loiselle
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2018234688A1 publication Critical patent/WO2018234688A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould

Definitions

  • the present invention relates to the production of composite material parts, that is to say fibrous reinforcing pieces densified by a matrix.
  • the composite materials make it possible to produce parts having a lower overall mass than these same parts when they are made of metallic material.
  • a common method for obtaining composite material parts is to place a fibrous texture in a mold, to inject a resin into the fibrous texture and to polymerize the resin present in the texture. During its polymerization, the resin releases volatile species that it is important to evacuate in order to obtain composite material parts having a low porosity rate and, consequently, good mechanical properties.
  • the mold is equipped with one or more outlet vents to evacuate the volatile species.
  • a partial or total vacuum is applied to the outlet vent (s).
  • the exhaust ducts connected to the outlet vents can be filled with resin which, during its gelling, will plug said ducts and thus interrupt the pumping or drawing of the vacuum during the polymerization cycle.
  • the present invention aims to overcome the aforementioned drawbacks and to provide a solution that allows to evacuate the volatile species released by the resin during its polymerization while ensuring the maintenance of the resin injected inside the fibrous texture.
  • the invention proposes a method for manufacturing a composite material part comprising the following steps: a) placing a fibrous texture in a molding cavity defined by a mold,
  • the volatile species released by the resin are removed outside the fibrous texture by a rigid piece of porous material interposed between the fibrous texture and the mold, the evacuation being carried out at less through a second face or a second edge of the fibrous texture different from the first face or the first edge, the rigid piece of porous material being present between at least one exit vent and the fibrous texture, the workpiece rigid porous material having a pore rate of between 0.1% and 1% measured by optical morphological examinations (the porosity measured with water must be close to 0), the pores of the rigid piece of porous material having a size between 0.01 ⁇ and 0.2 ⁇ .
  • the rigid piece of porous material is made of a material chosen from one of the following materials: polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyvinylidene fluoride.
  • PTFE polytetrafluoroethylene
  • polyethylene polyethylene
  • polypropylene polypropylene
  • polyvinylidene fluoride polyvinylidene fluoride
  • a pressure gradient is established between a resin injection port and each outlet vent during step b) of injection or impregnation of the resin. in the fibrous texture.
  • step b) of injecting or impregnating the resin into the fibrous texture the mold containing the fibrous texture is closed in an open portion by a tarpaulin, the resin being injected between the fibrous texture and the tarpaulin, and wherein, during step b) of injecting or impregnating the resin into the fibrous texture, a depression is created in the mold to make penetrate the resin into the fibrous texture.
  • the mold in which the fibrous texture is placed comprises an impregnation chamber comprising in its lower part the piece of porous material on which a first face of said texture rests.
  • the impregnation chamber being closed in its upper part by a deformable impermeable membrane placed opposite a second face of the fibrous texture, said membrane separating the impregnation chamber from a compaction chamber, the resin being, before step b) of injection or impregnation of the resin in the fibrous texture, injected into the impregnation chamber between the second face of the fibrous texture and the membrane, a compaction fluid being injected into the compaction chamber during step b), the fluid exerting pressure on the membrane to force the resin to penetrate into the fibrous texture.
  • the fibrous texture can be obtained by stacking strata or plies obtained by two-dimensional weaving, or by three-dimensional weaving or multilayer weaving.
  • the fibers of the fibrous texture may be formed of fibers consisting of one or more of the following materials: carbon, silicon carbide, silica, precursor of carbon fibers.
  • the resin may especially be chosen from one of the following resins: phenolic resin, polyester or other polycondensation resins.
  • FIG. 1 is a schematic exploded perspective view of a tool according to an embodiment of the invention
  • FIG. 2 is a diagrammatic sectional view showing the tool of FIG. 1 closed with a fibrous texture positioned therein,
  • FIG. 3 is a diagrammatic sectional view showing the step of impregnating a fibrous texture with a resin in the tool of FIG. 2;
  • FIG. 4 is a diagrammatic sectional view showing the polymerization of the resin injected into the fibrous texture in the tool of FIG. 2,
  • FIG. 5 is a schematic sectional view showing a tool according to another embodiment of the invention for implementing a "Polyflex" method
  • FIGS. 6 to 8 are diagrammatic sectional views respectively showing the steps of injection, impregnation and polymerization of a resin in a fibrous texture in the tooling of FIG. 5.
  • the method of manufacturing a composite material part according to the present invention begins with the production of a fibrous texture intended to form the reinforcement of the part.
  • the fibrous structure is made in a known manner by weaving by means of a jacquard weaving loom on which a beam bundles of strings or strands in a plurality of layers, the warp yarns being bound by weft yarns or vice versa.
  • the fibrous texture can be made by stacking strata or plies obtained by two-dimensional weaving (2D).
  • the fibrous texture can also be made directly in one piece by three-dimensional weaving (3D).
  • two-dimensional weaving is meant here a conventional weaving mode whereby each weft yarn passes from one side to another son of a single chain layer or vice versa.
  • three-dimensional weaving or “3D weaving” or “multilayer weaving” is meant here a weaving mode whereby at least some of the weft yarns bind warp yarns on several layers of warp yarns or conversely following a weave corresponding to a weave weave which can be chosen in particular from one of the following armor: interlock, multi-fabric, multi-satin and multi-twill.
  • weave or interlock fabric is meant here a 3D weave armor, each layer of warp threads binding several layers of weft threads with all the threads of the same warp column having the same movement in the plane of the weave. armor.
  • armor or multi-fabric fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a conventional canvas type armor but with some points of the armor that bind the layers of weft threads together.
  • multi-satin weave or fabric is meant here a 3D weave with several layers of weft yarns whose basic weave of each layer is equivalent to a classic satin-like weave but with certain points of the weave which bind the layers of weft threads together.
  • weave or multi-twill fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a classic twill type armor but with some points of the armor that bind the layers of weft threads together.
  • the yarns used to weave the fibrous texture for forming the fibrous reinforcement of the composite material part may be in particular formed of fibers consisting of one of the following materials: carbon, silicon carbide, silica, precursor of carbon fibers.
  • the fibrous texture is placed in a tool according to the invention which makes it possible, as explained hereinafter, to inject a resin into the texture and to polymerize the resin.
  • a fibrous texture 10 is placed in a tool 100.
  • the fibrous texture 10 is produced according to one of the techniques defined above (stacking 2D or 3D weaving) with carbon fiber threads.
  • the fibrous texture 10 is here intended to form the fibrous reinforcement of a piece of carbon / carbon composite material (C / C).
  • the tooling 100 comprises a mold 110 and a lid or against-mold 120.
  • the mold 110 comprises a bottom 111 provided with a vent 112.
  • the mold 110 also comprises a side wall 113 which forms with the bottom 111 a molding cavity 114.
  • the tool 100 in which the fibrous texture 10 is present is closed in its lower part by the mold 110 and is closed in its upper part by the counter-mold 120 forming a cover closing the tooling 100.
  • the mold 110 and counter-mold 120 serve to size the preform and thus the part to be obtained and to adjust the fiber content in the part to be obtained.
  • Counter-mold 120 includes a plurality of injection ports 121 through which a resin is to be injected to penetrate the porosity of the fibrous texture 10 through the first face 10a of the fibrous texture 1. As illustrated in Figures 1 and 2, the resin is intended to be injected through a plurality of injection ports 121 opening into different areas of the mold cavity. However, it is not beyond the scope of the invention when the liquid is injected through a single injection pore.
  • the mold 110 comprises, meanwhile, a single exhaust vent 112.
  • a single exhaust vent 112. Of course, it is not beyond the scope of the invention when a plurality of outlet vents is implemented.
  • a rigid piece of porous material 130 is present in the molding cavity 114 between the mold 110 and the fibrous texture 10.
  • the piece of porous material 130 has an upper face 130a in contact with the second face 10b of the fibrous texture 10 through which the evacuation of volatile species released by the resin is intended to be performed.
  • the second face 10b of the fibrous texture 10 is, in the example illustrated in FIGS. 1 and 2, located on the opposite side to the first face 10a through which the resin is intended to penetrate the texture 1.
  • the resin may be also injected on the sides of the preform.
  • the rigid piece of porous material 130 allows the evacuation of the volatile species released by the resin through the outlet vent 112.
  • the rigid piece in porous material has a pores or pore porosity of between 0.1% and 1% measured by optical morphological examinations (the porosity measured with water must be close to 0), the pores of the rigid piece of porous material having a size between 0.01 pm and 0.2 pm.
  • the material must be machinable to make discs 10 to 30 mm thick and can withstand pressures of 15 bar without deformation.
  • the porous material must withstand acidic or aggressive chemicals while the pores of the porous material part have an average size (D50) of less than or equal to between 10 ⁇ m and 100 ⁇ m.
  • the piece of porous material may for example be made from one or more sheets of a thermoplastic material compacted in temperature to reduce the porosity of the material to an average size less than or equal to / between 0.01 pm and 0.2 pm allowing the passage of volatile species from the resin while retaining the resin in the fibrous structure.
  • This piece can be made from a sheet of polytetrafluoroethylene (PTFE) (Teflon®) with a pore diameter of between 10 ⁇ m and 250 ⁇ m by compression in a mold heated to a temperature below the melting temperature so that that the material softens without melting. The pressure of several bars (100 to 200 bar closed mold) reduces the porosity. Manufacturing parameters may vary from one material to another.
  • PTFE polytetrafluoroethylene
  • the piece of porous material is also made of a porous material capable of withstanding temperatures of the order of 160 ° C in a medium releasing including water and phenol.
  • the piece Porous material may for example be made from one of the following materials: the whole range of Teflon, polyethylene, polypropylene, polyvinylidene fluoride.
  • the piece of porous material 130 may have a thickness greater than or equal to 5 mm.
  • the piece of porous material has a shape corresponding to the shape of the preform and the piece of composite material to obtain.
  • the injected resin is a thermosetting type resin such as a phenolic resin.
  • the invention is particularly suitable for the injection and the polymerization of resins with a high degassing rate, such as the following resins: polycondensation resins.
  • FIG. 3 illustrates the configuration obtained during the injection of a resin 150 into the fibrous texture 10.
  • the resin 150 is injected under pressure by the injection ports 121 so as to penetrate into the fibrous texture 10 through its first face 10a.
  • the resin is retained in the fibrous texture by the rigid piece of porous material 130.
  • Figure 4 illustrates the configuration obtained during polymerization of the resin.
  • the tool 100 may comprise heating means, for example resistive elements housed in the walls of the tool (not shown in Figures 1 to 4).
  • the tool may also be placed in a heating chamber, for example an oven or an autoclave.
  • the resin releases volatile species 160 which are then removed from the fibrous texture by the outlet vent 112 via the rigid piece of porous material 130. This avoids the formation of macroporosity in the composite material part thus obtained.
  • pumping P or vacuum draw can be performed at the outlet vent 112.
  • the invention applies to all processes for producing a composite material by injection or impregnation and polymerization of a resin in a fibrous texture, and in particular the processes by liquid molding called “LCM”("Liquid Composite Molding”).
  • LCM liquid molding
  • the resin being, in known manner, injected into the fibrous structure by means of a pressure gradient created between the port of injecting the resin and the outlet vent (s), for example by drawing the vacuum at the outlet outlet (s) and / or using a pump or piston to "push the resin" into the mold cavity via the injection port.
  • the mold is then heated locally (walls of the heating molds) or by an external device (autoclave) in order to initiate the polymerization of the resin.
  • the mold containing the fibrous texture is closed in its open portion by a tarpaulin.
  • the resin is then injected between the fibrous texture and the tarpaulin.
  • the fibrous texture is then impregnated by the resin by creating a vacuum in the mold, for example by pumping at the outlet or vents.
  • the mold is then heated locally (walls of the heating molds) or by an external device (autoclave) in order to initiate the polymerization of the resin.
  • FIGS 5 to 8 illustrate an implementation of the invention applied to the "Polyflex" process.
  • a fibrous texture 20 is placed in a tool 200.
  • the fibrous texture 20 is made according to one of the techniques defined above (for example stacking of 2D layers or 3D weaving) with carbon fiber threads. .
  • the fibrous texture 20 is here intended to form the fibrous reinforcement of a blade of composite material.
  • the tool 200 comprises a mold 210 whose bottom 211 is provided with an outlet vent 212.
  • the mold 210 also comprises a side wall 213 having an injection port 214 equipped with a valve 2140.
  • a rigid piece of material The porous material 220 has a bottom face 220b in contact with the inner surface 211a of the bottom 211 and an upper face 220a for receiving the fibrous texture 20.
  • the rigid piece of porous material 220 has a pore or porosity level greater than or equal to 0.1% and 1% while the pores of the porous material part have an average size (D50) less than or equal to 0.01 ⁇ m and 0.2 pm.
  • the rigid piece of porous material 220 can be obtained by compacting the temperature of a thermoplastic material as described above.
  • the tool 200 further comprises a cover 230 comprising an injection port 231 equipped with a valve 2310 and a deformable membrane 240 which, once the tool has been closed (FIG. 5), separates an impregnation chamber 201 in which The fibrous texture 20 is present in a compaction chamber 202 located above the membrane 240.
  • the membrane 240 may be made of silicone, for example.
  • a resin 250 is then injected into the impregnation chamber
  • the resin 250 is for example a phenolic resin.
  • the quantity of resin 250 injected into the impregnation chamber 201 is determined as a function of the volume of the fibrous texture 20 to be impregnated.
  • the compaction operation is carried out by injecting a compression fluid 270, for example oil, into the compaction chamber.
  • a compression fluid 270 for example oil
  • the compression fluid 270 applies pressure on the resin 250 through the membrane 240 which forces the resin 250 to penetrate into the fibrous texture 20.
  • the fluid 270 imposes a hydrostatic pressure on the entire membrane 240 and therefore , on all of the resin present above the texture 20.
  • the rigid piece made of porous material 220 makes it possible to retain the resin in the fibrous texture 20.
  • Figure 8 illustrates the configuration obtained during polymerization of the resin.
  • the tool 200 may comprise heating means, for example resistive elements housed in the walls of the tool (not shown in Figures 5 to 8).
  • Tooling can be also placed in a heating chamber for example an oven or an autoclave.
  • the resin releases volatile species 260 which are then removed from the fibrous texture by the outlet vent 212 via the rigid piece of porous material 220. This avoids the formation of macroporosity in the composite material part thus obtained.
  • pumping P or vacuum draw can be performed at the outlet vent 112.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Un procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes : a) placement d'une texture fibreuse (10) dans une cavité de moulage (114) délimitée par un moule (110), b) injection ou imprégnation d'une résine dans la texture fibreuse (10) présente dans la cavité de moulage (114), c) polymérisation de la résine. Lors de l'étape c) de polymérisation de la résine, les espèces volatiles (160) dégagées par la résine sont évacuées en dehors de la texture fibreuse par une pièce rigide en matériau poreux (130) interposée entre la texture fibreuse (10) et le moule (110). La pièce rigide en matériau poreux (130) est présente entre au moins un évent de sortie (112) et la texture fibreuse (10). La pièce rigide en matériau poreux présente un taux de pores compris entre 0.1% et 1%, les pores de la pièce rigide en matériau poreux ayant une taille comprise entre 0.01 μm et 0.2 μm.

Description

Procédé de fabrication d'une pièce en matériau composite par injection et polymérisation d'une résine dans une texture fibreuse
Arrière-plan de l'invention
La présente invention concerne la réalisation de pièces en matériau composite, c'est-à-dire des pièces à renfort fibreux densifié par une matrice. Les matériaux composites permettent de réaliser des pièces ayant une masse globale moins élevée que ces mêmes pièces lorsqu'elles sont réalisées en matériau métallique.
Un procédé usuel d'obtention de pièces en matériau composite consiste à placer une texture fibreuse dans un moule, d'injecter une résine dans la texture fibreuse et de polymériser la résine présente dans la texture. Lors de sa polymérisation, la résine dégage des espèces volatiles qu'il est important d'évacuer afin d'obtenir des pièces en matériau composite ayant un faible taux de porosité et, par conséquent, de bonnes propriétés mécaniques.
A cet effet, on équipe le moule d'un ou plusieurs évents de sortie afin d'évacuer les espèces volatiles. Un vide partiel ou total est appliqué sur le ou les évents de sortie. Dans ce cas, il y a un risque que la résine soit également aspirée dans le ou les évents de sortie, ce qui entraîne la formation de zones à forte porosité dans la pièce finale. En outre, les conduits d'évacuation reliés aux évents de sortie peuvent se remplir de résine qui, lors de sa gélification, va boucher lesdits conduits et interrompre ainsi le pompage ou tirage du vide au cours du cycle de polymérisation.
Objet et résumé de l'invention
La présente invention a pour but de remédier aux inconvénients précités et de proposer une solution qui permet d'évacuer les espèces volatiles dégagées par la résine lors de sa polymérisation tout en assurant le maintien de la résine injectée à l'intérieur de la texture fibreuse.
A cet effet, l'invention propose un procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes : a) placement d'une texture fibreuse dans une cavité de moulage délimitée par un moule,
b) injection ou imprégnation d'une résine dans la texture fibreuse présente dans la cavité de moulage, l'injection étant réalisée au moins au travers d'une première face ou d'un premier bord de ladite texture fibreuse,
c) polymérisation de la résine,
caractérisé en ce que, lors de la polymérisation de la résine, les espèces volatiles dégagées par la résine sont évacuées en dehors de la texture fibreuse par une pièce rigide en matériau poreux interposée entre la texture fibreuse et le moule, l'évacuation étant effectuée au moins au travers d'une deuxième face ou d'un deuxième bord de la texture fibreuse différent de la première face ou du premier bord, la pièce rigide en matériau poreux étant présente entre au moins un évent de sortie et la texture fibreuse, la pièce rigide en matériau poreux présentant un taux de pores compris entre 0.1% et 1% mesuré par examens morphologiques optiques ( la porosité mesurée à l'eau doit être proche de 0), les pores de la pièce rigide en matériau poreux ayant une taille comprise entre 0.01 μιτι et 0.2 μηι.
En utilisant une pièce en matériau poreux qui présente des caractéristiques de porosité (taille et taux de pores) aptes à permettre l'évacuation des espèces volatiles dégagées par la résine lors de sa polymérisation, on évite le piégeage des espèces dans la texture, ce qui permet d'obtenir une pièce finale en matériau composite présentant un faible taux de porosité et, par conséquent, de bonnes propriétés mécaniques. En outre, en utilisant une pièce en matériau poreux avec des caractéristiques de porosité (taille et taux de pores) telles que la pièce est imperméable à la résine, la résine est retenue dans la texture fibreuse, ce qui évite tout risque de bouchage par la résine du ou des évents de sortie ou des conduits d'évacuation reliés aux évents de sortie.
Selon une caractéristique particulière du procédé de l'invention, la pièce rigide en matériau poreux est en un matériau choisi parmi un des matériaux suivants : polytétrafluoroéthylène (PTFE), polyéthylène, polypropylène, fluorure de polyvinylydène. Selon une autre caractéristique particulière du procédé de l'invention, lors de l'étape c) de polymérisation de la résine, un pompage est effectué au niveau de chaque évent de sortie.
Selon un mode de mise en œuvre du procédé de l'invention, un gradient de pression est établi entre un port d'injection de résine et chaque évent de sortie lors de l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse.
Selon un autre mode de mise en œuvre du procédé de l'invention, avant l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse, le moule contenant la texture fibreuse est fermé dans une partie ouverte par une bâche, la résine étant injectée entre la texture fibreuse et la bâche, et dans lequel, lors de l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse, une dépression est créée dans le moule afin de faire pénétrer la résine dans la texture fibreuse.
Selon encore un autre mode de mise en œuvre du procédé de l'invention, le moule dans lequel est placé la texture fibreuse comprend une chambre d'imprégnation comportant dans sa partie inférieure la pièce en matériau poreux sur laquelle repose une première face de ladite texture, la chambre d'imprégnation étant fermée dans sa partie supérieure par une membrane imperméable déformable placée en regard d'une deuxième face de la texture fibreuse, ladite membrane séparant la chambre d'imprégnation d'une chambre de compaction, la résine étant, avant l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse, injectée dans la chambre d'imprégnation entre la deuxième face de la texture fibreuse et la membrane, un fluide de compaction étant injecté dans la chambre de compaction lors de l'étape b), le fluide exerçant une pression sur la membrane pour forcer la résine à pénétrer dans la texture fibreuse.
La texture fibreuse peut être obtenue par empilement de strates ou plis obtenu par tissage bidimensionnel, ou par tissage tridimensionnel ou multicouche.
Les fils de la texture fibreuse peuvent être formés de fibres constituées d'un ou plusieurs des matériaux suivants : carbone, carbure de silicium, silice, précurseur de fibres de carbone. La résine peut notamment être choisie parmi une des résines suivantes: résine phénolique, polyester ou autres résines à polycondensation.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique en perspective éclatée d'un outillage conformément à un mode de réalisation de l'invention,
- la figure 2 est une vue schématique en coupe montrant l'outillage de la figure 1 fermé avec une texture fibreuse positionnée dans celui-ci,
- la figure 3 est une vue schématique en coupe montrant l'étape d'imprégnation d'une texture fibreuse avec une résine dans l'outillage de la figure 2,
- la figure 4 est une vue schématique en coupe montrant la polymérisation de la résine injectée dans la texture fibreuse dans l'outillage de la figure 2,
- la figure 5 est une vue schématique en coupe montrant un outillage conformément à un autre mode de réalisation de l'invention pour la mise en œuvre d'un procédé « Polyflex »,
- les figures 6 à 8 sont des vues schématiques en coupe montrant respectivement les étapes d'injection, d'imprégnation et de polymérisation d'une résine dans une texture fibreuse dans l'outillage de la figure 5.
Description détaillée de modes de réalisation
Le procédé de fabrication d'une pièce en matériau composite conforme à la présente invention débute par la réalisation d'une texture fibreuse destinée à former le renfort de la pièce.
La structure fibreuse est réalisée de façon connue par tissage au moyen d'un métier à tisser de type jacquard sur lequel on a disposé un faisceau de fils de chaînes ou torons en une pluralité de couches, les fils de chaînes étant liés par des fils de trame ou inversement. La texture fibreuse peut être réalisée par empilement de strates ou plis obtenu par tissage bidimensionnel (2D). La texture fibreuse peut également être réalisée directement en une seule pièce par tissage tridimensionnel (3D). Par « tissage bidimensionnel », on entend ici un mode de tissage classique par lequel chaque fil de trame passe d'un côté à l'autre de fils d'une seule couche de chaîne ou inversement.
Par « tissage tridimensionnel » ou « tissage 3D » ou encore « tissage multicouche », on entend ici un mode de tissage par lequel certains au moins des fils de trame lient des fils de chaîne sur plusieurs couches de fils de chaîne ou inversement suivant un tissage correspondant à une armure de tissage qui peut être notamment choisie parmi une des armures suivantes : interlock, multi-toile, multi-satin et multi-sergé.
Par « armure ou tissu interlock », on entend ici une armure de tissage 3D dont chaque couche de fils de chaîne lie plusieurs couches de fils de trame avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure.
Par « armure ou tissu multi-toile », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type toile classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-satin », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type satin classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-sergé », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type sergé classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Les fils utilisés pour tisser la texture fibreuse destinée à former le renfort fibreux de la pièce en matériau composite peuvent être notamment formés de fibres constituées d'un des matériaux suivants: carbone, carbure de silicium, silice, précurseur de fibres de carbone.
Une fois la texture fibreuse réalisée, celle-ci est placée dans un outillage conforme à l'invention qui permet, comme expliqué ci-après, d'injecter une résine dans la texture et de polymériser la résine. A cet effet et comme illustrée sur les figures 1 et 2, une texture fibreuse 10 est placée dans un outillage 100. Dans l'exemple décrit ici, la texture fibreuse 10 est réalisée suivant une des techniques définies ci-avant (empilement strates 2D ou tissage 3D) avec des fils en fibres de carbone. La texture fibreuse 10 est ici destinée à former le renfort fibreux d'une pièce en matériau composite carbone/carbone (C/C).
L'outillage 100 comprend un moule 110 et un couvercle ou contre-moule 120. Le moule 110 comprend un fond 111 muni d'un évent 112. Le moule 110 comprend également une paroi latérale 113 qui forme avec le fond 111 une cavité de moulage 114. Dans l'exemple illustré, l'outillage 100 dans lequel la texture fibreuse 10 est présente est fermé dans sa partie inférieure par le moule 110 et est fermé dans sa partie supérieure par le contre-moule 120 formant un couvercle refermant l'outillage 100. Le moule 110 et le contre-moule 120 servent à dimensionner la préforme et donc la pièce à obtenir ainsi qu'à ajuster le taux de fibres dans la pièce à obtenir.
Le contre-moule 120 comporte une pluralité de ports d'injection 121 au travers desquels une résine est destinée à être injectée afin de pénétrer dans la porosité de la texture fibreuse 10 au travers de la première face 10a de la texture fibreuse 1. Dans l'exemple illustré aux figures 1 et 2, la résine est destinée à être injectée au travers d'une pluralité de ports d'injection 121 débouchant dans des zones différentes de la cavité de moulage. Toutefois, on ne sort pas du cadre de l'invention lorsque le liquide est injecté au travers d'un unique pore d'injection.
Le moule 110 comporte, quant à lui, un unique évent d'évacuation 112. Bien entendu, on ne sort pas du cadre de l'invention lorsqu'une pluralité d'évents de sortie est mise en oeuvre.
Conformément à l'invention, une pièce rigide en matériau poreux 130 est présente dans la cavité de moulage 114 entre le moule 110 et la texture fibreuse 10. La pièce en matériau poreux 130 présente une face supérieure 130a en contact avec la deuxième face 10b de la texture fibreuse 10 au travers de laquelle l'évacuation des espèces volatiles dégagées par la résine est destinée à être réalisée. La deuxième face 10b de la texture fibreuse 10 est, dans l'exemple illustré aux figures 1 et 2, située du côté opposé à la première face 10a au travers de laquelle la résine est destinée à pénétrer dans la texture 1. La résine peut être également injectée sur les côtés de la préforme.
La pièce rigide en matériau poreux 130 permet l'évacuation des espèces volatiles dégagées par la résine par l'évent de sortie 112. Afin de retenir la résine dans la texture fibreuse tout en étant capable d'évacuer les espèces volatiles, la pièce rigide en matériau poreux présente un taux de pores ou de porosité pores compris entre 0.1% et 1% mesurée par examens morphologiques optiques (la porosité mesurée à l'eau doit être proche de 0), les pores de la pièce rigide en matériau poreux ayant une taille comprise entre 0.01 pm et 0.2 pm. Par ailleurs le matériau doit pouvoir être usinable pour pouvoir réaliser des disques épais de 10 à 30 mm et pouvant résister à des pressions de 15 bars sans se déformer. Suivant les résines utilisées, le matériau poreux doit résister aux produits chimiques acides ou agressifs tandis que les pores de la pièce en matériau poreux ont une taille moyenne (D50) inférieure ou égale à/comprise entre 10 pm et 100 pm.
La pièce en matériau poreux peut par exemple être réalisée à partir d'une ou plusieurs feuilles d'un matériau thermoplastique compactées en température pour réduire la porosité du matériau à une taille moyenne inférieure ou égale à/comprise entre 0.01 pm et 0.2 pm permettant le passage des espèces volatiles issues de la résine tout en retenant la résine dans la structure fibreuse.
On peut réaliser cette pièce à partir d'une plaque de polytétrafluoroéthylène (PTFE) (Téflon®) de diamètre des pores compris entre 10 pm et 250 pm par compression dans un moule chauffé à une température inférieure à la température de fusion de manière à ce que le matériau se ramollisse sans fondre. La pression de plusieurs bars (100 à 200 bars en moule fermé) permet de réduire la porosité. Les paramètres de fabrication peuvent varier d'un matériau à l'autre.
La pièce en matériau poreux est en outre réalisée avec un matériau poreux apte à résister à des températures de l'ordre de 160°C dans un milieu dégageant notamment de l'eau et du phénol. La pièce en matériau poreux peut être par exemple être réalisée à partir d'un des matériaux suivants : toute la gamme des Téflon, polyéthylène, polypropylène, fluorure de polyvinylydène.
A titre d'exemple, la pièce en matériau poreux 130 peut présenter une épaisseur supérieure ou égale à 5 mm.
Dans un exemple de réalisation, la pièce en matériau poreux présente une forme correspondant à la forme de la préforme et de la pièce en matériau composite à obtenir.
Dans l'exemple décrit ici, la résine injectée est une résine de type thermodurcissable comme par exemple une résine phénolique. L'invention est particulièrement adaptée pour l'injection et la polymérisation de résines à fort taux de dégazage telles que les résines suivantes : résines à polycondensation.
La figure 3 illustre la configuration obtenue pendant l'injection d'une résine 150 dans la texture fibreuse 10. La résine 150 est injectée sous pression par les ports d'injection 121 de manière à pénétrer dans la texture fibreuse 10 au travers de sa première face 10a. La résine est retenue dans la texture fibreuse par la pièce rigide en matériau poreux 130.
La figure 4 illustre la configuration obtenue pendant la polymérisation de la résine. Une fois la résine 150 injectée dans tout le volume de la texture fibreuse 10, celle-ci est chauffée pour initier sa polymérisation. A cet effet, l'outillage 100 peut comprendre des moyens de chauffage, par exemple des éléments résistifs logés dans les parois de l'outillage (non représentés sur les figures 1 à 4). L'outillage peut être également placé dans une enceinte chauffante par exemple une étuve ou un autoclave. Lors de la polymérisation de la résine injectée dans la texture fibreuse, la résine dégage des espèces volatiles 160 qui sont alors évacuées de la texture fibreuse par l'évent de sortie 112 via la pièce rigide en matériau poreux 130. On évite ainsi la formation de macroporosité dans la pièce en matériau composite ainsi obtenue. Afin de faciliter l'évacuation des espèces volatiles 160, un pompage P ou tirage de vide peut être réalisé au niveau de l'évent de sortie 112.
L'invention s'applique à tous les procédés de réalisation de matériau composite par injection ou imprégnation et polymérisation d'une résine dans une texture fibreuse, et en particulier les procédés par moulage liquide dit « LCM » (« Liquid Composite Molding »). Parmi les procédés par moulage liquide LCM, on citera notamment le procédé de moulage par injection basse pression de résine dit « RTM » (Resin Transfer Molding), l'infusion sous vide et le procédé dit « Polyflex ».
Pour le procédé RTM, celui-ci peut être mis en œuvre avec l'outillage 100 décrit ci-avant, la résine étant, de manière connue, injectée dans la structure fibreuse au moyen d'un gradient de pression créé entre le port d'injection de la résine et le ou les évents de sortie, par exemple par tirage du vide au niveau du ou des évents de sortie et/ou par utilisation d'une pompe ou piston afin de « pousser la résine » dans la cavité de moulage via le port d'injection. Le moule est alors chauffé localement (parois du moules chauffantes) ou par un dispositif externe (autoclave) afin d'initier la polymérisation de la résine.
Pour l'infusion sous vide, qui est également bien connue, le moule contenant la texture fibreuse est fermé dans sa partie ouverte par une bâche. La résine est ensuite injectée entre la texture fibreuse et la bâche. La texture fibreuse est alors imprégnée par la résine par création d'une dépression dans le moule, par exemple par pompage au niveau du ou des évents de sortie. Le moule est alors chauffé localement (parois du moules chauffantes) ou par un dispositif externe (autoclave) afin d'initier la polymérisation de la résine.
Les figures 5 à 8 illustrent une mise en œuvre de l'invention appliquée au procédé « Polyflex ».
Une texture fibreuse 20 est placée dans un outillage 200. Dans l'exemple décrit ici, la texture fibreuse 20 est réalisée suivant une des techniques définies ci-avant (par exemple empilement de strates 2D ou tissage 3D) avec des fils en fibres de carbone. La texture fibreuse 20 est ici destinée à former le renfort fibreux d'une aube en matériau composite.
L'outillage 200 comprend un moule 210 dont le fond 211 est muni d'un évent de sortie 212. Le moule 210 comprend également une paroi latérale 213 comportant un port d'injection 214 équipée d'une vanne 2140. Une pièce rigide en matériau poreux 220 est placée sur la surface interne 211a du fond 211. La pièce en matériau poreux 220 comporte une face inférieure 220b en contact avec la surface interne 211a du fond 211 et une face supérieure 220a destinée à recevoir la texture fibreuse 20. Conformément à l'invention, la pièce rigide en matériau poreux 220 présente un taux de pores ou de porosité supérieur ou égal à .../compris entre 0.1% et 1% tandis que les pores de la pièce en matériau poreux ont une taille moyenne (D50) inférieure ou égale à/comprise entre 0.01 pm et 0.2 pm. La pièce rigide en matériau poreux 220 peut être obtenue par compactage en température d'un matériau thermoplastique comme décrit précédemment.
L'outillage 200 comprend en outre un couvercle 230 comportant un port d'injection 231 équipé d'une vanne 2310 et une membrane déformable 240 qui, une fois l'outillage fermé (figure 5), sépare une chambre d'imprégnation 201 dans laquelle est présente la texture fibreuse 20 d'une chambre de compaction 202 située au-dessus de la membrane 240. La membrane 240 peut être réalisée par exemple en silicone.
On injecte alors une résine 250 dans la chambre d'imprégnation
201 par le port d'injection 214 dont la vanne 2140 est ouverte (figure 6). La résine 250 est par exemple une résine phénolique.
La quantité de résine 250 injectée dans la chambre d'imprégnation 201 est déterminée en fonction du volume de la texture fibreuse 20 à imprégner.
Une fois la résine 250 injectée dans la chambre d'imprégnation 201, on procède à l'opération de compaction en injectant un fluide de compression 270, par exemple de l'huile, dans la chambre de compaction
202 par le port d'injection 231 dont la vanne 2310 est ouverte, la vanne 2140 du port d'injection 214 ayant été préalablement fermée (figure 7). Le fluide de compression 270 applique une pression sur la résine 250 au travers de la membrane 240 qui force la résine 250 à pénétrer dans la texture fibreuse 20. Le fluide 270 impose une pression hydrostatique sur l'intégralité de la membrane 240 et, par conséquent, sur l'intégralité de la résine présente au-dessus de la texture 20.
La pièce rigide en matériau poreux 220 permet de retenir la résine dans la texture fibreuse 20.
La figure 8 illustre la configuration obtenue pendant la polymérisation de la résine. Une fois la résine 250 injectée dans tout le volume de la texture fibreuse 20, celle-ci est chauffée pour initier sa polymérisation. A cet effet, l'outillage 200 peut comprendre des moyens de chauffage, par exemple des éléments résistifs logés dans les parois de l'outillage (non représentés sur les figures 5 à 8). L'outillage peut être également placé dans une enceinte chauffante par exemple une étuve ou un autoclave. Lors de la polymérisation de la résine injectée dans la texture fibreuse, la résine dégage des espèces volatiles 260 qui sont alors évacuées de la texture fibreuse par l'évent de sortie 212 via la pièce rigide en matériau poreux 220. On évite ainsi la formation de macroporosité dans la pièce en matériau composite ainsi obtenue. Afin de faciliter l'évacuation des espèces volatiles 260, un pompage P ou tirage de vide peut être réalisé au niveau de l'évent de sortie 112.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes :
a) placement d'une texture fibreuse (10) dans une cavité de moulage (114) délimitée par un moule (110),
b) injection ou imprégnation d'une résine (150) dans la texture fibreuse (10) présente dans la cavité de moulage (114), l'injection ou l'imprégnation étant réalisée au moins au travers d'une première face (10a) ou d'un premier bord de ladite texture fibreuse,
c) polymérisation de la résine,
caractérisé en ce que, lors de l'étape c) de polymérisation de la résine, les espèces volatiles (160) dégagées par la résine sont évacuées en dehors de la texture fibreuse par une pièce rigide en matériau poreux (130) interposée entre la texture fibreuse (10) et le moule (110), l'évacuation étant effectuée au moins au travers d'une deuxième face (10b) ou d'un deuxième bord de la texture fibreuse différent de la première face ou du premier bord, la pièce rigide en matériau poreux (130) étant présente entre au moins un évent de sortie (112) et la texture fibreuse (10), la pièce rigide en matériau poreux présentant un taux de pores compris entre 0.1% et 1%, les pores de la pièce rigide en matériau poreux ayant une taille comprise entre 0.01 μιη et 0.2 μιτι.
2. Procédé selon la revendication 1, dans lequel la pièce rigide en matériau poreux (130) est en un matériau choisi parmi un des matériaux suivants : polytétrafluoroéthylène (PTFE), polyéthylène, polypropylène, fluorure de polyvinylydène.
3. Procédé selon la revendication 1 ou 2, dans lequel, lors de l'étape c) de polymérisation de la résine, un pompage est effectué au niveau de chaque évent de sortie (112).
4. Procédé selon la revendication 1 ou 2, dans lequel un gradient de pression est établi entre un ou plusieurs ports d'injection de résine (121) et chaque évent de sortie (112) lors de l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse.
5. Procédé selon la revendication 1 ou 2, dans lequel, avant l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse, le moule contenant la texture fibreuse est fermé dans une partie ouverte par une bâche, la résine étant injectée entre la texture fibreuse et la bâche, et dans lequel, lors de l'étape b), une dépression est créée dans le moule afin de faire pénétrer la résine dans la texture fibreuse.
6. Procédé selon la revendication 1 ou 2, caractérisé en ce que le moule (210) dans lequel est placé la texture fibreuse (20) comprend une chambre d'imprégnation (201) comportant dans sa partie inférieure la pièce en matériau poreux (220) sur laquelle repose une première face (20b) de ladite texture (20), la chambre d'imprégnation (201) étant fermée dans sa partie supérieure par une membrane imperméable déformable (240) placée en regard d'une deuxième face (20a) de la texture fibreuse (20), ladite membrane (240) séparant la chambre d'imprégnation (201) d'une chambre de compaction (202), la résine (250) étant, avant l'étape b) d'injection ou d'imprégnation de la résine dans la texture fibreuse, injectée dans la chambre d'imprégnation entre la deuxième face (20a) de la texture fibreuse (20) et la membrane (280), un fluide de compaction (270) étant injecté dans la chambre de compaction (202) lors de l'étape b), le fluide exerçant une pression sur la membrane (240) pour forcer la résine (250) à pénétrer dans la texture fibreuse (20).
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, la texture fibreuse est obtenue par empilement de strates ou plis obtenu par tissage bidimensionnel, ou par tissage tridimensionnel ou multicouche.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les fils de la texture fibreuse sont formés de fibres constituées d'un ou plusieurs des matériaux suivants : carbone, carbure de silicium, silice, précurseur de fibres de carbone.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la résine est choisie parmi une des résines suivantes : résine phénolique, polyester ou autres résines à polycondensation.
PCT/FR2018/051470 2017-06-19 2018-06-19 Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse WO2018234688A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2971332A CA2971332A1 (fr) 2017-06-19 2017-06-19 Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse
CA2,971,332 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018234688A1 true WO2018234688A1 (fr) 2018-12-27

Family

ID=62948261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051470 WO2018234688A1 (fr) 2017-06-19 2018-06-19 Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse

Country Status (2)

Country Link
CA (1) CA2971332A1 (fr)
WO (1) WO2018234688A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1393883A1 (fr) * 2002-08-27 2004-03-03 MAN Technologie AG Dispositif, système d'outillage et procédé de fabrication de pièces composites renforcées de fibres par un procédé d'injection avec contrôle de la température et de la pression
FR2868008A1 (fr) * 2004-03-24 2005-09-30 Diatex Sa Complexe multicouche et procede de fabrication d'une piece en materiau composite utilisant un tel complexe
FR2958933A1 (fr) * 2010-04-20 2011-10-21 Onera (Off Nat Aerospatiale) Procede d'elaboration d'une piece composite a matrice ceramique
FR2971449A1 (fr) * 2011-02-14 2012-08-17 Diatex Complexe multicouche et son utilisation pour la fabrication de pieces en materiau composite, procede de fabrication d'une telle piece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1393883A1 (fr) * 2002-08-27 2004-03-03 MAN Technologie AG Dispositif, système d'outillage et procédé de fabrication de pièces composites renforcées de fibres par un procédé d'injection avec contrôle de la température et de la pression
FR2868008A1 (fr) * 2004-03-24 2005-09-30 Diatex Sa Complexe multicouche et procede de fabrication d'une piece en materiau composite utilisant un tel complexe
FR2958933A1 (fr) * 2010-04-20 2011-10-21 Onera (Off Nat Aerospatiale) Procede d'elaboration d'une piece composite a matrice ceramique
FR2971449A1 (fr) * 2011-02-14 2012-08-17 Diatex Complexe multicouche et son utilisation pour la fabrication de pieces en materiau composite, procede de fabrication d'une telle piece

Also Published As

Publication number Publication date
CA2971332A1 (fr) 2018-12-19

Similar Documents

Publication Publication Date Title
EP3359506B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux
EP3237660B1 (fr) Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires
FR3050454B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3237358B1 (fr) Procédé de fabrication d'une pièce réfractaire en matériau composite
CA2972172C (fr) Procede de fabrication d'une piece en materiau composite
EP1824664B1 (fr) Densification de structures fibreuses pour la realisation de pieces epaisses en materiau composite
FR3080113A1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
WO2018234669A1 (fr) Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur
FR2975038A1 (fr) Procede de fabrication d'une piece en materiau composite et piece ainsi obtenue.
WO2018234688A1 (fr) Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse
WO2018234686A1 (fr) Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique
EP3090863A1 (fr) Procédé et dispositif pour la fabrication d'un moule composite comprenant une face antiadhérente
WO2020234550A1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
FR3098433A1 (fr) Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
EP3996889B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
FR3087194A1 (fr) Procede de fabrication d'une piece en materiau composite avec controle de conformite
FR3114990A1 (fr) Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées
WO2022079379A1 (fr) Texture fibreuse non tissee avec embuvage
FR3124965A1 (fr) Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
WO2023041559A1 (fr) Procédé de fabrication d'une pièce en matériau composite
CA3070727A1 (fr) Procede de fabrication d'une piece en materiau composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742536

Country of ref document: EP

Kind code of ref document: A1