WO2018233014A1 - 一种基于传输时长控制物联网数据过滤的方法及设备 - Google Patents

一种基于传输时长控制物联网数据过滤的方法及设备 Download PDF

Info

Publication number
WO2018233014A1
WO2018233014A1 PCT/CN2017/099492 CN2017099492W WO2018233014A1 WO 2018233014 A1 WO2018233014 A1 WO 2018233014A1 CN 2017099492 W CN2017099492 W CN 2017099492W WO 2018233014 A1 WO2018233014 A1 WO 2018233014A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
internet
unit
things data
things
Prior art date
Application number
PCT/CN2017/099492
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018233014A1 publication Critical patent/WO2018233014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates to the field of Internet of Things technologies, and in particular, to a method and device for controlling IoT data filtering based on a transmission duration.
  • the IoT architecture in order to enable people to manage production and life more finely and dynamically to improve resource utilization and production efficiency, massive terminal devices in the IoT architecture need to report IoT data to the forwarding node, and the forwarding node is detecting After hearing the IoT data reported by the terminal device, the IoT data is encapsulated into data elements and reported to the aggregation unit serving as the IoT human-machine interface in the IoT architecture, so that the aggregation unit analyzes and decides according to the data content included in the data element.
  • the aggregation unit can provide people with relevant reports such as warnings and anomalies, and in order to ensure that the aggregation unit can provide early warning and abnormal reports in a timely and reliable manner, it is particularly important to forward the timeliness of the IoT data reported by the nodes.
  • the embodiment of the invention discloses a method and a device for controlling the Internet of Things data filtering based on the transmission duration, and can report the IoT data with less delay to the aggregation unit, thereby ensuring the timeliness of the reported IoT data.
  • a first aspect of the embodiments of the present invention discloses a method for controlling IoT data filtering based on a transmission duration, where the method includes:
  • the forwarding node listens to the massive Internet of Things data reported by the mass terminal device in the wireless coverage area, and each of the Internet of Things data includes the data content and the reporting time of the Internet of Things data;
  • the forwarding node identifies a plurality of Internet of Things data in the mass IoT data that exceeds a maximum delay threshold corresponding to the forwarding node, and filters the plurality of Internet of Things from the massive Internet of Things data. Data, get the remaining Internet of Things data;
  • the forwarding node encapsulates the remaining Internet of Things data into a first data element, and the first The data element is reported to the aggregation unit.
  • the method before the forwarding node encapsulates the remaining Internet of Things data into a first data element, the method further includes:
  • the forwarding node determines whether the reported load is greater than or equal to a preset load threshold, and when the reported load is not greater than or equal to the preset load threshold, triggering execution of the storing the remaining Internet of Things data into the first data element. operating;
  • the method further includes:
  • the forwarding node determines whether the remaining Internet of Things data includes the Internet of Things data of interest to the aggregation unit, and includes the Internet of Things data of interest to the aggregation unit.
  • the IoT data of the convergence unit included in the remaining Internet of Things data is encapsulated into a second data element, and the second data element is reported to the aggregation unit.
  • the method further includes:
  • the forwarding node determines whether the Internet of Things data reported by the terminal device of the convergence unit is present in the plurality of Internet of Things data, and the terminal device that is interested in the aggregation unit does not exist in the plurality of Internet of Things data. In the case of the Internet of Things data, triggering an operation of encapsulating the remaining Internet of Things data into a first data element;
  • the method further includes:
  • the terminal device When there is the Internet of Things data reported by the terminal device that is interested in the aggregation unit in the plurality of Internet of Things data, the terminal that is interested in the convergence unit that is detected by the adjacent forwarding node in the wireless coverage is intercepted.
  • the target Internet of Things data reported by the device and having a transmission duration less than or equal to the maximum delay threshold, and the target Internet of Things data and the remaining Internet of Things data are encapsulated into a third data element, and the third data element is Reported to the aggregation unit.
  • the forwarding node reports the first data element to the aggregation unit, including:
  • the forwarding node selects two forwarding paths according to the preset routing table, and reports the first data element to the aggregation unit by using the two forwarding paths.
  • each of the Internet of Things data further includes a device type and a geographic location of the terminal device that reports the Internet of Things data;
  • the forwarding node encapsulates the remaining Internet of Things data into a first data element, including:
  • the networked data is encapsulated into a first data element.
  • a second aspect of the embodiment of the present invention discloses a forwarding node, where the forwarding node includes a listening unit, a determining unit, an identifying unit, a filtering unit, a packaging unit, and a reporting unit, where:
  • the listening unit is configured to listen to massive Internet of Things data reported by a mass terminal device in a wireless coverage area, and each of the Internet of Things data includes data content and a reporting time of the Internet of Things data;
  • the determining unit is configured to determine a listening moment of each of the Internet of Things data, and determine a transmission duration of each of the Internet of Things data according to a reporting time and a listening time of each of the Internet of Things data;
  • the identification unit is configured to identify, in the massive Internet of Things data, a plurality of Internet of Things data whose transmission duration exceeds a maximum delay threshold corresponding to the forwarding node;
  • the filtering unit is configured to filter the plurality of Internet of Things data from the massive Internet of Things data to obtain remaining Internet of Things data;
  • the encapsulating unit is configured to encapsulate the remaining Internet of Things data into a first data element
  • the reporting unit is configured to report the first data element to the aggregation unit.
  • the forwarding node further includes a determining unit, where:
  • the determining unit is configured to determine whether the reported load is greater than or equal to a preset load threshold before the remaining IoT data is encapsulated into the first data element, and when the reported load is not greater than or equal to the preset load threshold And triggering, by the encapsulating unit, an operation of encapsulating the remaining Internet of Things data into a first data element;
  • the determining unit is further configured to: determine, when the reported load is greater than or equal to the preset load threshold, whether the remaining Internet of Things data includes IoT data of interest to the convergence unit;
  • the encapsulating unit is further configured to: when the determining unit determines the remaining IoT data packet When the IoT data of the convergence unit is included, the IoT data of the convergence unit included in the remaining Internet of Things data is encapsulated into a second data element;
  • the reporting unit is further configured to report the second data element to the convergence unit.
  • the determining unit is further configured to: after determining that the reporting load is not greater than or equal to the preset reporting load, and in the packaging unit Before the remaining Internet of Things data is encapsulated into the first data element, determining whether the Internet of Things data reported by the terminal device interested in the convergence unit exists in the plurality of Internet of Things data, when the plurality of Internet of Things data does not exist When the IoT data reported by the terminal device of the convergence unit is reported, the encapsulating unit is triggered to perform the operation of encapsulating the remaining Internet of Things data into the first data element;
  • the listening unit is further configured to: when the determining unit determines that the Internet of Things data reported by the terminal device that is interested in the convergence unit exists in the plurality of Internet of Things data, listen to the phase in the wireless coverage range The target Internet of Things data reported by the terminal device of the convergence unit and reported by the neighboring forwarding node and whose transmission duration is less than or equal to the maximum delay threshold;
  • the encapsulating unit is further configured to encapsulate the target Internet of Things data and the remaining Internet of Things data into a third data element;
  • the reporting unit is further configured to report the third data element to the aggregation unit.
  • the specific manner in which the reporting unit reports the first data element to the convergence unit is:
  • the two forwarding paths are selected according to the preset routing table, and the first data element is reported to the aggregation unit by using the two forwarding paths.
  • each of the Internet of Things data further includes a device type and a geographical location of the terminal device that reports the Internet of Things data;
  • the package unit includes a de-weight sub-unit and a package sub-unit, wherein:
  • the de-sub-unit is configured to de-weight the IoT data reported by the terminal device in the same geographical location and the terminal device of the same device type to obtain the de-weighted Internet of Things data;
  • the encapsulating subunit is configured to encapsulate the deweighted Internet of Things data into the first data element.
  • the embodiment of the invention has the following beneficial effects:
  • the forwarding node listens to the massive IoT data reported by the mass terminal device in the wireless coverage area, and each IoT data includes the data content and the reporting time of the Internet of Things data, and the forwarding node determines to detect each time.
  • the listening time of the Internet of Things data and determining the transmission duration of each IoT data according to the reporting time and the listening time of each IoT data, and identifying that the transmission duration in the massive IoT data exceeds the corresponding forwarding node a plurality of IoT data with a maximum delay threshold, and filtering the plurality of IoT data from the massive IoT data, obtaining the remaining IoT data, and encapsulating the remaining IoT data into the first data element, and The first data element is reported to the aggregation unit.
  • the embodiment of the invention can filter out the Internet of Things data with a large transmission delay, and report the IoT data with less delay to the aggregation unit, thereby ensuring the timeliness of the reported IoT data, and also reducing the forwarding node. Report the load.
  • FIG. 1 is a schematic diagram of an Internet of Things architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for controlling IoT data filtering based on a transmission duration according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a forwarding node according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another forwarding node according to an embodiment of the present invention.
  • the embodiment of the invention discloses a method and a device for controlling internet data filtering based on transmission duration
  • the device can filter out the IoT data with a large transmission delay and report the IoT data with less delay to the aggregation unit, thereby ensuring the timeliness of the reported IoT data and reducing the reporting load of the forwarding node. The details are described below separately.
  • FIG. 1 is a schematic diagram of an Internet of Things architecture disclosed in an embodiment of the present invention.
  • the IoT architecture may include three layers: a terminal device layer, a forwarding node layer, and an aggregation layer according to functions.
  • the terminal device layer may include a mass-scale terminal device, such as a hygrometer, a smoke sensor, a ventilation device, a rain sensor, an irrigation valve, etc.;
  • the forwarding node layer may include a large number of forwarding nodes connected by a network, and the forwarding node may include a router.
  • the forwarding node may use any standard networking protocol, and the forwarding node may implement data parsing between different network standards;
  • the aggregation layer may include a filtering gateway.
  • a convergence unit wherein the filtering gateway can directly or indirectly communicate with each forwarding node of the forwarding node layer through the Internet; the aggregation unit can perform high-level management on each forwarding node of the forwarding node layer through the filtering gateway, thereby realizing data transmission frequency and network.
  • each forwarding node can provide IoT data receiving and receiving services for a mass of terminal devices within its own wireless coverage, wherein each forwarding node has its own wireless coverage within each terminal device.
  • a wireless communication module can be built in, which enables each forwarding node to communicate wirelessly with each terminal device within its own wireless coverage by wireless network communication.
  • the wireless communication module built into the terminal device can input the upper frequency point 470MHz and the lower frequency point 510MHz during production, so that the wireless communication module can automatically define the communication frequency band as 470MHz ⁇ 510MHz, It complies with the provisions of China's SRRC standard; alternatively, it can input the upper frequency point of 868MHz and the lower frequency point of 908MHz, so that the wireless communication module can automatically define the communication frequency band as 868MHz to 908MHz to comply with the European ETSI standard; or, you can enter The frequency is 918MHz and the lower frequency is 928MHz, so the wireless communication module can automatically define the communication frequency band as 918MHz ⁇ 928MHz to meet the requirements of the US FCC standard; or, the wireless communication module
  • the communication frequency band may also be defined as conforming to the Japanese ARIB standard or the Canadian IC standard, which is not limited by the embodiment of the present invention.
  • the terminal device can use Frequency Division Multiple Access (FDMA), Frequency-Hopping Spread Spectrum (FHSS), and Dynamic Time Division Multiple Access (Dynamic Time Division Multiple Access). , DTDMA), and backtracking multiplexing (CSMA) are combined to solve the interference problem.
  • FDMA Frequency Division Multiple Access
  • FHSS Frequency-Hopping Spread Spectrum
  • CSMA Dynamic Time Division Multiple Access
  • FIG. 2 is a schematic flowchart diagram of a method for controlling IoT data filtering based on a transmission duration according to an embodiment of the present invention. As shown in FIG. 2, the method for controlling IoT data filtering based on the transmission duration may include the following operations:
  • the forwarding node listens to the massive IoT data reported by the mass terminal device in the wireless coverage area, and each IoT data includes the data content and the reporting time of the Internet of Things data.
  • the terminal device reporting the Internet of Things data to the forwarding node may include:
  • a load value of the wireless port between the terminal device and the forwarding node and determining whether the load value is lower than a specified load threshold. If the load value is lower than the specified load threshold, the terminal device identifies whether the current system time of the terminal device is If the current system time is within the time period specified by the forwarding node to allow the reporting of the Internet of Things data, the terminal device identifies whether the monitored data content is in the preset data. In the range, if the data content that is monitored is within the preset data range, the terminal device reports the Internet of Things data including the data content in the preset data range to the forwarding node.
  • the terminal device can report the Internet of Things data in the preset data range during the time period allowed by the forwarding node and the load value of the wireless port is small, which can alleviate the reporting pressure and improve the successful reporting of the Internet of Things data of the terminal device. Reliability.
  • the forwarding node determines a listening moment of each Internet of Things data and determines a transmission duration of each Internet of Things data according to a reporting time and a listening time of each Internet of Things data.
  • the transmission duration of each Internet of Things data is equal to the difference between the interception time of detecting the Internet of Things data and the reporting time of the Internet of Things data.
  • the forwarding node identifies, in the foregoing massive Internet of Things data, a plurality of Internet of Things data whose transmission duration exceeds a maximum delay threshold corresponding to the forwarding node.
  • different forwarding nodes correspond to different maximum duration thresholds, and are forwarded
  • the maximum delay threshold corresponding to the node is determined by the current reporting load of the forwarding node, the physical location of the forwarding node, and the current time, and the maximum delay threshold is used to ensure that the aggregation unit receives the reporting time of the forwarding node.
  • the maximum duration of IoT data is determined by the current reporting load of the forwarding node, the physical location of the forwarding node, and the current time, and the maximum delay threshold is used to ensure that the aggregation unit receives the reporting time of the forwarding node.
  • the forwarding node filters the plurality of Internet of Things data from the massive amount of Internet of Things data to obtain residual Internet of Things data.
  • the IoT data that the forwarding node filters the transmission duration to be greater than the maximum delay threshold may be specifically indicated by the aggregation unit.
  • the forwarding node encapsulates the foregoing remaining Internet of Things data into a first data element, and reports the first data element to the aggregation unit.
  • the method for controlling the Internet of Things data filtering based on the transmission duration may further include the following operations:
  • the forwarding node determines whether the reported load is greater than or equal to the preset load threshold, and when the reported load is not greater than or equal to the preset load threshold, triggering execution of the foregoing storing the remaining Internet of Things data into the first data element, and the first data element is Reported to the operation of the aggregation unit.
  • the manner in which the data element is reported when the reporting load of the forwarding node is small can refer to the reliability of successfully reporting the data element.
  • the method for controlling the Internet of Things data filtering based on the transmission duration may further include the following operations:
  • the forwarding node determines whether the remaining Internet of Things data includes the Internet of Things data of interest to the aggregation unit, and when the Internet of Things data of the aggregation unit is included, the remaining Internet of Things data
  • the IoT data of interest in the aggregation unit included in the package is encapsulated into a second data element, and the second data element is reported to the aggregation unit.
  • the IoT data of the aggregation unit is preferentially reported, which not only relieves the reporting pressure of the forwarding node, but also improves the reliability of the IoT data that is successfully reported to the aggregation unit.
  • the method for controlling the IoT data filtering based on the transmission duration can also include the following operations:
  • the forwarding node determines whether there is a convergence unit in the plurality of identified Internet of Things data When the IoT data reported by the terminal device is reported, when the IoT data reported by the terminal device of the convergence unit does not exist in the plurality of identified IoT data, the execution of the foregoing storing the remaining Internet of Things data into the first data is triggered. Meta operation.
  • the terminal device that is interested in the aggregation unit that is detected by the neighboring forwarding node in the wireless coverage is reported. And transmitting the target Internet of Things data that is less than or equal to the maximum delay threshold, and packaging the target Internet of Things data and the remaining Internet of Things data into a third data element, and reporting the third data element to the aggregation unit.
  • the forwarding node can listen to the terminal device that is interested in the aggregation unit that is detected by the neighboring forwarding node, and the transmission time is small. The IoT data, in turn, ensures the integrity of the IoT data received by the aggregation unit.
  • the forwarding, by the forwarding node, the data element to the aggregation unit may include:
  • the forwarding node selects two forwarding paths according to the preset routing table, and reports the data element to the aggregation unit through two forwarding paths, where the data element may be the first data element, the second data element, or the third data. yuan. This can improve the reliability of successful data reporting.
  • each of the Internet of Things data may further include a device type and a geographical location of the terminal device that reports the IoT data, wherein the forwarding node encapsulates the data to be reported into the data element may include:
  • the forwarding node deduplicates the same geographical location in the reported IoT data and the Internet of Things data reported by the terminal device of the same device type, obtains the de-weighted Internet of Things data, and encapsulates the de-duplicated IoT data into a data element, wherein the data element to be reported may be the foregoing remaining Internet of Things data, or may be the Internet of Things data of interest in the remaining IoT data, or may be the remaining Internet of Things data and the target Internet of Things data. This can reduce the reporting load of the forwarding node and the processing load of the aggregation unit.
  • the method for controlling the IoT data filtering based on the transmission duration described in FIG. 2 can filter out the Internet of Things data with a large transmission delay, and report the IoT data with less delay to the aggregation unit, thereby ensuring the reported Internet of Things.
  • the timeliness of the data and also can reduce the reporting load of the forwarding node.
  • FIG. 3 is a schematic structural diagram of a forwarding node according to an embodiment of the present invention.
  • the forwarding node 300 may include a listening unit 301, a determining unit 302, an identifying unit 303, a filtering unit 304, a packaging unit 305, and a reporting unit 306, where:
  • the listening unit 301 is configured to listen to the massive Internet of Things data reported by the mass terminal device in the wireless coverage area.
  • Each of the Internet of Things data may include the data content and the reporting time of the Internet device data reported by the terminal device.
  • the determining unit 302 is configured to determine that the listening unit 301 detects the listening moment of each Internet of Things data and determines the transmission of each Internet of Things data according to the reporting time of each Internet of Things data and the listening moment of each Internet of Things data. duration.
  • the transmission duration of each Internet of Things data is equal to the listening time of the Internet of Things data minus the reporting time of the Internet of Things data.
  • the identification unit 303 is configured to identify a plurality of Internet of Things data in the mass Internet of Things data that exceeds a maximum delay threshold corresponding to the forwarding node.
  • different forwarding nodes 300 correspond to different maximum duration thresholds, and the maximum delay threshold corresponding to the forwarding node 300 is common to the current reporting load of the forwarding node 300, the physical location of the forwarding node 300, and the current time.
  • the maximum latency threshold is determined to ensure that the aggregation unit receives the maximum duration of time-sensitive IoT data reported by the forwarding node 300.
  • the filtering unit 304 is configured to filter out a plurality of Internet of Things data identified by the identification unit 303 from the massive Internet of Things data detected by the listening unit 301, and obtain the remaining Internet of Things data.
  • the encapsulating unit 305 is configured to encapsulate the foregoing remaining Internet of Things data filtered by the filtering unit 304 into a first data element.
  • the reporting unit 306 is configured to report the first data element encapsulated by the encapsulating unit 305 to the convergence unit.
  • the forwarding node 300 may further include a determining unit 307.
  • the structure of the forwarding node 300 may be as shown in FIG. 4, and FIG. 4 is another forwarding node according to an embodiment of the present invention. Schematic diagram of the structure. among them:
  • the determining unit 307 is configured to determine whether the reported load of the forwarding node 300 is greater than or equal to a preset load threshold before the remaining IoT data is encapsulated into the first data element, and when the reporting load of the forwarding node 300 is not greater than or equal to a preset load threshold.
  • the trigger encapsulation unit 305 performs the above-mentioned remaining The operation of the IoT data is encapsulated into the first data element.
  • the determining unit 307 is further configured to: when the reported load of the forwarding node 300 is greater than or equal to the preset load threshold, determine whether the remaining Internet of Things data includes the Internet of Things data of interest to the convergence unit.
  • the encapsulating unit 305 is further configured to, when the determining unit 307 determines that the IoT data of the remaining IoT data includes the IoT data of interest, the IoT data of the convergent unit included in the remaining IoT data is encapsulated into the first Two data elements.
  • the reporting unit 306 can also be configured to report the foregoing second data element to the aggregation unit.
  • the determining unit 307 is further configured to: after determining that the reporting load of the forwarding node 300 is not greater than or equal to the preset reporting load, and before the encapsulating unit 305 encapsulates the remaining Internet of Things data into the first data element, determining that the identifying unit 303 identifies If there is any IoT data reported by the terminal device that is interested in the aggregation unit in the plurality of IoT data, when the IoT data reported by the terminal device that is interested in the aggregation unit does not exist in the plurality of IoT data, the package unit 305 is triggered. The above operation of encapsulating the remaining Internet of Things data into the first data element is performed.
  • the listening unit 301 is further configured to: when the determining unit 307 determines that the Internet of Things data reported by the terminal device that is interested in the convergence unit exists in the plurality of Internet of Things data, the neighboring forwarding node in the wireless coverage is intercepted and detected.
  • the encapsulating unit 305 is further configured to encapsulate the foregoing target Internet of Things data and the remaining Internet of Things data detected by the listening unit 301 into a third data element.
  • the reporting unit 306 can also be configured to report the third data element to the aggregation unit.
  • reporting unit 306 reports the data element to the aggregation unit may be:
  • the data element may be the first data element or the second data element.
  • each of the Internet of Things data may further include a device type of the terminal device that reports the Internet of Things data and a geographic location of the terminal device that reports the Internet of Things data.
  • the encapsulation unit 305 can include a deduplication subunit 3051 and a package subunit 3052, wherein:
  • the de-sub-unit 3051 is used to de-weight the IoT data reported by the terminal device of the same device in the same geographical location and the same device type in the IoT data to be obtained, and the de-weighted Internet of Things data is obtained.
  • the encapsulation subunit 3052 is configured to encapsulate the deweighted IoT data obtained by the deduplication subunit 3051 into data elements.
  • the IoT data to be encapsulated may be the foregoing IoT data.
  • the data element encapsulated by the encapsulation subunit 3052 is the first data element; the IoT data to be encapsulated may also be aggregated in the remaining IoT data.
  • the IoT data of the unit is of interest.
  • the data element obtained by the encapsulating subunit 3052 is the second data element; the IoT data to be encapsulated may also be the foregoing IoT data and the target Internet of Things data.
  • the data element obtained by the encapsulation subunit 3052 is the above third data element.
  • the forwarding node described in FIG. 3 or FIG. 4 can determine the transmission duration of the Internet of Things data according to the interception moment of the intercepted Internet of Things data and the reporting time of the Internet of Things data, and the massive IoT data from the interception. Identifies IoT data with a large transmission time and filters out part of the Internet of Things data, and encapsulates and reports the remaining IoT data. This can filter out IoT data with large transmission delay and report to the aggregation unit. The smaller IoT data, in turn, ensures the timeliness of the reported IoT data, and can also reduce the reporting load of the forwarding node.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明涉及一种基于传输时长控制物联网数据过滤的方法及设备,该方法包括:转发节点侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个物联网数据包括数据内容以及其上报时刻,转发节点确定侦听到每个物联网数据的侦听时刻,并根据每个物联网数据的上报时刻以及侦听时刻确定每个物联网数据的传输时长,以及识别该海量物联网数据中传输时长超过与该转发节点对应的最大时延阈值的多个物联网数据,并从该海量物联网数据中过滤掉该多个物联网数据,得到剩余物联网数据,以及将该剩余物联网数据封装成第一数据元并上报至汇聚单元。实施本发明实施例能够向汇聚单元上报延时较小的物联网数据,进而保证上报的物联网数据的时效性。

Description

一种基于传输时长控制物联网数据过滤的方法及设备 技术领域
本发明涉及物联网技术领域,尤其涉及一种基于传输时长控制物联网数据过滤的方法及设备。
背景技术
在物联网架构中,为了使人们能够更加精细地、动态地管理生产和生活以提高资源利用率和生产效率,物联网架构中的海量终端设备需要向转发节点上报物联网数据,转发节点在侦听到终端设备上报的物联网数据后将物联网数据封装成数据元并上报给在物联网架构充当物联网人机接口的汇聚单元,以使汇聚单元根据数据元包括的数据内容进行分析和决策,从而可以为人们提供预警、异常等相关报告,且为了保证汇聚单元能够及时可靠的提供预警、异常等相关报告,转发节点上报的物联网数据的时效性显得尤为重要。
发明内容
本发明实施例公开了一种基于传输时长控制物联网数据过滤的方法及设备,能够向汇聚单元上报延时较小的物联网数据,进而保证上报的物联网数据的时效性。
本发明实施例第一方面公开了一种基于传输时长控制物联网数据过滤的方法,所述方法包括:
转发节点侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个所述物联网数据包括数据内容以及该物联网数据的上报时刻;
所述转发节点确定侦听到每个所述物联网数据的侦听时刻并根据每个所述物联网数据的上报时刻及侦听时刻确定每个所述物联网数据的传输时长;
所述转发节点识别所述海量物联网数据中传输时长超过与所述转发节点对应的最大时延阈值的多个物联网数据,并从所述海量物联网数据中过滤掉所述多个物联网数据,得到剩余物联网数据;
所述转发节点将所述剩余物联网数据封装成第一数据元,并将所述第一 数据元上报至汇聚单元。
作为一种可选的实施方式,在本发明实施例第一方面中,所述转发节点将所述剩余物联网数据封装成第一数据元之前,所述方法还包括:
所述转发节点判断其上报负荷是否大于等于预设负荷阈值,当所述上报负荷不大于等于所述预设负荷阈值时,触发执行所述将所述剩余物联网数据封装成第一数据元的操作;
所述方法还包括:
当所述上报负荷大于等于所述预设负荷阈值时,所述转发节点判断所述剩余物联网数据中是否包括汇聚单元感兴趣的物联网数据,当包括所述汇聚单元感兴趣的物联网数据时,将所述剩余物联网数据中包括的所述汇聚单元感兴趣的物联网数据封装成第二数据元,并将所述第二数据元上报至所述汇聚单元。
作为一种可选的实施方式,在本发明实施例第一方面中,在判断出所述上报负荷不大于等于所述预设上报负荷之后,以及所述转发节点将所述剩余物联网数据封装成第一数据元之前,所述方法还包括:
所述转发节点判断所述多个物联网数据中是否存在汇聚单元感兴趣的终端设备上报的物联网数据,当所述多个物联网数据中不存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,触发执行所述将所述剩余物联网数据封装成第一数据元的操作;
所述方法还包括:
当所述多个物联网数据中存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,侦听其无线覆盖范围内的相邻转发节点侦听到的所述汇聚单元感兴趣的终端设备上报的且传输时长小于等于所述最大时延阈值的目标物联网数据,并将所述目标物联网数据以及所述剩余物联网数据封装成第三数据元,以及将所述第三数据元上报至所述汇聚单元。
作为一种可选的实施方式,在本发明实施例第一方面中,所述转发节点将所述第一数据元上报至汇聚单元,包括:
所述转发节点根据预置的领区路由表选择两条转发路径,并通过所述两条转发路径将所述第一数据元上报至汇聚单元。
作为一种可选的实施方式,在本发明实施例第一方面中,每个所述物联网数据还包括上报该物联网数据的终端设备的设备类型以及地理位置;
所述转发节点将所述剩余物联网数据封装成第一数据元,包括:
所述转发节点对所述剩余物联网数据中的相同地理位置以及相同设备类型的终端设备上报的物联网数据进行去重,得到去重后的物联网数据,并将所述去重后的物联网数据封装成第一数据元。
本发明实施例第二方面公开了一种转发节点,所述转发节点包括侦听单元、确定单元、识别单元、过滤单元、封装单元以及上报单元,其中:
所述侦听单元,用于侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个所述物联网数据包括数据内容以及该物联网数据的上报时刻;
所述确定单元,用于确定侦听到每个所述物联网数据的侦听时刻并根据每个所述物联网数据的上报时刻及侦听时刻确定每个所述物联网数据的传输时长;
所述识别单元,用于识别所述海量物联网数据中传输时长超过与所述转发节点对应的最大时延阈值的多个物联网数据;
所述过滤单元,用于从所述海量物联网数据中过滤掉所述多个物联网数据,得到剩余物联网数据;
所述封装单元,用于将所述剩余物联网数据封装成第一数据元;
所述上报单元,用于将所述第一数据元上报至汇聚单元。
作为一种可选的实施方式,在本发明实施例第二方面中,所述转发节点还包括判断单元,其中:
所述判断单元,用于在将所述剩余物联网数据封装成第一数据元之前,判断其上报负荷是否大于等于预设负荷阈值,当所述上报负荷不大于等于所述预设负荷阈值时,触发所述封装单元执行所述将所述剩余物联网数据封装成第一数据元的操作;
所述判断单元,还用于当所述上报负荷大于等于所述预设负荷阈值时,判断所述剩余物联网数据中是否包括汇聚单元感兴趣的物联网数据;
所述封装单元,还用于当所述判断单元判断出所述剩余物联网数据中包 括所述汇聚单元感兴趣的物联网数据时,将所述剩余物联网数据中包括的所述汇聚单元感兴趣的物联网数据封装成第二数据元;
所述上报单元,还用于将所述第二数据元上报至所述汇聚单元。
作为一种可选的实施方式,在本发明实施例第二方面中,所述判断单元,还用于在判断出所述上报负荷不大于等于所述预设上报负荷之后以及在所述封装单元将所述剩余物联网数据封装成第一数据元之前,判断所述多个物联网数据中是否存在汇聚单元感兴趣的终端设备上报的物联网数据,当所述多个物联网数据中不存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,触发所述封装单元执行所述将所述剩余物联网数据封装成第一数据元的操作;
所述侦听单元,还用于当所述判断单元判断出所述多个物联网数据中存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,侦听其无线覆盖范围内的相邻转发节点侦听到的所述汇聚单元感兴趣的终端设备上报的且传输时长小于等于所述最大时延阈值的目标物联网数据;
所述封装单元,还用于将所述目标物联网数据以及所述剩余物联网数据封装成第三数据元;
所述上报单元,还用于将所述第三数据元上报至所述汇聚单元。
作为一种可选的实施方式,在本发明实施例第二方面中,所述上报单元将所述第一数据元上报至汇聚单元的具体方式为:
根据预置的领区路由表选择两条转发路径,并通过所述两条转发路径将所述第一数据元上报至汇聚单元。
作为一种可选的实施方式,在本发明实施例第二方面中,每个所述物联网数据还包括上报该物联网数据的终端设备的设备类型以及地理位置;
所述封装单元包括去重子单元以及封装子单元,其中:
所述去重子单元,用于对所述剩余物联网数据中的相同地理位置以及相同设备类型的终端设备上报的物联网数据进行去重,得到去重后的物联网数据;
所述封装子单元,用于将所述去重后的物联网数据封装成所述第一数据元。
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例中,转发节点侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个物联网数据包括数据内容以及该物联网数据的上报时刻,转发节点确定侦听到每个物联网数据的侦听时刻,并根据每个物联网数据的上报时刻以及侦听时刻确定每个物联网数据的传输时长,以及识别该海量物联网数据中传输时长超过与该转发节点对应的最大时延阈值的多个物联网数据,并从该海量物联网数据中过滤掉该多个物联网数据,得到剩余物联网数据,以及将该剩余物联网数据封装成第一数据元,并将该第一数据元上报至汇聚单元。实施本发明实施例能够过滤掉传输时延较大的物联网数据,向汇聚单元上报延时较小的物联网数据,进而保证上报的物联网数据的时效性,且还能够减小转发节点的上报负荷。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种物联网架构的示意图;
图2是本发明实施例公开的一种基于传输时长控制物联网数据过滤的方法的流程示意图;
图3是本发明实施例公开的一种转发节点的结构示意图;
图4是本发明实施例公开的另一种转发节点的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种基于传输时长控制物联网数据过滤的方法及设 备,能够过滤掉传输时延较大的物联网数据,向汇聚单元上报延时较小的物联网数据,进而保证上报的物联网数据的时效性,且还能够减小转发节点的上报负荷。以下分别进行详细说明。
为了更好地理解本发明实施例,下面先对本发明实施例公开的一种物联网架构进行介绍。请参阅图1,图1是本发明实施例公开的一种物联网架构的示意图。如图1所示,该物联网架构按照功能划分可以包括终端设备层、转发节点层以及汇聚层三个层。其中,终端设备层可以包括海量规模的终端设备,例如湿度计、烟感器、通风设备、雨量传感器、灌溉阀等等;转发节点层可以包括网络连接的大量的转发节点,转发节点可以包括路由器、中继器、接入点等设备,本发明实施例不作限定;转发节点可以使用任何标准的组网协议,而且转发节点可以在不同的网络制式之间实现数据解析;汇聚层可以包括过滤网关和汇聚单元,其中,过滤网关可以通过互联网与转发节点层的各个转发节点直接或简介通讯连接;汇聚单元可以通过过滤网关对转发节点层的各个转发节点进行高层管理,从而实现数据传输频率、网络拓扑以及其他组网功能的控制;汇聚单元不仅可以对海量终端设备产生的物联网数据进行分析和决策,还可以通过发指令去获取信息或者配置终端设备参数(此时数据的传输指向终端设备);汇聚单元还可以引入各种业务,从大数据到社交网络、甚至从社交工具“点赞”到天气分享等。在图1所示的物联网架构中,每一个转发节点可以为其自身无线覆盖范围内的海量终端设备提供物联网数据收发服务,其中,每一转发节点自身无线覆盖范围内的每一个终端设备可以内置有无线通讯模块,这使得每一转发节点可以通过无线网络通讯方式与自身无线覆盖范围内的每一个终端设备进行无线通讯。在图1所示的物联网架构中,终端设备内置的无线通讯模块在生产时,可以输入上频点470MHz,下频点510MHz,这样无线通讯模块可以自动将通讯频段定义为470MHz~510MHz,以符合中国SRRC标准的规定;或者,也可以输入上频点868MHz,下频点908MHz,这样无线通讯模块可以自动将通讯频段定义为868MHz~908MHz,以符合欧洲ETSI标准的规定;或者,可以输入上频点918MHz,下频点928MHz,这样无线通讯模块可以自动将通讯频段定义为918MHz~928MHz,以符合美国FCC标准的规定;或者,无线通讯模块的 通讯频段也可以定义为符合日本ARIB标准或加拿大IC标准的规定,本发明实施例不作限定。在图1所示的物联网架构中,终端设备可以采用频分复用(Frequency Division Multiple Access,FDMA)、跳频(Frequency-Hopping Spread Spectrum,FHSS)、动态时分复用(Dynamic Time Division Multiple Access,DTDMA)、退避复用(CSMA)相结合的方法来解决干扰问题。
实施例一
请参阅图2,图2是本发明实施例公开的一种基于传输时长控制物联网数据过滤的方法的流程示意图。如图2所示,该基于传输时长控制物联网数据过滤的方法可以包括以下操作:
201、转发节点侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个物联网数据包括数据内容以及该物联网数据的上报时刻。
其中,终端设备向转发节点上报物联网数据可以包括:
由终端设备与转发节点之间的无线端口的负荷值,并判断该负荷值是否低于指定负荷阈值,如果该负荷值低于指定负荷阈值,则由终端设备识别终端设备的当前系统时间是否处于转发节点指定的允许上报物联网数据的时间段内,如果该当前系统时间处于转发节点指定的允许上报物联网数据的时间段内,则由终端设备识别其监测到的数据内容是否处于预设数据范围内,如果其监测到的数据内容处于该预设数据范围内,则由终端设备向转发节点上报包括处于预设数据范围内的数据内容的物联网数据。这样能够使终端设备在转发节点允许的时间段内以及在无线端口的负荷值较小的情况下上报处于预设数据范围内的物联网数据,能够缓解上报压力并提高终端设备成功上报物联网数据的可靠性。
202、转发节点确定侦听到每个物联网数据的侦听时刻并根据每个物联网数据的上报时刻及侦听时刻确定每个物联网数据的传输时长。
本发明实施例中,每个物联网数据的传输时长等于侦听到该物联网数据的侦听时刻与该物联网数据的上报时刻之间的差值。
203、转发节点识别上述海量物联网数据中传输时长超过与转发节点对应的最大时延阈值的多个物联网数据。
本发明实施例中,不同的转发节点对应不同的最大时长阈值,且与转发 节点对应的最大时延阈值是由转发节点的当前上报负荷、转发节点的物理位置以及当前时刻等共同确定的,且该最大时延阈值是为了保证汇聚单元接收到转发节点上报的具有时效性的物联网数据的最大时长。
204、转发节点从上述海量物联网数据中过滤掉上述多个物联网数据,得到剩余物联网数据。
本发明实施例中,转发节点过滤传输时长大于上述最大时延阈值的物联网数据可以具体是由汇聚单元指示的。
205、转发节点将上述剩余物联网数据封装成第一数据元,并将该第一数据元上报至汇聚单元。
在一个可选的实施例中,在转发节点将上述剩余物联网数据封装成第一数据元之前,该基于传输时长控制物联网数据过滤的方法还可以包括以下操作:
转发节点判断其上报负荷是否大于等于预设负荷阈值,当其上报负荷不大于等于预设负荷阈值时,触发执行上述将上述剩余物联网数据封装成第一数据元,并将该第一数据元上报至汇聚单元的操作。这样在转发节点的上报负荷较小时上报数据元的方式能够提到成功上报数据元的可靠性。
在该可选的实施例中,该基于传输时长控制物联网数据过滤的方法还可以包括以下操作:
当转发节点的上报负荷大于等于预设负荷阈值时,转发节点判断剩余物联网数据中是否包括汇聚单元感兴趣的物联网数据,当包括汇聚单元感兴趣的物联网数据时,将剩余物联网数据中包括的汇聚单元感兴趣的物联网数据封装成第二数据元,并将第二数据元上报至汇聚单元。这样能够在转发节点的上报负荷较大时优先上报汇聚单元感兴趣的物联网数据,不仅能够缓解转发节点的上报压力,还能够提高成功上报汇聚单元感兴趣的物联网数据的可靠性。
进一步可选的,在判断出转发节点的上报负荷不大于等于预设上报负荷之后,以及转发节点将上述剩余物联网数据封装成第一数据元之前,该基于传输时长控制物联网数据过滤的方法还可以包括以下操作:
转发节点判断上述识别出的多个物联网数据中是否存在汇聚单元感兴趣 的终端设备上报的物联网数据,当上述识别出的多个物联网数据中不存在汇聚单元感兴趣的终端设备上报的物联网数据时,触发执行上述将上述剩余物联网数据封装成第一数据元的操作。
当上述识别出的多个物联网数据中存在汇聚单元感兴趣的终端设备上报的物联网数据时,侦听其无线覆盖范围内的相邻转发节点侦听到的汇聚单元感兴趣的终端设备上报的且传输时长小于等于上述最大时延阈值的目标物联网数据,并将该目标物联网数据以及上述剩余物联网数据封装成第三数据元,以及将该第三数据元上报至汇聚单元。这样在汇聚单元感兴趣的终端设备上报的物联网数据存在较大的传输时长时,能够使转发节点侦听相邻转发节点侦听到的汇聚单元感兴趣的终端设备上报的且传输时长较小的物联网数据,进而保证了汇聚单元接收到的物联网数据的完整性。
可选的,转发节点将数据元上报至汇聚单元可以包括:
转发节点根据预置的领区路由表选择两条转发路径,并通过两条转发路径将数据元上报至汇聚单元,其中,该数据元可以为第一数据元、第二数据元或第三数据元。这样能够提高数据元成功上报的可靠性。
进一步可选的,每个物联网数据还可以包括上报该物联网数据的终端设备的设备类型以及地理位置,其中,转发节点将待上报的数据封装成数据元可以包括:
转发节点对待上报的物联网数据中的相同地理位置以及相同设备类型的终端设备上报的物联网数据进行去重,得到去重后的物联网数据,并将该去重后的物联网数据封装成数据元,其中,该待上报的数据元可以是上述剩余物联网数据,也可以是上述剩余物联网数据中汇聚单元感兴趣的物联网数据,还可以是上述剩余物联网数据以及上述目标物联网数据。这样能够减小转发节点的上报负荷以及汇聚单元的处理负荷。
可见,实施图2所描述的基于传输时长控制物联网数据过滤的方法能够过滤掉传输时延较大的物联网数据,向汇聚单元上报延时较小的物联网数据,进而保证上报的物联网数据的时效性,且还能够减小转发节点的上报负荷。
实施例二
请参阅图3,图3是本发明实施例公开的一种转发节点的结构示意图。 如图3所示,该转发节点300可以包括侦听单元301、确定单元302、识别单元303、过滤单元304、封装单元305以及上报单元306,其中:
侦听单元301用于侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个物联网数据可以包括数据内容以及终端设备上报该物联网数据的上报时刻。
确定单元302用于确定侦听单元301侦听到每个物联网数据的侦听时刻并根据每个物联网数据的上报时刻及每个物联网数据的侦听时刻确定每个物联网数据的传输时长。
本发明实施例中,每个物联网数据的传输时长等于该物联网数据的侦听时刻减去该物联网数据的上报时刻。
识别单元303用于识别上述海量物联网数据中传输时长超过与转发节点对应的最大时延阈值的多个物联网数据。
本发明实施例中,不同的转发节点300对应不同的最大时长阈值,且与转发节点300对应的最大时延阈值是由转发节点300的当前上报负荷、转发节点300的物理位置以及当前时刻等共同确定的,且该最大时延阈值是为了保证汇聚单元接收到转发节点300上报的具有时效性的物联网数据的最大时长。
过滤单元304用于从侦听单元301侦听到的海量物联网数据中过滤掉识别单元303识别出的多个物联网数据,得到剩余物联网数据。
封装单元305用于将过滤单元304过滤得到的上述剩余物联网数据封装成第一数据元。
上报单元306用于将封装单元305封装得到的第一数据元上报至汇聚单元。
在一个可选的实施例中,该转发节点300还可以包括判断单元307,此时,该转发节点300的结构可以如图4所示,图4是本发明实施例公开的另一种转发节点的结构示意图。其中:
判断单元307用于在将上述剩余物联网数据封装成第一数据元之前,判断转发节点300的上报负荷是否大于等于预设负荷阈值,当转发节点300的上报负荷不大于等于预设负荷阈值时,触发封装单元305执行上述将上述剩 余物联网数据封装成第一数据元的操作。
判断单元307还用于当转发节点300的上报负荷大于等于上述预设负荷阈值时,判断上述剩余物联网数据中是否包括汇聚单元感兴趣的物联网数据。
封装单元305还可以用于当判断单元307判断出上述剩余物联网数据中包括汇聚单元感兴趣的物联网数据时,将上述剩余物联网数据中包括的汇聚单元感兴趣的物联网数据封装成第二数据元。
上报单元306还可以用于将上述第二数据元上报至汇聚单元。
判断单元307还可以用于在判断出转发节点300的上报负荷不大于等于上述预设上报负荷之后以及在封装单元305将上述剩余物联网数据封装成第一数据元之前,判断识别单元303识别出的多个物联网数据中是否存在汇聚单元感兴趣的终端设备上报的物联网数据,当上述多个物联网数据中不存在汇聚单元感兴趣的终端设备上报的物联网数据时,触发封装单元305执行上述将上述剩余物联网数据封装成第一数据元的操作。
侦听单元301还用于当判断单元307判断出上述多个物联网数据中存在汇聚单元感兴趣的终端设备上报的物联网数据时,侦听其无线覆盖范围内的相邻转发节点侦听到的汇聚单元感兴趣的终端设备上报的且传输时长小于等于上述最大时延阈值的目标物联网数据。
封装单元305还用于将侦听单元301侦听到的上述目标物联网数据以及上述剩余物联网数据封装成第三数据元。
上报单元306还可以用于将上述第三数据元上报至汇聚单元。
可选的,上报单元306将数据元上报至汇聚单元的具体方式可以为:
根据预置的领区路由表选择两条转发路径,并通过该两条转发路径将数据元上报至汇聚单元,其中,该数据元可以为第一数据元,也可以为第二数据元,还可以为第三数据元。
进一步可选的,每个物联网数据还可以包括上报该物联网数据的终端设备的设备类型以及上报该物联网数据的终端设备的地理位置。且如图4所示,封装单元305可以包括去重子单元3051以及封装子单元3052,其中:
去重子单元3051用于对待封装的物联网数据中相同地理位置以及相同设备类型的终端设备上报的物联网数据进行去重,得到去重后的物联网数据。
封装子单元3052用于将去重子单元3051得到的去重后的物联网数据封装成数据元。
其中,待封装的物联网数据可以为上述剩余物联网数据,此时,封装子单元3052封装得到的数据元为第一数据元;待封装的物联网数据也可以为上述剩余物联网数据中汇聚单元感兴趣的物联网数据,此时,封装子单元3052得到的数据元为上述第二数据元;待封装的物联网数据还可以为上述剩余物联网数据以及上述目标物联网数据,此时,封装子单元3052得到的数据元为上述第三数据元。
可见,实施图3或图4所描述的转发节点能够根据侦听到物联网数据的侦听时刻以及物联网数据的上报时刻确定物联网数据的传输时长,并从侦听到的海量物联网数据中识别出传输时长较大的物联网数据并将该部分物联网数据过滤掉,对剩余物联网数据进行封装并上报,这样能够过滤掉传输时延较大的物联网数据,向汇聚单元上报延时较小的物联网数据,进而保证上报的物联网数据的时效性,且还能够减小转发节点的上报负荷。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种基于传输时长控制物联网数据过滤的方法及设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施 方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种基于传输时长控制物联网数据过滤的方法,其特征在于,所述方法包括:
    转发节点侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个所述物联网数据包括数据内容以及该物联网数据的上报时刻;
    所述转发节点确定侦听到每个所述物联网数据的侦听时刻并根据每个所述物联网数据的上报时刻及侦听时刻确定每个所述物联网数据的传输时长;
    所述转发节点识别所述海量物联网数据中传输时长超过与所述转发节点对应的最大时延阈值的多个物联网数据,并从所述海量物联网数据中过滤掉所述多个物联网数据,得到剩余物联网数据;
    所述转发节点将所述剩余物联网数据封装成第一数据元,并将所述第一数据元上报至汇聚单元。
  2. 根据权利要求1所述的基于传输时长控制物联网数据过滤的方法,其特征在于,所述转发节点将所述剩余物联网数据封装成第一数据元之前,所述方法还包括:
    所述转发节点判断其上报负荷是否大于等于预设负荷阈值,当所述上报负荷不大于等于所述预设负荷阈值时,触发执行所述将所述剩余物联网数据封装成第一数据元的操作;
    所述方法还包括:
    当所述上报负荷大于等于所述预设负荷阈值时,所述转发节点判断所述剩余物联网数据中是否包括汇聚单元感兴趣的物联网数据,当包括所述汇聚单元感兴趣的物联网数据时,将所述剩余物联网数据中包括的所述汇聚单元感兴趣的物联网数据封装成第二数据元,并将所述第二数据元上报至所述汇聚单元。
  3. 根据权利要求2所述的基于传输时长控制物联网数据过滤的方法,其特征在于,在判断出所述上报负荷不大于等于所述预设上报负荷之后,以及所述转发节点将所述剩余物联网数据封装成第一数据元之前,所述方法还包括:
    所述转发节点判断所述多个物联网数据中是否存在汇聚单元感兴趣的终端设备上报的物联网数据,当所述多个物联网数据中不存在所述汇聚单元感 兴趣的终端设备上报的物联网数据时,触发执行所述将所述剩余物联网数据封装成第一数据元的操作;
    所述方法还包括:
    当所述多个物联网数据中存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,侦听其无线覆盖范围内的相邻转发节点侦听到的所述汇聚单元感兴趣的终端设备上报的且传输时长小于等于所述最大时延阈值的目标物联网数据,并将所述目标物联网数据以及所述剩余物联网数据封装成第三数据元,以及将所述第三数据元上报至所述汇聚单元。
  4. 根据权利要求1-3任一项所述的基于传输时长控制物联网数据过滤的方法,其特征在于,所述转发节点将所述第一数据元上报至汇聚单元,包括:
    所述转发节点根据预置的领区路由表选择两条转发路径,并通过所述两条转发路径将所述第一数据元上报至汇聚单元。
  5. 根据权利要求1-4任一项所述的基于传输时长控制物联网数据过滤的方法,其特征在于,每个所述物联网数据还包括上报该物联网数据的终端设备的设备类型以及地理位置;
    所述转发节点将所述剩余物联网数据封装成第一数据元,包括:
    所述转发节点对所述剩余物联网数据中的相同地理位置以及相同设备类型的终端设备上报的物联网数据进行去重,得到去重后的物联网数据,并将所述去重后的物联网数据封装成第一数据元。
  6. 一种转发节点,其特征在于,所述转发节点包括侦听单元、确定单元、识别单元、过滤单元、封装单元以及上报单元,其中:
    所述侦听单元,用于侦听其无线覆盖范围内的海量终端设备上报的海量物联网数据,每个所述物联网数据包括数据内容以及该物联网数据的上报时刻;
    所述确定单元,用于确定侦听到每个所述物联网数据的侦听时刻并根据每个所述物联网数据的上报时刻及侦听时刻确定每个所述物联网数据的传输时长;
    所述识别单元,用于识别所述海量物联网数据中传输时长超过与所述转发节点对应的最大时延阈值的多个物联网数据;
    所述过滤单元,用于从所述海量物联网数据中过滤掉所述多个物联网数据,得到剩余物联网数据;
    所述封装单元,用于将所述剩余物联网数据封装成第一数据元;
    所述上报单元,用于将所述第一数据元上报至汇聚单元。
  7. 根据权利要求6所述的转发节点,其特征在于,所述转发节点还包括判断单元,其中:
    所述判断单元,用于在将所述剩余物联网数据封装成第一数据元之前,判断其上报负荷是否大于等于预设负荷阈值,当所述上报负荷不大于等于所述预设负荷阈值时,触发所述封装单元执行所述将所述剩余物联网数据封装成第一数据元的操作;
    所述判断单元,还用于当所述上报负荷大于等于所述预设负荷阈值时,判断所述剩余物联网数据中是否包括汇聚单元感兴趣的物联网数据;
    所述封装单元,还用于当所述判断单元判断出所述剩余物联网数据中包括所述汇聚单元感兴趣的物联网数据时,将所述剩余物联网数据中包括的所述汇聚单元感兴趣的物联网数据封装成第二数据元;
    所述上报单元,还用于将所述第二数据元上报至所述汇聚单元。
  8. 根据权利要求7所述的转发节点,其特征在于,所述判断单元,还用于在判断出所述上报负荷不大于等于所述预设上报负荷之后以及在所述封装单元将所述剩余物联网数据封装成第一数据元之前,判断所述多个物联网数据中是否存在汇聚单元感兴趣的终端设备上报的物联网数据,当所述多个物联网数据中不存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,触发所述封装单元执行所述将所述剩余物联网数据封装成第一数据元的操作;
    所述侦听单元,还用于当所述判断单元判断出所述多个物联网数据中存在所述汇聚单元感兴趣的终端设备上报的物联网数据时,侦听其无线覆盖范围内的相邻转发节点侦听到的所述汇聚单元感兴趣的终端设备上报的且传输时长小于等于所述最大时延阈值的目标物联网数据;
    所述封装单元,还用于将所述目标物联网数据以及所述剩余物联网数据封装成第三数据元;
    所述上报单元,还用于将所述第三数据元上报至所述汇聚单元。
  9. 根据权利要求6-8任一项所述的转发节点,其特征在于,所述上报单元将所述第一数据元上报至汇聚单元的具体方式为:
    根据预置的领区路由表选择两条转发路径,并通过所述两条转发路径将所述第一数据元上报至汇聚单元。
  10. 根据权利要求6-9任一项所述的转发节点,其特征在于,每个所述物联网数据还包括上报该物联网数据的终端设备的设备类型以及地理位置;
    所述封装单元包括去重子单元以及封装子单元,其中:
    所述去重子单元,用于对所述剩余物联网数据中的相同地理位置以及相同设备类型的终端设备上报的物联网数据进行去重,得到去重后的物联网数据;
    所述封装子单元,用于将所述去重后的物联网数据封装成所述第一数据元。
PCT/CN2017/099492 2017-06-21 2017-08-29 一种基于传输时长控制物联网数据过滤的方法及设备 WO2018233014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710473200.2A CN107294804B (zh) 2017-06-21 2017-06-21 一种基于传输时长控制物联网数据过滤的方法及设备
CN201710473200.2 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233014A1 true WO2018233014A1 (zh) 2018-12-27

Family

ID=60097794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099492 WO2018233014A1 (zh) 2017-06-21 2017-08-29 一种基于传输时长控制物联网数据过滤的方法及设备

Country Status (2)

Country Link
CN (1) CN107294804B (zh)
WO (1) WO2018233014A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112650454A (zh) * 2020-12-31 2021-04-13 广州技象科技有限公司 基于去重规则的物联网多源数据存储方法及装置
CN112765371A (zh) * 2021-01-20 2021-05-07 广州技象科技有限公司 基于去重规则的物联网单数据存储方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588422A (zh) * 2004-09-27 2005-03-02 北京维深电子技术有限公司 电子标签控制系统
CN102201958A (zh) * 2011-06-13 2011-09-28 山东中创软件工程股份有限公司 一种物联网数据传输方法及设备
CN102377801A (zh) * 2010-08-19 2012-03-14 中国科学院计算技术研究所 一种用于环境监测的传感器网络及数据传输方法
US20130051228A1 (en) * 2010-04-28 2013-02-28 Lg Electronics Inc. Method of controlling congestion of mtc data in a mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588422A (zh) * 2004-09-27 2005-03-02 北京维深电子技术有限公司 电子标签控制系统
US20130051228A1 (en) * 2010-04-28 2013-02-28 Lg Electronics Inc. Method of controlling congestion of mtc data in a mobile communication system
CN102377801A (zh) * 2010-08-19 2012-03-14 中国科学院计算技术研究所 一种用于环境监测的传感器网络及数据传输方法
CN102201958A (zh) * 2011-06-13 2011-09-28 山东中创软件工程股份有限公司 一种物联网数据传输方法及设备

Also Published As

Publication number Publication date
CN107294804A (zh) 2017-10-24
CN107294804B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2018233030A1 (zh) 一种基于传输时长的物联网数据上报控制方法及转发节点
WO2018233009A1 (zh) 一种基于设备类型和地理位置进行数据去重的方法及设备
WO2018233020A1 (zh) 一种基于物联网的数据封装方法及系统
CN107396416B (zh) 一种基于数据类型的通信控制方法及系统
CN107318168B (zh) 一种控制物联网终端设备通信的方法及系统
WO2018232966A1 (zh) 一种基于边缘转发节点的终端设备离线检测方法及系统
WO2018232976A1 (zh) 一种终端设备的工作状态的确定方法及设备
WO2018233018A1 (zh) 一种基于终端设备优先级的数据上报控制方法及系统
WO2018233036A1 (zh) 一种物联网数据的上报控制方法及设备
WO2018233045A1 (zh) 一种物联网通信模式的切换控制方法及系统
CN111049749B (zh) 一种终端设备的物联网数据上报频率的控制及系统
WO2018233014A1 (zh) 一种基于传输时长控制物联网数据过滤的方法及设备
WO2018233016A1 (zh) 一种边缘路由节点及其上报频率调整方法
WO2018232973A1 (zh) 一种物联网终端设备工作状态的控制方法及系统
WO2018233028A1 (zh) 一种物联网数据上报控制方法及系统
WO2018233034A1 (zh) 一种物联网数据的传输控制方法及系统
WO2018233049A1 (zh) 一种物联网数据通信方法及系统
WO2018233008A1 (zh) 一种应用于物联网的数据处理方法及系统
WO2018233027A1 (zh) 一种物联网中选择转发路径进行数据上报的方法及设备
WO2018233022A1 (zh) 一种基于终端设备数量的数据封装控制方法及系统
WO2018233021A1 (zh) 一种控制物联网中数据封装的方法及系统
WO2018232964A1 (zh) 一种控制边缘路由节点更新路由信息表的方法及设备
CN107196824B (zh) 一种确定被监测设备的工作状态的方法及汇聚单元
WO2018232965A1 (zh) 一种基于被监测设备更新路由信息表的方法及设备
CN107360217B (zh) 一种基于地理位置和时间的数据上报方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: 1205A 15.05.2020

122 Ep: pct application non-entry in european phase

Ref document number: 17914427

Country of ref document: EP

Kind code of ref document: A1