WO2018230566A1 - Humidification module and method for humidification of fluid using said humidification module - Google Patents

Humidification module and method for humidification of fluid using said humidification module Download PDF

Info

Publication number
WO2018230566A1
WO2018230566A1 PCT/JP2018/022443 JP2018022443W WO2018230566A1 WO 2018230566 A1 WO2018230566 A1 WO 2018230566A1 JP 2018022443 W JP2018022443 W JP 2018022443W WO 2018230566 A1 WO2018230566 A1 WO 2018230566A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
humidification
fluid
braided yarn
Prior art date
Application number
PCT/JP2018/022443
Other languages
French (fr)
Japanese (ja)
Inventor
鎌田 眞人
Original Assignee
Agcエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcエンジニアリング株式会社 filed Critical Agcエンジニアリング株式会社
Publication of WO2018230566A1 publication Critical patent/WO2018230566A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a humidification module having a function of humidifying a fluid supplied to a hollow portion of a hollow fiber membrane, and a fluid humidification method using the humidification module.
  • the present invention relates to a humidification module using a hollow fiber membrane that does not buckle and that can sufficiently function even when used in a high humidity atmosphere, and a fluid humidification method using the humidification module.
  • a hollow fiber membrane made of a fluorine-containing resin is non-porous and can selectively transmit only water vapor. Utilizing this property, the hollow fiber membrane is used as means for adjusting the water content of the fluid supplied to the hollow portion of the hollow fiber membrane.
  • a method of humidifying hydrogen gas supplied as fuel using a humidification module composed of a hollow fiber membrane of a polymer ion exchange membrane material such as perfluorocarbon sulfonic acid is known. (Patent Document 1).
  • the hollow fiber membrane made of the polymer ion exchange membrane has a humidity difference between the hollow portion of the hollow fiber membrane and the outside, water vapor permeates from the higher to the lower humidity through the hollow fiber membrane.
  • the humidification module humidifies the fluid by placing the outside of the hollow fiber membrane in a high humidity state and flowing the fluid through the hollow portion of the hollow fiber membrane.
  • the deformation in the longitudinal direction when the moisture is contained may reach about 20%.
  • the hollow fiber membrane swells in the casing, suddenly expands in volume and greatly bends, and the hollow fiber membranes stick to each other.
  • a slight gap that allows water vapor to pass between the hollow fiber membranes originally disappears, so that the humidifying function cannot be performed or the bending state is severe (hereinafter also referred to as buckling). )
  • buckling has a risk that the fluid cannot pass through the hollow portion of the hollow fiber membrane.
  • the present invention has been made in view of the above circumstances, and uses a humidification module using a hollow fiber membrane that does not buckle and can sufficiently function even when used in a high humidity atmosphere, and the humidification module. It aims at providing the humidification method of a fluid.
  • a humidification module having a casing and a plurality of hollow fiber membranes housed in the casing, wherein the hollow fiber membrane is covered with a braided yarn knitted in a mesh shape on the outer periphery
  • a humidifying module wherein the material is a fluorine-containing resin having an ion exchange group, and the braided yarn is made of a material having a moisture content lower than that of the hollow fiber membrane.
  • the material of the braided yarn is one selected from the group consisting of polyester, polyacrylonitrile, polypropylene, nylon, polyethylene, polyurethane, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and polyfluoroethylene.
  • the humidifying module according to any one of [1] to [4].
  • the thickness of the braided yarn is 250 to 800 denier, and the braided yarn is wound around the outer periphery of the hollow fiber so that the coverage is 10 to 50%.
  • the fluorine-containing resin having an ion exchange group has a sulfonic acid type functional group as an ion exchange group, and has an ion exchange capacity of 0.1 to 5 meq / g dry resin.
  • the humidification module as described in any one of [6].
  • a humidifying module having a function of humidifying a fluid supplied to a hollow portion of a hollow fiber membrane, and the hollow fiber membrane placed in a high humidity atmosphere can normally function. It is possible to provide a humidification module and a method of humidifying a fluid with high humidification efficiency using the humidification module.
  • FIG. 1 is a schematic external configuration diagram of a hollow fiber membrane in a humidifying module of the present invention.
  • the hollow fiber membrane 11 includes a hollow part through which the humidified fluid passes and a support layer (thick part) covering the periphery of the hollow part.
  • a braided yarn 13 knitted in a braided shape is provided around the outer periphery of the hollow fiber membrane 11. The humidified fluid that passes through the hollow portion of the hollow fiber membrane 11 is supplied with water vapor that has passed through the support layer of the hollow fiber and is humidified.
  • the material of the hollow fiber membrane 11 is a fluorine-containing resin having an ion exchange group.
  • a fluorine-containing resin having an ion exchange group is preferable because it easily permeates water vapor.
  • the support layer (thick part) in the hollow fiber membrane 11 may be formed of a non-porous membrane.
  • Specific examples of the ion exchange group include a sulfonic acid type functional group, a carboxylic acid type functional group, and the like, and a sulfonic acid type functional group is preferable from the viewpoint of better humidification effect.
  • the ion exchange capacity of the ion exchange resin is preferably 0.1 to 5 meq / g dry resin, more preferably 0.5 to 3 meq / g dry resin, and 0.9 to 1 from the viewpoint of excellent humidification effect. Particularly preferred is .3 meq / g dry resin.
  • a copolymer having a repeating unit based on tetrafluoroethylene (hereinafter referred to as TFE) and a repeating unit having an ion exchange group is preferable.
  • TFE tetrafluoroethylene
  • the copolymer which has a repeating unit based on TFE and a repeating unit based on the perfluoro vinyl ether which has a sulfonic acid group or a carboxylic acid group is more preferable.
  • the repeating unit having an ion exchange group is preferably a structural unit obtained from a monomer represented by the following formula (1).
  • CF 2 CF- (O) p- (CF 2 ) q- (CF 2 CFX 1 ) r- (O) s- (CF 2 ) t- (CF 2 CFX 2 ) u -Y
  • X 1 and X 2 are each independently a fluorine atom or a trifluoromethyl group.
  • Y is a group that can be converted into a sulfonic acid type functional group or a carboxylic acid type functional group.
  • P is 0 or 1.
  • q is an integer of 0 to 12.
  • r is an integer of 0 to 3.
  • s is 0 or 1.
  • t is an integer of 0 to 12.
  • u is an integer of 0 to 3.
  • the group that can be converted into the sulfonic acid type functional group or the group that can be converted into the carboxylic acid type functional group is brought into contact with an alkaline aqueous solution such as potassium hydroxide to thereby form a sulfonic acid type functional group or a carboxylic acid group that is an ion exchange group. Converted to acid type functional group.
  • CF 2 CF—O—CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —SO 2 F
  • CF 2 CF—CF 2 CF 2 —SO 2 F
  • CF 2 CF—CF 2 CF 2 —SO 2 F
  • CF 2 CF—CF 2 CF 2 —SO 2 F
  • CF 2 CF—CF
  • the material of the braided yarn 13 is preferably a resin having a low moisture content, preferably a resin having a moisture content of 12% by mass or less, and more preferably a resin having 10% by mass or less.
  • the moisture content is determined according to the method of JIS-L1013 (2010) “Testing method for chemical fiber filament yarn 8.1.1”. That is, about 20 g of a sample is taken as the moisture content, its mass and absolute dry mass are measured, the moisture content (%) is calculated by the following formula, and the average value of two times is rounded to one decimal place by the rounding off method.
  • R moisture content (%)
  • m mass (g) at the time of sample collection at a humidity of 95%
  • m ′ absolute dry mass (g) of the sample, and drying at a temperature of 105 ⁇ 5 ° C. Mass when dried to constant mass in the vessel and then cooled to room temperature.
  • R (%) ((m ⁇ m ′) / m ′) ⁇ 100
  • Specific materials for the braided yarn 13 include polyester (moisture content of 0.6 to 0.7 mass%), polyacrylonitrile (moisture content of 1.5 to 3 mass%), and polypropylene (moisture content of 0 to 0.1 mass%). %), Nylon (water content 8-9% by weight), polyethylene (water content 0-0.1% by weight), polyurethane, polystyrene, polyvinyl chloride (water content 0-0.3% by weight), polyvinylidene chloride, It is preferably one selected from the group consisting of polyvinylidene fluoride and polyfluoroethylene. Since it is easy to process, it is more preferably one selected from the group consisting of polyester, polyacrylonitrile, polypropylene, nylon, polyethylene, polyurethane, polystyrene, and polyvinyl chloride.
  • the braided yarn 13 is a material having a lower moisture content than the hollow fiber membrane 11.
  • the moisture content of the material of the hollow fiber membrane is preferably 2 to 20% by mass, more preferably 4 to 11% by mass.
  • the difference in moisture content between the material of the hollow fiber membrane 11 and the material of the braided yarn 13 is preferably 5% by mass or more, more preferably 7 to 30% by mass, further preferably 10 to 25% by mass, and 12 to 20%. Mass% is particularly preferred. When the moisture content difference is within the above range, it is easy to suppress deformation of the hollow fiber membrane 11 including the braided yarn 13.
  • the hollow fiber membrane 11 is obtained by a known method from the above-described fluororesin having an ion exchange group.
  • the outer diameter of the hollow fiber membrane 11 is preferably 0.2 to 5.0 mm, more preferably 0.4 to 4.1 mm. Within the above range, the mechanical strength of the hollow fiber membrane 11 is easily maintained, and the humidified fluid is easily humidified efficiently.
  • the hollow fiber membrane 11 preferably has an inner diameter of 0.1 to 3.0 mm, more preferably 0.2 to 2.5 mm. Within the above range, the mechanical strength of the hollow fiber membrane 11 is easily maintained, and the humidified fluid is easily humidified efficiently.
  • the difference between the outer diameter and the inner diameter of the hollow fiber membrane 11 is the thickness of the support layer, which is the thick part of the hollow fiber membrane, but the thickness of the support layer of the hollow fiber membrane is 0.05 to 0.5 mm. Preferably, 0.08 to 0.3 mm is more preferable.
  • a hollow fiber membrane it can obtain as a commercial item, for example, brand name: Sansep (registered trademark of AGC Engineering) can be used.
  • the braided yarn 13 is obtained by a known method from a material having a moisture content lower than that of the material of the hollow fiber membrane 11 described above.
  • the cross-sectional shape of the braided yarn is preferably circular or elliptical.
  • the thickness of the braided yarn is preferably 250 to 800 denier, and more preferably 400 to 650 denier.
  • the braided yarn 13 is knitted around the outer periphery of the hollow fiber membrane 11 so that the opening has a mesh shape.
  • a method of braiding for example, a means is used in which a hollow fiber membrane is arranged at the center and 8 or 16 yarns are knitted into a mesh around the outer periphery of the hollow fiber membrane 11 while moving the membrane.
  • the coverage of the outer peripheral surface of the hollow fiber membrane with the braided yarn is preferably 10 to 50%, more preferably 20 to 40%.
  • the humidification module of the present invention has a casing and a plurality of hollow fiber membranes housed in the casing.
  • the hollow fiber membrane is provided with a braided yarn knitted in a braided shape around the outer periphery of one hollow fiber membrane.
  • the braided yarn is provided around the outer periphery of a converging body composed of a plurality of hollow fiber membranes, when the hollow fiber membrane contacts by swelling inside the braided yarn, water vapor passes through the contacted portion. Therefore, the fluid supplied to the hollow fiber membrane is not easily humidified.
  • the degree of swelling is large, the hollow fiber membrane inside the braided yarn may buckle.
  • Both ends of the braided yarn 13 and the hollow fiber membrane 11 are fixed together with the casing with an epoxy resin, which will be described later, and then cut so as to maintain a necessary length as the hollow fiber membrane 11. Further, the ends of the cut braided yarn 13 are heat welded so as not to fray.
  • a method for heat welding for example, a method in which the periphery of the end of the braided yarn 13 is heated while being sandwiched by a heater can be mentioned.
  • FIG. 2 shows a schematic simplified configuration diagram of the humidification module 20.
  • a plurality of hollow fiber membranes 11 including the braided yarn 13 shown in FIG. 1 are arranged in a cylindrical casing 21. Both ends of the hollow fiber membrane 11 provided with the braided yarn 13 are fixed with an epoxy resin 23 or the like.
  • the inner diameter of the casing 21 is preferably, for example, 5 to 80 mm in diameter and 200 to 1300 mm in length. It is preferable that 10 to 1,000 hollow fiber membranes 11 with braided yarns 13 are disposed inside the casing 21 so that the gaps between the hollow fiber membranes 11 can be seen with the naked eye.
  • a humidified fluid such as water or water vapor is introduced from the inlet 28 and is opposite to the flow of the humidified fluid flowing through the hollow portion of the hollow fiber membrane.
  • the flow of the humidified fluid such as water or water vapor and the flow of the humidified fluid flow are supplied so as to be countercurrent, and discharged from the outlet 29.
  • the humidification module 20 water or water vapor flows on the outer peripheral portion of the hollow fiber membrane 11 of the humidification module 20.
  • the hollow fiber membrane swells in the casing and rapidly expands in volume, and is easily buckled if there is no gap in the casing.
  • the hollow fiber membrane is buckled, even if the humidified fluid is supplied to the hollow portion of the hollow fiber membrane, the humidified fluid hardly flows and pressure is easily applied to the hollow fiber membrane.
  • the hollow fiber membrane may expand and deform rapidly due to pressure, and may break.
  • the fluid humidifying method of the present invention is a method of obtaining a humidified fluid by supplying a fluid to the hollow portion of the hollow fiber membrane in the humidifying module and passing the supplied fluid through the hollow portion.
  • the fluid humidification method of the present invention will be described in detail with reference to FIG.
  • the fluid is introduced from the humidified fluid inlet 25 to supply the fluid to the hollow portion of the hollow fiber membrane 11, and the supplied fluid passes through the hollow portion, so that the humidified fluid is supplied from the humidified fluid outlet 27. can get.
  • the humidification module when the humidity of the outer peripheral portion of the hollow fiber membrane 11 is higher than the humidity of the fluid supplied to the hollow fiber membrane 11, water vapor is supplied to the outer peripheral portion so that the humidity of the hollow portion and the outer peripheral portion is balanced. To penetrate through the support layer of the hollow fiber membrane 11 and enter the hollow portion. The greater the difference between the humidity of the fluid supplied to the hollow fiber membrane 11 and the outer peripheral portion of the hollow fiber membrane 11, the greater the driving force through which water vapor permeates through the hollow portion. Therefore, the humidified fluid is easily humidified efficiently.
  • the outer peripheral portion of the hollow fiber membrane 11 is preferably an atmosphere of water or water vapor with a humidity of preferably 90% or more, more preferably 95% or more.
  • the hollow fiber membrane 11 is disposed in a casing filled with water. More preferably, it is provided. In this case, water is injected from the inlet 28 and drained from the outlet 29.
  • the dew point of the supplied fluid can be humidified to a desired dew point.
  • the dew point of the humidified fluid can be set higher by 20 to 50 ° C., more preferably 25 to 40 ° C. than the dew point of the supplied fluid.
  • the fluid supplied into the hollow fiber membrane 11 is preferably a gas, and is preferably hydrogen, nitrogen, or air.
  • the outer periphery of the hollow fiber membrane 11 in the humidification module of the present invention is provided with a braided yarn 13 made of a material having a lower moisture content than the material of the hollow fiber membrane 11, the hollow fiber membrane 11 is exposed to water or water vapor. Even if it is done, the shape is maintained. Therefore, the hollow fiber membrane 11 becomes difficult to buckle, and a gap for allowing water or water vapor to pass through is secured between the hollow fiber membranes 11, so that the humidification performance can be maintained normally.
  • the hollow fiber membrane 11 in the humidification module of the present invention includes a braided yarn 13 knitted in the form of a braid on the outer periphery, thereby preventing the hollow fiber membranes from contacting each other.
  • the fluid secured between the hollow fiber membranes 11 and supplied to the hollow fiber membranes can be efficiently humidified.
  • the humidifying module of the present invention can humidify the fluid supplied to the hollow fiber membrane, and can sufficiently exhibit the humidifying function even when the humidifying module is operated in a high humidity atmosphere. According to the fluid humidification method of the present invention, since the humidification module of the present invention is used, even when the humidification module is operated in an atmosphere of water or water vapor, the humidified fluid is removed without buckling of the hollow fiber membrane. Obtainable.
  • the humidification module and humidification method of the present invention are suitable for applications such as humidification of hydrogen gas supplied as fuel for fuel cells, and other applications that require humidification of the supplied fluid in the manufacture of industrial materials and pharmaceutical products. Can be used.
  • Example 1 is an example and Example 2 is a comparative example.
  • the hollow fiber membrane was immersed in an aqueous solution containing 30% by mass of dimethyl sulfoxide and 11% by mass of potassium hydroxide at 60 ° C. for 30 minutes to make SO 3 K a terminal group, and then 1N sulfuric acid.
  • the terminal group was immersed in an aqueous solution at 50 ° C. for 30 minutes to make SO 3 H, and then dried in a thermostatic bath at 80 ° C. for 30 minutes to obtain a moisture content of 20% by mass.
  • Example 1 The hollow fiber membrane shown in FIG. 1 is obtained by using the hollow fiber membrane and the braided yarn described above, and winding the braided yarn around the outer periphery of the hollow fiber membrane in a mesh shape so that the coverage is 20%. Obtained.
  • the humidification module 20 shown in FIG. 2 was manufactured using such a hollow fiber membrane.
  • the humidifying module 20 is as described above, and inside the casing 21 (inner diameter: diameter 80 mm, length: 350 mm), 920 hollow fiber membranes 11 having braided yarns 13 on the outer periphery are provided.
  • Other configurations such as having a configuration in which the fluid to be humidified 25 and the outlet 27, a humidified fluid port 28, and an outlet 29 are provided are configured as described above.
  • hydrogen gas with a dew point of ⁇ 20 ° C. is supplied at a flow rate of 1,000 L / min.
  • water is supplied from the inlet 28 of the humidification module 20 at a flow rate of 10 L / min.
  • the hydrogen gas humidified to a dew point of 22 ° C. was obtained from the humidified fluid outlet 27 of the humidifying module 20.
  • Example 2 920 hollow fiber membranes 31 were disposed in the casing 21 of the humidifying module 30 shown in FIG.
  • the humidifying module 30 of the present example is the configuration of the humidifying module 20 of Example 1 except that a hollow fiber membrane 31 that does not include the braided yarn 13 is used instead of the hollow fiber membrane 11 that includes the braided yarn 13. It is the same.
  • hydrogen gas having a dew point of ⁇ 20 ° C. is supplied at a flow rate of 1,000 L / min.
  • water is supplied from the inlet 28 of the humidification module 30 at a flow rate of 10 L / min. Introduced and operated. After a few minutes, hydrogen gas no longer flows out from the humidified fluid outlet 27.
  • the hollow fiber membrane 31 When the humidification module 30 was disassembled, the hollow fiber membrane 31 could not maintain its original shape, but expanded and deformed so that it could be clearly confirmed with the naked eye, causing buckling. As described above, when the braided yarn 13 was not provided around the outer periphery of the hollow fiber membrane 31, the hollow fiber membrane 31 in the humidifying module 30 was deformed or buckled, and did not function as a humidifying module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Provided are a humidification module that makes use of a hollow fiber membrane that can sufficiently exhibit functions even in an atmosphere with a high humidity and with which buckling does not easily occur, and a method for humidification of a fluid using that humidification module. The humidification module has a casing and a plurality of hollow fiber membranes accommodated in the casing, and is characterized in that the outer periphery of the hollow fiber membranes is covered with a braided yarn that is braided in a mesh form, the material for the hollow fiber membranes is a fluorine-containing resin that has ion exchange groups, and the braided yarn is formed from a material with a lower moisture content than the hollow fiber membranes.

Description

加湿モジュール及び該加湿モジュールを用いた流体の加湿方法Humidification module and fluid humidification method using the humidification module
 本発明は、中空糸膜の中空部に供給された流体を加湿する機能を備えた加湿モジュール及び該加湿モジュールを用いた流体の加湿方法に関する。特に湿度の高い雰囲気下で用いても機能を十分に発揮しうる座屈しにくい中空糸膜を用いた加湿モジュール及び該加湿モジュールを用いた流体の加湿方法に関する。 The present invention relates to a humidification module having a function of humidifying a fluid supplied to a hollow portion of a hollow fiber membrane, and a fluid humidification method using the humidification module. In particular, the present invention relates to a humidification module using a hollow fiber membrane that does not buckle and that can sufficiently function even when used in a high humidity atmosphere, and a fluid humidification method using the humidification module.
 含フッ素樹脂でできた中空糸膜は、非多孔性であり、水蒸気のみを選択的に透過させることができる。この性質を利用して、前記中空糸膜は、中空糸膜の中空部に供給された流体の水分を調整する手段として用いられている。
 例えば、固体高分子形燃料電池では、パーフルオロカーボンスルホン酸などの高分子イオン交換膜材料の中空糸膜で構成される加湿モジュールを用いて、燃料として供給される水素ガスを加湿する方法が知られている(特許文献1)。
A hollow fiber membrane made of a fluorine-containing resin is non-porous and can selectively transmit only water vapor. Utilizing this property, the hollow fiber membrane is used as means for adjusting the water content of the fluid supplied to the hollow portion of the hollow fiber membrane.
For example, in a polymer electrolyte fuel cell, a method of humidifying hydrogen gas supplied as fuel using a humidification module composed of a hollow fiber membrane of a polymer ion exchange membrane material such as perfluorocarbon sulfonic acid is known. (Patent Document 1).
 上記高分子イオン交換膜でできた中空糸膜は、中空糸膜の中空部と外部に湿度差がある場合、前記中空糸膜を介して、湿度の高い方から低い方へ水蒸気を透過させることにより、前記中空糸膜に供給された流体を除湿または加湿することができる。
 加湿モジュールは、中空糸膜の外部を湿度の高い状態にして、中空糸膜の中空部に流体を流すことで、流体を加湿するものである。
When the hollow fiber membrane made of the polymer ion exchange membrane has a humidity difference between the hollow portion of the hollow fiber membrane and the outside, water vapor permeates from the higher to the lower humidity through the hollow fiber membrane. Thus, the fluid supplied to the hollow fiber membrane can be dehumidified or humidified.
The humidification module humidifies the fluid by placing the outside of the hollow fiber membrane in a high humidity state and flowing the fluid through the hollow portion of the hollow fiber membrane.
日本特開平08-273687号公報Japanese Unexamined Patent Publication No. 08-273687
 ところで、加湿モジュールにおいて、中空糸膜の材料が水分率の高い含フッ素樹脂である場合、含水した際の長手方向の変形は約20%にも及ぶことがある。前記中空糸膜をケーシングに入れて、運転を続けると、ケーシング内で中空糸膜が膨潤し、急激に体積を膨張させて大きくたわみ、中空糸膜同士がくっついてしまう。その結果、本来中空糸膜同士の間に存在していた水蒸気が通れるだけのわずかな隙間が無くなってしまうため、加湿機能が果たせなくなったり、たわみの状態がひどい場合(以下、座屈ともいう。)には、中空糸膜の中空部を流体が通過できなくなってしまうという恐れがあった。 By the way, in the humidification module, when the material of the hollow fiber membrane is a fluorine-containing resin having a high moisture content, the deformation in the longitudinal direction when the moisture is contained may reach about 20%. When the hollow fiber membrane is put in the casing and the operation is continued, the hollow fiber membrane swells in the casing, suddenly expands in volume and greatly bends, and the hollow fiber membranes stick to each other. As a result, a slight gap that allows water vapor to pass between the hollow fiber membranes originally disappears, so that the humidifying function cannot be performed or the bending state is severe (hereinafter also referred to as buckling). ) Has a risk that the fluid cannot pass through the hollow portion of the hollow fiber membrane.
 この問題に対しては、これまで、中空糸膜の変形を考慮して、ケーシングの容量を設計する方法が取られていた。しかし、この方法においては、中空糸膜の充填率を下げてケーシング内に十分な余裕を持たせるため、加湿効率が悪くなるという問題や、必要な性能を発現させるために、加湿モジュールを複数本使わなければならないという問題が発生していた。 For this problem, a method of designing the capacity of the casing in consideration of the deformation of the hollow fiber membrane has been taken so far. However, in this method, since the filling rate of the hollow fiber membrane is lowered so that a sufficient margin is provided in the casing, there is a problem that the humidification efficiency is deteriorated, and a plurality of humidification modules are used in order to develop necessary performance. There was a problem of having to use it.
 本発明は、上記実情に鑑みてなされたものであり、湿度の高い雰囲気下で用いても機能を十分に発揮しうる座屈しにくい、中空糸膜を用いた加湿モジュール及び該加湿モジュールを用いた流体の加湿方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and uses a humidification module using a hollow fiber membrane that does not buckle and can sufficiently function even when used in a high humidity atmosphere, and the humidification module. It aims at providing the humidification method of a fluid.
 本発明は、上記の課題を達成するものであり、以下の態様を有する。
 [1]ケーシングと、ケーシングに収納された複数の中空糸膜を有する加湿モジュールであって、前記中空糸膜は、その外周囲がメッシュ状に編み込んだ編組糸で被覆され、前記中空糸膜の材料はイオン交換基を持つ含フッ素樹脂であり、かつ、前記編組糸は前記中空糸膜よりも水分率が低い材料からなることを特徴とする加湿モジュール。
The present invention achieves the above-mentioned problems and has the following aspects.
[1] A humidification module having a casing and a plurality of hollow fiber membranes housed in the casing, wherein the hollow fiber membrane is covered with a braided yarn knitted in a mesh shape on the outer periphery, A humidifying module, wherein the material is a fluorine-containing resin having an ion exchange group, and the braided yarn is made of a material having a moisture content lower than that of the hollow fiber membrane.
 [2]前記編組糸は、水分率が12質量%以下の樹脂を材料とする繊維である、前記[1]の加湿モジュール。
 [3]前記中空糸膜の材料と前記編組糸の材料の水分率の差は5質量%以上である、前記[1]または[2]の加湿モジュール。
 [4]前記編組糸の材料は、イオン交換基を持たない樹脂である、前記[1]~[3]のいずれかの加湿モジュール。
 [5]前記編組糸の材料は、ポリエステル、ポリアクリロニトリル、ポリプロピレン、ナイロン、ポリエチレン、ポリウレタン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデンおよびポリフルオロエチレンからなる群より選ばれる1種である、前記[1]~[4]のいずれかの加湿モジュール。
[2] The humidification module according to [1], wherein the braided yarn is a fiber made of a resin having a moisture content of 12% by mass or less.
[3] The humidifying module according to [1] or [2], wherein a difference in moisture content between the material of the hollow fiber membrane and the material of the braided yarn is 5% by mass or more.
[4] The humidifying module according to any one of [1] to [3], wherein the material of the braided yarn is a resin having no ion exchange group.
[5] The material of the braided yarn is one selected from the group consisting of polyester, polyacrylonitrile, polypropylene, nylon, polyethylene, polyurethane, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and polyfluoroethylene. The humidifying module according to any one of [1] to [4].
 [6]前記編組糸の太さが、250~800デニールであり、かつ該編組糸が、中空糸の外周囲に被覆率が10~50%になるように巻き付けられている、前記[1]~[5]のいずれかの加湿モジュール。
 [7]前記イオン交換基を持つ含フッ素樹脂が、イオン交換基としてスルホン酸型官能基を有し、イオン交換容量として0.1~5ミリ当量/グラム乾燥樹脂を有する、前記[1]~[6]のいずれか一項に記載の加湿モジュール。
[6] The thickness of the braided yarn is 250 to 800 denier, and the braided yarn is wound around the outer periphery of the hollow fiber so that the coverage is 10 to 50%. A humidifying module according to any one of [5].
[7] The fluorine-containing resin having an ion exchange group has a sulfonic acid type functional group as an ion exchange group, and has an ion exchange capacity of 0.1 to 5 meq / g dry resin. The humidification module as described in any one of [6].
 [8]前記イオン交換基を持つ含フッ素樹脂が、TFEに基づく繰り返し単位と、スルホン酸基を有するパーフルオロビニルエーテルに基づく繰り返し単位とを有する共重合体である、前記[1]~[7]のいずれかの加湿モジュール。
 [9]前記[1]~[8]のいずれかの加湿モジュールにおける中空糸膜の中空部に流体を供給し、供給された流体が前記中空糸膜の中空部を通過することにより、加湿された流体を得る、流体の加湿方法。
[8] The above [1] to [7], wherein the fluorine-containing resin having an ion exchange group is a copolymer having a repeating unit based on TFE and a repeating unit based on perfluorovinyl ether having a sulfonic acid group. Any humidification module.
[9] Fluid is supplied to the hollow portion of the hollow fiber membrane in the humidifying module of any one of [1] to [8], and the supplied fluid is humidified by passing through the hollow portion of the hollow fiber membrane. A method for humidifying a fluid to obtain a fluid.
 [10]前記中空糸膜の外周部が、水または湿度90%以上の水蒸気の雰囲気下にある、前記[9]の加湿方法。
 [11]前記供給された流体の露点よりも20~50℃高い露点の流体を得る、前記[9]または[10]の加湿方法。
 [12]前記供給された流体が気体である、前記[9]~[11]のいずれかの加湿方法。
 [13]前記気体は、水素、窒素または空気である、前記[12]の加湿方法。
[10] The humidification method of [9], wherein the outer periphery of the hollow fiber membrane is in an atmosphere of water or water vapor with a humidity of 90% or more.
[11] The humidification method according to [9] or [10], wherein a fluid having a dew point higher by 20 to 50 ° C. than a dew point of the supplied fluid is obtained.
[12] The humidification method according to any one of [9] to [11], wherein the supplied fluid is a gas.
[13] The humidification method according to [12], wherein the gas is hydrogen, nitrogen, or air.
 本発明によれば、中空糸膜の中空部に供給された流体を加湿する機能を備えた加湿モジュールであって、湿度の高い雰囲気下に置かれた中空糸膜が、正常に機能を発揮できる加湿モジュール、および、該加湿モジュールを用いた加湿効率の良い、流体の加湿方法を提供することができる。 According to the present invention, a humidifying module having a function of humidifying a fluid supplied to a hollow portion of a hollow fiber membrane, and the hollow fiber membrane placed in a high humidity atmosphere can normally function. It is possible to provide a humidification module and a method of humidifying a fluid with high humidification efficiency using the humidification module.
編組糸が外周囲に装着された中空糸膜の模式的外観構成図Schematic appearance configuration diagram of hollow fiber membrane with braided yarn attached to the outer periphery 例1の加湿モジュールの模式的簡略構成図Schematic simplified configuration diagram of the humidification module of Example 1 例2加湿モジュールの模式的簡略構成図Example 2 Schematic simplified configuration diagram of humidification module
 以下、本発明の実施形態を図1及び図2に示す。
 図1は本発明の加湿モジュールにおける中空糸膜の模式的外観構成図である。中空糸膜11は、被加湿流体が通過する中空部と、前記中空部の周囲を覆った支持層(肉厚部)を備えている。中空糸膜11の外周囲には、編組状に編み込んだ編組糸13が備えられている。中空糸膜11の中空部を通過する被加湿流体には、中空糸の支持層を透過した水蒸気が供給され、加湿される。
Hereinafter, an embodiment of the present invention is shown in FIGS.
FIG. 1 is a schematic external configuration diagram of a hollow fiber membrane in a humidifying module of the present invention. The hollow fiber membrane 11 includes a hollow part through which the humidified fluid passes and a support layer (thick part) covering the periphery of the hollow part. A braided yarn 13 knitted in a braided shape is provided around the outer periphery of the hollow fiber membrane 11. The humidified fluid that passes through the hollow portion of the hollow fiber membrane 11 is supplied with water vapor that has passed through the support layer of the hollow fiber and is humidified.
 中空糸膜11の材料はイオン交換基を有する含フッ素樹脂である。イオン交換基を有する含フッ素樹脂は水蒸気を透過しやすいため好ましい。中空糸膜11における支持層(肉厚部)は非多孔質膜で形成されていてよい。
 イオン交換基の具体例としては、スルホン酸型官能基、カルボン酸型官能基などが挙げられ、加湿効果がより優れる点から、スルホン酸型官能基が好ましい。イオン交換樹脂のイオン交換容量は、加湿効果が優れる点から、0.1~5ミリ当量/グラム乾燥樹脂が好ましく、0.5~3ミリ当量/グラム乾燥樹脂がより好ましく、0.9~1.3ミリ当量/グラム乾燥樹脂が特に好ましい。
The material of the hollow fiber membrane 11 is a fluorine-containing resin having an ion exchange group. A fluorine-containing resin having an ion exchange group is preferable because it easily permeates water vapor. The support layer (thick part) in the hollow fiber membrane 11 may be formed of a non-porous membrane.
Specific examples of the ion exchange group include a sulfonic acid type functional group, a carboxylic acid type functional group, and the like, and a sulfonic acid type functional group is preferable from the viewpoint of better humidification effect. The ion exchange capacity of the ion exchange resin is preferably 0.1 to 5 meq / g dry resin, more preferably 0.5 to 3 meq / g dry resin, and 0.9 to 1 from the viewpoint of excellent humidification effect. Particularly preferred is .3 meq / g dry resin.
 イオン交換基を有する含フッ素樹脂としては、テトラフルオロエチレン(以下、TFEという。)に基づく繰り返し単位と、イオン交換基を有する繰り返し単位とを有する共重合体が好ましい。なかでも、水蒸気を透過しやすいため、TFEに基づく繰り返し単位と、スルホン酸基若しくはカルボン酸基を有するパーフルオロビニルエーテルに基づく繰り返し単位とを有する共重合体がより好ましい。 As the fluorine-containing resin having an ion exchange group, a copolymer having a repeating unit based on tetrafluoroethylene (hereinafter referred to as TFE) and a repeating unit having an ion exchange group is preferable. Especially, since it is easy to permeate | transmit water vapor | steam, the copolymer which has a repeating unit based on TFE and a repeating unit based on the perfluoro vinyl ether which has a sulfonic acid group or a carboxylic acid group is more preferable.
 上記イオン交換基を有する繰り返し単位としては、下記式(1)で表わされる単量体から得られる構成単位が好ましい。
 CF=CF-(O)-(CF-(CFCFX-(O)-(CF-(CFCFX-Y ・・・(1)
 式(1)において、X、Xは、それぞれ独立に、フッ素原子またはトリフルオロメチル基である。Yは、スルホン酸型官能基またはカルボン酸型官能基に変換できる基である。具体的には、-SOF、-SOCl、-SOBr、-COF、-COOR(但し、Rは炭素数1~10のアルキル基である。)、-COONR(但し、RおよびRは、それぞれ独立に水素原子又は炭素数1~10のアルキル基である。)などが挙げられる。なかでも、スルホン酸型官能基が好ましい。
The repeating unit having an ion exchange group is preferably a structural unit obtained from a monomer represented by the following formula (1).
CF 2 = CF- (O) p- (CF 2 ) q- (CF 2 CFX 1 ) r- (O) s- (CF 2 ) t- (CF 2 CFX 2 ) u -Y (1)
In the formula (1), X 1 and X 2 are each independently a fluorine atom or a trifluoromethyl group. Y is a group that can be converted into a sulfonic acid type functional group or a carboxylic acid type functional group. Specifically, —SO 2 F, —SO 2 Cl, —SO 2 Br, —COF, —COOR 1 (where R 1 is an alkyl group having 1 to 10 carbon atoms), —COONR 2 R 3 (Wherein R 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms). Of these, sulfonic acid type functional groups are preferred.
 また、pは、0または1である。qは、0~12の整数である。rは、0~3の整数である。sは、0または1である。tは、0~12の整数である。uは、0~3の整数である。ただし、pおよびsが同時に0になることはなく、rおよびuが同時に0になることはない。すなわち、1≦p+sであり、1≦r+uである。特に、p=1、q=0、r=1、s=0~1、t=0~3、u=0~1である化合物が好ましい。
 なお、上記のスルホン酸型官能基に変換できる基またはカルボン酸型官能基に変換できる基は、水酸化カリウムなどのアルカリ性水溶液に接触させることによって、イオン交換基であるスルホン酸型官能基またはカルボン酸型官能基に変換される。
P is 0 or 1. q is an integer of 0 to 12. r is an integer of 0 to 3. s is 0 or 1. t is an integer of 0 to 12. u is an integer of 0 to 3. However, p and s are not 0 simultaneously, and r and u are not 0 simultaneously. That is, 1 ≦ p + s and 1 ≦ r + u. Particularly preferred are compounds in which p = 1, q = 0, r = 1, s = 0 to 1, t = 0 to 3, and u = 0 to 1.
The group that can be converted into the sulfonic acid type functional group or the group that can be converted into the carboxylic acid type functional group is brought into contact with an alkaline aqueous solution such as potassium hydroxide to thereby form a sulfonic acid type functional group or a carboxylic acid group that is an ion exchange group. Converted to acid type functional group.
 式(1)で表される単量体の好ましい具体例としては、下記が挙げられる。
 CF=CF-O-CFCF-SOF、
 CF=CF-O-CFCFCF-SOF、
 CF=CF-O-CFCFCFCF-SOF、
 CF=CF-O-CFCF(CF)-O-CFCF-SOF、
 CF=CF-O-CFCF(CF)-O-CFCFCF-SOF、
 CF=CF-O-CFCF(CF)-SOF、
 CF=CF-CFCF-SOF、
 CF=CF-CFCFCF-SOF、
 CF=CF-CF-O-CFCF-SOF、
 CF=CF-O-CFCF-COOCH
 CF=CF-O-CFCFCF-COOCH
 CF=CF-O-CFCFCFCF-COOCH
 CF=CF-O-CFCF-O-CFCF-COOCH
 CF=CF-O-CFCF-O-CFCFCF-COOCH
 CF=CF-O-CFCF-O-CFCFCFCF-COOCH
 CF=CF-O-CFCFCF-O-CFCF-COOCH
 CF=CF-O-CFCF(CF)-O-CFCF-COOCH
 CF=CF-O-CFCF(CF)-O-CFCFCF-COOCH
Preferable specific examples of the monomer represented by the formula (1) include the following.
CF 2 = CF—O—CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —SO 2 F,
CF 2 = CF—CF 2 CF 2 —SO 2 F,
CF 2 = CF—CF 2 CF 2 CF 2 —SO 2 F,
CF 2 ═CF—CF 2 —O—CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —COOCH 3 ,
CF 2 ═CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 —COOCH 3
 編組糸13の材料は、水分率が低い樹脂が好ましく、水分率が12質量%以下の樹脂が好ましく、10質量%以下の樹脂がさらに好ましい。なお、水分率は、JIS-L1013(2010年)「化学繊維フィラメント糸の試験方法8.1.1」の方法に準じて求められる。
 すなわち、水分率は,試料約20gを採り、その質量及び絶乾質量を量り、次の式によって水分率(%)を算出し、2回の平均値を四捨五入法によって小数点以下1けたに丸める。式中、R:水分率(%)、m:湿度95%RHでの試料の採取時の質量(g)、m’:試料の絶乾質量(g)であり、温度105±5℃の乾燥器内において一定質量になるまで乾燥した後、常温まで冷却したときの質量。
     R(%)=((m-m’)/m’)×100
The material of the braided yarn 13 is preferably a resin having a low moisture content, preferably a resin having a moisture content of 12% by mass or less, and more preferably a resin having 10% by mass or less. The moisture content is determined according to the method of JIS-L1013 (2010) “Testing method for chemical fiber filament yarn 8.1.1”.
That is, about 20 g of a sample is taken as the moisture content, its mass and absolute dry mass are measured, the moisture content (%) is calculated by the following formula, and the average value of two times is rounded to one decimal place by the rounding off method. In the formula, R: moisture content (%), m: mass (g) at the time of sample collection at a humidity of 95% RH, m ′: absolute dry mass (g) of the sample, and drying at a temperature of 105 ± 5 ° C. Mass when dried to constant mass in the vessel and then cooled to room temperature.
R (%) = ((m−m ′) / m ′) × 100
 編組糸13の具体的な材料としては、ポリエステル(水分率0.6~0.7質量%)、ポリアクリロニトリル(水分率1.5~3質量%)、ポリプロピレン(水分率0~0.1質量%)、ナイロン(水分率8~9質量%)、ポリエチレン(水分率0~0.1質量%)、ポリウレタン、ポリスチレン、ポリ塩化ビニル(水分率0~0.3質量%)、ポリ塩化ビニリデン、ポリフッ化ビニリデンおよびポリフルオロエチレンからなる群より選ばれる1種であることが好ましい。加工が容易であるため、ポリエステル、ポリアクリロニトリル、ポリプロピレン、ナイロン、ポリエチレン、ポリウレタン、ポリスチレン、およびポリ塩化ビニルからなる群より選ばれる1種であることがより好ましい。 Specific materials for the braided yarn 13 include polyester (moisture content of 0.6 to 0.7 mass%), polyacrylonitrile (moisture content of 1.5 to 3 mass%), and polypropylene (moisture content of 0 to 0.1 mass%). %), Nylon (water content 8-9% by weight), polyethylene (water content 0-0.1% by weight), polyurethane, polystyrene, polyvinyl chloride (water content 0-0.3% by weight), polyvinylidene chloride, It is preferably one selected from the group consisting of polyvinylidene fluoride and polyfluoroethylene. Since it is easy to process, it is more preferably one selected from the group consisting of polyester, polyacrylonitrile, polypropylene, nylon, polyethylene, polyurethane, polystyrene, and polyvinyl chloride.
 編組糸13は中空糸膜11よりも水分率が低い材料である。中空糸膜の材料の水分率は、好ましくは2~20質量%であり、より好ましくは4~11質量%である。中空糸膜11の材料と編組糸13の材料の水分率の差は、5質量%以上であることが好ましく、7~30質量%がより好ましく、10~25質量%が更に好ましく、12~20質量%が特に好ましい。上記水分率の差が、上記範囲であると編組糸13を備えた中空糸膜11の変形を抑制しやすい。 The braided yarn 13 is a material having a lower moisture content than the hollow fiber membrane 11. The moisture content of the material of the hollow fiber membrane is preferably 2 to 20% by mass, more preferably 4 to 11% by mass. The difference in moisture content between the material of the hollow fiber membrane 11 and the material of the braided yarn 13 is preferably 5% by mass or more, more preferably 7 to 30% by mass, further preferably 10 to 25% by mass, and 12 to 20%. Mass% is particularly preferred. When the moisture content difference is within the above range, it is easy to suppress deformation of the hollow fiber membrane 11 including the braided yarn 13.
 中空糸膜11は、上記したイオン交換基を有する含フッ素樹脂から既知の方法により得られる。中空糸膜11の外径は0.2~5.0mmであるものが好ましく、0.4~4.1mmであるものがより好ましい。上記範囲内であると、中空糸膜11の機械的な強度を保ちやすく、被加湿流体を効率よく加湿しやすい。 The hollow fiber membrane 11 is obtained by a known method from the above-described fluororesin having an ion exchange group. The outer diameter of the hollow fiber membrane 11 is preferably 0.2 to 5.0 mm, more preferably 0.4 to 4.1 mm. Within the above range, the mechanical strength of the hollow fiber membrane 11 is easily maintained, and the humidified fluid is easily humidified efficiently.
 中空糸膜11の内径は0.1~3.0mmであるものが好ましく、0.2~2.5mmであるものがより好ましい。上記範囲内であると、中空糸膜11の機械的な強度を保ちやすく、被加湿流体を効率よく加湿しやすい。なお、中空糸膜11の外径と内径の差は、中空糸膜の肉厚部である支持層の厚みになるが、中空糸膜の支持層の厚みは、0.05~0.5mmが好ましく、0.08~0.3mmがより好ましい。
 中空糸膜としては、市販品として入手でき、例えば、商品名:サンセップ(AGCエンジニアリング社登録商標)が使用できる。
The hollow fiber membrane 11 preferably has an inner diameter of 0.1 to 3.0 mm, more preferably 0.2 to 2.5 mm. Within the above range, the mechanical strength of the hollow fiber membrane 11 is easily maintained, and the humidified fluid is easily humidified efficiently. The difference between the outer diameter and the inner diameter of the hollow fiber membrane 11 is the thickness of the support layer, which is the thick part of the hollow fiber membrane, but the thickness of the support layer of the hollow fiber membrane is 0.05 to 0.5 mm. Preferably, 0.08 to 0.3 mm is more preferable.
As a hollow fiber membrane, it can obtain as a commercial item, for example, brand name: Sansep (registered trademark of AGC Engineering) can be used.
 編組糸13は、上記した中空糸膜11の材料よりも水分率が低い材料から既知の方法により得られる。編組糸の断面形状は、好ましくは円形もしくは楕円状である。編組糸の太さは、250~800デニールが好ましく、400~650デニールがより好ましい。
 編組糸13は、中空糸膜11の外周囲に、開口部の形状がメッシュ状になるように編み込まれる。編組の方法は、例えば、中空糸膜を中央に配置し、これを移動させながら、中空糸膜11の外周囲に8本もしくは16本の糸をメッシュ状に編み込んでゆく手段が使用される。かかる手段としては、例えば、編組機16MF(日本、共立株式会社製)などの編組機における既知の方法が使用できる。このようにして、中空糸膜の外周囲面に対する編組糸による被覆率が好ましくは10~50%、より好ましくは20~40%になるようにされる。ここで、被覆率は以下の式により求められ、式中、編組糸表面積は、編組糸の幅に長さを乗じた面積として算定される。
   被覆率(%)=(編組糸表面積÷中空糸表面積)×100
The braided yarn 13 is obtained by a known method from a material having a moisture content lower than that of the material of the hollow fiber membrane 11 described above. The cross-sectional shape of the braided yarn is preferably circular or elliptical. The thickness of the braided yarn is preferably 250 to 800 denier, and more preferably 400 to 650 denier.
The braided yarn 13 is knitted around the outer periphery of the hollow fiber membrane 11 so that the opening has a mesh shape. As a method of braiding, for example, a means is used in which a hollow fiber membrane is arranged at the center and 8 or 16 yarns are knitted into a mesh around the outer periphery of the hollow fiber membrane 11 while moving the membrane. As such means, for example, a known method in a braiding machine such as a braiding machine 16MF (manufactured by Kyoritsu Co., Ltd., Japan) can be used. In this way, the coverage of the outer peripheral surface of the hollow fiber membrane with the braided yarn is preferably 10 to 50%, more preferably 20 to 40%. Here, the coverage is obtained by the following equation, in which the braided yarn surface area is calculated as an area obtained by multiplying the width of the braided yarn by the length.
Coverage rate (%) = (braided yarn surface area ÷ hollow fiber surface area) × 100
 本発明の加湿モジュールは、ケーシングと、ケーシングに収納された複数の中空糸膜を有する。前記中空糸膜は、1本の中空糸膜の外周囲に編組状に編み込まれた編組糸を備えたものである。複数本の中空糸膜で構成される集束体の外周囲に前記編組糸を備えた場合には、前記編組糸の内側で中空糸膜が膨潤により接触すると、接触した部分は水蒸気が通過することができないため、中空糸膜に供給された流体は効率よく加湿されにくい。また、膨潤の程度が大きい場合には、編組糸の内側の中空糸膜が座屈を起こす場合がある。 The humidification module of the present invention has a casing and a plurality of hollow fiber membranes housed in the casing. The hollow fiber membrane is provided with a braided yarn knitted in a braided shape around the outer periphery of one hollow fiber membrane. When the braided yarn is provided around the outer periphery of a converging body composed of a plurality of hollow fiber membranes, when the hollow fiber membrane contacts by swelling inside the braided yarn, water vapor passes through the contacted portion. Therefore, the fluid supplied to the hollow fiber membrane is not easily humidified. When the degree of swelling is large, the hollow fiber membrane inside the braided yarn may buckle.
 編組糸13及び中空糸膜11の両端部は、後述するエポキシ樹脂等でケーシングと一緒に固着させた後、中空糸膜11として必要な長さを保持するように切断されている。また、切断された編組糸13の端部はほつれないように熱溶着されている。熱溶着する方法としては、例えば、編組糸13の端部の周囲をヒータで挟み込みつつ加熱する方法が挙げられる。 Both ends of the braided yarn 13 and the hollow fiber membrane 11 are fixed together with the casing with an epoxy resin, which will be described later, and then cut so as to maintain a necessary length as the hollow fiber membrane 11. Further, the ends of the cut braided yarn 13 are heat welded so as not to fray. As a method for heat welding, for example, a method in which the periphery of the end of the braided yarn 13 is heated while being sandwiched by a heater can be mentioned.
 図2には加湿モジュール20の模式的簡略構成図を示す。
 図2において、円筒状のケーシング21内には図1に示す編組糸13を備えた中空糸膜11が、複数本配設されている。編組糸13を備えた中空糸膜11の両端部はエポキシ樹脂等23で固定されている。ケーシング21の内径は、例えば、直径が5~80mmで長さは200~1,300mmであることが好ましい。ケーシング21の内側には編組糸13を備えた中空糸膜11が10~1,000本配設されており、肉眼で中空糸膜11同士の隙間が見えている状態であることが好ましい。
FIG. 2 shows a schematic simplified configuration diagram of the humidification module 20.
In FIG. 2, a plurality of hollow fiber membranes 11 including the braided yarn 13 shown in FIG. 1 are arranged in a cylindrical casing 21. Both ends of the hollow fiber membrane 11 provided with the braided yarn 13 are fixed with an epoxy resin 23 or the like. The inner diameter of the casing 21 is preferably, for example, 5 to 80 mm in diameter and 200 to 1300 mm in length. It is preferable that 10 to 1,000 hollow fiber membranes 11 with braided yarns 13 are disposed inside the casing 21 so that the gaps between the hollow fiber membranes 11 can be seen with the naked eye.
 中空糸膜の外周部から水蒸気を効率良く中空部へと透過させるために、水または水蒸気などの加湿流体は、入口28から導入され、中空糸膜の中空部を流れる被加湿流体の流れと反対方向に流され、すなわち、水または水蒸気などの加湿流体の流れと被加湿流体流の流れが向流になるように供給され、そして、出口29から排出される。 In order to efficiently transmit water vapor from the outer peripheral portion of the hollow fiber membrane to the hollow portion, a humidified fluid such as water or water vapor is introduced from the inlet 28 and is opposite to the flow of the humidified fluid flowing through the hollow portion of the hollow fiber membrane. In other words, the flow of the humidified fluid such as water or water vapor and the flow of the humidified fluid flow are supplied so as to be countercurrent, and discharged from the outlet 29.
 上記加湿モジュール20において、加湿モジュール20の中空糸膜11の外周部には水または水蒸気が流れている。この場合、従来のように中空糸膜が編組糸を備えていない場合、中空糸膜はケーシング内で膨潤して体積が急激に膨張し、ケーシング内に隙間がなくなると、座屈しやすい。中空糸膜が座屈すると、中空糸膜の中空部に被加湿流体が供給されたとしても、被加湿流体は流れにくく、中空糸膜に圧力がかかりやすい。中空糸膜は、圧力により急激に膨張、変形し、破断することもある。 In the humidification module 20, water or water vapor flows on the outer peripheral portion of the hollow fiber membrane 11 of the humidification module 20. In this case, when the hollow fiber membrane is not provided with a braided yarn as in the prior art, the hollow fiber membrane swells in the casing and rapidly expands in volume, and is easily buckled if there is no gap in the casing. When the hollow fiber membrane is buckled, even if the humidified fluid is supplied to the hollow portion of the hollow fiber membrane, the humidified fluid hardly flows and pressure is easily applied to the hollow fiber membrane. The hollow fiber membrane may expand and deform rapidly due to pressure, and may break.
 本発明の流体の加湿方法は、前記加湿モジュールにおける中空糸膜の中空部に流体を供給し、供給された流体が前記中空部を通過することにより、加湿された流体を得る方法である。
 本発明の流体の加湿方法を図2により詳細に説明する。被加湿流体入口25から流体を導入して、中空糸膜11の中空部に流体を供給し、供給された流体が前記中空部を通過することにより、加湿された流体が被加湿流体出口27から得られる。
The fluid humidifying method of the present invention is a method of obtaining a humidified fluid by supplying a fluid to the hollow portion of the hollow fiber membrane in the humidifying module and passing the supplied fluid through the hollow portion.
The fluid humidification method of the present invention will be described in detail with reference to FIG. The fluid is introduced from the humidified fluid inlet 25 to supply the fluid to the hollow portion of the hollow fiber membrane 11, and the supplied fluid passes through the hollow portion, so that the humidified fluid is supplied from the humidified fluid outlet 27. can get.
 加湿モジュールにおいては、中空糸膜11に供給された流体の湿度よりも、中空糸膜11の外周部の湿度が高いとき、中空部と外周部の湿度が平衡となるように、水蒸気が外周部から中空糸膜11の支持層を透過して、中空部に侵入する。中空糸膜11に供給された流体の湿度と中空糸膜11の外周部の湿度差が大きいほど、水蒸気が中空部に透過する原動力は大きくなるため、被加湿流体は効率よく加湿されやすい。
 中空糸膜11の外周部は、水、または湿度が好ましくは90%以上、より好ましくは95%以上の水蒸気の雰囲気であることが好ましく、水で満たされたケーシング中に中空糸膜11が配設されていることがより好ましい。この場合、水は流入口28から注入され、流出口29から排水される。
In the humidification module, when the humidity of the outer peripheral portion of the hollow fiber membrane 11 is higher than the humidity of the fluid supplied to the hollow fiber membrane 11, water vapor is supplied to the outer peripheral portion so that the humidity of the hollow portion and the outer peripheral portion is balanced. To penetrate through the support layer of the hollow fiber membrane 11 and enter the hollow portion. The greater the difference between the humidity of the fluid supplied to the hollow fiber membrane 11 and the outer peripheral portion of the hollow fiber membrane 11, the greater the driving force through which water vapor permeates through the hollow portion. Therefore, the humidified fluid is easily humidified efficiently.
The outer peripheral portion of the hollow fiber membrane 11 is preferably an atmosphere of water or water vapor with a humidity of preferably 90% or more, more preferably 95% or more. The hollow fiber membrane 11 is disposed in a casing filled with water. More preferably, it is provided. In this case, water is injected from the inlet 28 and drained from the outlet 29.
 上記加湿方法によれば、供給された流体の露点を所望の露点に加湿することができる。上記加湿方法は、加湿された流体の露点を前記供給された流体の露点よりも好ましくは20~50℃、更には25~40℃高くすることができる。
 中空糸膜11の内部に供給される流体は、気体であることが好ましく、水素、窒素、または空気であることが好ましい。
According to the humidification method, the dew point of the supplied fluid can be humidified to a desired dew point. In the humidification method, the dew point of the humidified fluid can be set higher by 20 to 50 ° C., more preferably 25 to 40 ° C. than the dew point of the supplied fluid.
The fluid supplied into the hollow fiber membrane 11 is preferably a gas, and is preferably hydrogen, nitrogen, or air.
 本発明の加湿モジュールにおける中空糸膜11の外周囲は、中空糸膜11の材料よりも水分率が低い材料からなる編組糸13が備えられているため、中空糸膜11は水または水蒸気にさらされてもその形状は維持される。そのため、中空糸膜11は座屈しにくくなり、水または水蒸気が透過するための隙間が中空糸膜11同士の間に確保され、加湿性能は正常に維持することができる。 Since the outer periphery of the hollow fiber membrane 11 in the humidification module of the present invention is provided with a braided yarn 13 made of a material having a lower moisture content than the material of the hollow fiber membrane 11, the hollow fiber membrane 11 is exposed to water or water vapor. Even if it is done, the shape is maintained. Therefore, the hollow fiber membrane 11 becomes difficult to buckle, and a gap for allowing water or water vapor to pass through is secured between the hollow fiber membranes 11, so that the humidification performance can be maintained normally.
 また、中空糸膜同士が膨潤により接触すると、接触した部分は水蒸気が通過することができないため、中空糸膜に供給された流体は効率よく加湿されにくい。本発明の加湿モジュールにおける中空糸膜11は外周囲に編組状に編み込まれた編組糸13を備えることにより、中空糸膜同士が接触することを防ぐため、水または水蒸気が透過するための隙間が中空糸膜11同士の間に確保され、中空糸膜に供給された流体を効率よく加湿することができる。 Also, when the hollow fiber membranes come into contact with each other due to swelling, water vapor cannot pass through the contacted portion, so that the fluid supplied to the hollow fiber membrane is not easily humidified. The hollow fiber membrane 11 in the humidification module of the present invention includes a braided yarn 13 knitted in the form of a braid on the outer periphery, thereby preventing the hollow fiber membranes from contacting each other. The fluid secured between the hollow fiber membranes 11 and supplied to the hollow fiber membranes can be efficiently humidified.
 したがって、中空糸膜の充填率を下げて、ケーシング内に十分な余裕を持たせなければならないという問題や、必要な性能を発現させるために、加湿モジュールを複数本使用しなければならないという問題は起こりにくい。 Therefore, there is a problem that the filling rate of the hollow fiber membrane must be lowered to provide a sufficient margin in the casing, and a problem that a plurality of humidification modules must be used in order to achieve the required performance. Hard to happen.
 本発明の加湿モジュールは、中空糸膜に供給された流体を加湿することができ、湿度の高い雰囲気下で前記加湿モジュールを運転した場合でも、加湿機能を十分に発揮しうる。本発明の流体の加湿方法によれば、本発明の加湿モジュールを用いるため、水や水蒸気の雰囲気下で前記加湿モジュールを運転した場合でも、中空糸膜が座屈することなく、加湿された流体を得ることができる。 The humidifying module of the present invention can humidify the fluid supplied to the hollow fiber membrane, and can sufficiently exhibit the humidifying function even when the humidifying module is operated in a high humidity atmosphere. According to the fluid humidification method of the present invention, since the humidification module of the present invention is used, even when the humidification module is operated in an atmosphere of water or water vapor, the humidified fluid is removed without buckling of the hollow fiber membrane. Obtainable.
 本発明の加湿モジュールおよび加湿方法は、燃料電池の燃料として供給される水素ガスの加湿、その他工業材料や医薬製品などの製造において、供給された流体への加湿を必要とする用途などに好適に用いることができる。 The humidification module and humidification method of the present invention are suitable for applications such as humidification of hydrogen gas supplied as fuel for fuel cells, and other applications that require humidification of the supplied fluid in the manufacture of industrial materials and pharmaceutical products. Can be used.
 以下に、本発明の実施例適応例を示すが、本発明は、これらに限定して解釈されない。例1は実施例であり、例2は比較例である。 Hereinafter, examples of application of the embodiments of the present invention will be shown, but the present invention is not construed as being limited thereto. Example 1 is an example and Example 2 is a comparative example.
 (中空糸膜)
 市販の「サンセップ」中空糸膜(AGCエンジニアリング社登録商標、TFEとCF=CFOCFCFSOFとの共重合体であるイオン交換容量1.1ミリ当量/グラム乾燥樹脂の外径650μm、内径450μm)を用いた。中空糸膜は、使用にあたり、30質量%のジメチルスルホキシドと11質量%の水酸化カリウムを含有する水溶液中に60℃で30分間浸漬し、末端基をSOKとした後、1規定の硫酸水溶液中に50℃で30分間浸漬して末端基をSOHとし、次いで、80℃の恒温槽内で30分乾燥し、水分率:20質量%とした。
(Hollow fiber membrane)
Commercially available “Sansepp” hollow fiber membrane (registered trademark of AGC Engineering Co., Ltd., an ion exchange capacity of 1.1 meq / g dry resin, which is a copolymer of TFE and CF 2 ═CFOCF 2 CF 2 SO 2 F) , Inner diameter 450 μm). In use, the hollow fiber membrane was immersed in an aqueous solution containing 30% by mass of dimethyl sulfoxide and 11% by mass of potassium hydroxide at 60 ° C. for 30 minutes to make SO 3 K a terminal group, and then 1N sulfuric acid. The terminal group was immersed in an aqueous solution at 50 ° C. for 30 minutes to make SO 3 H, and then dried in a thermostatic bath at 80 ° C. for 30 minutes to obtain a moisture content of 20% by mass.
(編組糸)
 太さが594デニールのポリエステル(ポリエチレンテレフタレート、ユニプラス滋賀社、水分率:0.7質量%)を使用した。
(Braided yarn)
Polyester having a thickness of 594 denier (polyethylene terephthalate, Uniplus Shiga Co., Ltd., moisture content: 0.7% by mass) was used.
 (例1)
 上記した中空糸膜および編組糸を使用し、中空糸膜の外周囲に編組糸を編組機によりメッシュ状に被覆率が20%になるように巻きつけることにより、図1に示す中空糸膜を得た。かかる中空糸膜を使用し、図2に示す加湿モジュール20を製作した。
(Example 1)
The hollow fiber membrane shown in FIG. 1 is obtained by using the hollow fiber membrane and the braided yarn described above, and winding the braided yarn around the outer periphery of the hollow fiber membrane in a mesh shape so that the coverage is 20%. Obtained. The humidification module 20 shown in FIG. 2 was manufactured using such a hollow fiber membrane.
 なお、加湿モジュール20は、前に説明したとおりであるが、ケーシング21(内径:直径80mm、長さ:350mm)の内側には編組糸13を外周囲に備えた中空糸膜11の920本をほぼ均等間隔に配設した構成を有し、被加湿流体の入口25、出口27、および加湿流体口28、出口29を有するなど他の構成は、前記したとおりである。
 加湿モジュール20の被加湿流体入口25から、露点-20℃の水素ガスを流量1,000L/min.で導入し、一方、加湿モジュール20の流入口28からは水を流量10L/min.で導入して運転したところ、加湿モジュール20の被加湿流体出口27より露点22℃に加湿された水素ガスが得られた。
The humidifying module 20 is as described above, and inside the casing 21 (inner diameter: diameter 80 mm, length: 350 mm), 920 hollow fiber membranes 11 having braided yarns 13 on the outer periphery are provided. Other configurations such as having a configuration in which the fluid to be humidified 25 and the outlet 27, a humidified fluid port 28, and an outlet 29 are provided are configured as described above.
From the humidified fluid inlet 25 of the humidifying module 20, hydrogen gas with a dew point of −20 ° C. is supplied at a flow rate of 1,000 L / min. On the other hand, water is supplied from the inlet 28 of the humidification module 20 at a flow rate of 10 L / min. As a result, the hydrogen gas humidified to a dew point of 22 ° C. was obtained from the humidified fluid outlet 27 of the humidifying module 20.
 (例2)
 図3に示す加湿モジュール30のケーシング21内に中空糸膜31を920本配設した。本例の加湿モジュール30は、編組糸13を備えた中空糸膜11の代わりに、編組糸13を備えていない中空糸膜31を用いた点を除いては、例1の加湿モジュール20の構成と同様である。
 加湿モジュール30の被加湿流体入口25から、露点-20℃の水素ガスを流量1,000L/min.で導入し、一方、加湿モジュール30の流入口28からは水を流量10L/min.で導入して運転した。数分後には被加湿流体出口27から水素ガスが流出しなくなった。
(Example 2)
920 hollow fiber membranes 31 were disposed in the casing 21 of the humidifying module 30 shown in FIG. The humidifying module 30 of the present example is the configuration of the humidifying module 20 of Example 1 except that a hollow fiber membrane 31 that does not include the braided yarn 13 is used instead of the hollow fiber membrane 11 that includes the braided yarn 13. It is the same.
From the humidified fluid inlet 25 of the humidifying module 30, hydrogen gas having a dew point of −20 ° C. is supplied at a flow rate of 1,000 L / min. On the other hand, water is supplied from the inlet 28 of the humidification module 30 at a flow rate of 10 L / min. Introduced and operated. After a few minutes, hydrogen gas no longer flows out from the humidified fluid outlet 27.
 加湿モジュール30を解体してみたところ、中空糸膜31は原形状を維持出来ず、肉眼でも明確に確認できるほど膨張して変形し、座屈が起こっていた。
 上記のように、中空糸膜31の外周囲に編組糸13を備えない場合には、加湿モジュール30における中空糸膜31は変形や座屈を起こし、加湿モジュールとして機能しなかった。
When the humidification module 30 was disassembled, the hollow fiber membrane 31 could not maintain its original shape, but expanded and deformed so that it could be clearly confirmed with the naked eye, causing buckling.
As described above, when the braided yarn 13 was not provided around the outer periphery of the hollow fiber membrane 31, the hollow fiber membrane 31 in the humidifying module 30 was deformed or buckled, and did not function as a humidifying module.
 なお、2017年6月12日に出願された日本特許出願2017-115369号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-115369 filed on June 12, 2017 are cited herein as disclosure of the specification of the present invention. Incorporate.
11:中空糸膜  13:編組糸  20、30:加湿モジュール
21:ケーシング  23:エポキシ樹脂等  25:被加湿流体入口
27:被加湿流体出口  28:加湿流体入口  29: 加湿流体出口
11: Hollow fiber membrane 13: Braided yarn 20, 30: Humidification module 21: Casing 23: Epoxy resin, etc. 25: Humidified fluid inlet 27: Humidified fluid outlet 28: Humidified fluid inlet 29: Humidified fluid outlet

Claims (13)

  1.  ケーシングと、ケーシングに収納された複数の中空糸膜を有する加湿モジュールであって、前記中空糸膜は、その外周囲がメッシュ状に編み込んだ編組糸で被覆され、前記中空糸膜の材料はイオン交換基を持つ含フッ素樹脂であり、かつ、前記編組糸は前記中空糸膜よりも水分率が低い材料からなることを特徴とする加湿モジュール。 A humidification module having a casing and a plurality of hollow fiber membranes housed in the casing, wherein the hollow fiber membrane is covered with a braided yarn knitted in a mesh shape on the outer periphery, and the material of the hollow fiber membrane is an ion A humidifying module, wherein the humidifying module is a fluorine-containing resin having an exchange group, and the braided yarn is made of a material having a moisture content lower than that of the hollow fiber membrane.
  2.  前記編組糸は、水分率が12質量%以下の樹脂を材料とする繊維である、請求項1に記載の加湿モジュール。 The humidifying module according to claim 1, wherein the braided yarn is a fiber made of a resin having a moisture content of 12% by mass or less.
  3.  前記中空糸膜の材料と前記編組糸の材料の水分率の差は5質量%以上である、請求項1または2に記載の加湿モジュール。 The humidification module according to claim 1 or 2, wherein a difference in moisture content between the material of the hollow fiber membrane and the material of the braided yarn is 5 mass% or more.
  4.  前記編組糸の材料は、イオン交換基を持たない樹脂である、請求項1~3のいずれか一項に記載の加湿モジュール。 The humidifying module according to any one of claims 1 to 3, wherein a material of the braided yarn is a resin having no ion exchange group.
  5.  前記編組糸の材料は、ポリエステル、ポリアクリロニトリル、ポリプロピレン、ナイロン、ポリエチレン、ポリウレタン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデンおよびポリフルオロエチレンからなる群より選ばれる1種である、請求項1~4のいずれか一項に記載の加湿モジュール。 The material of the braided yarn is one selected from the group consisting of polyester, polyacrylonitrile, polypropylene, nylon, polyethylene, polyurethane, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and polyfluoroethylene. The humidification module according to any one of 1 to 4.
  6.  前記編組糸の太さが、250~800デニールであり、かつ該編組糸が、中空糸の外周囲に被覆率が10~50%になるように巻き付けられている、請求項1~5のいずれか一項に記載の加湿モジュール。 The thickness of the braided yarn is 250 to 800 denier, and the braided yarn is wound around the outer periphery of the hollow fiber so that the coverage is 10 to 50%. The humidification module according to claim 1.
  7.  前記イオン交換基を持つ含フッ素樹脂が、イオン交換基としてスルホン酸型官能基を有し、イオン交換容量として0.1~5ミリ当量/グラム乾燥樹脂を有する、請求項1~6のいずれか一項に記載の加湿モジュール。 The fluorine-containing resin having an ion exchange group has a sulfonic acid type functional group as an ion exchange group, and has an ion exchange capacity of 0.1 to 5 meq / g dry resin. The humidification module according to one item.
  8.  前記イオン交換基を持つ含フッ素樹脂が、TFEに基づく繰り返し単位と、スルホン酸基を有するパーフルオロビニルエーテルに基づく繰り返し単位とを有する共重合体である、請求項1~7のいずれか一項に記載の加湿モジュール。 The fluorine-containing resin having an ion exchange group is a copolymer having a repeating unit based on TFE and a repeating unit based on perfluorovinyl ether having a sulfonic acid group. The humidification module described.
  9.  請求項1~8のいずれか一項に記載の加湿モジュールにおける中空糸膜の中空部に流体を供給し、供給された流体が前記中空糸膜の中空部を通過することにより、加湿された流体を得る、流体の加湿方法。 Fluid supplied to the hollow part of the hollow fiber membrane in the humidifying module according to any one of claims 1 to 8, and the fluid supplied by passing through the hollow part of the hollow fiber membrane, Get a fluid humidification method.
  10.  前記中空糸膜の外周部が、水、または湿度90%以上の水蒸気の雰囲気下にある、請求項9に記載の加湿方法。 The humidification method according to claim 9, wherein the outer peripheral portion of the hollow fiber membrane is in an atmosphere of water or water vapor with a humidity of 90% or more.
  11.  前記供給された流体よりも20~50℃高い露点の流体を得る、請求項9または10に記載の加湿方法。 The humidification method according to claim 9 or 10, wherein a fluid having a dew point 20 to 50 ° C higher than the supplied fluid is obtained.
  12.  前記供給された流体が気体である、請求項9~11のいずれか一項に記載の加湿方法。 The humidification method according to any one of claims 9 to 11, wherein the supplied fluid is a gas.
  13.  前記気体は、水素、窒素または空気である、請求項12に記載の加湿方法。 The humidification method according to claim 12, wherein the gas is hydrogen, nitrogen or air.
PCT/JP2018/022443 2017-06-12 2018-06-12 Humidification module and method for humidification of fluid using said humidification module WO2018230566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115369A JP2020129431A (en) 2017-06-12 2017-06-12 Humidification module and method of humidifying fluid using the same
JP2017-115369 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230566A1 true WO2018230566A1 (en) 2018-12-20

Family

ID=64660487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022443 WO2018230566A1 (en) 2017-06-12 2018-06-12 Humidification module and method for humidification of fluid using said humidification module

Country Status (2)

Country Link
JP (1) JP2020129431A (en)
WO (1) WO2018230566A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715378A (en) * 2019-11-27 2020-01-21 广东美的制冷设备有限公司 Humidifying membrane for air conditioning equipment, preparation method and air conditioning equipment
JP2021034371A (en) * 2019-08-14 2021-03-01 コーロン インダストリーズ インク Fuel cell humidifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705543A (en) * 1986-09-19 1987-11-10 Perma Pure Products, Inc. Fluid drying tube
JPH06218251A (en) * 1993-01-27 1994-08-09 Asahi Glass Co Ltd Humidifying membrane
JPH0824585A (en) * 1994-07-12 1996-01-30 Asahi Glass Co Ltd Method for concentrating aqueous solution
JP2011036568A (en) * 2009-08-17 2011-02-24 Agc Engineering Co Ltd Moisture adjustment module, and method and device for manufacturing the same
JP2016518975A (en) * 2013-04-18 2016-06-30 コーロン インダストリーズ インク Hollow fiber membrane module
JP2017104797A (en) * 2015-12-08 2017-06-15 Agcエンジニアリング株式会社 Dehumidifying module and gas analyzer mounting the dehumidifying module thereon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705543A (en) * 1986-09-19 1987-11-10 Perma Pure Products, Inc. Fluid drying tube
JPH06218251A (en) * 1993-01-27 1994-08-09 Asahi Glass Co Ltd Humidifying membrane
JPH0824585A (en) * 1994-07-12 1996-01-30 Asahi Glass Co Ltd Method for concentrating aqueous solution
JP2011036568A (en) * 2009-08-17 2011-02-24 Agc Engineering Co Ltd Moisture adjustment module, and method and device for manufacturing the same
JP2016518975A (en) * 2013-04-18 2016-06-30 コーロン インダストリーズ インク Hollow fiber membrane module
JP2017104797A (en) * 2015-12-08 2017-06-15 Agcエンジニアリング株式会社 Dehumidifying module and gas analyzer mounting the dehumidifying module thereon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034371A (en) * 2019-08-14 2021-03-01 コーロン インダストリーズ インク Fuel cell humidifier
JP7016388B2 (en) 2019-08-14 2022-02-04 コーロン インダストリーズ インク Humidifier for fuel cells
US11646431B2 (en) 2019-08-14 2023-05-09 Hyundai Motor Company Humidifier for fuel cell
CN110715378A (en) * 2019-11-27 2020-01-21 广东美的制冷设备有限公司 Humidifying membrane for air conditioning equipment, preparation method and air conditioning equipment

Also Published As

Publication number Publication date
JP2020129431A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP5681363B2 (en) Vaporizer for sending low vapor pressure gas
JP5443213B2 (en) Drying substances, their preparation and use
JP6034200B2 (en) Redox flow secondary battery
JP2002334707A (en) Porous hydrophilic membrane
WO2018230566A1 (en) Humidification module and method for humidification of fluid using said humidification module
WO2011156937A1 (en) Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof
JP2010209328A (en) Drying substance, preparation and use thereof
KR20180117729A (en) Polymer electrolyte membrane
JP2009193825A (en) Composite electrolyte membrane and its manufacturing method
WO2001006587A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
EP1806371A1 (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP4358324B2 (en) Humidifying membrane
JPH11310649A (en) Cation exchange membrane and its use
JP6964680B2 (en) Manufacturing method of polyphenylsulfone hollow fiber membrane for humidifying membrane
JP6471097B2 (en) Composite film for electrochemical devices
JP2004178995A (en) Electrolyte film for solid polymer fuel cell and its manufacturing method
WO2011156938A1 (en) Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof
Othman et al. Recent development of polymer electrolyte membranes for direct methanol fuel cell application–a review
KR20220158717A (en) Cation exchange membrane and manufacturing method thereof
JP2001113141A (en) High polymer electrolyte membrane reinforced substrate and high polymer electrolyte membrane
JP4210192B2 (en) Method for producing water vapor selective permeable membrane
JP4234573B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JPH05264069A (en) Perforated film which is fluoride on surface and tube
JP2005048121A (en) Perfluorosulfonic acid polymer
JP2007194070A (en) Humidifier for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP