WO2018230557A1 - Electrochromic element and smart window - Google Patents

Electrochromic element and smart window Download PDF

Info

Publication number
WO2018230557A1
WO2018230557A1 PCT/JP2018/022395 JP2018022395W WO2018230557A1 WO 2018230557 A1 WO2018230557 A1 WO 2018230557A1 JP 2018022395 W JP2018022395 W JP 2018022395W WO 2018230557 A1 WO2018230557 A1 WO 2018230557A1
Authority
WO
WIPO (PCT)
Prior art keywords
change
transparent electrode
color
state
electrochromic device
Prior art date
Application number
PCT/JP2018/022395
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 英次
ひなつ 大鐘
伸之 伊藤
智彦 中川
知輝 鴻池
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018230557A1 publication Critical patent/WO2018230557A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Definitions

  • This disclosure relates to an electrochromic device and a smart window.
  • An electrochromic element whose optical properties reversibly change when a voltage is applied is known.
  • a smart window capable of electrically controlling light transmittance.
  • Patent Documents 1 and 2 disclose electrochromic elements used in infrared type smart windows.
  • Non-Patent Document 1 discloses various nanocrystals used as an electrochromic material.
  • the room temperature can be controlled to some extent, and air conditioning efficiency is improved.
  • the surface temperature of the person who is at the window that is, the person who receives direct sunlight
  • the comfort at the window is improved.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an electrochromic device and a smart window that can further experience the effect of controlling the transmittance of infrared light.
  • An electrochromic device is provided on a surface of a first transparent electrode and a second transparent electrode facing each other, and a surface of the first transparent electrode on the second transparent electrode side, and includes a plurality of metal oxide nanoparticles.
  • the change in the transmission spectrum is accompanied by a change in transmittance of light in the near infrared region and light in the visible region, the state of the electrochromic element
  • the change in the transmission spectrum when switching from the first state where the light transmittance in the near infrared region is relatively low to the second state where the light transmittance in the near infrared region is relatively high is as follows. ,in front A first change in which the color of the transmitted light transmitted through the electrochromic element is a warm color, or a second change in which the color of the transmitted light transmitted through the electrochromic element is not a cold color including.
  • the change in the transmission spectrum when the state of the electrochromic element is switched from the first state to the second state is such that the color of transmitted light transmitted through the electrochromic element is a cold color system.
  • a third change is made such that the color becomes a warm color.
  • each of the first and second changes is a change in which at least one of a * and b * in the L * a * b * color system is increased.
  • each of the first and second changes is a change in which both a * and b * are increased.
  • the first and the amount of change in the a * in each of the second variation .DELTA.a * is -0.01 or more
  • the b * of the variation [Delta] b * is 1.60 or more.
  • each of the first and second change is the change of L * is increased in the L * a * b * color system.
  • the change amount ⁇ L * of L * in each of the first and second changes is 1.90 or more.
  • each of the first and second changes is defined by a change amount ⁇ L * , ⁇ a *, and ⁇ b * of L * , a *, and b * in the L * a * b * color system. This is a change in which the color difference ⁇ E is 2.15 or more.
  • the color difference ⁇ E is 2.70 or more.
  • the plurality of metal oxide nanoparticles are a plurality of antimony-doped tin oxide nanoparticles.
  • an average particle diameter of the plurality of antimony-doped tin oxide nanoparticles is 20 nm or less.
  • the average particle diameter of the plurality of antimony-doped tin oxide nanoparticles is 8 nm or less.
  • the nanocrystal layer has a thickness of 3000 mm or more.
  • the first transparent electrode, the second transparent electrode, and the nanocrystal layer are interposed between the first transparent electrode and the second transparent electrode to change a transmission spectrum of the electrochromic device.
  • the electrochromic element does not include an electrode that causes a change in the transmission spectrum due to the oxidation-reduction reaction when a voltage is applied.
  • the electrochromic device further includes a spacer provided between the nanocrystal layer and the second transparent electrode.
  • the electrochromic device detects the first transparent electrode and the first transparent electrode when detecting that a current exceeding a predetermined threshold flows between the first transparent electrode and the second transparent electrode. Disconnect the connection between the first transparent electrode and the second transparent electrode so that no current flows between the two transparent electrodes, or connect the power source to the first transparent electrode and the second transparent electrode.
  • An overcurrent protection circuit for switching to a circuit different from the circuit connecting the electrodes is further provided.
  • the predetermined threshold value changes according to the energization time for the electrochromic element.
  • the electrochromic element has a voltage between the first transparent electrode and the second transparent electrode when a charge amount charged in the electrochromic element exceeds a predetermined charge amount threshold.
  • An overcurrent protection circuit is further provided that stops the application or lowers the absolute value of the applied voltage.
  • the first transparent electrode is divided into a plurality of sub-electrodes.
  • the second transparent electrode is divided into a plurality of sub-electrodes.
  • a smart window according to an embodiment of the present disclosure includes an electrochromic element having any one of the configurations described above.
  • an electrochromic element and a smart window that can further experience the effect of controlling the transmittance of infrared light are provided.
  • FIG. 1 is a cross-sectional view schematically showing an electrochromic device 100 according to an embodiment of the present disclosure. It is a chromaticity diagram of the L * a * b * color system. It is a graph which shows the comfort curve of Kruitoff. It is a graph which shows the example of the transmission spectrum in a 1st state and a 2nd state at the time of using ATO particle
  • 3 is a graph showing a transmission spectrum of Example 1.
  • 6 is a graph showing a transmission spectrum of Example 2.
  • 6 is a graph showing a transmission spectrum of Example 3.
  • 10 is a graph showing a transmission spectrum of Example 4.
  • 10 is a graph showing a transmission spectrum of Example 5.
  • 6 is a graph showing a transmission spectrum of Comparative Example 1.
  • 10 is a graph showing a transmission spectrum of Comparative Example 2.
  • 3 is a graph showing a transmission spectrum of Example 1.
  • 6 is a graph showing a transmission spectrum of Example 2.
  • (A) And (b) is a figure which shows the example of the structure by which the 1st transparent electrode 1 was divided
  • 2 is a cross-sectional view schematically showing an electrochromic device 100 including a spacer 7.
  • FIG. It is a figure which shows the example of the other structure of the seal part.
  • 1 is a cross-sectional view schematically showing an electrochromic element 100 including an overcurrent protection circuit 20.
  • FIG. 1 is a cross-sectional view schematically showing an electrochromic device 100.
  • the electrochromic element 100 includes a first transparent electrode 1 and a second transparent electrode 2, a nanocrystal layer 3, and an electrolyte layer 4, as shown in FIG.
  • the first transparent electrode 1 and the second transparent electrode 2 are arranged so as to face each other.
  • the first transparent electrode 1 and the second transparent electrode 2 are each transparent and substantially colorless.
  • the first transparent electrode 1 and the second transparent electrode 2 are electrically connected to a power source 5.
  • the first transparent electrode 1 is supported on the first substrate 11.
  • the second transparent electrode 2 is supported on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are each transparent and substantially colorless.
  • the nanocrystal layer 3 is provided on the surface of the first transparent electrode 1 on the second transparent electrode 2 side.
  • the nanocrystal layer 3 includes a plurality of metal oxide nanoparticles.
  • the metal oxide nanoparticles are particulate crystals (nanocrystals) having a particle size of several nm to several tens of nm.
  • the electrolyte layer 4 is provided between the nanocrystal layer 3 and the second transparent electrode 2.
  • the electrolyte layer 4 is surrounded by the seal portion 6.
  • the metal oxide nanoparticles contained in the nanocrystal layer 3 are electrochromic materials. Therefore, the transmission spectrum of the electrochromic device 100 including the nanocrystal layer 3 changes according to the voltage applied between the first transparent electrode 1 and the second transparent electrode 2. This change in the transmission spectrum is accompanied by a change in light transmittance in the near infrared region. Therefore, the electrochromic element 100 of this embodiment can control the transmittance of near infrared light.
  • the near-infrared region refers to a wavelength range of about 800 nm or more and about 2500 nm or less.
  • the acquisition rate of solar heat from sunlight can be controlled by controlling the transmittance of the near-infrared light. For example, near-infrared light can be prevented from entering the room in summer, and near-infrared light can be taken into the room in winter.
  • the principle that the nanocrystal layer 3 exhibits electrochromism will be described later.
  • the transmission of the electrochromic element 100 is switched from a state in which the light transmittance in the near infrared region is relatively low to a state in which the light transmittance in the near infrared region is relatively high. Focus on spectral changes.
  • the former state is referred to as a “first state”
  • the latter state that is, a state where light transmittance in the near infrared region is higher than the first state
  • the change in the transmission spectrum at this time is accompanied by not only the change in the transmittance of light in the near infrared region but also the change in the transmittance of light in the visible region.
  • the change in the transmission spectrum at this time is the “first change” in which the color of the transmitted light (transmitted light transmitted through the electrochromic element 100) becomes a warm color, or the color of the transmitted light is cold. It includes a “second change” that is no longer a system color. Further, the change in the transmission spectrum at this time may include a “third change” in which the color of the transmitted light changes from a cold color to a warm color.
  • first change “second change”, and “third change” may be collectively referred to as “warm color change”.
  • the visible region is generally a range where the wavelength is about 400 nm or more and less than about 800 nm.
  • a warm feeling is known as a universal effect of color. Cold colors make you feel cool, and warm colors make you feel warm. Therefore, by changing the color of visible light in conjunction with the control of the transmittance of near-infrared light, it is possible to feel warmth and coolness with a visual effect. For example, switching from the first state to the second state described above increases the transmittance of near-infrared light, that is, causes more near-infrared light to enter, and is a person who receives room temperature or direct sunlight. This is an operation to increase the surface temperature of the body.
  • the change in the transmission spectrum at the time of switching includes the warm color change described above, that is, if the transmittance change in the visible region is the warm color change described above, the warmth due to the visual effect is felt. Can do. In addition, this effect can be experienced not only by a person at the window but also by a person away from the window. Therefore, indoor comfort can be further improved.
  • the transmission spectrum change in the visible region when switching from the second state to the first state is a “fourth change” in which the color of the transmitted light becomes a cold color, and the color of the transmitted light is A “fifth change” that does not result in a warm color, or a “sixth change” that changes the color of transmitted light from a warm color to a cold color.
  • these “fourth change”, “fifth change”, and “sixth change” may be collectively referred to as “cold color system change”.
  • Switching from the second state to the first state lowers the near-infrared light transmittance, that is, blocks more of the near-infrared light, and reduces the surface temperature of a person receiving room temperature or direct sunlight. This is an operation for lowering. Therefore, when the change in transmittance in the visible region at the time of switching is the above-described cold color change, it is possible to feel coolness due to the visual effect.
  • the electrochromic device 100 allows the user to feel warmth and coolness by using the visual effect of color in addition to the room temperature / surface body temperature control by controlling the transmittance of near infrared light. It is possible to improve indoor comfort. Therefore, the effect by controlling the transmittance of infrared light can be further experienced.
  • the warm color is a color that gives a warm impression from the sight.
  • Cold color is a color that gives a cold impression from the sight.
  • warm colors correspond to R (red), YR (yellow red) and Y (yellow) in the Munsell hue ring
  • cold colors correspond to BG (blue green) and B (blue) in the Munsell hue ring.
  • PB purple blue
  • FIG. 2 shows a chromaticity diagram of the L * a * b * color system.
  • L * indicates lightness
  • a * and b * indicate chromaticity.
  • the warm color system change is a change in which at least one of a * and b * in the L * a * b * color system increases.
  • Warm change may be a change in only one of a * and b * is increased, it may be a change in both a * and b * increases.
  • the change amount ⁇ a * of a * is preferably ⁇ 0.01 or more, and the change amount ⁇ b * of b * is preferably 1.60 or more.
  • a * variation .DELTA.a * is preferably 120 or less
  • b * is the amount of change [Delta] b *, it is preferably 120 or less.
  • the cold color system changes (fourth change, fifth change and sixth change) approximately correspond to a decrease in a * and / or b * .
  • FIG. 3 is a graph showing the range of comfortable illuminance for each color temperature with the color temperature on the horizontal axis and the illuminance on the vertical axis, and is called a “Kruitoff comfort curve”.
  • the light feels hot and in the lower right area, the light feels gloomy.
  • light is comfortable in the area between these. For example, if the illuminance is high at a certain color temperature and feels uncomfortable, it can be made comfortable by reducing the illuminance.
  • comfort when switching from the second state to the first state in summer, comfort can be improved by reducing the illuminance (brightness).
  • lowering the transmittance in the visible region in summer means that the solar heat is shielded accordingly, and the air conditioning efficiency is improved.
  • the warm color system change is preferably a change in which L * in the L * a * b * color system increases.
  • the cold color system change is preferably a change in which L * in the L * a * b * color system decreases.
  • the change amount ⁇ L * of L * in the warm color system change is preferably 1.90 or more, as will be described in detail later.
  • the degree of color change at the time of switching from the first state to the second state can also be expressed by a color difference ⁇ E in the L * a * b * color system.
  • the warm color system change is preferably a change in which the color difference ⁇ E is 2.15 or more and 130 or less, and more preferably a change in which the color difference ⁇ E is 2.70 or more and 78 or less.
  • metal oxide nanoparticles for example, antimony-doped tin oxide (ATO) nanoparticles can be suitably used.
  • ATO antimony-doped tin oxide
  • FIG. 4 the example of the transmission spectrum in a 1st state and a 2nd state at the time of using ATO particle
  • a negative voltage is applied to the first transparent electrode 1 with reference to the potential of the second transparent electrode 2
  • the transmission spectrum in the first state and the transmission spectrum in the second state are different in the near-infrared region.
  • the transmittance in the near infrared region in the second state is higher than the transmittance in the near infrared region in the first state.
  • the transmission spectrum in the first state and the transmission spectrum in the second state are different in the visible region.
  • the transmittance in the visible region is relatively low, and the transmittance is almost the same in the entire visible region.
  • the transmittance in the visible region is relatively high, and in particular, the transmittance on the long wavelength side is high.
  • FIG. 5 shows an example of transmission spectra in the first state and the second state when tin-doped indium oxide (ITO) nanoparticles having an average particle diameter of 20 nm or less are used as metal oxide nanoparticles. Show. As shown in FIG. 5, the transmission spectrum in the first state and the transmission spectrum in the second state are different in the near-infrared region. However, the transmission spectrum in the first state and the transmission spectrum in the second state are almost the same in the visible region. Therefore, in the example shown in FIG. 5, even if the first state and the second state are switched, the color change hardly occurs.
  • ITO indium oxide
  • the average particle size of ATO nanoparticles is preferably 1 nm or more and 20 nm or less, and more preferably 8 nm or less.
  • FIG. 6 shows a transmission spectrum when the nanocrystal layer 3 including ATO nanoparticles having an average particle diameter of 20 nm is formed with a thickness of about 1 ⁇ m, and the thickness of the nanocrystal layer 3 including ATO nanoparticles having an average particle diameter of 8 nm. The transmission spectrum when formed at a thickness of about 1 ⁇ m is shown.
  • FIG. 6 shows that when the average particle diameter is 8 ⁇ m, the change in the transmission spectrum when switching from the first state to the second state is larger than when the average particle diameter is 20 ⁇ m. In particular, the change in the transmission spectrum in the near infrared region is remarkable. Further, when the average particle size is 8 ⁇ m, the transmittance in the visible region is higher than when the average particle size is 20 ⁇ m.
  • Non-Patent Document 1 by injecting electrons into a transparent conductive oxide (TCO) nanostructure such as an ITO (Tin-doped Indium-Oxide) nanocrystal layer, near-infrared It is known that the transmission spectrum of a region can be changed. In short, the principle is to shift the absorption wavelength by localized surface plasmon resonance (LSPR) of the TCO nanostructure by applying a voltage. This will be described in more detail below.
  • TCO transparent conductive oxide
  • ITO Tin-doped Indium-Oxide
  • the resonance frequency of LSPR is proportional to the plasma frequency ⁇ p.
  • N is the electron density
  • e is the charge of the electron
  • m is the effective mass of the electron
  • ⁇ 0 is the dielectric constant of the vacuum.
  • the function of changing the transmission spectrum in this way is not unique to the ITO nanocrystal layer containing ITO nanoparticles.
  • the above-described functions can be achieved if the nanoparticles are sized so as to cause LSPR (for example, 100 nm or less), and the nanocrystal layer can inject electrons from the transparent electrode.
  • nanoparticles nanoparticles of various metal oxides such as ATO, PTO (phosphorus-doped tin oxide), AZO (aluminum-doped zinc oxide), GZO (gallium-doped zinc oxide) can be used.
  • Example 1 A prototype example (Example 1) of the electrochromic element 100 was manufactured as follows, and the optical characteristics thereof were verified.
  • glass substrates were prepared as the first substrate 11 and the second substrate 12, respectively.
  • titanium-doped indium oxide Tianium-doped Indium Oxide: InTiO
  • InTiO titanium-doped Indium Oxide
  • the second transparent electrode 2 was formed on the second substrate 12.
  • a dispersion of ATO nanoparticles is applied on the first transparent electrode 1 by spin coating, dried on a hot plate at 140 ° C. for 1 minute, and then fired at 200 ° C. for 60 minutes, A nanocrystal layer 3 was formed.
  • the ATO nanoparticle dispersion used is commercially available for the formation of an antistatic film (manufactured by Dainippon Paint Co., Ltd.).
  • the particle size of the ATO nanoparticles is 8-30 nm, and the dispersion medium is methyl isobutyl ketone and isoform. It is a mixed solution with butanol.
  • FIG. 7 shows a transmission spectrum when the potential of the second transparent electrode 2 is 0 V and DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1. From FIG. 7, it can be seen that the transmission spectrum in the near-infrared region changes greatly according to the switching of the polarity of the applied voltage. Further, it can be seen that when the transmittance in the near infrared region is low, the transmittance in the visible region is relatively low, and the transmittance is almost the same in the entire visible region. Furthermore, it can be seen that in the state where the transmittance in the near infrared region is high, the transmittance in the visible region is relatively high, and in particular, the transmittance on the long wavelength side is high.
  • the electrochromic element 100 of Example 1 when the electrochromic element 100 of Example 1 is installed in a window and the near infrared light transmittance is high in winter, the color of the transmitted light is slightly warm. Thereby, in addition to the effect which takes in the solar heat of sunlight, the effect which a warm color color gives can be acquired.
  • the transmittance of near-infrared light when the transmittance of near-infrared light is low, the visible region has a low transmittance as a whole, and the warm color is lost from the transmitted light. Thereby, in addition to the effect which shields the solar heat of sunlight, the feeling of being hot can be improved.
  • the warm color system change approximately corresponds to an increase in a * and / or b * .
  • L * also increases when switching from the -3V applied state to the + 3V applied state (when switching so that the transmittance of near-infrared light is increased), so that comfort is further improved. I can say that.
  • Examples 2 to 5, Comparative Examples 1 and 2 As a method for producing the metal oxide nanoparticles themselves, there are a method by pulverization, a method by fine particle growth in a liquid phase or a gas phase, and the like. In addition, when the metal oxide nanoparticles are dispersed in the dispersion medium, there are various options such as the type of surfactant, the type of the dispersion medium, and the method of applying energy when dispersed. Therefore, it can be said that the dispersion of metal oxide nanoparticles can be obtained by various methods.
  • the electrochromic device 100 of Examples 2 to 5 and the electrochromic device of Comparative Example 1 were prepared using an ATO nanoparticle dispersion obtained by a method different from that of Example 1. Moreover, the electrochromic element of the comparative example 2 was produced using the ITO nanoparticle dispersion liquid.
  • Example 3 ATO nanoparticles for forming a heat-absorbing film manufactured by Dainippon Paint Co., Ltd., in Example 4, ELCOM and ATO manufactured by JGC Catalysts & Chemicals Co., Ltd., and in Comparative Example 1 manufactured by Mitsubishi Materials Corporation. ATO dispersion was used.
  • Comparative Example 2 using the ITO nanoparticle dispersion was the same as Example 1 except that the dispersion medium was toluene and baking after drying on a hot plate was performed at 200 ° C. for 120 minutes. Made.
  • FIGS. 8 to 13 show the transmission of Examples 2 to 5 and Comparative Examples 1 and 2 when the potential of the second transparent electrode 2 is 0 V and the DC voltage of ⁇ 3 V and +3 V is applied to the first transparent electrode 1. The spectrum is shown.
  • the colorless dark state changes to the warm color bright state (that is, “first” Change "occurs).
  • the change from the dark-colored dark state to the colorless and bright state that is, the “second change” occurs) in accordance with the switching of the applied voltage. Recognize.
  • FIG. 11 it can be seen from FIG. 11 that in Example 5, the cold color system changes from the dark color system to the warm color system (that is, a “third change” occurs) as the applied voltage is switched.
  • Table 1 shows ⁇ L * , ⁇ a * , ⁇ b *, and ⁇ E * when the applied voltage is switched from ⁇ 3 V to +3 V for Examples 1 to 5 and Comparative Examples 1 and 2.
  • ⁇ a * is preferably ⁇ 0.01 or more and ⁇ b * is preferably 1.60 or more in the warm color change.
  • ⁇ a * in the warm color change is more preferably 0.50 or more.
  • ⁇ L * in the warm color system change is preferably 1.90 or more.
  • the warm color system change is preferably a change in which the color difference ⁇ E is 2.15 or more, and more preferably a change in which the color difference ⁇ E is 2.70 or more.
  • Table 1 also shows the thickness of the nanocrystal layer.
  • the thickness of the nanocrystal layer was obtained by scraping a part of the layer after forming the nanocrystal layer and measuring the level difference of the part with a step meter.
  • the thickness of the nanocrystal layer is 9000 mm or more.
  • Comparative Example 1 in which the change in L * , a *, and b * is small when the applied voltage is switched, although the same ATO nanoparticles as in Examples 1 to 5 are used, the thickness of the nanocrystal layer The height was 2410cm.
  • the thickness of the nanocrystal layer is preferably 3000 mm or more, and more preferably 9000 mm or more. Further, the thickness of the nanocrystal layer is preferably 40000 mm or less, and more preferably 20000 mm or less.
  • the state where the voltage of ⁇ 3 V is applied to the first transparent electrode 1 is the first state
  • the state where the voltage of +3 V is applied is the second state.
  • switching between the first state and the second state does not necessarily involve switching the polarity of the applied voltage.
  • the first state and the second state may be switched by changing the magnitude of the applied voltage while maintaining the same polarity.
  • FIG. 14 shows a transmission spectrum of Example 1 in a state where voltages of ⁇ 3V, ⁇ 2V, ⁇ 1V, 0V, + 1V, + 2V, and + 3V are applied to the first transparent electrode 1.
  • FIG. 15 shows the transmission spectrum of Example 2 when the first transparent electrode 1 is applied with voltages of ⁇ 3V, ⁇ 2V, 0V, + 2V, and + 3V.
  • the + 1V application state may be the first state
  • the + 3V application state may be the second state.
  • the average particle diameter of the ATO nanoparticles is preferably 20 nm or less, and more preferably 8 nm or less. .
  • the metal oxide used as the material for the metal oxide nanoparticles is not limited to ATO.
  • a material that absorbs light in the visible region such as a composite tungsten oxide represented by CsxWyO 3 (where x and y indicate composition ratios) and lanthanum hexaboride, can be used.
  • AZO Alluminum-doped Zinc Oxide
  • GZO Gaallium-doped Zinc Oxide
  • absorption in the visible region is observed when a voltage is applied, and these can also be used.
  • the method for forming the nanocrystal layer 3 is not particularly limited.
  • the nanocrystal layer 3 can be formed by applying a liquid or semi-solid in which metal oxide nanoparticles are dispersed on the first substrate 11 and performing baking.
  • the dispersion of metal oxide nanoparticles may be applied by a spin coating method, or may be applied by a printing method using a paste to which a vehicle is appropriately added. Further, the coating may be performed by a bar coating method, a slit coating method, a gravure coating method or a die coating method. If the firing temperature is such that organic components on the nanocrystal surface are removed and sintering is suitably performed, sufficient solvent resistance can be obtained.
  • baking may be performed at a temperature of 200 ° C. to 300 ° C. for 30 minutes.
  • first substrate 11 and the second substrate 12 for example, glass substrates can be used.
  • plastic substrate formed from resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and a polyimide, may be sufficient.
  • These illustrated substrates may be provided with a gas barrier layer formed from an inorganic material or an organic material. In the case where a glass substrate is used, it may be thinned by etching after the two substrates are bonded together.
  • Transparent electrode As the material of the first transparent electrode 1 and the second transparent electrode 2, in addition to InTiO, a material that transmits near-infrared light such as tantalum-substituted tin oxide using anatase-type titanium dioxide as a seed layer or ITO with adjusted carrier density Can be used.
  • the first transparent electrode 1 and the second transparent electrode 2 can be formed by depositing these materials on the first substrate 1 and the second substrate 2 by sputtering, vapor deposition, coating, or the like.
  • the material of the first transparent electrode 1 and the second transparent electrode 2 has a characteristic of reflecting far-infrared light.
  • Infrared light radiated from the room is classified as far-infrared light having a wavelength of about 10 ⁇ m. Therefore, if the first transparent electrode 1 and the second transparent electrode 2 have the characteristic of reflecting far-infrared light, the state of the nanocrystal layer 3 is controlled so that the transmittance of near-infrared light is increased.
  • the indoor heat does not escape to the outdoors as radiant heat, and an ideal state can be realized. Further, even when control is performed so that the transmittance of near-infrared light is lowered in summer, it is possible to prevent the far-infrared light from the outside from entering the room, so that an ideal state can be realized.
  • the electrode extraction (connection to the external wiring) of the first transparent electrode 1 may be performed at one place or at a plurality of places. .
  • the assembly process of the electrochromic element 100 can be simplified and the routing of the wiring can be simplified.
  • a partial response speed delay can be prevented even when there is a resistance component between the first transparent electrode 1 and the second transparent electrode 2, that is, when a current flows.
  • the first transparent electrode 1 may be divided into a plurality of electrically independent sub-electrodes.
  • the transmission spectrum can be changed for each region corresponding to the sub-electrodes.
  • FIGS. 16A and 16B show examples of a configuration in which the first transparent electrode 1 is divided into a plurality of sub-electrodes 1a.
  • the electrode lead-out portions EP are gathered in one place by routing the plurality of sub-electrodes 1a. An unnecessary voltage drop can be prevented by disposing the lead-out portion of the sub-electrode 1a away from the operation portion of the electrochromic element 100 such as the outside of the seal portion 6 or under the seal portion 6.
  • the plurality of sub-electrodes 1a are directly connected to the wiring without being routed. That is, the electrode extraction part EP is dispersed in a plurality of places.
  • the second transparent electrode 2 may be divided into a plurality of electrically independent sub-electrodes or may not be divided.
  • the electrolyte layer 4 is made of, for example, an electrolytic solution.
  • an electrolytic solution a material that is easily ionized such as lithium hexafluorophosphate (LiPF 6 ), sodium hexafluorophosphate (NaPF 6 ), lithium borofluoride (LiBF 4 ), or the like can be used.
  • ethylene carbonate (EC), diethyl carbonate (DEC), a mixture of EC and DC, propylene carbonate, or the like can be used.
  • an ionic liquid composed of a cyclic quaternary ammonium cation and an imide anion may be used.
  • the electrolyte layer 4 may be composed of a solid electrolyte.
  • a solid electrolyte such as polyethylene oxide containing a lithium salt may be used, or a plastic crystal may be used.
  • the electrochromic element 100 defines the distance (cell thickness) between the first substrate 11 and the second substrate 12 as shown in FIG. It is preferable to provide a spacer 7 for the purpose.
  • the spacer 7 is provided between the nanocrystal layer 3 and the second transparent electrode 2.
  • the spacer 7 can be formed by a photolithography process using a photosensitive resin material.
  • the spacer 7 is, for example, 10 ⁇ m square and 10 ⁇ m high.
  • the formation method of the spacer 7 is not limited to the photolithography process, but may be a screen printing method, for example.
  • the spacer 7 is preferably formed on the second substrate 12 side (on the second transparent electrode 2).
  • the spacer 7 is provided on the first substrate 11 side, if the spacer 7 is formed before the nanocrystal layer 3 is formed, the thickness of the nanocrystal layer 3 may be uneven due to the influence of the spacer 7, or the spacer 7 may be There is a possibility that leakage with the second transparent electrode 2 occurs due to the covering of 3.
  • the spacer 7 is formed on the nanocrystal layer 3, the residue of the photolithographic process remains on the nanocrystal layer 3, and there is a possibility that the change in the transmission spectrum is hindered.
  • the electrolyte layer 4 is composed of a solid electrolyte, it is not necessary to provide the spacer 7 if the solid electrolyte has an appropriate elasticity.
  • seal portion 6 As a material of the seal portion 6, for example, a UV curable resin material can be used.
  • FIG. 18 shows an example of another configuration of the seal portion 6.
  • the seal portion 6 has two regions 6 a and 6 b formed from different materials (seal materials).
  • the region 6a positioned relatively inside is referred to as an “inside region”
  • the region 6b positioned relatively outside is referred to as an “outside region”.
  • the inner region 6a is formed of a sealing material having higher solvent resistance than the sealing material forming the outer region 6b.
  • the outer region 6b is formed of a sealing material having a stronger adhesive force than the sealing material forming the inner region 6a.
  • the inner region 6a that is in contact with the electrolyte layer 4 is formed of a sealing material having high solvent resistance
  • the outer region 6b is formed of a sealing material having a strong adhesive force. High reliability and strong adhesion can be achieved at the same time.
  • the electrochromic element 100 does not include a counter electrode on the second transparent electrode 2.
  • the first transparent electrode 1, the second transparent electrode 2, and the nanocrystal layer 3 apply a voltage between the first transparent electrode 1 and the second transparent electrode 2 in order to change the transmission spectrum of the nanocrystal layer 3. Then, the redox reaction does not occur, and the electrochromic device 100 does not include an electrode in which the transmission spectrum changes due to the redox reaction when a voltage is applied.
  • the electrochromic device 100 that does not include a counter electrode made of a substance that causes an oxidation-reduction reaction can avoid deterioration in repetitive characteristics due to a side reaction of the oxidation-reduction reaction.
  • the wavelength of plasmon absorption in the near infrared region can be changed by the charge movement on the first transparent electrode 1 and the second transparent electrode 2 that occurs when a voltage is applied.
  • the electrochromic element 100 may further include an overcurrent protection circuit 20 as shown in FIG.
  • the overcurrent protection circuit 20 detects that a current exceeding a predetermined threshold value flows between the first transparent electrode 1 and the second transparent electrode 2, the overcurrent protection circuit 20 prevents the current from flowing between the electrodes.
  • the connection is cut off or the connection destination of the power source 5 is switched to a circuit different from the circuit connecting the electrodes.
  • the overcurrent protection circuit 20 can suppress reactions other than electrochromic due to LSPR (for example, side reactions including oxidation-reduction reactions).
  • each member constituting the electrochromic element 100 does not perform the oxidation-reduction reaction within the voltage range applied by the power supply 5, impurities generated by the manufacturing and / or transmission spectrum switching, etc. As a result, side reactions including redox reactions may occur. Even in such a case, the side reaction can be prevented by preventing the current from flowing through the electrochromic device 100 when the current flowing through the circuit exceeds a predetermined threshold due to the current generated by the side reaction in the overcurrent protection circuit 20. It is possible to suppress the deterioration of the element. If a short circuit occurs due to physical damage or the like, the overcurrent protection circuit 20 can prevent abnormalities such as heat generation.
  • the predetermined threshold for the current detected by the overcurrent protection circuit 20 does not always need to be a constant value.
  • the predetermined threshold value may change according to the energization time for the electrochromic element 100.
  • the elapsed time t from when the application of voltage to the electrochromic element is started or when the polarity of the applied voltage is reversed.
  • the electrochromic element 100 in which the first transparent electrode 1 and the second transparent electrode 2 face each other is regarded as a capacitor, a large current flows when the electrochromic element is charged.
  • Current control includes, for example, a constant current circuit whose set value is Ia and a constant current circuit whose set value is Ib, and selects either of these two constant current circuits by a switch having a timer function. It may be realized by. However, since tc, Ia, and Ib depend on the interelectrode distance and the electrode area, respectively, a predetermined threshold (Ia and Ib) may be set according to the interelectrode distance and the electrode area. As described above, the overcurrent protection circuit 20 may set the current threshold as the first threshold during a predetermined period from the start of charging, and set the current threshold as the second threshold smaller than the first threshold after the predetermined period has elapsed. The current control by the overcurrent protection circuit 20 may be performed by limiting the current, or by controlling the absolute value of the applied voltage to be small.
  • the overcurrent protection circuit 20 flows between the first transparent electrode 1 and the second transparent electrode 2 in consideration of other elements of the current as long as the side reaction can be suppressed and deterioration of the element can be prevented.
  • the structure which controls an electric current may be sufficient.
  • the integrated value of the current from when the voltage is applied or when the polarity of the applied voltage is reversed, that is, the charge amount may be reflected in the control.
  • the product CV of the predetermined voltage V applied between the electrodes and the capacitance C formed between the two electrodes is the amount of charge charged in each electrode.
  • the charge amount CV or a value obtained by multiplying the charge amount CV by a coefficient (preferably 1 or more) may be used as the charge amount threshold value.
  • the overcurrent protection circuit 20 specifies the amount of charge charged in the electrode from the applied current and the elapsed time t. When the charged charge amount exceeds the charge amount threshold value, the overcurrent protection circuit 20 stops applying the voltage between the electrodes (disconnects the connection between the electrode and the power supply 5) or applies The absolute value of the voltage may be reduced. Thereby, it can suppress that the oxidation-reduction reaction of the substance between the electrodes of the electrochromic element 100 occurs. For example, when the above-described coefficient is 1.5, the overcurrent protection circuit 20 can limit the applied voltage after a sufficient charge is charged between the electrodes after polarity inversion.
  • the electrochromic device 100 in the embodiment of the present disclosure is suitably used for a smart window.
  • the electrochromic element 100 itself may be a smart window, or a laminated structure in which the electrochromic element 100 is bonded to a plate glass may function as a smart window.
  • one of the plurality of plate glasses constituting the multilayer glass may be replaced with the electrochromic element 100.
  • an electrochromic element 100 may be substituted for a central plate glass among three plate glasses constituting a double glass having a triple glass structure.
  • six interfaces between a solid such as glass and a gas such as air are formed. At these interfaces, since interface reflection occurs, the transmittance of light including visible light is lowered. Therefore, an antireflection film such as an AR (Anti-Reflective) film, an LR (Low-Reflective) film, or a moth-eye film is preferably provided on these interfaces (including both surfaces of the electrochromic element 100).
  • an electrochromic element and a smart window that can further experience the effect of controlling the transmittance of infrared light are provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

This electrochromic element is provided with: first and second transparent electrodes facing each other; and a nano-crystalline layer provided on a second transparent electrode-side surface of the first transparent electrode. The transmission spectrum of the electrochromic element changes according to the applied voltage. Changes in the transmission spectrum involve changes in the transmittance of near-infrared light and visible light. When the state of the electrochromic element is switched from a first state having a relatively low transmittance of the near-infrared light to a second state having a relatively high transmittance of the near-infrared light, the changes in the transmission spectrum include: a first change in which the color of the transmitted light becomes a warm color; or a second change in which the color of the transmitted light does not become a cold color.

Description

エレクトロクロミック素子およびスマートウィンドウElectrochromic devices and smart windows
 本開示は、エレクトロクロミック素子およびスマートウィンドウに関する。 This disclosure relates to an electrochromic device and a smart window.
 電圧の印加によりその光学的性質が可逆的に変化するエレクトロクロミック素子が知られている。エレクトロクロミック素子を用いた製品の1つとして、電気的に光透過率を制御することができるスマートウィンドウが挙げられる。 An electrochromic element whose optical properties reversibly change when a voltage is applied is known. As one of products using an electrochromic element, there is a smart window capable of electrically controlling light transmittance.
 スマートウィンドウの一種として、赤外光の透過率を制御可能なタイプ(以下では「赤外タイプ」と呼ぶこともある。)が提案されている。特許文献1および2は、赤外タイプのスマートウィンドウに用いられるエレクトロクロミック素子を開示している。非特許文献1は、エレクトロクロミック材料として用いられる種々のナノ結晶を開示している。 As a kind of smart window, a type capable of controlling the transmittance of infrared light (hereinafter sometimes referred to as “infrared type”) has been proposed. Patent Documents 1 and 2 disclose electrochromic elements used in infrared type smart windows. Non-Patent Document 1 discloses various nanocrystals used as an electrochromic material.
米国特許第9341913号明細書US Patent No. 9341913 特表2014-518405号公報Special table 2014-518405 gazette
 赤外タイプのスマートウィンドウを窓に設けて室内への赤外光の入射量を制御しても、以下に説明するようにその効果は限定的である。 Even if an infrared type smart window is provided in the window to control the amount of infrared light entering the room, the effect is limited as described below.
 赤外光の入射量を制御すると、室内温度をある程度コントロールできるので、空調効率が良くなる。また、窓際にいる人間、つまり、直射日光を受ける人間の表面体温を制御することもできるので、窓際における快適性が向上する。しかしながら、直射日光を受ける人間の表面体温と室温とを大まかに制御できること以上の効果は得られない。特に、窓から離れた位置の人間には、十分な空調を行っている場合には効果が体感しにくい。 If the amount of incident infrared light is controlled, the room temperature can be controlled to some extent, and air conditioning efficiency is improved. In addition, since the surface temperature of the person who is at the window, that is, the person who receives direct sunlight, can be controlled, the comfort at the window is improved. However, it is not possible to obtain an effect beyond that of roughly controlling the surface temperature and room temperature of a human subject to direct sunlight. In particular, it is difficult for a person away from the window to feel the effect when sufficient air conditioning is performed.
 本開示は、上記問題に鑑みてなされたものであり、その目的は、赤外光の透過率を制御することによる効果をいっそう体感し得るエレクトロクロミック素子およびスマートウィンドウを提供することにある。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an electrochromic device and a smart window that can further experience the effect of controlling the transmittance of infrared light.
 本開示の実施形態によるエレクトロクロミック素子は、互いに対向する第1透明電極および第2透明電極と、前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の金属酸化物ナノ粒子を含むナノ結晶層と、前記ナノ結晶層および前記第2透明電極の間に設けられた電解質層と、を備え、前記エレクトロクロミック素子の透過スペクトルが、前記第1透明電極と前記第2透明電極との間に印加された電圧に応じて変化し、前記透過スペクトルの変化は、近赤外領域の光および可視領域の光の透過率変化を伴っており、前記エレクトロクロミック素子の状態が、近赤外領域の光の透過率が相対的に低い第1の状態から、近赤外領域の光の透過率が相対的に高い第2の状態に切り替えられたときの前記透過スペクトルの変化は、前記エレクトロクロミック素子を透過する透過光の色が暖色系の色となるような第1の変化、または、前記エレクトロクロミック素子を透過する透過光の色が寒色系の色ではなくなるような第2の変化を含む。 An electrochromic device according to an embodiment of the present disclosure is provided on a surface of a first transparent electrode and a second transparent electrode facing each other, and a surface of the first transparent electrode on the second transparent electrode side, and includes a plurality of metal oxide nanoparticles. A nanocrystal layer including particles, and an electrolyte layer provided between the nanocrystal layer and the second transparent electrode, wherein a transmission spectrum of the electrochromic element is the first transparent electrode and the second transparent electrode. It changes according to the voltage applied between the electrodes, the change in the transmission spectrum is accompanied by a change in transmittance of light in the near infrared region and light in the visible region, the state of the electrochromic element, The change in the transmission spectrum when switching from the first state where the light transmittance in the near infrared region is relatively low to the second state where the light transmittance in the near infrared region is relatively high is as follows. ,in front A first change in which the color of the transmitted light transmitted through the electrochromic element is a warm color, or a second change in which the color of the transmitted light transmitted through the electrochromic element is not a cold color including.
 ある実施形態において、前記エレクトロクロミック素子の状態が前記第1の状態から前記第2の状態に切り替えられたときの前記透過スペクトルの変化は、前記エレクトロクロミック素子を透過する透過光の色が寒色系の色から暖色系の色となるような第3の変化を含む。 In one embodiment, the change in the transmission spectrum when the state of the electrochromic element is switched from the first state to the second state is such that the color of transmitted light transmitted through the electrochromic element is a cold color system. A third change is made such that the color becomes a warm color.
 ある実施形態において、前記第1および第2の変化のそれぞれは、L***表色系におけるa*およびb*の少なくとも一方が増加する変化である。 In one embodiment, each of the first and second changes is a change in which at least one of a * and b * in the L * a * b * color system is increased.
 ある実施形態において、前記第1および第2の変化のそれぞれは、前記a*および前記b*の両方が増加する変化である。 In one embodiment, each of the first and second changes is a change in which both a * and b * are increased.
 ある実施形態において、前記第1および第2の変化のそれぞれにおける前記a*の変化量Δa*は-0.01以上であり、前記b*の変化量Δb*は1.60以上である。 In certain embodiments, the first and the amount of change in the a * in each of the second variation .DELTA.a * is -0.01 or more, the b * of the variation [Delta] b * is 1.60 or more.
 ある実施形態において、前記第1および第2の変化のそれぞれは、L***表色系におけるL*が増加する変化である。 In certain embodiments, wherein each of the first and second change is the change of L * is increased in the L * a * b * color system.
 ある実施形態において、前記第1および第2の変化のそれぞれにおける前記L*の変化量ΔL*は、1.90以上である。 In one embodiment, the change amount ΔL * of L * in each of the first and second changes is 1.90 or more.
 ある実施形態において、前記第1および第2の変化のそれぞれは、L***表色系におけるL*、a*およびb*の変化量ΔL*、Δa*およびΔb*で規定される色差ΔEが2.15以上となる変化である。 In one embodiment, each of the first and second changes is defined by a change amount ΔL * , Δa *, and Δb * of L * , a *, and b * in the L * a * b * color system. This is a change in which the color difference ΔE is 2.15 or more.
 ある実施形態において、前記色差ΔEは2.70以上である。 In one embodiment, the color difference ΔE is 2.70 or more.
 ある実施形態において、前記複数の金属酸化物ナノ粒子は、複数のアンチモンドープ酸化錫ナノ粒子である。 In one embodiment, the plurality of metal oxide nanoparticles are a plurality of antimony-doped tin oxide nanoparticles.
 ある実施形態において、前記複数のアンチモンドープ酸化錫ナノ粒子の平均粒径は、20nm以下である。 In one embodiment, an average particle diameter of the plurality of antimony-doped tin oxide nanoparticles is 20 nm or less.
 ある実施形態において、前記複数のアンチモンドープ酸化錫ナノ粒子の平均粒径は、8nm以下である。 In one embodiment, the average particle diameter of the plurality of antimony-doped tin oxide nanoparticles is 8 nm or less.
 ある実施形態において、前記ナノ結晶層の厚さは、3000Å以上である。 In one embodiment, the nanocrystal layer has a thickness of 3000 mm or more.
 ある実施形態において、前記第1透明電極、前記第2透明電極および前記ナノ結晶層は、前記エレクトロクロミック素子の透過スペクトルを変化させるために前記第1透明電極と前記第2透明電極との間に電圧を印加したとき、酸化還元反応を生じず、前記エレクトロクロミック素子は、電圧印加によって酸化還元反応による透過スペクトルの変化が生じる電極を含まない。 In one embodiment, the first transparent electrode, the second transparent electrode, and the nanocrystal layer are interposed between the first transparent electrode and the second transparent electrode to change a transmission spectrum of the electrochromic device. When a voltage is applied, no oxidation-reduction reaction occurs, and the electrochromic element does not include an electrode that causes a change in the transmission spectrum due to the oxidation-reduction reaction when a voltage is applied.
 ある実施形態において、前記エレクトロクロミック素子は、前記ナノ結晶層と前記第2透明電極との間に設けられたスペーサをさらに備える。 In one embodiment, the electrochromic device further includes a spacer provided between the nanocrystal layer and the second transparent electrode.
 ある実施形態において、前記エレクトロクロミック素子は、前記第1透明電極と前記第2透明電極との間に所定の閾値を超える電流が流れたことを検知した場合に、前記第1透明電極と前記第2透明電極との間に電流が流れないように前記第1透明電極および前記第2透明電極間の接続を切断するか、または、電源の接続先を、前記第1透明電極および前記第2透明電極間を結ぶ回路とは別の回路に切り替える過電流保護回路をさらに備える。 In one embodiment, the electrochromic device detects the first transparent electrode and the first transparent electrode when detecting that a current exceeding a predetermined threshold flows between the first transparent electrode and the second transparent electrode. Disconnect the connection between the first transparent electrode and the second transparent electrode so that no current flows between the two transparent electrodes, or connect the power source to the first transparent electrode and the second transparent electrode. An overcurrent protection circuit for switching to a circuit different from the circuit connecting the electrodes is further provided.
 ある実施形態において、前記所定の閾値は、前記エレクトロクロミック素子に対する通電時間に応じて変化する。 In one embodiment, the predetermined threshold value changes according to the energization time for the electrochromic element.
 ある実施形態において、前記エレクトロクロミック素子は、前記エレクトロクロミック素子に充電された電荷量が所定の電荷量閾値を超えた場合に、前記第1透明電極と前記第2透明電極との間への電圧印加を停止するか、または印加電圧の絶対値を下げる過電流保護回路をさらに備える。 In one embodiment, the electrochromic element has a voltage between the first transparent electrode and the second transparent electrode when a charge amount charged in the electrochromic element exceeds a predetermined charge amount threshold. An overcurrent protection circuit is further provided that stops the application or lowers the absolute value of the applied voltage.
 ある実施形態において、前記第1透明電極は、複数のサブ電極に分割されている。 In one embodiment, the first transparent electrode is divided into a plurality of sub-electrodes.
 ある実施形態において、前記第2透明電極は、複数のサブ電極に分割されている。 In one embodiment, the second transparent electrode is divided into a plurality of sub-electrodes.
 本開示の実施形態によるスマートウィンドウは、上述したいずれかの構成を有するエレクトロクロミック素子を備える。 A smart window according to an embodiment of the present disclosure includes an electrochromic element having any one of the configurations described above.
 本開示の実施形態によると、赤外光の透過率を制御することによる効果をいっそう体感し得るエレクトロクロミック素子およびスマートウィンドウが提供される。 According to the embodiment of the present disclosure, an electrochromic element and a smart window that can further experience the effect of controlling the transmittance of infrared light are provided.
本開示の実施形態によるエレクトロクロミック素子100を模式的に示す断面図である。1 is a cross-sectional view schematically showing an electrochromic device 100 according to an embodiment of the present disclosure. ***表色系の色度図である。It is a chromaticity diagram of the L * a * b * color system. クルイトフの快適曲線を示すグラフである。It is a graph which shows the comfort curve of Kruitoff. 金属酸化物ナノ粒子として平均粒径が20nm以下のATO粒子を用いた場合の、第1の状態および第2の状態における透過スペクトルの例を示すグラフである。It is a graph which shows the example of the transmission spectrum in a 1st state and a 2nd state at the time of using ATO particle | grains whose average particle diameter is 20 nm or less as a metal oxide nanoparticle. 金属酸化物ナノ粒子として平均粒径が20nm以下のITO粒子を用いた場合の、第1の状態および第2の状態における透過スペクトルの例を示すグラフである。It is a graph which shows the example of the transmission spectrum in a 1st state and a 2nd state at the time of using ITO particle | grains whose average particle diameter is 20 nm or less as a metal oxide nanoparticle. ATOナノ粒子の平均粒径が20nmの場合の透過スペクトルと、ATOナノ粒子の平均粒径が8nmの場合の透過スペクトルとを示すグラフである。It is a graph which shows the transmission spectrum in case the average particle diameter of ATO nanoparticle is 20 nm, and the transmission spectrum in case the average particle diameter of ATO nanoparticle is 8 nm. 実施例1の透過スペクトルを示すグラフである。3 is a graph showing a transmission spectrum of Example 1. 実施例2の透過スペクトルを示すグラフである。6 is a graph showing a transmission spectrum of Example 2. 実施例3の透過スペクトルを示すグラフである。6 is a graph showing a transmission spectrum of Example 3. 実施例4の透過スペクトルを示すグラフである。10 is a graph showing a transmission spectrum of Example 4. 実施例5の透過スペクトルを示すグラフである。10 is a graph showing a transmission spectrum of Example 5. 比較例1の透過スペクトルを示すグラフである。6 is a graph showing a transmission spectrum of Comparative Example 1. 比較例2の透過スペクトルを示すグラフである。10 is a graph showing a transmission spectrum of Comparative Example 2. 実施例1の透過スペクトルを示すグラフである。3 is a graph showing a transmission spectrum of Example 1. 実施例2の透過スペクトルを示すグラフである。6 is a graph showing a transmission spectrum of Example 2. (a)および(b)は、第1透明電極1が複数のサブ電極1aに分割された構成の例を示す図である。(A) And (b) is a figure which shows the example of the structure by which the 1st transparent electrode 1 was divided | segmented into the some sub electrode 1a. スペーサ7を備えるエレクトロクロミック素子100を模式的に示す断面図である。2 is a cross-sectional view schematically showing an electrochromic device 100 including a spacer 7. FIG. シール部6の他の構成の例を示す図である。It is a figure which shows the example of the other structure of the seal part. 過電流保護回路20を備えるエレクトロクロミック素子100を模式的に示す断面図である。1 is a cross-sectional view schematically showing an electrochromic element 100 including an overcurrent protection circuit 20.
 以下、図面を参照しながら本開示の実施形態を説明する。なお、本開示は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the following embodiment.
 [エレクトロクロミック素子の全体構成]
 図1を参照しながら、本実施形態におけるエレクトロクロミック素子100を説明する。図1は、エレクトロクロミック素子100を模式的に示す断面図である。
[Overall structure of electrochromic element]
With reference to FIG. 1, an electrochromic device 100 according to this embodiment will be described. FIG. 1 is a cross-sectional view schematically showing an electrochromic device 100.
 エレクトロクロミック素子100は、図1に示すように、第1透明電極1および第2透明電極2と、ナノ結晶層3と、電解質層4とを備える。 The electrochromic element 100 includes a first transparent electrode 1 and a second transparent electrode 2, a nanocrystal layer 3, and an electrolyte layer 4, as shown in FIG.
 第1透明電極1および第2透明電極2は、互いに対向するように配置されている。第1透明電極1および第2透明電極2は、それぞれ透明であり、実質的に無色である。第1透明電極1および第2透明電極2は、電源5に電気的に接続されている。第1透明電極1は、第1基板11に支持されている。第2透明電極2は、第2基板12に支持されている。第1基板11および第2基板12は、それぞれ透明であり、実質的に無色である。 The first transparent electrode 1 and the second transparent electrode 2 are arranged so as to face each other. The first transparent electrode 1 and the second transparent electrode 2 are each transparent and substantially colorless. The first transparent electrode 1 and the second transparent electrode 2 are electrically connected to a power source 5. The first transparent electrode 1 is supported on the first substrate 11. The second transparent electrode 2 is supported on the second substrate 12. The first substrate 11 and the second substrate 12 are each transparent and substantially colorless.
 ナノ結晶層3は、第1透明電極1の第2透明電極2側の表面上に設けられている。ナノ結晶層3は、複数の金属酸化物ナノ粒子を含む。金属酸化物ナノ粒子は、数nm~数十nmの粒径を有する粒子状の結晶体(ナノ結晶)である。 The nanocrystal layer 3 is provided on the surface of the first transparent electrode 1 on the second transparent electrode 2 side. The nanocrystal layer 3 includes a plurality of metal oxide nanoparticles. The metal oxide nanoparticles are particulate crystals (nanocrystals) having a particle size of several nm to several tens of nm.
 電解質層4は、ナノ結晶層3と第2透明電極2との間に設けられている。電界質層4は、シール部6によって包囲されている。 The electrolyte layer 4 is provided between the nanocrystal layer 3 and the second transparent electrode 2. The electrolyte layer 4 is surrounded by the seal portion 6.
 ナノ結晶層3に含まれる金属酸化物ナノ粒子は、エレクトロクロミック材料である。そのため、ナノ結晶層3を含むエレクトロクロミック素子100の透過スペクトルは、第1透明電極1と第2透明電極2との間に印加された電圧に応じて変化する。この透過スペクトルの変化は、近赤外領域の光の透過率変化を伴っている。従って、本実施形態のエレクトロクロミック素子100は、近赤外光の透過率を制御することができる。本願明細書において、近赤外領域は、波長が約800nm以上約2500nm以下の範囲を指す。太陽から放射される赤外光の大部分は近赤外光であるので、近赤外光の透過率を制御することにより、太陽光による日射熱の取得率を制御することができる。例えば、夏期には近赤外光の室内への入射を防ぐことができ、冬期には近赤外光を室内に取り込むことができる。なお、ナノ結晶層3がエレクトロクロミズムを示す原理については後述する。 The metal oxide nanoparticles contained in the nanocrystal layer 3 are electrochromic materials. Therefore, the transmission spectrum of the electrochromic device 100 including the nanocrystal layer 3 changes according to the voltage applied between the first transparent electrode 1 and the second transparent electrode 2. This change in the transmission spectrum is accompanied by a change in light transmittance in the near infrared region. Therefore, the electrochromic element 100 of this embodiment can control the transmittance of near infrared light. In the specification of the present application, the near-infrared region refers to a wavelength range of about 800 nm or more and about 2500 nm or less. Since most of the infrared light radiated from the sun is near-infrared light, the acquisition rate of solar heat from sunlight can be controlled by controlling the transmittance of the near-infrared light. For example, near-infrared light can be prevented from entering the room in summer, and near-infrared light can be taken into the room in winter. The principle that the nanocrystal layer 3 exhibits electrochromism will be described later.
 ここで、エレクトロクロミック素子100の状態が、近赤外領域の光の透過率が相対的に低い状態から、近赤外領域の光の透過率が相対的に高い状態に切り替えられたときの透過スペクトルの変化に着目する。以下では、前者の状態を「第1の状態」と呼び、後者の状態(つまり近赤外領域の光の透過率が第1の状態よりも高い状態)を「第2の状態」と呼ぶ。本実施形態では、このときの透過スペクトルの変化は、近赤外領域の光の透過率変化だけでなく、可視領域の光の透過率変化も伴っている。また、このときの透過スペクトルの変化は、透過光(エレクトロクロミック素子100を透過する透過光)の色が暖色系の色となるような「第1の変化」、または、透過光の色が寒色系の色ではなくなるような「第2の変化」を含む。また、このときの透過スペクトルの変化は、透過光の色が寒色系の色から暖色系の色となるような「第3の変化」を含んでもよい。以下では、これら「第1の変化」、「第2の変化」および「第3の変化」を、「暖色系変化」と総称することがある。なお、可視領域とは、一般に、波長が約400nm以上約800nm未満の範囲である。 Here, the transmission of the electrochromic element 100 is switched from a state in which the light transmittance in the near infrared region is relatively low to a state in which the light transmittance in the near infrared region is relatively high. Focus on spectral changes. Hereinafter, the former state is referred to as a “first state”, and the latter state (that is, a state where light transmittance in the near infrared region is higher than the first state) is referred to as a “second state”. In this embodiment, the change in the transmission spectrum at this time is accompanied by not only the change in the transmittance of light in the near infrared region but also the change in the transmittance of light in the visible region. The change in the transmission spectrum at this time is the “first change” in which the color of the transmitted light (transmitted light transmitted through the electrochromic element 100) becomes a warm color, or the color of the transmitted light is cold. It includes a “second change” that is no longer a system color. Further, the change in the transmission spectrum at this time may include a “third change” in which the color of the transmitted light changes from a cold color to a warm color. Hereinafter, these “first change”, “second change”, and “third change” may be collectively referred to as “warm color change”. The visible region is generally a range where the wavelength is about 400 nm or more and less than about 800 nm.
 以下、第1の状態から第2の状態への切り替えの際の透過スペクトル変化が、上述した暖色系変化を含むことにより得られる効果を説明する。 Hereinafter, an effect obtained when the transmission spectrum change at the time of switching from the first state to the second state includes the above-described warm color system change will be described.
 色の普遍的な効果として、寒暖感が知られている。寒色系の色は涼しさを感じさせ、暖色系の色は暖かさを感じさせる。そのため、近赤外光の透過率の制御に併せて、可視光の色を変化させることにより、視覚効果で暖かさや涼しさを感じさせることができる。例えば、上述した第1の状態から第2の状態への切り替えは、近赤外光の透過率を高くする、つまり近赤外光をより多く入射させるものであり、室温や直射日光を受ける人の表面体温を高くするための操作である。そのため、この切り替えの際の透過スペクトルの変化が上述した暖色系変化を含んでいると、すなわち、可視領域における透過率変化が上述した暖色系変化であると、視覚効果による暖かさを感じさせることができる。また、この効果は、窓際にいる人間だけでなく、窓から離れた位置にいる人間も体感することができる。そのため、室内の快適性をいっそう向上させることができる。 寒 A warm feeling is known as a universal effect of color. Cold colors make you feel cool, and warm colors make you feel warm. Therefore, by changing the color of visible light in conjunction with the control of the transmittance of near-infrared light, it is possible to feel warmth and coolness with a visual effect. For example, switching from the first state to the second state described above increases the transmittance of near-infrared light, that is, causes more near-infrared light to enter, and is a person who receives room temperature or direct sunlight. This is an operation to increase the surface temperature of the body. Therefore, if the change in the transmission spectrum at the time of switching includes the warm color change described above, that is, if the transmittance change in the visible region is the warm color change described above, the warmth due to the visual effect is felt. Can do. In addition, this effect can be experienced not only by a person at the window but also by a person away from the window. Therefore, indoor comfort can be further improved.
 また、第1の状態から第2の状態への切り替えの際に、暖色系変化が生じるということは、逆の切り替え、つまり、第2の状態から第1の状態への切り替えの際には、暖色系変化とは逆の変化が生じることを意味している。つまり、第2の状態から第1の状態への切り替えの際の可視領域における透過スペクトル変化は、透過光の色が寒色系の色となるような「第4の変化」、透過光の色が暖色系の色ではなくなるような「第5の変化」、または、透過光の色が暖色系の色から寒色系の色となるような「第6の変化」である。以下では、これら「第4の変化」、「第5の変化」および「第6の変化」を、「寒色系変化」と総称することがある。 In addition, when a change from the first state to the second state occurs, a warm color change occurs. In other words, when switching from the second state to the first state, This means that a change opposite to the warm color change occurs. That is, the transmission spectrum change in the visible region when switching from the second state to the first state is a “fourth change” in which the color of the transmitted light becomes a cold color, and the color of the transmitted light is A “fifth change” that does not result in a warm color, or a “sixth change” that changes the color of transmitted light from a warm color to a cold color. Hereinafter, these “fourth change”, “fifth change”, and “sixth change” may be collectively referred to as “cold color system change”.
 第2の状態から第1の状態への切り替えは、近赤外光の透過率を低くする、つまり近赤外光をより多く遮断するものであり、室温や直射日光を受ける人の表面体温を低くするための操作である。そのため、この切り替えの際の可視領域における透過率変化が上述した寒色系変化であると、視覚効果による涼しさを感じさせることができる。 Switching from the second state to the first state lowers the near-infrared light transmittance, that is, blocks more of the near-infrared light, and reduces the surface temperature of a person receiving room temperature or direct sunlight. This is an operation for lowering. Therefore, when the change in transmittance in the visible region at the time of switching is the above-described cold color change, it is possible to feel coolness due to the visual effect.
 このように、本実施形態のエレクトロクロミック素子100は、近赤外光の透過率を制御することによる室温・表面体温制御に加えて、色による視覚効果を用いて暖かさや涼しさを感じさせることができるので、室内の快適性をいっそう向上させることができる。そのため、赤外光の透過率を制御することによる効果をいっそう体感することができる。 As described above, the electrochromic device 100 according to the present embodiment allows the user to feel warmth and coolness by using the visual effect of color in addition to the room temperature / surface body temperature control by controlling the transmittance of near infrared light. It is possible to improve indoor comfort. Therefore, the effect by controlling the transmittance of infrared light can be further experienced.
 [好ましい色度・明度変化]
 暖色とは、視覚から暖かい印象を与える色である。寒色とは、視覚から寒い印象を与える色である。一般に、暖色系の色は、マンセル色相環におけるR(赤)、YR(黄赤)およびY(黄)に相当し、寒色系の色は、マンセル色相環におけるBG(青緑)、B(青)およびPB(紫青)に相当する。
[Preferred chromaticity / lightness change]
The warm color is a color that gives a warm impression from the sight. Cold color is a color that gives a cold impression from the sight. In general, warm colors correspond to R (red), YR (yellow red) and Y (yellow) in the Munsell hue ring, and cold colors correspond to BG (blue green) and B (blue) in the Munsell hue ring. ) And PB (purple blue).
 図2に、L***表色系の色度図を示す。L***表色系において、L*は明度を示し、a*およびb*は色度を示す。図2からわかるように、暖色系変化(第1の変化、第2の変化および第3の変化)は、a*および/またはb*の増加に近似的に対応している。従って、暖色系変化は、L***表色系におけるa*およびb*の少なくとも一方が増加する変化であるといえる。暖色系変化は、a*およびb*の一方のみが増加する変化であってもよいし、a*およびb*の両方が増加する変化であってもよい。後に詳述するように、暖色系変化において、a*の変化量Δa*は-0.01以上であることが好ましく、b*の変化量Δb*は1.60以上であることが好ましい。なお、a*の変化量Δa*は、120以下であることが好ましく、b*の変化量Δb*は、120以下であることが好ましい。また、図2からわかるように、寒色系変化(第4の変化、第5の変化および第6の変化)は、a*および/またはb*の減少に近似的に対応している。 FIG. 2 shows a chromaticity diagram of the L * a * b * color system. In the L * a * b * color system, L * indicates lightness, and a * and b * indicate chromaticity. As can be seen from FIG. 2, the warm color system changes (first change, second change and third change) approximately correspond to an increase in a * and / or b * . Therefore, it can be said that the warm color system change is a change in which at least one of a * and b * in the L * a * b * color system increases. Warm change may be a change in only one of a * and b * is increased, it may be a change in both a * and b * increases. As will be described later in detail, in the warm color change, the change amount Δa * of a * is preferably −0.01 or more, and the change amount Δb * of b * is preferably 1.60 or more. Incidentally, a * variation .DELTA.a * is preferably 120 or less, b * is the amount of change [Delta] b *, it is preferably 120 or less. Further, as can be seen from FIG. 2, the cold color system changes (fourth change, fifth change and sixth change) approximately correspond to a decrease in a * and / or b * .
 第1の状態から第2の状態への切り替えの際、または、第2の状態から第1の状態への切り替えの際に、明るさの変化が生じてもよい。図3は、横軸に色温度、縦軸に照度をとり、色温度ごとに快適な照度の範囲を示すグラフであり、「クルイトフの快適曲線」と呼ばれる。図3における左上の領域では、光を暑苦しく感じ、右下の領域では、光を陰鬱に感じる。一方、これらの間の領域では、光を快適に感じる。例えば、ある色温度において照度が高く暑苦しいと感じる場合、照度を下げると快適な状態にすることができる。従って、例えば夏期に第2の状態から第1の状態への切り替えの際に、照度(明るさ)を下げることによって、快適性を向上させることができる。また、夏期に可視領域の透過率を低くすることは、その分日射熱を遮蔽することを意味しており、空調効率を良くする効果もある。 A change in brightness may occur when switching from the first state to the second state or when switching from the second state to the first state. FIG. 3 is a graph showing the range of comfortable illuminance for each color temperature with the color temperature on the horizontal axis and the illuminance on the vertical axis, and is called a “Kruitoff comfort curve”. In the upper left area in FIG. 3, the light feels hot and in the lower right area, the light feels gloomy. On the other hand, light is comfortable in the area between these. For example, if the illuminance is high at a certain color temperature and feels uncomfortable, it can be made comfortable by reducing the illuminance. Therefore, for example, when switching from the second state to the first state in summer, comfort can be improved by reducing the illuminance (brightness). In addition, lowering the transmittance in the visible region in summer means that the solar heat is shielded accordingly, and the air conditioning efficiency is improved.
 明るさの変化は、L***表色系では、L*の変化に相当する。そのため、暖色系変化は、L***表色系におけるL*が増加する変化であることが好ましいといえる。また、寒色系変化は、L***表色系におけるL*が減少する変化であることが好ましいといえる。暖色系変化におけるL*の変化量ΔL*は、後に詳述するように、1.90以上であることが好ましい。 Change of brightness in the L * a * b * color system, corresponding to a change in L *. Therefore, it can be said that the warm color system change is preferably a change in which L * in the L * a * b * color system increases. Moreover, it can be said that the cold color system change is preferably a change in which L * in the L * a * b * color system decreases. The change amount ΔL * of L * in the warm color system change is preferably 1.90 or more, as will be described in detail later.
 また、第1の状態から第2の状態への切り替えの際の色変化の程度は、L***表色系における色差ΔEによっても表わすことができる。色差ΔEは、下記式のように、L*、a*およびb*の変化量ΔL*、Δa*およびΔb*で規定される。
 ΔE=(ΔL*2+Δa*2+Δb*2)1/2
Further, the degree of color change at the time of switching from the first state to the second state can also be expressed by a color difference ΔE in the L * a * b * color system. The color difference ΔE is defined by the change amounts ΔL * , Δa *, and Δb * of L * , a *, and b * as in the following equation.
ΔE = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
 暖色系変化は、後に詳述するように、色差ΔEが2.15以上130以下となる変化であることが好ましく、2.70以上78以下となる変化であることがより好ましい。 As described in detail later, the warm color system change is preferably a change in which the color difference ΔE is 2.15 or more and 130 or less, and more preferably a change in which the color difference ΔE is 2.70 or more and 78 or less.
 [金属酸化物ナノ粒子の好適な例]
 金属酸化物ナノ粒子としては、例えば、アンチモンドープ酸化錫(Antimony-doped Tin Oxide:ATO)ナノ粒子を好適に用いることができる。図4に、金属酸化物ナノ粒子として平均粒径が20nm以下のATO粒子を用いた場合の第1の状態および第2の状態における透過スペクトルの例を示す。図4に示す例では、第1の状態においては、第2透明電極2の電位を基準として第1透明電極1に負極性の電圧が印加されており、第2の状態においては、第2透明電極2の電位を基準として第1透明電極1に正極性の電圧が印加されている。図4に示すように、第1の状態における透過スペクトルと、第2の状態における透過スペクトルとは、近赤外領域において異なっている。第2の状態における近赤外領域の透過率は、第1の状態における近赤外領域の透過率よりも高い。また、図4に示すように、第1の状態における透過スペクトルと、第2の状態における透過スペクトルとは、可視領域においても異なっている。第1の状態では、可視領域における透過率が相対的に低く、また、可視領域全体で透過率がほぼ同じである。これに対し、第2の状態では、可視領域における透過率が相対的に高く、特に長波長側の透過率が高い。
[Preferred examples of metal oxide nanoparticles]
As the metal oxide nanoparticles, for example, antimony-doped tin oxide (ATO) nanoparticles can be suitably used. In FIG. 4, the example of the transmission spectrum in a 1st state and a 2nd state at the time of using ATO particle | grains whose average particle diameter is 20 nm or less as a metal oxide nanoparticle is shown. In the example shown in FIG. 4, in the first state, a negative voltage is applied to the first transparent electrode 1 with reference to the potential of the second transparent electrode 2, and in the second state, the second transparent electrode A positive voltage is applied to the first transparent electrode 1 with reference to the potential of the electrode 2. As shown in FIG. 4, the transmission spectrum in the first state and the transmission spectrum in the second state are different in the near-infrared region. The transmittance in the near infrared region in the second state is higher than the transmittance in the near infrared region in the first state. Also, as shown in FIG. 4, the transmission spectrum in the first state and the transmission spectrum in the second state are different in the visible region. In the first state, the transmittance in the visible region is relatively low, and the transmittance is almost the same in the entire visible region. On the other hand, in the second state, the transmittance in the visible region is relatively high, and in particular, the transmittance on the long wavelength side is high.
 比較のため、図5に、金属酸化物ナノ粒子として平均粒径が20nm以下の錫ドープ酸化インジウム(ITO)ナノ粒子を用いた場合の第1の状態および第2の状態における透過スペクトルの例を示す。図5に示すように、第1の状態における透過スペクトルと、第2の状態における透過スペクトルとは、近赤外領域において異なっている。しかしながら、第1の状態における透過スペクトルと、第2の状態における透過スペクトルとは、可視領域においてほとんど同じである。そのため、図5に示す例では、第1の状態と第2の状態とを切り替えても、色変化がほとんど生じない。 For comparison, FIG. 5 shows an example of transmission spectra in the first state and the second state when tin-doped indium oxide (ITO) nanoparticles having an average particle diameter of 20 nm or less are used as metal oxide nanoparticles. Show. As shown in FIG. 5, the transmission spectrum in the first state and the transmission spectrum in the second state are different in the near-infrared region. However, the transmission spectrum in the first state and the transmission spectrum in the second state are almost the same in the visible region. Therefore, in the example shown in FIG. 5, even if the first state and the second state are switched, the color change hardly occurs.
 ATOナノ粒子の平均粒径は、1nm以上20nm以下が好ましく、8nm以下がより好ましい。図6に、平均粒径が20nmのATOナノ粒子を含むナノ結晶層3を厚さ約1μmで形成した場合の透過スペクトルと、平均粒径が8nmのATOナノ粒子を含むナノ結晶層3を厚さ約1μmで形成した場合の透過スペクトルとを示す。 The average particle size of ATO nanoparticles is preferably 1 nm or more and 20 nm or less, and more preferably 8 nm or less. FIG. 6 shows a transmission spectrum when the nanocrystal layer 3 including ATO nanoparticles having an average particle diameter of 20 nm is formed with a thickness of about 1 μm, and the thickness of the nanocrystal layer 3 including ATO nanoparticles having an average particle diameter of 8 nm. The transmission spectrum when formed at a thickness of about 1 μm is shown.
 図6から、平均粒径が8μmの場合は、平均粒径が20μmの場合よりも、第1の状態から第2の状態への切り替えの際の透過スペクトルの変化が大きいことがわかる。特に、近赤外領域における透過スペクトルの変化が顕著である。また、平均粒径が8μmの場合、平均粒径が20μmの場合よりも、可視領域における透過率が高い。 FIG. 6 shows that when the average particle diameter is 8 μm, the change in the transmission spectrum when switching from the first state to the second state is larger than when the average particle diameter is 20 μm. In particular, the change in the transmission spectrum in the near infrared region is remarkable. Further, when the average particle size is 8 μm, the transmittance in the visible region is higher than when the average particle size is 20 μm.
 [ナノ結晶層の動作原理]
 ここで、ナノ結晶層3がエレクトロクロミズムを示す原理を説明する。
[Principle of operation of nanocrystal layer]
Here, the principle that the nanocrystal layer 3 exhibits electrochromism will be described.
 非特許文献1に記載されているように、ITO(Tin doped Indium Oxide)ナノ結晶層などの透明導電性酸化物(Transparent Conducting Oxide:TCO)ナノ構造体に電子を注入することによって、近赤外領域の透過スペクトルを変化させ得ることが知られている。その原理は、端的に言えば、TCOナノ構造体の局在表面プラズモン共鳴(LSPR)による吸収波長を、電圧印加によってシフトさせることである。以下、より詳細に説明する。 As described in Non-Patent Document 1, by injecting electrons into a transparent conductive oxide (TCO) nanostructure such as an ITO (Tin-doped Indium-Oxide) nanocrystal layer, near-infrared It is known that the transmission spectrum of a region can be changed. In short, the principle is to shift the absorption wavelength by localized surface plasmon resonance (LSPR) of the TCO nanostructure by applying a voltage. This will be described in more detail below.
 LSPRの共鳴周波数は、プラズマ周波数ωpに比例する。プラズマ周波数ωpは、下記式で表わされる。
 ωp 2=N・e2/(m・ε0
The resonance frequency of LSPR is proportional to the plasma frequency ωp. The plasma frequency ωp is expressed by the following formula.
ω p 2 = N · e 2 / (m · ε 0 )
 ここで、Nは電子密度、eは電子の電荷、mは電子の有効質量、ε0は真空の誘電率である。従って、TCOナノ構造体に負電圧を印加して電子密度を高くすると、プラズマ周波数ωpが大きくなるので、LSPRの共鳴周波数も大きくなる。そのため、LSPRの共鳴波長は短くなる(つまり短波長側にシフトする)。TCOナノ構造体のキャリア密度を調整することにより、LSPRの共鳴波長を近赤外領域に設定できるので、近赤外領域における透過スペクトルを変化させることが可能となる。 Here, N is the electron density, e is the charge of the electron, m is the effective mass of the electron, and ε0 is the dielectric constant of the vacuum. Accordingly, when a negative voltage is applied to the TCO nanostructure to increase the electron density, the plasma frequency ωp increases, and the resonance frequency of the LSPR also increases. Therefore, the resonance wavelength of LSPR becomes short (that is, shifts to the short wavelength side). By adjusting the carrier density of the TCO nanostructure, the resonance wavelength of the LSPR can be set in the near infrared region, so that the transmission spectrum in the near infrared region can be changed.
 なお、このように透過スペクトルを変化させる機能は、ITOナノ粒子を含むITOナノ結晶層だけに特有のものではない。ナノ粒子が、LSPRが生じるようなサイズ(例えば100nm以下)であり、且つ、ナノ結晶層が透明電極からの電子を注入され得るような構成であれば、原理的には上述した機能を奏し得る。ナノ粒子としては、ATO、PTO(リンドープ酸化錫)、AZO(アルミニウムドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)等の種々の金属酸化物のナノ粒子を用いることができる。 Note that the function of changing the transmission spectrum in this way is not unique to the ITO nanocrystal layer containing ITO nanoparticles. In principle, the above-described functions can be achieved if the nanoparticles are sized so as to cause LSPR (for example, 100 nm or less), and the nanocrystal layer can inject electrons from the transparent electrode. . As nanoparticles, nanoparticles of various metal oxides such as ATO, PTO (phosphorus-doped tin oxide), AZO (aluminum-doped zinc oxide), GZO (gallium-doped zinc oxide) can be used.
 [実施例1]
 エレクトロクロミック素子100の試作例(実施例1)を以下のようにして作製し、その光学特性を検証した。
[Example 1]
A prototype example (Example 1) of the electrochromic element 100 was manufactured as follows, and the optical characteristics thereof were verified.
 まず、第1基板11および第2基板12としてそれぞれガラス基板を用意した。次に、第1基板11上に、近赤外領域において透明となるようなチタンドープ酸化インジウム(Titanium-doped Indium Oxide:InTiO)をスパッタ法により堆積し、第1透明電極1を形成した。同様にして、第2基板12上に第2透明電極2を形成した。 First, glass substrates were prepared as the first substrate 11 and the second substrate 12, respectively. Next, titanium-doped indium oxide (Titanium-doped Indium Oxide: InTiO), which becomes transparent in the near infrared region, was deposited on the first substrate 11 by sputtering to form the first transparent electrode 1. Similarly, the second transparent electrode 2 was formed on the second substrate 12.
 続いて、第1透明電極1上に、ATOナノ粒子の分散液をスピンコート法により塗布し、ホットプレート上で140℃で1分間乾燥させた後、200℃で60分間焼成を行うことにより、ナノ結晶層3を形成した。使用したATOナノ粒子分散液は、帯電防止膜形成用に市販されているもの(大日本塗料株式会社製)であり、ATOナノ粒子の粒径は8nm~30nm、分散媒はメチルイソブチルケトンとイソブタノールとの混合液である。 Subsequently, a dispersion of ATO nanoparticles is applied on the first transparent electrode 1 by spin coating, dried on a hot plate at 140 ° C. for 1 minute, and then fired at 200 ° C. for 60 minutes, A nanocrystal layer 3 was formed. The ATO nanoparticle dispersion used is commercially available for the formation of an antistatic film (manufactured by Dainippon Paint Co., Ltd.). The particle size of the ATO nanoparticles is 8-30 nm, and the dispersion medium is methyl isobutyl ketone and isoform. It is a mixed solution with butanol.
 その後、粒径が10μmの樹脂スペーサを2wt%含むUV硬化型樹脂材料を、ナノ結晶層3または第2透明電極2の外周上に、部分的に注入口が存在するように塗布する。続いて、両基板を重ね合せ、紫外線を照射することによってシール部6を形成した。次に、注入口から電解液として、1mol/LのLiBFを含むEC(Ethylene carbonate)・DEC(Diethyl Carbonate)混合液(EC:DEC=1:2)を注入し、その後、UV硬化型樹脂材料で封止を行って電解質層4を形成した。 Thereafter, a UV curable resin material containing 2 wt% of a resin spacer having a particle size of 10 μm is applied on the outer periphery of the nanocrystal layer 3 or the second transparent electrode 2 so that the injection port partially exists. Subsequently, both the substrates were overlapped and irradiated with ultraviolet rays to form the seal portion 6. Next, an EC (Ethylene carbonate) / DEC (Diethyl Carbonate) mixed solution (EC: DEC = 1: 2) containing 1 mol / L LiBF 4 is injected from the injection port as an electrolytic solution, and then UV curable resin is used. The electrolyte layer 4 was formed by sealing with a material.
 このようにして、実施例1のエレクトロクロミック素子100が得られた。図7に、第2透明電極2の電位を0Vとし、第1透明電極1にー3Vおよび+3VのDC電圧を印加したときの透過スペクトルを示す。図7から、近赤外領域における透過スペクトルが、印加電圧の極性の切り替えに応じて大きく変化していることがわかる。また、近赤外領域の透過率が低い状態では、可視領域における透過率が相対的に低く、可視領域全体で透過率がほぼ同じであることがわかる。さらに、近赤外領域の透過率が高い状態では、可視領域における透過率が相対的に高く、特に長波長側の透過率が高いことがわかる。 Thus, the electrochromic element 100 of Example 1 was obtained. FIG. 7 shows a transmission spectrum when the potential of the second transparent electrode 2 is 0 V and DC voltages of −3 V and +3 V are applied to the first transparent electrode 1. From FIG. 7, it can be seen that the transmission spectrum in the near-infrared region changes greatly according to the switching of the polarity of the applied voltage. Further, it can be seen that when the transmittance in the near infrared region is low, the transmittance in the visible region is relatively low, and the transmittance is almost the same in the entire visible region. Furthermore, it can be seen that in the state where the transmittance in the near infrared region is high, the transmittance in the visible region is relatively high, and in particular, the transmittance on the long wavelength side is high.
 従って、実施例1のエレクトロクロミック素子100を窓に設置し、冬期に近赤外光の透過率が高い状態にすると、透過光の色がうっすらと暖色系の色となる。これにより、太陽光の日射熱を取り込む効果に加えて、暖色系の色が与える効果を得ることができる。一方、近赤外光の透過率が低い状態にすると、可視領域は全体的に透過率が低い状態となり、透過光から暖色系の色味が失われる。これにより、太陽光の日射熱を遮蔽する効果に加えて、暑苦しいという感覚を改善することができる。 Therefore, when the electrochromic element 100 of Example 1 is installed in a window and the near infrared light transmittance is high in winter, the color of the transmitted light is slightly warm. Thereby, in addition to the effect which takes in the solar heat of sunlight, the effect which a warm color color gives can be acquired. On the other hand, when the transmittance of near-infrared light is low, the visible region has a low transmittance as a whole, and the warm color is lost from the transmitted light. Thereby, in addition to the effect which shields the solar heat of sunlight, the feeling of being hot can be improved.
 -3V印加状態におけるL*、a*およびb*を測定したところ、L*=83.28、a*=0.01、b*=0.16であった。これに対し、+3V印加状態では、L*=88.48、a*=0.62、b*=2.12であった。従って、-3V印加状態から+3V印加状態への切り替えの際のL*の変化量をΔL*、a*の変化量をΔa*、b*の変化量をΔb*とすると、ΔL*=5.20、Δa*=0.61、Δb*=1.96である。 When L * , a *, and b * were measured in the −3 V application state, L * = 83.28, a * = 0.01, and b * = 0.16. In contrast, in the + 3V applied state, L * = 88.48, a * = 0.62, was b * = 2.12. Therefore, when the change amount of L * at the time of switching from the -3V application state to the + 3V application state is ΔL * , the change amount of a * is Δa * , and the change amount of b * is Δb * , ΔL * = 5. 20, Δa * = 0.61, and Δb * = 1.96.
 既に説明したように、暖色系変化は、a*および/またはb*の増加に近似的に対応している。本実施例では、-3V印加状態から+3V印加状態への切り替えの際(近赤外光の透過率が高くなるような切り替えの際)に、L*も増加するので、いっそう快適性が向上するといえる。 As already explained, the warm color system change approximately corresponds to an increase in a * and / or b * . In this embodiment, L * also increases when switching from the -3V applied state to the + 3V applied state (when switching so that the transmittance of near-infrared light is increased), so that comfort is further improved. I can say that.
 [実施例2~5、比較例1、2]
 金属酸化物ナノ粒子自体の作製方法としては、粉砕による方法や、液相または気相での微粒子成長による方法などがある。また、金属酸化物ナノ粒子を分散媒に分散させる際、界面活性剤の種類や分散媒の種類、分散させる際のエネルギーの付与方法など、何通りもの選択肢がある。そのため、金属酸化物ナノ粒子の分散液は、多種多様な方法で得ることができるといえる。
[Examples 2 to 5, Comparative Examples 1 and 2]
As a method for producing the metal oxide nanoparticles themselves, there are a method by pulverization, a method by fine particle growth in a liquid phase or a gas phase, and the like. In addition, when the metal oxide nanoparticles are dispersed in the dispersion medium, there are various options such as the type of surfactant, the type of the dispersion medium, and the method of applying energy when dispersed. Therefore, it can be said that the dispersion of metal oxide nanoparticles can be obtained by various methods.
 実施例1とは異なる方法により得られたATOナノ粒子分散液を用いて、実施例2~5のエレクトロクロミック素子100および比較例1のエレクトロクロミック素子を作製した。また、ITOナノ粒子分散液を用いて、比較例2のエレクトロクロミック素子を作製した。なお、実施例3には大日本塗料株式会社製の熱線吸収膜形成用のATOナノ粒子、実施例4には日揮触媒化成株式会社製のELCOM,ATO、比較例1には三菱マテリアル株式会社製のATO分散液を用いた。また、ITOナノ粒子分散液を用いた比較例2は、分散媒がトルエンである点と、ホットプレート上での乾燥後の焼成を200℃で120分間行った点以外は実施例1と同様にして作製した。 The electrochromic device 100 of Examples 2 to 5 and the electrochromic device of Comparative Example 1 were prepared using an ATO nanoparticle dispersion obtained by a method different from that of Example 1. Moreover, the electrochromic element of the comparative example 2 was produced using the ITO nanoparticle dispersion liquid. In Example 3, ATO nanoparticles for forming a heat-absorbing film manufactured by Dainippon Paint Co., Ltd., in Example 4, ELCOM and ATO manufactured by JGC Catalysts & Chemicals Co., Ltd., and in Comparative Example 1 manufactured by Mitsubishi Materials Corporation. ATO dispersion was used. Further, Comparative Example 2 using the ITO nanoparticle dispersion was the same as Example 1 except that the dispersion medium was toluene and baking after drying on a hot plate was performed at 200 ° C. for 120 minutes. Made.
 図8から図13に、実施例2~5および比較例1、2について、第2透明電極2の電位を0Vとし、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの透過スペクトルを示す。 FIGS. 8 to 13 show the transmission of Examples 2 to 5 and Comparative Examples 1 and 2 when the potential of the second transparent electrode 2 is 0 V and the DC voltage of −3 V and +3 V is applied to the first transparent electrode 1. The spectrum is shown.
 図8から、実施例2では、実施例1と同様に、印加電圧を-3Vから+3Vに切り替えるのに伴って、無色の暗い状態から、暖色系の明るい状態に変化する(つまり「第1の変化」が生じる)ことがわかる。また、図9および図10から、実施例3および4では、印加電圧の切り替えに伴って、寒色系の暗い状態から無色の明るい状態に変化する(つまり「第2の変化」が生じる)ことがわかる。さらに、図11から、実施例5では、印加電圧の切り替えに伴って、寒色系の暗い状態から暖色系の明るい状態に変化する(つまり「第3の変化」が生じる)ことがわかる。 From FIG. 8, in the second embodiment, as in the first embodiment, as the applied voltage is switched from −3V to + 3V, the colorless dark state changes to the warm color bright state (that is, “first” Change "occurs). Further, from FIGS. 9 and 10, in Examples 3 and 4, the change from the dark-colored dark state to the colorless and bright state (that is, the “second change” occurs) in accordance with the switching of the applied voltage. Recognize. Further, it can be seen from FIG. 11 that in Example 5, the cold color system changes from the dark color system to the warm color system (that is, a “third change” occurs) as the applied voltage is switched.
 また、図12から、比較例1では、印加電圧を切り替えても、近赤外領域および可視領域の全体にわたって透過率の変化が少ないことがわかる。さらに、図13から、比較例2では、印加電圧の切り替えに伴って近赤外領域の透過率は変化するものの、可視領域の透過率がほとんど変化しないことがわかる。 In addition, it can be seen from FIG. 12 that in Comparative Example 1, even when the applied voltage is switched, the change in transmittance is small over the entire near-infrared region and visible region. Furthermore, it can be seen from FIG. 13 that in Comparative Example 2, the transmittance in the near-infrared region changes with switching of the applied voltage, but the transmittance in the visible region hardly changes.
 表1に、実施例1~5および比較例1、2について、印加電圧を-3Vから+3Vに切り替えたときのΔL*、Δa*、Δb*およびΔE*を示す。 Table 1 shows ΔL * , Δa * , Δb *, and ΔE * when the applied voltage is switched from −3 V to +3 V for Examples 1 to 5 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~5では、印加電圧の切り替えに伴ってb*が1.60以上増加することがわかる。また、実施例1~5では、印加電圧の切り替えに伴ってa*がほとんど変化しないか、または0.50以上増加することがわかる。これに対し、比較例1および2では、a*およびb*の変化が少ない。また、表1から、実施例1~5では、印加電圧の切り替えに伴ってL*が1.90以上増加することがわかる。これに対し、比較例1および2では、L*の変化が少ない。 From Table 1, it can be seen that in Examples 1 to 5, b * increases by 1.60 or more as the applied voltage is switched. In Examples 1 to 5, it can be seen that a * hardly changes or increases by 0.50 or more as the applied voltage is switched. On the other hand, in Comparative Examples 1 and 2, there is little change in a * and b * . Table 1 also shows that in Examples 1 to 5, L * increases by 1.90 or more as the applied voltage is switched. On the other hand, in Comparative Examples 1 and 2, there is little change in L * .
 表1に示した結果から、暖色系変化において、Δa*が-0.01以上であり、且つ、Δb*が1.60以上であることが好ましいといえる。なお、暖色系変化におけるΔa*は、0.50以上であることがより好ましい。また、暖色系変化におけるΔL*は、1.90以上であることが好ましい。さらに、暖色系変化は、色差ΔEが2.15以上となる変化であることが好ましく、2.70以上となる変化であることがより好ましい。 From the results shown in Table 1, it can be said that Δa * is preferably −0.01 or more and Δb * is preferably 1.60 or more in the warm color change. Note that Δa * in the warm color change is more preferably 0.50 or more. Further, ΔL * in the warm color system change is preferably 1.90 or more. Further, the warm color system change is preferably a change in which the color difference ΔE is 2.15 or more, and more preferably a change in which the color difference ΔE is 2.70 or more.
 表1には、ナノ結晶層の厚さも併せて示されている。ナノ結晶層の厚さは、ナノ結晶層の形成後に層の一部を削り取り、その部分の段差を段差計で測定することによって得た。印加電圧の切り替え時にL*、a*およびb*に大きな変化が見られる実施例1~5では、ナノ結晶層の厚さが9000Å以上である。これに対し、実施例1~5と同じATOナノ粒子を用いているにもかかわらず、印加電圧の切り替え時にL*、a*およびb*の変化が少ない比較例1では、ナノ結晶層の厚さは2410Åであった。従って、L*、a*、およびb*を大きく変化させる観点からは、ナノ結晶層の厚さは3000Å以上であることが好ましく、9000Å以上であることがより好ましい。また、ナノ結晶層の厚さは、40000Å以下であることが好ましく、20000Å以下であることがより好ましい。 Table 1 also shows the thickness of the nanocrystal layer. The thickness of the nanocrystal layer was obtained by scraping a part of the layer after forming the nanocrystal layer and measuring the level difference of the part with a step meter. In Examples 1 to 5, in which a large change is observed in L * , a *, and b * when the applied voltage is switched, the thickness of the nanocrystal layer is 9000 mm or more. In contrast, in Comparative Example 1 in which the change in L * , a *, and b * is small when the applied voltage is switched, although the same ATO nanoparticles as in Examples 1 to 5 are used, the thickness of the nanocrystal layer The height was 2410cm. Therefore, from the viewpoint of greatly changing L * , a * , and b * , the thickness of the nanocrystal layer is preferably 3000 mm or more, and more preferably 9000 mm or more. Further, the thickness of the nanocrystal layer is preferably 40000 mm or less, and more preferably 20000 mm or less.
 なお、これまでの説明では、第1透明電極1に-3Vの電圧が印加された状態が第1の状態であり、+3Vの電圧が印加された状態が第2の状態である例を示したが、第1の状態と第2の状態との切り替えは、必ずしも印加電圧の極性の切り替えを伴う必要はない。極性が同じままで印加電圧の大きさを変化させることによって、第1の状態と第2の状態とが切り替えられてもよい。 In the description so far, the state where the voltage of −3 V is applied to the first transparent electrode 1 is the first state, and the state where the voltage of +3 V is applied is the second state. However, switching between the first state and the second state does not necessarily involve switching the polarity of the applied voltage. The first state and the second state may be switched by changing the magnitude of the applied voltage while maintaining the same polarity.
 図14に、実施例1について、第1透明電極1に-3V、-2V、-1V、0V、+1V、+2Vおよび+3Vの電圧が印加された状態における透過スペクトルを示す。また、図15に、実施例2について、第1透明電極1に-3V、-2V、0V、+2Vおよび+3Vの電圧印加状態における透過スペクトルを示す。図14および図15からわかるように、極性が同じまま印加電圧の大きさを変化させても、近赤外領域および可視領域の透過率を大きく変化させられる場合がある。例えば、実施例1について、+1V印加状態を第1の状態とし、+3V印加状態を第2の状態としてもよい。 FIG. 14 shows a transmission spectrum of Example 1 in a state where voltages of −3V, −2V, −1V, 0V, + 1V, + 2V, and + 3V are applied to the first transparent electrode 1. FIG. 15 shows the transmission spectrum of Example 2 when the first transparent electrode 1 is applied with voltages of −3V, −2V, 0V, + 2V, and + 3V. As can be seen from FIGS. 14 and 15, there are cases where the transmittance in the near-infrared region and the visible region can be greatly changed even when the magnitude of the applied voltage is changed with the same polarity. For example, in the first embodiment, the + 1V application state may be the first state, and the + 3V application state may be the second state.
 続いて、エレクトロクロミック素子100の各構成要素の具体例や好ましい構成を説明する。 Subsequently, specific examples and preferred configurations of each component of the electrochromic element 100 will be described.
 [ナノ結晶層]
 ナノ結晶層3が含む金属酸化物ナノ粒子がATOナノ粒子である場合、既に説明したように、ATOナノ粒子の平均粒径は、20nm以下であることが好ましく、8nm以下であることがより好ましい。
[Nanocrystalline layer]
When the metal oxide nanoparticles contained in the nanocrystal layer 3 are ATO nanoparticles, as described above, the average particle diameter of the ATO nanoparticles is preferably 20 nm or less, and more preferably 8 nm or less. .
 金属酸化物ナノ粒子の材料として用いられる金属酸化物は、ATOに限定されるものではない。例えば、CsxWyO(x、yは組成比を示す)で表されるような複合タングステン酸化物や六ホウ化ランタンなどのような、可視領域の光を吸収する材料を用いることができる。また、AZO(Aluminum-doped Zinc Oxide:アルミニウムドープ酸化亜鉛)やGZO(Gallium-doped Zinc Oxide:ガリウムドープ酸化亜鉛)等は、可視領域においてほぼ透明な材料であるが、組成比や厚さの設定によっては電圧印加時に可視領域の吸収が見られるので、これらを用いることもできる。 The metal oxide used as the material for the metal oxide nanoparticles is not limited to ATO. For example, a material that absorbs light in the visible region, such as a composite tungsten oxide represented by CsxWyO 3 (where x and y indicate composition ratios) and lanthanum hexaboride, can be used. AZO (Aluminum-doped Zinc Oxide) and GZO (Gallium-doped Zinc Oxide) are almost transparent materials in the visible region, but the composition ratio and thickness are set. Depending on the case, absorption in the visible region is observed when a voltage is applied, and these can also be used.
 ナノ結晶層3の形成方法に特に限定はない。金属酸化物ナノ粒子が分散された液体または半固体を第1基板11上に塗布し、焼成を行うことによって、ナノ結晶層3を形成することができる。金属酸化物ナノ粒子の分散液をスピンコート法により塗布してもよいし、ビヒクルを適度に添加されたペーストを用いた印刷法により塗布してもよい。また、バーコート法、スリットコート法、グラビアコート法またはダイコート法により塗布を行ってもよい。焼成温度が、ナノ結晶表面にある有機成分が除去されて焼結が好適に生じる温度であれば、十分な耐溶剤性が得られる。ただし、焼成温度が高すぎ、焼結が過度に進むと、所望の波長のLSPRが得られないおそれがある。ATOナノ粒子の分散液を用いたスピンコート法により塗布を行う場合、例えば、200℃以上300℃以下の温度で30分間焼成を行えばよい。 The method for forming the nanocrystal layer 3 is not particularly limited. The nanocrystal layer 3 can be formed by applying a liquid or semi-solid in which metal oxide nanoparticles are dispersed on the first substrate 11 and performing baking. The dispersion of metal oxide nanoparticles may be applied by a spin coating method, or may be applied by a printing method using a paste to which a vehicle is appropriately added. Further, the coating may be performed by a bar coating method, a slit coating method, a gravure coating method or a die coating method. If the firing temperature is such that organic components on the nanocrystal surface are removed and sintering is suitably performed, sufficient solvent resistance can be obtained. However, if the firing temperature is too high and the sintering proceeds excessively, there is a possibility that an LSPR having a desired wavelength cannot be obtained. When coating is performed by a spin coating method using a dispersion of ATO nanoparticles, for example, baking may be performed at a temperature of 200 ° C. to 300 ° C. for 30 minutes.
 [基板]
 第1基板11および第2基板12としては、例えばガラス基板を用いることができる。また、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、ポリイミドなどの樹脂材料から形成されたプラスチック基板であってもよい。例示したこれらの基板に、無機材料または有機材料から形成されたガスバリア層が設けられたものを用いてもよい。ガラス基板を用いる場合、両基板を貼り合わせた後にエッチング処理により薄型化してもよい。
[substrate]
As the first substrate 11 and the second substrate 12, for example, glass substrates can be used. Moreover, the plastic substrate formed from resin materials, such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and a polyimide, may be sufficient. These illustrated substrates may be provided with a gas barrier layer formed from an inorganic material or an organic material. In the case where a glass substrate is used, it may be thinned by etching after the two substrates are bonded together.
 [透明電極]
 第1透明電極1および第2透明電極2の材料としては、InTiOの他、アナターゼ型二酸化チタンをシード層としたタンタル置換酸化スズやキャリア密度を調整したITO等の近赤外光を透過する材料を用いることができる。これらの材料を、スパッタ法や蒸着法、塗布法などにより第1基板1および第2基板2上に堆積することによって、第1透明電極1および第2透明電極2を形成することができる。
[Transparent electrode]
As the material of the first transparent electrode 1 and the second transparent electrode 2, in addition to InTiO, a material that transmits near-infrared light such as tantalum-substituted tin oxide using anatase-type titanium dioxide as a seed layer or ITO with adjusted carrier density Can be used. The first transparent electrode 1 and the second transparent electrode 2 can be formed by depositing these materials on the first substrate 1 and the second substrate 2 by sputtering, vapor deposition, coating, or the like.
 また、第1透明電極1および第2透明電極2の材料は、遠赤外光を反射する特性を有することが好ましい。冬期に室内の温度を高く保つためには、室内から屋外に赤外光が出ることを防ぐ必要がある。室内から輻射される赤外光は、波長が10μm程度の、遠赤外光に分類されるものである。そのため、第1透明電極1および第2透明電極2が遠赤外光を反射する特性を有していると、近赤外光の透過率が高くなるようにナノ結晶層3の状態を制御しても、室内の熱は輻射熱として屋外に逃げない、理想的な状態を実現することができる。また、夏期に近赤外光の透過率が低くなるように制御したときも、屋外からの遠赤外光が室内に入ることを防止できるので、やはり理想的な状態を実現できる。 Moreover, it is preferable that the material of the first transparent electrode 1 and the second transparent electrode 2 has a characteristic of reflecting far-infrared light. In order to keep the room temperature high in winter, it is necessary to prevent infrared light from being emitted from the room to the outdoors. Infrared light radiated from the room is classified as far-infrared light having a wavelength of about 10 μm. Therefore, if the first transparent electrode 1 and the second transparent electrode 2 have the characteristic of reflecting far-infrared light, the state of the nanocrystal layer 3 is controlled so that the transmittance of near-infrared light is increased. However, the indoor heat does not escape to the outdoors as radiant heat, and an ideal state can be realized. Further, even when control is performed so that the transmittance of near-infrared light is lowered in summer, it is possible to prevent the far-infrared light from the outside from entering the room, so that an ideal state can be realized.
 エレクトロクロミック素子100が表示を目的としないものである場合、第1透明電極1の電極取り出し(外部配線への接続)は、1箇所で行われてもよいし、複数箇所で行われてもよい。1箇所の場合、エレクトロクロミック素子100の組み立て工程が簡略化されるとともに配線の引き回しを簡素にすることができる。複数箇所の場合、第1透明電極1と第2透明電極2との間に抵抗成分がある、すなわち電流が流れるような場合にも部分的な応答速度の遅延を防ぐことができる。 When the electrochromic element 100 is not intended for display, the electrode extraction (connection to the external wiring) of the first transparent electrode 1 may be performed at one place or at a plurality of places. . In the case of one place, the assembly process of the electrochromic element 100 can be simplified and the routing of the wiring can be simplified. In the case of a plurality of locations, a partial response speed delay can be prevented even when there is a resistance component between the first transparent electrode 1 and the second transparent electrode 2, that is, when a current flows.
 第1透明電極1は、電気的に独立した複数のサブ電極に分割されていてもよい。第1透明電極1が複数のサブ電極に分割されていると、サブ電極に対応する領域ごとに透過スペクトルを変化させることができる。図16(a)および(b)に、第1透明電極1が複数のサブ電極1aに分割された構成の例を示す。 The first transparent electrode 1 may be divided into a plurality of electrically independent sub-electrodes. When the first transparent electrode 1 is divided into a plurality of sub-electrodes, the transmission spectrum can be changed for each region corresponding to the sub-electrodes. FIGS. 16A and 16B show examples of a configuration in which the first transparent electrode 1 is divided into a plurality of sub-electrodes 1a.
 図16(a)に示す例では、複数のサブ電極1aの引き回しによって、電極取り出し部EPが1箇所に集約されている。サブ電極1aの引き回し部分を、シール部6の外側やシール部6の下など、エレクトロクロミック素子100の動作部から外して配置することによって、不要な電圧降下を防止することができる。 In the example shown in FIG. 16 (a), the electrode lead-out portions EP are gathered in one place by routing the plurality of sub-electrodes 1a. An unnecessary voltage drop can be prevented by disposing the lead-out portion of the sub-electrode 1a away from the operation portion of the electrochromic element 100 such as the outside of the seal portion 6 or under the seal portion 6.
 図16(b)に示す例では、複数のサブ電極1aが引き回されることなく、直接配線に接続される。つまり、電極取り出し部EPは、複数箇所に分散されている。 In the example shown in FIG. 16B, the plurality of sub-electrodes 1a are directly connected to the wiring without being routed. That is, the electrode extraction part EP is dispersed in a plurality of places.
 第2透明電極2は、第1透明電極1と同様、電気的に独立した複数のサブ電極に分割されていてもよいし、分割されていなくてもよい。 As with the first transparent electrode 1, the second transparent electrode 2 may be divided into a plurality of electrically independent sub-electrodes or may not be divided.
 [電解質層]
 電解質層4は、例えば電解液で構成される。電解液の電解質としては、ヘキサフルオロリン酸リチウム(LiPF)やヘキサフルオロリン酸ナトリウム(NaPF)、ホウフッ化リチウム(LiBF)等のイオン化しやすい材料を用いることができる。電解液の溶媒としては、炭酸エチレン(EC)、炭酸ジエチル(DEC)、ECとDCとの混合物、炭酸プロピレン等を用いることができる。また、これらにポリビニルブチラール等を溶解させたゲルを用いてもよい。さらに、例えば環状四級アンモニウムカチオンとイミドアニオンからなるイオン液体を用いてもよい。
[Electrolyte layer]
The electrolyte layer 4 is made of, for example, an electrolytic solution. As the electrolyte of the electrolytic solution, a material that is easily ionized such as lithium hexafluorophosphate (LiPF 6 ), sodium hexafluorophosphate (NaPF 6 ), lithium borofluoride (LiBF 4 ), or the like can be used. As the solvent for the electrolytic solution, ethylene carbonate (EC), diethyl carbonate (DEC), a mixture of EC and DC, propylene carbonate, or the like can be used. Moreover, you may use the gel which melt | dissolved polyvinyl butyral etc. in these. Further, for example, an ionic liquid composed of a cyclic quaternary ammonium cation and an imide anion may be used.
 電解質層4は、固体電界質から構成されてもよい。例えば、リチウム塩を含むポリエチレンオキサイドのような固体電解質を用いてもよいし、柔粘性結晶を用いてもよい。 The electrolyte layer 4 may be composed of a solid electrolyte. For example, a solid electrolyte such as polyethylene oxide containing a lithium salt may be used, or a plastic crystal may be used.
 [スペーサ]
 電解質層4が、電解液等の低粘度材料から構成される場合、エレクトロクロミック素子100は、図17に示すように、第1基板11と第2基板12との距離(セル厚)を規定するためのスペーサ7を備えることが好ましい。図17に例示する構成では、スペーサ7は、ナノ結晶層3と第2透明電極2との間に設けられている。スペーサ7は、感光性樹脂材料を用いてフォトリソ工程により形成することができる。スペーサ7は、例えば10μm角で10μmの高さを有する。スペーサ7の形成方法は、フォトリソ工程に限定されず、例えばスクリーン印刷法であってもよい。
[Spacer]
When the electrolyte layer 4 is made of a low-viscosity material such as an electrolytic solution, the electrochromic element 100 defines the distance (cell thickness) between the first substrate 11 and the second substrate 12 as shown in FIG. It is preferable to provide a spacer 7 for the purpose. In the configuration illustrated in FIG. 17, the spacer 7 is provided between the nanocrystal layer 3 and the second transparent electrode 2. The spacer 7 can be formed by a photolithography process using a photosensitive resin material. The spacer 7 is, for example, 10 μm square and 10 μm high. The formation method of the spacer 7 is not limited to the photolithography process, but may be a screen printing method, for example.
 スペーサ7は、第2基板12側(第2透明電極2上)に形成されることが好ましい。第1基板11側にスペーサ7を設ける場合、ナノ結晶層3の形成前にスペーサ7を形成すると、スペーサ7の影響によってナノ結晶層3の厚さにむらが生じたり、スペーサ7をナノ結晶層3が被覆することによって第2透明電極2とのリークが発生するおそれがある。また、ナノ結晶層3上にスペーサ7を形成すると、フォトリソ工程の残渣がナノ結晶層3上に残り、透過スペクトルの変化を阻害する可能性がある。 The spacer 7 is preferably formed on the second substrate 12 side (on the second transparent electrode 2). When the spacer 7 is provided on the first substrate 11 side, if the spacer 7 is formed before the nanocrystal layer 3 is formed, the thickness of the nanocrystal layer 3 may be uneven due to the influence of the spacer 7, or the spacer 7 may be There is a possibility that leakage with the second transparent electrode 2 occurs due to the covering of 3. Moreover, when the spacer 7 is formed on the nanocrystal layer 3, the residue of the photolithographic process remains on the nanocrystal layer 3, and there is a possibility that the change in the transmission spectrum is hindered.
 電解質層4が固体電解質から構成される場合、固体電解質が適度な弾性を有していれば、スペーサ7を設ける必要はない。 When the electrolyte layer 4 is composed of a solid electrolyte, it is not necessary to provide the spacer 7 if the solid electrolyte has an appropriate elasticity.
 [シール部]
 シール部6の材料としては、例えばUV硬化型の樹脂材料を用いることができる。
[Seal part]
As a material of the seal portion 6, for example, a UV curable resin material can be used.
 図18に、シール部6の他の構成の例を示す。図18に示す例では、シール部6は、異なる材料(シール材)から形成された2つの領域6aおよび6bを有する。以下では、相対的に内側に位置する領域6aを「内側領域」と呼び、相対的に外側に位置する領域6bを「外側領域」と呼ぶ。 FIG. 18 shows an example of another configuration of the seal portion 6. In the example shown in FIG. 18, the seal portion 6 has two regions 6 a and 6 b formed from different materials (seal materials). Hereinafter, the region 6a positioned relatively inside is referred to as an “inside region”, and the region 6b positioned relatively outside is referred to as an “outside region”.
 内側領域6aは、外側領域6bを形成するシール材よりも耐溶剤性の高いシール材から形成されている。これに対し、外側領域6bは、内側領域6aを形成するシール材よりも接着力の強いシール材から形成されている。 The inner region 6a is formed of a sealing material having higher solvent resistance than the sealing material forming the outer region 6b. On the other hand, the outer region 6b is formed of a sealing material having a stronger adhesive force than the sealing material forming the inner region 6a.
 このように、電解質層4(電解液)に接触する内側領域6aを耐溶剤性の高いシール材で形成するとともに、外側領域6bを接着力の強いシール材で形成することにより、シール部6の高い信頼性および強い接着力を両立させることができる。 As described above, the inner region 6a that is in contact with the electrolyte layer 4 (electrolyte) is formed of a sealing material having high solvent resistance, and the outer region 6b is formed of a sealing material having a strong adhesive force. High reliability and strong adhesion can be achieved at the same time.
 [製造方法]
 エレクトロクロミック素子100を製造する際、液晶パネルや色素増感型太陽電池等の製造に用いられる種々の方法・工程を用いることができる。第1基板11および第2基板12としてプラスチック基板(樹脂基板)を用いる場合には、ロール・ツー・ロール法によって貼り合せ工程を連続的に行うことができるので、製造コストを低減することが可能である。また、一連の工程を脱酸素乾燥雰囲気下で行うことにより、エレクトロクロミック素子100の信頼性を向上させることができる。
[Production method]
When manufacturing the electrochromic element 100, various methods and processes used for manufacturing a liquid crystal panel, a dye-sensitized solar cell, and the like can be used. When a plastic substrate (resin substrate) is used as the first substrate 11 and the second substrate 12, the bonding process can be continuously performed by a roll-to-roll method, so that the manufacturing cost can be reduced. It is. Further, the reliability of the electrochromic device 100 can be improved by performing a series of steps in a deoxygenated dry atmosphere.
 [対電極を含まない構成の効果]
 従来のエレクトロクロミック素子として、金属酸化物を含む対電極を備えた構成が知られている(例えば非特許文献1の図2)。この構成では、電圧印加によって光学的性質を変化させる際、対電極の酸化還元反応を電気化学的に行っている。これは、TCOナノ構造体を着色状態に遷移させるために、酸化還元反応に基づいて十分な電荷の出し入れを行うためである。しかしながら、対電極における酸化反応および還元反応の際、例えば酸素のような不純物が存在すると、本来の目的とは異なる副反応が生じることとなる。LSPRによるエレクトロクロミックは、明確な電気化学的反応を示さないことが知られているが、上述した副反応の存在により、対電極を含む構成は、光学的性質の変化に対する繰り返し特性が悪くなるという問題がある。
[Effect of the configuration not including the counter electrode]
As a conventional electrochromic element, a configuration including a counter electrode containing a metal oxide is known (for example, FIG. 2 of Non-Patent Document 1). In this configuration, when the optical properties are changed by voltage application, the redox reaction of the counter electrode is performed electrochemically. This is because sufficient charges are taken in and out based on the oxidation-reduction reaction in order to transition the TCO nanostructure to the colored state. However, in the oxidation reaction and reduction reaction at the counter electrode, if an impurity such as oxygen is present, a side reaction different from the original purpose occurs. It is known that electrochromic by LSPR does not show a clear electrochemical reaction, but due to the presence of the side reaction described above, the configuration including the counter electrode has poor repeatability with respect to changes in optical properties. There's a problem.
 図1に例示した構成では、エレクトロクロミック素子100は、第2透明電極2上に対電極を備えていない。また、第1透明電極1、第2透明電極2およびナノ結晶層3は、ナノ結晶層3の透過スペクトルを変化させるために第1透明電極1と第2透明電極2との間に電圧を印加したとき、酸化還元反応を生じず、エレクトロクロミック素子100は、電圧印加によって酸化還元反応による透過スペクトルの変化が生じる電極を含まない。 In the configuration illustrated in FIG. 1, the electrochromic element 100 does not include a counter electrode on the second transparent electrode 2. The first transparent electrode 1, the second transparent electrode 2, and the nanocrystal layer 3 apply a voltage between the first transparent electrode 1 and the second transparent electrode 2 in order to change the transmission spectrum of the nanocrystal layer 3. Then, the redox reaction does not occur, and the electrochromic device 100 does not include an electrode in which the transmission spectrum changes due to the redox reaction when a voltage is applied.
 既に説明したように、LSPRは、明確な電気化学的反応を示さない。従って、酸化還元反応を起こす物質によって構成された対電極を含まないエレクトロクロミック素子100は、酸化還元反応の副反応による繰り返し特性の悪化を避けることができる。エレクトロクロミック素子100では、電圧を印加した場合に生じる第1透明電極1および第2透明電極2上の電荷移動によって、近赤外領域でプラズモン吸収される波長を変化させることが可能である。 As already explained, LSPR does not show a clear electrochemical reaction. Therefore, the electrochromic device 100 that does not include a counter electrode made of a substance that causes an oxidation-reduction reaction can avoid deterioration in repetitive characteristics due to a side reaction of the oxidation-reduction reaction. In the electrochromic element 100, the wavelength of plasmon absorption in the near infrared region can be changed by the charge movement on the first transparent electrode 1 and the second transparent electrode 2 that occurs when a voltage is applied.
 エレクトロクロミック素子100は、図19に示すように、過電流保護回路20をさらに備えてもよい。過電流保護回路20は、第1透明電極1と第2透明電極2との間に所定の閾値を超える電流が流れたことを検知した場合に、電極間に電流が流れないように電極間の接続を切断するか、または、電源5の接続先を電極間を結ぶ回路とは別の回路に切り替える。過電流保護回路20によりLSPRによるエレクトロクロミック以外の反応(例えば酸化還元反応を含む副反応)を抑制することができる。 The electrochromic element 100 may further include an overcurrent protection circuit 20 as shown in FIG. When the overcurrent protection circuit 20 detects that a current exceeding a predetermined threshold value flows between the first transparent electrode 1 and the second transparent electrode 2, the overcurrent protection circuit 20 prevents the current from flowing between the electrodes. The connection is cut off or the connection destination of the power source 5 is switched to a circuit different from the circuit connecting the electrodes. The overcurrent protection circuit 20 can suppress reactions other than electrochromic due to LSPR (for example, side reactions including oxidation-reduction reactions).
 なお、エレクトロクロミック素子100を構成する各部材が、電源5によって印加される電圧の範囲内において酸化還元反応を行わない場合であっても、製造時および/または透過スペクトルの切り替えによって発生した不純物等により、酸化還元反応を含む副反応が生じる可能性がある。このような場合でも、過電流保護回路20が副反応で生じた電流によって回路に流れる電流が所定の閾値を超えた場合にエレクトロクロミック素子100に電流が流れないようにすることにより、副反応を抑制し、素子の劣化を防ぐことができる。また、物理的な破損等によって短絡が生じた場合であれば、過電流保護回路20によって発熱等の異常を防止することができる。 Even if each member constituting the electrochromic element 100 does not perform the oxidation-reduction reaction within the voltage range applied by the power supply 5, impurities generated by the manufacturing and / or transmission spectrum switching, etc. As a result, side reactions including redox reactions may occur. Even in such a case, the side reaction can be prevented by preventing the current from flowing through the electrochromic device 100 when the current flowing through the circuit exceeds a predetermined threshold due to the current generated by the side reaction in the overcurrent protection circuit 20. It is possible to suppress the deterioration of the element. If a short circuit occurs due to physical damage or the like, the overcurrent protection circuit 20 can prevent abnormalities such as heat generation.
 過電流保護回路20が検知する電流についての所定の閾値は、常に一定値である必要はない。例えば、所定の閾値は、エレクトロクロミック素子100に対する通電時間に応じて変化してもよい。ここで、エレクトロクロミック素子に電圧の印加を開始したとき、あるいは印加させる電圧の極性を反転させたときからの経過時間tを考える。このとき、第1透明電極1と第2透明電極2とが対向するエレクトロクロミック素子100をコンデンサとみなした場合、エレクトロクロミック素子の充電時に大きな電流が流れる。この充電にかかる期間tcについて、例えばtc=5sにおける電流をIaとする。このとき、例えば電極(第1透明電極1および第2透明電極2)の面積が1m2のときはIa=1Aを超えないように過電流保護回路20が電流制御を行うことで、短絡が生じた時に発熱等の異常を防止することができる。さらに、tcを超える期間では、エレクトロクロミック素子100の充電が完了しているので、充電時の大きな電流Iaが流れることはない。従って、Iaより小さい電流Ib(例えばIb=100mA)を超えないように過電流保護回路20が電流制御を行うことで、電極間にある物質の酸化還元反応が起こることを抑制することができる。電流制御は、例えば、設定値がIaとなる定電流回路と設定値がIbとなる定電流回路とを備えておき、タイマー機能を持つスイッチによってこれら2つの定電流回路のどちらかを選択することによって実現されてもよい。ただし、tc、IaおよびIbは、それぞれ電極間距離および電極面積などに依存するので、電極間距離および電極面積などに応じて、所定の閾値(IaおよびIb)を設定すればよい。このように、過電流保護回路20は、充電開始から所定期間の間は電流の閾値を第1閾値とし、所定期間経過後に電流の閾値を第1閾値より小さい第2閾値としてもよい。なお、過電流保護回路20による電流の制御は、電流制限によってもよく、印加電圧の絶対値を小さくするような制御によってもよい。 The predetermined threshold for the current detected by the overcurrent protection circuit 20 does not always need to be a constant value. For example, the predetermined threshold value may change according to the energization time for the electrochromic element 100. Here, let us consider the elapsed time t from when the application of voltage to the electrochromic element is started or when the polarity of the applied voltage is reversed. At this time, when the electrochromic element 100 in which the first transparent electrode 1 and the second transparent electrode 2 face each other is regarded as a capacitor, a large current flows when the electrochromic element is charged. For the charging period tc, for example, the current at tc = 5 s is Ia. At this time, for example, when the area of the electrodes (the first transparent electrode 1 and the second transparent electrode 2) is 1 m2, the overcurrent protection circuit 20 performs current control so that Ia = 1A is not exceeded, thereby causing a short circuit. Sometimes abnormalities such as heat generation can be prevented. Furthermore, in the period exceeding tc, charging of the electrochromic element 100 is completed, so that a large current Ia during charging does not flow. Therefore, the overcurrent protection circuit 20 controls the current so that the current Ib smaller than Ia (for example, Ib = 100 mA) is not exceeded, so that the oxidation-reduction reaction of the substance between the electrodes can be suppressed. Current control includes, for example, a constant current circuit whose set value is Ia and a constant current circuit whose set value is Ib, and selects either of these two constant current circuits by a switch having a timer function. It may be realized by. However, since tc, Ia, and Ib depend on the interelectrode distance and the electrode area, respectively, a predetermined threshold (Ia and Ib) may be set according to the interelectrode distance and the electrode area. As described above, the overcurrent protection circuit 20 may set the current threshold as the first threshold during a predetermined period from the start of charging, and set the current threshold as the second threshold smaller than the first threshold after the predetermined period has elapsed. The current control by the overcurrent protection circuit 20 may be performed by limiting the current, or by controlling the absolute value of the applied voltage to be small.
 過電流保護回路20は、副反応を抑制し、素子の劣化を防ぐことができるのであれば、電流の他の要素も考慮して第1透明電極1と第2透明電極2との間に流れる電流を制御する構成であってもよい。例えば、電圧を印加したとき、あるいは印加電圧の極性を反転させたときからの電流の積分値すなわち電荷量を制御に反映させてもよい。電極間に印加する所定の電圧Vと、2つの電極間に形成される静電容量Cとの積CVが、各電極に充電される電荷量である。この電荷量CV、または電荷量CVに係数(好ましくは1以上)を乗じたものを電荷量閾値としてもよい。過電流保護回路20は、印加電流および経過時間tから電極に充電された電荷量を特定する。充電された電荷量が電荷量閾値を越えた場合、過電流保護回路20は、電極間への電圧の印加を停止する(電極と電源5との間の接続を切断する)か、または、印加電圧の絶対値を低下させてもよい。これにより、エレクトロクロミック素子100の電極間にある物質の酸化還元反応が起こることを抑制することができる。例えば、上述した係数を1.5とした場合、過電流保護回路20は、極性反転の後、電極間に十分な電荷が充電されてから、印加電圧を制限することができる。 The overcurrent protection circuit 20 flows between the first transparent electrode 1 and the second transparent electrode 2 in consideration of other elements of the current as long as the side reaction can be suppressed and deterioration of the element can be prevented. The structure which controls an electric current may be sufficient. For example, the integrated value of the current from when the voltage is applied or when the polarity of the applied voltage is reversed, that is, the charge amount may be reflected in the control. The product CV of the predetermined voltage V applied between the electrodes and the capacitance C formed between the two electrodes is the amount of charge charged in each electrode. The charge amount CV or a value obtained by multiplying the charge amount CV by a coefficient (preferably 1 or more) may be used as the charge amount threshold value. The overcurrent protection circuit 20 specifies the amount of charge charged in the electrode from the applied current and the elapsed time t. When the charged charge amount exceeds the charge amount threshold value, the overcurrent protection circuit 20 stops applying the voltage between the electrodes (disconnects the connection between the electrode and the power supply 5) or applies The absolute value of the voltage may be reduced. Thereby, it can suppress that the oxidation-reduction reaction of the substance between the electrodes of the electrochromic element 100 occurs. For example, when the above-described coefficient is 1.5, the overcurrent protection circuit 20 can limit the applied voltage after a sufficient charge is charged between the electrodes after polarity inversion.
 [スマートウィンドウ]
 本開示の実施形態におけるエレクトロクロミック素子100は、スマートウィンドウに好適に用いられる。
[Smart Window]
The electrochromic device 100 in the embodiment of the present disclosure is suitably used for a smart window.
 エレクトロクロミック素子100自体がスマートウィンドウであってもよいし、板ガラスにエレクトロクロミック素子100が貼り付けられた積層構造体がスマートウィンドウとして機能してもよい。 The electrochromic element 100 itself may be a smart window, or a laminated structure in which the electrochromic element 100 is bonded to a plate glass may function as a smart window.
 また、複層ガラスを構成する複数の板ガラスのうちの1つが、エレクトロクロミック素子100に置換されてもよい。例えば、トリプルガラス構造の複層ガラスを構成する3つの板ガラスのうちの中央の板ガラスをエレクトロクロミック素子100に置換してもよい。ただし、その場合、ガラスのような固体と空気のような気体との界面が6つ形成される。これらの界面においては、界面反射が起こるので、可視光線を含む光の透過率が低くなる。そのため、これらの界面(エレクトロクロミック素子100の両表面を含む)に、AR(Anti Reflective)フィルムやLR(Low Reflective)フィルム、モスアイフィルムのような反射防止膜を設けることが好ましい。 Moreover, one of the plurality of plate glasses constituting the multilayer glass may be replaced with the electrochromic element 100. For example, an electrochromic element 100 may be substituted for a central plate glass among three plate glasses constituting a double glass having a triple glass structure. However, in that case, six interfaces between a solid such as glass and a gas such as air are formed. At these interfaces, since interface reflection occurs, the transmittance of light including visible light is lowered. Therefore, an antireflection film such as an AR (Anti-Reflective) film, an LR (Low-Reflective) film, or a moth-eye film is preferably provided on these interfaces (including both surfaces of the electrochromic element 100).
 本開示の実施形態によると、赤外光の透過率を制御することによる効果をいっそう体感し得るエレクトロクロミック素子およびスマートウィンドウが提供される。 According to the embodiment of the present disclosure, an electrochromic element and a smart window that can further experience the effect of controlling the transmittance of infrared light are provided.
 1  第1透明電極
 1a  サブ電極
 2  第2透明電極
 3  ナノ結晶層
 4  電解質層
 5  電源
 6  シール部
 6a  内側領域
 6b  外側領域
 7  スペーサ
 11  第1基板
 12  第2基板
 20  過電流保護回路
 100  エレクトロクロミック素子
DESCRIPTION OF SYMBOLS 1 1st transparent electrode 1a Sub electrode 2 2nd transparent electrode 3 Nanocrystal layer 4 Electrolyte layer 5 Power supply 6 Seal part 6a Inner area | region 6b Outer area | region 7 Spacer 11 1st board | substrate 12 2nd board | substrate 20 Overcurrent protection circuit 100 Electrochromic element

Claims (14)

  1.  互いに対向する第1透明電極および第2透明電極と、
     前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の金属酸化物ナノ粒子を含むナノ結晶層と、
     前記ナノ結晶層および前記第2透明電極の間に設けられた電解質層と、
    を備え、
     前記エレクトロクロミック素子の透過スペクトルが、前記第1透明電極と前記第2透明電極との間に印加された電圧に応じて変化し、
     前記透過スペクトルの変化は、近赤外領域の光および可視領域の光の透過率変化を伴っており、
     前記エレクトロクロミック素子の状態が、近赤外領域の光の透過率が相対的に低い第1の状態から、近赤外領域の光の透過率が相対的に高い第2の状態に切り替えられたときの前記透過スペクトルの変化は、前記エレクトロクロミック素子を透過する透過光の色が暖色系の色となるような第1の変化、または、前記エレクトロクロミック素子を透過する透過光の色が寒色系の色ではなくなるような第2の変化を含む、エレクトロクロミック素子。
    A first transparent electrode and a second transparent electrode facing each other;
    A nanocrystal layer provided on a surface of the first transparent electrode on the second transparent electrode side and including a plurality of metal oxide nanoparticles;
    An electrolyte layer provided between the nanocrystal layer and the second transparent electrode;
    With
    A transmission spectrum of the electrochromic device changes according to a voltage applied between the first transparent electrode and the second transparent electrode;
    The change in the transmission spectrum is accompanied by a change in transmittance of light in the near infrared region and light in the visible region,
    The state of the electrochromic element is switched from the first state in which the light transmittance in the near infrared region is relatively low to the second state in which the light transmittance in the near infrared region is relatively high. When the transmission spectrum changes, the first change is such that the color of the transmitted light transmitted through the electrochromic element is a warm color, or the color of the transmitted light transmitted through the electrochromic element is a cold system An electrochromic device including a second change that is no longer in color.
  2.  前記エレクトロクロミック素子の状態が前記第1の状態から前記第2の状態に切り替えられたときの前記透過スペクトルの変化は、前記エレクトロクロミック素子を透過する透過光の色が寒色系の色から暖色系の色となるような第3の変化を含む、請求項1に記載のエレクトロクロミック素子。 The change in the transmission spectrum when the state of the electrochromic element is switched from the first state to the second state is that the color of transmitted light transmitted through the electrochromic element changes from a cold color to a warm color. The electrochromic device according to claim 1, wherein the electrochromic device includes a third change that results in the following color.
  3.  前記第1および第2の変化のそれぞれは、L***表色系におけるa*およびb*の少なくとも一方が増加する変化である、請求項1または2に記載のエレクトロクロミック素子。 3. The electrochromic device according to claim 1, wherein each of the first change and the second change is a change in which at least one of a * and b * in the L * a * b * color system is increased.
  4.  前記第1および第2の変化のそれぞれは、前記a*および前記b*の両方が増加する変化である、請求項3に記載のエレクトロクロミック素子。 4. The electrochromic device according to claim 3, wherein each of the first and second changes is a change in which both a * and b * increase.
  5.  前記第1および第2の変化のそれぞれにおける前記a*の変化量Δa*は-0.01以上であり、前記b*の変化量Δb*は1.60以上である、請求項3または4に記載のエレクトロクロミック素子。 Wherein the first and the amount of change in the a * in each of the second variation .DELTA.a * is -0.01 or more, the b * is the change amount [Delta] b * is 1.60 or more, in claim 3 or 4 The electrochromic device described.
  6.  前記第1および第2の変化のそれぞれは、L***表色系におけるL*が増加する変化である、請求項1から5のいずれかに記載のエレクトロクロミック素子。 Wherein each of the first and second variation, L * a * b * is a change in L * is increased in the color system, the electrochromic device according to any one of claims 1 to 5.
  7.  前記第1および第2の変化のそれぞれにおける前記L*の変化量ΔL*は、1.90以上である、請求項6に記載のエレクトロクロミック素子。 The electrochromic device according to claim 6, wherein a change amount ΔL * of L * in each of the first and second changes is 1.90 or more.
  8.  前記第1および第2の変化のそれぞれは、L***表色系におけるL*、a*およびb*の変化量ΔL*、Δa*およびΔb*で規定される色差ΔEが2.15以上となる変化である、請求項1から7のいずれかに記載のエレクトロクロミック素子。 Each of the first and second changes has a color difference ΔE defined by change amounts ΔL * , Δa *, and Δb * of L * , a *, and b * in the L * a * b * color system. The electrochromic device according to claim 1, wherein the electrochromic device is a change of 15 or more.
  9.  前記色差ΔEが2.70以上である、請求項8に記載のエレクトロクロミック素子。 The electrochromic device according to claim 8, wherein the color difference ΔE is 2.70 or more.
  10.  前記複数の金属酸化物ナノ粒子は、複数のアンチモンドープ酸化錫ナノ粒子である、請求項1から9のいずれかに記載のエレクトロクロミック素子。 The electrochromic device according to any one of claims 1 to 9, wherein the plurality of metal oxide nanoparticles are a plurality of antimony-doped tin oxide nanoparticles.
  11.  前記複数のアンチモンドープ酸化錫ナノ粒子の平均粒径は、20nm以下である、請求項10に記載のエレクトロクロミック素子。 The electrochromic device according to claim 10, wherein an average particle diameter of the plurality of antimony-doped tin oxide nanoparticles is 20 nm or less.
  12.  前記複数のアンチモンドープ酸化錫ナノ粒子の平均粒径は、8nm以下である、請求項10に記載のエレクトロクロミック素子。 The electrochromic device according to claim 10, wherein an average particle diameter of the plurality of antimony-doped tin oxide nanoparticles is 8 nm or less.
  13.  前記ナノ結晶層の厚さは、3000Å以上である、請求項10から12のいずれかに記載のエレクトロクロミック素子。 The electrochromic device according to any one of claims 10 to 12, wherein the nanocrystal layer has a thickness of 3000 mm or more.
  14.  請求項1から13のいずれかに記載のエレクトロクロミック素子を備えたスマートウィンドウ。 A smart window comprising the electrochromic device according to any one of claims 1 to 13.
PCT/JP2018/022395 2017-06-16 2018-06-12 Electrochromic element and smart window WO2018230557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-118685 2017-06-16
JP2017118685 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230557A1 true WO2018230557A1 (en) 2018-12-20

Family

ID=64658658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022395 WO2018230557A1 (en) 2017-06-16 2018-06-12 Electrochromic element and smart window

Country Status (1)

Country Link
WO (1) WO2018230557A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160501A (en) * 2008-12-09 2010-07-22 Sony Corp Optical body, and method for manufacturing the same
JP2013246374A (en) * 2012-05-28 2013-12-09 Sekisui Chem Co Ltd Light control body
JP2015534127A (en) * 2012-10-12 2015-11-26 セイジ・エレクトロクロミクス,インコーポレイテッド Partially tinted transparent state for improved color and solar heat incidence control of electrochromic devices
JP2015222324A (en) * 2014-05-22 2015-12-10 Kddi株式会社 Spectacle type wearable device, temperature sensation change induction method and program
JP2016045404A (en) * 2014-08-25 2016-04-04 株式会社リコー Electrochromic element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160501A (en) * 2008-12-09 2010-07-22 Sony Corp Optical body, and method for manufacturing the same
JP2013246374A (en) * 2012-05-28 2013-12-09 Sekisui Chem Co Ltd Light control body
JP2015534127A (en) * 2012-10-12 2015-11-26 セイジ・エレクトロクロミクス,インコーポレイテッド Partially tinted transparent state for improved color and solar heat incidence control of electrochromic devices
JP2015222324A (en) * 2014-05-22 2015-12-10 Kddi株式会社 Spectacle type wearable device, temperature sensation change induction method and program
JP2016045404A (en) * 2014-08-25 2016-04-04 株式会社リコー Electrochromic element

Similar Documents

Publication Publication Date Title
US11796883B2 (en) Integrated photovoltaic and electrochromic windows
US9778534B2 (en) Chromatic systems
US5604626A (en) Photochromic devices
WO2017141528A1 (en) Electrochromic device and smart window provided with electrochromic device
CN106997134A (en) A kind of intelligent distant control self energizing electrochromic and preparation method thereof
KR102038184B1 (en) An Electrochromic Device
CN108604431A (en) Electrochromic system for controlling photochromic darkening and method
US20220252953A1 (en) Smart widow system including energy storage unit and methods of using same
EP3487952A1 (en) Active electrochromic films
JP4039418B2 (en) Photoelectric conversion element and photoelectric conversion module
Jeong et al. All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer
Wei et al. Controlling crystallinity of oxygen-deficient tungsten oxide on SnO2 nanoflake arrays for advanced dual-band electrochromic smart window
JP6931398B2 (en) Transparent photovoltaic coating for electrochromic devices
KR102079142B1 (en) An Electrochromic Device
WO2018230557A1 (en) Electrochromic element and smart window
Shin et al. Evaluation of low-voltage-driven multi-colored electrochromic device based on dry-deposited V2O5
CN207337028U (en) Total solids electrochromic device
CN107045242A (en) Electrochromic structure and forming method thereof
KR102056599B1 (en) An Electrochromic Device
Chang et al. A near-infrared photoelectrochromic device with indoor thermal management for self-powered smart windows
KR102010734B1 (en) An Electrochromic Device
KR102010754B1 (en) An Electrochromic Device
WO2019172133A1 (en) Electrochromic element and smart window
JP2018155796A (en) Electrochromic device and dimming window
JP2021001994A (en) Electrochromic element and smart window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP