WO2018230501A1 - Coiled wave spring - Google Patents

Coiled wave spring Download PDF

Info

Publication number
WO2018230501A1
WO2018230501A1 PCT/JP2018/022212 JP2018022212W WO2018230501A1 WO 2018230501 A1 WO2018230501 A1 WO 2018230501A1 JP 2018022212 W JP2018022212 W JP 2018022212W WO 2018230501 A1 WO2018230501 A1 WO 2018230501A1
Authority
WO
WIPO (PCT)
Prior art keywords
valley
wave spring
outer peripheral
peak
coiled wave
Prior art date
Application number
PCT/JP2018/022212
Other languages
French (fr)
Japanese (ja)
Inventor
幸士 寺島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880039553.4A priority Critical patent/CN110770462B/en
Publication of WO2018230501A1 publication Critical patent/WO2018230501A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/06Wound springs with turns lying in cylindrical surfaces

Definitions

  • This disclosure relates to a coiled wave spring that is formed in a spiral shape while meandering a flat wire rod with an amplitude having a height along the axial direction.
  • a coiled wave spring (also referred to simply as “wave spring”) that is formed in a spiral shape while meandering a flat wire with an amplitude having a height along the axial direction is known (see, for example, Patent Document 1). .
  • a coiled wave spring is provided between a piston that presses a friction engagement element and a spring retainer that is locked to a stationary member, along with displacement along the axial direction of the piston. It arrange
  • This disclosure is intended to provide a coiled wave spring that can suppress the deviation of the wire and thus sufficiently exert the expected spring function.
  • the coiled wave spring of the present disclosure is a coiled wave spring having alternately a plurality of troughs and a plurality of crests with an amplitude along the axial direction on a plurality of winding parts made of a spirally wound wire.
  • the wire rod is formed of a metal material and has a rectangular cross-sectional shape that is long in the radial direction, and the plurality of valley portions and the plurality of mountain portions are each valley portion in the previous stage and each mountain portion in the next stage.
  • the outer peripheral edge portions of the valley portion and the mountain portion at the facing portion are provided with outer peripheral bent portions that can be bent toward one side in the axial direction and engaged with each other.
  • the outer peripheral bent portion of the valley portion and the outer peripheral bent portion of the peak portion may be inclined outward at the same angle.
  • the coiled wave spring described above may be provided with an inner peripheral bent portion that can be bent in the same direction as the outer peripheral bent portion and engage with each other at least at the inner peripheral edge portion of the valley portion and the peak portion at the opposing portion. .
  • the outer peripheral bent portion and the inner peripheral bent portion of the valley portion and the outer peripheral bent portion and the inner peripheral bent portion of the peak portion may have the same cross section.
  • FIG. 1 (A) and 1 (B) show a coiled wave spring according to the first embodiment
  • FIG. 1 (A) is a side view of the coiled wave spring
  • FIG. 1 (B) is a coiled wave spring.
  • FIG. FIG. 2 is an explanatory diagram of a state in which the coiled wave spring according to the first embodiment is developed in a plane.
  • 3 (A), 3 (B), 3 (C), and 3 (D) show the coiled wave spring according to the first embodiment
  • FIG. 3 (A) is shown in FIG. 1 (B).
  • FIG. 3B is an enlarged cross-sectional view of the main part having only the outer peripheral bent part
  • FIG. 3C is an enlarged cross-sectional view of the main part having a V-shaped cross-sectional shape.
  • FIG. 3D is an enlarged cross-sectional view of a main part having a W-shaped cross-sectional shape.
  • 4 (A), 4 (B), and 4 (C) show a state where one winding portion of the coiled wave spring according to the embodiment is displaced in the radial direction, and FIG. 4 (A) shows an axis line.
  • FIG. 4B is an explanatory view showing the action of the inclined portion
  • FIG. 4C is an inclined portion when flat portions are formed on the outer peripheral side and the inner peripheral side in the radial direction. It is explanatory drawing which shows the effect
  • FIG. 5C show a coiled wave spring according to another embodiment
  • FIG. 5A is a side view of the coiled wave spring
  • FIG. ) Is an enlarged side view of the main part
  • FIG. 5C is an explanatory view showing the arrangement relationship of the engaging parts.
  • FIG. 1 shows a coiled wave spring according to the first embodiment.
  • the coiled wave spring 10 of this embodiment is arrange
  • coiled wave spring 10 for example, in a clutch unit of a transmission, it is disposed between a piston that presses a friction engagement element and a spring retainer that is locked to a fixed member, and serves as a return spring. Illustrated as functioning.
  • the coiled wave spring 10 is preferably arranged in a compressed state.
  • the coiled wave spring 10 has a substantially circular shape in plan view, and a rectangular shape whose cross-sectional shape perpendicular to the circumferential direction is long in the radial direction, that is, a flat wire is used.
  • the coiled wave spring 10 is formed in a spiral shape while gently meandering with an amplitude of a predetermined height along an axial direction perpendicular to the radial direction.
  • a metal material such as a stainless steel material having a flat cross section having a width along the radial direction is preferably used as the wire.
  • the coiled wave spring 10 includes a plurality of winding portions 11 to 14 excluding a portion less than one turn (one round) including the uppermost and lowermost ends 10a and 10b in the drawing.
  • the “winding part” means a part of one turn (one turn) of the coiled wave spring 10.
  • the number of turns of the coiled wave spring 10 is four (four steps) except for a part that is less than one turn including the uppermost and lowermost ends 10a and 10b in the drawing for convenience of explanation. 11-14.
  • the conditions such as the number of turns of the winding portions 11 to 14, the amount of meandering displacement (corresponding to the height of the amplitude), the width (radial direction) and thickness (axial direction) of the wire S, and the inner diameter are determined by the coiled wave spring 10. It is possible to change appropriately according to conditions, such as a site to use and a spring constant.
  • the coiled wave spring 10 is not necessarily arranged (mounted) so that the extending direction of the axis Q is the vertical direction (or the vertical direction), but the horizontal direction (Or in the vertical direction), or may be arranged in an inclined direction.
  • a portion that is less than one turn (one round) including both ends 10a and 10b positioned at the uppermost and lowermost positions shows a configuration that contributes as a part of the repulsive force in a meandering state in the illustrated example.
  • some have a flat configuration without forming a meandering state. Therefore, although a detailed description is omitted in consideration of the case where the flat structure does not have a direct repulsive force, a part having the same structure as the winding parts 11 to 14 is omitted. Are assumed to have the same structure, operation, and effect.
  • the first winding part 11 includes four first valley parts 1Ta to 1Td and four first mountain parts 1Ya to 1Yd alternately.
  • the first valley portions 1Ta to 1Td and the first peak portions 1Ya to 1Yc alternately (meander) continuously at equal intervals in the circumferential direction.
  • the number and height of the amplitude accompanying the meandering, the wavelength ⁇ , and the like can be changed as appropriate depending on the site where the coiled wave spring 10 is used, the spring constant to be set, and the like (the same applies in the following description).
  • a sine curve or a cosine curve can be used for example.
  • the 2nd volume part 12 is continuously extended from the 1st volume part 11, and is located under the 1st volume part 11 (next stage).
  • the second winding portion 12 includes four second valley portions 2Ta to 2Td and four second peak portions 2Ya to 2Yd alternately.
  • the second valleys 2Ta to 2Td and the second peaks 2Ya to 2Yd are alternately continued at equal intervals in the circumferential direction.
  • the 1st trough part 1Td of the circumferential direction next step end (illustration right side edge part) of the 1st winding part 11 and the 2nd trough of the circumferential direction front stage end part (illustration left side end part) of the 2nd winding part 12 are shown.
  • the portion 2Ta also serves as a boundary at the vertex that protrudes most downward.
  • the second valleys 2Ta to 2Td correspond to the first peaks 1Ya to 1Yd
  • the second peaks 2Ya to 2Yd correspond to the first valleys 1Ta to 1Td.
  • “corresponding” means the state shown in FIG. 1A, that is, the circumferential direction when the coiled wave spring 10 is viewed from the radial direction (left and right direction in FIG. 1A) and the axial direction ( This is based on the vertical direction in FIG.
  • the fact that the second valleys 2Ta to 2Td correspond to the first peaks 1Ya to 1Yd means that the bottom of the second valleys 2Ta to 2Td and the peaks of the first peaks 1Ya to 1Yd It is shown that it is in the farthest position in the direction along, and the closest position in the circumferential direction.
  • the valley bottom of the second valley portion 2Ta is farthest from the peak of the first peak portion 1Ya having the longest distance in the axial direction and the closest distance in the circumferential direction
  • the valley bottom of the second valley portion 2Tb is in the axial direction.
  • the bottom of the second valley 2Tc is the farthest in the axial direction and the closest in the circumferential direction
  • the most distant from the summit of the portion 1Yc, and the bottom of the second trough 2Td is farthest from the summit of the first summit 1Yd having the longest distance in the axial direction and the shortest distance in the circumferential direction.
  • the fact that the second peaks 2Ya-2Yd correspond to the first valleys 1Ta-1Td means that the peaks of the second peaks 2Ya-2Yd and the valleys of the first valleys 1Ta-1Td It shows that it is in the closest position in the direction and the circumferential direction.
  • the peaks of the second peaks 2Ya to 2Yd and the valleys of the first valleys 1Ta to 1Td are in contact with each other when disposed in a compressed state at least between the piston and the spring retainer. It is in a state.
  • the peak of the second peak 2Ya is in contact with the bottom of the first valley 1Ta that has the shortest distance in the axial direction and the circumferential direction, and the peak of the second peak 2Yb has the longest distance in the axial and circumferential directions.
  • the peak of the first peak part 1Tb is in contact with the peak of the second peak part 2Yc, the peak of the first peak part 1Tc is closest in the axial direction and the circumferential direction, and the peak of the second peak part 2Yd is the axis. It is in contact with the valley bottom of the first valley portion 1Td having the shortest distance in the direction and the circumferential direction.
  • the wire rod S has a long width in the radial direction. Therefore, strictly speaking, the “contact” state means that each ridge line (hereinafter also referred to as “mountain ridge line”) along the radial direction of the front surface on the top of each of the second peak portions 2Ya to 2Yd. This means that the ridgelines along the radial direction of the next-stage surface at the bottom of the first valley portions 1Ta to 1Td (hereinafter also referred to as “valley-side ridgelines”) are in contact with each other. However, including the error, the mountain side ridge line and the valley side ridge line are not necessarily in contact with each other in the circumferential direction.
  • mountain side ridge line is also referred to as “mountain side vertex” or simply “vertex”
  • “valley side ridge line” is also referred to as “valley side vertex” or simply “vertex”.
  • both may be not in line contact but in surface contact having a length in the circumferential direction along with elastic deformation of the wire rod S. .
  • the third winding part 13 extends continuously from the second winding part 12 and is located below the second winding part 12.
  • the third winding portion 13 has four third valley portions 3Ta to 3Td and four third peak portions 3Ya to 3Yd alternately.
  • the third valley portions 3Ta to 3Td and the third peak portions 3Ya to 3Yd are alternately continued at equal intervals in the circumferential direction. Note that the second valley portion 2Td at the circumferentially next-stage end portion (right side end portion in the figure) of the second winding portion 12 and the third valley at the circumferential direction front-stage end portion (left side end portion in the drawing) of the third winding portion 13.
  • the portion 3Ta also serves as a boundary at the vertex that protrudes most downward.
  • the third valleys 3Ta to 3Td correspond to the second peaks 2Ya to 2Yd
  • the third peaks 3Ya to 3Yd correspond to the second valleys 2Ta to 2Td.
  • the fact that the third valley portions 3Ta to 3Td correspond to the second peak portions 2Ya to 2Yd means that the apex of the third valley portions 3Ta to 3Td and the apex of the second peak portions 2Ya to 2Yd are in the axial direction. It shows that it is in the most distant position in and the closest position in the circumferential direction.
  • the vertex of the third valley portion 3Ta is farthest from the vertex of the second peak portion 2Ya having the longest distance in the axial direction and the closest distance in the circumferential direction, and the vertex of the third valley portion 3Tb is in the axial direction.
  • the vertex of the portion 2Yc is farthest from the vertex of the second valley portion 3Td
  • the vertex of the third valley portion 3Td is farthest from the vertex of the second peak 2Yd having the longest distance in the axial direction and the shortest distance in the circumferential direction.
  • the fact that the third peaks 3Ya-3Yd and the second valleys 2Ta-2Td correspond to each other means that the apex of the third peaks 3Ya-3Yd and the apex of the second valleys 2Ta-2Td It shows that it is in the closest position in the direction and the circumferential direction.
  • the apex of the third peak 3Ya to 3Yd and the apex of the second valley 2Ta to 2Td are in contact with each other when disposed in a compressed state at least between the piston and the spring retainer. It is in a state.
  • the apex of the third peak 3Ya is in contact with the apex of the second valley 2Ta that has the closest distance in the axial direction and the circumferential direction
  • the apex of the third peak 3Yb has the greatest distance in the axial direction and the peripheral direction.
  • the apex of the second valley portion 2Tb is in contact with the apex of the third peak portion 3Yc
  • the apex of the third peak portion 3Yd is the axis. It is in contact with the apex of the second valley portion 2Td that has the shortest distance in the direction and the circumferential direction.
  • the fourth winding part 14 extends continuously from the third winding part 13 and is located below the third winding part 13.
  • the fourth winding portion 14 has four fourth valley portions 4Ta to 4Td and four fourth peak portions 4Ya to 4Yd alternately.
  • the fourth valley portions 4Ta to 4Td and the fourth peak portions 4Ya to 4Yd are alternately continued at equal intervals in the circumferential direction. Note that the third trough 3Td at the end of the third winding portion 13 in the circumferential direction (right side end in the drawing) and the fourth valley at the end in the circumferential direction of the fourth winding portion 14 (left end in the drawing).
  • the portion 4Ta also serves as a boundary at the vertex that protrudes most downward.
  • the fourth valleys 4Ta to 4Td correspond to the third peaks 3Ya to 3Yd
  • the fourth peaks 4Ya to 4Yd correspond to the third valleys 3Ta to 3Td.
  • the fact that the fourth valleys 4Ta to 4Td correspond to the third peaks 3Ya to 3Yd means that the vertexes of the fourth valleys 4Ta to 4Td and the peaks of the third peaks 3Ya to 3Yd are in the axial direction. It shows that it is in the most distant position in and the closest position in the circumferential direction.
  • the vertex of the fourth valley portion 4Ta is farthest from the vertex of the third peak portion 3Ya having the longest distance in the axial direction and the closest distance in the circumferential direction, and the vertex of the fourth valley portion 4Tb is in the axial direction.
  • the vertex of the portion 3Yc is farthest from the vertex
  • the vertex of the fourth valley portion 4Td is farthest from the vertex of the third peak 3Yd having the longest distance in the axial direction and the shortest distance in the circumferential direction.
  • the fact that the fourth peaks 4Ya-4Yd and the third valleys 3Ta-3Td correspond to each other means that the vertexes of the fourth peaks 4Ya-4Yd and the peaks of the third valleys 3Ta-3Td are axes. It shows that it is in the closest position in the direction and the circumferential direction.
  • the apex of the fourth peak portions 4Ya to 4Yd and the apex of the third valley portions 3Ta to 3Td are in contact with each other when disposed in a compressed state at least between the piston and the spring retainer. It is in a state.
  • the apex of the fourth peak 4Ya is in contact with the apex of the third valley 3Ta that has the closest distance in the axial direction and the circumferential direction
  • the apex of the fourth peak 4Yb has the greatest distance in the axial direction and the peripheral direction.
  • the vertex of the third valley portion 3Tb is in contact
  • the vertex of the fourth mountain portion 4Yc is in contact with the vertex of the third valley portion 3Tc that is closest in the axial direction and the circumferential direction
  • the vertex of the fourth mountain portion 4Yd is the axis line. It is in contact with the apex of the third valley portion 3Td having the shortest distance in the direction and the circumferential direction.
  • first to fourth winding portions 11 to 14 of each stage correspond alternately with each other being sandwiched between the previous stage and the next stage except for the uppermost stage and the lowermost stage.
  • Each valley corresponds to the next peak. Note that this correspondence relationship is not limited to the case where the number of turns is four, and corresponds to the same state regardless of the number of turns as long as the number of turns has two or more turns.
  • such a coiled wave spring 10 has a circumferential displacement (twist) at each contact portion, a radial displacement (falling) at each step, a change in the order of the wire rods S and a entanglement (kinking) during expansion and contraction. May occur.
  • the opposing portions where the vertices of the amplitudes of the first to fourth winding portions 11 to 14 of each step are closest (contact) are bent toward one side in the axial direction and engaged with each other.
  • a possible outer peripheral bend 20 is provided. As shown in FIG. 1B, the outer peripheral bent portion 20 is formed over the entire length of the coiled wave spring 10. Moreover, in the following description, in the description of the valley and the mountain part excluding a specific part, they are abbreviated as “valley part T” and “mountain part Y” or “taniyama TY”.
  • the outer peripheral bent portion 20 includes a valley-side outer peripheral bent portion 21 that inclines outwardly toward the outer peripheral edge portion of the valley portion T, and a peak portion Y with respect to opposing portions that face each other so as to contact each other. And a mountain-side outer peripheral bent portion 22 that is inclined outwardly at the outer peripheral edge portion of the outer peripheral edge portion.
  • “outwardly” means that the internal angle ⁇ formed by the valley-side outer peripheral bent portion 21 and the flat portion on the inner peripheral edge side is an obtuse angle, as shown in FIG.
  • the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 are inclined outward at the same angle. That is, the opposed surfaces of the valley-side outer periphery bent portion 21 and the mountain-side outer periphery bent portion 22 are substantially in close contact with each other.
  • the valley side outer periphery bent portion 21 and the mountain side outer periphery bent portion 22 are arranged at four locations in the circumferential direction in one winding portion 11 to 14. Therefore, the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 are arranged at approximately 90 ° intervals about the axis Q because the meandering state is constant.
  • the load applied to the mountain-side outer circumferential bent portion 22 is such that the wire S of the mountain portion Y is in the radial direction depending on the engagement state between the other valley-side outer circumferential bent portion 21 and the mountain-side outer circumferential bent portion 22 that are opposed in the radial direction. Even if trying to shift inwardly, the shift can be suppressed by the valley-side outer peripheral bent portion 21.
  • the load in the direction along the axis Q when the coiled wave spring 10 is to be compressed can be received in a plane at a flat portion orthogonal to the axis Q.
  • the coiled wave spring 10 when the coiled wave spring 10 is mounted on a transmission or the like, for example, the coiled wave spring 10 gives a desired urging force by being in a compressed state. Accordingly, at the time of molding, the trough T at the previous stage and the crest Y at the next stage may be in a state in which the vertices are not in contact with each other.
  • the valley-side outer peripheral bent portion 21 and the mountain-side outer peripheral bent portion 22 are in proper contact with each other. It is desirable that the bent portion 22 be inclined outward at the same angle, and it is more desirable that the cross-sectional shapes are substantially the same.
  • the coiled wave spring 10 suppresses the deviation of the wire S, and therefore, from the wire S wound in a spiral shape, in order to sufficiently exhibit the expected spring function.
  • a coiled wave spring 10 having a plurality of winding portions 11 to 14 alternately having a plurality of valleys T and a plurality of peaks Y with an amplitude along the axial direction, and the wire S is made of a metal material. It has a rectangular cross section that is long in the radial direction, and the plurality of valleys T and the plurality of peaks Y face each other so that each valley T in the previous stage and each peak Y in the next stage can contact each other.
  • the outer peripheral edge portions of the valley portion T and the mountain portion Y in the facing portion are provided with outer peripheral bent portions 20 that are bent toward one side in the axial direction and can be engaged with each other.
  • the operation of the coiled wave spring 10 according to the present embodiment will be described.
  • the coiled wave spring 10 receives a load in the direction along the axis Q, in particular, in the compressing direction, the coiled wave spring 10 is compressed against the bias according to the load.
  • each valley T and each peak Y are arc-shaped with contact portions at the apexes protruding in opposite directions, the contact range is narrow, for example, the wire S tends to be displaced in the radial direction. May work.
  • outer peripheral bent portions 20 that are bent toward one side in the axial direction and can be engaged with each other are provided at the outer peripheral edge portions of the valley portion T and the peak portion Y at the facing portions that can contact each other.
  • the outer peripheral bent portion 20 is inclined outwardly at the same angle at the valley side outer peripheral bent portion 21 and the mountain side outer peripheral bent portion 22.
  • the coiled wave spring 10 includes a plurality of trough portions T and a plurality of trough portions T with a plurality of winding portions 11 to 14 made of the wire S wound in a spiral shape with an amplitude along the axial direction.
  • a coiled wave spring 10 having alternating ridges Y, wherein a plurality of valleys T and a plurality of ridges Y can be in contact with each other at each of the previous valleys T and each of the following peaks Y.
  • the trough portion T and the crest portion Y at the facing portion are provided with the outer peripheral bent portion 20 that protrudes toward one side in the axial direction and can be engaged with each other, thereby suppressing the deviation of the wire rod S, Therefore, the desired spring function can be fully exhibited.
  • the outer periphery bending part 20 which concerns on this Embodiment makes a mutual contact state a close_contact
  • the engagement state between the valley-side outer periphery bent portion 21 and the mountain-side outer periphery bent portion 22 can be easily ensured only between the two by a simple processing step such as punching the contact portion of each valley mountain TY at the same time. can do.
  • an inner peripheral bent portion 30 is provided in the first embodiment so as to have a substantially V-shaped cross section.
  • the inner circumferential bent portion 30 includes a valley-side inner circumferential bent portion 31 that inclines outward toward the inner peripheral edge portion of the valley portion T, and a mountain A mountain-side inner circumferential bent portion 32 that is inclined outwardly at the inner peripheral edge of the portion Y.
  • “outwardly” means that the internal angle ⁇ formed by the valley-side outer peripheral bent portion 21 and the valley-side inner peripheral bent portion 31 is an obtuse angle.
  • the valley side inner periphery bending portion 31 and the mountain side inner periphery bending portion 32 are inclined outward at the same angle. That is, the valley side outer periphery bending part 21 and the valley side inner periphery bending part 31, and the mountain side outer periphery bending part 22 and the mountain side inner periphery bending part 32 have the same cross-sectional shape, and the opposing surfaces are in close contact.
  • the valley side outer periphery bent portion 21 and the valley side inner periphery bend portion 31, the mountain side outer periphery bend portion 22 and the mountain side inner periphery bend portion 32 are brought into a contact state by a compressive displacement in the axial direction from the non-contact state. It is possible to prevent the wire S from being displaced in the radial direction due to slipping of the inclined surface due to a difference in inclination angle.
  • the wavelength is longer than when only the outer peripheral bent portion 20 is formed.
  • the valley T at the previous stage and the peak Y at the next stage are in contact at three places in the circumferential direction.
  • the deviation in the radial direction can be suppressed well.
  • the outer periphery bending part 20 and the inner periphery bending part 30 are formed over the full length of the wire rod S, the contact length of the circumferential direction in the contact part of the trough part T of the front
  • the contact portion can be arcuate, it is also possible to suppress the circumferential displacement of the wire S.
  • the valley side bent portion 41 of the valley portion T and the mountain side bent portion 42 of the peak portion Y are bent at the same angle and shape, and as a whole, bent at the same angle and shape. .
  • the deviation of the wire S in the circumferential direction can be further suppressed.
  • the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 of the outer periphery bending portion 20 are substantially equal to the width W1 of the flat portion in the entire radial width W of the wire S.
  • a bent portion having a bent width W3 and a flat portion having a flat width W4 exist within a half width range with respect to the full width W.
  • the bending width W3 of the bent portion must be narrower than the bent width W2 of the valley-side outer peripheral bent portion 21 and the mountain-side outer peripheral bent portion 22 in the present embodiment.
  • Wa is the same, the apex portion of the V character reaches the flat portion, which causes a problem that the shift cannot be corrected.
  • FIG. 5 shows an example in which the phase of the contact portion is shifted by setting the wavelength ⁇ - ⁇ of the coiled wave spring 50 according to the above embodiment to be shorter by the phase value ⁇ .
  • components that are substantially the same as those in the above embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the coiled wave spring 50 shown in FIG. 5 is formed with the same inner diameter and the same number of steps as the coiled wave spring 10 shown in FIG. 1, but as shown in FIG.
  • the phase of the contact portion (vertex) is shifted by shifting the vertex position by the phase value ⁇ . It is a thing.
  • the vertex position of the first valley 1Ta of the first winding part 11 and the vertex position of the second peak 2Ya of the second winding part 12 are phase values. Since it is shifted by ⁇ , the intermediate position P is used as a contact portion, and the outer peripheral bent portion 20 is formed within the range of the phase value ⁇ including the intermediate position P. Thus, the same operation and effect as described above can be obtained. .
  • the outer peripheral bent portion 20, the inner peripheral bent portion 30, and the intermediate bent portion 40 are disclosed to be formed over the entire length of the wire S, but the previous trough portion T and the following peak portion Y are disclosed. You may form only near the contact part.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Abstract

A coiled wave spring that has, on a multistage wound part that comprises a helically wound wire rod, a plurality of valley parts and a plurality of peak parts that alternate in an oscillating manner in the axial line direction. The valley parts of preceding stages and the peak parts of the stages immediately thereafter face such that said valley parts and peak parts can contact each other, and, where the valley parts and the peak parts face, outer peripheral edge parts of the valley parts and the peak parts comprise outer peripheral bent parts that are bent to one side in the axial line direction and can engage each other.

Description

コイルドウェーブスプリングCoiled wave spring
 本開示は、扁平な線材を軸線方向に沿う高さの振幅で蛇行させつつ螺旋状に形成したコイルドウェーブスプリングに関する。 This disclosure relates to a coiled wave spring that is formed in a spiral shape while meandering a flat wire rod with an amplitude having a height along the axial direction.
 扁平な線材を軸線方向に沿う高さの振幅で蛇行させつつ螺旋状に形成したコイルドウェーブスプリング(単に「ウェーブスプリング」と称するものもある)が知られている(例えば、特許文献1参照)。 A coiled wave spring (also referred to simply as “wave spring”) that is formed in a spiral shape while meandering a flat wire with an amplitude having a height along the axial direction is known (see, for example, Patent Document 1). .
 コイルドウェーブスプリングは、例えば、自動変速機のクラッチユニットにおいて、摩擦係合要素を押圧するピストンと固定側部材に係止されたスプリングリテーナとの間に、ピストンの軸線方向に沿う変位に伴って伸縮するリターンスプリングとして配置している(例えば、特許文献2参照)。 For example, in a clutch unit of an automatic transmission, a coiled wave spring is provided between a piston that presses a friction engagement element and a spring retainer that is locked to a stationary member, along with displacement along the axial direction of the piston. It arrange | positions as a return spring which expands and contracts (for example, refer patent document 2).
日本国特開2015-043728号公報Japanese Unexamined Patent Publication No. 2015-043728 日本国特開2010-201041号公報Japanese Unexamined Patent Publication No. 2010-201041
 しかしながら、このような先行技術文献に開示のコイルドウェーブスプリングにあっては、伸縮したときに接触部分が周方向にずれ、線材が頂点で接触しなくなってしまう虞がある(ねじれ)。また、軸線方向とずれて伸縮した場合には各段が径方向にずれ、線材が頂点で接触しなくなってしまう虞がある(倒れ)。さらに、このような周方向のずれや径方向のずれが発生すると、上下に位置する線材の順序が入れ替わったり絡まったりする虞がある(よじれ)。したがって、コイルドウェーブスプリングにこのようなずれが発生した場合、所期のバネ機能を十分に発揮させることができなくなる虞がある。 However, in such a coiled wave spring disclosed in the prior art document, there is a possibility that the contact portion is displaced in the circumferential direction when it expands and contracts, and the wire does not contact at the apex (twist). In addition, when expanding and contracting out of the axial direction, each step is displaced in the radial direction, and there is a possibility that the wire may not contact at the apex (falling down). Furthermore, when such a circumferential shift or radial shift occurs, there is a risk that the order of the wires positioned above and below may be changed or entangled (twisted). Therefore, when such a shift | offset | difference generate | occur | produces in a coiled wave spring, there exists a possibility that an expected spring function cannot fully be exhibited.
 本開示は、線材のずれを抑制し、よって所期のバネ機能を十分に発揮させることができるコイルドウェーブスプリングを提供することを目的とする。 This disclosure is intended to provide a coiled wave spring that can suppress the deviation of the wire and thus sufficiently exert the expected spring function.
 本開示のコイルドウェーブスプリングは、螺旋状に巻かれた線材からなる複数段の巻部に軸線方向に沿う振幅で複数の谷部と複数の山部とを交互に有するコイルドウェーブスプリングであって、線材は、金属材料によって形成され、径方向に長幅な矩形状の断面形状を有し、複数の谷部と複数の山部は、前段の各谷部と次段の各山部とが互いに接触可能に対向しており、当該対向部位における谷部及び山部のそれぞれの外周縁部は軸線方向の一方側に向けて屈曲して互いに係合可能な外周屈曲部を備える。 The coiled wave spring of the present disclosure is a coiled wave spring having alternately a plurality of troughs and a plurality of crests with an amplitude along the axial direction on a plurality of winding parts made of a spirally wound wire. The wire rod is formed of a metal material and has a rectangular cross-sectional shape that is long in the radial direction, and the plurality of valley portions and the plurality of mountain portions are each valley portion in the previous stage and each mountain portion in the next stage. Are opposed to each other so that they can come into contact with each other, and the outer peripheral edge portions of the valley portion and the mountain portion at the facing portion are provided with outer peripheral bent portions that can be bent toward one side in the axial direction and engaged with each other.
 上述のコイルドウェーブスプリングにおいて、谷部の外周屈曲部と山部の外周屈曲部とが外向きに同角度で傾斜していてもよい。 In the coiled wave spring described above, the outer peripheral bent portion of the valley portion and the outer peripheral bent portion of the peak portion may be inclined outward at the same angle.
 上述のコイルドウェーブスプリングにおいて、少なくとも対向部位における谷部及び山部の各内周縁部に、外周屈曲部と同方向に向けて屈曲して互いに係合可能な内周屈曲部を備えてもよい。 The coiled wave spring described above may be provided with an inner peripheral bent portion that can be bent in the same direction as the outer peripheral bent portion and engage with each other at least at the inner peripheral edge portion of the valley portion and the peak portion at the opposing portion. .
 上述のコイルドウェーブスプリングにおいて、谷部の外周屈曲部及び内周屈曲部と山部の外周屈曲部及び内周屈曲部とが断面同形状であってもよい。 In the above-described coiled wave spring, the outer peripheral bent portion and the inner peripheral bent portion of the valley portion and the outer peripheral bent portion and the inner peripheral bent portion of the peak portion may have the same cross section.
 本開示によれば、線材のずれを抑制し、よって所期のバネ機能を十分に発揮させることができる。 According to the present disclosure, it is possible to suppress the deviation of the wire and thus to fully exhibit the expected spring function.
図1(A)、図1(B)は、第一実施形態に係るコイルドウェーブスプリングを示し、図1(A)はコイルドウェーブスプリングの側面図、図1(B)はコイルドウェーブスプリングの平面図である。1 (A) and 1 (B) show a coiled wave spring according to the first embodiment, FIG. 1 (A) is a side view of the coiled wave spring, and FIG. 1 (B) is a coiled wave spring. FIG. 図2は、第一実施形態に係るコイルドウェーブスプリングを平面的に展開した状態の説明図である。FIG. 2 is an explanatory diagram of a state in which the coiled wave spring according to the first embodiment is developed in a plane. 図3(A)、図3(B)、図3(C)、図3(D)は、第一実施形態に係るコイルドウェーブスプリングを示し、図3(A)は図1(B)のA-A線に沿う拡大断面図、図3(B)は外周屈曲部のみを備える要部の拡大断面図、図3(C)は断面形状をVの字状とした要部の拡大断面図、図3(D)は断面形状をWの字状とした要部の拡大断面図である。3 (A), 3 (B), 3 (C), and 3 (D) show the coiled wave spring according to the first embodiment, and FIG. 3 (A) is shown in FIG. 1 (B). FIG. 3B is an enlarged cross-sectional view of the main part having only the outer peripheral bent part, and FIG. 3C is an enlarged cross-sectional view of the main part having a V-shaped cross-sectional shape. FIG. 3D is an enlarged cross-sectional view of a main part having a W-shaped cross-sectional shape. 図4(A)、図4(B)、図4(C)は、一実施形態に係るコイルドウェーブスプリングにおける一つの巻部が径方向にずれた状態を示し、図4(A)は軸線からのずれを示す説明図、図4(B)は傾斜部の作用を示す説明図、図4(C)は径方向の外周側と内周側とに平坦な部分を形成した場合の傾斜部の作用を示す説明図である。4 (A), 4 (B), and 4 (C) show a state where one winding portion of the coiled wave spring according to the embodiment is displaced in the radial direction, and FIG. 4 (A) shows an axis line. FIG. 4B is an explanatory view showing the action of the inclined portion, and FIG. 4C is an inclined portion when flat portions are formed on the outer peripheral side and the inner peripheral side in the radial direction. It is explanatory drawing which shows the effect | action of. 図5(A)、図5(B)、図5(C)は、他の実施形態に係るコイルドウェーブスプリングを示し、図5(A)はコイルドウェーブスプリングの側面図、図5(B)は要部の拡大側面図、図5(C)は係合部の配置関係を示す説明図である。5A, FIG. 5B, and FIG. 5C show a coiled wave spring according to another embodiment, FIG. 5A is a side view of the coiled wave spring, and FIG. ) Is an enlarged side view of the main part, and FIG. 5C is an explanatory view showing the arrangement relationship of the engaging parts.
 以下、添付図面に基づいて、本開示の一実施形態に係るコイルドウェーブスプリングについて説明する。なお、同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, a coiled wave spring according to an embodiment of the present disclosure will be described based on the attached drawings. In addition, the same code | symbol is attached | subjected to the same components and those names and functions are also the same. Therefore, detailed description thereof will not be repeated.
  [第一実施形態]
 図1は、第一実形態に係るに示すコイルドウェーブスプリングを示している。本実施形態のコイルドウェーブスプリング10は、例えば、車両用のダンパーユニット、フライホイールユニット、ディファレンシャルユニット、クラッチユニット、などに配置される。
[First embodiment]
FIG. 1 shows a coiled wave spring according to the first embodiment. The coiled wave spring 10 of this embodiment is arrange | positioned at the damper unit for vehicles, a flywheel unit, a differential unit, a clutch unit etc., for example.
 以下に示すコイルドウェーブスプリング10においては、例えば、変速機のクラッチユニットにおいて、摩擦係合要素を押圧するピストンと、固定側部材に係止されたスプリングリテーナとの間に配置し、リターンスプリングとして機能するものとして例示する。なお、コイルドウェーブスプリング10は、圧縮した状態で配置するのが好ましい。 In the coiled wave spring 10 shown below, for example, in a clutch unit of a transmission, it is disposed between a piston that presses a friction engagement element and a spring retainer that is locked to a fixed member, and serves as a return spring. Illustrated as functioning. The coiled wave spring 10 is preferably arranged in a compressed state.
 コイルドウェーブスプリング10には、平面視において略真円形状を呈し、周方向と直交する断面形状が径方向に長幅な矩形状、すなわち、扁平な線材が用いられている。コイルドウェーブスプリング10は、径方向と直交する軸線方向に沿う所定高さの振幅でなだらかに蛇行させつつ螺旋状に形成されたものである。コイルドウェーブスプリング10には、径方向に沿って幅を有する断面が扁平なステンレス鋼材等の金属材料を線材として用いるのが好ましい。 The coiled wave spring 10 has a substantially circular shape in plan view, and a rectangular shape whose cross-sectional shape perpendicular to the circumferential direction is long in the radial direction, that is, a flat wire is used. The coiled wave spring 10 is formed in a spiral shape while gently meandering with an amplitude of a predetermined height along an axial direction perpendicular to the radial direction. For the coiled wave spring 10, a metal material such as a stainless steel material having a flat cross section having a width along the radial direction is preferably used as the wire.
 コイルドウェーブスプリング10は、図面上での最上位及び最下位の両端10a,10bを含む一巻(1周)に満たない部分を除き、複数段の巻部11~14を備える。 The coiled wave spring 10 includes a plurality of winding portions 11 to 14 excluding a portion less than one turn (one round) including the uppermost and lowermost ends 10a and 10b in the drawing.
 ここで、「巻部」とは、コイルドウェーブスプリング10の一巻分(1周分)の部分を意味する。本実施の形態では、コイルドウェーブスプリング10の巻数は、説明の便宜上、図示最上位及び最下位の両端10a,10bを含む一巻に満たない部分を除き、4本(4段)の巻部11~14で構成されている。 Here, the “winding part” means a part of one turn (one turn) of the coiled wave spring 10. In the present embodiment, the number of turns of the coiled wave spring 10 is four (four steps) except for a part that is less than one turn including the uppermost and lowermost ends 10a and 10b in the drawing for convenience of explanation. 11-14.
 なお、巻部11~14の巻数や蛇行する変位量(振幅の高さに相当)、線材Sの幅(径方向)や厚さ(軸線方向)、内径等の条件は、コイルドウェーブスプリング10を使用する部位やバネ定数等の条件に応じて適宜変更することが可能である。 The conditions such as the number of turns of the winding portions 11 to 14, the amount of meandering displacement (corresponding to the height of the amplitude), the width (radial direction) and thickness (axial direction) of the wire S, and the inner diameter are determined by the coiled wave spring 10. It is possible to change appropriately according to conditions, such as a site to use and a spring constant.
 また、コイルドウェーブスプリング10は、例えば、図1に示すように、軸線Qの延在方向が上下方向(又は鉛直方向)となるように配置(実装)されているとは限らず、左右方向(又は垂直方向)、或いは、傾斜方向で配置される場合もある。 Further, for example, as shown in FIG. 1, the coiled wave spring 10 is not necessarily arranged (mounted) so that the extending direction of the axis Q is the vertical direction (or the vertical direction), but the horizontal direction (Or in the vertical direction), or may be arranged in an inclined direction.
 また、各巻部11~14において、図1(A)に示す上下方向で隣接する状態における構成要素に対する関係性の説明においては、特定の巻部11~14を対象として説明している場合を除き、図示上段側を「前段」、図示下段側を「次段」と称して説明する。したがって、以下の説明では、特定の巻部11~14を説明する場合には、図1(A)に示す上段側から、第1巻部11、第2巻部12、第3巻部13、第4巻部14、と称する。 In addition, in the description of the relationship between the winding parts 11 to 14 in the state adjacent to each other in the vertical direction shown in FIG. 1A, except for the case where the specific winding parts 11 to 14 are described. The upper side in the figure will be referred to as “previous stage” and the lower side in the figure will be referred to as “next stage”. Therefore, in the following description, when the specific winding portions 11 to 14 are described, the first winding portion 11, the second winding portion 12, the third winding portion 13, from the upper side shown in FIG. This is referred to as the fourth volume 14.
 さらに、最上位及び最下位に位置する両端10a,10bを含む一巻(1周)に満たない部分は、図示例では蛇行状態に形成して反発力の一部として寄与する構成のものを示しているが、蛇行状態に形成せずに平坦な構成としているものもある。したがって、このような平坦な構成とすることで直接的な反発力を有していない場合を考慮して詳細な説明は省略するが、巻部11~14と同一の構成を有している部分に関しては、同一の構成・作用・効果を備えているものとする。 Further, a portion that is less than one turn (one round) including both ends 10a and 10b positioned at the uppermost and lowermost positions shows a configuration that contributes as a part of the repulsive force in a meandering state in the illustrated example. However, some have a flat configuration without forming a meandering state. Therefore, although a detailed description is omitted in consideration of the case where the flat structure does not have a direct repulsive force, a part having the same structure as the winding parts 11 to 14 is omitted. Are assumed to have the same structure, operation, and effect.
 図2に示すように、第1巻部11は、4つの第1谷部1Ta~1Tdと4つの第1山部1Ya~1Ydとを交互に備える。第1谷部1Ta~1Tdと第1山部1Ya~1Ycとは、周方向において等間隔に交互に連続(蛇行)している。なお、この蛇行に伴う振幅の数や高さ、波長λ等は、コイルドウェーブスプリング10を使用する部位や設定するバネ定数等によって適宜変更することが可能である(以下の説明において同じ)。なお、波形には、例えば、サインカーブやコサインカーブ等を用いることができる。 As shown in FIG. 2, the first winding part 11 includes four first valley parts 1Ta to 1Td and four first mountain parts 1Ya to 1Yd alternately. The first valley portions 1Ta to 1Td and the first peak portions 1Ya to 1Yc alternately (meander) continuously at equal intervals in the circumferential direction. Note that the number and height of the amplitude accompanying the meandering, the wavelength λ, and the like can be changed as appropriate depending on the site where the coiled wave spring 10 is used, the spring constant to be set, and the like (the same applies in the following description). For the waveform, for example, a sine curve or a cosine curve can be used.
 第2巻部12は、第1巻部11から連続して延在されており、第1巻部11の下方(次段)に位置する。第2巻部12は、4つの第2谷部2Ta~2Tdと4つの第2山部2Ya~2Ydとを交互に備える。第2谷部2Ta~2Tdと第2山部2Ya~2Ydとは、周方向において等間隔に交互に連続されている。なお、第1巻部11の周方向次段寄り端部(図示右側端部)の第1谷部1Tdと第2巻部12の周方向前段寄り端部(図示左側端部)の第2谷部2Taとは、最も下向きに突出した頂点を境として兼用している。 The 2nd volume part 12 is continuously extended from the 1st volume part 11, and is located under the 1st volume part 11 (next stage). The second winding portion 12 includes four second valley portions 2Ta to 2Td and four second peak portions 2Ya to 2Yd alternately. The second valleys 2Ta to 2Td and the second peaks 2Ya to 2Yd are alternately continued at equal intervals in the circumferential direction. In addition, the 1st trough part 1Td of the circumferential direction next step end (illustration right side edge part) of the 1st winding part 11 and the 2nd trough of the circumferential direction front stage end part (illustration left side end part) of the 2nd winding part 12 are shown. The portion 2Ta also serves as a boundary at the vertex that protrudes most downward.
 ここで、第2谷部2Ta~2Tdは第1山部1Ya~1Ydと対応しており、第2山部2Ya~2Ydは第1谷部1Ta~1Tdと対応している。なお、「対応する」とは、図1(A)に示す状態、すなわち、コイルドウェーブスプリング10を径方向から見たときの周方向(図1(A)の紙面左右方向)及び軸線方向(図1(A)の紙面上下方向)を基準としている。 Here, the second valleys 2Ta to 2Td correspond to the first peaks 1Ya to 1Yd, and the second peaks 2Ya to 2Yd correspond to the first valleys 1Ta to 1Td. Note that “corresponding” means the state shown in FIG. 1A, that is, the circumferential direction when the coiled wave spring 10 is viewed from the radial direction (left and right direction in FIG. 1A) and the axial direction ( This is based on the vertical direction in FIG.
 例えば、第2谷部2Ta~2Tdと第1山部1Ya~1Ydとが対応しているとは、第2谷部2Ta~2Tdの谷底と第1山部1Ya~1Ydの山頂とが、軸線Qに沿う方向において最も遠い位置にあり、かつ、周方向において最も近い位置にあることを示す。 For example, the fact that the second valleys 2Ta to 2Td correspond to the first peaks 1Ya to 1Yd means that the bottom of the second valleys 2Ta to 2Td and the peaks of the first peaks 1Ya to 1Yd It is shown that it is in the farthest position in the direction along, and the closest position in the circumferential direction.
 具体的に、第2谷部2Taの谷底は軸線方向における距離が最も遠く及び周方向における距離が最も近い第1山部1Yaの山頂と最も離間し、第2谷部2Tbの谷底は軸線方向における距離が最も遠く及び周方向における距離が最も近い第1山部1Ybの山頂と最も離間し、第2谷部2Tcの谷底は軸線方向における距離が最も遠く及び周方向における距離が最も近い第1山部1Ycの山頂と最も離間し、第2谷部2Tdの谷底は軸線方向における距離が最も遠く及び周方向における距離が最も近い第1山部1Ydの山頂と最も離間している。 Specifically, the valley bottom of the second valley portion 2Ta is farthest from the peak of the first peak portion 1Ya having the longest distance in the axial direction and the closest distance in the circumferential direction, and the valley bottom of the second valley portion 2Tb is in the axial direction. The first peak that is the farthest and farthest from the peak of the first peak 1Yb that is the closest in the circumferential direction, and the bottom of the second valley 2Tc is the farthest in the axial direction and the closest in the circumferential direction The most distant from the summit of the portion 1Yc, and the bottom of the second trough 2Td is farthest from the summit of the first summit 1Yd having the longest distance in the axial direction and the shortest distance in the circumferential direction.
 同様に、第2山部2Ya~2Ydと第1谷部1Ta~1Tdとが対応しているとは、第2山部2Ya~2Ydの山頂と第1谷部1Ta~1Tdの谷底とが、軸線方向及び周方向において最も近い位置にあることを示す。なお、本実施の形態において、第2山部2Ya~2Ydの山頂と第1谷部1Ta~1Tdの谷底とは、少なくともピストンとスプリングリテーナとの間に圧縮状態で配置されたときに、互いに接触状態となっている。 Similarly, the fact that the second peaks 2Ya-2Yd correspond to the first valleys 1Ta-1Td means that the peaks of the second peaks 2Ya-2Yd and the valleys of the first valleys 1Ta-1Td It shows that it is in the closest position in the direction and the circumferential direction. In the present embodiment, the peaks of the second peaks 2Ya to 2Yd and the valleys of the first valleys 1Ta to 1Td are in contact with each other when disposed in a compressed state at least between the piston and the spring retainer. It is in a state.
 具体的に、第2山部2Yaの山頂は軸線方向及び周方向における距離が最も近い第1谷部1Taの谷底と接触し、第2山部2Ybの山頂は軸線方向及び周方向における距離が最も近い第1谷部1Tbの谷底と接触し、第2山部2Ycの山頂は軸線方向及び周方向における距離が最も近い第1谷部1Tcの谷底と接触し、第2山部2Ydの山頂は軸線方向及び周方向における距離が最も近い第1谷部1Tdの谷底と接触している。 Specifically, the peak of the second peak 2Ya is in contact with the bottom of the first valley 1Ta that has the shortest distance in the axial direction and the circumferential direction, and the peak of the second peak 2Yb has the longest distance in the axial and circumferential directions. The peak of the first peak part 1Tb is in contact with the peak of the second peak part 2Yc, the peak of the first peak part 1Tc is closest in the axial direction and the circumferential direction, and the peak of the second peak part 2Yd is the axis. It is in contact with the valley bottom of the first valley portion 1Td having the shortest distance in the direction and the circumferential direction.
 なお、線材Sは径方向に長幅となっている。このため、「接触」している状態とは、厳密には各第2山部2Ya~2Ydの山頂における前段側表面の径方向に沿う稜線(以下、「山側稜線」とも称する。)が、各第1谷部1Ta~1Tdの谷底における次段側表面の径方向に沿う稜線(以下、「谷側稜線」とも称する。)と、互いに一致して接触していることを意味する。ただし、誤差を含め、山側稜線と谷側稜線とが必ずしも周方向で互いに一致した状態で接触しているとは限らない。また、以下の説明においては、説明の便宜上、「山側稜線」を「山側頂点」若しくは単に「頂点」とも称し、「谷側稜線」を「谷側頂点」若しくは単に「頂点」とも称する。さらに、互いに蛇行した状態で稜線同士が接触しているため、圧縮度合いによっては、両者は線接触ではなく線材Sの弾性変形に伴って周方向にも長さを有する面接触となる場合もある。 In addition, the wire rod S has a long width in the radial direction. Therefore, strictly speaking, the “contact” state means that each ridge line (hereinafter also referred to as “mountain ridge line”) along the radial direction of the front surface on the top of each of the second peak portions 2Ya to 2Yd. This means that the ridgelines along the radial direction of the next-stage surface at the bottom of the first valley portions 1Ta to 1Td (hereinafter also referred to as “valley-side ridgelines”) are in contact with each other. However, including the error, the mountain side ridge line and the valley side ridge line are not necessarily in contact with each other in the circumferential direction. Further, in the following description, for convenience of explanation, “mountain side ridge line” is also referred to as “mountain side vertex” or simply “vertex”, and “valley side ridge line” is also referred to as “valley side vertex” or simply “vertex”. Furthermore, since the ridge lines are in contact with each other in a meandering state, depending on the degree of compression, both may be not in line contact but in surface contact having a length in the circumferential direction along with elastic deformation of the wire rod S. .
 第3巻部13は、第2巻部12から連続して延びており、第2巻部12の下方に位置する。第3巻部13は、4つの第3谷部3Ta~3Tdと4つの第3山部3Ya~3Ydとを交互に有している。第3谷部3Ta~3Tdと第3山部3Ya~3Ydとは周方向において等間隔に交互に連続している。なお、第2巻部12の周方向次段寄り端部(図示右側端部)の第2谷部2Tdと第3巻部13の周方向前段寄り端部(図示左側端部)の第3谷部3Taとは、最も下向きに突出した頂点を境として兼用している。 The third winding part 13 extends continuously from the second winding part 12 and is located below the second winding part 12. The third winding portion 13 has four third valley portions 3Ta to 3Td and four third peak portions 3Ya to 3Yd alternately. The third valley portions 3Ta to 3Td and the third peak portions 3Ya to 3Yd are alternately continued at equal intervals in the circumferential direction. Note that the second valley portion 2Td at the circumferentially next-stage end portion (right side end portion in the figure) of the second winding portion 12 and the third valley at the circumferential direction front-stage end portion (left side end portion in the drawing) of the third winding portion 13. The portion 3Ta also serves as a boundary at the vertex that protrudes most downward.
 ここで、第3谷部3Ta~3Tdは第2山部2Ya~2Ydと対応しており、第3山部3Ya~3Ydは第2谷部2Ta~2Tdと対応している。 Here, the third valleys 3Ta to 3Td correspond to the second peaks 2Ya to 2Yd, and the third peaks 3Ya to 3Yd correspond to the second valleys 2Ta to 2Td.
 例えば、第3谷部3Ta~3Tdと第2山部2Ya~2Ydとが対応しているとは、第3谷部3Ta~3Tdの頂点と第2山部2Ya~2Ydの頂点とが、軸線方向において最も遠い位置にあり、かつ、周方向において最も近い位置にあることを示す。 For example, the fact that the third valley portions 3Ta to 3Td correspond to the second peak portions 2Ya to 2Yd means that the apex of the third valley portions 3Ta to 3Td and the apex of the second peak portions 2Ya to 2Yd are in the axial direction. It shows that it is in the most distant position in and the closest position in the circumferential direction.
 具体的に、第3谷部3Taの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第2山部2Yaの頂点と最も離間し、第3谷部3Tbの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第2山部2Ybの頂点と最も離間し、第3谷部3Tcの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第2山部2Ycの頂点と最も離間し、第3谷部3Tdの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第2山部2Ydの頂点と最も離間している。 Specifically, the vertex of the third valley portion 3Ta is farthest from the vertex of the second peak portion 2Ya having the longest distance in the axial direction and the closest distance in the circumferential direction, and the vertex of the third valley portion 3Tb is in the axial direction. The second peak that is the farthest and farthest from the apex of the second peak 2Yb that is the closest in the circumferential direction, and the apex of the third valley 3Tc is the farthest in the axial direction and the closest in the circumferential direction The vertex of the portion 2Yc is farthest from the vertex of the second valley portion 3Td, and the vertex of the third valley portion 3Td is farthest from the vertex of the second peak 2Yd having the longest distance in the axial direction and the shortest distance in the circumferential direction.
 同様に、第3山部3Ya~3Ydと第2谷部2Ta~2Tdとが対応しているとは、第3山部3Ya~3Ydの頂点と第2谷部2Ta~2Tdの頂点とが、軸線方向及び周方向において最も近い位置にあることを示す。なお、本実施の形態において、第3山部3Ya~3Ydの頂点と第2谷部2Ta~2Tdの頂点とは、少なくともピストンとスプリングリテーナとの間に圧縮状態で配置されたときに、互いに接触状態となっている。 Similarly, the fact that the third peaks 3Ya-3Yd and the second valleys 2Ta-2Td correspond to each other means that the apex of the third peaks 3Ya-3Yd and the apex of the second valleys 2Ta-2Td It shows that it is in the closest position in the direction and the circumferential direction. In the present embodiment, the apex of the third peak 3Ya to 3Yd and the apex of the second valley 2Ta to 2Td are in contact with each other when disposed in a compressed state at least between the piston and the spring retainer. It is in a state.
 具体的に、第3山部3Yaの頂点は軸線方向及び周方向における距離が最も近い第2谷部2Taの頂点と接触し、第3山部3Ybの頂点は軸線方向及び周方向における距離が最も近い第2谷部2Tbの頂点と接触し、第3山部3Ycの頂点は軸線方向及び周方向における距離が最も近い第2谷部2Tcの頂点と接触し、第3山部3Ydの頂点は軸線方向及び周方向における距離が最も近い第2谷部2Tdの頂点と接触している。 Specifically, the apex of the third peak 3Ya is in contact with the apex of the second valley 2Ta that has the closest distance in the axial direction and the circumferential direction, and the apex of the third peak 3Yb has the greatest distance in the axial direction and the peripheral direction. The apex of the second valley portion 2Tb is in contact with the apex of the third peak portion 3Yc, the apex of the second valley portion 2Tc that is closest in the axial direction and the circumferential direction, and the apex of the third peak portion 3Yd is the axis. It is in contact with the apex of the second valley portion 2Td that has the shortest distance in the direction and the circumferential direction.
 第4巻部14は、第3巻部13から連続して延びており、第3巻部13の下方に位置する。第4巻部14は、4つの第4谷部4Ta~4Tdと4つの第4山部4Ya~4Ydとを交互に有している。第4谷部4Ta~4Tdと第4山部4Ya~4Ydとは周方向において等間隔に交互に連続している。なお、第3巻部13の周方向次段寄り端部(図示右側端部)の第3谷部3Tdと第4巻部14の周方向前段寄り端部(図示左側端部)の第4谷部4Taとは、最も下向きに突出した頂点を境として兼用している。 The fourth winding part 14 extends continuously from the third winding part 13 and is located below the third winding part 13. The fourth winding portion 14 has four fourth valley portions 4Ta to 4Td and four fourth peak portions 4Ya to 4Yd alternately. The fourth valley portions 4Ta to 4Td and the fourth peak portions 4Ya to 4Yd are alternately continued at equal intervals in the circumferential direction. Note that the third trough 3Td at the end of the third winding portion 13 in the circumferential direction (right side end in the drawing) and the fourth valley at the end in the circumferential direction of the fourth winding portion 14 (left end in the drawing). The portion 4Ta also serves as a boundary at the vertex that protrudes most downward.
 ここで、第4谷部4Ta~4Tdは第3山部3Ya~3Ydと対応しており、第4山部4Ya~4Ydは第3谷部3Ta~3Tdと対応している。 Here, the fourth valleys 4Ta to 4Td correspond to the third peaks 3Ya to 3Yd, and the fourth peaks 4Ya to 4Yd correspond to the third valleys 3Ta to 3Td.
 例えば、第4谷部4Ta~4Tdと第3山部3Ya~3Ydとが対応しているとは、第4谷部4Ta~4Tdの頂点と第3山部3Ya~3Ydの頂点とが、軸線方向において最も遠い位置にあり、かつ、周方向において最も近い位置にあることを示す。 For example, the fact that the fourth valleys 4Ta to 4Td correspond to the third peaks 3Ya to 3Yd means that the vertexes of the fourth valleys 4Ta to 4Td and the peaks of the third peaks 3Ya to 3Yd are in the axial direction. It shows that it is in the most distant position in and the closest position in the circumferential direction.
 具体的に、第4谷部4Taの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第3山部3Yaの頂点と最も離間し、第4谷部4Tbの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第3山部3Ybの頂点と最も離間し、第4谷部4Tcの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第3山部3Ycの頂点と最も離間し、第4谷部4Tdの頂点は軸線方向における距離が最も遠く及び周方向における距離が最も近い第3山部3Ydの頂点と最も離間している。 Specifically, the vertex of the fourth valley portion 4Ta is farthest from the vertex of the third peak portion 3Ya having the longest distance in the axial direction and the closest distance in the circumferential direction, and the vertex of the fourth valley portion 4Tb is in the axial direction. The third peak that is the farthest and farthest from the apex of the third peak 3Yb that is the closest in the circumferential direction, and the apex of the fourth valley 4Tc is the farthest in the axial direction and the closest in the circumferential direction The vertex of the portion 3Yc is farthest from the vertex, and the vertex of the fourth valley portion 4Td is farthest from the vertex of the third peak 3Yd having the longest distance in the axial direction and the shortest distance in the circumferential direction.
 同様に、第4山部4Ya~4Ydと第3谷部3Ta~3Tdとが対応しているとは、第4山部4Ya~4Ydの頂点と第3谷部3Ta~3Tdの頂点とが、軸線方向及び周方向において最も近い位置にあることを示す。なお、本実施の形態において、第4山部4Ya~4Ydの頂点と第3谷部3Ta~3Tdの頂点とは、少なくともピストンとスプリングリテーナとの間に圧縮状態で配置されたときに、互いに接触状態となっている。 Similarly, the fact that the fourth peaks 4Ya-4Yd and the third valleys 3Ta-3Td correspond to each other means that the vertexes of the fourth peaks 4Ya-4Yd and the peaks of the third valleys 3Ta-3Td are axes. It shows that it is in the closest position in the direction and the circumferential direction. In the present embodiment, the apex of the fourth peak portions 4Ya to 4Yd and the apex of the third valley portions 3Ta to 3Td are in contact with each other when disposed in a compressed state at least between the piston and the spring retainer. It is in a state.
 具体的に、第4山部4Yaの頂点は軸線方向及び周方向における距離が最も近い第3谷部3Taの頂点と接触し、第4山部4Ybの頂点は軸線方向及び周方向における距離が最も近い第3谷部3Tbの頂点と接触し、第4山部4Ycの頂点は軸線方向及び周方向における距離が最も近い第3谷部3Tcの頂点と接触し、第4山部4Ydの頂点は軸線方向及び周方向における距離が最も近い第3谷部3Tdの頂点と接触している。 Specifically, the apex of the fourth peak 4Ya is in contact with the apex of the third valley 3Ta that has the closest distance in the axial direction and the circumferential direction, and the apex of the fourth peak 4Yb has the greatest distance in the axial direction and the peripheral direction. The vertex of the third valley portion 3Tb is in contact, the vertex of the fourth mountain portion 4Yc is in contact with the vertex of the third valley portion 3Tc that is closest in the axial direction and the circumferential direction, and the vertex of the fourth mountain portion 4Yd is the axis line. It is in contact with the apex of the third valley portion 3Td having the shortest distance in the direction and the circumferential direction.
 このように、各段の第1巻部11~第4巻部14は、最上段及び最下段を除いて前段と次段とで挟まれた状態で交互に対応、すなわち、各山部が前段の谷部と対応し、各谷部が次段の山部と対応している。なお、この対応関係は、上記巻数が4本の場合に限らず、巻部の数が2本以上の巻数を有していれば、巻数に関係なく同一の状態で対応する。 In this way, the first to fourth winding portions 11 to 14 of each stage correspond alternately with each other being sandwiched between the previous stage and the next stage except for the uppermost stage and the lowermost stage. Each valley corresponds to the next peak. Note that this correspondence relationship is not limited to the case where the number of turns is four, and corresponds to the same state regardless of the number of turns as long as the number of turns has two or more turns.
 ところで、このようなコイルドウェーブスプリング10は、伸縮時に、各接触部分における周方向のずれ(ねじれ)、各段における径方向のずれ(倒れ)、線材Sの順序の入れ替わりや絡まり(よじれ)、が発生してしまう虞がある。 By the way, such a coiled wave spring 10 has a circumferential displacement (twist) at each contact portion, a radial displacement (falling) at each step, a change in the order of the wire rods S and a entanglement (kinking) during expansion and contraction. May occur.
 そこで、各段の第1巻部11~第4巻部14の各振幅の頂点同士が最も接近(接触)している対向部位には、軸線方向の一方側に向けて屈曲して互いに係合可能な外周屈曲部20を設けている。なお、図1(B)に示すように、外周屈曲部20は、コイルドウェーブスプリング10の全長にわたって形成されている。また、以下の説明において、特定の部位を除く谷部及び山部の説明では、「谷部T」及び「山部Y」若しくは「谷山TY」と略称する。 Therefore, the opposing portions where the vertices of the amplitudes of the first to fourth winding portions 11 to 14 of each step are closest (contact) are bent toward one side in the axial direction and engaged with each other. A possible outer peripheral bend 20 is provided. As shown in FIG. 1B, the outer peripheral bent portion 20 is formed over the entire length of the coiled wave spring 10. Moreover, in the following description, in the description of the valley and the mountain part excluding a specific part, they are abbreviated as “valley part T” and “mountain part Y” or “taniyama TY”.
 以下、図3(A)~(B)に基づいて、本実施形態の外周屈曲部20の詳細構成について説明する。 Hereinafter, based on FIGS. 3A to 3B, a detailed configuration of the outer peripheral bent portion 20 of the present embodiment will be described.
 図3(A)に示すように、外周屈曲部20は、互いに接触可能に対向する対向部位に関して、谷部Tの外周縁部に外向きに傾斜する谷側外周屈曲部21と、山部Yの外周縁部に外向きに傾斜する山側外周屈曲部22と、を備える。なお、「外向きに」とは、図3(B)に示すように、谷側外周屈曲部21と内周縁部側の平坦部分とでなす内角θが鈍角であることを意味する。 As shown in FIG. 3A, the outer peripheral bent portion 20 includes a valley-side outer peripheral bent portion 21 that inclines outwardly toward the outer peripheral edge portion of the valley portion T, and a peak portion Y with respect to opposing portions that face each other so as to contact each other. And a mountain-side outer peripheral bent portion 22 that is inclined outwardly at the outer peripheral edge portion of the outer peripheral edge portion. Note that “outwardly” means that the internal angle θ formed by the valley-side outer peripheral bent portion 21 and the flat portion on the inner peripheral edge side is an obtuse angle, as shown in FIG.
 ここで、谷側外周屈曲部21と山側外周屈曲部22とは外向きに同角度で傾斜している。すなわち、谷側外周屈曲部21と山側外周屈曲部22とは、その対向する面が略密着している。 Here, the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 are inclined outward at the same angle. That is, the opposed surfaces of the valley-side outer periphery bent portion 21 and the mountain-side outer periphery bent portion 22 are substantially in close contact with each other.
 これにより、谷側外周屈曲部21と山側外周屈曲部22との接触部分においてガタの発生を抑制することができる。具体的には、谷側外周屈曲部21と山側外周屈曲部22とが非接触状態から軸線方向への圧縮変位によって接触状態となったときなど、傾斜角度の相違等に伴う傾斜面の滑りによって径方向に線材Sがずれることを抑制することができる。また、谷側外周屈曲部21と山側外周屈曲部22とが接触状態のときに、径方向のずれを効率よく抑制することができる。 Thereby, it is possible to suppress the occurrence of backlash at the contact portion between the valley-side outer periphery bent portion 21 and the mountain-side outer periphery bent portion 22. Specifically, when the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 are brought into contact with each other due to the compressive displacement in the axial direction from the non-contact state, slippage of the inclined surface due to a difference in inclination angle or the like It is possible to prevent the wire S from shifting in the radial direction. Moreover, when the valley side outer periphery bending part 21 and the mountain side outer periphery bending part 22 are a contact state, the shift | offset | difference of radial direction can be suppressed efficiently.
 また、谷側外周屈曲部21と山側外周屈曲部22とは、1つの巻部11~14において、周方向の4カ所に配置している。したがって、谷側外周屈曲部21と山側外周屈曲部22とは、蛇行状態が一定であることから、軸線Qを中心に略90゜間隔で配置されていることとなる。 Further, the valley side outer periphery bent portion 21 and the mountain side outer periphery bent portion 22 are arranged at four locations in the circumferential direction in one winding portion 11 to 14. Therefore, the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 are arranged at approximately 90 ° intervals about the axis Q because the meandering state is constant.
 これにより、径方向で対向する一方の谷側外周屈曲部21と山側外周屈曲部22との係合状態によって、谷部Tの線材Sが径方向外側にずれようとしても、そのずれを山側外周屈曲部22で抑制することができる。また、この際に山側外周屈曲部22に加わる荷重は、径方向で対向する他方の谷側外周屈曲部21と山側外周屈曲部22との係合状態によって、山部Yの線材Sが径方向内側にずれようとしても、そのずれを谷側外周屈曲部21で抑制することができる。 As a result, even if the wire S of the valley portion T tends to be displaced radially outward due to the engagement state between the one valley-side outer circumferential bent portion 21 and the mountain-side outer circumferential bent portion 22 that are opposed in the radial direction, It can be suppressed by the bent portion 22. At this time, the load applied to the mountain-side outer circumferential bent portion 22 is such that the wire S of the mountain portion Y is in the radial direction depending on the engagement state between the other valley-side outer circumferential bent portion 21 and the mountain-side outer circumferential bent portion 22 that are opposed in the radial direction. Even if trying to shift inwardly, the shift can be suppressed by the valley-side outer peripheral bent portion 21.
 なお、コイルドウェーブスプリング10が圧縮しようとする際の軸線Qに沿う方向の荷重は、この軸線Qと直交する平坦な部分で平面的に受けることができる。 It should be noted that the load in the direction along the axis Q when the coiled wave spring 10 is to be compressed can be received in a plane at a flat portion orthogonal to the axis Q.
 ここで、コイルドウェーブスプリング10は、例えば、トランスミッション等に実装する際に、圧縮状態とすることで所望の付勢力を与えるものである。したがって、その成形時には、前段の谷部Tと次段の山部Yとは、互いの頂点が非接触な状態であってもよい。 Here, when the coiled wave spring 10 is mounted on a transmission or the like, for example, the coiled wave spring 10 gives a desired urging force by being in a compressed state. Accordingly, at the time of molding, the trough T at the previous stage and the crest Y at the next stage may be in a state in which the vertices are not in contact with each other.
 ただし、コイルドウェーブスプリング10を実装した際には、谷側外周屈曲部21と山側外周屈曲部22とが適正に接触状態となっているのが望ましいため、谷側外周屈曲部21と山側外周屈曲部22とが外向きに同角度で傾斜しているのが望ましく、断面形状が略同じであるのがより望ましい。 However, when the coiled wave spring 10 is mounted, it is desirable that the valley-side outer peripheral bent portion 21 and the mountain-side outer peripheral bent portion 22 are in proper contact with each other. It is desirable that the bent portion 22 be inclined outward at the same angle, and it is more desirable that the cross-sectional shapes are substantially the same.
 このような基本構成において、本実施の形態に係るコイルドウェーブスプリング10は、線材Sのずれを抑制し、よって所期のバネ機能を十分に発揮させるため、螺旋状に巻かれた線材Sからなる複数段の巻部11~14に軸線方向に沿う振幅で複数の谷部Tと複数の山部Yとを交互に有するコイルドウェーブスプリング10であって、線材Sは、金属材料によって形成され径方向に長幅な矩形状の断面形状を有し、複数の谷部Tと複数の山部Yとは、前段の各谷部Tと次段の各山部Yとが互いに接触可能に対向しているおり、当該対向部位における谷部T及び山部Yのそれぞれの外周縁部は軸線方向の一方側に向けて屈曲して互いに係合可能な外周屈曲部20を備える。 In such a basic configuration, the coiled wave spring 10 according to the present embodiment suppresses the deviation of the wire S, and therefore, from the wire S wound in a spiral shape, in order to sufficiently exhibit the expected spring function. A coiled wave spring 10 having a plurality of winding portions 11 to 14 alternately having a plurality of valleys T and a plurality of peaks Y with an amplitude along the axial direction, and the wire S is made of a metal material. It has a rectangular cross section that is long in the radial direction, and the plurality of valleys T and the plurality of peaks Y face each other so that each valley T in the previous stage and each peak Y in the next stage can contact each other. In addition, the outer peripheral edge portions of the valley portion T and the mountain portion Y in the facing portion are provided with outer peripheral bent portions 20 that are bent toward one side in the axial direction and can be engaged with each other.
 次に、本実施の形態に係るコイルドウェーブスプリング10の作用を説明する。上記の構成において、コイルドウェーブスプリング10は、軸線Qに沿う方向、特に、圧縮する方向の荷重を受けると、その荷重に応じて付勢に抗して圧縮される。 Next, the operation of the coiled wave spring 10 according to the present embodiment will be described. In the above configuration, when the coiled wave spring 10 receives a load in the direction along the axis Q, in particular, in the compressing direction, the coiled wave spring 10 is compressed against the bias according to the load.
 ここで、各谷部T及び各山部Yは、その頂点の接触部分が互いに逆方向に突出する円弧状であるため、互いの接触範囲が狭く、例えば、線材Sが径方向にずれようとする作用が働く場合がある。 Here, since each valley T and each peak Y are arc-shaped with contact portions at the apexes protruding in opposite directions, the contact range is narrow, for example, the wire S tends to be displaced in the radial direction. May work.
 しかしながら、互いに接触可能な対向部位における谷部T及び山部Yの各外周縁部には軸線方向の一方側に向けて屈曲して互いに係合可能な外周屈曲部20を設けている。 However, outer peripheral bent portions 20 that are bent toward one side in the axial direction and can be engaged with each other are provided at the outer peripheral edge portions of the valley portion T and the peak portion Y at the facing portions that can contact each other.
 この外周屈曲部20は、谷側外周屈曲部21と山側外周屈曲部22とで外向きに同角度で傾斜している。 The outer peripheral bent portion 20 is inclined outwardly at the same angle at the valley side outer peripheral bent portion 21 and the mountain side outer peripheral bent portion 22.
 したがって、これら谷側外周屈曲部21と山側外周屈曲部22とが係合状態にあることによって、線材Sの径方向へのずれを抑制することができる。 Therefore, since the valley-side outer peripheral bent portion 21 and the mountain-side outer peripheral bent portion 22 are in the engaged state, the deviation of the wire S in the radial direction can be suppressed.
 このように、本実施の形態に係るコイルドウェーブスプリング10は、螺旋状に巻かれた線材Sからなる複数段の巻部11~14に軸線方向に沿う振幅で複数の谷部Tと複数の山部Yとを交互に有するコイルドウェーブスプリング10であって、複数の谷部Tと複数の山部Yとは、前段の各谷部Tと次段の各山部Yとが互いに接触可能に対向しており、当該対向部位における谷部T及び山部Yは軸線方向の一方側に向けて突出して互いに係合可能な外周屈曲部20を備えることにより、線材Sのずれを抑制し、よって所期のバネ機能を十分に発揮させることができる。 As described above, the coiled wave spring 10 according to the present embodiment includes a plurality of trough portions T and a plurality of trough portions T with a plurality of winding portions 11 to 14 made of the wire S wound in a spiral shape with an amplitude along the axial direction. A coiled wave spring 10 having alternating ridges Y, wherein a plurality of valleys T and a plurality of ridges Y can be in contact with each other at each of the previous valleys T and each of the following peaks Y. The trough portion T and the crest portion Y at the facing portion are provided with the outer peripheral bent portion 20 that protrudes toward one side in the axial direction and can be engaged with each other, thereby suppressing the deviation of the wire rod S, Therefore, the desired spring function can be fully exhibited.
 また、本実施の形態に係る外周屈曲部20は、谷側外周屈曲部21と山側外周屈曲部22とが外向きに同角度で傾斜していることにより、互いの接触状態を密着状態とすることができるとともに、例えば、各谷山TYの接触部位を同時にパンチ加工するなどの簡素な加工工程によって両者間のみで谷側外周屈曲部21と山側外周屈曲部22とによる係合状態を容易に確保することができる。 Moreover, the outer periphery bending part 20 which concerns on this Embodiment makes a mutual contact state a close_contact | adherence state because the valley side outer periphery bending part 21 and the mountain side outer periphery bending part 22 incline outward at the same angle. In addition, for example, the engagement state between the valley-side outer periphery bent portion 21 and the mountain-side outer periphery bent portion 22 can be easily ensured only between the two by a simple processing step such as punching the contact portion of each valley mountain TY at the same time. can do.
  [第二実施形態]
 次に、図3(C)に基づいて、第二実施形態に係るコイルドウェーブスプリングの詳細について説明する。第二実施形態は、第一実施形態において、外周屈曲部20に加え、内周屈曲部30を設けて断面略Vの字状としたものである。
[Second Embodiment]
Next, details of the coiled wave spring according to the second embodiment will be described with reference to FIG. In the second embodiment, in addition to the outer peripheral bent portion 20, an inner peripheral bent portion 30 is provided in the first embodiment so as to have a substantially V-shaped cross section.
 内周屈曲部30は、図3(C)に示すように、互いに接触可能に対向する対向部位に関して、谷部Tの内周縁部に外向きに傾斜する谷側内周屈曲部31と、山部Yの内周縁部に外向きに傾斜する山側内周屈曲部32と、を備える。なお、「外向きに」とは、谷側外周屈曲部21と谷側内周屈曲部31とでなす内角θが鈍角であることを意味する。 As shown in FIG. 3C, the inner circumferential bent portion 30 includes a valley-side inner circumferential bent portion 31 that inclines outward toward the inner peripheral edge portion of the valley portion T, and a mountain A mountain-side inner circumferential bent portion 32 that is inclined outwardly at the inner peripheral edge of the portion Y. Note that “outwardly” means that the internal angle θ formed by the valley-side outer peripheral bent portion 21 and the valley-side inner peripheral bent portion 31 is an obtuse angle.
 ここで、谷側内周屈曲部31と山側内周屈曲部32とは外向きに同角度で傾斜している。すなわち、谷側外周屈曲部21及び谷側内周屈曲部31と山側外周屈曲部22及び山側内周屈曲部32とが断面同形状となっており、その対向する面が略密着している。 Here, the valley side inner periphery bending portion 31 and the mountain side inner periphery bending portion 32 are inclined outward at the same angle. That is, the valley side outer periphery bending part 21 and the valley side inner periphery bending part 31, and the mountain side outer periphery bending part 22 and the mountain side inner periphery bending part 32 have the same cross-sectional shape, and the opposing surfaces are in close contact.
 これにより、谷側外周屈曲部21及び谷側内周屈曲部31と山側外周屈曲部22及び山側内周屈曲部32との接触部分においてガタの発生を抑制することができる。具体的には、谷側外周屈曲部21及び谷側内周屈曲部31と山側外周屈曲部22及び山側内周屈曲部32とが非接触状態から軸線方向への圧縮変位によって接触状態となったときなど、傾斜角度の相違等に伴う傾斜面の滑りによって径方向に線材Sがずれることを抑制することができる。また、谷側外周屈曲部21及び谷側内周屈曲部31と山側外周屈曲部22及び山側内周屈曲部32とが接触状態のときに、径方向のずれを効率よく抑制することができる。 Thereby, it is possible to suppress the occurrence of play at the contact portion between the valley side outer periphery bent portion 21 and the valley side inner periphery bend portion 31, the mountain side outer periphery bend portion 22 and the mountain side inner periphery bend portion 32. Specifically, the valley side outer periphery bending portion 21 and the valley side inner periphery bending portion 31, and the mountain side outer periphery bending portion 22 and the mountain side inner periphery bending portion 32 are brought into a contact state by a compressive displacement in the axial direction from the non-contact state. It is possible to prevent the wire S from being displaced in the radial direction due to slipping of the inclined surface due to a difference in inclination angle. Moreover, when the valley side outer periphery bending part 21 and the valley side inner periphery bending part 31, and the mountain side outer periphery bending part 22 and the mountain side inner periphery bending part 32 are in a contact state, the shift | offset | difference of radial direction can be suppressed efficiently.
 この際、外周屈曲部20のみを形成した場合に比べて、波長が長く、例えば、周方向3カ所で前段の谷部Tと次段の山部Yとが接触している構成においても、効率よく径方向のずれを抑制することができる。また、線材Sの全長にわたって外周屈曲部20と内周屈曲部30とを形成していることから、前段の谷部Tと次段の山部Yとの接触部分における周方向の接触長さも確保することができ、接触部分を円弧状とすることができることと相俟って、線材Sの周方向のずれを抑制することも可能となる。 At this time, the wavelength is longer than when only the outer peripheral bent portion 20 is formed. For example, even in a configuration in which the valley T at the previous stage and the peak Y at the next stage are in contact at three places in the circumferential direction, The deviation in the radial direction can be suppressed well. Moreover, since the outer periphery bending part 20 and the inner periphery bending part 30 are formed over the full length of the wire rod S, the contact length of the circumferential direction in the contact part of the trough part T of the front | former stage and the peak part Y of the following stage is also ensured. In combination with the fact that the contact portion can be arcuate, it is also possible to suppress the circumferential displacement of the wire S.
 このような構成においても、上記実施の形態と同様に、周方向及び径方向のずれを抑制することができる。 Even in such a configuration, the deviation in the circumferential direction and the radial direction can be suppressed as in the above embodiment.
  [第三実施形態]
 次に、図3(D)に基づいて、第三実施形態に係るコイルドウェーブスプリングの詳細について説明する。第三実施形態は、第二実施形態において、外周縁部の外周屈曲部20及び内周縁部の内周屈曲部30に加え、その間に断面略Vの字状の中間屈曲部40を形成し、その全体の断面形状を略Wの字状としたものである。
[Third embodiment]
Next, the details of the coiled wave spring according to the third embodiment will be described with reference to FIG. In the second embodiment, in addition to the outer peripheral bent portion 20 of the outer peripheral edge and the inner peripheral bent portion 30 of the inner peripheral edge in the second embodiment, an intermediate bent portion 40 having a substantially V-shaped cross section is formed therebetween, The overall cross-sectional shape is substantially W-shaped.
 この場合においても、谷部Tの谷側屈曲部41と山部Yの山側屈曲部42とは、同角度・同形状に屈曲しており、全体としても同角度・同形状で屈曲している。これにより、より一層径方向に対する線材Sのずれに加え、周方向に線材Sのずれも抑制することが可能となる。 Also in this case, the valley side bent portion 41 of the valley portion T and the mountain side bent portion 42 of the peak portion Y are bent at the same angle and shape, and as a whole, bent at the same angle and shape. . Thereby, in addition to the deviation of the wire S in the radial direction, the deviation of the wire S in the circumferential direction can be further suppressed.
 (比較例)
 ところで、本実施の形態では、少なくとも対向部位における谷部T及び山部Yの各外周縁部に軸線方向の一方側に向けて屈曲して互いに係合可能な外周屈曲部20を備える構成としている。
(Comparative example)
By the way, in this Embodiment, it is set as the structure provided with the outer periphery bending part 20 which can be bent toward one side of an axial direction and can mutually be engaged in each outer peripheral part of the trough part T and the peak part Y in an opposing part. .
 ここで、例えば、図4(A)に示すように、軸線Qを基準として、第1巻部11が第2巻部12に対して径方向にずれ離Waだけずれようとしていると仮定する。 Here, for example, as shown in FIG. 4 (A), it is assumed that the first winding part 11 is about to be displaced in the radial direction by the deviation Wa with respect to the axis Q.
 この際、図4(A)に示すように、外周屈曲部20の谷側外周屈曲部21及び山側外周屈曲部22は、線材Sの径方向の全幅Wにおける平坦部分の幅W1に対して略同じかそれよりもやや幅狭な屈曲幅W2を確保することができる。 At this time, as shown in FIG. 4A, the valley-side outer periphery bending portion 21 and the mountain-side outer periphery bending portion 22 of the outer periphery bending portion 20 are substantially equal to the width W1 of the flat portion in the entire radial width W of the wire S. A bent width W2 that is the same or slightly narrower than that can be secured.
 これにより、ずれ幅Waが幅W1に近い屈曲幅W2よりも狭い限りにおいて、ずれを抑制(修正)することができるため、抑制幅を広く確保することができる。 As a result, as long as the deviation width Wa is narrower than the bending width W2 close to the width W1, the deviation can be suppressed (corrected), so that a wide suppression width can be secured.
 これに対し、例えば、図4(C)に示すように、径方向の外周縁部と内周縁部とに平坦部分を設け、中央部分のみ略Vの字状に屈曲させた構成とした場合、全幅Wに対して半幅の範囲内に屈曲幅W3の屈曲部分と平坦幅W4の平坦部分とが存在することとなる。 On the other hand, for example, as shown in FIG. 4C, when a flat portion is provided in the outer peripheral edge portion and the inner peripheral edge portion in the radial direction, and only the central portion is bent into a substantially V shape, A bent portion having a bent width W3 and a flat portion having a flat width W4 exist within a half width range with respect to the full width W.
 したがって、当然ながら、屈曲部分の屈曲幅W3は、本実施の形態における谷側外周屈曲部21及び山側外周屈曲部22の屈曲幅W2よりも幅狭とならざるを得ないため、上述したずれ幅Waが同じであった場合、Vの字の頂点部分が平坦部分に差し掛かってしまい、ずれを補正することができないという問題が生じてしまう。 Therefore, naturally, the bending width W3 of the bent portion must be narrower than the bent width W2 of the valley-side outer peripheral bent portion 21 and the mountain-side outer peripheral bent portion 22 in the present embodiment. When Wa is the same, the apex portion of the V character reaches the flat portion, which causes a problem that the shift cannot be corrected.
 このように、屈曲幅W2を幅広に確保するためには、外周縁部を含むように外周屈曲部20を形成することにより、径方向のずれに対する抑制効果を広く確保することができる。 Thus, in order to ensure a wide bending width W2, by forming the outer peripheral bent portion 20 so as to include the outer peripheral edge portion, it is possible to widely ensure a suppressing effect on the radial deviation.
 (コイルドウェーブスプリングの応用例)
 図5は、上記実施の形態に係るコイルドウェーブスプリング50を位相値αだけ短くした波長λ-αとすることで接触部分の位相をずらした例を示す。なお、図5において、上記実施の形態と実質的に同一の構成には、同一の符号を付して、その説明を省略する。
(Application example of coiled wave spring)
FIG. 5 shows an example in which the phase of the contact portion is shifted by setting the wavelength λ-α of the coiled wave spring 50 according to the above embodiment to be shorter by the phase value α. In FIG. 5, components that are substantially the same as those in the above embodiment are given the same reference numerals, and descriptions thereof are omitted.
 すなわち、上記実施の形態では、コイルドウェーブスプリング10の各頂点が軸線Qに沿って接触している場合で説明したが、図5に示すように、角度βで接触部分の位相をずらしたコイルドウェーブスプリング50に対して適用することも可能である。 That is, in the above-described embodiment, the case where each vertex of the coiled wave spring 10 is in contact along the axis Q has been described. However, as shown in FIG. Application to the wave spring 50 is also possible.
 すなわち、図5に示したコイルドウェーブスプリング50は、図1に示したコイルドウェーブスプリング10と同じ内径及び同じ段数で形成しているが、図5(A)に示すように、上記実施の形態で示した波長λよりも短い波長λ-αで螺旋状とすることによって、図5(B)に示すように、頂点位置を位相値αだけずらすことによって接触部分(頂点)の位相をずらしたものである。 That is, the coiled wave spring 50 shown in FIG. 5 is formed with the same inner diameter and the same number of steps as the coiled wave spring 10 shown in FIG. 1, but as shown in FIG. By forming a spiral with a wavelength λ-α shorter than the wavelength λ shown in the form, as shown in FIG. 5B, the phase of the contact portion (vertex) is shifted by shifting the vertex position by the phase value α. It is a thing.
 このような場合、図5(C)に示すように、例えば、第1巻部11の第1谷部1Taの頂点位置と第2巻部12の第2山部2Yaの頂点位置とが位相値αだけずれているため、その中間位置Pを接触部分とし、外周屈曲部20を中間位置Pを含む位相値αの範囲内に形成することによって、上記と同様の作用・効果を得ることができる。 In such a case, as shown in FIG. 5C, for example, the vertex position of the first valley 1Ta of the first winding part 11 and the vertex position of the second peak 2Ya of the second winding part 12 are phase values. Since it is shifted by α, the intermediate position P is used as a contact portion, and the outer peripheral bent portion 20 is formed within the range of the phase value α including the intermediate position P. Thus, the same operation and effect as described above can be obtained. .
 (その他の応用例・変形例)
 その他、本開示は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
(Other applications and modifications)
In addition, the present disclosure is implemented with various modifications within a range not departing from the gist thereof.
 例えば、上記実施の形態では、外周屈曲部20,内周屈曲部30、中間屈曲部40、を線材Sの全長にわたって形成したものを開示したが、前段の谷部Tと次段の山部Yとの接触部分付近にのみ形成してもよい。 For example, in the above-described embodiment, the outer peripheral bent portion 20, the inner peripheral bent portion 30, and the intermediate bent portion 40 are disclosed to be formed over the entire length of the wire S, but the previous trough portion T and the following peak portion Y are disclosed. You may form only near the contact part.
 なお、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」「一致」「沿う」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「同一」「等しい」「異なる」とは、設計上や製造上等における公差や誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」「実質的に一致」「実質的に沿う」という意味である。なお、ここでの公差や誤差とは、本開示の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。 In the above description, when there are descriptions such as “same”, “equal”, “different”, “match”, “along”, etc., these descriptions are not strict meanings. That is, “same”, “equal”, and “different” allow tolerances and errors in design, manufacturing, etc., and are “substantially the same”, “substantially equal”, “substantially different”, “substantially different” It means “match” and “substantially follow”. Here, tolerance and error mean units within a range not departing from the configuration, operation, and effect of the present disclosure.
 本出願は、2017年6月15日付で出願された日本国特許出願(特願2017-117468)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2017-117468) filed on June 15, 2017, the contents of which are incorporated herein by reference.
 本開示によれば、線材のずれを抑制し、よって所期のバネ機能を十分に発揮させることができる。 According to the present disclosure, it is possible to suppress the deviation of the wire and thus to fully exhibit the expected spring function.
 10   コイルドウェーブスプリング
 11   第1巻部(巻部)
 12   第2巻部(巻部)
 13   第3巻部(巻部)
 14   第4巻部(巻部)
 20   外周屈曲部
 21   谷側外周屈曲部
 22   山側外周屈曲部
 30   内周屈曲部
 31   谷側内周屈曲部
 32   山側内周屈曲部
 40   中間屈曲部
 41   谷側中間屈曲部
 42   山側中間屈曲部
 S    線材
 Q    軸線
 T    谷部
 Y    山部
10 Coiled Wave Spring 11 Volume 1 (Volume)
12 Volume 2 (Volume)
13 Volume 3 (Volume)
14 Volume 4 (Volume)
DESCRIPTION OF SYMBOLS 20 Outer periphery bending part 21 Valley side outer periphery bending part 22 Mountain side outer periphery bending part 30 Inner periphery bending part 31 Valley side inner periphery bending part 32 Mountain side inner periphery bending part 40 Intermediate | middle bending part 41 Valley side intermediate bending part 42 Mountain side intermediate bending part S Wire rod Q axis T Tanibe Y Yamabe

Claims (6)

  1.  螺旋状に巻かれた線材からなる複数段の巻部に軸線方向に沿う振幅で複数の谷部と複数の山部とを交互に有するコイルドウェーブスプリングであって、
     前記線材は、金属材料によって形成され、径方向に長幅な矩形状の断面形状を有し、
     前記複数の谷部と前記複数の山部は、前段の各谷部と次段の各山部とが互いに接触可能に対向しており、
     当該対向部位における前記谷部及び前記山部のそれぞれの外周縁部は軸線方向の一方側に向けて屈曲して互いに係合可能な外周屈曲部を備える、
     コイルドウェーブスプリング。
    A coiled wave spring having a plurality of troughs and a plurality of crests alternately with an amplitude along the axial direction on a plurality of winding portions made of a spirally wound wire,
    The wire is formed of a metal material and has a rectangular cross-sectional shape that is long in the radial direction,
    The plurality of troughs and the plurality of crests are opposed to each other so that each trough in the previous stage and each crest in the next stage can contact each other.
    The outer peripheral edge portions of the valley portion and the mountain portion at the facing portion are provided with outer peripheral bent portions that are bent toward one side in the axial direction and can be engaged with each other.
    Coiled wave spring.
  2.  前記谷部の前記外周屈曲部と前記山部の前記外周屈曲部とが外向きに同角度で傾斜している、
     請求項1に記載のコイルドウェーブスプリング。
    The outer circumferential bent portion of the valley portion and the outer circumferential bent portion of the peak portion are inclined outward at the same angle,
    The coiled wave spring according to claim 1.
  3.  少なくとも前記対向部位における前記谷部及び前記山部の各内周縁部に、前記外周屈曲部と同方向に向けて屈曲して互いに係合可能な内周屈曲部を備える、
     請求項1に記載のコイルドウェーブスプリング。
    At least inner peripheries of the valleys and the crests in the facing part are provided with inner peripheral bent portions that can be bent in the same direction as the outer peripheral bent portions and engage with each other.
    The coiled wave spring according to claim 1.
  4.  前記谷部の前記外周屈曲部及び前記内周屈曲部と前記山部の前記外周屈曲部及び前記内周屈曲部とが断面同形状である、
     請求項3に記載のコイルドウェーブスプリング。
    The outer peripheral bent portion and the inner peripheral bent portion of the valley portion and the outer peripheral bent portion and the inner peripheral bent portion of the peak portion have the same shape in cross section.
    The coiled wave spring according to claim 3.
  5.  少なくとも前記対向部位における前記谷部及び前記山部の各内周縁部に、前記外周屈曲部と同方向に向けて屈曲して互いに係合可能な内周屈曲部を備える、
     請求項2に記載のコイルドウェーブスプリング。
    At least inner peripheries of the valleys and the crests in the facing part are provided with inner peripheral bent portions that can be bent in the same direction as the outer peripheral bent portions and engage with each other.
    The coiled wave spring according to claim 2.
  6.  前記谷部の前記外周屈曲部及び前記内周屈曲部と前記山部の前記外周屈曲部及び前記内周屈曲部とが断面同形状である、
     請求項5に記載のコイルドウェーブスプリング。
    The outer peripheral bent portion and the inner peripheral bent portion of the valley portion and the outer peripheral bent portion and the inner peripheral bent portion of the peak portion have the same shape in cross section.
    The coiled wave spring according to claim 5.
PCT/JP2018/022212 2017-06-15 2018-06-11 Coiled wave spring WO2018230501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880039553.4A CN110770462B (en) 2017-06-15 2018-06-11 Spiral corrugated spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-117468 2017-06-15
JP2017117468A JP6904080B2 (en) 2017-06-15 2017-06-15 Coiled wave spring

Publications (1)

Publication Number Publication Date
WO2018230501A1 true WO2018230501A1 (en) 2018-12-20

Family

ID=64659110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022212 WO2018230501A1 (en) 2017-06-15 2018-06-11 Coiled wave spring

Country Status (3)

Country Link
JP (1) JP6904080B2 (en)
CN (1) CN110770462B (en)
WO (1) WO2018230501A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567839U (en) * 1992-02-21 1993-09-10 エヌ・オー・ケー・メグラスティック株式会社 Anti-vibration mount
JP2002039243A (en) * 2000-07-25 2002-02-06 Toshikazu Okuno Wave coil spring
JP2002276708A (en) * 2001-03-21 2002-09-25 Fuji Seiko Kk Wave coil spring generating repulsion force toward coil center
US20030222385A1 (en) * 2002-05-29 2003-12-04 Visteon Global Technologies, Inc. Composite wave ring spring
JP2007321832A (en) * 2006-05-31 2007-12-13 Piolax Inc Waved coil spring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576027Y2 (en) * 1992-02-21 1998-07-09 株式会社パイオラックス Wave coil spring
US20100171249A1 (en) * 2009-01-08 2010-07-08 Chih-Ching Hsieh Spring with enhanced precision of elastic energy
JP2015043728A (en) * 2013-08-28 2015-03-12 株式会社シマノ Coiled wave spring and drag knob
US20160097434A1 (en) * 2014-10-03 2016-04-07 Tyco Electronics Corporation Bonded helical compression spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567839U (en) * 1992-02-21 1993-09-10 エヌ・オー・ケー・メグラスティック株式会社 Anti-vibration mount
JP2002039243A (en) * 2000-07-25 2002-02-06 Toshikazu Okuno Wave coil spring
JP2002276708A (en) * 2001-03-21 2002-09-25 Fuji Seiko Kk Wave coil spring generating repulsion force toward coil center
US20030222385A1 (en) * 2002-05-29 2003-12-04 Visteon Global Technologies, Inc. Composite wave ring spring
JP2007321832A (en) * 2006-05-31 2007-12-13 Piolax Inc Waved coil spring

Also Published As

Publication number Publication date
CN110770462B (en) 2022-06-21
CN110770462A (en) 2020-02-07
JP2019002484A (en) 2019-01-10
JP6904080B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
US10041620B2 (en) Line assembly
KR100228003B1 (en) Coiled wave spring and production method thereof
US11226007B2 (en) Tolerance ring
JP5337302B2 (en) Wave coil spring
JP2007321832A (en) Waved coil spring
WO2018230501A1 (en) Coiled wave spring
JP6972696B2 (en) Coiled wave spring
WO2018230483A1 (en) Coiled wave spring
WO2018230491A1 (en) Coiled wave spring
JP7395274B2 (en) thermally conductive molded body
US3518896A (en) Remote control assembly having an all metal casing
WO2013172090A1 (en) Coned-disc spring
JP7273706B2 (en) Corrugated tube
CN218844944U (en) Multilayer wave spring
CN108488285B (en) Electric tool and spring thereof
US20110070636A1 (en) Resilient member and device, in particular a bio film reactor
JP2019124280A (en) Wave-shaped friction plate
JPWO2019167932A1 (en) Wave spring
JP2020192929A (en) tire
JP5134728B2 (en) Corrugated coil spring
JP2024027303A (en) Corrugated cladding tube and composite tube
JP2022123958A (en) Flexible expansion pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817218

Country of ref document: EP

Kind code of ref document: A1