WO2018231021A1 - Method and apparatus for processing mobility in dual rrc system - Google Patents

Method and apparatus for processing mobility in dual rrc system Download PDF

Info

Publication number
WO2018231021A1
WO2018231021A1 PCT/KR2018/006809 KR2018006809W WO2018231021A1 WO 2018231021 A1 WO2018231021 A1 WO 2018231021A1 KR 2018006809 W KR2018006809 W KR 2018006809W WO 2018231021 A1 WO2018231021 A1 WO 2018231021A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
message
cell
rrc
scg
Prior art date
Application number
PCT/KR2018/006809
Other languages
French (fr)
Korean (ko)
Inventor
황준
강현정
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170125584A external-priority patent/KR102388500B1/en
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN201880039399.0A priority Critical patent/CN110741721A/en
Priority to EP18818715.7A priority patent/EP3624547A4/en
Priority to US16/622,730 priority patent/US11432362B2/en
Publication of WO2018231021A1 publication Critical patent/WO2018231021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This patent relates to a technique for performing dual connectivity using Dual RRC.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • D2D Device to Device communication
  • D2D Device to Device communication
  • CoMP Coordinated Multi-Points
  • Hybrid FSK and QAM Modulation FQAM
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
  • the master node (MN) and the secondary node (SN) can operate with the RRC respectively.
  • the master node (MN) and the secondary node (SN) may operate with RRC, respectively, in this case, a method for mobility processing is needed.
  • An object of the present invention is to disclose a method and apparatus for improving mobility-related performance when performing dual connectivity using dual RRC.
  • a control method of a terminal is when a connection with a first master node (MN) is released. Transmitting an RRC connection re-establishment request message including identifier information on a secondary node (SN) to a second master node (MN); When the context information about the terminal is included, the method may include receiving an RRC connection reestablishment message from the second MN.
  • MN master node
  • a terminal when a terminal is disconnected from a transceiver for transmitting and receiving a signal and a first master node (MN), the secondary is disconnected.
  • the controller may control the transceiver to receive the RRC connection reestablishment message from the second MN.
  • a method for controlling a master node may include a secondary node (SN) from a terminal from which a connection with another master node (MN) is released.
  • the master node (MN) is a secondary node (MN) from the terminal that is disconnected from the transceiver for transmitting and receiving signals and other master node (MN) Receiving an RRC connection re-establishment request message including identifier information for the secondary node (SN), and if the context information for the terminal includes, and transmits an RRC connection reestablishment message to the terminal It may include a control unit for controlling the transceiver to.
  • the throughput of the terminal when performing dual connectivity using Dual RRC, the throughput of the terminal can be increased by efficiently performing a procedure related to mobility.
  • FIG. 1 is a diagram illustrating a system to which the present invention is applied.
  • FIG. 2 is a diagram illustrating a sequence diagram describing Embodiment 1.
  • FIG. 2 is a diagram illustrating a sequence diagram describing Embodiment 1.
  • FIG. 3 is a diagram illustrating a sequence for describing Embodiment 2.
  • FIG. 4 is a diagram showing a sequence diagram for explaining a sequence diagram for explaining the third embodiment.
  • FIG. 5 is a diagram for explaining a fourth embodiment.
  • FIG. 6 is a diagram illustrating a sequence diagram illustrating case 1 according to a fourth embodiment.
  • FIG. 7 is a sequence diagram illustrating case 2 according to a fourth embodiment.
  • FIG. 9 is a diagram illustrating a sequence diagram illustrating case 4 according to a fourth embodiment.
  • FIG. 10 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR is also transmitted to the SCG SRB.
  • FIG. 11 illustrates a sequence diagram of an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR to an SCG SRB.
  • FIG. 12 is a sequence diagram illustrating an embodiment in which SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR to an MCG SRB.
  • FIG. 13 illustrates a sequence diagram of an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR is also transmitted to the MCG SRB.
  • FIG. 14 illustrates a sequence diagram of an embodiment in which a UL path is set differently although carried in respective RRCconnectionReconfiguration messages of separate measConfig.
  • 15 is a diagram showing a sequence diagram for describing the sixth embodiment.
  • 16A to 16C illustrate a sequence diagram for an embodiment of a master node (MN) initiated SCG change indication.
  • MN master node
  • 17A to 17C illustrate a sequence diagram of an embodiment in which an SN sends an MN indicating an operation required for an SCG change indication IE in an SN modification required message by an MN.
  • FIG. 18 is a diagram illustrating a structure of a terminal according to an embodiment of the present invention.
  • FIG. 19 is a diagram showing the structure of a base station according to an embodiment of the present invention.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • ' ⁇ part' may include one or more processors.
  • This technology assumes that when the RAT is heterogeneous, when two different RATs are attached to the common core system, the master node (MN) and the secondary node (SN) operate with the RRC, respectively.
  • MN master node
  • SN secondary node
  • FIG. 1 is a diagram showing a system to which the present invention is applied according to an embodiment of the present invention.
  • an MN 110 connected to a terminal 100 by an LTE eNB, an SN 120 by an NR gNB, and a core by an EPC 130.
  • the MN 110, the SN 120, and the core 130 are gNB, LTE, and NR cores, respectively, or various core and RAN nodes of heterogeneous systems such as eLTE, gNB, and NR cores. May be used.
  • MN master node
  • RRC radio resource control layer
  • MCG master cell group
  • SCG secondary cell group
  • RRE RRC connection re-establishment
  • PCI physical cell ID
  • RRC may not exist in the SN.
  • the connection through SN is performed when the radio link problem / RRC reconfiguration failure / other types of operations that require reconnection at the RRC level are performed. After executing, it is activated again as needed. For example, even if there is no problem with the link of the SN itself, if the MN link is unstable, the connection utilization of the SN side drops. In addition, interruption may proceed very long in view of data during SN link transmission.
  • FIG. 2 is a diagram showing Example 1.
  • the SRB (eg, SRB3) of the SN side should be set in advance in the UE and the SN, or the operation of setting the SRB3 before the failure of the MN should be entered in advance.
  • FIG. 2 illustrates an embodiment in which the MN 20 connected to the terminal 10 is an LTE eNB and the SN 30 is an NR gNB as described above with reference to FIG. 1.
  • the terminal 10 may receive data from the MN 20 and the SN 30.
  • the terminal 10 when the terminal 10 detects the MN failure, it can first stop the MCG RB.
  • the condition for determining the MN failure by the terminal 10 may include, for example, at least one of MCG radio link failure, MCG integrity failure, MCG reconfiguration failure, and HO failure.
  • the terminal 10 may release the MCG Scell (release).
  • the terminal 10 may maintain the SCG configuration and maintain the DRB and its configuration related to the SCG.
  • the DRB associated with the SCG may refer to the SCG part of the SCG direct or split DRB or SRB or the MCG DRB or SRB.
  • the gNB corresponding to the terminal 10 and the SN 30 may continue to transmit and receive packets through the SCG DRB.
  • the packet may include RRC signaling and data of the UE for the SCG. Packet transmission and reception through the SN gNB 30 may continue until a new MN cell is found and reconnection is successfully completed and SCG reconfiguration is performed through the new MN cell.
  • the terminal 10 may perform cell selection and perform RACH on the appropriate MN cell 40.
  • the UE 10 may transmit a RRE request message to the newly attached MN cell 40.
  • the RRE request message includes the C-rnti and the ID of the source cell (physical cell ID or global ID, etc.) used in the source cell, and the ID of the gNB cell 30 used as the SN (physical cell). ID to distinguish the cell such as ID or global cell ID) and the ID of the gNB.
  • information currently used when the transmission to the SN for example, information of the SN terminated beaerer (EPS bearer ID, ERAB ID, drb ID and QoS information corresponding to the SCG bearer (UE SN AMBR), security key, NCC, NH, security algorithm, etc. can be delivered together.
  • step S225 it may be determined whether the cell has the terminal context. If the new MN cell 40 has a terminal context, the operation after step S225 shown in FIG. 1 may be performed. If not, the RRE reject message is transmitted, so that the UE switches to idle mode.
  • the new MN cell 40 may transmit an RRE message to the terminal 10 to transmit security and NAS related configuration information. Accordingly, the terminal 10 may perform a corresponding setting and transmit a complete message in step S235. From then on, the UE 10 and the new cell 40 of the MN may establish SRB1,2.
  • the new MN cell 40 uses the cell ID and gNB id of the SN used in the RRE request message, and the gNB 30 that is the SN supporting the corresponding cell using the SCG RB information. ) Can send an SN addition request.
  • the SN 30 may negotiate a radio resource and transmit ack or nack to the new MN cell 40 in step S245.
  • the new MN cell 40 may transmit / receive a PDU session path switch request with the core network AMF or UPF 50.
  • the new MN cell 40 may deliver an RLF indication to the old MN cell 20.
  • the forwarding of the SN addition request and the RLF indication message may be reversed.
  • the past MN cell 20 receiving the RLF indication may transmit an SN release command to the gNB 30 which is the SN in step S255.
  • the SN gNB 30 may stop the DL transmission.
  • the gNB can send a message to the new MN that the SN has been released.
  • the new MN 40 may deliver an RRC connection reconfiguration message to the UE, including the SCG configuration information included in the SN addition request ack message received in step S260, in step S260. have.
  • the RRC connection reconfiguration may include a command to perform SCG configuration information and SCB related DRB release used in the past SN 30.
  • the new MN cell 40 may directly command the terminal 10 SCG configuration based on the newly received SCG configuration. Through this, new SCG configuration information can be applied while releasing past SCG configuration information.
  • the SCG configuration information is information obtained by the new MN 40 as a response to the content requested by the SN addition request based on the SCG / DRB information included in the RRE request. Through this, the SN 30 may know the resource request provided by the previous SN gNB 30 as much as possible, and allocate resources based on the resource request provided by the previous SN gNB 30. have.
  • step S265 the UE reconnects to the cell of the corresponding SN through the RACH.
  • step S270 the UE may resume transmission and reception of the SN and data while transmitting an RRCConnection reconfiguration complete message to the SN cell.
  • the new MN cell 40 may transmit / receive data with the core network AMF or UPF 50.
  • step S300 if the terminal 10 detects an MN failure, it may first stop the MCG RB. The terminal 10 may release the MCG Scell. In addition, the terminal 10 may maintain the SCG setting, and maintain the DRB associated with the SCG. Therefore, the operation of allowing the terminal 10 to connect the MN to the new MN cell 40 while maintaining communication with the SN cell 30 will be described.
  • the terminal 10 may transmit the MCG failure information to the SN gNB 30 through the SCG SRB.
  • the SN gNB 30 may deliver the information received from the terminal back to the MN eNB in a re-establishment required message.
  • the MCG failure indication may include serving cell and neighbor cell measurement results (cell ID, measure value) among measurements performed in the MN cell 20.
  • the information is delivered to the MN cell 20 in a re-establishment required message again in step S310, in which case the terminal identifier such as UE ID or C-rnti and security information used in the MN such as shortMAC-I are transmitted. Can be.
  • the MN cell 20 that has received this message may configure information to be included in a handover request (HO) using the measurement result and the terminal identifier.
  • the MN 20 may transmit a Ho request to a new cell 40 of the MN determined to have the best signal state among the measurement results.
  • the HO request may include a target cell ID to be used in the new MN 40. Or it may include multiple cell ID. If the single target cell ID is included, the MN 40 performs HO with the corresponding cell, and given the multiple cell ID, among the given cells, the new MN 40 determines the target cell.
  • the new MN cell 40 may transmit ack if it is able to grant the HO of the terminal as requested in the Ho request in step S320, and nack if not.
  • the new MN 40 may transmit the response to the previous MN 20 including configuration information about a resource that the new MN 40 may give.
  • the previous MN 20 includes the UE configuration information in the corresponding HO response in the handover command message and includes the SN gNB 30.
  • the SN gNB 30 may deliver an RRCconnectionReconfiguration message to the terminal 10 through an SCG SRB (eg, SCG RRC).
  • SCG SRB eg, SCG RRC
  • the previous MN 20 may give an SN release command.
  • the SN release command may be delivered to the RRCconnectionReconfiguration delivered to the UE 10 immediately after the SN release transmission. In this case, there may be no SN release message.
  • the gNB 30 transmits the HO complete message to the gNB 30 and then the SNB self-SN. Release can be performed.
  • the terminal 10 may apply a configuration for accessing the new MN 40 with the target cell ID included in the RRCconnectionReconfiguration and the access information (rach setting, etc.) of the cell.
  • the RRCconnectionReconfigruation may also include SCG configuration information and SN related DRB configuration information. Through this, the SN-related connection maintained after the old MN failure can be disabled.
  • step S335 the terminal 10 may access the target cell of the new MN 40 through the RACH. Thereafter, in step S340, the terminal 10 may transmit the RRCconnectionReconfigurationcomplete information to the target cell.
  • step S350 when the MN 40 of the target cell performs the SN addition procedure and transmits the corresponding configuration information through the MCG SRB of the new MN 40 (step S355), the terminal 10 accesses the SN cell. Can be done.
  • the UE may transmit a connection complete and configuration complete message to the SN cell 30 (step S360).
  • the terminal 10 may later transmit / receive data with the SN cell 30 again.
  • Example 4 is a view showing Example 3;
  • the UE 10 when the UE 10 detects an MN failure in step S400, it may first stop the MCG RB.
  • the terminal 10 may release the MCG Scell.
  • the terminal 10 may maintain the SCG configuration, and maintain the DRB associated with the SCG. Therefore, the operation of allowing the terminal 10 to connect the MN to the new MN cell 40 while maintaining communication with the SN cell 30 will be described.
  • the difference from Embodiment 2 described above is that the SN addition operation is performed during the HO request-HO response with the new MN cell 40, and the SN is added to the RRCConnectionReconfiguration message transmitted from the SN cell 30 to the UE.
  • the release and new SCG config information is included, so that the terminal 10 simultaneously performs SN release and new SN cell access.
  • step S405 in case of an MN failure according to the third embodiment, when the terminal 10 transmits MCG failure information to the SN gNB 30 through the SCG SRB, the SN cell 30 returns the MN again with a re-establishment required message. May be delivered to cell 20.
  • the MCG failure indication may include a neighbor cell measurement result (cell ID, measure value) of neighbor cells among the measurements performed in the MN cell 20.
  • the information is transmitted back to the MN cell 20 in a re-establishment required message, in which case a terminal identifier such as UE ID or C-rnti may be included.
  • the MN cell 20 receiving the message configures information to be included in the HO request through the measurement result and the terminal identifier, and in step S415 to the new cell 40 of the MN determined to have the best signal state among the measurement results.
  • the HO request may include a target cell ID.
  • the HO request includes PCI and SCG info / SCG DRB information of the cell used in the SN cell 30 (for example, EPS bearer ID, ERAB ID, drb ID, and QoS information corresponding to the bearer (UE SN AMBR)). This can be passed along.
  • the new MN cell 40 receiving the HO request can transmit ack if it can approve the HO of the terminal 10 and nack if it cannot approve.
  • the new MN cell 40 together with the previous MN cell 20 through SN PCI (cell ID) information included in the HO request.
  • Information on the used SN cell 30 can be obtained. Therefore, in step S420, the new MN cell 40 may request SN addition from the SN cell 30 used together with the previous MN cell 20 by transmitting an SN addition request message.
  • step S425 when the SN cell 30 receives the new SCG config, the SN cell 30 may be loaded together with the SN addition ack and transferred to the new MN cell 40.
  • the new MN cell 40 may transmit the HO response to the previous MN cell 20 including the SCG config.
  • the new MN cell 40 may include the configuration information on the resources that the new MN cell 40 can give.
  • the previous MN cell 20 loads the UE configuration information in the corresponding HO response in the HO cmd message and the SN gNB 20 currently communicating with the terminal 10. You can also send an SN release command at the same time.
  • the gNB 30, which is an SN cell may transmit an RRCconnectionReconfiguration to the terminal 10 through the SCG SRB.
  • the terminal 10 applies a setting for accessing the new MN cell 40 with the MN target cell ID included in the RRCconnectionReconfiguration and the access information (rach setting, etc.) of the cell, and applies the newly received SN related SCG config.
  • SN radio information can be set by applying.
  • the terminal 10 may apply the configuration information of the newly received SCG config by removing the SN-related DRB configuration information and SCG configuration information received from the previous SN cell 30.
  • the terminal 10 may perform a RACH to access the target cell of the new MN cell 40.
  • the terminal 10 may transmit the RRCconnectionReconfigurationcomplete information to the target cell of the new MN 40.
  • step S455 the new MN cell 40 may complete the PDC session modification with the core network 50.
  • step S460 the terminal 10 may perform a RACH with the SN cell 30 through the access information in the new SCG config.
  • the RACH with the SN cell 30 may be omitted.
  • the terminal 10 may transmit and receive data with the SN cell 30.
  • an SN RRC message in a multi-RAT dual connectivity including EN-DC, may be delivered using SCG SRB in addition to MCG SRB.
  • an RRC message generated in SN RRC if the message is a request type message requesting a response, the UL path of the SN RRC response message corresponding to the corresponding SN RRC request message may be indicated.
  • a method of transmitting an SN RRC message by a terminal is disclosed.
  • 1 bit for the UL path indication may be included in the SN RRC request message. The bit may indicate whether the corresponding SN RRC response message is transmitted to the SCG SRB or the MCG SRB.
  • Embodiment 4 is a diagram showing Embodiment 4 of the present invention.
  • the UE may receive an SN RRC request message.
  • the UE may determine whether the SN RRC request message is received and the UL path indication bit included in the SN RRC request message, and encapsulates the MN RRC message to send to the MCG SRB or the SCG SRB.
  • the UE may check whether the SN RRC request message is delivered by being encapsulated in the MN. Based on the check result, when the SN RRC request message is delivered by being encapsulated in the MN, in step S520, the UE may check whether the SN RRC response UL path indication bit is indicated as SCG SRB. If the SN RRC response UL path indication bit is indicated by the SCG SRB, in step S523, the UE may transmit the MN RRC response message to the MCG SRB and the SN RRC response message to the SCG SRB.
  • the UE transmits the MN RRC response message to the MCG SRB.
  • the SN RRC response message may be delivered as an encapsulate in the MN RRC response message.
  • the UE when the SN RRC request message is not encapsulated in the MN and delivered in step S510, that is, when directly delivered through the SCG SRB, in step S530, the UE is indicated by the SN RRC response UL path indication bit as SCG SRB You can check whether there is. As a result of the check, when the SN RRC response UL path indication bit is indicated by the SCG SRB, in step S533, the UE may transmit the SN RRC response message to the SCG SRB. On the other hand, when the SN RRC response UL path indication bit is not indicated by the SCG SRB, in step S535, the UE may transmit the MN RRC unidirectional message to the MCG SRB. In addition, the UE may transmit the SN RRC response message by encapsulating the MN RRC unidirectional message.
  • the UE delivers the MN RRC response message to the MCG SRB, and a separate SN RRC response message. Can be created and delivered via SCG SRB. In this case, the MN RRC response message may be omitted.
  • the UE creates an MN RRC response message and the SN RRC response to the MN RRC response message.
  • the message may be included and delivered through the MCG SRB.
  • the MN receiving the message may separate only the SN RRC response message and deliver it to the SN as an inter node message.
  • the UE can directly transmit the SN RRC response message to the SN through the SCG SRB.
  • the MN When the MN receives the RRC message from the SN, the UE sends an encapsulation to its MN RRC message, and when the MN receives the MN RRC response message from the UE, the MN checks whether the SN message is encapsulated therein. Delivers SN messages to the Xn interface, if not present.
  • the UE may make an MN RRC unidirectional message and include the SN RRC response message in the MN RRC unidirectional message to transmit it through the MCG SRB.
  • the MN receiving the message may separate only the SN RRC response message and deliver it to the SN as an inter node message.
  • step S600 while the SN cell 30 transmits an SN RRC request message to the MN cell 20, the SN RRC response UL path indication bit may be indicated and transmitted as an SCG SRB.
  • the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the SN RRC response UL path indication bit as described above. As a result of the check, when the SN RRC response UL path indication bit is indicated as the SCG SRB, the terminal 10 may determine to transmit the SN RRC response message using the SCG SRB in step S620. Specifically, in step S630, the terminal 10 may transmit an MN RRC response message to the MCG SRB, and in step S640, the terminal 10 may transmit an SN RRC response message to the SCG SRB.
  • FIG. 7 is a sequence diagram showing a case 2.
  • the SN cell 30 may transmit an SN RRC request message to the MN cell 20.
  • the SN RRC response UL path indication bit may be indicated by the MCG SRB and transmitted.
  • the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the SN RRC response UL path indication bit.
  • the UE 10 may determine to transmit an SN RRC response message using the MCG SRB in step S720.
  • the terminal 10 may transmit an MN RRC response message to the MCG SRB.
  • the MN cell 20 may separate only the SN RRC response message and deliver it to the SN as an inter node message.
  • step S800 the terminal 10 may receive an SN RRC request message from the SN cell 30 through an SCG SRB.
  • the UE 10 may determine to use the SCG SRB in step S810.
  • the terminal 10 may directly transmit an SN RRC response message to the SN through the SCG SRB.
  • step S900 the terminal 10 may receive an SN RRC request message from the SN cell 30 through an SCG SRB.
  • the UE 10 may determine to use the MCG SRB in step S9610.
  • step S920 the terminal 10 may make an MN RRC unidirectional message and include the SN RRC response message in the MN RRC unidirectional message to transmit the MCR SRB.
  • the MN cell 20 receiving the message may separate only the SN RRC response message, and may transmit the message to the SN cell 30 as an inter node message in step S930.
  • the SN Measurement report may be set by measConfig included in the SN RRC connection reconfiguration message.
  • measConfig included in the SN RRC connection reconfiguration message.
  • a measurement report message set in measConfig IE is later used when the corresponding event occurs. There may be a 1 bit indication.
  • the UE can transmit the SN RRCConnectionReconfigurationComplete, which is a response message of the SN RRCConnectionReconfiguration message, by viewing UL path indication information and selecting one from SCG / MCG SRB. have.
  • the terminal reports the MR UL path indication bit in the measConfig IE and may transmit the measurement report (MR) to the corresponding UL path when an event occurs.
  • the MR measurement report
  • the terminal may be directly transmitted to the SCG SRB.
  • the terminal may be transmitted to the MN by being included in an MN RRC response or a one-way message. And MN can deliver only the received MR to the SN.
  • FIG. 10 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR is also transmitted to the SCG SRB.
  • the SN cell 30 sets both the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE to indicate the SCG SRB to the MN cell 20 to transmit the SN RRC connection reconfiguration message.
  • the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
  • the terminal 10 may determine to transmit the SN RRCConnectionReconfigurationComplete message and the MR using the SCG SRB in step S1020.
  • the terminal 10 transmits an MN RRC response message to the MN cell 20 in step S1030.
  • the terminal 10 may transmit an SN RRCConnectionReconfigurationComplete message and an MR using the SCG SRB.
  • FIG. 11 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR is also transmitted to an SCG SRB.
  • the SN cell 30 sets the UL path indication bit for the RRCConnectionReconfigurationComplete to the MN cell 20 to indicate the MCG SRB and the MR UL path indication bit of the measConfig IE to indicate the SCG SRB.
  • the MN cell 20 may transmit an encapsulated SN RRC request message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
  • the terminal 10 may determine a path to transmit the RRC message.
  • step S1130 the terminal 10 may transmit an MN RRC response message to the MN cell 20.
  • an SN RRCConnectionReconfigurationComplete message may be encapsulated in the MN RRC response message and transmitted together with the MN cell 20.
  • the MN cell 20 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30.
  • the terminal 10 may transmit the MR to the SN cell 30 using the SCG SRB.
  • 12 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR to an MCG SRB.
  • the SN cell 30 is configured to indicate to the MN cell 20 the UL path indication bit for the RRCConnectionReconfigurationComplete indicates the SCG SRB, and the MR UL path indication bit of the measConfig IE indicates the MCG SRB.
  • the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
  • the terminal 10 may determine a path to transmit the RRC message.
  • the terminal 10 may transmit an MN RRC response message to the MN cell 20.
  • the terminal 10 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30 using an SCG SRB.
  • the terminal 10 may transmit an MN RRC response message including the MR to the MN cell 20 using the MCG SRB.
  • the MN cell 20 may separate the MR and transmit the same to the SN cell 30.
  • FIG. 13 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR is also transmitted to the MCG SRB.
  • the SN cell 30 sets both the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE to indicate the MCG SRB to the MN cell 20 to transmit the SN RRC connection reconfiguration message.
  • the MN cell 20 may transmit an SN RRC request message to the terminal 10 by encapsulating the MN RRC request message.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
  • the terminal 10 may determine to transmit the SN RRCConnectionReconfigurationComplete message and the MR using the MCG SRB in step S1320.
  • the terminal 10 may transmit an MN RRC response message to the MN cell 20 in step S1330.
  • an SN RRCConnectionReconfigurationComplete message may be encapsulated in the MN RRC response message and transmitted together with the MN cell 20.
  • the MN cell 20 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30.
  • the terminal 10 may transmit an MN RRC response message including the MR to the MN cell 20 using the MCG SRB.
  • the MN cell 20 may separate the MR and transmit the MR to the SN cell 30.
  • FIG. 14 is included in each RRCconnectionReconfiguration message of a plurality of separate measConfig and transmitted.
  • FIG. 11 is a sequence diagram illustrating a case where MR UL paths are set differently. At this time, the MR set in each measConfig can be independently transmitted to each set UL path.
  • the SN cell 30 sets both the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the first measConfig IE to indicate the SCG SRB to the MN cell 20 so as to indicate the SN RRC connection reconfiguration message. Can be transmitted.
  • the MN cell 20 may transmit an SN RRC reconfiguration message to the terminal 10 by encapsulating the MN RRC request message.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
  • the terminal 10 may determine to transmit an SN RRCConnectionReconfigurationComplete message and an MR using the SCG SRB in step S1410.
  • the terminal 10 transmits an MN RRC response message to the MN cell 20 in step S1415.
  • the terminal 10 transmits an SN RRCConnectionReconfigurationComplete message and a first MR using the SCG SRB. Each can be transmitted.
  • the SN cell 30 sets the UL path indication bit for the RRCConnectionReconfigurationComplete to the MN cell 20 to indicate the SCG SRB and the MR UL path indication bit of the measConfig IE to indicate the MCG SRB. You can send a connection reconfiguration message.
  • the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
  • the terminal 10 may determine a path to transmit the RRC message.
  • the terminal 10 may transmit an MN RRC response message to the MN cell 20.
  • the terminal 10 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30 using an SCG SRB.
  • the terminal 10 may transmit an MN RRC response message including the second MR to the MN cell 20 using the MCG SRB.
  • the MN cell 20 may separate and transmit the second MR to the SN cell 30.
  • the UL path of the MR MR for SN may be set per measConfig IE included in the RRCConnectionReconfiguration, but may also be set for each measId in measConfig.
  • 1 bit for UL path selection for SN RRCConnectionReconfigurationComplete and MR UL path indication bits for each measID of measConfig IE may be separately included and transferred in the SN RRCConnectionReconfiguration message.
  • the UE reports the SN RRCConnectionReconfiguration message, reports the MR UL path indication for each measID included in the SN RRCConnectionReconfiguration message, and transmits the corresponding MR to the configured UL path when an event for each measID occurs.
  • step S1500 the SN cell 30 sets the UL path indication bit for the RRCConnectionReconfigurationComplete to the MN cell 20 to indicate the SCG SRB, and in the measConfig IE, the first measID sets the MR UL path indication bit to the SCG SRB, The second measID may set the MR UL path indication bit to the MCG SRB to transmit an SN RRC connection reconfiguration message.
  • the MN cell 20 may encapsulate and transmit an SN RRC reconfiguration message to the MN RRC request message to the terminal 10.
  • the terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bits for the first and second measIDs of the measConfig IE. Based on the confirmation result, in step S1520, the terminal 10 may determine to transmit an SN RRCConnectionReconfigurationComplete message and an MR for the first measID using the SCG SRB. The terminal 10 may determine to transmit the MR for the second measID using the MCG SRB.
  • the terminal 10 transmits an MN RRC response message to the MN cell 20 in step S1530.
  • the terminal 10 transmits an SN RRCConnectionReconfigurationComplete message and a first MR using an SCG SRB. Each can be transmitted.
  • the terminal 10 may transmit an MN RRC response message including the second MR to the MN cell 20 using the MCG SRB.
  • the MN cell 20 may separate the second MR and transmit it to the SN cell 30.
  • the SN cell may always set the MR UL path to MCG SRB.
  • MR UL if it is determined that the link quality is very low based on the link status of the SN cell (the average level of RSRP feedback from the terminal or directly measured by the SRS, or the average number of RLC retransmissions or HARQ retransmissions).
  • the path may be set to MCG SRB.
  • the SN RRC request message may be any type of message in which the UE sends a one-time response corresponding to the UE in SN RRC, and the SN RRC response message refers to a response message transmitted by the UE.
  • the following is an example of a request-response message.
  • the SN RRC may be a message sent by the SN RRC one time to the DL or a message sent by the terminal to the UL one time.
  • the one-time message sent to the DL can be directly sent by the SN RRC by selecting the MCG SRB or the SCG SRB, and each UL one-time SN RRC message has a predetermined SRB for the default SN so that the one-time message can be transmitted to the default SRB.
  • the default SRB may be selected from MCG SRB and SCG SRB and transmitted to the UE as system information.
  • an operation required for the SCG change indication or a use case requiring the operation may be displayed and transmitted to the SN or the MN.
  • NR PDCP can be used in the LTE user plane, in relation to PDCP version change, PDCP anchor point change, security key refresh, etc. of bearers used in SCG, existing synchronous reconfiguration (for example, when the UE is MAC, In the case where RLC reset and PDCP re-establishment for SCG and RACH to target SCG) are collectively performed, each layer 2 stack can be partially reset.
  • the partial synchronous reconfiguration operation required for the SCG change IE may be displayed or the use case may be displayed so that the SN may prepare for the operation and reduce latency.
  • 16A to 16C illustrate an embodiment of an MN initiated SCG change.
  • the MN 20 may deliver a SCG change indication in an SN modification request message, while delivering the necessary operation of synchronous reconfiguration to the SN 30.
  • the necessary operation may be as follows. security key refresh, reconfiguration, RACH, RACH and MAC reset, RACH and MAC reset and RLC reset, RACH and MAC reset and RLC reset and PDCP re-establishment.
  • the SN 30 receives the message, the SN 30 performs an operation for the necessary operation. For example, if the general reconfiguration is not a reset of the sub-layer of the L2 stack, the reconfiguration is performed, and if the RACH is displayed in the message, the random access preamble transmission of the corresponding UE is monitored. Can be.
  • the SN 30 may reset the MAC belonging to the corresponding UE.
  • the SN 30 may wait for the RACH operation of the terminal 10.
  • the SN 30 may transmit the SN modification ack message to the MN 20, including the SCG setting for setting the RACH and the MAC reset.
  • the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC in step S1615.
  • the UE 10 may transmit an RACH to the SN 30.
  • the SN 30 may reset all RLC entities belonging to the corresponding UE 10 and may also reset the MAC. .
  • the SN 30 may wait for the RA of the terminal 10.
  • the SN 30 may transmit an SN modification ack message to the MN 20, including an SCG setting for setting RACH, MAC, and RLC reset.
  • the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1635.
  • the terminal 10 may transmit a RACH to the SN 30.
  • the SN 30 when the necessary operation of synchronous reconfiguration is RACH and MAC / RLC reset and PDCP re-establishment, the SN 30 re-establishes the PDCP of the terminal 10 and then performs RLC and MAC. You can reset it.
  • the SN 30 may wait for the RA of the terminal 10. Specifically, as shown in FIG. 16C, in step S1645, the SN 30 transmits an SN modification ack message to the MN 20, including an SCG setting for setting RACH and MAC / RLC reset and PDCP re-establishment. Can transmit In operation S1650, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1655. The terminal 10 may perform PDCP re-establishment. In addition, in step S1660, the terminal 10 may transmit a RACH to the SN (30).
  • the SN 30 confirms the displayed operation and confirms the required operation. And it can create a reconfiguration message required by the terminal.
  • the message is delivered to the MN 20 as a container, and when the MN 20 reconfigures the terminal 10, the message may be delivered by the SN 30 to allow the terminal 10 to perform a necessary operation.
  • the terminal 10 shown in FIG. 16A is MAC reset and RACH
  • the terminal 10 shown in FIG. 16B is MAC / RLC reset and RACH
  • the terminal 10 shown in FIG. 16C is MAC / RLC.
  • Refiguration is reconfiguration without MAC reset
  • RACH is RACH
  • RACH and MAC reset is reconfiguration with MAC reset
  • RACH and MAC / RLC reset is traditional handover but without PDCP re-establishment
  • RACH and MAC / RLC / PDCP reset / re -establish can be traditional HO
  • FIGS. 17A to 17C illustrate an embodiment of SN initiated SCG change.
  • the SN 30 may indicate to the MN 20 an operation required for the SCG change indication IE in the SN modification required message.
  • the MN 20 receiving the message may generate an SN modification request and deliver it back to the SN 30, including the necessary operation received from the SN 30 in the SCG change indication IE of the SN modification request. have.
  • the SN 30 recognizes the occurrence of one of the above-described embodiments, it transmits the SCG change indication to the MN 20 in the SN modification required message, and delivers the necessary operation of the synchronous reconfiguration to the MN 20.
  • the necessary operation may be as follows. reconfiguration, RACH, RACH and MAC reset, RACH and MAC reset and RLC reset, RACH and MAC reset and RLC reset and PDCP re-establishment.
  • the MN 20 may generate an SN modification request.
  • the MN 20 may forward back to the SN 30, including the necessary actions received from the SN 30 in the SCG change indication IE of the SN modification request.
  • the SN 30 When the SN 30 receives the SN modification request message, the SN 30 performs an operation performed for the necessary operation. For example, if the general reconfiguration is not a reset of the sub-layer of the L2 stack, the reconfiguration is performed, and if the RACH is displayed in the message, the random access preamble transmission of the corresponding UE can be monitored without performing any other operation. .
  • the SN 30 may reset the MAC belonging to the corresponding terminal.
  • the SN 30 may wait for the RACH operation of the terminal 10.
  • the SN 30 may transmit the SN modification ack message to the MN 20, including the SCG setting for setting the RACH and the MAC reset.
  • the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC in step S1725.
  • the terminal 10 may transmit a RACH to the SN 30.
  • the SN 30 may reset all RLC entities belonging to the corresponding UE 10 and may also reset the MAC. .
  • the SN 30 may wait for the RA of the terminal 10.
  • the SN 30 may transmit an SN modification ack message to the MN 20, including an SCG setting for setting RACH, MAC, and RLC reset.
  • the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1745.
  • the terminal 10 may transmit a RACH to the SN 30.
  • the SN 30 when the necessary operation of synchronous reconfiguration is RACH and MAC / RLC reset and PDCP re-establishment, the SN 30 re-establishes the PDCP of the terminal 10 and then performs RLC and MAC. You can reset it.
  • the SN 30 may wait for the RA of the terminal 10.
  • the SN 30 transmits an SN modification ack message to the MN 20, including an SCG setting for setting RACH and MAC / RLC reset and PDCP re-establishment.
  • the MN 20 may transmit the received setting to the terminal 10.
  • the terminal 10 may reset the MAC and RLC in step S1765.
  • the terminal 10 may perform PDCP re-establishment.
  • the terminal 10 may transmit a RACH to the SN (30).
  • the MN 20 receiving the SN modification required message forwards the SN modification request to the SN 30 that has sent the SN modification required, so that the SN 30 performs the operation. Can be ordered.
  • reconfiguration is reconfiguration without MAC reset
  • RACH is RACH
  • RACH and MAC reset is reconfiguration with MAC reset
  • RACH and MAC / RLC reset is traditional handover but without PDCP re-establishment
  • RACH and MAC / RLC / PDCP reset / re -establish can be traditional HO
  • FIG. 18 is a diagram illustrating a structure of a terminal according to an embodiment of the present invention.
  • the terminal may include a transceiver 1810, a controller 1820, and a storage 1830.
  • the controller may be defined as a circuit or application specific integrated circuit or at least one processor.
  • the transceiver 1810 may exchange a signal with another network entity.
  • the transceiver 1810 may receive system information from, for example, a base station, and may receive a synchronization signal or a reference signal.
  • the controller 1820 may control the overall operation of the terminal according to the embodiment proposed by the present invention.
  • the controller 1820 if the connection with the first master node (MN) of the terminal is released, RRC connection reestablishment request (connection) including the identifier information for the secondary node (secondary node, SN) (connection) Send a re-establishment request message to a second master node (MN), and when the second MN includes context information for the terminal, receives an RRC connection reestablishment message from the second MN.
  • the transceiver 1810 may be controlled to control the transmission / reception unit 1810.
  • an SN addition request message may be transmitted to the SN by the second MN based on the identifier information of the SN.
  • the RRC connection reestablishment request message may further include bearer information for the SN.
  • the SN may be characterized by including an RRC layer (radio resource control layer).
  • RRC layer radio resource control layer
  • the storage unit 1830 may store at least one of information transmitted and received through the transceiver 1810 and information generated through the controller 1820.
  • the base station may be an eNB of LTE system (including MeNB, SeNB) or a gNB of NR system.
  • the base station may include a transceiver 1910, a controller 1920, and a storage 1930.
  • the controller 1920 may be defined as a circuit or application specific integrated circuit or at least one processor.
  • the transceiver 1910 may exchange a signal with another network entity.
  • the transceiver 1910 may transmit system information to the terminal, for example, and may transmit a synchronization signal or a reference signal.
  • the controller 1920 may control the overall operation of the base station according to the embodiment proposed by the present invention. For example, when the base station is the second MN, the controller 1920 includes identifier information on the secondary node (SN) from the terminal disconnected from the first master node (MN). When receiving the RRC connection re-establishment request message, and includes the context information for the terminal, the transceiver 1910 can be controlled to transmit the RRC connection reestablishment message to the terminal. have.
  • the controller 1920 may control the transceiver 1910 to transmit an SN addition request message to the SN based on the identifier information of the SN.
  • the RRC connection reestablishment request message may further include bearer information for the SN.
  • the SN may include an RRC layer (radio resource control layer).
  • RRC layer radio resource control layer
  • the storage unit 1930 may store at least one of information transmitted and received through the transceiver 1910 and information generated through the controller 1920.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a communication technique for convergence of IoT technology and a 5G communication system for supporting a higher data transfer rate beyond a 4G system, and a system therefor. The present disclosure can be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart or connected cars, health care, digital education, retail business, and services associated with security and safety) on the basis of 5G communication technology and IoT-related technology. Disclosed are a method and an apparatus for improving mobility-related performance when a dual connectivity is performed using dual RRC.

Description

듀얼 RRC 시스템에서 이동성을 처리하는 방법 및 장치 Method and apparatus for handling mobility in dual RRC system
본 특허는 Dual RRC를 사용하여, dual connectivity를 수행하기 위한 기술에 대한 것이다. This patent relates to a technique for performing dual connectivity using Dual RRC.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.In order to meet the increasing demand for wireless data traffic since the commercialization of 4G communication systems, efforts are being made to develop improved 5G communication systems or pre-5G communication systems. For this reason, a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE). In order to achieve high data rates, 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band). In order to mitigate the path loss of radio waves in the ultra-high frequency band and increase the propagation distance of radio waves, beamforming, massive array multiple input / output (FD-MIMO), and FD-MIMO are used in 5G communication systems. Array antenna, analog beam-forming, and large scale antenna techniques are discussed. In addition, in order to improve the network of the system, 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation The development of such technology is being done. In addition, in 5G systems, Hybrid FSK and QAM Modulation (FQAM) and Slide Window Superposition Coding (SWSC), Advanced Coding Modulation (ACM), and FBMC (Filter Bank Multi Carrier) and NOMA are advanced access technologies. (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.Meanwhile, the Internet is evolving from a human-centered connection network in which humans create and consume information, and an Internet of Things (IoT) network that exchanges and processes information between distributed components such as things. The Internet of Everything (IoE) technology, which combines big data processing technology through connection with cloud servers and the like, is emerging. In order to implement the IoT, technical elements such as sensing technology, wired / wireless communication and network infrastructure, service interface technology, and security technology are required, and recently, a sensor network for connection between things, a machine to machine , M2M), Machine Type Communication (MTC), etc. are being studied. In an IoT environment, intelligent Internet technology (IT) services can be provided that collect and analyze data generated from connected objects to create new value in human life. IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts have been made to apply the 5G communication system to the IoT network. For example, technologies such as sensor network, machine to machine (M2M), machine type communication (MTC), and the like, are implemented by techniques such as beamforming, MIMO, and array antennas. It is. Application of cloud radio access network (cloud RAN) as the big data processing technology described above may be an example of convergence of 5G technology and IoT technology.
최근 연구되고 있는 이종 RAT을 이용한 시스템에서, 두개의 다른 RAT이 common core system 에 붙을 경우, master node (MN) 과 secondary node (SN)이 각각 RRC를 가지고 동작할 수 있다. 이러한 경우 master node (MN) 과 secondary node (SN)이 각각 RRC를 가지고 동작할 수 있으므로 이러한 경우 이동성(mobility) 처리를 위한 방법이 필요하다. In the heterogeneous RAT system, which is being studied recently, when two different RATs are attached to the common core system, the master node (MN) and the secondary node (SN) can operate with the RRC respectively. In this case, since the master node (MN) and the secondary node (SN) may operate with RRC, respectively, in this case, a method for mobility processing is needed.
본 발명의 목적은 Dual RRC를 사용하여, dual connectivity를 수행하는 경우, mobility 관련 성능을 높이는 방법 및 장치를 개시하는 것이다.Disclosure of Invention An object of the present invention is to disclose a method and apparatus for improving mobility-related performance when performing dual connectivity using dual RRC.
상기와 같은 문제점을 해결하기 위한 본 발명의 일 실시 예에 따른 듀얼 커넥티비티(dual connectivity) 를 지원하는 무선 통신 시스템에서 단말의 제어 방법은 제1 마스터 노드(master node, MN)와의 연결이 해제된 경우, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 제2 마스터 노드(master node, MN)로 전송하는 단계 및 상기 제2 MN이 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 제2 MN으로 부터 RRC 연결 재수립 메시지를 수신하는 단계를 포함할 수 있다. In a wireless communication system supporting dual connectivity according to an embodiment of the present invention for solving the above problems, a control method of a terminal is when a connection with a first master node (MN) is released. Transmitting an RRC connection re-establishment request message including identifier information on a secondary node (SN) to a second master node (MN); When the context information about the terminal is included, the method may include receiving an RRC connection reestablishment message from the second MN.
한편, 본 발명의 다른 실시 예에 따른 듀얼 커넥티비티(dual connectivity) 를 지원하는 무선 통신 시스템에서 단말은 신호를 송수신하는 송수신부 및 제1 마스터 노드(master node, MN)와의 연결이 해제된 경우, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 제2 마스터 노드(master node, MN)로 전송하고, 상기 제2 MN이 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 제2 MN으로 부터 RRC 연결 재수립 메시지를 수신하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다. Meanwhile, in a wireless communication system supporting dual connectivity according to another embodiment of the present invention, when a terminal is disconnected from a transceiver for transmitting and receiving a signal and a first master node (MN), the secondary is disconnected. Sends an RRC connection re-establishment request message including identifier information about a node (secondary node, SN) to a second master node (MN), the second MN to the terminal When the context information is included, the controller may control the transceiver to receive the RRC connection reestablishment message from the second MN.
한편, 본 발명의 다른 실시 예에 따른 무선 통신 시스템에서 마스터 노드(master node, MN)의 제어 방법은 다른 마스터 노드(master node, MN)와의 연결이 해제된 단말로부터, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 수신하는 단계 및 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 단말로 RRC 연결 재수립 메시지를 전송하는 단계를 포함할 수 있다.Meanwhile, in a wireless communication system according to another embodiment of the present invention, a method for controlling a master node (MN) may include a secondary node (SN) from a terminal from which a connection with another master node (MN) is released. Receiving an RRC connection re-establishment request message including the identifier information for the information and the context information for the terminal, and transmitting the RRC connection re-establishment message to the terminal It may include.
한편, 본 발명의 다른 실시 예에 따른 무선 통신 시스템에서 마스터 노드(master node, MN)는 신호를 송수신하는 송수신부 및 다른 마스터 노드(master node, MN)와의 연결이 해제된 단말로부터, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 수신하고, 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 단말로 RRC 연결 재수립 메시지를 전송하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다. On the other hand, in a wireless communication system according to another embodiment of the present invention, the master node (MN) is a secondary node (MN) from the terminal that is disconnected from the transceiver for transmitting and receiving signals and other master node (MN) Receiving an RRC connection re-establishment request message including identifier information for the secondary node (SN), and if the context information for the terminal includes, and transmits an RRC connection reestablishment message to the terminal It may include a control unit for controlling the transceiver to.
본 발명에 따르면 Dual RRC를 이용해 dual connectivity를 수행할 경우 mobility 관련 절차를 효율적으로 수행하여 단말의 처리율을 높일 수 있다.According to the present invention, when performing dual connectivity using Dual RRC, the throughput of the terminal can be increased by efficiently performing a procedure related to mobility.
도 1은 본원발명이 적용되는 시스템을 도시한 도면이다. 1 is a diagram illustrating a system to which the present invention is applied.
도 2는 실시예 1을 설명하는 시퀀스도를 도시한 도면이다.FIG. 2 is a diagram illustrating a sequence diagram describing Embodiment 1. FIG.
도 3은 실시예 2를 설명하는 시퀀스도를 도시한 도면이다.3 is a diagram illustrating a sequence for describing Embodiment 2. FIG.
도 4는 실시예 3을 설명하는 시퀀스도를 설명하는 시퀀스도를 도시한 도면이다.4 is a diagram showing a sequence diagram for explaining a sequence diagram for explaining the third embodiment.
도 5는 실시예 4를 설명하는 흐름도를 도시한 도면이다. FIG. 5 is a diagram for explaining a fourth embodiment.
도 6은 실시 예 4에서 case 1을 설명하는 시퀀스도를 도시한 도면이다. FIG. 6 is a diagram illustrating a sequence diagram illustrating case 1 according to a fourth embodiment.
도 7은 실시 예 4에서 case 2를 설명하는 시퀀스도를 도시한 도면이다.FIG. 7 is a sequence diagram illustrating case 2 according to a fourth embodiment.
도 8은 실시 예 4에서 case 3을 설명하는 시퀀스도를 도시한 도면이다.8 is a sequence diagram illustrating case 3 according to the fourth embodiment.
도 9는 실시 예 4에서 case 4을 설명하는 시퀀스도를 도시한 도면이다.FIG. 9 is a diagram illustrating a sequence diagram illustrating case 4 according to a fourth embodiment.
도 10은 SN RRCConnectionReconfigurationComplete 는 SCG SRB 로, MR도 SCG SRB 로 전송되는 실시 예의 시퀀스도를 도시한 도면이다. FIG. 10 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR is also transmitted to the SCG SRB.
도 11은 SN RRCConnectionReconfigurationComplete 는 MCG SRB 로, MR도 SCG SRB 로 전송되는 실시 예의 시퀀스도를 도시한 도면이다.FIG. 11 illustrates a sequence diagram of an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR to an SCG SRB.
도 12는 SN RRCConnectionReconfigurationComplete 는 SCG SRB 로, MR은 MCG SRB 로 전송되는 실시 예의 시퀀스도를 도시한 도면이다. 12 is a sequence diagram illustrating an embodiment in which SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR to an MCG SRB.
도 13은 SN RRCConnectionReconfigurationComplete 는 MCG SRB 로, MR도 MCG SRB 로 전송되는 실시 예의 시퀀스도를 도시한 도면이다.FIG. 13 illustrates a sequence diagram of an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR is also transmitted to the MCG SRB.
도 14는 별도의 measConfig 의 각자의 RRCconnectionReconfiguration 메시지에 실려가지만, UL path 가 다르게 설정되는 실시 예의 시퀀스도를 도시한 도면이다.FIG. 14 illustrates a sequence diagram of an embodiment in which a UL path is set differently although carried in respective RRCconnectionReconfiguration messages of separate measConfig.
도 15는 실시예 6을 설명하는 시퀀스도를 도시한 도면이다.15 is a diagram showing a sequence diagram for describing the sixth embodiment.
도 16a 내지 도 16c는 master node (MN) initiated SCG change indication 실시 예에 대한 시퀀스도를 도시한 도면이다.16A to 16C illustrate a sequence diagram for an embodiment of a master node (MN) initiated SCG change indication.
도 17a 내지 도 17c는 SN이 MN으로 SN modification required 메시지에 SCG change indication IE에 필요한 동작을 표시해서 보내는 실시 예에 대한 시퀀스도를 도시한 도면이다.17A to 17C illustrate a sequence diagram of an embodiment in which an SN sends an MN indicating an operation required for an SCG change indication IE in an SN modification required message by an MN.
도 18은 본 발명의 일 실시예에 따른 단말의 구조를 도시한 도면이다.18 is a diagram illustrating a structure of a terminal according to an embodiment of the present invention.
도 19는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.19 is a diagram showing the structure of a base station according to an embodiment of the present invention.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents which are well known in the technical field to which the present invention belongs and are not directly related to the present invention will be omitted. This is to more clearly communicate without obscure the subject matter of the present invention by omitting unnecessary description.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated. In addition, the size of each component does not fully reflect the actual size. The same or corresponding components in each drawing are given the same reference numerals.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments of the present invention make the disclosure of the present invention complete and the general knowledge in the technical field to which the present invention belongs. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this point, it will be understood that each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s). Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.In addition, each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of order. For example, the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시 예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다. In this case, the term '~ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and '~ part' performs certain roles. However, '~' is not meant to be limited to software or hardware. '~ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors. Thus, as an example, '~' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. The functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'. In addition, the components and '~' may be implemented to play one or more CPUs in the device or secure multimedia card. Also, in an embodiment, '~ part' may include one or more processors.
본 기술은 RAT이 이종인 경우, 두개의 다른 RAT이 common core system 에 붙을 경우, master node (MN) 과 secondary node (SN)이 각각 RRC를 가지고 동작하는 경우를 가정하였다. This technology assumes that when the RAT is heterogeneous, when two different RATs are attached to the common core system, the master node (MN) and the secondary node (SN) operate with the RRC, respectively.
이 경우 MN은 core network 과 NAS signaling 인터페이스를 가지고 있다고 가정한다. 도 1은 본 발명의 일 실시 예에 따라 본원발명이 적용되는 시스템을 도시한 도면이다. In this case, it is assumed that the MN has a core network and a NAS signaling interface. 1 is a diagram showing a system to which the present invention is applied according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 단말(100)이 접속한 MN(110)이 LTE eNB, SN(120)이 NR gNB, core 가 EPC(130) 로 두 노드가 common 하게 붙는 경우를 가정할 수 있다. 그러나 이는 일 실시 예에 불과할 뿐, MN(110), SN(120), core(130)가 각각 gNB, LTE, NR core 거나, eLTE, gNB, NR core 등 이기종 시스템의 core와 RAN node가 다양하게 사용될 수도 있다.As shown in FIG. 1, it may be assumed that two nodes are commonly attached to an MN 110 connected to a terminal 100 by an LTE eNB, an SN 120 by an NR gNB, and a core by an EPC 130. . However, this is only an example, and the MN 110, the SN 120, and the core 130 are gNB, LTE, and NR cores, respectively, or various core and RAN nodes of heterogeneous systems such as eLTE, gNB, and NR cores. May be used.
이 문서는 다음의 줄임말을 포함한다.This document contains the following shorthand:
DC: dual connectivityDC: dual connectivity
MN: master nodeMN: master node
SN: secondary nodeSN: secondary node
MR: measurement reportMR: measurement report
IE: information elementIE: information element
RRC: radio resource control layerRRC: radio resource control layer
MCG: master cell groupMCG: master cell group
SCG: secondary cell groupSCG: secondary cell group
RRE: RRC connection re-establishmentRRE: RRC connection re-establishment
RB: radio bearerRB: radio bearer
PCI: physical cell IDPCI: physical cell ID
HO: handoverHO: handover
SRB: signaling radio bearerSRB: signaling radio bearer
LTE DC에서는 SN 에 RRC 가 존재하지 않을 수 있다. 그에 따라 SN을 통한 연결(connection)은 MN 에 radio link problem / RRC reconfiguration failure / 그 외 RRC 수준에서 connection을 다시 맺는 과정이 필요한 모든 종류의 동작을 수행할 때, SCG configuration 이 release 되고 차후 MN이 재접속을 수행한 이후 필요에 따라 다시 activate 된다. 예를 들어, SN 자체의 링크상 문제가 없더라도, MN 링크가 불안정 하면, SN 쪽 connection사용도가 떨어진다. 또한 SN link 전송 중인 데이터 관점에서 인터럽션(interruption) 이 매우 길게 진행 될 수도 있다. In LTE DC, RRC may not exist in the SN. As a result, the connection through SN is performed when the radio link problem / RRC reconfiguration failure / other types of operations that require reconnection at the RRC level are performed. After executing, it is activated again as needed. For example, even if there is no problem with the link of the SN itself, if the MN link is unstable, the connection utilization of the SN side drops. In addition, interruption may proceed very long in view of data during SN link transmission.
또 다른 문제로서, SN RRC가 처리하는 RRC 메시지를 SCG SRB 만으로 전송하게 될 경우, mmW 등의 주파수를 사용하는 SN link의 경우, 메시지 전달이 잘 안될 수 있다. 이에 따라 MCG SRB 나 SCG SRB로 SN RRC 메시지를 전송하는 방법을 도입해야 한다. As another problem, when the RRC message processed by the SN RRC is transmitted only to the SCG SRB, in case of an SN link using a frequency such as mmW, message transmission may not be performed well. Accordingly, a method of transmitting an SN RRC message to the MCG SRB or SCG SRB should be introduced.
이때 SN에 MN과 별도로 독립된 RRC를 사용하게 되면, MN 에 connection re-establishment 에 따른 재접속 및 SN의 재 추가(addition)까지의 기간 동안 SN connection을 이용한 data communication을 지속 할 수 있어, SN connection interruption을 줄일 수 있다. 또한 SN RRC request message 를 SN이 단말에게 내려 줄 때, response RRC message 를 단말이 MCG SRB와 SCG SRB 중 선택하여 전송할 수 있도록 SN request message에 UL path indication 을 위한 1 bit 을 추가 할 수 있다.In this case, if RRC is used independently of MN in SN, data communication using SN connection can be continued for a period of time until reconnection according to connection re-establishment and re-addition of SN to MN. Can be reduced. In addition, when the SN sends the SN RRC request message to the UE, a 1-bit for UL path indication may be added to the SN request message so that the UE may transmit a response RRC message by selecting one of the MCG SRB and SCG SRB.
[실시 예 1]Example 1
도 2는 실시 예 1을 도시한 도면이다.2 is a diagram showing Example 1. FIG.
실시예 1,2,3 공히, SN 쪽의 SRB (한 예로 SRB3) 가 단말과 SN에 미리 설정되어 있거나, MN이 failure 발생 이전에 SRB3를 설정하는 동작이 미리 들어가 있어야 한다. In Embodiments 1, 2 and 3, the SRB (eg, SRB3) of the SN side should be set in advance in the UE and the SN, or the operation of setting the SRB3 before the failure of the MN should be entered in advance.
도 2는 도 1에서 전술한 바와 같이 단말(10)이 접속한 MN(20)이 LTE eNB, SN(30)이 NR gNB인 경우의 실시 예를 나타내고 있다. 단계 S200 및 단계 S205와 같이 단말(10)은 MN(20) 및 SN(30)으로부터 데이터를 수신할 수 있다. FIG. 2 illustrates an embodiment in which the MN 20 connected to the terminal 10 is an LTE eNB and the SN 30 is an NR gNB as described above with reference to FIG. 1. In step S200 and step S205, the terminal 10 may receive data from the MN 20 and the SN 30.
단계 S210에서와 같이, 단말(10)이 MN failure를 발견하면, 우선 MCG RB 를 정지 시킬 수 있다. 여기서 단말(10)이 MN failure를 판단하는 조건은 예를 들어 MCG radio link failure, MCG integrity failure, MCG reconfiguration failure, HO failure 중 적어도 하나를 포함할 수 있다.As in step S210, when the terminal 10 detects the MN failure, it can first stop the MCG RB. The condition for determining the MN failure by the terminal 10 may include, for example, at least one of MCG radio link failure, MCG integrity failure, MCG reconfiguration failure, and HO failure.
그리고 단말(10)은 MCG Scell을 해제(release)할 수 있다. 단말(10)은 SCG 설정을 유지하고, SCG와 관련있는 DRB 및 그 설정을 유지할 수 있다. 여기서 SCG 와 관련있는 DRB란 SCG direct 또는 split DRB 또는 SRB 또는 MCG DRB 또는 SRB의 SCG part를 의미할 수 있다. 단말(10)과 SN(30)에 해당되는 gNB는 SCG DRB를 통해 패킷 송수신을 계속할 수 있다. 상기 패킷은 SCG에 대한 RRC 시그널링 및 단말의 데이터를 포함할 수 있다. 상기 SN gNB(30)를 통한 패킷 송수신은 새로운 MN셀을 찾아서 재접속을 성공적으로 완료한 뒤 새로운 MN 셀을 통한 SCG 재설정을 수행할 때까지 지속될 수 있다. And the terminal 10 may release the MCG Scell (release). The terminal 10 may maintain the SCG configuration and maintain the DRB and its configuration related to the SCG. Here, the DRB associated with the SCG may refer to the SCG part of the SCG direct or split DRB or SRB or the MCG DRB or SRB. The gNB corresponding to the terminal 10 and the SN 30 may continue to transmit and receive packets through the SCG DRB. The packet may include RRC signaling and data of the UE for the SCG. Packet transmission and reception through the SN gNB 30 may continue until a new MN cell is found and reconnection is successfully completed and SCG reconfiguration is performed through the new MN cell.
단계 S215에서, 단말(10)은 셀 선택을 하고 적절한 MN 셀(40)에 RACH를 수행할 수 있다. 단계 S220에서 RACH 수행 후, 단말(10)은 RRE request 메시지를 새로 붙은 MN 셀(40)에 전송할 수 있다. 이때, RRE request 메시지에는 소스 셀에서 사용되던 C-rnti및 소스 셀의 ID (physical cell ID 나 global ID 등이 가능하다.) 와 함께, SN으로 사용되던, gNB 셀(30)의 ID (physical cell ID 나 global cell ID 등 셀을 구분할 수 있는 ID) 및 gNB의 ID를 전송할 수 있다. 또한 현재 SN으로 전송이 수행될 때 사용되는 정보들, 예를 들어 SN terminated beaerer의 정보들 (EPS bearer ID, ERAB ID, drb ID 및 SCG bearer에 해당되는 QoS 정보(UE SN AMBR), security key, NCC, NH, security algorithm 등이 함께 전달 될 수 있다. In step S215, the terminal 10 may perform cell selection and perform RACH on the appropriate MN cell 40. After performing the RACH in step S220, the UE 10 may transmit a RRE request message to the newly attached MN cell 40. At this time, the RRE request message includes the C-rnti and the ID of the source cell (physical cell ID or global ID, etc.) used in the source cell, and the ID of the gNB cell 30 used as the SN (physical cell). ID to distinguish the cell such as ID or global cell ID) and the ID of the gNB. In addition, information currently used when the transmission to the SN, for example, information of the SN terminated beaerer (EPS bearer ID, ERAB ID, drb ID and QoS information corresponding to the SCG bearer (UE SN AMBR), security key, NCC, NH, security algorithm, etc. can be delivered together.
상기와 같은 정보들을 수신한 새로 붙게 된 MN 셀(40)에서는, 단계 S225에서, 단말 context를 해당 셀이 가지고 있는 지 여부를 판단할 수 있다. 만약 상기 새로운 MN 셀(40)에서 단말 context를 가지고 있으면, 도 1에 도시된 단계 S225 이후 동작을 수행할 수 있다. 그렇지 않다면, RRE reject 메시지가 전송되어, 단말은 idle 모드로 전환되게 된다. In the newly attached MN cell 40 that has received the above information, in step S225, it may be determined whether the cell has the terminal context. If the new MN cell 40 has a terminal context, the operation after step S225 shown in FIG. 1 may be performed. If not, the RRE reject message is transmitted, so that the UE switches to idle mode.
만약 새로운 MN 셀(40)에서 UE context check 성공하면, 단계 S230에서, 상기 새로운 MN 셀(40)은 단말(10)로 RRE 메시지를 전송하여, security 및 NAS 관련 설정 정보들을 전송할 수 있다. 이에 따라, 단말(10)은 해당 설정을 수행하고, 단계 S235에서, complete 메시지를 전송할 수 있다. 이 후로부터 단말(10)과 MN의 새 셀(40)은 SRB1,2를 설립할 수 있다. If the UE context check is successful in the new MN cell 40, in step S230, the new MN cell 40 may transmit an RRE message to the terminal 10 to transmit security and NAS related configuration information. Accordingly, the terminal 10 may perform a corresponding setting and transmit a complete message in step S235. From then on, the UE 10 and the new cell 40 of the MN may establish SRB1,2.
상기 SRB 1, 2가 설립된 이후, 단계 S240에서, 새로운 MN 셀(40)은 RRE request 메시지에 쓰인 SN의 셀 ID 및 gNB id, SCG RB 정보를 사용하여 해당 셀을 지원하는 SN인 gNB(30)로 SN addition request 를 전송할 수 있다. 이때, SN addition request을 수신한 SN(30)은, 단계 S245에서, 무선 자원(radio resource)를 협상(negotiation)하여 ack 또는 nack를 새 MN 셀(40)에 전달할 수 있다. After the SRBs 1 and 2 are established, in step S240, the new MN cell 40 uses the cell ID and gNB id of the SN used in the RRE request message, and the gNB 30 that is the SN supporting the corresponding cell using the SCG RB information. ) Can send an SN addition request. In this case, in response to receiving the SN addition request, the SN 30 may negotiate a radio resource and transmit ack or nack to the new MN cell 40 in step S245.
이때, 단계 S243에서 새로운 MN셀(40)은 코어 네트워크 AMF 또는 UPF(50)와 PDU 세션 패스 스위치 요청(PDU session path switch request)을 송수신할 수 있다.In this case, in step S243, the new MN cell 40 may transmit / receive a PDU session path switch request with the core network AMF or UPF 50.
단계 S250에서, 새 MN 셀(40)은 RLF 표시를 과거 MN 셀(20)에 전달할 수 있다. 이 SN addition request와 RLF 표시 메시지 전달은 선/후가 바뀔 수 있다. RLF indication 을 받은 과거 MN 셀(20)은, 단계 S255에서 SN release 명령을 SN인 gNB(30)에게 전달할 수 있다. 이때, SN gNB(30)는 DL 전송을 멈출 수 있다. 이 메시지를 받고, gNB는 SN released 되었다는 메시지를 new MN에게 전송할 수 있다.In step S250, the new MN cell 40 may deliver an RLF indication to the old MN cell 20. The forwarding of the SN addition request and the RLF indication message may be reversed. The past MN cell 20 receiving the RLF indication may transmit an SN release command to the gNB 30 which is the SN in step S255. At this time, the SN gNB 30 may stop the DL transmission. Receiving this message, the gNB can send a message to the new MN that the SN has been released.
SN released되었다는 메시지를 받고 나서, 새 MN(40)은, 단계 S260에서, S245에서 받은 SN addition request ack 메시지에 포함된 SCG 설정 내용을 포함하여 단말에게 RRC 연결 재설정(RRC connection reconfiguration) 메시지를 전달할 수 있다. 상기 RRC connection reconfiguration 에는 과거 SN(30)에서 사용하던 SCG 설정 정보 및 SCG 관련 DRB release 를 수행시키는 명령이 들어 있을 수 있다. 또한, 새 MN 셀(40)은 새롭게 받은 SCG 설정 내용을 기반으로 단말(10)에게 바로 SCG 설정을 명령할 수도 있다. 이를 통해, 과거 SCG 설정 정보를 release하면서 동시에 새로운 SCG 설정 정보를 apply 할 수 있다. 상기 SCG 설정 정보는 RRE request 에 포함된 SCG/DRB 정보를 기반으로 새 MN(40)이 SN addition request를 통해 요청한 내용에 대한 응답(response) 으로 얻는 정보이다. 이를 통해, SN(30)은 가능하면, 최대한 이전 SN gNB(30)에서 제공하던 자원 요청을 알 수 있고, 그리고 상기 이전 SN인 gNB(30)에서 제공하던 자원 요청에 기반하여 자원을 할당할 수 있다. After receiving the message that the SN has been released, the new MN 40 may deliver an RRC connection reconfiguration message to the UE, including the SCG configuration information included in the SN addition request ack message received in step S260, in step S260. have. The RRC connection reconfiguration may include a command to perform SCG configuration information and SCB related DRB release used in the past SN 30. In addition, the new MN cell 40 may directly command the terminal 10 SCG configuration based on the newly received SCG configuration. Through this, new SCG configuration information can be applied while releasing past SCG configuration information. The SCG configuration information is information obtained by the new MN 40 as a response to the content requested by the SN addition request based on the SCG / DRB information included in the RRE request. Through this, the SN 30 may know the resource request provided by the previous SN gNB 30 as much as possible, and allocate resources based on the resource request provided by the previous SN gNB 30. have.
단계 S265에서, 단말은 RACH를 통해 해당 SN의 셀에 다시 접속 수행하고, 단계 S270에서, RRCConnection reconfiguration complete 메시지를 상기 SN 셀로 전송하면서 다시 SN 과 data 송/수신을 재개 할 수 있다. In step S265, the UE reconnects to the cell of the corresponding SN through the RACH. In step S270, the UE may resume transmission and reception of the SN and data while transmitting an RRCConnection reconfiguration complete message to the SN cell.
그리고 단계 S275에서, 새로운 MN 셀(40)은 코어 네트워크 AMF 또는 UPF(50)와 데이터를 송수신할 수 있다. In operation S275, the new MN cell 40 may transmit / receive data with the core network AMF or UPF 50.
[실시예2]Example 2
도 3은 실시 예 2를 도시한 도면이다. 실시 예1에서 전술한 바와 같이, 단계 S300에서, 단말(10)이 MN failure를 발견하면, 우선 MCG RB 를 정지시킬 수 있다. 그리고 단말(10)은 MCG Scell을 release할 수 있다. 또한, 단말(10)은 SCG 설정을 유지하고, SCG와 관련 있는 DRB 를 유지할 수 있다. 이로 인하여 단말(10)이 SN 셀(30)과의 통신은 유지를 하면서, MN을 새로운 MN 셀(40)로 접속하게 하는 동작을 설명한다. 3 is a view showing Example 2. FIG. As described above in the first embodiment, in step S300, if the terminal 10 detects an MN failure, it may first stop the MCG RB. The terminal 10 may release the MCG Scell. In addition, the terminal 10 may maintain the SCG setting, and maintain the DRB associated with the SCG. Therefore, the operation of allowing the terminal 10 to connect the MN to the new MN cell 40 while maintaining communication with the SN cell 30 will be described.
단계 S305에서 MN failure의 경우, 단말(10)이 MCG failure information 을 SCG SRB를 통하여 SN gNB(30)에 전달할 수 있다. 이때, 상기 SN gNB(30)은 re-establishment required 메시지로 다시 상기 단말로부터 수신된 정보를 MN eNB에 전달할 수 있다. MCG failure indication 에는 MN 셀(20)에서 수행하던 measurement 중 serving cell 및 neighbor cell measurement 결과 (cell ID, measure 값)을 포함 할 수 있다. 상기 정보들은 단계 S310에서 다시 MN 셀(20)로 re-establishment required 메시지로 전달되는데, 이 때는 UE ID 또는 C-rnti 등의 단말 구분자 및 shortMAC-I와 같은 MN에서 사용되던 security 정보를 포함하여 전달될 수 있다. 이 메시지를 전달받은 MN 셀(20)은 measurement 결과와 단말 구분자를 이용하여 핸드오버 요청(HO(handover) request)에 들어갈 정보를 구성할 수 있다. 단계 S315에서 measurement 결과중 가장 좋은 신호 상태를 가졌다고 판단되는 MN의 새로운 셀(40)에게 상기 MN(20)은 Ho request 를 전송할 수 있다. HO request는 new MN (40)에서 사용될 target cell ID를 포함할 수 있다. 또는 다중 cell ID 를 포함 할 수 있다. 만약 single target cell ID를 포함하면, MN(40)은 해당 cell로 HO를 수행하며, 다중 cell ID가 주어지면, 주어진 셀들 중에서, new MN(40) 에서 target cell 을 결정한다. request 를 받은 새로운 MN 셀(40)은, 단계 S320에서, Ho request 에 요청대로 단말의 HO를 승인할 수 있으면, ack, 승인할 수 없으면 nack를 전달할 수 있다. HO 요청에 대한 response를 새로운 MN(40)이 이전 MN(20)에게 전달할 때, 새 MN(40)이 줄 수 있는 자원에 대한 설정 정보를 포함하여 상기 이전 MN(20)에게 전달 할 수 있다. 상기 자원에 대한 설정 정보가 이전 MN(20)에게 전달 되면, 단계 S325에서, 이전 MN(20)은 해당 HO response에 있는 UE 설정 정보를 핸드오버 커맨드(HO command) 메시지에 포함하여 SN gNB(30)에게 보낼 수 있다. 그리고 단계 S330에서, SN gNB(30)는 SCG SRB(예를 들면, SCG RRC)를 통하여, 단말(10)에게 RRCconnectionReconfiguration 메시지를 전달할 수 있다. 상기 단계 S325에서 HO cmd 가 전달될 때, 이전 MN(20)은 SN release 명령을 내려 줄 수 있다. 상기 SN release 전송 이후 바로 뒤에 단말(10)에게 전달되는 RRCconnectionReconfiguration 에 상기 SN release 명령이 전달 될 수 있다. 여기서 SN release 메시지가 없을 수 있는데, 이 때는, HO command 메시지와 별도로 S340 이후 new MN(40)이 RRCconnectionreconfigurationComplete 메시지 수신 이후, gNB (30)에게 HO complete 메시지를 전달하고 난 이후 gNB(30)이 스스로 SN release를 수행 할 수 있다. 단말(10)은 이 RRCconnectionReconfiguration 에 포함되어 있는 target cell ID 및 이 셀의 접속 정보 (rach 설정 등)으로 새 MN(40)에 접속하기 위한 설정을 적용할 수 있다. 이 RRCconnectionReconfigruation 에는 또한, SCG 설정 정보 및 SN 관련 DRB 설정 정보가 포함될 수 있다. 이를 통하여, old MN failure 이후에 유지되고 있던 SN 관련 connection 을 사용 중지 할 수 있다. In the case of MN failure in step S305, the terminal 10 may transmit the MCG failure information to the SN gNB 30 through the SCG SRB. In this case, the SN gNB 30 may deliver the information received from the terminal back to the MN eNB in a re-establishment required message. The MCG failure indication may include serving cell and neighbor cell measurement results (cell ID, measure value) among measurements performed in the MN cell 20. The information is delivered to the MN cell 20 in a re-establishment required message again in step S310, in which case the terminal identifier such as UE ID or C-rnti and security information used in the MN such as shortMAC-I are transmitted. Can be. The MN cell 20 that has received this message may configure information to be included in a handover request (HO) using the measurement result and the terminal identifier. In step S315, the MN 20 may transmit a Ho request to a new cell 40 of the MN determined to have the best signal state among the measurement results. The HO request may include a target cell ID to be used in the new MN 40. Or it may include multiple cell ID. If the single target cell ID is included, the MN 40 performs HO with the corresponding cell, and given the multiple cell ID, among the given cells, the new MN 40 determines the target cell. Upon receipt of the request, the new MN cell 40 may transmit ack if it is able to grant the HO of the terminal as requested in the Ho request in step S320, and nack if not. When the new MN 40 transmits a response to the HO request to the old MN 20, the new MN 40 may transmit the response to the previous MN 20 including configuration information about a resource that the new MN 40 may give. When the configuration information on the resource is delivered to the previous MN 20, in step S325, the previous MN 20 includes the UE configuration information in the corresponding HO response in the handover command message and includes the SN gNB 30. You can send In operation S330, the SN gNB 30 may deliver an RRCconnectionReconfiguration message to the terminal 10 through an SCG SRB (eg, SCG RRC). When HO cmd is delivered in step S325, the previous MN 20 may give an SN release command. The SN release command may be delivered to the RRCconnectionReconfiguration delivered to the UE 10 immediately after the SN release transmission. In this case, there may be no SN release message. In this case, after the new MN 40 receives the RRCconnectionreconfigurationComplete message after S340 separately from the HO command message, the gNB 30 transmits the HO complete message to the gNB 30 and then the SNB self-SN. Release can be performed. The terminal 10 may apply a configuration for accessing the new MN 40 with the target cell ID included in the RRCconnectionReconfiguration and the access information (rach setting, etc.) of the cell. The RRCconnectionReconfigruation may also include SCG configuration information and SN related DRB configuration information. Through this, the SN-related connection maintained after the old MN failure can be disabled.
단계 S335에서 단말(10)은 RACH를 통하여 새 MN(40) 의 target cell에 접속할 수 있다. 이후 단계 S340에서, 단말(10)은 RRCconnectionReconfigurationcomplete 정보를 타겟 셀에 전송할 수 있다. 단계 S350에서, 타겟 셀의 MN(40)은 SN addition 절차를 수행하고, 해당 설정 정보를 새 MN(40)의 MCG SRB를 통하여 전달하면(단계 S355), 단말(10)은 SN 셀에 접속을 수행할 수 있다. 그리고 Rach를 통하여, 단말은 SN 셀(30)에게 접속 완료 및 설정 완료(configuration complete) 메시지를 전송할 수 있다(단계 S360). In step S335, the terminal 10 may access the target cell of the new MN 40 through the RACH. Thereafter, in step S340, the terminal 10 may transmit the RRCconnectionReconfigurationcomplete information to the target cell. In step S350, when the MN 40 of the target cell performs the SN addition procedure and transmits the corresponding configuration information through the MCG SRB of the new MN 40 (step S355), the terminal 10 accesses the SN cell. Can be done. In addition, through Rach, the UE may transmit a connection complete and configuration complete message to the SN cell 30 (step S360).
단말(10)은 이후부터 SN 셀(30)과도 다시 데이터를 송/수신할 수 있다.The terminal 10 may later transmit / receive data with the SN cell 30 again.
[실시예 3]Example 3
도 4는 실시 예 3을 도시한 도면이다. 실시 예1에서 전술한 바와 같이, 단계 S400에서 단말(10)이 MN failure를 발견하면, 우선 MCG RB 를 정지 시킬 수 있다. 그리고 단말(10)은 MCG Scell을 release할 수 있다. 또한, 단말(10)은 SCG 설정을 유지하고, SCG와 관련있는 DRB 를 유지할 수 있다. 이로 인하여 단말(10)이 SN 셀(30)과의 통신은 유지를 하면서, MN을 새로운 MN 셀(40)로 접속하게 하는 동작을 설명한다. 전술한 실시 예 2와 다른 점은, 새로운 MN 셀(40)과의 HO 협상 절차 (HO request-HO response) 중에 SN addition 동작을 수행하여, SN 셀(30)으로부터 단말로 전송되는 RRCConnectionReconfiguration 메시지에 SN release 및 새로운 SCG config 정보가 포함되어, 단말(10)에서 SN release 및 새 SN 셀 접속을 동시에 수행하도록 한다는 점이다.4 is a view showing Example 3; As described above in Embodiment 1, when the UE 10 detects an MN failure in step S400, it may first stop the MCG RB. The terminal 10 may release the MCG Scell. In addition, the terminal 10 may maintain the SCG configuration, and maintain the DRB associated with the SCG. Therefore, the operation of allowing the terminal 10 to connect the MN to the new MN cell 40 while maintaining communication with the SN cell 30 will be described. The difference from Embodiment 2 described above is that the SN addition operation is performed during the HO request-HO response with the new MN cell 40, and the SN is added to the RRCConnectionReconfiguration message transmitted from the SN cell 30 to the UE. The release and new SCG config information is included, so that the terminal 10 simultaneously performs SN release and new SN cell access.
단계 S405에서, 실시 예 3에 따른 MN failure의 경우, 단말(10)이 MCG failure information 을 SCG SRB를 통하여 SN gNB(30)에 전달하면, SN 셀(30)이 re-establishment required 메시지로 다시 MN 셀(20)에 전달할 수 있다. 이때, MCG failure indication 에는 MN 셀(20)에서 수행하던 측정 (measurement) 중 이웃 셀에 대한 측정(neighbor cell measurement) 결과 (cell ID, measure 값)를 포함 할 수 있다. 상기 정보들은 다시 MN 셀(20)으로 re-establishment required 메시지로 전달되는데, 이때는 UE ID 또는 C-rnti 등의 단말 구분자가 포함될 수 있다. 상기 메시지를 전달받은 MN 셀(20)은 measurement 결과와 단말 구분자를 통하여 HO request에 들어갈 정보를 구성하고, measurement 결과중 가장 좋은 신호 상태를 가졌다고 판단되는 MN의 새로운 셀(40)에게 단계 S415에서, HO request 를 전송할 수 있다. 이때, 상기 HO request는 target cell ID를 포함할 수 있다. 이때 HO request 에는 SN 셀(30)에서 사용하고 있던 셀의 PCI 및 SCG info / SCG DRB 정보(예를 들어 EPS bearer ID, ERAB ID, drb ID 및 bearer에 해당되는 QoS 정보(UE SN AMBR)등)이 함께 전달 될 수 있다. HO request 를 받은 새로운 MN 셀(40)은 단말(10)의 HO를 승인할 수 있으면, ack, 승인할 수 없으면 nack를 전달할 수 있다. HO request 와 HO response 메시지를 통해서 단말(10)의 HO를 협상하는 사이에, 새로운 MN 셀(40)은 HO request에 포함되어 있던 SN PCI (cell ID) 정보를 통해 이전 MN 셀(20)과 함께 사용하던 SN 셀(30)에 대한 정보를 파악할 수 있다. 따라서, 단계 S420에서, 새로운 MN 셀(40)은 SN addition request 메시지를 전송하여 이전 MN 셀(20)과 함께 사용하던 SN 셀(30)에 SN addition을 요청할 수 있다. 이때 HO request에서 받은 SCG/DRB 설정 정보를 SN 셀(30)에게 요청하여, SN 셀(30)이 이를 수용하면, 기존에 SN 셀에서 받던 QoS 수준을 보장하는 radio 자원을 다시 할당 받을 수 있다. 이를 통해, 단계 S425에서, SN 셀(30)은 새로운 SCG config를 받으면 SN addition ack 에 함께 실어서 새로운 MN 셀(40)에 전달할 수 있다. 그리고 단계 S430에서, 새로운 MN 셀(40)은 상기 SCG config를 포함하여, 이전 MN 셀(20)에게 HO response를 전달할 수 있다.In step S405, in case of an MN failure according to the third embodiment, when the terminal 10 transmits MCG failure information to the SN gNB 30 through the SCG SRB, the SN cell 30 returns the MN again with a re-establishment required message. May be delivered to cell 20. At this time, the MCG failure indication may include a neighbor cell measurement result (cell ID, measure value) of neighbor cells among the measurements performed in the MN cell 20. The information is transmitted back to the MN cell 20 in a re-establishment required message, in which case a terminal identifier such as UE ID or C-rnti may be included. The MN cell 20 receiving the message configures information to be included in the HO request through the measurement result and the terminal identifier, and in step S415 to the new cell 40 of the MN determined to have the best signal state among the measurement results. , Can transmit HO request. In this case, the HO request may include a target cell ID. At this time, the HO request includes PCI and SCG info / SCG DRB information of the cell used in the SN cell 30 (for example, EPS bearer ID, ERAB ID, drb ID, and QoS information corresponding to the bearer (UE SN AMBR)). This can be passed along. The new MN cell 40 receiving the HO request can transmit ack if it can approve the HO of the terminal 10 and nack if it cannot approve. Between negotiating the HO of the terminal 10 through the HO request and the HO response message, the new MN cell 40 together with the previous MN cell 20 through SN PCI (cell ID) information included in the HO request. Information on the used SN cell 30 can be obtained. Therefore, in step S420, the new MN cell 40 may request SN addition from the SN cell 30 used together with the previous MN cell 20 by transmitting an SN addition request message. At this time, by requesting the SC cell / DRB configuration information received from the HO request to the SN cell 30, if the SN cell 30 accepts this, it is possible to re-assign radio resources for guaranteeing the QoS level previously received in the SN cell. Through this, in step S425, when the SN cell 30 receives the new SCG config, the SN cell 30 may be loaded together with the SN addition ack and transferred to the new MN cell 40. In operation S430, the new MN cell 40 may transmit the HO response to the previous MN cell 20 including the SCG config.
HO 요청에 대한 HO response를 새로운 MN 셀(40)이 이전 MN 셀(20)에게 전달할 때, 새로운 MN 셀(40)이 줄 수 있는 자원에 대한 설정 정보를 포함하여 전달 할 수 있다. 상기 정보가 이전 MN 셀(20)에게 전달 되면, 단계 S435에서, 이전 MN 셀(20)은 해당 HO response에 있는 UE 설정 정보를 HO cmd 메시지에 실어 현재 단말(10)과 통신 중인 SN gNB(20)에게 보낼 수 있다(이 때 SN release 명령도 같이 전송할 수 있다.). 그리고 단계 S440에서, SN 셀인 gNB(30)는 SCG SRB를 통하여, 단말(10)에게 RRCconnectionReconfiguration을 전달할 수 있다. 단말(10)은 상기 RRCconnectionReconfiguration 에 포함되어 있는 MN target cell ID 및 상기 셀의 접속 정보 (rach 설정 등)으로 새로운 MN 셀(40)에 접속하기 위한 설정을 적용하고, 새롭게 수신된 SN 관련 SCG config 를 적용하여 SN radio 정보를 설정할 수 있다. 이때, 단말(10)은 이전 SN 셀(30)으로부터 받은 SN 관련 DRB 설정정보 및 SCG 설정 정보 등을 제거하여, 새롭게 받은 SCG config 의 설정 정보를 적용할 수 있다. 그리고 단계 S445에서, 단말(10)은 새로운 MN 셀(40)의 target cell에 접속하기 위해 RACH를 수행할 수 있다. 또한, 단계 S450에서 단말(10)은 RRCconnectionReconfigurationcomplete 정보를 새 MN (40)의 타겟 셀에 전송할 수 있다. When the new MN cell 40 transmits the HO response to the HO request to the old MN cell 20, the new MN cell 40 may include the configuration information on the resources that the new MN cell 40 can give. When the information is transmitted to the previous MN cell 20, in step S435, the previous MN cell 20 loads the UE configuration information in the corresponding HO response in the HO cmd message and the SN gNB 20 currently communicating with the terminal 10. You can also send an SN release command at the same time. In operation S440, the gNB 30, which is an SN cell, may transmit an RRCconnectionReconfiguration to the terminal 10 through the SCG SRB. The terminal 10 applies a setting for accessing the new MN cell 40 with the MN target cell ID included in the RRCconnectionReconfiguration and the access information (rach setting, etc.) of the cell, and applies the newly received SN related SCG config. SN radio information can be set by applying. In this case, the terminal 10 may apply the configuration information of the newly received SCG config by removing the SN-related DRB configuration information and SCG configuration information received from the previous SN cell 30. In operation S445, the terminal 10 may perform a RACH to access the target cell of the new MN cell 40. In operation S450, the terminal 10 may transmit the RRCconnectionReconfigurationcomplete information to the target cell of the new MN 40.
한편, 단계 S455에서, 새로운 MN셀(40)은 코어 네트워크(50)와 PDC 세션 모디피케이션(modification)을 완료할 수 있다.Meanwhile, in step S455, the new MN cell 40 may complete the PDC session modification with the core network 50.
그 후 단계 S460에서, 단말(10)은 새로운 SCG config에 있던 접속 정보를 통하여 SN 셀(30)과의 RACH 를 수행할 수 있다. 이때, 상기 SN 셀(30)과의 RACH는 생략될 수도 있다.이후 단말(10)은 SN 셀(30)과 데이터를 송수신 할 수 있다. Then, in step S460, the terminal 10 may perform a RACH with the SN cell 30 through the access information in the new SCG config. In this case, the RACH with the SN cell 30 may be omitted. Thereafter, the terminal 10 may transmit and receive data with the SN cell 30.
[실시예 4]Example 4
본 발명의 다른 실시 예에 따르면, EN-DC 를 포함한 multi RAT dual connectivity 에서는 MCG SRB 외에 SCG SRB를 사용하여 SN RRC message가 전달 될 수 있다. SN RRC 에서 만들어진 RRC message 의 경우 해당 message가 response를 요구하는 request 형식의 메시지라면, 해당 SN RRC request 메시지에 대응되는 SN RRC response message 의 UL path 를 indication 할 수 있다. 이하에서는 본 발명의 다른 실시 예에 따라, SN RRC 메시지를 단말이 전달하는 방법을 개시한다. UL path 를 indication하기 위해, SN RRC request message 에 UL path indication 을 위한 1bit가 포함될 수 있다. 상기 bit 은 해당 SN RRC response 메시지가 SCG SRB로 전달될 것인지, MCG SRB로 전달될 것인지에 대해 표시할 수 있다.According to another embodiment of the present invention, in a multi-RAT dual connectivity including EN-DC, an SN RRC message may be delivered using SCG SRB in addition to MCG SRB. In the case of an RRC message generated in SN RRC, if the message is a request type message requesting a response, the UL path of the SN RRC response message corresponding to the corresponding SN RRC request message may be indicated. Hereinafter, according to another embodiment of the present disclosure, a method of transmitting an SN RRC message by a terminal is disclosed. To indicate the UL path, 1 bit for the UL path indication may be included in the SN RRC request message. The bit may indicate whether the corresponding SN RRC response message is transmitted to the SCG SRB or the MCG SRB.
도 5는 본 발명의 실시 예 4를 도시한 도면이다. 5 is a diagram showing Embodiment 4 of the present invention.
단계 S500에서, 단말은 SN RRC 요청(request) 메시지를 수신할 수 있다. 단말은 상기 SN RRC request메시지가 수신된 경로와 상기 SN RRC request메시지에 포함된 UL path indication bit을 판단하여, MN RRC 메시지에 encapsulate 시켜서 MCG SRB로 보낼 것인지 바로 SCG SRB로 보낼 것인지 결정할 수 있다. In step S500, the UE may receive an SN RRC request message. The UE may determine whether the SN RRC request message is received and the UL path indication bit included in the SN RRC request message, and encapsulates the MN RRC message to send to the MCG SRB or the SCG SRB.
예를 들면 단계 S510에서, 단말은 SN RRC request 메시지가 MN에 encapsulated되서 전달된 것인지 여부를 확인할 수 있다. 확인 결과에 기반하여, SN RRC request 메시지가 MN에 encapsulated되서 전달된 경우, 단계 S520에서 단말은 SN RRC response UL path indication bit가 SCG SRB로 표시되어 있는지 여부를 확인할 수 있다. 만약, SN RRC response UL path indication bit가 SCG SRB로 표시된 경우, 단계 S523에서 단말은 MN RRC response 메시지는 MCG SRB로 전달하고, SN RRC response 메시지는 SCG SRB로 전달할 수 있다. 반면, SN RRC response UL path indication bit가 SCG SRB로 표시되지 않은 경우, 다시 말해, SN RRC response UL path indication bit가 MCG SRB로 표시된 경우, 단계 S525에서, 단말은 MN RRC response 메시지는 MCG SRB로 전달하고, SN RRC response 메시지는 상기 MN RRC response 메시지에 encapsulate로 전달할 수 있다. For example, in step S510, the UE may check whether the SN RRC request message is delivered by being encapsulated in the MN. Based on the check result, when the SN RRC request message is delivered by being encapsulated in the MN, in step S520, the UE may check whether the SN RRC response UL path indication bit is indicated as SCG SRB. If the SN RRC response UL path indication bit is indicated by the SCG SRB, in step S523, the UE may transmit the MN RRC response message to the MCG SRB and the SN RRC response message to the SCG SRB. On the other hand, when the SN RRC response UL path indication bit is not indicated by the SCG SRB, that is, when the SN RRC response UL path indication bit is indicated by the MCG SRB, in step S525, the UE transmits the MN RRC response message to the MCG SRB. In addition, the SN RRC response message may be delivered as an encapsulate in the MN RRC response message.
한편, 단계 S510에서 SN RRC request 메시지가 MN에 encapsulated되서 전달되지 않은 경우, 다시 말해, SCG SRB를 통해 직접 전달된 경우, 단계 S530에서, 단말은 SN RRC response UL path indication bit가 SCG SRB로 표시되어 있는지 여부를 확인할 수 있다. 확인 결과, SN RRC response UL path indication bit가 SCG SRB로 표시된 경우, 단계 S533에서, 단말은 SN RRC response 메시지를 SCG SRB로 전달할 수 있다. 반면, SN RRC response UL path indication bit가 SCG SRB로 표시되지 않은 경우, 단계 S535에서, 단말은 MN RRC 단방향 메시지는 MCG SRB로 전달할 수 있다. 그리고 단말은 SN RRC response 메시지는 MN RRC 단방향 메시지에 encapsulate하여 전달할 수 있다.On the other hand, when the SN RRC request message is not encapsulated in the MN and delivered in step S510, that is, when directly delivered through the SCG SRB, in step S530, the UE is indicated by the SN RRC response UL path indication bit as SCG SRB You can check whether there is. As a result of the check, when the SN RRC response UL path indication bit is indicated by the SCG SRB, in step S533, the UE may transmit the SN RRC response message to the SCG SRB. On the other hand, when the SN RRC response UL path indication bit is not indicated by the SCG SRB, in step S535, the UE may transmit the MN RRC unidirectional message to the MCG SRB. In addition, the UE may transmit the SN RRC response message by encapsulating the MN RRC unidirectional message.
정리하면, 수신한 SN RRC request 메시지에 대하여,In summary, for the received SN RRC request message,
1. 만약 MN RRC 메시지에 encapsulate 되어 전달됐고, MN RRC 메시지를 제거하고 SN message만을 보니, UL path 가 SCG SRB로 되어 있으면, 단말은 MN RRC response 메시지를 MCG SRB로 전달하고, 별도로 SN RRC response 메시지를 만들어 SCG SRB 를 통해 전달할 수 있다. 이 경우 MN RRC response 메시지는 생략될 수 있다.1. If the MN RRC message is encapsulated and delivered, and the MN RRC message is removed and only the SN message is seen, if the UL path is SCG SRB, the UE delivers the MN RRC response message to the MCG SRB, and a separate SN RRC response message. Can be created and delivered via SCG SRB. In this case, the MN RRC response message may be omitted.
2. 만약 MN RRC 메시지에 encapsulate 되어 전달됐고, MN RRC 메시지를 제거하고 SN message만을 보니, UL path 가 MCG SRB로 되어 있으면, 단말은 MN RRC response 메시지를 만들고, 상기 MN RRC response 메시지에 SN RRC response 메시지를 포함시켜서 MCG SRB 를 통해 전달할 수 있다. 상기 메시지를 수신한 MN은 SN RRC response 메시지만 분리하여, SN에게 inter node message로 전달할 수 있다. 2. If the MN RRC message is encapsulated and delivered and the MN RRC message is removed and only the SN message is seen, if the UL path is MCG SRB, the UE creates an MN RRC response message and the SN RRC response to the MN RRC response message. The message may be included and delivered through the MCG SRB. The MN receiving the message may separate only the SN RRC response message and deliver it to the SN as an inter node message.
3. 만약 SCG SRB를 통해 직접 전달 됐고, UL path가 SCG SRB로 되어 있으면, 단말은 SN RRC response 메시지를 직접 SCG SRB를 통하여 SN에게 전달할 수 있다.3. If the transmission is directly through the SCG SRB, and if the UL path is SCG SRB, the UE can directly transmit the SN RRC response message to the SN through the SCG SRB.
MN은 SN으로부터 RRC 메시지를 받으면, UE에게 자신의 MN RRC 메시지에 encapsulation 시켜서 전달하고, 또한 단말로부터 MN RRC response 메시지를 받으면, 내부에 SN 메시지가 encapsulation 되어 존재하는지 확인하고, 만약 존재하면, SN에게 Xn interface 로 SN 메시지를 전달하고, 없으면, 전달하지 않는다.When the MN receives the RRC message from the SN, the UE sends an encapsulation to its MN RRC message, and when the MN receives the MN RRC response message from the UE, the MN checks whether the SN message is encapsulated therein. Delivers SN messages to the Xn interface, if not present.
4. 만약 SCG SRB 를 통해 직접 전달 됐고, UL path 가 MCG SRB로 되어 있으면, 단말은 MN RRC 단방향 메시지를 만들어서 상기 MN RRC 단방향 메시지 안에 SN RRC response 메시지를 포함시켜서 MCG SRB 를 통해 전달할 수 있다. 상기 메시지를 수신한 MN은 SN RRC response 메시지만 분리하여, SN에게 inter node message로 전달할 수 있다.4. If it is directly transmitted through the SCG SRB, and the UL path is MCG SRB, the UE may make an MN RRC unidirectional message and include the SN RRC response message in the MN RRC unidirectional message to transmit it through the MCG SRB. The MN receiving the message may separate only the SN RRC response message and deliver it to the SN as an inter node message.
도 6은 상기 case 1를 나타내는 시퀀스도이다. 먼저, 단계 S600에서SN 셀(30)이 MN 셀(20)로 SN RRC request 메시지를 전송하면서, SN RRC response UL path indication bit가 SCG SRB로 표시하여 전송할 수 있다. 그리고 단계 S610에서, MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 전술한 내용과 같이 SN RRC response UL path indication bit를 확인할 수 있다. 확인 결과, SN RRC response UL path indication bit가 SCG SRB로 표시된 경우, 단말(10)은 단계 S620에서 SCG SRB를 이용하여 SN RRC response 메시지를 전송하기로 결정할 수 있다. 구체적으로, 단계 S630에서 단말(10)은 MN RRC response 메시지를 MCG SRB로 전송하고, 단계 S640에서 단말(10)은 SN RRC response 메시지를 SCG SRB로 전송할 수 있다.6 is a sequence diagram illustrating case 1. First, in step S600, while the SN cell 30 transmits an SN RRC request message to the MN cell 20, the SN RRC response UL path indication bit may be indicated and transmitted as an SCG SRB. In operation S610, the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10. The terminal 10 may check the SN RRC response UL path indication bit as described above. As a result of the check, when the SN RRC response UL path indication bit is indicated as the SCG SRB, the terminal 10 may determine to transmit the SN RRC response message using the SCG SRB in step S620. Specifically, in step S630, the terminal 10 may transmit an MN RRC response message to the MCG SRB, and in step S640, the terminal 10 may transmit an SN RRC response message to the SCG SRB.
한편, 도 7은 case 2를 나타내는 시퀀스도이다. 도 6에서 설명한 실시 예와 마찬가지로, 단계 S700에서SN 셀(30)이 MN 셀(20)로 SN RRC request 메시지를 전송할 수 있다. 도 7에서 도시한 실시 예에서는 SN RRC response UL path indication bit가 MCG SRB로 표시하여 전송될 수 있다. 그리고 단계 S710에서 MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 SN RRC response UL path indication bit를 확인할 수 있다. 확인 결과, SN RRC response UL path indication bit가 MCG SRB로 표시된 경우, 단말(10)은 단계 S720에서 MCG SRB를 이용하여 SN RRC response 메시지를 전송하기로 결정할 수 있다. 구체적으로, 단계 S730에서 단말(10)은 MN RRC response 메시지를 MCG SRB로 전송할 수 있다. 단계 S740에서 MN 셀(20)은 SN RRC response 메시지만 분리하여, SN에게 inter node message로 전달할 수 있다. On the other hand, Figure 7 is a sequence diagram showing a case 2. As in the embodiment described with reference to FIG. 6, in step S700, the SN cell 30 may transmit an SN RRC request message to the MN cell 20. In the embodiment shown in FIG. 7, the SN RRC response UL path indication bit may be indicated by the MCG SRB and transmitted. In operation S710, the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10. The terminal 10 may check the SN RRC response UL path indication bit. As a result of confirmation, when the SN RRC response UL path indication bit is indicated as MCG SRB, the UE 10 may determine to transmit an SN RRC response message using the MCG SRB in step S720. In detail, in step S730, the terminal 10 may transmit an MN RRC response message to the MCG SRB. In step S740, the MN cell 20 may separate only the SN RRC response message and deliver it to the SN as an inter node message.
도 8은 case 3를 나타내는 시퀀스도이다. 도 8의 실시 예에서는 먼저 단계 S800에서 단말(10)은 SCG SRB를 통해 SN 셀(30)로부터 SN RRC request 메시지를 수신할 수 있다. 이때, SN RRC request 메시지에서 UL path가 SCG SRB로 되어 있으면, 단계 S810에서 단말(10)은 SCG SRB을 이용할 것을 결정할 수 있다. 그리고 단계 S820에서 단말(10)은 SN RRC response 메시지를 직접 SCG SRB를 통하여 SN에게 전달할 수 있다.8 is a sequence diagram showing case 3. FIG. In the embodiment of FIG. 8, first, in step S800, the terminal 10 may receive an SN RRC request message from the SN cell 30 through an SCG SRB. In this case, if the UL path is SCG SRB in the SN RRC request message, the UE 10 may determine to use the SCG SRB in step S810. In operation S820, the terminal 10 may directly transmit an SN RRC response message to the SN through the SCG SRB.
한편, 도 9는 case 4를 나타내는 시퀀스도이다. 도 9의 실시 예에서는 먼저 단계 S900에서 단말(10)은 SCG SRB를 통해 SN 셀(30)로부터 SN RRC request 메시지를 수신할 수 있다. 이때, SN RRC request 메시지에서 UL path가 MCG SRB로 되어 있으면, 단계 S9610에서 단말(10)은 MCG SRB을 이용할 것을 결정할 수 있다. 따라서, 단계 S920에서 단말(10)은 MN RRC 단방향 메시지를 만들어서 상기 MN RRC 단방향 메시지 안에 SN RRC response 메시지를 포함시켜서 MCG SRB 를 통해 전달할 수 있다. 그리고 상기 메시지를 수신한 MN 셀(20)은 SN RRC response 메시지만 분리하여, 단계 S930에서 SN 셀(30)에게 inter node message로 전달할 수 있다.9 is a sequence diagram showing case 4. FIG. In the embodiment of FIG. 9, first, in step S900, the terminal 10 may receive an SN RRC request message from the SN cell 30 through an SCG SRB. In this case, if the UL path is the MCG SRB in the SN RRC request message, the UE 10 may determine to use the MCG SRB in step S9610. Accordingly, in step S920, the terminal 10 may make an MN RRC unidirectional message and include the SN RRC response message in the MN RRC unidirectional message to transmit the MCR SRB. In addition, the MN cell 20 receiving the message may separate only the SN RRC response message, and may transmit the message to the SN cell 30 as an inter node message in step S930.
[실시예 5]Example 5
본 발명의 또 다른 실시 예에 따르면, SN Measurement report 의 경우, SN RRC connection reconfiguration 메시지에 포함된 measConfig 에 의해 설정될 수 있다. 이때, SN RRCConnectionReconfiguration 메시지의 response message인 SN RRCConnectionReconfigurationComplete 메시지의 UL path indication bit 외에 measConfig IE 에서 설정된 measurement report message를 추후에 해당 event 가 발생했을 때, MCG SRB와 SCG SRB path 중 어느 곳을 이용하여 전송할 것인지를 표시해 주는 1 bit indication 이 존재할 수 있다. SN RRC 메시지를 통해 상기 인디케이션을 표시 하면, 단말은 실시 예 4에서 전술한 바와 같이, SN RRCConnectionReconfiguration 메시지의 response message인 SN RRCConnectionReconfigurationComplete를 UL path indication 정보를 보고, SCG/MCG SRB 중 선택하여 전달 할 수 있다. 그와 동시에 단말은 measConfig IE에 있는 MR UL path indication bit을 보고, event 발생시 해당 UL path로 상기 measurement report (MR)을 전달할 수 있다. 예를 들어, MR이 SCG SRB로 전송되도록 설정되면 단말은 바로 SCG SRB로 전송하고, MCG SRB로 전송하도록 설정되면, MN RRC response 또는 단방향 메시지에 포함하여 MN에게 전송할 수 있다. 그리고 MN이 상기 수신된 MR만을 SN에게 전달할 수 있다.According to another embodiment of the present invention, the SN Measurement report may be set by measConfig included in the SN RRC connection reconfiguration message. In this case, in addition to the UL path indication bit of the SN RRCConnectionReconfigurationComplete message, which is a response message of the SN RRCConnectionReconfiguration message, a measurement report message set in measConfig IE is later used when the corresponding event occurs. There may be a 1 bit indication. If the indication is indicated through the SN RRC message, as described above in the fourth embodiment, the UE can transmit the SN RRCConnectionReconfigurationComplete, which is a response message of the SN RRCConnectionReconfiguration message, by viewing UL path indication information and selecting one from SCG / MCG SRB. have. At the same time, the terminal reports the MR UL path indication bit in the measConfig IE and may transmit the measurement report (MR) to the corresponding UL path when an event occurs. For example, when the MR is set to be transmitted to the SCG SRB, the terminal may be directly transmitted to the SCG SRB. If the MR is set to be transmitted to the MCG SRB, the terminal may be transmitted to the MN by being included in an MN RRC response or a one-way message. And MN can deliver only the received MR to the SN.
구체적으로, 도 10은 SN RRCConnectionReconfigurationComplete 는 SCG SRB 로, MR도 SCG SRB 로 전송되는 실시 예를 나타내는 시퀀스도를 도시한 도면이다. In detail, FIG. 10 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR is also transmitted to the SCG SRB.
먼저, 단계 S1000에서, SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 모두 SCG SRB를 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1010에서, MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 확인할 수 있다. First, in step S1000, the SN cell 30 sets both the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE to indicate the SCG SRB to the MN cell 20 to transmit the SN RRC connection reconfiguration message. Can be. In operation S1010, the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
확인 결과, 상기 indication bit들이 SCG SRB를 지시하고 있는 경우, 단말(10)은 단계 S1020에서 SCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 MR을 전송하도록 결정할 수 있다. As a result of the check, when the indication bits indicate the SCG SRB, the terminal 10 may determine to transmit the SN RRCConnectionReconfigurationComplete message and the MR using the SCG SRB in step S1020.
따라서, 단말(10)은 단계 S1030에서, MN셀(20)로 MN RRC response 메시지를 전송하고, 단계 S1040 및 단계 S1050에서, 단말(10)은 SCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 MR을 전송할 수 있다. 한편, 도 11은 SN RRCConnectionReconfigurationComplete 는 MCG SRB 로, MR도 SCG SRB 로 전송되는 실시 예를 나타내는 시퀀스도이다. 먼저, 단계 S1100에서, SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit는 MCG SRB를 지시하고, measConfig IE의 MR UL path indication bit는 SCG SRB를 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1110에서, MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 확인할 수 있다. Accordingly, the terminal 10 transmits an MN RRC response message to the MN cell 20 in step S1030. In steps S1040 and S1050, the terminal 10 may transmit an SN RRCConnectionReconfigurationComplete message and an MR using the SCG SRB. have. 11 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR is also transmitted to an SCG SRB. First, in step S1100, the SN cell 30 sets the UL path indication bit for the RRCConnectionReconfigurationComplete to the MN cell 20 to indicate the MCG SRB and the MR UL path indication bit of the measConfig IE to indicate the SCG SRB. You can send a connection reconfiguration message. In operation S1110, the MN cell 20 may transmit an encapsulated SN RRC request message to the MN RRC request message to the terminal 10. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
확인 결과에 기반하여, 단계 S1120에서 단말(10)은 RRC 메시지를 전송할 path 를 결정할 수 있다. Based on the confirmation result, in step S1120, the terminal 10 may determine a path to transmit the RRC message.
구체적으로, 단말(10)은 단계 S1130에서, MN셀(20)로 MN RRC response 메시지를 전송할 수 있다. 이때, 상기 MN RRC response 메시지에는 SN RRCConnectionReconfigurationComplete 메시지가 encapsulated되어 MN 셀(20)로 함께 전송될 수 있다. 따라서, 단계 S1140에서, 상기 MN 셀(20)은 상기 SN RRCConnectionReconfigurationComplete 메시지를 SN 셀(30)로 전송할 수 있다. 그리고 단계 S1150에서, 단말(10)은 SCG SRB를 이용하여 MR을 SN셀(30)로 전송할 수 있다. 한편, 도 12는 SN RRCConnectionReconfigurationComplete 는 SCG SRB 로, MR은 MCG SRB 로 전송되는 실시 예를 나타내는 시퀀스도이다. 먼저, 단계 S1200에서, SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit는 SCG SRB를 지시하고, measConfig IE의 MR UL path indication bit는 MCG SRB를 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1210에서, MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 확인할 수 있다. In detail, in step S1130, the terminal 10 may transmit an MN RRC response message to the MN cell 20. In this case, an SN RRCConnectionReconfigurationComplete message may be encapsulated in the MN RRC response message and transmitted together with the MN cell 20. Accordingly, in step S1140, the MN cell 20 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30. In operation S1150, the terminal 10 may transmit the MR to the SN cell 30 using the SCG SRB. 12 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an SCG SRB and an MR to an MCG SRB. First, in step S1200, the SN cell 30 is configured to indicate to the MN cell 20 the UL path indication bit for the RRCConnectionReconfigurationComplete indicates the SCG SRB, and the MR UL path indication bit of the measConfig IE indicates the MCG SRB. You can send a connection reconfiguration message. In operation S1210, the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
확인 결과에 기반하여, 단계 S1220에서 단말(10)은 RRC 메시지를 전송할 path 를 결정할 수 있다. Based on the confirmation result, in step S1220, the terminal 10 may determine a path to transmit the RRC message.
구체적으로, 단말(10)은 단계 S1230에서, MN셀(20)로 MN RRC response 메시지를 전송할 수 있다. 그리고 단계 S1240에서, 단말(10)은 상기 SN RRCConnectionReconfigurationComplete 메시지를 SCG SRB를 이용하여 SN 셀(30)로 전송할 수 있다. 그리고 단계 S1250에서, 단말(10)은 MCG SRB를 이용하여 MR을 포함하는 MN RRC response 메시지를 MN셀(20)로 전송할 수 있다. MN 셀(20)은 상기 MR을 분리하여 SN 셀(30)로 전송할 수 있다. 도 13은 SN RRCConnectionReconfigurationComplete 는 MCG SRB 로, MR도 MCG SRB 로 전송되는 실시 예를 나타내는 시퀀스도이다. 먼저, 단계 S1300에서, SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 모두 MCG SRB를 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1310에서, MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 확인할 수 있다. In detail, in step S1230, the terminal 10 may transmit an MN RRC response message to the MN cell 20. In operation S1240, the terminal 10 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30 using an SCG SRB. In operation S1250, the terminal 10 may transmit an MN RRC response message including the MR to the MN cell 20 using the MCG SRB. The MN cell 20 may separate the MR and transmit the same to the SN cell 30. FIG. 13 is a sequence diagram illustrating an embodiment in which an SN RRCConnectionReconfigurationComplete is transmitted to an MCG SRB and an MR is also transmitted to the MCG SRB. First, in step S1300, the SN cell 30 sets both the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE to indicate the MCG SRB to the MN cell 20 to transmit the SN RRC connection reconfiguration message. Can be. In step S1310, the MN cell 20 may transmit an SN RRC request message to the terminal 10 by encapsulating the MN RRC request message. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
확인 결과, 상기 indication bit들이 MCG SRB를 지시하고 있는 경우, 단말(10)은 단계 S1320에서 MCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 MR을 전송하도록 결정할 수 있다. As a result of the check, when the indication bits indicate the MCG SRB, the terminal 10 may determine to transmit the SN RRCConnectionReconfigurationComplete message and the MR using the MCG SRB in step S1320.
따라서, 단말(10)은 단계 S1330에서, MN셀(20)로 MN RRC response 메시지를 전송할 수 있다. 이때, 상기 MN RRC response 메시지에는 SN RRCConnectionReconfigurationComplete 메시지가 encapsulated되어 MN 셀(20)로 함께 전송될 수 있다. 따라서, 단계 S1340에서, 상기 MN 셀(20)은 상기 SN RRCConnectionReconfigurationComplete 메시지를 SN 셀(30)로 전송할 수 있다.Therefore, the terminal 10 may transmit an MN RRC response message to the MN cell 20 in step S1330. In this case, an SN RRCConnectionReconfigurationComplete message may be encapsulated in the MN RRC response message and transmitted together with the MN cell 20. Accordingly, in step S1340, the MN cell 20 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30.
또한, 단계 S1350에서, 단말(10)은 MCG SRB를 이용하여 MR을 포함하는 MN RRC response 메시지를 MN셀(20)로 전송할 수 있다. 단계 S1360에서 MN 셀(20)은 상기 MR을 분리하여 SN 셀(30)로 전송할 수 있다.도 14는 별도의 복수 개의 measConfig 의 각자의 RRCconnectionReconfiguration 메시지에 포함되어 전송되고, 상기 UL 복수 개의 measConfig에 대한 MR UL path가 서로 다르게 설정되는 경우의 시퀀스도를 도시한 도면이다. 이때, 각각의 measConfig에서 설정된 MR이 각 설정된 UL path로 독립적으로 전달 될 수 있다.In operation S1350, the terminal 10 may transmit an MN RRC response message including the MR to the MN cell 20 using the MCG SRB. In step S1360, the MN cell 20 may separate the MR and transmit the MR to the SN cell 30. FIG. 14 is included in each RRCconnectionReconfiguration message of a plurality of separate measConfig and transmitted. FIG. 11 is a sequence diagram illustrating a case where MR UL paths are set differently. At this time, the MR set in each measConfig can be independently transmitted to each set UL path.
구체적으로, 단계 S1400에서 SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 제1 measConfig IE의 MR UL path indication bit를 모두 SCG SRB를 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1405에서, MN 셀(20)은 단말(10)로 SN RRC reconfiguration 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 확인할 수 있다. Specifically, in step S1400, the SN cell 30 sets both the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the first measConfig IE to indicate the SCG SRB to the MN cell 20 so as to indicate the SN RRC connection reconfiguration message. Can be transmitted. In operation S1405, the MN cell 20 may transmit an SN RRC reconfiguration message to the terminal 10 by encapsulating the MN RRC request message. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
확인 결과, 상기 indication bit들이 SCG SRB를 지시하고 있는 경우, 단말(10)은 단계 S1410에서 SCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 MR을 전송하도록 결정할 수 있다. As a result of the check, when the indication bits indicate the SCG SRB, the terminal 10 may determine to transmit an SN RRCConnectionReconfigurationComplete message and an MR using the SCG SRB in step S1410.
따라서, 단말(10)은 단계 S1415에서, MN셀(20)로 MN RRC response 메시지를 전송하고, 단계 S1420 및 단계 S1425에서, 단말(10)은 SCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 제1 MR을 각각 전송할 수 있다.Accordingly, the terminal 10 transmits an MN RRC response message to the MN cell 20 in step S1415. In steps S1420 and S1425, the terminal 10 transmits an SN RRCConnectionReconfigurationComplete message and a first MR using the SCG SRB. Each can be transmitted.
한편, 단계 S1430에서, SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit는 SCG SRB를 지시하고, measConfig IE의 MR UL path indication bit는 MCG SRB를 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1435에서, MN 셀(20)은 단말(10)로 SN RRC request 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 MR UL path indication bit를 확인할 수 있다. Meanwhile, in step S1430, the SN cell 30 sets the UL path indication bit for the RRCConnectionReconfigurationComplete to the MN cell 20 to indicate the SCG SRB and the MR UL path indication bit of the measConfig IE to indicate the MCG SRB. You can send a connection reconfiguration message. In operation S1435, the MN cell 20 may encapsulate and transmit an SN RRC request message to the MN RRC request message to the terminal 10. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bit of the measConfig IE.
확인 결과에 기반하여, 단계 S1440에서 단말(10)은 RRC 메시지를 전송할 path 를 결정할 수 있다. Based on the confirmation result, in step S1440, the terminal 10 may determine a path to transmit the RRC message.
구체적으로, 단말(10)은 단계 S1445에서, MN셀(20)로 MN RRC response 메시지를 전송할 수 있다. 그리고 단계 S1450에서, 단말(10)은 상기 SN RRCConnectionReconfigurationComplete 메시지를 SCG SRB를 이용하여 SN 셀(30)로 전송할 수 있다. 그리고 단계 S1455에서, 단말(10)은 MCG SRB를 이용하여 제2 MR을 포함하는 MN RRC response 메시지를 MN셀(20)로 전송할 수 있다. 단계 S1460에서 MN 셀(20)은 상기 제2 MR을 분리하여 SN 셀(30)로 전송할 수 있다.In detail, in step S1445, the terminal 10 may transmit an MN RRC response message to the MN cell 20. In operation S1450, the terminal 10 may transmit the SN RRCConnectionReconfigurationComplete message to the SN cell 30 using an SCG SRB. In operation S1455, the terminal 10 may transmit an MN RRC response message including the second MR to the MN cell 20 using the MCG SRB. In step S1460, the MN cell 20 may separate and transmit the second MR to the SN cell 30.
[실시예 6]Example 6
본 발명의 또 다른 실시 예에 따르면, SN용 MR의 UL path은 RRCConnectionReconfiguration 에 포함된 measConfig IE 당 설정될 수도 있지만, measConfig 내부의 measId 별로 설정될 수도 있다. 이 경우, SN RRCConnectionReconfigurationComplete 용 UL path selection 용 1bit 과 measConfig IE의 measID 별 MR UL path indication bit이 별도로 존재하여 SN RRCConnectionReconfiguration 메시지에 포함되어 전솔될 수도 있다. 단말은 상기 SN RRCConnectionReconfiguration 메시지를 보고, 그 안에 포함되어 있는 measID별 MR UL path indication 을 보고, measID 별 이벤트 발생시, 해당 MR을 설정된 UL path 로 전송할 수 있다. According to another embodiment of the present invention, the UL path of the MR MR for SN may be set per measConfig IE included in the RRCConnectionReconfiguration, but may also be set for each measId in measConfig. In this case, 1 bit for UL path selection for SN RRCConnectionReconfigurationComplete and MR UL path indication bits for each measID of measConfig IE may be separately included and transferred in the SN RRCConnectionReconfiguration message. The UE reports the SN RRCConnectionReconfiguration message, reports the MR UL path indication for each measID included in the SN RRCConnectionReconfiguration message, and transmits the corresponding MR to the configured UL path when an event for each measID occurs.
구체적으로, 도 15에 기반하여 실시 예 6을 설명한다. 먼저, 단계 S1500에서 SN 셀(30)은 MN 셀(20)로 RRCConnectionReconfigurationComplete에 대한 UL path indication bit를 SCG SRB를 지시하도록 설정하고, measConfig IE에서 제1 measID는 MR UL path indication bit를 SCG SRB로, 제2 를 measID는 MR UL path indication bit를 MCG SRB로 지시하도록 설정하여 SN RRC connection reconfiguration 메시지를 전송할 수 있다. 그리고 단계 S1510에서, MN 셀(20)은 단말(10)로 SN RRC reconfiguration 메시지를 MN RRC request 메시지에 encapsulated하여 전달할 수 있다. 단말(10)은 RRCConnectionReconfigurationComplete에 대한 UL path indication bit 및 measConfig IE의 제1, 제2 measID에 대한 MR UL path indication bit를 확인할 수 있다. 확인 결과에 기반하여, 단계 S1520에서, 단말(10)은 SCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 제1 measID에 대한 MR을 전송하도록 결정할 수 있다. 그리고 단말(10)은 MCG SRB를 이용하여 제2 measID에 대한 MR을 전송하도록 결정할 수 있다.Specifically, Embodiment 6 will be described based on FIG. 15. First, in step S1500, the SN cell 30 sets the UL path indication bit for the RRCConnectionReconfigurationComplete to the MN cell 20 to indicate the SCG SRB, and in the measConfig IE, the first measID sets the MR UL path indication bit to the SCG SRB, The second measID may set the MR UL path indication bit to the MCG SRB to transmit an SN RRC connection reconfiguration message. In operation S1510, the MN cell 20 may encapsulate and transmit an SN RRC reconfiguration message to the MN RRC request message to the terminal 10. The terminal 10 may check the UL path indication bit for the RRCConnectionReconfigurationComplete and the MR UL path indication bits for the first and second measIDs of the measConfig IE. Based on the confirmation result, in step S1520, the terminal 10 may determine to transmit an SN RRCConnectionReconfigurationComplete message and an MR for the first measID using the SCG SRB. The terminal 10 may determine to transmit the MR for the second measID using the MCG SRB.
따라서, 단말(10)은 단계 S1530에서, MN셀(20)로 MN RRC response 메시지를 전송하고, 단계 S1540 및 단계 S1550에서, 단말(10)은 SCG SRB를 이용하여 SN RRCConnectionReconfigurationComplete 메시지 및 제1 MR을 각각 전송할 수 있다.Accordingly, the terminal 10 transmits an MN RRC response message to the MN cell 20 in step S1530. In steps S1540 and S1550, the terminal 10 transmits an SN RRCConnectionReconfigurationComplete message and a first MR using an SCG SRB. Each can be transmitted.
그리고 단계 S1560에서, 단말(10)은 MCG SRB를 이용하여 제2 MR을 포함하는 MN RRC response 메시지를 MN셀(20)로 전송할 수 있다. 단계 S1570에서, MN 셀(20)은 상기 제2 MR을 분리하여 SN 셀(30)로 전송할 수 있다.In operation S1560, the terminal 10 may transmit an MN RRC response message including the second MR to the MN cell 20 using the MCG SRB. In step S1570, the MN cell 20 may separate the second MR and transmit it to the SN cell 30.
예를 들어, SN 셀의 carrier frequency 가 mmW 대역인 경우, SN 셀은 항상 MR UL path 를 MCG SRB로 설정할 수 있다. 또는 SN 셀의 link status (단말로부터 feedback되거나 SRS로 직접 measure한 RSRP 의 평균적인 수준, 또는 RLC 재전송이나, HARQ 재전송 의 평균적인 횟수 등)을 기반으로 링크 quality가 매우 낮다는 판단을 하면, MR UL path 를 MCG SRB 로 설정될 수 있다. For example, when the carrier frequency of the SN cell is mmW band, the SN cell may always set the MR UL path to MCG SRB. Or MR UL, if it is determined that the link quality is very low based on the link status of the SN cell (the average level of RSRP feedback from the terminal or directly measured by the SRS, or the average number of RLC retransmissions or HARQ retransmissions). The path may be set to MCG SRB.
SN RRC request message 는 SN RRC 에서 단말에게 명령을 내려서 그에 해당하는 1회성 응답을 단말이 보내야 하는 모든 종류의 message가 될 수 있으며, SN RRC response 메시지는 상기 단말이 전송하는 응답 메시지를 의미한다. 예를 들어, 다음은 request-response 메시지의 예가 될 수 있다.The SN RRC request message may be any type of message in which the UE sends a one-time response corresponding to the UE in SN RRC, and the SN RRC response message refers to a response message transmitted by the UE. For example, the following is an example of a request-response message.
CounterCheck CounterCheckResponseCounterCheck CounterCheckResponse
RRCConnectionReconfiguration RRCConnectionReconfigurationCompleteRRCConnectionReconfiguration RRCConnectionReconfigurationComplete
RRCConnectionResume RRCConnectionResumeCompleteRRCConnectionResume RRCConnectionResumeComplete
SecurityModeCommand SecurityModeComplete, SecurityModeFailureSecurityModeCommand SecurityModeComplete, SecurityModeFailure
UECapabilityEnquiry UECapabilityInformationUECapabilityEnquiry UECapabilityInformation
UEInformationRequest UEInformationResponseUEInformationRequest UEInformationResponse
그 외에 SN RRC가 DL 로 일회성으로 보내는 메시지 또는 단말이 UL 로 일회성으로 보내는 메시지도 존재할 수 있다. DL로 보내는 일회성 메시지는 SN RRC 가 알아서 MCG SRB 또는 SCG SRB를 선택하여 바로 보낼 수 있으며, 각 UL 일회성 SN RRC 메시지는 미리 default SN 용 SRB가 정해져 있어서 일회성 메시지는 이 default SRB로 전송될 수 있다. 이 default SRB는 MCG SRB, SCG SRB 중에 선택되어 단말에게 system information 으로 전송될 수 있다. In addition, there may be a message sent by the SN RRC one time to the DL or a message sent by the terminal to the UL one time. The one-time message sent to the DL can be directly sent by the SN RRC by selecting the MCG SRB or the SCG SRB, and each UL one-time SN RRC message has a predetermined SRB for the default SN so that the one-time message can be transmitted to the default SRB. The default SRB may be selected from MCG SRB and SCG SRB and transmitted to the UE as system information.
본 발명의 또 다른 실시 예에 따르면, SCG change indication 에 필요한 동작 또는 그 동작이 필요한 사용 케이스(use case)를 표시하여 SN이나 MN으로 전달될 수 있다.According to another embodiment of the present invention, an operation required for the SCG change indication or a use case requiring the operation may be displayed and transmitted to the SN or the MN.
NR PDCP를 LTE User plane에서 사용할 수 있게 됨으로써, SCG에서 사용되는 베어러(bearer)들의 PDCP version change 및 PDCP anchor point change, security Key refresh 등과 관련하여, 기존의 synchronous reconfiguration (예를 들면, 단말이 MAC, RLC reset 및 SCG 용 PDCP re-establishment 수행 및 target SCG 로 RACH 수행) 동작이 일괄적으로 수행되던 경우에서, 각 layer 2 stack 이 부분적으로 리셋(reset) 될 수 있게 되었다. 이와 관련하여 SCG change message를 통해, SN이 해당 동작을 준비하여 지연(latency)를 줄일 수 있도록, SCG change IE 에 요구되는 부분적인 synchronous reconfiguration 동작을 표시하거나, 해당 use case를 표시할 수 있다.Since NR PDCP can be used in the LTE user plane, in relation to PDCP version change, PDCP anchor point change, security key refresh, etc. of bearers used in SCG, existing synchronous reconfiguration (for example, when the UE is MAC, In the case where RLC reset and PDCP re-establishment for SCG and RACH to target SCG) are collectively performed, each layer 2 stack can be partially reset. In this regard, through the SCG change message, the partial synchronous reconfiguration operation required for the SCG change IE may be displayed or the use case may be displayed so that the SN may prepare for the operation and reduce latency.
도 16a 내지 도 16c는 MN initiated SCG change의 실시 예를 나타내고 있다.16A to 16C illustrate an embodiment of an MN initiated SCG change.
먼저, 단계 S1600에서와 같이 MN(20)은 SN 수정 요청 메시지(modification request message)에 SCG 변경 지시자(change indication)를 전달하면서, synchronous reconfiguration의 필요한 동작을 SN(30)에게 전달할 수 있다. 이때, 상기 필요한 동작은 다음의 것들이 될 수 있다. security key refresh, reconfiguration, RACH, RACH and MAC reset, RACH and MAC reset and RLC reset, RACH and MAC reset and RLC reset and PDCP re-establishment. SN(30)이 상기 메시지를 받으면, 필요한 동작을 위해 SN(30)이 하는 동작을 수행한다. 예를 들어, L2 stack의 sub-layer의 reset이 아닌 일반적인 reconfiguration이라면, 해당 reconfiguration을 수행하고, 상기 메시지에 RACH 가 표시되면, 해당 단말의 랜덤 액세스 프리앰블(random access preamble) 전송을 모니터링(monitoring)할 수 있다. First, as in step S1600, the MN 20 may deliver a SCG change indication in an SN modification request message, while delivering the necessary operation of synchronous reconfiguration to the SN 30. In this case, the necessary operation may be as follows. security key refresh, reconfiguration, RACH, RACH and MAC reset, RACH and MAC reset and RLC reset, RACH and MAC reset and RLC reset and PDCP re-establishment. When the SN 30 receives the message, the SN 30 performs an operation for the necessary operation. For example, if the general reconfiguration is not a reset of the sub-layer of the L2 stack, the reconfiguration is performed, and if the RACH is displayed in the message, the random access preamble transmission of the corresponding UE is monitored. Can be.
도 16a에 도시된 바와 같이, synchronous reconfiguration의 필요한 동작으로 RACH and MAC reset이 표시되면, SN(30)은 해당 단말에 귀속되어 있는 MAC 을 reset할 수 있다. 그리고 SN(30)은 단말(10)의 RACH 동작을 기다릴 수 있다. 단계 S1605에서 SN(30)은 MN(20)으로 SN modification ack 메시지를 전송하면서, RACH 및 MAC reset을 설정하는 SCG 설정을 포함하여 전송할 수 있다. 그리고 단계 S1610에서 MN(20)은 수신된 설정을 단말(10)로 전송할 수 있다. 이에 따라, 단계 S1615에서 단말(10)은 MAC을 reset할 수 있다. 그리고 단계 S1620에서 단말(10)은 SN(30)으로 RACH를 전송할 수 있다. As shown in FIG. 16A, when RACH and MAC reset is displayed as a necessary operation of synchronous reconfiguration, the SN 30 may reset the MAC belonging to the corresponding UE. The SN 30 may wait for the RACH operation of the terminal 10. In step S1605, the SN 30 may transmit the SN modification ack message to the MN 20, including the SCG setting for setting the RACH and the MAC reset. In operation S1610, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC in step S1615. In operation S1620, the UE 10 may transmit an RACH to the SN 30.
한편, 다른 실시 예에 따르면, synchronous reconfiguration의 필요한 동작이 RACH, MAC 및 RLC reset 의 경우, SN(30)은 해당 단말(10)에 귀속되어 있는 모든 RLC entity를 reset하고, MAC 역시 reset할 수 있다. 그리고 SN(30)은 단말(10)의 RA 를 기다릴 수 있다. 구체적으로 도 16b에 도시된 바와 같이, 단계 S1625에서 SN(30)은 MN(20)으로 SN modification ack 메시지를 전송하면서, RACH, MAC 및 RLC reset을 설정하는 SCG 설정을 포함하여 전송할 수 있다. 그리고 단계 S1630에서 MN(20)은 수신된 설정을 단말(10)로 전송할 수 있다. 이에 따라, 단계 S1635에서 단말(10)은 MAC 및 RLC를 reset할 수 있다. 그리고 단계 S1640에서 단말(10)은 SN(30)으로 RACH를 전송할 수 있다. Meanwhile, according to another embodiment, when the necessary operations of synchronous reconfiguration are RACH, MAC, and RLC reset, the SN 30 may reset all RLC entities belonging to the corresponding UE 10 and may also reset the MAC. . The SN 30 may wait for the RA of the terminal 10. In detail, as shown in FIG. 16B, in step S1625, the SN 30 may transmit an SN modification ack message to the MN 20, including an SCG setting for setting RACH, MAC, and RLC reset. In operation S1630, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1635. In operation S1640, the terminal 10 may transmit a RACH to the SN 30.
또 다른 실시 예에 따르면, synchronous reconfiguration의 필요한 동작이 RACH 및 MAC/RLC reset 및 PDCP re-establishment 의 경우, SN(30)은 해당 단말(10)의 PDCP를 re-establish하고, 이어 RLC 및 MAC을 reset할 수 있다. 그리고 SN(30)은 단말(10)의 RA 를 기다릴 수 있다. 구체적으로 도 16c에 도시된 바와 같이, 단계 S1645에서 SN(30)은 MN(20)으로 SN modification ack 메시지를 전송하면서, RACH 및 MAC/RLC reset 및 PDCP re-establishment 을 설정하는 SCG 설정을 포함하여 전송할 수 있다. 그리고 단계 S1650에서 MN(20)은 수신된 설정을 단말(10)로 전송할 수 있다. 이에 따라, 단계 S1655에서 단말(10)은 MAC 및 RLC를 reset할 수 있다. 그리고 단말(10)은 PDCP re-establishment 을 수행할 수 있다. 또한, 단계 S1660에서 단말(10)은 SN(30)으로 RACH를 전송할 수 있다. According to another embodiment, when the necessary operation of synchronous reconfiguration is RACH and MAC / RLC reset and PDCP re-establishment, the SN 30 re-establishes the PDCP of the terminal 10 and then performs RLC and MAC. You can reset it. The SN 30 may wait for the RA of the terminal 10. Specifically, as shown in FIG. 16C, in step S1645, the SN 30 transmits an SN modification ack message to the MN 20, including an SCG setting for setting RACH and MAC / RLC reset and PDCP re-establishment. Can transmit In operation S1650, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1655. The terminal 10 may perform PDCP re-establishment. In addition, in step S1660, the terminal 10 may transmit a RACH to the SN (30).
상기 도 16a 내지 도 16c에 도시된 실시 예 각각에서는, MN(20)이 SN modification request 메시지에 SCG change indication IE에 필요한 동작을 표시하면, SN(30)은 상기 표시된 동작을 확인하고, 필요한 동작을 수행하며, 단말에게 필요한 reconfiguration 메시지를 만들 수 있다. 상기 메시지는 MN(20)에게 container 로 전달되고, MN(20)은 단말(10)을 reconfigure할 때 상기 SN(30)이 만든 메시지를 전달하여 단말(10)이 필요한 동작을 수행하도록 할 수 있다. 정리하면, 도 16a에 도시된 단말(10)은 MAC reset 및 RACH, 또는 도 16b에 도시된 단말(10)은 MAC/RLC reset 및 RACH, 또는 도 16c에 도시된 단말(10)은 MAC/RLC reset, PDCP re-establishment 및 RACH 를 수행하는 실시 예를 나타내고 있다. 이러한 동작 외에 단순히 reconfiguration 만을 수행하는 SCG change indication 표시 및 단말 동작 역시 가능하다.필요한 동작들은 그 동작 자체가 아니라, 그 동작이 필요한 상황의 이름으로 대신될 수도 있다. 예를 들어 reconfiguration은 reconfiguration without MAC reset, RACH는 RACH, RACH 및 MAC reset은 reconfiguration with MAC reset, RACH 및 MAC/RLC reset은 traditional handover but without PDCP re-establishment, RACH 및 MAC/RLC/PDCP reset/re-establish는 traditional HO가 될 수 있다. In each of the embodiments illustrated in FIGS. 16A to 16C, when the MN 20 indicates an operation required for the SCG change indication IE in the SN modification request message, the SN 30 confirms the displayed operation and confirms the required operation. And it can create a reconfiguration message required by the terminal. The message is delivered to the MN 20 as a container, and when the MN 20 reconfigures the terminal 10, the message may be delivered by the SN 30 to allow the terminal 10 to perform a necessary operation. . In summary, the terminal 10 shown in FIG. 16A is MAC reset and RACH, or the terminal 10 shown in FIG. 16B is MAC / RLC reset and RACH, or the terminal 10 shown in FIG. 16C is MAC / RLC. An embodiment of performing reset, PDCP re-establishment, and RACH is shown. In addition to this operation, the SCG change indication indication and the UE operation, which simply perform reconfiguration, may also be performed. For example, reconfiguration is reconfiguration without MAC reset, RACH is RACH, RACH and MAC reset is reconfiguration with MAC reset, RACH and MAC / RLC reset is traditional handover but without PDCP re-establishment, RACH and MAC / RLC / PDCP reset / re -establish can be traditional HO
한편, 도 17a 내지 도 17c는 SN initiated SCG change 실시 예를 나타내고 있다. 구체적으로 단계 S1700에서, SN(30)이 MN(20)으로 SN modification required 메시지에 SCG change indication IE에 필요한 동작을 표시해서 보낼 수 있다. 단계 S1710에서, 상기 메시지를 받은 MN(20)은 SN modification request를 발생시키고, 상기 SN modification request의 SCG change indication IE에 SN(30)으로부터 받은 필요한 동작을 포함하여, SN(30)에게 다시 전달할 수 있다. 구체적으로, SN(30)이 상술한 실시 예 중에서 하나의 발생을 인지했을 경우, MN(20)에게 SN modification required 메시지에 SCG change indication을 전달하면서, synchronous reconfiguration의 필요한 동작을 MN(20)에게 전달할 수 있다. 이때, 상기 필요한 동작은 다음의 것들이 될 수 있다. reconfiguration, RACH, RACH and MAC reset, RACH and MAC reset and RLC reset, RACH and MAC reset and RLC reset and PDCP re-establishment. Meanwhile, FIGS. 17A to 17C illustrate an embodiment of SN initiated SCG change. Specifically, in step S1700, the SN 30 may indicate to the MN 20 an operation required for the SCG change indication IE in the SN modification required message. In step S1710, the MN 20 receiving the message may generate an SN modification request and deliver it back to the SN 30, including the necessary operation received from the SN 30 in the SCG change indication IE of the SN modification request. have. Specifically, when the SN 30 recognizes the occurrence of one of the above-described embodiments, it transmits the SCG change indication to the MN 20 in the SN modification required message, and delivers the necessary operation of the synchronous reconfiguration to the MN 20. Can be. In this case, the necessary operation may be as follows. reconfiguration, RACH, RACH and MAC reset, RACH and MAC reset and RLC reset, RACH and MAC reset and RLC reset and PDCP re-establishment.
그리고 MN(20)은 SN modification request를 생성할 수 있다. MN(20)은 SN modification request의 SCG change indication IE에 SN(30)으로부터 받은 필요한 동작을 포함하여, SN(30)에게 다시 전달할 수 있다.The MN 20 may generate an SN modification request. The MN 20 may forward back to the SN 30, including the necessary actions received from the SN 30 in the SCG change indication IE of the SN modification request.
SN(30)이 상기 SN modification request메시지를 받으면, 필요한 동작을 위해 SN(30)이 하는 동작을 수행한다. 예를 들어, L2 stack의 sub-layer의 reset이 아닌 일반적인 reconfiguration이라면, 해당 reconfiguration을 수행하고, 상기 메시지에 RACH 가 표시되면, 다른 동작은 하지 않고, 해당 단말의 random access preamble 전송을 monitoring할 수 있다. When the SN 30 receives the SN modification request message, the SN 30 performs an operation performed for the necessary operation. For example, if the general reconfiguration is not a reset of the sub-layer of the L2 stack, the reconfiguration is performed, and if the RACH is displayed in the message, the random access preamble transmission of the corresponding UE can be monitored without performing any other operation. .
구체적으로, 17a에 도시된 바와 같이, synchronous reconfiguration의 필요한 동작으로 RACH 및 MAC reset이 표시되면, SN(30)은 해당 단말에 귀속되어 있는 MAC 을 reset할 수 있다. 그리고 SN(30)은 단말(10)의 RACH 동작을 기다릴 수 있다. 단계 S1715에서 SN(30)은 MN(20)으로 SN modification ack 메시지를 전송하면서, RACH 및 MAC reset을 설정하는 SCG 설정을 포함하여 전송할 수 있다. 그리고 단계 S1720에서 MN(20)은 수신된 설정을 단말(10)로 전송할 수 있다. 이에 따라, 단계 S1725에서 단말(10)은 MAC을 reset할 수 있다. 그리고 단계 S1730에서 단말(10)은 SN(30)으로 RACH를 전송할 수 있다. Specifically, as shown in 17a, when RACH and MAC reset are displayed as a necessary operation of synchronous reconfiguration, the SN 30 may reset the MAC belonging to the corresponding terminal. The SN 30 may wait for the RACH operation of the terminal 10. In step S1715, the SN 30 may transmit the SN modification ack message to the MN 20, including the SCG setting for setting the RACH and the MAC reset. In operation S1720, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC in step S1725. In operation S1730, the terminal 10 may transmit a RACH to the SN 30.
한편, 다른 실시 예에 따르면, synchronous reconfiguration의 필요한 동작이 RACH, MAC 및 RLC reset 의 경우, SN(30)은 해당 단말(10)에 귀속되어 있는 모든 RLC entity를 reset하고, MAC 역시 reset할 수 있다. 그리고 SN(30)은 단말(10)의 RA 를 기다릴 수 있다. 구체적으로, 도 17b에 도시된 바와 같이, 단계 S1735에서 SN(30)은 MN(20)으로 SN modification ack 메시지를 전송하면서, RACH, MAC 및 RLC reset을 설정하는 SCG 설정을 포함하여 전송할 수 있다. 그리고 단계 S1740에서 MN(20)은 수신된 설정을 단말(10)로 전송할 수 있다. 이에 따라, 단계 S1745에서 단말(10)은 MAC 및 RLC를 reset할 수 있다. 그리고 단계 S1750에서 단말(10)은 SN(30)으로 RACH를 전송할 수 있다. Meanwhile, according to another embodiment, when the necessary operations of synchronous reconfiguration are RACH, MAC, and RLC reset, the SN 30 may reset all RLC entities belonging to the corresponding UE 10 and may also reset the MAC. . The SN 30 may wait for the RA of the terminal 10. In detail, as illustrated in FIG. 17B, in step S1735, the SN 30 may transmit an SN modification ack message to the MN 20, including an SCG setting for setting RACH, MAC, and RLC reset. In operation S1740, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1745. In operation S1750, the terminal 10 may transmit a RACH to the SN 30.
또 다른 실시 예에 따르면, synchronous reconfiguration의 필요한 동작이 RACH 및 MAC/RLC reset 및 PDCP re-establishment 의 경우, SN(30)은 해당 단말(10)의 PDCP를 re-establish하고, 이어 RLC 및 MAC을 reset할 수 있다. 그리고 SN(30)은 단말(10)의 RA 를 기다릴 수 있다. 구체적으로 도 17c에 도시된 바와 같이, 단계 S1755에서 SN(30)은 MN(20)으로 SN modification ack 메시지를 전송하면서, RACH 및 MAC/RLC reset 및 PDCP re-establishment 을 설정하는 SCG 설정을 포함하여 전송할 수 있다. 그리고 단계 S1760에서 MN(20)은 수신된 설정을 단말(10)로 전송할 수 있다. 이에 따라, 단계 S1765에서 단말(10)은 MAC 및 RLC를 reset할 수 있다. 그리고 단말(10)은 PDCP re-establishment 을 수행할 수 있다. 또한, 단계 S1770에서 단말(10)은 SN(30)으로 RACH를 전송할 수 있다. According to another embodiment, when the necessary operation of synchronous reconfiguration is RACH and MAC / RLC reset and PDCP re-establishment, the SN 30 re-establishes the PDCP of the terminal 10 and then performs RLC and MAC. You can reset it. The SN 30 may wait for the RA of the terminal 10. In detail, as shown in FIG. 17C, in step S1755, the SN 30 transmits an SN modification ack message to the MN 20, including an SCG setting for setting RACH and MAC / RLC reset and PDCP re-establishment. Can transmit In operation S1760, the MN 20 may transmit the received setting to the terminal 10. Accordingly, the terminal 10 may reset the MAC and RLC in step S1765. The terminal 10 may perform PDCP re-establishment. In addition, in step S1770, the terminal 10 may transmit a RACH to the SN (30).
도 17a 내지 도 17c에서 설명한 바와 같이, SN modification required 메시지를 수신한 MN(20)은 SN modification request를 SN modification required를 전송한 SN(30)에게 다시 전달하여, SN(30)이 해당 동작을 수행하도록 명령할 수 있다.As described with reference to FIGS. 17A through 17C, the MN 20 receiving the SN modification required message forwards the SN modification request to the SN 30 that has sent the SN modification required, so that the SN 30 performs the operation. Can be ordered.
이때, 필요한 동작들은 그 동작 자체가 아니라, 그 동작이 필요한 상황의 이름으로 대신될 수도 있다. 예를 들어 reconfiguration은 reconfiguration without MAC reset, RACH는 RACH, RACH 및 MAC reset은 reconfiguration with MAC reset, RACH 및 MAC/RLC reset은 traditional handover but without PDCP re-establishment, RACH 및 MAC/RLC/PDCP reset/re-establish는 traditional HO가 될 수 있다. In this case, the necessary operations may be replaced by the name of the situation in which the operation is required, not the operation itself. For example, reconfiguration is reconfiguration without MAC reset, RACH is RACH, RACH and MAC reset is reconfiguration with MAC reset, RACH and MAC / RLC reset is traditional handover but without PDCP re-establishment, RACH and MAC / RLC / PDCP reset / re -establish can be traditional HO
한편, 도 18은 본 발명의 일 실시 예에 따른 단말의 구조를 도시한 도면이다. 18 is a diagram illustrating a structure of a terminal according to an embodiment of the present invention.
도 18을 참고하면, 단말은 송수신부 (1810), 제어부(1820), 저장부 (1830)를 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 18, the terminal may include a transceiver 1810, a controller 1820, and a storage 1830. In the present invention, the controller may be defined as a circuit or application specific integrated circuit or at least one processor.
송수신부(1810)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1810)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다. The transceiver 1810 may exchange a signal with another network entity. The transceiver 1810 may receive system information from, for example, a base station, and may receive a synchronization signal or a reference signal.
제어부(1820)는 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. The controller 1820 may control the overall operation of the terminal according to the embodiment proposed by the present invention.
예를 들면, 제어부(1820)는 단말의 제1 마스터 노드(master node, MN)와의 연결이 해제된 경우, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 제2 마스터 노드(master node, MN)로 전송하고, 상기 제2 MN이 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 제2 MN으로 부터 RRC 연결 재수립 메시지를 수신하도록 상기 송수신부(1810)를 제어할 수 있다. For example, the controller 1820, if the connection with the first master node (MN) of the terminal is released, RRC connection reestablishment request (connection) including the identifier information for the secondary node (secondary node, SN) (connection) Send a re-establishment request message to a second master node (MN), and when the second MN includes context information for the terminal, receives an RRC connection reestablishment message from the second MN. The transceiver 1810 may be controlled to control the transmission / reception unit 1810.
이때, 상기 제2 MN에 의해, 상기 SN에 대한 식별자 정보에 기반하여 상기 SN으로 SN 어디션 요청(addition request) 메시지가 전송될 수 있다. In this case, an SN addition request message may be transmitted to the SN by the second MN based on the identifier information of the SN.
또한, 상기 RRC 연결 재수립 요청 메시지는 상기 SN에 대한 베어러 정보를 더 포함할 수 있다. The RRC connection reestablishment request message may further include bearer information for the SN.
그리고 상기 SN은 RRC 계층(radio resource control layer)을 포함하는 것을 특징으로 할 수 있다. The SN may be characterized by including an RRC layer (radio resource control layer).
저장부(1830)는 상기 송수신부(1810)를 통해 송수신되는 정보 및 제어부 (1820)를 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.The storage unit 1830 may store at least one of information transmitted and received through the transceiver 1810 and information generated through the controller 1820.
한편, 도 19는 본 발명의 일 실시 예에 따른 기지국의 구조를 도시한 도면이다. 상기 기지국은 LTE 시스템의 eNB (MeNB, SeNB를 포함한다) 또는 NR 시스템의 gNB가 될 수 있다. 19 is a diagram illustrating a structure of a base station according to an embodiment of the present invention. The base station may be an eNB of LTE system (including MeNB, SeNB) or a gNB of NR system.
도 19를 참고하면, 기지국은 송수신부(1910), 제어부(1920), 저장부 (1930)을 포함할 수 있다. 본 발명에서 제어부(1920)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 19, the base station may include a transceiver 1910, a controller 1920, and a storage 1930. In the present invention, the controller 1920 may be defined as a circuit or application specific integrated circuit or at least one processor.
송수신부(1910)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1910)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다. The transceiver 1910 may exchange a signal with another network entity. The transceiver 1910 may transmit system information to the terminal, for example, and may transmit a synchronization signal or a reference signal.
제어부(1920)는 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 상기 기지국이 제2 MN인 경우, 제어부(1920)는 제1 마스터 노드(master node, MN)와의 연결이 해제된 단말로부터, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 수신하고, 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 단말로 RRC 연결 재수립 메시지를 전송하도록 상기 송수신부(1910)를 제어할 수 있다. The controller 1920 may control the overall operation of the base station according to the embodiment proposed by the present invention. For example, when the base station is the second MN, the controller 1920 includes identifier information on the secondary node (SN) from the terminal disconnected from the first master node (MN). When receiving the RRC connection re-establishment request message, and includes the context information for the terminal, the transceiver 1910 can be controlled to transmit the RRC connection reestablishment message to the terminal. have.
그리고 상기 제어부(1920)는 상기 SN에 대한 식별자 정보에 기반하여 상기 SN으로 SN 어디션 요청(addition request) 메시지를 전송하도록 상기 송수신부(1910)를 제어할 수 있다.The controller 1920 may control the transceiver 1910 to transmit an SN addition request message to the SN based on the identifier information of the SN.
이때, 상기 RRC 연결 재수립 요청 메시지는 상기 SN에 대한 베어러 정보를 더 포함할 수 있다. In this case, the RRC connection reestablishment request message may further include bearer information for the SN.
또한, 상기 SN은, RRC 계층(radio resource control layer)을 포함할 수 있다.In addition, the SN may include an RRC layer (radio resource control layer).
한편, 저장부(1930)는 상기 송수신부(1910)를 통해 송수신되는 정보 및 제어부 (1920)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.The storage unit 1930 may store at least one of information transmitted and received through the transceiver 1910 and information generated through the controller 1920.
또한, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.In addition, the present specification and drawings disclose preferred embodiments of the present invention, although specific terms are used, these are merely used in a general sense to easily explain the technical contents of the present invention and to help the understanding of the present invention. It is not intended to limit the scope of the invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (15)

  1. 듀얼 커넥티비티(dual connectivity) 를 지원하는 무선 통신 시스템에서 단말의 제어 방법에 있어서, In a control method of a terminal in a wireless communication system supporting dual connectivity,
    제1 마스터 노드(master node, MN)와의 연결이 해제된 경우, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 제2 마스터 노드(master node, MN)로 전송하는 단계; 및 When the connection with the first master node (MN) is released, the second master node sends an RRC connection re-establishment request message including identifier information about the secondary node (SN). transmitting to (master node, MN); And
    상기 제2 MN이 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 제2 MN으로 부터 RRC 연결 재수립 메시지를 수신하는 단계; 를 포함하는 방법. Receiving the RRC connection reestablishment message from the second MN when the second MN includes context information about the terminal; How to include.
  2. 제1항에 있어서, The method of claim 1,
    상기 제2 MN에 의해, 상기 SN에 대한 식별자 정보에 기반하여 상기 SN으로 SN 어디션 요청(addition request) 메시지가 전송되는 것을 특징으로 하는 방법. And by the second MN, an SN addition request message is transmitted to the SN based on the identifier information of the SN.
  3. 제1항에 있어서, The method of claim 1,
    상기 RRC 연결 재수립 요청 메시지는, The RRC connection reestablishment request message,
    상기 SN에 대한 베어러 정보를 더 포함하는 것을 특징으로 하는 방법. Further comprising bearer information for the SN.
  4. 제1항에 있어서, The method of claim 1,
    상기 SN은, RRC 계층(radio resource control layer)을 포함하는 것을 특징으로 하는 방법. The SN comprises a radio resource control layer (RRC).
  5. 듀얼 커넥티비티(dual connectivity) 를 지원하는 무선 통신 시스템에서 단말에 있어서, In a terminal in a wireless communication system supporting dual connectivity,
    신호를 송수신하는 송수신부; 및 Transmitting and receiving unit for transmitting and receiving a signal; And
    제1 마스터 노드(master node, MN)와의 연결이 해제된 경우, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 제2 마스터 노드(master node, MN)로 전송하고, 상기 제2 MN이 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 제2 MN으로 부터 RRC 연결 재수립 메시지를 수신하도록 상기 송수신부를 제어하는 제어부; 를 포함하는 단말. When the connection with the first master node (MN) is released, the second master node sends an RRC connection re-establishment request message including identifier information about the secondary node (SN). a control unit for transmitting to a master node (MN) and controlling the transceiver to receive an RRC connection reestablishment message from the second MN when the second MN includes context information about the terminal; Terminal comprising a.
  6. 제5항에 있어서, The method of claim 5,
    상기 제2 MN에 의해, 상기 SN에 대한 식별자 정보에 기반하여 상기 SN으로 SN 어디션 요청(addition request) 메시지가 전송되는 것을 특징으로 하는 단말. The terminal is characterized in that by the second MN, the SN addition request message is transmitted to the SN based on the identifier information for the SN.
  7. 제5항에 있어서, The method of claim 5,
    상기 RRC 연결 재수립 요청 메시지는, The RRC connection reestablishment request message,
    상기 SN에 대한 베어러 정보를 더 포함하는 것을 특징으로 하는 단말. The terminal further comprises bearer information for the SN.
  8. 제5항에 있어서, The method of claim 5,
    상기 SN은, RRC 계층(radio resource control layer)을 포함하는 것을 특징으로 하는 단말. The SN is characterized in that it comprises an RRC layer (radio resource control layer).
  9. 무선 통신 시스템에서 마스터 노드(master node, MN)의 제어 방법에 있어서, In a control method of a master node (MN) in a wireless communication system,
    다른 마스터 노드(master node, MN)와의 연결이 해제된 단말로부터, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 수신하는 단계; 및 Receiving an RRC connection re-establishment request message including identifier information on a secondary node (SN) from a terminal disconnected from another master node (MN); And
    상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 단말로 RRC 연결 재수립 메시지를 전송하는 단계; 를 포함하는 방법. If it includes context information for the terminal, transmitting an RRC connection reestablishment message to the terminal; How to include.
  10. 제9항에 있어서, The method of claim 9,
    상기 SN에 대한 식별자 정보에 기반하여 상기 SN으로 SN 어디션 요청(addition request) 메시지를 전송하는 단계; 를 더 포함하는 것을 특징으로 하는 방법. Transmitting an SN addition request message to the SN based on the identifier information of the SN; Method further comprising a.
  11. 제9항에 있어서, The method of claim 9,
    상기 RRC 연결 재수립 요청 메시지는, The RRC connection reestablishment request message,
    상기 SN에 대한 베어러 정보를 더 포함하고, Further includes bearer information for the SN,
    상기 SN은, RRC 계층(radio resource control layer)을 포함하는 것을 특징으로 하는 방법. The SN comprises a radio resource control layer (RRC).
  12. 무선 통신 시스템에서 마스터 노드(master node, MN)에 있어서, In a master node (MN) in a wireless communication system,
    신호를 송수신하는 송수신부; 및 Transmitting and receiving unit for transmitting and receiving a signal; And
    다른 마스터 노드(master node, MN)와의 연결이 해제된 단말로부터, 세컨더리 노드(secondary node, SN)에 대한 식별자 정보를 포함하는 RRC 연결 재수립 요청(connection re-establishment request) 메시지를 수신하고, 상기 단말에 대한 컨텍스트 정보를 포함하는 경우, 상기 단말로 RRC 연결 재수립 메시지를 전송하도록 상기 송수신부를 제어하는 제어부; 를 포함하는 MN. Receiving an RRC connection re-establishment request message including identifier information for a secondary node (SN) from a terminal disconnected from another master node (MN), A control unit for controlling the transceiver to transmit an RRC connection reestablishment message to the terminal when it includes context information about the terminal; MN comprising a.
  13. 제12항에 있어서, The method of claim 12,
    상기 제어부는, The control unit,
    상기 SN에 대한 식별자 정보에 기반하여 상기 SN으로 SN 어디션 요청(addition request) 메시지를 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 MN. MN, characterized in that for controlling the transceiver to send an SN addition request message to the SN based on the identifier information for the SN.
  14. 제12항에 있어서, The method of claim 12,
    상기 RRC 연결 재수립 요청 메시지는, The RRC connection reestablishment request message,
    상기 SN에 대한 베어러 정보를 더 포함하는 것을 특징으로 하는 MN. MN further comprises bearer information for the SN.
  15. 제12항에 있어서, The method of claim 12,
    상기 SN은, RRC 계층(radio resource control layer)을 포함하는 것을 특징으로 하는 MN. The SN includes an RRC layer (radio resource control layer).
PCT/KR2018/006809 2017-06-15 2018-06-15 Method and apparatus for processing mobility in dual rrc system WO2018231021A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880039399.0A CN110741721A (en) 2017-06-15 2018-06-15 Method and apparatus for handling mobility in dual RRC system
EP18818715.7A EP3624547A4 (en) 2017-06-15 2018-06-15 Method and apparatus for processing mobility in dual rrc system
US16/622,730 US11432362B2 (en) 2017-06-15 2018-06-15 Method and apparatus for processing mobility in dual RRC system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170076073 2017-06-15
KR10-2017-0076073 2017-06-15
KR1020170125584A KR102388500B1 (en) 2017-06-15 2017-09-27 Method and apparatus for handling mobility in dual rrc system
KR10-2017-0125584 2017-09-27

Publications (1)

Publication Number Publication Date
WO2018231021A1 true WO2018231021A1 (en) 2018-12-20

Family

ID=64659839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006809 WO2018231021A1 (en) 2017-06-15 2018-06-15 Method and apparatus for processing mobility in dual rrc system

Country Status (1)

Country Link
WO (1) WO2018231021A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836318A (en) * 2019-08-21 2020-10-27 维沃移动通信有限公司 Method and communication equipment for processing link failure
CN112703770A (en) * 2019-01-11 2021-04-23 Oppo广东移动通信有限公司 RRC connection reestablishment method and device, and network equipment
KR20210103565A (en) * 2019-01-18 2021-08-23 비보 모바일 커뮤니케이션 컴퍼니 리미티드 Information instruction method, information acquisition method, terminal and network node
EP4096341A4 (en) * 2020-02-21 2023-08-02 Huawei Technologies Co., Ltd. Communication method and apparatus
EP4108043A4 (en) * 2020-07-22 2023-08-23 Samsung Electronics Co., Ltd. Method and apparatus for handling a protocol supporting suspension and resumption of secondary cell group (scg) in dual connectivity technology supported by next-generation mobile communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140293769A1 (en) * 2011-12-20 2014-10-02 Huawei Technologies Co., Ltd. Method, apparatus and system for processing device faults

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140293769A1 (en) * 2011-12-20 2014-10-02 Huawei Technologies Co., Ltd. Method, apparatus and system for processing device faults

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: " INACTIVE to CONNECTED state transitions", 3GPP TSG-RAN WG2 MEETING #98, no. R2-1704116, 6 May 2017 (2017-05-06), Hangzhou, China, XP051264277 *
INTEL CORPORATION: "NR RRC state transitions to get CONNECTED", 3GPP TSG-RAN WG2 MEETING #98, no. R2-1704774, 6 May 2017 (2017-05-06), Hangzhou, China, XP051264542 *
INTEL CORPORATION: "RRC Connection Reconfiguration for EN-DC operation", 3GPP TSG-RAN WG2 MEETING #98, no. R2-1704815, 6 May 2017 (2017-05-06), Hangzhou, China, XP051264573 *
INTEL CORPORATION: "Security optimizations when resuming or re-establishing an RRC connection", 3GPP TSG-RAN WG2 MEETING #98, no. R2-1704773, 6 May 2017 (2017-05-06), Hangzhou, China, XP051264541 *
See also references of EP3624547A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703770A (en) * 2019-01-11 2021-04-23 Oppo广东移动通信有限公司 RRC connection reestablishment method and device, and network equipment
CN112703770B (en) * 2019-01-11 2023-11-10 Oppo广东移动通信有限公司 RRC connection reestablishment method and device and network equipment
KR20210103565A (en) * 2019-01-18 2021-08-23 비보 모바일 커뮤니케이션 컴퍼니 리미티드 Information instruction method, information acquisition method, terminal and network node
KR102613334B1 (en) 2019-01-18 2023-12-12 비보 모바일 커뮤니케이션 컴퍼니 리미티드 Information instruction method, information acquisition method, terminal and network node
CN111836318A (en) * 2019-08-21 2020-10-27 维沃移动通信有限公司 Method and communication equipment for processing link failure
CN111836318B (en) * 2019-08-21 2021-12-03 维沃移动通信有限公司 Method and communication equipment for processing link failure
EP4096341A4 (en) * 2020-02-21 2023-08-02 Huawei Technologies Co., Ltd. Communication method and apparatus
EP4108043A4 (en) * 2020-07-22 2023-08-23 Samsung Electronics Co., Ltd. Method and apparatus for handling a protocol supporting suspension and resumption of secondary cell group (scg) in dual connectivity technology supported by next-generation mobile communication system
US11856630B2 (en) 2020-07-22 2023-12-26 Samsung Electronics Co., Ltd. Method and apparatus for handling a protocol supporting suspension and resumption of secondary cell group (SCG) in dual connectivity technology supported by next-generation mobile communication system

Similar Documents

Publication Publication Date Title
WO2018231021A1 (en) Method and apparatus for processing mobility in dual rrc system
EP3624547A1 (en) Method and apparatus for processing mobility in dual rrc system
WO2015030483A1 (en) Method and system for random access procedure and radio link failure in inter-enb carrier aggregation
WO2018164498A1 (en) Method for keeping mobile initiated connection only mode user equipment in connected mode
WO2021029649A1 (en) Method and apparatus for handling conditional handover (cho) in a wireless communication network
WO2016133344A1 (en) Method for triggering transmission of user equipment (ue)-to-network relay indication
US11412563B2 (en) Multi-connectivity communication method and device
WO2014058139A1 (en) Method and apparatus for mobility management
WO2019160310A1 (en) Method and apparatus for modifying mapping rule
WO2019194578A1 (en) Method and device for authenticating ue
WO2020036429A1 (en) Method and apparatus for managing pdu session connection
EP4233418A1 (en) Method and system for handling service notification and configuration for mbs in 5g communication network
WO2021167290A1 (en) Method and apparatus for enhancing network selection accuracy in wireless communication system
EP3378249A1 (en) Method and apparatus for reducing signaling overhead and reducing battery of terminal
AU2020264654A1 (en) Communication method and communications apparatus
WO2016122131A1 (en) Method and apparatus for constructing multi-cell network in mobile communication system
JP7013474B2 (en) Context release methods, devices and systems
WO2020197277A1 (en) Method and device for processing downlink srb message in mcg rlf
KR20230107216A (en) Method and device for enhancing unified access backhaul network in new radio
WO2021242076A1 (en) Method and device for transmitting and receiving data in wireless communication system
WO2014012454A1 (en) Bearer switch method, system and device
WO2021153982A1 (en) Method and apparatus for informing changes in coverage enhancement usage in a network
WO2019070106A1 (en) Method and apparatus for declaring rlf
WO2020262892A1 (en) Method and apparatus for controlling packet duplication transmission in wireless communication system
WO2024025309A1 (en) Method and apparatus for performing communication in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018818715

Country of ref document: EP

Effective date: 20191213