WO2018230736A1 - Sensor and method for manufacturing sensor - Google Patents
Sensor and method for manufacturing sensor Download PDFInfo
- Publication number
- WO2018230736A1 WO2018230736A1 PCT/JP2018/023039 JP2018023039W WO2018230736A1 WO 2018230736 A1 WO2018230736 A1 WO 2018230736A1 JP 2018023039 W JP2018023039 W JP 2018023039W WO 2018230736 A1 WO2018230736 A1 WO 2018230736A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- refractive index
- sensor
- low refractive
- index layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
Definitions
- the present invention relates to a sensor and a method for manufacturing the sensor.
- Patent Document 1 International Publication No. 2011/142118
- a substrate In the first aspect of the present invention, a substrate, a ferromagnetic layer provided above the substrate, and a low refractive index layer provided above the ferromagnetic layer and including a space for flowing a measurement target substance And a high refractive index layer that is provided above the low refractive index layer and has a higher refractive index than the low refractive index layer.
- a substrate is prepared, a ferromagnetic layer is provided above the substrate, and a low refractive index layer including a space for flowing a measurement target substance is provided above the ferromagnetic layer.
- a sensor manufacturing method in which a high refractive index layer having a refractive index larger than that of the low refractive index layer is provided above the low refractive index layer.
- FIG. 1 shows an exemplary configuration of a sensor 100 according to a first embodiment.
- An example of the structure of the sensor 100 is shown.
- An example of the manufacturing method of the sensor 100 is shown.
- the surface plasmon polariton light wave is in a laminated structure comprising the substrate 10, the metal layer 12, the ferromagnetic layer 14, the metal layer 16, the low refractive index layer 20, the high refractive index layer 22, and the prism 24.
- An example of a state of distribution is shown.
- the wavelength dependence of the index ⁇ R p / R p of the sensor 100 is shown.
- the dependence of the index ⁇ R p / R p of the sensor 100 on the incident angle ⁇ is shown.
- An example of the structure of the sensor 100 which concerns on Example 2 is shown.
- An example of the structure of the sensor 100 which concerns on Example 3 is shown.
- An example of the structure of the sensor 100 which concerns on Example 4 is shown.
- the structure of the sensor 500 concerning the comparative example 1 is shown.
- the sensitivity of the sensor 100 which concerns on Example 2, and the sensitivity of the sensor 500 which concerns on the comparative example 1 are shown.
- a specific incident angle ⁇ dependency of the index ⁇ R p / R p of the sensor 100 is shown.
- the specific incident angle ⁇ dependency of the index R p of the sensor 500 is shown.
- An example of an application example of the sensor device 200 will be described.
- FIG. 1 illustrates an exemplary configuration of a sensor 100 according to the first embodiment.
- the sensor 100 of this example includes a substrate 10, a metal layer 12, a ferromagnetic layer 14, a metal layer 16, a low refractive index layer 20, a high refractive index layer 22, a prism 24, and a molecular recognition element 32. With.
- the sensor 100 measures the refractive index of the measurement target substance 30.
- the substrate 10 may be a substrate of any material such as a glass substrate or a semiconductor substrate.
- the material of the substrate 10 is a material on which an oxide such as silicon oxide (SiO 2 ) or magnesium oxide (MgO) or a metal such as iron (Fe) such as silicon, silver (Ag), or gold (Au) can be formed. It is preferable.
- the metal layer 12 is provided above the substrate 10.
- the metal layer 12 in this example is provided between the substrate 10 and the metal layer 16.
- the materials of the metal layer 12 and the metal layer 16 are materials having higher conductivity at the measurement wavelength than the ferromagnetic layer 14.
- the metal layer 12 may be a noble metal such as Ag or Au, or an alloy of two or more materials selected from these.
- the metal layer 12 is an example of a second metal layer.
- the ferromagnetic layer 14 includes a magnetic material having a magnetic moment aligned in a predetermined direction.
- the direction of the magnetic moment of the ferromagnetic layer 14 is controlled by applying an external magnetic field.
- the detection sensitivity of the sensor 100 changes.
- the material of the ferromagnetic layer 14 includes a ferromagnetic material such as cobalt, iron, nickel, or an alloy of two or more kinds of materials selected from these.
- the metal layer 16 is provided on the upper surface of the ferromagnetic layer 14.
- the metal layer 16 of this example is provided between the ferromagnetic layer 14 and the low refractive index layer 20.
- the material of the metal layer 16 is a material having a higher conductivity than the ferromagnetic layer 14.
- the metal layer 16 may be a noble metal such as Ag or Au, or an alloy of two or more materials selected from these.
- the metal layer 12, the ferromagnetic layer 14, and the metal layer 16 constitute a composite metal thin film having a laminated structure of a ferromagnetic metal and a noble metal. By using a noble metal as the metal layer 12 and the metal layer 16, the loss in the composite metal thin film can be reduced and the ATR curve described later can be made steep.
- the film thickness of the metal layer 16 in this example is smaller than the film thickness of the metal layer 12.
- the metal layer 16 is an example of a first metal layer.
- the low refractive index layer 20 is provided above the ferromagnetic layer 14.
- the low refractive index layer 20 of this example is provided on the upper surface of the metal layer 16.
- the low refractive index layer 20 has a space for flowing the measurement target substance 30 having a predetermined refractive index.
- the low refractive index layer 20 has a predetermined layer thickness t.
- the layer thickness t of the low refractive index layer 20 may be 15000 nm or less, 3000 nm or less, 1500 nm or less, or 500 nm or less.
- the refractive index of the low refractive index layer 20 is determined according to the substance to be measured.
- the layer thickness t of the low refractive index layer 20 is changed with respect to a combination of a metal layer containing a ferromagnetic metal and a dielectric for a predetermined refractive index, a radiation mode (that is, a mode represented by ⁇ M)
- the refractive index of the high refractive index layer 22 is determined so that the confinement mode (that is, the mode represented by + M) can be switched by the magnetization reversal of the ferromagnetic metal.
- End portions of the low refractive index layer 20 are supported by a plurality of support layers 21.
- the support layers 21 of this example are provided at the four corners of the substrate 10 when the planar shape of the substrate 10 is a rectangle.
- the plurality of support layers 21 may form an inflow port for flowing in the measurement target substance 30 and an outflow port for flowing out the measurement target substance 30.
- the method for supporting the space between the metal layer 16 and the high refractive index layer 22 is not particularly limited as long as a space into which the low refractive index layer 20 flows can be secured.
- the upper surface and the lower surface of the low refractive index layer 20 are not limited to flat surfaces, and may have curved surfaces, irregularities, or the like as long as the sensor 100 can operate. Furthermore, in order to make the layer adjacent to the low refractive index layer 20 disposable, members such as the metal layer 16 and the high refractive index layer 22 may be exchangeable.
- the measurement target substance 30 is a substance whose characteristics are to be detected by the sensor 100.
- the measurement target substance 30 is not particularly limited as long as it can be introduced into the space of the low refractive index layer 20.
- the measurement target substance 30 in this example is a liquid or a gas.
- the sensor 100 measures the physical properties of the measurement target substance 30.
- the sensor 100 acquires information on the measurement target substance 30 in advance, thereby measuring the type, composition, concentration, binding / dissociation of the analyte and the antibody, and the like from the change in refractive index.
- the measurement target substance 30 is a gas
- the sensor 100 functions as a gas sensor.
- the molecular recognition element 32 adsorbs the measurement target substance 30.
- the molecular recognition element 32 is an antibody corresponding to the measurement target substance 30.
- the molecular recognition element 32 is provided in the space of the low refractive index layer 20.
- the molecular recognition element 32 of this example is provided on the upper surface of the metal layer 16. That is, the molecular recognition element 32 is provided on the bottom surface side of the low refractive index layer 20.
- the molecular recognition element 32 may be provided on the upper surface side of the low refractive index layer 20 or may be provided in the center.
- the sensor 100 can measure a plurality of measurement target substances 30 by providing a plurality of molecular recognition elements 32.
- the high refractive index layer 22 is provided above the low refractive index layer 20.
- the high refractive index layer 22 is a layer having a higher refractive index than the low refractive index layer 20.
- the refractive index difference between the low refractive index layer 20 and the high refractive index layer 22 is determined as follows.
- the refractive index of the low refractive index layer 20 is determined with respect to the refractive index of the measurement target substance 30.
- the layer thickness t of the low-refractive index layer 20 is changed for a combination of a metal layer containing a ferromagnetic metal and a dielectric for a predetermined refractive index, a radiation mode (mode represented by ⁇ M) and a confinement mode
- the refractive index of the high-refractive index layer 22 is determined so that (the mode represented by + M) can be switched by the magnetization reversal of the ferromagnetic metal.
- the refractive index difference between the low refractive index layer 20 and the high refractive index layer 22 is determined as follows.
- the refractive index of the low refractive index layer 20 is determined with respect to the refractive index of the measurement target substance 30.
- the layer thickness t of the low refractive index layer 20 is changed for a combination of a metal layer containing a ferromagnetic metal and a dielectric for a predetermined refractive index, the radiation mode and the confinement mode are changed to the layer of the low refractive index layer 20.
- the refractive index of the high refractive index layer 22 is determined so that it can be switched depending on the thickness t.
- the refractive index difference is determined so as to satisfy the following conditions for a certain wavelength, the layer thickness t of the low refractive index layer 20, and the combination of the ferromagnetic metal and the noble metal.
- the material of the high refractive index layer 22 can be SiO 2 .
- the prism 24 is provided on the high refractive index layer 22.
- Incident light 110 having a predetermined wave number is incident on the prism 24.
- the incident light 110 is incident on the prism 24 at a predetermined incident angle ⁇ .
- Incident light 110 includes at least p-polarized light.
- the wave number and incident angle ⁇ of the incident light 110 may be changed according to the plasmon excited by the sensor 100, the material constituting the low refractive index layer 20 and the high refractive index layer 22, or the like.
- the prism 24 is made of the same material as the high refractive index layer 22.
- the material of the prism 24 in this example is SiO 2 .
- the sensor 100 of this example measures the reflectance of the incident light 110 and detects the difference in the refractive index of the measurement target substance 30 from the difference in the measured reflectance.
- the total reflection attenuation method (ATR method) is used to measure the reflectance of the incident light 110.
- the sensor 100 measures the dependence of the reflectance on the incident angle ⁇ when the magnetization of the ferromagnetic metal is positive and negative, and the change in reflectance when the magnetization is reversed ( ⁇ R p / R p ).
- the change in refractive index is detected using the reflectance (R p ) as an index. Thereby, the sensor 100 measures the physical property of the measurement target substance 30.
- surface plasmons are excited at the interface of the ferromagnetic layer 14 on the low refractive index layer 20 side.
- the excitation condition and excitation state of the surface plasmon are determined by the incident angle ⁇ and the wave number of the incident light 110 incident from the prism 24.
- the surface plasmon is excited through an evanescent wave when light incident from the high refractive index layer 22 side is totally reflected at the interface between the high refractive index layer 22 and the low refractive index layer 20.
- the excited state of the surface plasmon changes as the refractive index of the measurement target substance 30 occupying the space of the low refractive index layer 20 changes.
- the reflectance of the incident light 110 is made zero, or Can approach zero.
- the change in reflectivity ( ⁇ R p / R p ) at the time of magnetization reversal is expressed by the following equation (1).
- the index ( ⁇ R p / R p ) of the sensor 100 changes by ⁇ ( ⁇ R p / R p ) with respect to the change in refractive index ⁇ n
- ⁇ ( ⁇ R p / R p ) / ⁇ n Corresponds to sensitivity.
- the index in this example is obtained by normalizing the difference in reflectance at the time of magnetization reversal by the sum of reflectances, and takes a value between ⁇ 1 and +1.
- ⁇ R p indicates a change in reflectance (that is, a difference in reflectance) at the time of magnetization reversal measured at a certain incident angle ⁇ .
- the magnetization reversal means a case where a predetermined external magnetic field (+ M) is applied to the ferromagnetic layer 14 and an external magnetic field ( ⁇ M) obtained by reversing the external magnetic field (+ M) is applied to the ferromagnetic layer 14.
- R p is the reflectance R p (+ M), R p ( ⁇ M) obtained under the external magnetic field (+ M) and the external magnetic field ( ⁇ M) when the reflectance is measured at a certain incident angle ⁇ . ).
- Sensor 100 detects a change in the refractive index from the index [Delta] R p / R p is the ratio between the [Delta] R p and R p.
- Equation (1) is an example of an index ⁇ R p / R p when the sensor 100 is used, and is not limited to using a difference in reflectance or a sum of reflectances. For example, it is possible to use an average value of the reflectance as R p.
- the change in reflectivity ( ⁇ R p / R p ) at the time of magnetization reversal with respect to the change in refractive index is larger than the change in reflectivity with respect to the change in refractive index. That is, the change ⁇ ( ⁇ R p / R p ) / ⁇ n of the change in reflectance at the time of magnetization reversal is larger than the change ⁇ R p / ⁇ n of the reflectivity with respect to the refractive index.
- Sensor 100 by the index and [Delta] R p / R p, is enhanced sensitivity than if an index R p.
- the sensor 100 of this example can detect a refractive index difference of 10 to the sixth power.
- the reflectances R p (t1) and R p (t2) at two points (t1, t2) having different layer thicknesses t of the low refractive index layer 20 are measured, and the reflectances at different positions are measured.
- Change ( ⁇ R p / R p ) ′ When ( ⁇ R p / R p ) ′ changes by ⁇ ( ⁇ R p / R p ) ′ with respect to the refractive index change ⁇ n, ⁇ ( ⁇ R p / R p ) ′ / ⁇ n corresponds to the sensitivity of the sensor 100. To do.
- the index in this example is obtained by normalizing the difference in reflectance at different positions by the sum of reflectances, and takes a value between ⁇ 1 and +1.
- the magnetization state of the ferromagnetic metal may be arbitrary.
- ⁇ R p ′ indicates a change in reflectance (that is, a difference in reflectance) at two points where the layer thickness t of the low refractive index layer 20 is different, which is measured at a certain incident angle ⁇ .
- R p ′ represents the sum of the reflectances R p (t1) and R p (t2) at two points with different layer thicknesses t of the low refractive index layer 20 measured at a certain incident angle ⁇ .
- the sensor 100 detects a change in refractive index from an index ⁇ R p ′ / R p ′, which is a ratio between ⁇ R p ′ and R p ′.
- the equation (2) is an example of an index ( ⁇ R p / R p ) ′ when the sensor 100 is used, and is not limited to using a difference in reflectance or a sum of reflectances. For example, an average value of reflectance may be used as R p ′.
- the sensor 100 of this example is configured by an otto arrangement having a three-layer structure of a high refractive index layer 22, a low refractive index layer 20 including a measurement target substance 30, and a metal.
- the Z-direction component of the wave number on the high refractive index layer side and the wave number of the surface plasmon can be perfectly matched, and the reflectance is theoretically zero. Thereby, the sensitivity of the sensor 100 improves.
- the indices are ⁇ R p / R p and ( ⁇ R p / R p ) ′, but even when R p is used as the index, the low refractive index layer
- the sensitivity can be improved as compared with the Kretschmann arrangement.
- the sensor 100 reduces the reflectivity to zero and combines the ferromagnetic metal and the noble metal to change the reflectivity at the time of magnetization reversal ( ⁇ R p / R with respect to the change in the refractive index of the measurement target substance 30. p ) to make the change steep.
- the sensor 100 makes the reflectance change ( ⁇ R p / R p ) at the time of magnetization reversal, which is an index, close to 1 (that is, 100%) by setting the reflectance to zero.
- the measurement target substance 30 generally has a wavelength dependency on the refractive index, a large sensitivity can be realized by selecting an appropriate wavelength.
- the sensor 100 is designed in accordance with a wavelength at which the measurement target substance 30 exhibits the largest refractive index change.
- FIG. 2 shows an example of the configuration of the sensor 100.
- the sensor 100 of this example further includes a magnetic field application unit 40.
- the sensor 100 may have the same structure as the sensor 100 shown in FIG.
- the magnetic field application unit 40 applies a magnetic field to the ferromagnetic layer 14.
- the magnetic field application unit 40 applies either the first magnetic field or a second magnetic field different from the first magnetic field to the ferromagnetic layer 14.
- the magnetic field application unit 40 applies a saturation magnetic field to the ferromagnetic layer 14 as the first magnetic field, and applies a reverse magnetic field of the saturation magnetic field to the ferromagnetic layer 14 as the second magnetic field.
- the magnetic field applied to the ferromagnetic layer 14 is not limited to the reversal magnetic field, and may be a magnetic field having the same polarity.
- the magnetic field application unit 40 stabilizes the signal by setting the external magnetic field applied to the ferromagnetic layer 14 as the saturation magnetic field of the ferromagnetic layer 14.
- the magnetic field applied to the ferromagnetic layer 14 is not limited to the saturation magnetic field.
- the low refractive index layer 20 is connected to the inflow portion 26 and the outflow portion 28 at both ends.
- the inflow portion 26 and the outflow portion 28 are connected to the space of the low refractive index layer 20.
- the inflow portion 26 allows the measurement target substance 30 to flow into the low refractive index layer 20 from the outside.
- the outflow part 28 causes the measurement target substance 30 to flow out from the inside of the low refractive index layer 20 to the outside.
- the sensor 100 of this example changes the direction of the magnetic field applied to the ferromagnetic layer 14 and measures the physical property of the measurement target substance 30 using the index ⁇ R p / R p .
- the sensor 100 realizes high sensitivity by adding a magnetic action to the surface plasmon.
- FIG. 3 shows an example of a method for manufacturing the sensor 100. This example is an example of the manufacturing method of the sensor 100, and the sensor 100 may be manufactured using another manufacturing method.
- the substrate 10 is prepared.
- a ferromagnetic layer 14 is provided above the substrate 10.
- a metal layer 12, a ferromagnetic layer 14, and a metal layer 16 are stacked on the upper surface of the substrate 10.
- a low refractive index layer 20 and a high refractive index layer 22 are laminated on the upper surface of the metal layer 16.
- an adhesive is applied to the upper surface of the ferromagnetic layer 14, and the high refractive index layer 22 is laminated above the ferromagnetic layer 14 via the adhesive.
- the adhesive is applied to the upper surface of the metal layer 16.
- the laminated structure of the ferromagnetic layer 14, the low refractive index layer 20, and the high refractive index layer 22 is formed by laminating the high refractive index layer 22 above the ferromagnetic layer 14 with an adhesive. It is formed by heating the layer 14, the adhesive, and the high refractive index layer 22.
- the high refractive index layer 22 is laminated on the upper surface of the metal layer 16 via the support layer 21. That is, the adhesive is cured by heating to become the support layer 21. For example, after providing indium on the metal layer 16 as the material of the support layer 21, the high refractive index layer 22 is laminated and heated in a nitrogen atmosphere. Thus, the high refractive index layer 22 is formed above the metal layer 16 in the manner of solder. Thereby, the low refractive index layer 20 is provided between the high refractive index layer 22 and the metal layer 16.
- the space of the low refractive index layer 20 may be formed using a technique such as an etching process.
- the high refractive index layer 22 is SiO 2
- the flow path is formed by providing a groove on the SiO 2 substrate.
- the low refractive index layer 20 may be formed between the high refractive index layer 22 and the metal layer 16 by bonding the side on which the flow path of the SiO 2 substrate is formed to the metal layer 16 side.
- the prism 24 may be bonded to the upper surface of the high refractive index layer 22 with matching oil or the like.
- FIG. 4 shows an example of a state in which light waves of surface plasmon polariton are distributed in a sensor structure mainly composed of a laminated structure.
- the figure shows a simplified structure of the sensor 100 and an ATR curve of the sensor 100.
- the vertical axis of the ATR curve indicates the intensity of the plasmon wave
- the horizontal axis indicates the coordinates of the sensor 100 in the depth direction.
- the coordinates are such that the interface between the low refractive index layer 20 and the high refractive index layer 22 is the origin, the low refractive index layer 20 side is the positive direction, and the high refractive index layer 22 side is the negative direction.
- the solid line in the graph corresponds to the intensity distribution of the plasmon wave when the magnetic field application unit 40 applies the magnetic field ( ⁇ M), and the broken line indicates the plasmon when the magnetic field application unit 40 applies the magnetic field (+ M). Corresponds to the wave intensity distribution.
- the plasmon wave is mainly generated near the interface between the ferromagnetic layer 14 and the low refractive index layer 20.
- the intensity of the plasmon wave is particularly high at the interface between the ferromagnetic layer 14 and the low refractive index layer 20.
- the characteristics of the plasmon wave are changed by changing the direction of the magnetic field applied by the magnetic field applying unit 40 between the magnetic field (+ M) and the magnetic field ( ⁇ M).
- the plasmon wave has an approximately constant intensity in the high refractive index layer 22. That is, the graph of this example shows the intensity distribution of the plasmon wave at the time of cutoff.
- the cut-off refers to a state in which the light intensity on the high refractive index layer 22 side is constant and the wave number of the plasmon wave becomes a real number, and coincides with the z direction component of the wave number of light incident from the high refractive index layer 22 side. By doing so, the reflectance becomes zero.
- the surface plasmon is excited, but is confined at the interface between the ferromagnetic layer 14 and the low refractive index layer 20 and the intensity converges to zero at the point where the coordinate is ⁇ shown in FIG.
- the wave number of the plasmon wave becomes a real number.
- the thicknesses of the high refractive index layer 22 and the prism 24 are finite, but they are sufficiently thicker than the layer thickness t of the low refractive index layer 20, and the point where the coordinate is ⁇ is the upper end of the high refractive index layer 22. Even if it is regarded as the edge of the semicircle of the prism 24, there is no problem in using the sensor.
- R p (+ M) is 0 in Equation (1), so the index is 1.
- the plasmon wave number changes, so the conditions such as the wavelength of the incident light 110 that causes the cutoff also change.
- the sensor 100 of the present example can realize a cut-off state by optimally selecting the structure constituted by the otto arrangement and the incident light 110.
- FIG. 5 shows the wavelength dependence of the index ⁇ R p / R p of the sensor 100.
- the vertical axis represents the index ⁇ R p / R p
- the horizontal axis represents the wavelength ⁇ [nm] of the incident light 110.
- the index [Delta] R p / R p is found to behave differently depending on the incident angle theta. It can also be seen that the incident angle ⁇ has a different wavelength ⁇ dependency. For example, when the incident angle ⁇ is 55.3 °, the figure of merit ⁇ R p / R p approaches +1.0 and ⁇ 1.0. Further, the incident light 110 has a wavelength at which ⁇ R p / R p greatly changes with respect to a change in wavelength between two wavelengths ⁇ when ⁇ R p / R p approaches +1.0 and ⁇ 1.0. It is preferable. Thereby, the sensitivity of the sensor 100 improves. For example, the sensor 100 may have a figure of merit ⁇ R p / R p of ⁇ 1.0 or more and ⁇ 0.9 or less, ⁇ 0.9 or more and +0.9 or less, +0.9 or more, It may be designed to satisfy +1.0 or less.
- FIG. 6 shows the dependence of the index ⁇ R p / R p of the sensor 100 on the incident angle ⁇ .
- the vertical axis represents the index ⁇ R p / R p
- the horizontal axis represents the incident angle ⁇ [°] of the incident light 110.
- the high refractive index layer 22 is made of SiO 2
- the ferromagnetic layer 14 is made of Fe
- the layer 12 is made of Ag which is a noble metal.
- the index ⁇ R p / R p in this example approaches +1.0 and ⁇ 1.0 when the incident angle ⁇ is around 46.1 °. Further, when the incident angle ⁇ is around 46.1 °, the change of the index ⁇ R p / R p becomes steep. That is, when the incident angle ⁇ is around 46.1 °, the maximum signal (index) change is obtained with respect to the change in the refractive index of the measurement target substance 30, so the measurement conditions of the sensor are set.
- the sensor 100 makes the change (inclination) of the index steep by combining Fe and Ag which is a noble metal. Thereby, the sensitivity of the sensor 100 improves.
- the sensor 100 can adjust the measurement wavelength according to the measurement target substance 30 by changing the thickness of the low refractive index layer 20.
- FIG. 7 illustrates an exemplary configuration of the sensor 100 according to the second embodiment.
- the sensor 100 of this example includes a propagation constant adjustment layer 18.
- the propagation constant adjusting layer 18 is provided on the upper surface of the ferromagnetic layer 14.
- the propagation constant adjusting layer 18 of this example is provided between the ferromagnetic layer 14 and the low refractive index layer 20.
- the refractive index of the propagation constant adjusting layer 18 is greater than 1.
- the film thickness of the propagation constant adjusting layer 18 is smaller than the layer thickness of the low refractive index layer 20.
- the material of the propagation constant adjusting layer 18 is SiO 2 .
- the film thickness of the propagation constant adjusting layer 18 is equal to or less than the layer thickness of the low refractive index layer 20.
- the propagation constant adjustment layer 18 is provided instead of the metal layer 16.
- the sensor 100 includes the metal layer 16 and the propagation constant adjustment layer between the ferromagnetic layer 14 and the low refractive index layer 20. 18 may be provided.
- the propagation constant adjustment layer 18 may have a refractive index adjusted according to the measurement target substance 30 so that the sensitivity of the sensor 100 is improved.
- FIG. 8 illustrates an example of a configuration of the sensor 100 according to the third embodiment.
- the sensor 100 of this example includes a wedge-shaped low refractive index layer 20.
- the low refractive index layer 20 includes a support layer 21 having a predetermined layer thickness t1 and a support layer 21 having a layer thickness t2 different from the layer thickness t1. Since the low refractive index layer 20 includes the support layers 21 having different layer thicknesses t1 and t2, the cross-sectional area of the low refractive index layer 20 changes depending on the position.
- the low refractive index layer 20 of this example has a wedge-shaped structure in which the layer thickness gradually changes from the layer thickness t1 to the layer thickness t2. Therefore, in the sensor 100, the layer thickness of the measurement target substance 30 varies depending on the position where the incident light 110 is incident, and the wavelength ⁇ for measuring the measurement target substance 30 also differs.
- the support layers 21 having different layer thicknesses are formed of solder, solders having different layer thicknesses are provided on the metal layer 16.
- solders having different layer thicknesses are provided on the metal layer 16.
- the low refractive index layer 20 is formed with the support layers 21 having different layer thicknesses t1 and t2.
- the sensor 100 of the present example includes the wedge-shaped low refractive index layer 20, reflection at substantially different incident angles ⁇ without changing the incident angle ⁇ by selecting the incident position and wavelength of the incident light 110.
- the rate (measurement result corresponding to FIG. 6) can be detected.
- the sensor 100 of this example may select the optimum incident position (layer thickness t) corresponding to the measurement target substance 30 and the wavelength of the incident light 110 according to the refractive index of the low refractive index layer 20.
- FIG. 9 shows an example of the configuration of the sensor 100 according to the fourth embodiment. Similar to the sensor 100 according to the third embodiment, the sensor 100 of the present example has different layer thicknesses t1 and t2 of the low refractive index layer 20. In the present example, differences from the third embodiment will be particularly described.
- the sensor 100 can acquire the incident light 110 reflected at different reflectances R p (t 1 ) and R p (t 2 ) by changing the position where the incident light 110 is incident. Incident light 110 reflected at different reflectances may be received by different photodiodes.
- the sensor 100 of this example can measure the measurement target substance 30 without changing the applied magnetic field by using the low refractive index layer 20 having different layer thicknesses t1 and t2. In this example, the case where two different layer thicknesses are used has been described, but three or more different layer thicknesses may be used.
- FIG. 10 shows a configuration of a sensor 500 according to the comparative example.
- the sensor 500 includes a dielectric layer 520 containing a measurement target substance, a noble metal layer 522, and a prism 524.
- the sensor 500 includes a molecular recognition element 532 on the side of the dielectric layer 520 containing the measurement target substance.
- the dielectric layer 520 containing the measurement target substance is air.
- the noble metal layer 522 is formed on the prism 524.
- the noble metal layer 522 in this example is Au.
- a noble metal layer 522 is formed on the prism 524.
- the prism 524 of this example is SiO 2 , and an evanescent wave generated when the light incident from the prism 524 is totally reflected by the noble metal layer 522 is generated at the interface between the noble metal layer 522 and the dielectric layer 520 containing the measurement target substance.
- a sensor is realized using excited plasmon waves. That is, the sensor 500 has a Kretschmann arrangement.
- Incident light 510 enters the prism 524 at an incident angle ⁇ .
- R p is the intensity of the incident p-polarized reflected light.
- the plasmon wave is formed between the dielectric layer 520 containing the measurement target substance and the noble metal layer 522.
- the sensitivity of the sensor 500 is determined by the slope of the ATR curve indicating the angle dependency of the reflectance.
- the sensitivity is determined by the steep slope of the ATR curve or the narrow half-value width of the reflectance valley.
- Equation (3) the index represented by Equation (3) is used.
- A represents the reflectance of light incident on the sensor 100.
- the sensor 500 of this example is configured in a Kretschmann arrangement, and the wavelength of the incident light 510 used in the sensor 500 is determined according to the incident angle ⁇ , the type and thickness of the dielectric and metal containing the measurement target substance, and the like. .
- the incident angle ⁇ suitable for measurement is determined when the measurement wavelength is determined, when the measurement wavelength is adjusted to the optimum wavelength at which the measurement target substance of the sensor 500 exhibits a large refractive index, it is necessary to greatly change the incident angle. Depending on the optimum wavelength, it may be difficult to adjust the incident angle between 0 ° and 90 °.
- the layer thickness of the noble metal layer 522 it is necessary to set the layer thickness of the noble metal layer 522 in order to completely match the Z-direction component (real number) of the wave number of light incident from the prism 524 side with the wave number (complex number) of the plasmon wave.
- the setting accuracy of the thickness of the metal layer needs to be higher than the setting accuracy of the layer thickness of the low refractive index layer 20 in the sensor 100. Accordingly, it is difficult for the sensor 500 to achieve a sharp change by making the reflectance approach zero.
- FIG. 11 shows the sensitivity of the sensor 100 according to the second embodiment and the sensitivity of the sensor 500 according to the first comparative example.
- This figure shows the ATR curve of the sensor and the change of the index with respect to the change of the refractive index.
- the vertical axis indicates the indices ⁇ R p / R p and R p
- the horizontal axis indicates the incident angle ⁇ and time of the incident light 110.
- the ratio of the change of the index ⁇ R p / R p to the change n of the refractive index indicates the sensitivity of the sensor 100 according to the embodiment.
- the index R p indicates the sensitivity of the sensor 500 according to Comparative Example 1.
- ⁇ SPR is an incident angle ⁇ at the time of cutoff when a magnetic field is applied in a certain direction to realize a + M state.
- ⁇ C corresponds to the incident angle at which the index R p shows the largest change with respect to the change in the incident angle ⁇ .
- the index ⁇ R p / R p of the sensor 100 changes more rapidly than the index R p of the sensor 500. Therefore, when the refractive index changes from n d to n d + ⁇ n, the change ⁇ ( ⁇ R p / R p ) of the index of the sensor 100 becomes larger than the change ⁇ (R p ) of the performance index of the sensor 500. Therefore, the sensor 100 is more sensitive to a change in refractive index than the sensor 500.
- FIG. 12A shows the specific dependence of the index ⁇ R p / R p of the sensor 100 on the incident angle ⁇ .
- FIG. 12B shows the specific incident angle ⁇ dependency of the index R p of the sensor 500.
- the vertical axis represents the index ⁇ R p / R p and the index R p
- the horizontal axis represents the incident angle ⁇ .
- the sensitivity is better when the index difference is larger.
- the magnitude of change of ⁇ ( ⁇ R p / R p ) is about 1.
- the magnitude of change of ⁇ (R p ) is about 0.003. That is, the sensor 100 has a sensitivity 1 / 0.003 ⁇ 3 ⁇ 10 2 times that of the sensor 500.
- the specific dependence on the incident angle ⁇ of ⁇ R p / R p in FIG. 12A is obtained by measuring at an appropriate incident angle ⁇ interval.
- a method for obtaining a sufficient resolution of the incident angle ⁇ , here 0.001 degree, will be described below.
- the senor 100 of this example acquires a high angular resolution by reconstructing a 10-fold high-definition image. Therefore, the sensor 100 can obtain the super-resolution exceeding the resolution of the incident angle by image analysis (that is, super-resolution), and can accurately measure the angle dependency of the figure of merit.
- FIG. 13 shows specific incident angle ⁇ dependence of the index ( ⁇ R p / R p ) ′ of the sensor 100 according to the fourth embodiment.
- the vertical axis indicates the index ( ⁇ R p / R p ) ′, and the horizontal axis indicates the incident angle ⁇ .
- the sensitivity is better when the index difference is larger.
- the magnitude of the change of ⁇ ( ⁇ R p / R p ) ′ is about 1.7. Therefore, the sensor 100 according to the fourth embodiment has further excellent sensitivity.
- FIG. 14 shows an example of an application example of the sensor device 200.
- the sensor device 200 includes a sensor 100, a light source 120, and a light receiving unit 130.
- the sensor 100 detects a derivative substance of a plant hormone as the measurement target substance 30.
- Derivative substances of plant hormones are volatile organic compounds such as methyl salicylate and methyl jasmonate.
- a measurement target substance 30 containing a plant hormone derivative substance flows into the sensor 100.
- the measurement target substance 30 is a gas containing a derivative substance of a plant hormone.
- the refractive index of the low refractive index layer 20 is a refractive index corresponding to the plant hormone derivative substance which is the measurement target substance 30. Thereby, the sensor 100 detects the kind and density
- the light source 120 makes incident light 110 incident on the sensor 100.
- the light receiving unit 130 receives the reflected light of the incident light 110 incident from the light source 120.
- the light receiving unit 130 receives reflected light having an intensity corresponding to the characteristics of the measurement target substance 30.
- the display unit 300 displays the measurement result of the sensor device 200.
- the display unit 300 may receive the measurement result of the sensor device 200 by wireless communication.
- the sensor device 200 may include a display device, and the sensor device 200 itself may display the measurement result.
- the processing unit 400 processes the measurement result of the sensor 100.
- the processing unit 400 has a data table indicating the relationship between the derivative substance of plant hormone and the refractive index, and acquires the type and concentration of the derivative substance of plant hormone according to the measurement result of the sensor 100.
- the sensor device 200 of the present example can detect a derivative substance of a plant hormone with an extremely high sensitivity by using the sensor 100 which is an ultrasensitive magnetic plasmon sensor.
- the sensor device 200 can be applied to fields such as agriculture that require highly sensitive sensing.
- FIG. 15 shows an example of the configuration of the sensor device 200.
- the sensor device 200 of this example is an example in the case of simultaneously measuring each substance of the low refractive index layer 20 including a plurality of refractive indexes. Note that the sensor device 200 of this example may be used in combination with the sensor 100 according to other Examples 1 to 3.
- the low refractive index layer 20 includes the measurement target substance 30 having various concentrations.
- the low refractive index layer 20 holds the measurement target substance 30 by providing a molecular recognition element 32 such as an antibody corresponding to the measurement target substance 30.
- the refractive index of the low refractive index layer 20 has a different refractive index depending on the concentration.
- the low refractive index layer 20 of this example has a refractive index of n 1 , n 2 , and n 3 according to the concentrations c 1 , c 2 , and c 3 , for example.
- the angle of incidence at which the reflectance is minimized differs depending on the difference in refractive index.
- a line with low luminance is displayed at different locations on the light receiving unit 130 in FIG. 15 according to the minimum reflectance.
- the lines with low luminance are arranged linearly, but may be arranged two-dimensionally according to the shape of the low refractive index layer 20.
- the light source 120 irradiates the low refractive index layer 20 with the incident light 110.
- the light source 120 condenses the incident light 110 using the lens unit 125, thereby irradiating the incident light 110 on the region where the measurement target substance 30 is held.
- the light receiving unit 130 receives reflected light including information on a plurality of refractive indexes.
- the light receiving unit 130 may receive the reflected light by using the lens unit 135 as a parallel beam.
- the light receiving unit 130 includes an optical sensor array in which photodiodes are arranged. Thereby, when the density
- the measurement target substance 30 for measurement is supplied from the supply source 140 to the chamber 160 via the supply amount control unit 145.
- the chamber 160 may be connected to a pump 150 for sucking the measurement target substance 30.
- the sensor 100 of this example is provided by bonding the high refractive index layer 22 to the substrate 10.
- the space of the low refractive index layer 20 is provided by providing irregularities on the upper surface of the substrate 10 and bonding a bonding member functioning as the high refractive index layer 22 to the upper surface of the substrate 10.
- the sensor 100 includes a metal layer 12 made of Au or Fe, a ferromagnetic layer 14, and a metal layer 16 below the low refractive index layer 20 as in the other embodiments.
- FIG. 16 shows the relationship between the magnetic field applied to the ferromagnetic layer 14 and the magneto-optic effect.
- the ferromagnetic layer 14 of this example is an iron thin film as an example.
- the vertical axis represents the magneto-optical effect [a. u.
- the horizontal axis represents the applied magnetic field [Oe].
- the magneto-optical effect is a physical quantity proportional to the magnetization.
- the applied magnetic field is a magnetic field applied to the ferromagnetic layer 14.
- the magnetic field applied to the ferromagnetic layer 14 by the magnetic field application unit 40 is not limited to a magnitude that maximizes or minimizes the magneto-optic effect.
- the applied magnetic field of the ferromagnetic material layer 14 may be a magnetic field in which the magneto-optical effect is 1/3 or 2/3 of the maximum (absolute value).
- the two types of magnetic fields applied by the magnetic field application unit 40 to the ferromagnetic layer 14 need not be inverted magnetic fields, and may be magnetic fields having the same polarity.
- the sensor 100 may set the applied magnetic field of the magnetic field applying unit 40 to an appropriate magnitude according to the relationship with the layer thickness t of the low refractive index layer 20 and the like.
- the sensor 100 of this example has excellent sensitivity, it realizes high resolution, label-free, real-time and in-situ observation, and can measure mass changes and time transitions.
- the sensor 100 can be applied in a wide range of fields such as medical diagnosis and environmental monitoring.
- the sensor 100 is used for life science, environmental gas measurement, medical diagnosis, and the like.
- the sensor 100 can also be applied to drug detection, landmine sensors, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
In order to provide a sensor using a surface plasmon polariton excitation structure, the present invention provides a sensor which is provided with: a substrate; a ferromagnetic layer provided on the substrate; a low refractive index layer that is provided on the ferromagnetic layer and that includes a space through which a substance to be measured flows; and a high refractive index layer that is provided on the low refractive index layer and that has a higher refractive index than the low refractive index layer. In addition, the present invention provides a method for manufacturing the sensor, the method including: preparing a substrate; providing a ferromagnetic layer on the substrate; providing, on the ferromagnetic layer, a low refractive index layer that includes a space through which a substance to be measured flows; and providing, on the low refractive index layer, a high refractive index layer that has a higher refractive index than the low refractive index layer.
Description
本発明は、センサおよびセンサの製造方法に関する。
The present invention relates to a sensor and a method for manufacturing the sensor.
従来、表面プラズモンポラリトン励起構造を利用したセンサが知られている(例えば、特許文献1参照)。
特許文献1 国際公開第2011/142118号 Conventionally, a sensor using a surface plasmon polariton excitation structure is known (see, for example, Patent Document 1).
Patent Document 1 International Publication No. 2011/142118
特許文献1 国際公開第2011/142118号 Conventionally, a sensor using a surface plasmon polariton excitation structure is known (see, for example, Patent Document 1).
表面プラズモンポラリトン励起構造を利用した、より高感度なセンサが要求されている。
There is a need for a more sensitive sensor that uses a surface plasmon polariton excitation structure.
本発明の第1の態様においては、基板と、基板の上方に設けられた強磁性体層と、強磁性体層の上方に設けられ、測定対象物質を流すための空間を含む低屈折率層と、低屈折率層の上方に設けられ、低屈折率層よりも屈折率の大きい高屈折率層とを備えるセンサを提供する。
In the first aspect of the present invention, a substrate, a ferromagnetic layer provided above the substrate, and a low refractive index layer provided above the ferromagnetic layer and including a space for flowing a measurement target substance And a high refractive index layer that is provided above the low refractive index layer and has a higher refractive index than the low refractive index layer.
本発明の第2の態様においては、基板を用意し、基板の上方に強磁性体層を設け、強磁性体層の上方に、測定対象物質を流すための空間を含む低屈折率層を設け、低屈折率層の上方に、低屈折率層よりも屈折率の大きい高屈折率層を設けるセンサの製造方法を提供する。
In the second aspect of the present invention, a substrate is prepared, a ferromagnetic layer is provided above the substrate, and a low refractive index layer including a space for flowing a measurement target substance is provided above the ferromagnetic layer. Provided is a sensor manufacturing method in which a high refractive index layer having a refractive index larger than that of the low refractive index layer is provided above the low refractive index layer.
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
[実施例1]
図1は、実施例1に係るセンサ100の構成の一例を示す。本例のセンサ100は、基板10と、金属層12と、強磁性体層14と、金属層16と、低屈折率層20と、高屈折率層22と、プリズム24と、分子認識素子32とを備える。センサ100は、測定対象物質30の屈折率を測定する。 [Example 1]
FIG. 1 illustrates an exemplary configuration of asensor 100 according to the first embodiment. The sensor 100 of this example includes a substrate 10, a metal layer 12, a ferromagnetic layer 14, a metal layer 16, a low refractive index layer 20, a high refractive index layer 22, a prism 24, and a molecular recognition element 32. With. The sensor 100 measures the refractive index of the measurement target substance 30.
図1は、実施例1に係るセンサ100の構成の一例を示す。本例のセンサ100は、基板10と、金属層12と、強磁性体層14と、金属層16と、低屈折率層20と、高屈折率層22と、プリズム24と、分子認識素子32とを備える。センサ100は、測定対象物質30の屈折率を測定する。 [Example 1]
FIG. 1 illustrates an exemplary configuration of a
基板10は、ガラス基板や半導体基板等の任意の材料の基板であってよい。基板10の材料は、酸化シリコン(SiO2)、酸化マグネシウム(MgO)等の酸化物やシリコンなどの鉄(Fe)、銀(Ag)、金(Au)等の金属を成膜できる材料であることが好ましい。
The substrate 10 may be a substrate of any material such as a glass substrate or a semiconductor substrate. The material of the substrate 10 is a material on which an oxide such as silicon oxide (SiO 2 ) or magnesium oxide (MgO) or a metal such as iron (Fe) such as silicon, silver (Ag), or gold (Au) can be formed. It is preferable.
金属層12は、基板10の上方に設けられる。本例の金属層12は、基板10と金属層16との間に設けられている。金属層12と金属層16の材料は、強磁性体層14よりも測定波長における導電率が高い材料である。金属層12は、AgやAu等の貴金属、または、これらから選択される2種類以上の材料の合金であってよい。金属層12は、第2金属層の一例である。
The metal layer 12 is provided above the substrate 10. The metal layer 12 in this example is provided between the substrate 10 and the metal layer 16. The materials of the metal layer 12 and the metal layer 16 are materials having higher conductivity at the measurement wavelength than the ferromagnetic layer 14. The metal layer 12 may be a noble metal such as Ag or Au, or an alloy of two or more materials selected from these. The metal layer 12 is an example of a second metal layer.
強磁性体層14は、磁気モーメントが予め定められた方向に揃った磁性材料を含む。一例において、強磁性体層14は、外部磁場の印加により磁気モーメントの方向が制御される。強磁性体層14に印加する外部磁場の大きさを変更することにより、センサ100の検出感度が変化する。例えば、強磁性体層14の材料は、コバルト、鉄、ニッケル等の強磁性材料、または、これらから選択される2種類以上の材料の合金を含む。
The ferromagnetic layer 14 includes a magnetic material having a magnetic moment aligned in a predetermined direction. In one example, the direction of the magnetic moment of the ferromagnetic layer 14 is controlled by applying an external magnetic field. By changing the magnitude of the external magnetic field applied to the ferromagnetic layer 14, the detection sensitivity of the sensor 100 changes. For example, the material of the ferromagnetic layer 14 includes a ferromagnetic material such as cobalt, iron, nickel, or an alloy of two or more kinds of materials selected from these.
金属層16は、強磁性体層14の上面に設けられる。本例の金属層16は、強磁性体層14と低屈折率層20との間に設けられている。金属層16の材料は、強磁性体層14よりも導電率が高い材料である。金属層16は、AgやAu等の貴金属、または、これらから選択される2種類以上の材料の合金であってよい。金属層12と、強磁性体層14と、金属層16とは、強磁性金属と貴金属の積層構造からなる複合金属薄膜を構成する。金属層12および金属層16として貴金属を用いることにより、複合金属薄膜におけるロスを減らして、後述するATRカーブを急峻にできる。本例の金属層16の膜厚は、金属層12の膜厚よりも薄い。金属層16は、第1金属層の一例である。
The metal layer 16 is provided on the upper surface of the ferromagnetic layer 14. The metal layer 16 of this example is provided between the ferromagnetic layer 14 and the low refractive index layer 20. The material of the metal layer 16 is a material having a higher conductivity than the ferromagnetic layer 14. The metal layer 16 may be a noble metal such as Ag or Au, or an alloy of two or more materials selected from these. The metal layer 12, the ferromagnetic layer 14, and the metal layer 16 constitute a composite metal thin film having a laminated structure of a ferromagnetic metal and a noble metal. By using a noble metal as the metal layer 12 and the metal layer 16, the loss in the composite metal thin film can be reduced and the ATR curve described later can be made steep. The film thickness of the metal layer 16 in this example is smaller than the film thickness of the metal layer 12. The metal layer 16 is an example of a first metal layer.
低屈折率層20は、強磁性体層14の上方に設けられる。本例の低屈折率層20は、金属層16の上面に設けられている。低屈折率層20は、予め定められた屈折率の測定対象物質30を流すための空間を有する。低屈折率層20は、予め定められた層厚tを有する。一例において、低屈折率層20の層厚tは、15000nm以下であってよく、3000nm以下であってよく、1500nm以下であってよく、500nm以下であってもよい。低屈折率層20の屈折率は、測定対象物質に応じて決められる。決められた屈折率に対して強磁性金属を含む金属層と誘電体の組合せに対して低屈折率層20の層厚tを変えた時、放射モード(即ち、-Mで表記したモード)と閉じ込めモード(即ち、+Mで表記したモード)を強磁性金属の磁化反転によって切り替えることができるように高屈折率層22の屈折率を決める。低屈折率層20の端部は、複数の支持層21により支持されている。本例の支持層21は、基板10の平面形状が四角形の場合、基板10の四隅に設けられる。複数の支持層21は、測定対象物質30を流入するための流入口と、測定対象物質30を流出するための流出口を形成してよい。但し、低屈折率層20を流入する空間を確保できるものであれば、金属層16と高屈折率層22との間を支持する方法は特に限定されない。
The low refractive index layer 20 is provided above the ferromagnetic layer 14. The low refractive index layer 20 of this example is provided on the upper surface of the metal layer 16. The low refractive index layer 20 has a space for flowing the measurement target substance 30 having a predetermined refractive index. The low refractive index layer 20 has a predetermined layer thickness t. In one example, the layer thickness t of the low refractive index layer 20 may be 15000 nm or less, 3000 nm or less, 1500 nm or less, or 500 nm or less. The refractive index of the low refractive index layer 20 is determined according to the substance to be measured. When the layer thickness t of the low refractive index layer 20 is changed with respect to a combination of a metal layer containing a ferromagnetic metal and a dielectric for a predetermined refractive index, a radiation mode (that is, a mode represented by −M) The refractive index of the high refractive index layer 22 is determined so that the confinement mode (that is, the mode represented by + M) can be switched by the magnetization reversal of the ferromagnetic metal. End portions of the low refractive index layer 20 are supported by a plurality of support layers 21. The support layers 21 of this example are provided at the four corners of the substrate 10 when the planar shape of the substrate 10 is a rectangle. The plurality of support layers 21 may form an inflow port for flowing in the measurement target substance 30 and an outflow port for flowing out the measurement target substance 30. However, the method for supporting the space between the metal layer 16 and the high refractive index layer 22 is not particularly limited as long as a space into which the low refractive index layer 20 flows can be secured.
また、低屈折率層20の上面および下面は、平面に限定されず、センサ100が動作できるものであれば、曲面や凹凸等を有するものであってもよい。さらに、低屈折率層20と隣接する層を使い捨てにするため、金属層16や高屈折率層22などの部材を交換式としてもよい。
Further, the upper surface and the lower surface of the low refractive index layer 20 are not limited to flat surfaces, and may have curved surfaces, irregularities, or the like as long as the sensor 100 can operate. Furthermore, in order to make the layer adjacent to the low refractive index layer 20 disposable, members such as the metal layer 16 and the high refractive index layer 22 may be exchangeable.
測定対象物質30は、センサ100により特性を検出する対象となる物質である。測定対象物質30は、低屈折率層20の空間に導入できるものであれば、特に限定されない。本例の測定対象物質30は、液体または気体である。センサ100は、測定対象物質30の物性を測定する。一例において、センサ100は、予め測定対象物質30の情報を取得しておくことにより、屈折率の変化から測定対象物質30の種類、組成、濃度、分析物と抗体の結合・解離等を測定する。例えば、測定対象物質30が気体の場合、センサ100は、ガスセンサとして機能する。
The measurement target substance 30 is a substance whose characteristics are to be detected by the sensor 100. The measurement target substance 30 is not particularly limited as long as it can be introduced into the space of the low refractive index layer 20. The measurement target substance 30 in this example is a liquid or a gas. The sensor 100 measures the physical properties of the measurement target substance 30. In one example, the sensor 100 acquires information on the measurement target substance 30 in advance, thereby measuring the type, composition, concentration, binding / dissociation of the analyte and the antibody, and the like from the change in refractive index. . For example, when the measurement target substance 30 is a gas, the sensor 100 functions as a gas sensor.
分子認識素子32は、測定対象物質30を吸着する。一例において、分子認識素子32は、測定対象物質30に対応する抗体である。分子認識素子32は、低屈折率層20の空間内に設けられる。本例の分子認識素子32は、金属層16の上面に設けられる。即ち、分子認識素子32は、低屈折率層20の底面側に設けられている。但し、分子認識素子32は、低屈折率層20の上面側に設けられても、中央に設けられてもよい。センサ100は、複数の分子認識素子32を設けることにより、複数の測定対象物質30を測定することができる。
The molecular recognition element 32 adsorbs the measurement target substance 30. In one example, the molecular recognition element 32 is an antibody corresponding to the measurement target substance 30. The molecular recognition element 32 is provided in the space of the low refractive index layer 20. The molecular recognition element 32 of this example is provided on the upper surface of the metal layer 16. That is, the molecular recognition element 32 is provided on the bottom surface side of the low refractive index layer 20. However, the molecular recognition element 32 may be provided on the upper surface side of the low refractive index layer 20 or may be provided in the center. The sensor 100 can measure a plurality of measurement target substances 30 by providing a plurality of molecular recognition elements 32.
高屈折率層22は、低屈折率層20の上方に設けられる。高屈折率層22は、低屈折率層20よりも屈折率の大きい層である。一例において、低屈折率層20と高屈折率層22との屈折率差は以下のように決められる。測定対象物質30の屈折率に対して低屈折率層20の屈折率が決まる。決められた屈折率に対して強磁性金属を含む金属層と誘電体の組合せに対して低屈折率層20の層厚tを変えた時、放射モード(-Mで表記したモード)と閉じ込めモード(+Mで表記したモード)を強磁性金属の磁化反転によって切り替えることができるように高屈折率層22の屈折率を決める。
The high refractive index layer 22 is provided above the low refractive index layer 20. The high refractive index layer 22 is a layer having a higher refractive index than the low refractive index layer 20. In one example, the refractive index difference between the low refractive index layer 20 and the high refractive index layer 22 is determined as follows. The refractive index of the low refractive index layer 20 is determined with respect to the refractive index of the measurement target substance 30. When the layer thickness t of the low-refractive index layer 20 is changed for a combination of a metal layer containing a ferromagnetic metal and a dielectric for a predetermined refractive index, a radiation mode (mode represented by −M) and a confinement mode The refractive index of the high-refractive index layer 22 is determined so that (the mode represented by + M) can be switched by the magnetization reversal of the ferromagnetic metal.
また、別の例において低屈折率層20と高屈折率層22との屈折率差は以下のように決められる。測定対象物質30の屈折率に対して低屈折率層20の屈折率が決まる。決められた屈折率に対して強磁性金属を含む金属層と誘電体の組合せに対して低屈折率層20の層厚tを変えた時、放射モードと閉じ込めモードを低屈折率層20の層厚tの違いによって切り替えることができるように高屈折率層22の屈折率を決める。ある波長と低屈折率層20の層厚t、強磁性金属と貴金属の組み合わせに対して左記の条件を満たすように屈折率差が決められる。例えば、低屈折率層20の屈折率を1.02としたとき、高屈折率層22の材料は、SiO2とできる。
In another example, the refractive index difference between the low refractive index layer 20 and the high refractive index layer 22 is determined as follows. The refractive index of the low refractive index layer 20 is determined with respect to the refractive index of the measurement target substance 30. When the layer thickness t of the low refractive index layer 20 is changed for a combination of a metal layer containing a ferromagnetic metal and a dielectric for a predetermined refractive index, the radiation mode and the confinement mode are changed to the layer of the low refractive index layer 20. The refractive index of the high refractive index layer 22 is determined so that it can be switched depending on the thickness t. The refractive index difference is determined so as to satisfy the following conditions for a certain wavelength, the layer thickness t of the low refractive index layer 20, and the combination of the ferromagnetic metal and the noble metal. For example, when the refractive index of the low refractive index layer 20 is 1.02, the material of the high refractive index layer 22 can be SiO 2 .
プリズム24は、高屈折率層22上に設けられる。プリズム24には、予め定められた波数の入射光110が入射する。入射光110は、予め定められた入射角度θでプリズム24に入射される。入射光110は、少なくともp偏光の光を含む。入射光110の波数および入射角度θは、センサ100で励起されるプラズモンや低屈折率層20および高屈折率層22を構成する材料等に応じて変更されてよい。一例において、プリズム24は、高屈折率層22と同一の材料で形成される。本例のプリズム24の材料は、SiO2である。
The prism 24 is provided on the high refractive index layer 22. Incident light 110 having a predetermined wave number is incident on the prism 24. The incident light 110 is incident on the prism 24 at a predetermined incident angle θ. Incident light 110 includes at least p-polarized light. The wave number and incident angle θ of the incident light 110 may be changed according to the plasmon excited by the sensor 100, the material constituting the low refractive index layer 20 and the high refractive index layer 22, or the like. In one example, the prism 24 is made of the same material as the high refractive index layer 22. The material of the prism 24 in this example is SiO 2 .
本例のセンサ100は、入射光110の反射率を測定し、測定した反射率の違いから測定対象物質30の屈折率の違いを検出する。入射光110の反射率の測定には、全反射減衰法(ATR法)が用いられる。例えば、センサ100は、強磁性金属の磁化がプラスの時とマイナスの時、反射率の入射角度θの依存性を測定し、磁化が反転したときの反射率の変化(ΔRp/Rp)、もしくは反射率(Rp)を指標として屈折率の変化を検出する。これにより、センサ100は、測定対象物質30の物性を測定する。
The sensor 100 of this example measures the reflectance of the incident light 110 and detects the difference in the refractive index of the measurement target substance 30 from the difference in the measured reflectance. The total reflection attenuation method (ATR method) is used to measure the reflectance of the incident light 110. For example, the sensor 100 measures the dependence of the reflectance on the incident angle θ when the magnetization of the ferromagnetic metal is positive and negative, and the change in reflectance when the magnetization is reversed (ΔR p / R p ). Alternatively, the change in refractive index is detected using the reflectance (R p ) as an index. Thereby, the sensor 100 measures the physical property of the measurement target substance 30.
ここで、強磁性体層14の低屈折率層20側の界面において、表面プラズモンが励起される。表面プラズモンの励起条件および励起状態は、プリズム24から入射する入射光110の入射角度θおよび波数によって決まる。例えば、表面プラズモンは、高屈折率層22側から入射した光が、高屈折率層22と低屈折率層20との界面で全反射する際のエバネッセント波を通じて励起される。そして、表面プラズモンの励起状態は、低屈折率層20の空間を占める測定対象物質30の屈折率が変化することによって変化する。高屈折率層22側の波数のZ方向成分と表面プラズモン側の波数を一致させるように低屈折率層20の層厚tを設計することにより、入射光110の反射率をゼロに、または、ゼロに近づけることができる。
Here, surface plasmons are excited at the interface of the ferromagnetic layer 14 on the low refractive index layer 20 side. The excitation condition and excitation state of the surface plasmon are determined by the incident angle θ and the wave number of the incident light 110 incident from the prism 24. For example, the surface plasmon is excited through an evanescent wave when light incident from the high refractive index layer 22 side is totally reflected at the interface between the high refractive index layer 22 and the low refractive index layer 20. The excited state of the surface plasmon changes as the refractive index of the measurement target substance 30 occupying the space of the low refractive index layer 20 changes. By designing the layer thickness t of the low refractive index layer 20 so that the Z-direction component of the wave number on the high refractive index layer 22 side matches the wave number on the surface plasmon side, the reflectance of the incident light 110 is made zero, or Can approach zero.
センサ100の指標のうち、磁化反転時の反射率の変化(ΔRp/Rp)は、(数1)式で示される。たとえば、センサ100の指標(ΔRp/Rp)が屈折率の変化δnに対してδ(ΔRp/Rp)だけ変化したとき、δ(ΔRp/Rp)/δnが、センサ100の感度に対応する。本例の指標は、磁化反転時の反射率の差を反射率の和で規格化したものであり、-1から+1の間をとる。
ΔRpは、ある入射角度θで測定された磁化反転時の反射率の変化(即ち、反射率の差)を示す。磁化反転時とは、強磁性体層14に予め定められた外部磁場(+M)を印加し、当該外部磁場(+M)を反転した外部磁場(-M)を強磁性体層14に印加する場合を指す。Rpは、ある入射角度θで反射率を測定したとき、外部磁場(+M)、および、外部磁場(-M)のもとで得られた反射率Rp(+M),Rp(-M)の和を示す。センサ100は、ΔRpとRpとの比である指標ΔRp/Rpから屈折率の変化を検出する。なお、(数1)式は、センサ100を用いた場合の指標ΔRp/Rpの一例であり、反射率の差や反射率の和を用いることに限定されるものではない。例えば、Rpとして反射率の平均値を用いてもよい。
Of the indices of the sensor 100, the change in reflectivity (ΔR p / R p ) at the time of magnetization reversal is expressed by the following equation (1). For example, when the index (ΔR p / R p ) of the sensor 100 changes by δ (ΔR p / R p ) with respect to the change in refractive index δn, δ (ΔR p / R p ) / δn Corresponds to sensitivity. The index in this example is obtained by normalizing the difference in reflectance at the time of magnetization reversal by the sum of reflectances, and takes a value between −1 and +1.
ΔR p indicates a change in reflectance (that is, a difference in reflectance) at the time of magnetization reversal measured at a certain incident angle θ. The magnetization reversal means a case where a predetermined external magnetic field (+ M) is applied to the ferromagnetic layer 14 and an external magnetic field (−M) obtained by reversing the external magnetic field (+ M) is applied to the ferromagnetic layer 14. Point to. R p is the reflectance R p (+ M), R p (−M) obtained under the external magnetic field (+ M) and the external magnetic field (−M) when the reflectance is measured at a certain incident angle θ. ). Sensor 100 detects a change in the refractive index from the index [Delta] R p / R p is the ratio between the [Delta] R p and R p. Equation (1) is an example of an index ΔR p / R p when the sensor 100 is used, and is not limited to using a difference in reflectance or a sum of reflectances. For example, it is possible to use an average value of the reflectance as R p.
なお、屈折率の変化に対する磁化反転時の反射率の変化(ΔRp/Rp)の変化は、屈折率の変化に対する反射率の変化よりも大きくなる。即ち、磁化反転時の反射率の変化の屈折率に対する変化δ(ΔRp/Rp)/δnは、反射率の屈折率に対する変化δRp/δnよりも大きい。センサ100は、指標をΔRp/Rpとすることにより、Rpを指標とする場合よりも感度を高められる。一例において、本例のセンサ100は、10のマイナス6乗の屈折率差を検出できる。
Note that the change in reflectivity (ΔR p / R p ) at the time of magnetization reversal with respect to the change in refractive index is larger than the change in reflectivity with respect to the change in refractive index. That is, the change δ (ΔR p / R p ) / δn of the change in reflectance at the time of magnetization reversal is larger than the change δR p / δn of the reflectivity with respect to the refractive index. Sensor 100, by the index and [Delta] R p / R p, is enhanced sensitivity than if an index R p. In one example, the sensor 100 of this example can detect a refractive index difference of 10 to the sixth power.
センサ100のもう一つの指標として、低屈折率層20の層厚tが異なる2点(t1、t2)の反射率Rp(t1)、Rp(t2)を測定し、異なる位置の反射率の変化(ΔRp/Rp)'を挙げる。(ΔRp/Rp)'が屈折率の変化δnに対してδ(ΔRp/Rp)'だけ変化したとき、δ(ΔRp/Rp)'/δnが、センサ100の感度に対応する。本例の指標は、異なる位置の反射率の差を反射率の和で規格化したものであり、-1から+1の間をとる。強磁性金属の磁化状態は任意でよい。
ΔRp'は、ある入射角度θで測定された、低屈折率層20の層厚tが異なる2点の反射率の変化(即ち、反射率の差)を示す。Rp'は、ある入射角度θで測定された、低屈折率層20の層厚tが異なる2点の反射率Rp(t1),Rp(t2)の和を示す。センサ100は、ΔRp'とRp'との比である指標ΔRp'/Rp'から屈折率の変化を検出する。なお、(数2)式は、センサ100を用いた場合の指標(ΔRp/Rp)'の一例であり、反射率の差や反射率の和を用いることに限定されるものではない。例えば、Rp'として反射率の平均値を用いてもよい。
As another index of the sensor 100, the reflectances R p (t1) and R p (t2) at two points (t1, t2) having different layer thicknesses t of the low refractive index layer 20 are measured, and the reflectances at different positions are measured. Change (ΔR p / R p ) ′. When (ΔR p / R p ) ′ changes by δ (ΔR p / R p ) ′ with respect to the refractive index change δn, δ (ΔR p / R p ) ′ / δn corresponds to the sensitivity of the sensor 100. To do. The index in this example is obtained by normalizing the difference in reflectance at different positions by the sum of reflectances, and takes a value between −1 and +1. The magnetization state of the ferromagnetic metal may be arbitrary.
ΔR p ′ indicates a change in reflectance (that is, a difference in reflectance) at two points where the layer thickness t of the low refractive index layer 20 is different, which is measured at a certain incident angle θ. R p ′ represents the sum of the reflectances R p (t1) and R p (t2) at two points with different layer thicknesses t of the low refractive index layer 20 measured at a certain incident angle θ. The sensor 100 detects a change in refractive index from an index ΔR p ′ / R p ′, which is a ratio between ΔR p ′ and R p ′. The equation (2) is an example of an index (ΔR p / R p ) ′ when the sensor 100 is used, and is not limited to using a difference in reflectance or a sum of reflectances. For example, an average value of reflectance may be used as R p ′.
本例のセンサ100は、高屈折率層22と、測定対象物質30を含む低屈折率層20と、金属との三層構造を備えるオット配置で構成される。オット配置では、高屈折率層側の波数のZ方向成分と表面プラズモンの波数を完全に整合させることができ、反射率が理論上ゼロとなる。これにより、センサ100の感度が向上する。なお、本例のセンサ100は、オット配置において、指標をΔRp/Rp、(ΔRp/Rp)'としたが、指標にRpを用いた場合であっても、低屈折率層20の層厚tを分析物、測定波長に対して選んで測定することでクレッチマン配置と比較して感度を向上できる。
The sensor 100 of this example is configured by an otto arrangement having a three-layer structure of a high refractive index layer 22, a low refractive index layer 20 including a measurement target substance 30, and a metal. In the Otto arrangement, the Z-direction component of the wave number on the high refractive index layer side and the wave number of the surface plasmon can be perfectly matched, and the reflectance is theoretically zero. Thereby, the sensitivity of the sensor 100 improves. In the sensor 100 of this example, in the otto configuration, the indices are ΔR p / R p and (ΔR p / R p ) ′, but even when R p is used as the index, the low refractive index layer By selecting and measuring the layer thickness t of 20 with respect to the analyte and the measurement wavelength, the sensitivity can be improved as compared with the Kretschmann arrangement.
以上の通り、センサ100は、反射率をゼロにし、且つ、強磁性金属と貴金属とを組み合わせることで、測定対象物質30の屈折率の変化に対する磁化反転時の反射率の変化(ΔRp/Rp)の変化を急峻にする。センサ100は、反射率をゼロにすることにより、指標である磁化反転時の反射率の変化(ΔRp/Rp)を1(即ち、100%)に近づけられる。また、測定対象物質30が一般に屈折率に波長依存性を有するので、適切な波長を選択することにより、大きな感度が実現される。例えば、センサ100は、測定対象物質30が最も大きな屈折率変化を示す波長に合わせて設計される。
As described above, the sensor 100 reduces the reflectivity to zero and combines the ferromagnetic metal and the noble metal to change the reflectivity at the time of magnetization reversal (ΔR p / R with respect to the change in the refractive index of the measurement target substance 30. p ) to make the change steep. The sensor 100 makes the reflectance change (ΔR p / R p ) at the time of magnetization reversal, which is an index, close to 1 (that is, 100%) by setting the reflectance to zero. In addition, since the measurement target substance 30 generally has a wavelength dependency on the refractive index, a large sensitivity can be realized by selecting an appropriate wavelength. For example, the sensor 100 is designed in accordance with a wavelength at which the measurement target substance 30 exhibits the largest refractive index change.
図2は、センサ100の構成の一例を示す。本例のセンサ100は、磁場印加部40をさらに備える。なお、図2では、センサ100の詳細な構造を省略しているものの、図1で示したセンサ100と同様の構造を有してよい。
FIG. 2 shows an example of the configuration of the sensor 100. The sensor 100 of this example further includes a magnetic field application unit 40. In FIG. 2, although the detailed structure of the sensor 100 is omitted, the sensor 100 may have the same structure as the sensor 100 shown in FIG.
磁場印加部40は、強磁性体層14に磁場を印加する。一例において、磁場印加部40は、第1の磁場と、第1の磁場と異なる第2の磁場のいずれかを強磁性体層14に印加する。例えば、磁場印加部40は、第1の磁場として飽和磁場を強磁性体層14に印加し、第2の磁場として飽和磁場の反転磁場を強磁性体層14に印加する。但し、強磁性体層14に印加する磁場は、反転磁場に限られず、同一の極性の磁場であってよい。磁場印加部40は、強磁性体層14に印加する外部磁場を強磁性体層14の飽和磁場とすることにより信号が安定する。但し、強磁性体層14に印加する磁場は、飽和磁場に限られない。
The magnetic field application unit 40 applies a magnetic field to the ferromagnetic layer 14. In one example, the magnetic field application unit 40 applies either the first magnetic field or a second magnetic field different from the first magnetic field to the ferromagnetic layer 14. For example, the magnetic field application unit 40 applies a saturation magnetic field to the ferromagnetic layer 14 as the first magnetic field, and applies a reverse magnetic field of the saturation magnetic field to the ferromagnetic layer 14 as the second magnetic field. However, the magnetic field applied to the ferromagnetic layer 14 is not limited to the reversal magnetic field, and may be a magnetic field having the same polarity. The magnetic field application unit 40 stabilizes the signal by setting the external magnetic field applied to the ferromagnetic layer 14 as the saturation magnetic field of the ferromagnetic layer 14. However, the magnetic field applied to the ferromagnetic layer 14 is not limited to the saturation magnetic field.
低屈折率層20は、両端において流入部26および流出部28と接続されている。流入部26および流出部28は、低屈折率層20の空間に接続される。流入部26は、測定対象物質30を外部から低屈折率層20の内部に流入させる。流出部28は、測定対象物質30を低屈折率層20の内部から外部に流出させる。
The low refractive index layer 20 is connected to the inflow portion 26 and the outflow portion 28 at both ends. The inflow portion 26 and the outflow portion 28 are connected to the space of the low refractive index layer 20. The inflow portion 26 allows the measurement target substance 30 to flow into the low refractive index layer 20 from the outside. The outflow part 28 causes the measurement target substance 30 to flow out from the inside of the low refractive index layer 20 to the outside.
本例のセンサ100は、強磁性体層14に印加する磁場の方向を変化させて、指標ΔRp/Rpで測定対象物質30の物性を測定する。センサ100は、表面プラズモンに磁気的作用を付加して高感度化を実現する。
The sensor 100 of this example changes the direction of the magnetic field applied to the ferromagnetic layer 14 and measures the physical property of the measurement target substance 30 using the index ΔR p / R p . The sensor 100 realizes high sensitivity by adding a magnetic action to the surface plasmon.
図3は、センサ100の製造方法の一例を示す。本例は、センサ100の製造方法の一例であり他の製造方法を用いてセンサ100が製造されてもよい。
FIG. 3 shows an example of a method for manufacturing the sensor 100. This example is an example of the manufacturing method of the sensor 100, and the sensor 100 may be manufactured using another manufacturing method.
センサ100の製造では、基板10を用意する。基板10の上方には、強磁性体層14が設けられる。本例では、基板10の上面に金属層12と、強磁性体層14と、金属層16とが積層される。また、金属層16の上面には、低屈折率層20および高屈折率層22が積層される。一例において、強磁性体層14の上面に接着剤を塗布し、当該接着剤を介して、強磁性体層14の上方に高屈折率層22を積層する。センサ100が金属層16を有する場合、接着剤は金属層16の上面に塗布される。強磁性体層14と、低屈折率層20と、高屈折率層22との積層構造は、強磁性体層14の上方に接着剤を介して高屈折率層22を積層し、強磁性体層14と、接着剤と、高屈折率層22とを加熱することにより形成される。
In manufacturing the sensor 100, the substrate 10 is prepared. A ferromagnetic layer 14 is provided above the substrate 10. In this example, a metal layer 12, a ferromagnetic layer 14, and a metal layer 16 are stacked on the upper surface of the substrate 10. A low refractive index layer 20 and a high refractive index layer 22 are laminated on the upper surface of the metal layer 16. In one example, an adhesive is applied to the upper surface of the ferromagnetic layer 14, and the high refractive index layer 22 is laminated above the ferromagnetic layer 14 via the adhesive. When the sensor 100 has the metal layer 16, the adhesive is applied to the upper surface of the metal layer 16. The laminated structure of the ferromagnetic layer 14, the low refractive index layer 20, and the high refractive index layer 22 is formed by laminating the high refractive index layer 22 above the ferromagnetic layer 14 with an adhesive. It is formed by heating the layer 14, the adhesive, and the high refractive index layer 22.
高屈折率層22は、金属層16の上面に支持層21を介して積層される。即ち、接着剤は、加熱により硬化して支持層21となる。例えば、支持層21の材料としてインジウムを金属層16上に設けた後に、高屈折率層22を積層し、窒素雰囲気中で加熱する。このように、高屈折率層22は、はんだの要領で金属層16の上方に形成される。これにより、低屈折率層20が高屈折率層22と金属層16との間に設けられる。
The high refractive index layer 22 is laminated on the upper surface of the metal layer 16 via the support layer 21. That is, the adhesive is cured by heating to become the support layer 21. For example, after providing indium on the metal layer 16 as the material of the support layer 21, the high refractive index layer 22 is laminated and heated in a nitrogen atmosphere. Thus, the high refractive index layer 22 is formed above the metal layer 16 in the manner of solder. Thereby, the low refractive index layer 20 is provided between the high refractive index layer 22 and the metal layer 16.
なお、低屈折率層20の空間は、エッチングプロセス等の技術を用いて形成されてよい。例えば、高屈折率層22がSiO2の場合、SiO2基板上に溝を設けることにより流路を形成する。SiO2基板の流路が形成された側を金属層16側に貼り合わせることにより、高屈折率層22と金属層16との間に低屈折率層20が形成されてよい。そして、プリズム24は、マッチングオイル等により、高屈折率層22の上面に貼り合わせられてよい。
The space of the low refractive index layer 20 may be formed using a technique such as an etching process. For example, when the high refractive index layer 22 is SiO 2 , the flow path is formed by providing a groove on the SiO 2 substrate. The low refractive index layer 20 may be formed between the high refractive index layer 22 and the metal layer 16 by bonding the side on which the flow path of the SiO 2 substrate is formed to the metal layer 16 side. The prism 24 may be bonded to the upper surface of the high refractive index layer 22 with matching oil or the like.
図4は、表面プラズモンポラリトンの光波が積層構造を主とするセンサ構造の中で分布する様子の一例を示す。同図は、センサ100の簡略化した構造と、センサ100のATRカーブを示す。ATRカーブの縦軸はプラズモン波の強度を示し、横軸はセンサ100の深さ方向の座標を示す。座標は、低屈折率層20と高屈折率層22との界面を原点として、低屈折率層20側を正の方向とし、高屈折率層22側を負の方向としている。また、グラフ中の実線は、磁場印加部40が磁場(-M)を印加する場合のプラズモン波の強度分布に対応し、破線は、磁場印加部40が磁場(+M)を印加する場合のプラズモン波の強度分布に対応する。
FIG. 4 shows an example of a state in which light waves of surface plasmon polariton are distributed in a sensor structure mainly composed of a laminated structure. The figure shows a simplified structure of the sensor 100 and an ATR curve of the sensor 100. The vertical axis of the ATR curve indicates the intensity of the plasmon wave, and the horizontal axis indicates the coordinates of the sensor 100 in the depth direction. The coordinates are such that the interface between the low refractive index layer 20 and the high refractive index layer 22 is the origin, the low refractive index layer 20 side is the positive direction, and the high refractive index layer 22 side is the negative direction. The solid line in the graph corresponds to the intensity distribution of the plasmon wave when the magnetic field application unit 40 applies the magnetic field (−M), and the broken line indicates the plasmon when the magnetic field application unit 40 applies the magnetic field (+ M). Corresponds to the wave intensity distribution.
プラズモン波は、強磁性体層14および低屈折率層20の界面付近で主に発生する。プラズモン波の強度は、強磁性体層14と低屈折率層20との界面で特に高くなる。プラズモン波の特性は、磁場印加部40による印加磁場の方向を磁場(+M)と磁場(-M)で変化させることにより変化している。プラズモン波は、高屈折率層22において、約一定の強度を有する。即ち、本例のグラフは、カットオフ時のプラズモン波の強度分布を示す。
The plasmon wave is mainly generated near the interface between the ferromagnetic layer 14 and the low refractive index layer 20. The intensity of the plasmon wave is particularly high at the interface between the ferromagnetic layer 14 and the low refractive index layer 20. The characteristics of the plasmon wave are changed by changing the direction of the magnetic field applied by the magnetic field applying unit 40 between the magnetic field (+ M) and the magnetic field (−M). The plasmon wave has an approximately constant intensity in the high refractive index layer 22. That is, the graph of this example shows the intensity distribution of the plasmon wave at the time of cutoff.
カットオフとは、高屈折率層22側の光の強度が一定になり、プラズモン波の波数が実数になる状態を指し、高屈折率層22側から入射した光の波数のz方向成分と一致することで反射率がゼロとなる。カットオフでは、表面プラズモンが励起されているが、強磁性体層14と低屈折率層20の界面で閉じ込められ、図4に示す座標-∞となる点において強度がゼロに収束する状態(プラズモン波が分布する様子)と、強磁性体層14と低屈折率層20がエバネセント波により結合しない状態の境界に対応し、プラズモン波の波数が実数になる。実際には高屈折率層22やプリズム24の厚さは有限であるが、低屈折率層20の層厚tと比べて十分厚く、座標-∞となる点を高屈折率層22の上端やプリズム24の半円の縁とみなしても、センサの使用上において問題はない。例えば、ある方向に磁場を印加し、+M状態を実現した際のカットオフの場合、(数1)式において、Rp(+M)が0となるので、指標が1となる。印加磁場の大きさが変化すると、プラズモンの波数が変化するので、カットオフが生じる入射光110の波長等の条件も変わる。本例のセンサ100は、オット配置で構成される構造および入射光110を最適に選択することにより、カットオフの状態を実現できる。
The cut-off refers to a state in which the light intensity on the high refractive index layer 22 side is constant and the wave number of the plasmon wave becomes a real number, and coincides with the z direction component of the wave number of light incident from the high refractive index layer 22 side. By doing so, the reflectance becomes zero. In the cutoff, the surface plasmon is excited, but is confined at the interface between the ferromagnetic layer 14 and the low refractive index layer 20 and the intensity converges to zero at the point where the coordinate is −∞ shown in FIG. 4 (plasmon) Corresponding to the boundary between the ferromagnetic layer 14 and the low refractive index layer 20 not coupled by the evanescent wave, the wave number of the plasmon wave becomes a real number. Actually, the thicknesses of the high refractive index layer 22 and the prism 24 are finite, but they are sufficiently thicker than the layer thickness t of the low refractive index layer 20, and the point where the coordinate is −∞ is the upper end of the high refractive index layer 22. Even if it is regarded as the edge of the semicircle of the prism 24, there is no problem in using the sensor. For example, in the case of cutoff when a magnetic field is applied in a certain direction and the + M state is realized, R p (+ M) is 0 in Equation (1), so the index is 1. When the magnitude of the applied magnetic field changes, the plasmon wave number changes, so the conditions such as the wavelength of the incident light 110 that causes the cutoff also change. The sensor 100 of the present example can realize a cut-off state by optimally selecting the structure constituted by the otto arrangement and the incident light 110.
図5は、センサ100の指標ΔRp/Rpの波長依存性を示す。縦軸は指標ΔRp/Rpを示し、横軸は入射光110の波長λ[nm]を示す。各グラフは、入射光110の入射角度θがθ=55°、θ=55.3°、θ=55.4°、θ=56°、θ=56.5°の場合をそれぞれ示す。グラフ中において、三角がθ=55°の場合を示し、黒丸がθ=55.3°の場合を示し、白丸がθ=55.4°の場合を示し菱形がθ=56°の場合を示し、四角がθ=56.5°の場合を示す。
FIG. 5 shows the wavelength dependence of the index ΔR p / R p of the sensor 100. The vertical axis represents the index ΔR p / R p , and the horizontal axis represents the wavelength λ [nm] of the incident light 110. Each graph shows a case where the incident angle θ of the incident light 110 is θ = 55 °, θ = 55.3 °, θ = 55.4 °, θ = 56 °, and θ = 56.5 °. In the graph, the triangle indicates the case of θ = 55 °, the black circle indicates the case of θ = 55.3 °, the white circle indicates the case of θ = 55.4 °, and the diamond indicates the case of θ = 56 ° The case where the square is θ = 56.5 ° is shown.
本例において、指標ΔRp/Rpは、入射角度θに応じて異なる挙動を示すことが分かる。また、入射角度θは、それぞれ異なる波長λ依存性を有することが分かる。例えば、入射角度θが55.3°の場合、性能指数ΔRp/Rpが+1.0と-1.0に近づく。また、入射光110は、ΔRp/Rpが+1.0と-1.0に近づく場合の2つの波長λの間で波長の変化に対してΔRp/Rpが大きく変化する波長を有することが好ましい。これにより、センサ100の感度が向上する。例えば、センサ100は、性能指数ΔRp/Rpが-1.0以上、-0.9以下であってよく、-0.9以上、+0.9以下であってよく、+0.9以上、+1.0以下を満たすように設計されてよい。
In this example, the index [Delta] R p / R p is found to behave differently depending on the incident angle theta. It can also be seen that the incident angle θ has a different wavelength λ dependency. For example, when the incident angle θ is 55.3 °, the figure of merit ΔR p / R p approaches +1.0 and −1.0. Further, the incident light 110 has a wavelength at which ΔR p / R p greatly changes with respect to a change in wavelength between two wavelengths λ when ΔR p / R p approaches +1.0 and −1.0. It is preferable. Thereby, the sensitivity of the sensor 100 improves. For example, the sensor 100 may have a figure of merit ΔR p / R p of −1.0 or more and −0.9 or less, −0.9 or more and +0.9 or less, +0.9 or more, It may be designed to satisfy +1.0 or less.
図6は、センサ100の指標ΔRp/Rpの入射角度θ依存性を示す。縦軸は指標ΔRp/Rpを示し、横軸は入射光110の入射角度θ[°]を示す。本例のセンサ100は、低屈折率層20を真空(n=1)とSiO2保護層からなる積層構造とし、高屈折率層22をSiO2とし、強磁性体層14をFeとし、金属層12を貴金属であるAgとしている。
FIG. 6 shows the dependence of the index ΔR p / R p of the sensor 100 on the incident angle θ. The vertical axis represents the index ΔR p / R p , and the horizontal axis represents the incident angle θ [°] of the incident light 110. In the sensor 100 of this example, the low refractive index layer 20 has a laminated structure including a vacuum (n = 1) and a SiO 2 protective layer, the high refractive index layer 22 is made of SiO 2 , the ferromagnetic layer 14 is made of Fe, a metal The layer 12 is made of Ag which is a noble metal.
本例の指標ΔRp/Rpは、入射角度θが46.1°付近において、+1.0と-1.0に近づく。また、入射角度θが46.1°付近において、指標ΔRp/Rpの変化が急峻になる。即ち、入射角度θが46.1°付近では、測定対象物質30の屈折率変化に対して最大の信号(指標)変化が得られるため、センサの測定条件に設定する。
The index ΔR p / R p in this example approaches +1.0 and −1.0 when the incident angle θ is around 46.1 °. Further, when the incident angle θ is around 46.1 °, the change of the index ΔR p / R p becomes steep. That is, when the incident angle θ is around 46.1 °, the maximum signal (index) change is obtained with respect to the change in the refractive index of the measurement target substance 30, so the measurement conditions of the sensor are set.
以上の通り、本例のセンサ100は、指標ΔRp/Rp=1を実現できる。また、センサ100は、Feと貴金属であるAgを組み合わせることにより、指標の変化(傾き)を急峻にしている。これにより、センサ100の感度が向上する。なお、センサ100は、低屈折率層20の厚みを変えることにより、測定対象物質30に応じて計測波長を調整できる。
As described above, the sensor 100 of this example can realize the index ΔR p / R p = 1. In addition, the sensor 100 makes the change (inclination) of the index steep by combining Fe and Ag which is a noble metal. Thereby, the sensitivity of the sensor 100 improves. The sensor 100 can adjust the measurement wavelength according to the measurement target substance 30 by changing the thickness of the low refractive index layer 20.
[実施例2]
図7は、実施例2に係るセンサ100の構成の一例を示す。本例のセンサ100は、伝搬定数調整層18を備える。 [Example 2]
FIG. 7 illustrates an exemplary configuration of thesensor 100 according to the second embodiment. The sensor 100 of this example includes a propagation constant adjustment layer 18.
図7は、実施例2に係るセンサ100の構成の一例を示す。本例のセンサ100は、伝搬定数調整層18を備える。 [Example 2]
FIG. 7 illustrates an exemplary configuration of the
伝搬定数調整層18は、強磁性体層14の上面に設けられる。本例の伝搬定数調整層18は、強磁性体層14と低屈折率層20との間に設けられる。伝搬定数調整層18の屈折率は、1より大きい。伝搬定数調整層18の膜厚は、低屈折率層20の層厚より薄い。例えば、伝搬定数調整層18の材料は、SiO2である。伝搬定数調整層18の膜厚は、低屈折率層20の層厚以下である。なお、本例では、金属層16の代わりに伝搬定数調整層18を設けたが、センサ100は、強磁性体層14と低屈折率層20との間に、金属層16と伝搬定数調整層18の両方を備えてもよい。伝搬定数調整層18は、センサ100の感度が向上するように、測定対象物質30に応じて屈折率が調整されてよい。
The propagation constant adjusting layer 18 is provided on the upper surface of the ferromagnetic layer 14. The propagation constant adjusting layer 18 of this example is provided between the ferromagnetic layer 14 and the low refractive index layer 20. The refractive index of the propagation constant adjusting layer 18 is greater than 1. The film thickness of the propagation constant adjusting layer 18 is smaller than the layer thickness of the low refractive index layer 20. For example, the material of the propagation constant adjusting layer 18 is SiO 2 . The film thickness of the propagation constant adjusting layer 18 is equal to or less than the layer thickness of the low refractive index layer 20. In this example, the propagation constant adjustment layer 18 is provided instead of the metal layer 16. However, the sensor 100 includes the metal layer 16 and the propagation constant adjustment layer between the ferromagnetic layer 14 and the low refractive index layer 20. 18 may be provided. The propagation constant adjustment layer 18 may have a refractive index adjusted according to the measurement target substance 30 so that the sensitivity of the sensor 100 is improved.
[実施例3]
図8は、実施例3に係るセンサ100の構成の一例を示す。本例のセンサ100は、くさび状の低屈折率層20を有する。 [Example 3]
FIG. 8 illustrates an example of a configuration of thesensor 100 according to the third embodiment. The sensor 100 of this example includes a wedge-shaped low refractive index layer 20.
図8は、実施例3に係るセンサ100の構成の一例を示す。本例のセンサ100は、くさび状の低屈折率層20を有する。 [Example 3]
FIG. 8 illustrates an example of a configuration of the
低屈折率層20は、予め定められた層厚t1の支持層21と、層厚t1と異なる層厚t2の支持層21とを有する。低屈折率層20は、異なる層厚t1および層厚t2の支持層21を有するので、低屈折率層20の断面積が位置によって変化している。本例の低屈折率層20は、層厚t1から層厚t2へと徐々に層厚が変化するくさび型の構造を有する。したがって、センサ100は、入射光110を入射する位置により、測定対象物質30の層厚が変化し、測定対象物質30を測定するための波長λも異なる。例えば、異なる層厚の支持層21をはんだで形成する場合、層厚の異なるはんだを金属層16上に設けられる。また、異なる層厚の支持層21をSiO2基板に溝を設けることで形成する場合、SiO2基板面内で空間層厚が異なるように、SiO2基板をわずかに傾けて研磨する。これにより、低屈折率層20は、異なる層厚t1および層厚t2の支持層21が形成される。
The low refractive index layer 20 includes a support layer 21 having a predetermined layer thickness t1 and a support layer 21 having a layer thickness t2 different from the layer thickness t1. Since the low refractive index layer 20 includes the support layers 21 having different layer thicknesses t1 and t2, the cross-sectional area of the low refractive index layer 20 changes depending on the position. The low refractive index layer 20 of this example has a wedge-shaped structure in which the layer thickness gradually changes from the layer thickness t1 to the layer thickness t2. Therefore, in the sensor 100, the layer thickness of the measurement target substance 30 varies depending on the position where the incident light 110 is incident, and the wavelength λ for measuring the measurement target substance 30 also differs. For example, when the support layers 21 having different layer thicknesses are formed of solder, solders having different layer thicknesses are provided on the metal layer 16. In the case of forming by providing grooves supporting layer 21 of different thickness to the SiO 2 substrate, such that the space layer thickness of SiO 2 substrate surface are different, polished by inclining the SiO 2 substrate slightly. As a result, the low refractive index layer 20 is formed with the support layers 21 having different layer thicknesses t1 and t2.
本例のセンサ100は、くさび型の低屈折率層20を備えるので、入射光110の入射位置と波長を選択することで入射角度θを変化させることなく、実質的に異なる入射角度θの反射率(図6に相当する測定結果)を検出できる。また、本例のセンサ100は、低屈折率層20の屈折率に応じて、測定対象物質30に対応する最適な入射位置(層厚t)と入射光110の波長を選択してよい。
Since the sensor 100 of the present example includes the wedge-shaped low refractive index layer 20, reflection at substantially different incident angles θ without changing the incident angle θ by selecting the incident position and wavelength of the incident light 110. The rate (measurement result corresponding to FIG. 6) can be detected. In addition, the sensor 100 of this example may select the optimum incident position (layer thickness t) corresponding to the measurement target substance 30 and the wavelength of the incident light 110 according to the refractive index of the low refractive index layer 20.
図9は、実施例4に係るセンサ100の構成の一例を示す。本例のセンサ100は、実施例3に係るセンサ100と同様に、低屈折率層20の異なる層厚t1および層厚t2を有する。本例では、実施例3と相違する点について特に説明する。
FIG. 9 shows an example of the configuration of the sensor 100 according to the fourth embodiment. Similar to the sensor 100 according to the third embodiment, the sensor 100 of the present example has different layer thicknesses t1 and t2 of the low refractive index layer 20. In the present example, differences from the third embodiment will be particularly described.
センサ100は、入射光110を入射する位置を変更することにより、異なる反射率Rp(t1)とRp(t2)で反射された入射光110を取得できる。異なる反射率で反射された入射光110は、異なるフォトダイオードでそれぞれ受光されてよい。本例のセンサ100は、異なる層厚t1および層厚t2の低屈折率層20を用いることにより、印加磁場を変更することなく測定対象物質30を測定することができる。なお、本例では、2つの異なる層厚を用いる場合について説明したが、3以上の異なる層厚を用いてもよい。
The sensor 100 can acquire the incident light 110 reflected at different reflectances R p (t 1 ) and R p (t 2 ) by changing the position where the incident light 110 is incident. Incident light 110 reflected at different reflectances may be received by different photodiodes. The sensor 100 of this example can measure the measurement target substance 30 without changing the applied magnetic field by using the low refractive index layer 20 having different layer thicknesses t1 and t2. In this example, the case where two different layer thicknesses are used has been described, but three or more different layer thicknesses may be used.
[比較例1]
図10は、比較例に係るセンサ500の構成を示す。センサ500は、測定対象物質を含む誘電体層520と、貴金属層522と、プリズム524とを備える。センサ500は、測定対象物質を含む誘電体層520側に分子認識素子532を備える。 [Comparative Example 1]
FIG. 10 shows a configuration of asensor 500 according to the comparative example. The sensor 500 includes a dielectric layer 520 containing a measurement target substance, a noble metal layer 522, and a prism 524. The sensor 500 includes a molecular recognition element 532 on the side of the dielectric layer 520 containing the measurement target substance.
図10は、比較例に係るセンサ500の構成を示す。センサ500は、測定対象物質を含む誘電体層520と、貴金属層522と、プリズム524とを備える。センサ500は、測定対象物質を含む誘電体層520側に分子認識素子532を備える。 [Comparative Example 1]
FIG. 10 shows a configuration of a
測定対象物質を含む誘電体層520は、空気である。貴金属層522は、プリズム524上に形成されている。本例の貴金属層522は、Auである。プリズム524上に、貴金属層522が形成されている。本例のプリズム524は、SiO2であり、プリズム524から入射した光が貴金属層522で全反射された際に発生するエバネセント波が貴金属層522と測定対象物質を含む誘電体層520の界面に励起されるプラズモン波を利用してセンサを実現している。即ち、センサ500は、クレッチマン配置で構成されている。
The dielectric layer 520 containing the measurement target substance is air. The noble metal layer 522 is formed on the prism 524. The noble metal layer 522 in this example is Au. A noble metal layer 522 is formed on the prism 524. The prism 524 of this example is SiO 2 , and an evanescent wave generated when the light incident from the prism 524 is totally reflected by the noble metal layer 522 is generated at the interface between the noble metal layer 522 and the dielectric layer 520 containing the measurement target substance. A sensor is realized using excited plasmon waves. That is, the sensor 500 has a Kretschmann arrangement.
入射光510が入射角度θでプリズム524に入射する。Rpは、入射したp偏光の反射光の強度である。プラズモン波は、測定対象物質を含む誘電体層520と貴金属層522との間に形成される。
Incident light 510 enters the prism 524 at an incident angle θ. R p is the intensity of the incident p-polarized reflected light. The plasmon wave is formed between the dielectric layer 520 containing the measurement target substance and the noble metal layer 522.
ここで、センサ500の感度は、反射率の角度依存性を示したATRカーブの傾きで決まる。ATRカーブの傾きが急であること、もしくは、反射率の谷の半値幅の狭さが感度の目安となる。
Here, the sensitivity of the sensor 500 is determined by the slope of the ATR curve indicating the angle dependency of the reflectance. The sensitivity is determined by the steep slope of the ATR curve or the narrow half-value width of the reflectance valley.
例えば、センサ500のSPRセンサの感度として、(数3)式で示される次の指標が用いられる。Aは、センサ100に入射した光の反射率を示す。
For example, as the sensitivity of the SPR sensor of the sensor 500, the following index represented by Equation (3) is used. A represents the reflectance of light incident on the sensor 100.
本例のセンサ500では、クレッチマン配置で構成されており、センサ500に用いられる入射光510の波長は、入射角度θ、測定対象物質を含む誘電体と金属の種類や膜厚等に応じて決まる。センサ500では、測定波長を決めると測定に適した入射角度θが決まるため、測定波長をセンサ500の測定対象物質が大きな屈折率を示す最適波長に合わせる際、入射角度を大きく変える必要があり、最適波長によっては入射角度を0°から90°の間に合わせることが困難な場合がある。また、センサ500では、プリズム524側から入射する光の波数のZ方向成分(実数)と、プラズモン波の波数(複素数)とを完全には一致させるために貴金属層522の層厚を設定する必要がある。金属層の層厚の設定精度はセンサ100における低屈折率層20の層厚の設定精度より高精度である必要がある。したがって、センサ500は、反射率をゼロに近づけ、急峻な変化を実現することが困難である。
The sensor 500 of this example is configured in a Kretschmann arrangement, and the wavelength of the incident light 510 used in the sensor 500 is determined according to the incident angle θ, the type and thickness of the dielectric and metal containing the measurement target substance, and the like. . In the sensor 500, since the incident angle θ suitable for measurement is determined when the measurement wavelength is determined, when the measurement wavelength is adjusted to the optimum wavelength at which the measurement target substance of the sensor 500 exhibits a large refractive index, it is necessary to greatly change the incident angle. Depending on the optimum wavelength, it may be difficult to adjust the incident angle between 0 ° and 90 °. Further, in the sensor 500, it is necessary to set the layer thickness of the noble metal layer 522 in order to completely match the Z-direction component (real number) of the wave number of light incident from the prism 524 side with the wave number (complex number) of the plasmon wave. There is. The setting accuracy of the thickness of the metal layer needs to be higher than the setting accuracy of the layer thickness of the low refractive index layer 20 in the sensor 100. Accordingly, it is difficult for the sensor 500 to achieve a sharp change by making the reflectance approach zero.
図11は、実施例2に係るセンサ100の感度と、比較例1に係るセンサ500の感度を示す。同図は、センサのATRカーブと、屈折率の変化に対する指標の変化を示している。縦軸は指標ΔRp/RpおよびRpを示し、横軸は入射光110の入射角度θおよび時間を示す。屈折率の変化nに対する指標ΔRp/Rpの変化の比は、実施例に係るセンサ100の感度を示す。指標Rpは、比較例1に係るセンサ500の感度を示す。θSPRは、センサ100においては、ある方向に磁場を印加し、+M状態を実現した際のカットオフ時の入射角度θである。θCは、センサ500においては、指標Rpが入射角度θの変化に対して最も大きな変化を示す入射角度に対応する。
FIG. 11 shows the sensitivity of the sensor 100 according to the second embodiment and the sensitivity of the sensor 500 according to the first comparative example. This figure shows the ATR curve of the sensor and the change of the index with respect to the change of the refractive index. The vertical axis indicates the indices ΔR p / R p and R p , and the horizontal axis indicates the incident angle θ and time of the incident light 110. The ratio of the change of the index ΔR p / R p to the change n of the refractive index indicates the sensitivity of the sensor 100 according to the embodiment. The index R p indicates the sensitivity of the sensor 500 according to Comparative Example 1. In the sensor 100, θ SPR is an incident angle θ at the time of cutoff when a magnetic field is applied in a certain direction to realize a + M state. In the sensor 500, θ C corresponds to the incident angle at which the index R p shows the largest change with respect to the change in the incident angle θ.
センサ100の指標ΔRp/Rpは、センサ500の指標Rpよりも急峻に変化する。そのため、屈折率がndからnd+δnに変化した場合、センサ100の指標の変化δ(ΔRp/Rp)は、センサ500の性能指数の変化δ(Rp)よりも大きくなる。そのため、センサ100は、センサ500よりも屈折率の変化に対する感度が大きい。
The index ΔR p / R p of the sensor 100 changes more rapidly than the index R p of the sensor 500. Therefore, when the refractive index changes from n d to n d + δn, the change δ (ΔR p / R p ) of the index of the sensor 100 becomes larger than the change δ (R p ) of the performance index of the sensor 500. Therefore, the sensor 100 is more sensitive to a change in refractive index than the sensor 500.
図12Aは、センサ100の指標ΔRp/Rpの具体的な入射角度θ依存性を示す。図12Bは、センサ500の指標Rpの具体的な入射角度θ依存性を示す。縦軸は指標ΔRp/Rpおよび指標Rpを示し、横軸は入射角度θを示す。
FIG. 12A shows the specific dependence of the index ΔR p / R p of the sensor 100 on the incident angle θ. FIG. 12B shows the specific incident angle θ dependency of the index R p of the sensor 500. The vertical axis represents the index ΔR p / R p and the index R p , and the horizontal axis represents the incident angle θ.
実線は、屈折率がn=1の場合を示す。また、一点鎖線は、屈折率がn=1.0001の場合を示す。破線は、n=1およびn=1.0001の場合の指標の差を示す。屈折率が変化した場合に、指標の差分が大きい方が感度がよい。センサ100の場合、屈折率がn=1とn=1.0001の間で変化すると、δ(ΔRp/Rp)の変化の大きさが1程度である。一方、センサ500の場合、屈折率がn=1とn=1.0001の間で変化すると、δ(Rp)の変化の大きさが0.003程度である。即ち、センサ100は、センサ500よりも1/0.003≒3×102倍の感度を有する。
A solid line indicates a case where the refractive index is n = 1. A one-dot chain line indicates a case where the refractive index is n = 1.0001. A broken line indicates a difference in index when n = 1 and n = 1.0001. When the refractive index changes, the sensitivity is better when the index difference is larger. In the case of the sensor 100, when the refractive index changes between n = 1 and n = 1.0001, the magnitude of change of δ (ΔR p / R p ) is about 1. On the other hand, in the case of the sensor 500, when the refractive index changes between n = 1 and n = 1.0001, the magnitude of change of δ (R p ) is about 0.003. That is, the sensor 100 has a sensitivity 1 / 0.003≈3 × 10 2 times that of the sensor 500.
図12AのΔRp/Rpの具体的な入射角度θ依存性は、適切な入射角度θの間隔で測定して得られる。例えば、入射角度θを0.01度間隔で測定できる実験装置がある場合、ΔRp/Rpはn=1のとき、0.02度、すなわち、3点の入射角度θの変化に対して-1から1まで変化する。すなわち、ΔRp/Rpの変化を最低でも3点で測定することができる入射角度θの分解能がない限り、屈折率を測定することができない。十分な入射角度θの分解能、ここでは0.001度を得る方法を以下で説明する。
The specific dependence on the incident angle θ of ΔR p / R p in FIG. 12A is obtained by measuring at an appropriate incident angle θ interval. For example, when there is an experimental apparatus that can measure the incident angle θ at intervals of 0.01 degrees, ΔR p / R p is 0.02 degrees when n = 1, that is, with respect to a change in the incident angle θ at three points. It changes from -1 to 1. That is, the refractive index cannot be measured unless there is a resolution of the incident angle θ that can measure the change in ΔR p / R p at least at three points. A method for obtaining a sufficient resolution of the incident angle θ, here 0.001 degree, will be described below.
図12Aをシミュレーションによって生成する際、角度分解能0.001度でデータを生成する。一方、左記データを0.01度で生成しておく。角度の取り方は10通りあるので、10個の低角度分解能のデータが生成されることになる。角度分解能が細かいシミュレーション結果と粗いシミュレーション結果の間で対応関係を得て、粗い角度分解能で得られた反射率Rp、および、ΔRp/Rpの測定結果に基づいて、角度分解能の細かい測定結果を推定する。推定された測定結果をもとに、ΔRp/Rpの変化をより正確に読み取り、屈折率を測定する。このように、本例のセンサ100は、10倍の高精細画像を再構成することにより、高い角度分解能を取得する。したがって、センサ100は、画像解析(即ち、超解像)により、入射角度の分解能を超える超分解能を得て、性能指数の角度依存性を精度よく測定することができる。
When generating FIG. 12A by simulation, data is generated with an angular resolution of 0.001 degrees. On the other hand, the left data is generated at 0.01 degrees. Since there are ten ways of taking the angle, ten pieces of low-angle resolution data are generated. By obtaining a correspondence between a simulation result with a fine angular resolution and a coarse simulation result, and based on the measurement results of the reflectance R p and ΔR p / R p obtained with the coarse angular resolution, the fine measurement with the angular resolution is performed. Estimate the result. Based on the estimated measurement result, the change in ΔR p / R p is read more accurately, and the refractive index is measured. Thus, the sensor 100 of this example acquires a high angular resolution by reconstructing a 10-fold high-definition image. Therefore, the sensor 100 can obtain the super-resolution exceeding the resolution of the incident angle by image analysis (that is, super-resolution), and can accurately measure the angle dependency of the figure of merit.
図13は、実施例4に係るセンサ100の指標(ΔRp/Rp)'の具体的な入射角度θ依存性を示す。縦軸は指標(ΔRp/Rp)'を示し、横軸は入射角度θを示す。
FIG. 13 shows specific incident angle θ dependence of the index (ΔR p / R p ) ′ of the sensor 100 according to the fourth embodiment. The vertical axis indicates the index (ΔR p / R p ) ′, and the horizontal axis indicates the incident angle θ.
実線は、屈折率がn=1の場合を示す。また、一点鎖線は、屈折率がn=1.0001の場合を示す。破線は、n=1およびn=1.0001の場合の指標の差を示す。屈折率が変化した場合に、指標の差分が大きい方が感度がよい。本例のセンサ100の場合、屈折率がn=1とn=1.0001の間で変化すると、δ(ΔRp/Rp)'の変化の大きさが1.7程度である。そのため、実施例4に係るセンサ100は、さらに優れた感度を有する。
A solid line indicates a case where the refractive index is n = 1. A one-dot chain line indicates a case where the refractive index is n = 1.0001. A broken line indicates a difference in index when n = 1 and n = 1.0001. When the refractive index changes, the sensitivity is better when the index difference is larger. In the case of the sensor 100 of this example, when the refractive index changes between n = 1 and n = 1.0001, the magnitude of the change of δ (ΔR p / R p ) ′ is about 1.7. Therefore, the sensor 100 according to the fourth embodiment has further excellent sensitivity.
図14は、センサ装置200の応用例の一例を示す。センサ装置200は、センサ100と、光源120と、受光部130とを備える。
FIG. 14 shows an example of an application example of the sensor device 200. The sensor device 200 includes a sensor 100, a light source 120, and a light receiving unit 130.
センサ100は、測定対象物質30として植物ホルモンの誘導体物質を検出する。植物ホルモンの誘導体物質は揮発性有機化合物であり、サリチル酸メチル、ジャスモン酸メチルなどがある。センサ100には、植物ホルモンの誘導体物質を含む測定対象物質30が流入する。一例において、測定対象物質30は、植物ホルモンの誘導体物質を含む気体である。低屈折率層20の屈折率は、測定対象物質30である植物ホルモンの誘導体物質に応じた屈折率となる。これにより、センサ100は、植物ホルモンの誘導体物質の種類や濃度を検出する。
The sensor 100 detects a derivative substance of a plant hormone as the measurement target substance 30. Derivative substances of plant hormones are volatile organic compounds such as methyl salicylate and methyl jasmonate. A measurement target substance 30 containing a plant hormone derivative substance flows into the sensor 100. In one example, the measurement target substance 30 is a gas containing a derivative substance of a plant hormone. The refractive index of the low refractive index layer 20 is a refractive index corresponding to the plant hormone derivative substance which is the measurement target substance 30. Thereby, the sensor 100 detects the kind and density | concentration of the derivative substance of a plant hormone.
光源120は、入射光110をセンサ100に入射する。受光部130は、光源120が入射した入射光110の反射光を受光する。受光部130は、測定対象物質30の特性に応じた強度の反射光を受光する。
The light source 120 makes incident light 110 incident on the sensor 100. The light receiving unit 130 receives the reflected light of the incident light 110 incident from the light source 120. The light receiving unit 130 receives reflected light having an intensity corresponding to the characteristics of the measurement target substance 30.
表示部300は、センサ装置200の測定結果を表示する。表示部300は、無線通信によりセンサ装置200の測定結果を受信してよい。また、センサ装置200が表示装置を備え、センサ装置200自体が測定結果を表示してもよい。
The display unit 300 displays the measurement result of the sensor device 200. The display unit 300 may receive the measurement result of the sensor device 200 by wireless communication. Further, the sensor device 200 may include a display device, and the sensor device 200 itself may display the measurement result.
処理部400は、センサ100の測定結果をデータ処理する。例えば、処理部400は、植物ホルモンの誘導体物質と屈折率との関係を示すデータテーブルを有し、センサ100の測定結果に応じて植物ホルモンの誘導体物質の種類や濃度を取得する。
The processing unit 400 processes the measurement result of the sensor 100. For example, the processing unit 400 has a data table indicating the relationship between the derivative substance of plant hormone and the refractive index, and acquires the type and concentration of the derivative substance of plant hormone according to the measurement result of the sensor 100.
本例のセンサ装置200は、超高感度の磁気プラズモンセンサであるセンサ100を用いることにより、植物ホルモンの誘導体物質を超高感度で検出できる。このように、センサ装置200は、高感度のセンシングが必要な農業等の分野に適用できる。
The sensor device 200 of the present example can detect a derivative substance of a plant hormone with an extremely high sensitivity by using the sensor 100 which is an ultrasensitive magnetic plasmon sensor. Thus, the sensor device 200 can be applied to fields such as agriculture that require highly sensitive sensing.
図15は、センサ装置200の構成の一例を示す。本例のセンサ装置200は、複数の屈折率が含まれる低屈折率層20の各物質を同時に測定する場合の実施例である。なお、本例のセンサ装置200は、他の実施例1~3に係るセンサ100と組み合わせて用いられてよい。
FIG. 15 shows an example of the configuration of the sensor device 200. The sensor device 200 of this example is an example in the case of simultaneously measuring each substance of the low refractive index layer 20 including a plurality of refractive indexes. Note that the sensor device 200 of this example may be used in combination with the sensor 100 according to other Examples 1 to 3.
低屈折率層20は、様々な濃度の測定対象物質30を含む。例えば、低屈折率層20は、測定対象物質30に対応する抗体などの分子認識素子32を設けることにより、測定対象物質30を保持する。これにより、低屈折率層20の、屈折率は濃度に応じて異なる屈折率を有する。本例の低屈折率層20は、例えば、濃度c1、c2、c3に応じて屈折率はn1、n2、n3となる。本例では、屈折率の違いによって反射率が最小となる入射角度が異なるため、図15の受光部130には最小反射率に応じて輝度の小さい線が異なる場所に表示される。輝度の小さい線が直線状に配列されているが、低屈折率層20の形状に応じて2次元的に配列されていてもよい。
The low refractive index layer 20 includes the measurement target substance 30 having various concentrations. For example, the low refractive index layer 20 holds the measurement target substance 30 by providing a molecular recognition element 32 such as an antibody corresponding to the measurement target substance 30. Thereby, the refractive index of the low refractive index layer 20 has a different refractive index depending on the concentration. The low refractive index layer 20 of this example has a refractive index of n 1 , n 2 , and n 3 according to the concentrations c 1 , c 2 , and c 3 , for example. In this example, the angle of incidence at which the reflectance is minimized differs depending on the difference in refractive index. Therefore, a line with low luminance is displayed at different locations on the light receiving unit 130 in FIG. 15 according to the minimum reflectance. The lines with low luminance are arranged linearly, but may be arranged two-dimensionally according to the shape of the low refractive index layer 20.
光源120は、低屈折率層20に入射光110を照射する。例えば、光源120は、レンズ部125を用いて入射光110を集光することにより、測定対象物質30が保持された領域に入射光110を照射する。
The light source 120 irradiates the low refractive index layer 20 with the incident light 110. For example, the light source 120 condenses the incident light 110 using the lens unit 125, thereby irradiating the incident light 110 on the region where the measurement target substance 30 is held.
受光部130は、複数の屈折率の情報を含む反射光を受光する。受光部130は、レンズ部135を用いて、反射光を平行ビーム化して受光してよい。例えば、受光部130は、フォトダイオードが配列された光センサアレイを有する。これにより、受光部130は、測定対象物質30の濃度が変化した場合、それぞれに対応する測定結果を光センサアレイの出力信号から取得することができる。
The light receiving unit 130 receives reflected light including information on a plurality of refractive indexes. The light receiving unit 130 may receive the reflected light by using the lens unit 135 as a parallel beam. For example, the light receiving unit 130 includes an optical sensor array in which photodiodes are arranged. Thereby, when the density | concentration of the measuring object substance 30 changes, the light-receiving part 130 can acquire the measurement result corresponding to each from the output signal of an optical sensor array.
なお、測定用の測定対象物質30は、供給源140から供給量制御部145を介して、チャンバ160に供給される。また、チャンバ160は、測定対象物質30を吸引するためのポンプ150に接続されてよい。
Note that the measurement target substance 30 for measurement is supplied from the supply source 140 to the chamber 160 via the supply amount control unit 145. The chamber 160 may be connected to a pump 150 for sucking the measurement target substance 30.
本例のセンサ100は、高屈折率層22を基板10に貼り合わせることにより設けられる。例えば、低屈折率層20の空間は、基板10の上面に凹凸を設け、高屈折率層22として機能する貼り合わせ部材を基板10の上面に貼り合わせることにより設けられる。センサ100は、低屈折率層20の下方において、他の実施例と同様に、AuやFeで構成される金属層12と、強磁性体層14と、金属層16とを備える。
The sensor 100 of this example is provided by bonding the high refractive index layer 22 to the substrate 10. For example, the space of the low refractive index layer 20 is provided by providing irregularities on the upper surface of the substrate 10 and bonding a bonding member functioning as the high refractive index layer 22 to the upper surface of the substrate 10. The sensor 100 includes a metal layer 12 made of Au or Fe, a ferromagnetic layer 14, and a metal layer 16 below the low refractive index layer 20 as in the other embodiments.
図16は、強磁性体層14への印加磁場と磁気光学効果との関係を示す。本例の強磁性体層14は、一例として鉄薄膜である。縦軸は磁気光学効果[a.u.]を示し、横軸は印加磁場[Oe]を示す。磁気光学効果は、磁化に比例する物理量である。印加磁場は、強磁性体層14に印加される磁場である。
FIG. 16 shows the relationship between the magnetic field applied to the ferromagnetic layer 14 and the magneto-optic effect. The ferromagnetic layer 14 of this example is an iron thin film as an example. The vertical axis represents the magneto-optical effect [a. u. The horizontal axis represents the applied magnetic field [Oe]. The magneto-optical effect is a physical quantity proportional to the magnetization. The applied magnetic field is a magnetic field applied to the ferromagnetic layer 14.
磁場印加部40が強磁性体層14に印加する磁場は、磁気光学効果が最大または最小となる大きさに限られない。例えば、強磁性体層14の印加磁場は、磁気光学効果が最大(絶対値)の3分の1や3分の2になる磁場であってよい。また、磁場印加部40が強磁性体層14に印加する2種類の磁場は、反転された磁場である必要はなく、同一の極性を有する磁場であってもよい。センサ100は、低屈折率層20の層厚t等との関係に応じて、磁場印加部40の印加磁場を適切な大きさに適宜設定すればよい。
The magnetic field applied to the ferromagnetic layer 14 by the magnetic field application unit 40 is not limited to a magnitude that maximizes or minimizes the magneto-optic effect. For example, the applied magnetic field of the ferromagnetic material layer 14 may be a magnetic field in which the magneto-optical effect is 1/3 or 2/3 of the maximum (absolute value). Further, the two types of magnetic fields applied by the magnetic field application unit 40 to the ferromagnetic layer 14 need not be inverted magnetic fields, and may be magnetic fields having the same polarity. The sensor 100 may set the applied magnetic field of the magnetic field applying unit 40 to an appropriate magnitude according to the relationship with the layer thickness t of the low refractive index layer 20 and the like.
本例のセンサ100は、優れた感度を有するので、高分解能、ラベルフリー、実時間かつその場観察を実現し、質量の変化や時間推移も計測可能である。また、センサ100は、医療診断や環境モニタリングなど、広い分野で応用可能である。例えば、センサ100は、ライフサイエンス、環境ガスの計測および医療診断等に用いられる。また、センサ100は、麻薬探知や地雷センサ等にも応用され得る。
Since the sensor 100 of this example has excellent sensitivity, it realizes high resolution, label-free, real-time and in-situ observation, and can measure mass changes and time transitions. The sensor 100 can be applied in a wide range of fields such as medical diagnosis and environmental monitoring. For example, the sensor 100 is used for life science, environmental gas measurement, medical diagnosis, and the like. The sensor 100 can also be applied to drug detection, landmine sensors, and the like.
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10・・・基板、12・・・金属層、14・・・強磁性体層、16・・・金属層、18・・・伝搬定数調整層、20・・・低屈折率層、21・・・支持層、22・・・高屈折率層、24・・・プリズム、26・・・流入部、28・・・流出部、30・・・測定対象物質、32・・・分子認識素子、40・・・磁場印加部、100・・・センサ、110・・・入射光、120・・・光源、125・・・レンズ部、130・・・受光部、135・・・レンズ部、140・・・供給源、145・・・供給量制御部、150・・・ポンプ、160・・・チャンバ、200・・・センサ装置、300・・・表示部、400・・・処理部、500・・・センサ、510・・・入射光、520・・・測定対象物質を含む誘電体層、522・・・貴金属層、524・・・プリズム、532・・・分子認識素子
DESCRIPTION OF SYMBOLS 10 ... Board | substrate, 12 ... Metal layer, 14 ... Ferromagnetic material layer, 16 ... Metal layer, 18 ... Propagation constant adjustment layer, 20 ... Low refractive index layer, 21 ... Support layer, 22 ... high refractive index layer, 24 ... prism, 26 ... inflow part, 28 ... outflow part, 30 ... substance to be measured, 32 ... molecular recognition element, 40 ... Magnetic field application unit, 100 ... Sensor, 110 ... Incident light, 120 ... Light source, 125 ... Lens unit, 130 ... Light receiving unit, 135 ... Lens unit, 140 ... -Supply source, 145 ... Supply amount control unit, 150 ... Pump, 160 ... Chamber, 200 ... Sensor device, 300 ... Display unit, 400 ... Processing unit, 500 ... Sensor, 510... Incident light, 520... Dielectric layer containing measurement target substance, 522. 4 ... prism, 532 ... molecular recognition element
Claims (20)
- 基板と、
前記基板の上方に設けられた強磁性体層と、
前記強磁性体層の上方に設けられ、測定対象物質を流すための空間を含む低屈折率層と、
前記低屈折率層の上方に設けられ、前記低屈折率層よりも屈折率の大きい高屈折率層と
を備えるセンサ。 A substrate,
A ferromagnetic layer provided above the substrate;
A low refractive index layer provided above the ferromagnetic layer and including a space for flowing a measurement target substance;
A high refractive index layer provided above the low refractive index layer and having a higher refractive index than the low refractive index layer. - 第1の磁場と、前記第1の磁場と異なる第2の磁場のいずれかを前記強磁性体層に印加する磁場印加部を更に備える
請求項1に記載のセンサ。 The sensor according to claim 1, further comprising: a magnetic field application unit configured to apply either the first magnetic field or a second magnetic field different from the first magnetic field to the ferromagnetic layer. - 前記磁場印加部は、前記第1の磁場として飽和磁場を前記強磁性体層に印加し、前記第2の磁場として前記飽和磁場の反転磁場を前記強磁性体層に印加する
請求項2に記載のセンサ。 The magnetic field application unit applies a saturation magnetic field to the ferromagnetic layer as the first magnetic field, and applies an inverted magnetic field of the saturation magnetic field to the ferromagnetic layer as the second magnetic field. Sensor. - 前記低屈折率層は、
前記測定対象物質を前記低屈折率層に流入する流入部と、
前記測定対象物質を前記低屈折率層から外部に流出する流出部と
を備える
請求項1から3のいずれか一項に記載のセンサ。 The low refractive index layer is
An inflow portion for flowing the measurement target substance into the low refractive index layer;
The sensor according to any one of claims 1 to 3, further comprising: an outflow portion that causes the measurement target substance to flow out from the low refractive index layer. - 前記低屈折率層の層厚は15000nm以下である
請求項1から4のいずれか一項に記載のセンサ。 The sensor according to any one of claims 1 to 4, wherein a layer thickness of the low refractive index layer is 15000 nm or less. - 前記低屈折率層は、予め定められた第1の層厚と、前記第1の層厚と異なる第2の層厚を有する
請求項1から5のいずれか一項に記載のセンサ。 The sensor according to any one of claims 1 to 5, wherein the low refractive index layer has a predetermined first layer thickness and a second layer thickness different from the first layer thickness. - 前記低屈折率層は、前記第1の層厚から前記第2の層厚へと徐々に層厚が変化するくさび型の構造を有する
請求項6に記載のセンサ。 The sensor according to claim 6, wherein the low refractive index layer has a wedge-shaped structure in which the layer thickness gradually changes from the first layer thickness to the second layer thickness. - 前記強磁性体層と前記低屈折率層との間に設けられ、1より大きい屈折率の伝搬定数調整層を更に備える
請求項1から7のいずれか一項に記載のセンサ。 The sensor according to any one of claims 1 to 7, further comprising a propagation constant adjusting layer having a refractive index larger than 1, which is provided between the ferromagnetic layer and the low refractive index layer. - 前記伝搬定数調整層の膜厚は、前記低屈折率層の層厚より薄い
請求項8に記載のセンサ。 The sensor according to claim 8, wherein a film thickness of the propagation constant adjusting layer is thinner than a layer thickness of the low refractive index layer. - 前記低屈折率層と前記強磁性体層との間に、前記強磁性体層よりも導電率が高い第1金属層を更に備える
請求項1から9のいずれか一項に記載のセンサ。 The sensor according to any one of claims 1 to 9, further comprising a first metal layer having a higher conductivity than the ferromagnetic layer between the low refractive index layer and the ferromagnetic layer. - 前記基板と前記強磁性体層との間に、前記強磁性体層よりも測定波長における導電率が高い第2金属層を更に備える
請求項10に記載のセンサ。 The sensor according to claim 10, further comprising a second metal layer having a higher conductivity at a measurement wavelength than the ferromagnetic layer between the substrate and the ferromagnetic layer. - 前記第1金属層の膜厚は、前記第2金属層の膜厚よりも薄い
請求項11に記載のセンサ。 The sensor according to claim 11, wherein a film thickness of the first metal layer is thinner than a film thickness of the second metal layer. - ある入射角度θで測定された磁化反転時の反射率の変化をΔRpとし、ある入射角度θで反射率を測定したとき、外部磁場(+M)、および、外部磁場(-M)のもとで得られた反射率の和をRpとした場合に、
性能指数ΔRp/Rpが-1.0以上、-0.9以下、または、+0.9以上、+1.0以下を満たす
請求項1から12のいずれか一項に記載のセンサ。 When the reflectance change at the time of magnetization reversal measured at a certain incident angle θ is ΔR p and the reflectance is measured at a certain incident angle θ, the external magnetic field (+ M) and the external magnetic field (−M) Where R p is the sum of the reflectances obtained in
The sensor according to any one of claims 1 to 12, wherein the figure of merit ΔR p / R p satisfies −1.0 or more and −0.9 or less, or +0.9 or more and +1.0 or less. - ある入射角度θで測定された、前記低屈折率層の層厚tが異なる2点(t1、t2)の反射率の変化をΔRp'とし、ある入射角度θで反射率を測定したとき、前記層厚tがt1、t2のもとで得られた反射率の和をRpとした場合に、
性能指数(ΔRp/Rp)'が-1.0以上、-0.9以下、または、+0.9以上、+1.0以下を満たす
請求項1から12のいずれか一項に記載のセンサ。 When the reflectance change at two points (t1, t2) having different layer thicknesses t of the low refractive index layer measured at a certain incident angle θ is ΔR p ′, and the reflectance is measured at a certain incident angle θ, the sum of the reflectivity which the layer thickness t was obtained under t1, t2 when the R p,
Merit (ΔR p / R p) 'is -1.0 or more, -0.9 or less, or, + 0.9 or more, the sensor according to any one of claims 1 to 12 satisfying + 1.0 . - 前記反射率の和Rp、前記性能指数の入射角度依存性を測定する際、入射角度の分解能を超える超分解能を有する
請求項13または14に記載のセンサ。 15. The sensor according to claim 13, wherein the sensor has a super-resolution exceeding the resolution of the incident angle when measuring the dependency of the reflection index R p and the figure of merit on the incident angle. - 基板を用意し、
前記基板の上方に強磁性体層を設け、
前記強磁性体層の上方に、測定対象物質を流すための空間を含む低屈折率層を設け、
前記低屈折率層の上方に、前記低屈折率層よりも屈折率の大きい高屈折率層を設ける
センサの製造方法。 Prepare the board,
Providing a ferromagnetic layer above the substrate;
Provided above the ferromagnetic layer is a low refractive index layer including a space for flowing the measurement target substance,
A method for manufacturing a sensor, wherein a high refractive index layer having a refractive index larger than that of the low refractive index layer is provided above the low refractive index layer. - 前記強磁性体層と、前記低屈折率層と、前記高屈折率層との積層構造は、
前記強磁性体層の上面に支持層を設け、
前記支持層を介して、前記強磁性体層の上方に前記高屈折率層を積層することにより形成される
請求項16に記載のセンサの製造方法。 The laminated structure of the ferromagnetic layer, the low refractive index layer, and the high refractive index layer is:
A support layer is provided on the upper surface of the ferromagnetic layer,
The method for manufacturing a sensor according to claim 16, wherein the sensor is formed by laminating the high refractive index layer above the ferromagnetic layer via the support layer. - 前記強磁性体層と、前記低屈折率層と、前記高屈折率層との積層構造は、
前記高屈折率層を含む基板を更に用意し、
前記高屈折率層を含む基板に溝を形成し、
前記高屈折率層を含む基板の前記溝が形成された面を、前記強磁性体層に貼り合わせることにより形成される
請求項16に記載のセンサの製造方法。 The laminated structure of the ferromagnetic layer, the low refractive index layer, and the high refractive index layer is:
Further preparing a substrate including the high refractive index layer,
Forming a groove in the substrate including the high refractive index layer;
The method for manufacturing a sensor according to claim 16, wherein the sensor is formed by bonding a surface of the substrate including the high refractive index layer on which the groove is formed to the ferromagnetic layer. - ある入射角度θで測定された磁化反転時の反射率の変化をΔRpとし、ある入射角度θで反射率を測定したとき、外部磁場(+M)、および、外部磁場(-M)のもとで得られた反射率をRpとした場合に、
性能指数ΔRp/Rpが-1.0以上、-0.9以下、または、+0.9以上、+1.0以下を満たす
請求項16から18のいずれか一項に記載のセンサの製造方法。 When the reflectance change at the time of magnetization reversal measured at a certain incident angle θ is ΔR p and the reflectance is measured at a certain incident angle θ, the external magnetic field (+ M) and the external magnetic field (−M) Where R p is the reflectance obtained in
19. The method for manufacturing a sensor according to claim 16, wherein the figure of merit ΔR p / R p satisfies −1.0 or more and −0.9 or less, or +0.9 or more and +1.0 or less. . - ある入射角度θで測定された、前記低屈折率層の層厚tが異なる2点(t1、t2)の反射率の変化をΔRp'とし、ある入射角度θで反射率を測定したとき、前記層厚tがt1、t2のもとで得られた反射率の和をRpとした場合に、
性能指数(ΔRp/Rp)'が-1.0以上、-0.9以下、または、+0.9以上、+1.0以下を満たす
請求項16から18のいずれか一項に記載のセンサの製造方法。 When the reflectance change at two points (t1, t2) having different layer thicknesses t of the low refractive index layer measured at a certain incident angle θ is ΔR p ′, and the reflectance is measured at a certain incident angle θ, the sum of the reflectivity which the layer thickness t was obtained under t1, t2 when the R p,
Merit (ΔR p / R p) 'is -1.0 or more, -0.9 or less, or, the sensor according to any one of claims 16 18 + 0.9 or more, satisfying the + 1.0 Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019525590A JP7210027B2 (en) | 2017-06-15 | 2018-06-15 | Sensor and sensor manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017118167 | 2017-06-15 | ||
JP2017-118167 | 2017-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230736A1 true WO2018230736A1 (en) | 2018-12-20 |
Family
ID=64660058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023039 WO2018230736A1 (en) | 2017-06-15 | 2018-06-15 | Sensor and method for manufacturing sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7210027B2 (en) |
WO (1) | WO2018230736A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210156191A (en) * | 2020-06-17 | 2021-12-24 | 포항공과대학교 산학협력단 | Sensor and sensor device |
US12000777B2 (en) | 2020-06-17 | 2024-06-04 | POSTECH Research and Business Development Foundation | Volume changeable polymer humidity sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040239936A1 (en) * | 2003-01-27 | 2004-12-02 | Lake Shore Cryotronics, Inc. | Surface corrugation enhanced magneto-optical indicator film |
JP2008501965A (en) * | 2004-06-11 | 2008-01-24 | コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス | Device and method for detecting a change in refractive index of a dielectric medium |
JP2008176209A (en) * | 2007-01-22 | 2008-07-31 | Fdk Corp | Optical coupling device by surface plasmon |
-
2018
- 2018-06-15 JP JP2019525590A patent/JP7210027B2/en active Active
- 2018-06-15 WO PCT/JP2018/023039 patent/WO2018230736A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040239936A1 (en) * | 2003-01-27 | 2004-12-02 | Lake Shore Cryotronics, Inc. | Surface corrugation enhanced magneto-optical indicator film |
JP2008501965A (en) * | 2004-06-11 | 2008-01-24 | コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス | Device and method for detecting a change in refractive index of a dielectric medium |
JP2008176209A (en) * | 2007-01-22 | 2008-07-31 | Fdk Corp | Optical coupling device by surface plasmon |
Non-Patent Citations (2)
Title |
---|
CHOU, KUEIHSU ET AL.: "Application of strong transverse magneto-optical Kerr effect on high sensitive surface plasmon grating sensors", OPTICS EXPRESS, vol. 22, no. 16, 11 August 2014 (2014-08-11), pages 19794 - 19802, XP055561771, Retrieved from the Internet <URL:doi:10.1364/OE.22.019794> * |
YAGO, YOSHIKI ET AL.: "Evaluation of surface plasmon excitation at the interface of ferromagnetic metal and dielectric thin films with Otto configuration", LECTURE PROCEEDINGS OF THE 63TH SPRING ACADEMIC LECTURE OF JSAP, 2016 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210156191A (en) * | 2020-06-17 | 2021-12-24 | 포항공과대학교 산학협력단 | Sensor and sensor device |
KR102499392B1 (en) * | 2020-06-17 | 2023-02-13 | 포항공과대학교 산학협력단 | Sensor and sensor device |
US12000777B2 (en) | 2020-06-17 | 2024-06-04 | POSTECH Research and Business Development Foundation | Volume changeable polymer humidity sensor |
Also Published As
Publication number | Publication date |
---|---|
JP7210027B2 (en) | 2023-01-23 |
JPWO2018230736A1 (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates | |
US7943908B2 (en) | Sensor system with surface-plasmon-polariton (SPP) enhanced selective fluorescence excitation and method | |
KR100787046B1 (en) | Apparatus of Localized Surface Plasmon Sensor Using Ordered Nano-Sized Metal Structures and Method Manufacturing the Same | |
US20110001975A1 (en) | Cavity Plasmon Resonance Biosensing Device, Method And System | |
TWI384214B (en) | Biological sensing device and its system | |
US10107807B2 (en) | One dimensional photonic crystals for enhanced fluorescence based sensing, imaging and assays | |
CN110023739B (en) | Liquid immersion micro-channel measuring device and method based on prism incident type silicon with trapezoidal incident structure | |
US20120295357A1 (en) | Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions | |
US9535005B2 (en) | Electro-optic grating-coupled surface plasmon resonance (EOSPR) | |
CN104458657B (en) | Label-free sensing chip and application thereof | |
JP2007255948A (en) | Electric field sensor | |
Rodrigues et al. | Surface plasmon resonance sensing characteristics of thin copper and gold films in aqueous and gaseous interfaces | |
Prabowo et al. | Application of an OLED integrated with BEF and giant birefringent optical (GBO) film in a SPR biosensor | |
WO2018230736A1 (en) | Sensor and method for manufacturing sensor | |
Zhou et al. | Development of localized surface plasmon resonance-based point-of-care system | |
US20190056389A1 (en) | System and method for determining the presence or absence of adsorbed biomolecules or biomolecular structures on a surface | |
JP5624287B2 (en) | Magnetic sensor | |
JPWO2014007134A1 (en) | Sensor chip | |
US10241311B2 (en) | Optical methods for observing samples and for detecting or metering chemical or biological species | |
Kübler et al. | Magneto-optic surface plasmon resonance of Au/IrMn/Co/Au exchange biased layer systems | |
RU2661454C1 (en) | Method for registration of processes of deposition on a surface of a solid body with two-dimensional visualization and device for its implementation | |
KR20080051002A (en) | Surface plasmon resonance sensor and system capable of absolute calibration | |
RU2770648C1 (en) | Optical sensor based on plasmon-induced transparency and fano resonances | |
KR100856090B1 (en) | Measuring device for surface plasmon resonance angle | |
WO2024026927A1 (en) | Hot surface plasmon resonance biochip, manufacturing method therefor, biosensing system including same, and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18816822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525590 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18816822 Country of ref document: EP Kind code of ref document: A1 |