WO2018230479A1 - 5'-position silyl ether derivative for nucleoside anti-cancer agent or anti-virus agent - Google Patents

5'-position silyl ether derivative for nucleoside anti-cancer agent or anti-virus agent Download PDF

Info

Publication number
WO2018230479A1
WO2018230479A1 PCT/JP2018/022132 JP2018022132W WO2018230479A1 WO 2018230479 A1 WO2018230479 A1 WO 2018230479A1 JP 2018022132 W JP2018022132 W JP 2018022132W WO 2018230479 A1 WO2018230479 A1 WO 2018230479A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
salt
agent
nucleoside
Prior art date
Application number
PCT/JP2018/022132
Other languages
French (fr)
Japanese (ja)
Inventor
孫市 酒向
晋平 杉山
Original Assignee
大原薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大原薬品工業株式会社 filed Critical 大原薬品工業株式会社
Publication of WO2018230479A1 publication Critical patent/WO2018230479A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/695Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages

Definitions

  • the present invention relates to the creation of compounds that have high stability against various hydrolytic metabolic enzymes and can be used as prodrugs of nucleoside anticancer agents or antiviral agents.
  • the anticancer nucleosides currently used in clinical practice include cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, 5-azacytidine, 2'-deoxy-5-azacytidine, clofarabine, nelarabine, tri Examples include fluorothymidine.
  • These nucleosides are incorporated into DNA and RNA via a nucleic acid biosynthetic route in mitotic cancer cells to inhibit modification and elongation of DNA and RNA, and inhibit synthesis of the corresponding protein. Since it shows a cell killing action, it is used as a therapeutic agent for various cancers (Non-patent Document 1).
  • antiviral nucleosides in clinical use include zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine, zalcitabine, etc., but all of these nucleosides are used in virus-infected cells. Since it is incorporated into DNA or RNA via a nucleic acid biosynthesis route and inhibits reverse transcriptase involved in DNA or RNA synthesis and exhibits a cell killing action, it is used as an antiviral agent (Non-Patent Documents 2 to 3). ).
  • cytidine derivatives and adenosine derivatives have very low stability to hydrolytic metabolic enzymes present in blood or liver, ie cytidine deaminase or adenosine deaminase, and other nucleoside derivatives.
  • Some of these drugs have low oral absorbability and low cell membrane permeability, so the expected anticancer activity and antiviral activity cannot be obtained. In many cases, side effects are caused by administration of these large doses of drugs.
  • Non-Patent Documents 4 to 7 are examples of acetyl ester of the sugar moiety hydroxyl group of gemcitabine and 5′-position eridic ester (CP-4200) of azacitidine.
  • nucleoside anticancer agent or antiviral agent As a prodrug of a nucleoside anticancer agent or antiviral agent, it itself has high stability against various hydrolytic metabolic enzymes and is deprotected enzymatically or enzymatically in cells. Therefore, a derivative capable of easily releasing a nucleoside anticancer agent or antiviral agent is desired.
  • the subject of the present invention is a derivative of the 5′-hydroxyl moiety of a nucleoside anticancer agent or antiviral agent, which itself is against various hydrolytic metabolic enzymes such as cytidine deaminase, adenosine deaminase, esterase and the like.
  • a prodrug of a nucleoside anticancer agent or antiviral agent having a high stability and capable of gradually releasing the corresponding nucleoside anticancer agent or antiviral agent non-enzymatically under physiological conditions There is to provide as.
  • the present inventors have a high stability against hydrolytic metabolic enzymes such as cytidine deaminase, and can be administered orally in order to provide a drug that is further useful as a preventive or therapeutic agent for cancer or viral infection.
  • hydrolytic metabolic enzymes such as cytidine deaminase
  • the present inventors synthesized various 5′-position silyl ether derivatives of nucleoside anticancer agents or antiviral agents including 5-azacytidines, and investigated their chemical reactivity.
  • the 5'-position silyl ether derivative having a specific structure of a nucleoside anticancer agent or antiviral agent unexpectedly has high stability against various hydrolytic metabolic enzymes, but can be administered orally.
  • the present inventors have found that it has extremely excellent properties as a pharmaceutical that can be smoothly deprotected non-enzymatically and enter the nucleic acid biosynthetic route in cells. Further studies were made and the present invention was completed.
  • the nucleoside anticancer agent is cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, clofarabine, nelarabine, trifluorothymidine, DFP-10917, cordycepin, 8-chloroactinomycin, RX-3117, triciribine,
  • [3] The compound or a salt thereof according to [1], wherein the antiviral agent is zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine or zalcitabine.
  • Compound is The compound according to [1] or a salt thereof.
  • R 1 , R 2 and R 3 may be the same or different and each may have a C 1 -C 6 alkyl group or phenyl C 1 -C 6 alkyl group or naphthyl C 1-
  • R 1 , R 2 and R 3 may be the same or different from each other, and are methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group. Or a compound or a salt thereof according to any one of [1] to [4], which is a hexyl group. [7] Any of [1] to [4], wherein R 1 , R 2 and R 3 may be the same or different and each is a benzyl group, phenethyl group or naphthylmethyl group which may have a substituent. 2. The compound according to claim 1 or a salt thereof.
  • R 1 , R 2 and R 3 may be the same or different, and may be a methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group or benzyl group.
  • a nucleoside anticancer agent or an antiviral agent may be substituted with a trialkylsilyl halide, dialkylmonoarylalkylsilyl halide, monoalkyldiarylalkylsilyl halide, or triarylalkylsilyl halide, which may have a substituent, and dehydrohalogenated.
  • the method for producing a compound according to [1], comprising reacting in the presence of an agent.
  • the nucleoside anticancer agent or antiviral agent is a trialkylsilyl acylate or dialkyl monoarylalkylsilyl acylate or monoalkyldiarylalkylsilyl acylate or triarylalkylsilyl acylate which may have a substituent.
  • [11] [1]
  • a pharmaceutical composition comprising any one of [8] or a salt thereof.
  • the pharmaceutical composition according to [11] which is a growth inhibitor of cancer cells or virus-infected cells.
  • the pharmaceutical composition according to [11] which is a preventive or therapeutic agent for cancer or viral infection.
  • a method for inhibiting the growth of cancer cells or virus-infected cells in a mammal comprising administering to the mammal an effective amount of any one of [1] to [8] or a salt thereof.
  • a method for preventing or treating cancer or a viral infection in a mammal comprising administering an effective amount of any one of [1] to [8] or a salt thereof to the mammal.
  • the 5′-position silyl ether derivative of a nucleoside anticancer agent or antiviral agent is more lipophilic than the corresponding nucleoside anticancer agent or antiviral agent, and thus can be administered orally.
  • various hydrolytic metabolic enzymes carboxyesterase, cytidine deaminase, adenosine deaminase, etc.
  • It passes through the cell membrane of a virus-infected cell and is gradually hydrolyzed non-enzymatically in the cell membrane or in the cell under physiological conditions to efficiently release the corresponding nucleoside anticancer agent or antiviral agent.
  • nucleosides are incorporated into DNA or RNA via the nucleic acid biosynthesis route to inhibit modification or elongation of DNA or RNA, inhibit synthesis of the corresponding protein, or inhibit reverse transcriptase to kill. Since it is presumed to show cell action, it can be expected to function as a preventive or therapeutic agent for various cancers and viral infections.
  • the compound of the present invention or a salt thereof is a compound represented by the following formula (I).
  • D is the 5′-position of the nucleoside anticancer agent or antiviral agent
  • R 1 , R 2, and R 3 are each optionally substituted alkyl. Group or an arylalkyl group.
  • R 1 , R 2 and R 3 may be the same or different.
  • Nucleoside anticancer agents include cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, clofalabine, and nearabine , Trifluorothymidine (TFT), DFP-10917, Cordycepin, 8-Chloro-adenosine, RX-3117, Triciribine, Forodesine, 5-Fluorodeoxy Examples include cytidine (5-Fluoro-2'-deoxycytidine), ribavirin, acadecine, etc. The chemical structures of these nucleoside anticancer agents are shown below as examples.
  • nucleoside antiviral agent examples include zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine, zalcitabine, and the like.
  • the chemical structure of the nucleoside antiviral agent is shown below.
  • Examples of the compound represented by the formula (I) of the present invention include the following formulas (i) to (xvi).
  • R 1 , R 2 and R 3 are each an alkyl group or an arylalkyl group which may have a substituent.
  • R 1 , R 2 and R 3 may be the same or different.
  • the “alkyl group optionally having substituent (s)” may or may not have a substituent.
  • the substituent may have 1 to 5, preferably 1 to 3 substituents at the substitutable position of the alkyl group, and when the number of substituents is 2 or more, each substituent may be the same or different.
  • Examples of the substituent include an alkyl group, a halogen atom, a cyano group, and a nitro group.
  • Preferred examples of the substituent are an alkyl group and a halogen atom.
  • alkyl group refers to a saturated aliphatic hydrocarbon group, for example, a linear or branched alkyl group having 1 to 20 carbon atoms or a cyclic alkyl group, unless otherwise specified.
  • linear or branched alkyl group include C 1 such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, and hexyl group.
  • heptyl group 1-methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 4,4-dimethylpentyl group, 1-ethylpentyl group 2-ethylpentyl group, 1,1,3-trimethylbutyl group, 1,2,2-trimethylbutyl group, 1,3,3-trimethylbutyl group, 2,2,3-trimethylbutyl group, 2,3 , 3-trimethylbutyl group, 1-propylbutyl group, 1,1,2,2-tetramethylpropyl group, octyl group, 1-methylheptyl group, 3-methylheptyl group 6-methylheptyl group, 2-ethylhexyl group, 5,5-dimethylhexyl group, 2,4,4-trimethylpentyl group, 1-ethyl-1-methylpentyl group, nonyl group, 1-methyloctyl group,
  • Preferred examples of the C 1 -C 6 alkyl group are a methyl group and an ethyl group.
  • Examples of the cyclic alkyl group include groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • Preferred examples of the cyclic alkyl group are a cyclopentyl group and a cyclohexyl group.
  • the “arylalkyl group which may have a substituent” may or may not have a substituent.
  • the substituent may have 1 to 5, preferably 1 to 3 substituents at the substitutable position of the arylalkyl group. When the number of substituents is 2 or more, each substituent may be the same or different.
  • Examples of the substituent include an alkyl group, a halogen atom, a cyano group, and a nitro group. Preferred examples of the substituent are an alkyl group and a halogen atom.
  • Arylalkyl refers to an alkyl group substituted by an aryl. Preferred are a phenyl C 1 -C 6 alkyl group and a naphthyl C 1 -C 6 alkyl group. Examples of phenyl C 1 -C 6 alkyl groups are benzyl group, 1-phenylethyl group, 2-phenylethyl group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group. Examples of the naphthyl C 1 -C 6 alkyl group include, but are not limited to, a naphthylmethyl group, a naphthylethyl group, and the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like, and preferred examples are a fluorine atom, a chlorine atom and a bromine atom.
  • a preferred combination of R 1, R 2 and R 3, R 1, R 2 and R 3 are each the same or different at best, a halogen atom optionally substituted C 1 have ⁇ C 6 alkyl group, or a halogen atom or a C 1 ⁇ C 6 alkyl-substituted phenyl C 1 optionally ⁇ C 6 alkyl group group.
  • R 1, R 2 and R 3 are each the same or different even if well, C 1 ⁇ C 6 alkyl group or a - optionally C 1 be substituted by a halogen atom C 6 alkyl group or a C 1 - C 6 alkyl group or a phenyl optionally substituted by a halogen atom C 1 A C 6 alkyl group.
  • R 1 is a methyl group, an ethyl group, a propyl group or an isopropyl group.
  • R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group , Isobutyl group, tert-butyl group, pentyl group, hexyl group or benzyl group
  • R 3 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group , A pentyl group, a hexyl group or a benzyl group.
  • the salt of the compound represented by the formula (I) of the present invention may be any salt as long as it is a pharmacologically acceptable salt.
  • the salt include inorganic acid salts (for example, hydrochloride, sulfate, hydrobromide, phosphate, etc.), organic acid salts (for example, acetate, trifluoroacetate, succinate, And acid addition salts such as maleate, fumarate, propionate, citrate, tartrate, lactate, oxalate, methanesulfonate, p-toluenesulfonate, etc. It is not limited to.
  • the compound represented by the formula (I) of the present invention may be a crystal, and may be a single crystal form or a mixture of a plurality of crystal forms.
  • the crystal can be produced by crystallization by applying a crystallization method known per se.
  • the compound represented by the formula (I) of the present invention may be a solvate (for example, a hydrate), and any of a solvate and a non-solvate (for example, a non-hydrate). Are also encompassed in compound (I).
  • the 5′-position silyl ether derivative of the nucleoside anticancer agent or antiviral agent of the present invention can be a prodrug of a nucleoside anticancer agent or antiviral agent.
  • Compound (I) of the present invention can be produced , for example, by the method shown below or a method analogous thereto (for example, Corey, EJ et al., J. Am. Chem. Soc., 94, 6190, 1972; Morita, T. et al., Tetrahedron Lett., 21, 835, 1980; see Kita, Y. et al., Tetrahedron Lett., 4311, 1979, etc. For reviews, see Lalonde, M .; Chan, TH Synthesis, 817-845, 1985, etc.).
  • compound (I) or a salt thereof can be produced by a method known per se or a method analogous thereto. For example, by reacting various nucleosides with a trialkylsilyl halide compound in an appropriate solvent in the presence of dehydrohalogen, or by reacting with a trialkylsilyl acylate compound in the presence of a base. 5'-position trialkylsilyl ether derivatives of nucleosides can be obtained.
  • silyl halide or silyl acylate compound is not particularly limited, and any of those used in the art can be used in the method of the present invention.
  • a trialkylsilyl halide compound, a monoalkyldiarylalkylsilyl halide compound, a dialkylmonoarylalkylsilyl halide, a triarylalkylsilyl halide compound, or the like can be used.
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group. Can be used. Of these, a methyl group, an ethyl group, or a propyl group is preferable.
  • a benzyl group or the like can be used.
  • a chlorine atom which comprises a silyl halide compound
  • a chlorine atom a bromine atom, an iodine atom, etc.
  • a chlorine atom a chlorine atom
  • a bromine atom a bromine atom
  • an iodine atom etc.
  • examples of the silyl halide compound include trimethylsilyl chloride (sometimes referred to as trimethylchlorosilane; the same applies to the following compounds), triethylsilyl chloride, isopropyldimethylsilyl chloride, tert-butyldimethylsilyl chloride, and the like.
  • the kind of silyl acylate compound is not particularly limited, and any of those used in the art can be used in the method of the present invention.
  • a trialkylsilyl acylate compound for example, a trialkylsilyl acylate compound, a monoalkyldiarylalkylsilyl acylate compound, a dialkyl monoarylalkylsilyl acylate, a triarylalkylsilyl acylate compound, or the like can be used.
  • the silyl acylate compound has an alkyl group
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group.
  • the alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a
  • silyl acylate compound has an arylalkyl group, a benzyl group or the like can be used. More specifically, as the silyl acylate compound, trimethylsilyl acetate, triethylsilyl acetate, isopropyldimethylsilyl acetate, tert-butyldimethylsilyl acetate, trimethylsilyl triflate, triethylsilyl triflate, isopropyldimethylsilyl triflate, tert-butyldimethyl Examples thereof include silyl triflate.
  • Examples of the dehydrohalogenating agent or base used include organic bases and inorganic bases.
  • Examples of organic bases include, but are not limited to, triethylamine, N, N-diisopropylethylamine. Imidazole, pyridine, 4-dimethylaminopyridine, n-butyllithium, potassium tert-butoxide and the like, and imidazole and triethylamine are preferred.
  • Examples of the inorganic base include, but are not limited to, sodium hydride, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, cesium carbonate, and the like.
  • the equivalent of a raw material compound or more is preferable. Furthermore, a range of 1.0 to 10.0 equivalents can usually be exemplified with respect to 1 mol of the raw material compound, but a range of 1.0 to 6.0 equivalents is preferable, and 1.0 to 4.4 is more preferable. The range is preferably 0 equivalent.
  • reaction solvent From the viewpoint of smooth progress of the reaction, the reaction of the present invention is preferably carried out in the presence of a solvent.
  • the solvent in the reaction of the present invention may be any solvent as long as the reaction proceeds.
  • Examples of the solvent in the reaction of the present invention include amides (for example, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N, N-diethylacetamide, N-methylpyrrolidone (NMP)).
  • Etc. preferably DMF, DMAC, NMP, more preferably DMF and sulfoxides (for example, dimethyl sulfoxide, etc.), but are not limited to these, as long as the reaction proceeds,
  • the amount of the solvent used in the reaction of the present invention can be appropriately adjusted by those skilled in the art.
  • reaction temperature The reaction temperature of the present invention is not particularly limited. In one embodiment, from the viewpoints of yield improvement, suppression of by-products and economic efficiency, etc., ⁇ 20 ° C. to 50 ° C. (ie, minus 20 ° C. to plus 50 ° C.), preferably ⁇ 10 ° C. to 30 ° C. A range of ° C. (that is, minus 10 ° C. to plus 30 ° C.) can be exemplified.
  • reaction time The reaction time of the present invention is not particularly limited. In one embodiment, from the viewpoint of improvement in yield, suppression of by-products and economic efficiency, etc., 0.5 hours to 120 hours, preferably 0.5 hours to 72 hours, more preferably 0.5 hours. A range of ⁇ 48 hours, more preferably 0.5 hours to 24 hours can be exemplified. However, the reaction time of the present invention can be appropriately adjusted by those skilled in the art.
  • composition of the present invention can be used as a pharmaceutical composition by mixing it with a pharmacologically acceptable carrier as it is or by a method known per se.
  • a pharmacologically acceptable carrier as it is or by a method known per se.
  • Monkeys, cats, pigs, horses, cows, mice, rats, guinea pigs, dogs, rabbits, etc. Monkeys, cats, pigs, horses, cows, mice, rats, guinea pigs, dogs, rabbits, etc.
  • the pharmacologically acceptable carrier various organic or inorganic carrier substances commonly used as pharmaceutical materials are used.
  • preparation additives such as preservatives, antioxidants, colorants, sweeteners and the like can also be used.
  • the dosage form of the pharmaceutical composition include tablets, capsules (including soft capsules and microcapsules), granules, powders, syrups, emulsions, suspensions, sustained-release oral preparations, and the like. These can be safely administered orally.
  • a liquid agent is also possible, it is not restricted to this.
  • the pharmaceutical composition can be produced by a method commonly used in the field of pharmaceutical technology, for example, a method described in the Japanese Pharmacopoeia.
  • the compound (I) of the invention has many therapeutic and prophylactic uses.
  • the compounds (I) of the invention are each used for the corresponding nucleoside indication.
  • 5'-position silyl ether derivative of gemcitabine see formula (vi) in the above figure
  • non-small cell lung cancer pancreatic cancer
  • biliary tract cancer urothelial cancer
  • inoperable or recurrent breast cancer cancer chemistry Ovarian cancer, exacerbated after therapy, relapsed or refractory malignant lymphoma, etc.
  • cancer chemistry Ovarian cancer exacerbated after therapy, relapsed or refractory malignant lymphoma, etc.
  • the pharmaceutical composition used in the present invention is provided as a dosage form for oral administration.
  • the pharmaceutical compositions provided herein can be provided in solid, semi-solid or liquid dosage forms for oral administration.
  • oral administration also includes buccal, lingual and sublingual administration.
  • Suitable oral dosage forms include tablets, capsules, pills, troches, medicinal candy, aroma preparations, cachets, pellets, drug-added chewing gum, granules, bulk powders, foamed formulations or non-foamed powders or granules, Examples include, but are not limited to, solutions, emulsions, suspensions, solutions, wafers, sprinkles, elixirs and syrups.
  • the pharmaceutical composition comprises binders, fillers, diluents, disintegrants, wetting agents, lubricants, glidants, colorants, pigment migration inhibitors, sweeteners and flavoring agents,
  • One or more pharmaceutically acceptable carriers or excipients may be included without limitation.
  • the amount of compound (I) of the present invention within the pharmaceutical composition or dosage form is, for example, from about 1 mg to about 2,000 mg, from about 10 mg to about 2,000 mg, from about 20 mg to about 2,000 mg, from about 50 mg to about 1,000 mg, about It may range from 100 mg to about 500 mg, from about 150 mg to about 500 mg, or from about 150 mg to about 250 mg.
  • the effective dose is determined according to the nature of the cancer, the degree of progression of the cancer, the treatment policy, the degree of metastasis, the amount of the tumor, the body weight, age, sex, and the patient's (although it can be appropriately selected depending on genetic or racial background, the pharmaceutically effective amount is generally determined based on factors such as clinically observed symptoms and the degree of progression of cancer.
  • the daily dose is, for example, about 0.01 to about 10 mg / kg (about 0.5 mg to about 500 mg for a 60 kg adult), preferably about 0.05 to about 5 mg / kg when administered to a human. Preferably, it is about 0.1 to about 2 mg / kg. Administration may be performed once or divided into multiple times.
  • nucleosides having a cytosine skeleton were used.
  • 5′-position silyl ether derivatives (see formula (I)) were found to be very stable in the presence of cytidine deaminase in all cases. It was confirmed that it was difficult to undergo hydrolytic metabolism by the enzyme cytidine deaminase in the liver.
  • nucleosides having a hydroxyl group at the 5 'position for example, gemcitabine
  • the 5′-position silyl ether derivative of the nucleoside thus obtained (see formula (I)) is used in an environment close to physiological conditions (for example, at 37 ° C. in a phosphate buffered saline solution).
  • the stability was examined, among the derivatives according to the present invention, when the substituents (R 1 , R 2 and R 3 ) directly linked to the silyl group were appropriately selected, the derivatives were hydrolyzed at an appropriate speed and the corresponding nucleosides were obtained. Was confirmed to be efficiently given.
  • the 5′-position silyl ether derivative of the nucleoside according to the present invention having a high stability to the above-mentioned hydrolytic metabolic enzyme and an appropriate hydrolysis reactivity under physiological conditions (formula (I Can be prodrugs of the corresponding nucleosides.
  • room temperature means about 15-30 ° C.
  • 1 H-NMR and 13 C-NMR were measured using JEOL JNM-ECZ 400R and showed a chemical shift ⁇ (ppm) from tetramethylsilane as an internal standard.
  • Other symbols in the present specification have the following meanings. s: singlet, d: doublet, t: triplet, m: multiplet, br: broad, br s: broad singlet, J: binding constant Mass of each compound was measured using a Yamazen Smart Flash MS system apparatus. Value.
  • Nucleosides (1 mM) are dissolved or suspended in about 3 mL of anhydrous N, N-dimethylformamide (DMF) at room temperature, and this is mixed with imidazole (about 1.2 times mol with respect to the raw material) and the corresponding trialkylsilyl.
  • Halide (about 1.2 times mol with respect to the raw material) was added under cooling at 0 ° C., and then the mixture was stirred while gradually returning to room temperature until the raw material disappeared (about 0.5 to 17 hours).
  • the reaction mixture was poured into 50 mL of a mixture of ethyl acetate and saturated brine (2: 1), and extracted with ethyl acetate.
  • Nucleosides (1 mM) were dissolved or suspended in about 3 mL of anhydrous DMF at room temperature, and triethylamine (about 1.2 times mol to the raw material) and corresponding trialkylsilyl acylate (to the raw material, About 1.2 times mol) was added under cooling at 0 ° C., and then the mixture was stirred while gradually returning to room temperature until the raw materials disappeared (about 0.5 to 17 hours). The reaction mixture was poured into 50 mL of a mixture of ethyl acetate and saturated brine (2: 1), and extracted with ethyl acetate.
  • Nucleosides (1 mM) are dissolved or suspended in about 3 mL of anhydrous DMF at room temperature, and triethylamine (about 1.2 times mol to the raw material) and corresponding trialkylsilyl triflate (to the raw material, About 1.2-fold mol) was added under cooling at ⁇ 10 ° C., and the mixture was stirred while gradually returning to room temperature until the raw material disappeared (about 0.5 to 17 hours).
  • the reaction mixture was poured into 50 mL of a mixture of ethyl acetate and saturated brine (2: 1), and extracted with ethyl acetate.
  • a 5′-position silyl ether derivative (see formula (I)) of a nucleoside anticancer agent or antiviral agent is dissolved in 1 mL of acetonitrile, and 10 ⁇ L thereof is added to 1 mL of phosphate buffered saline. 10 ⁇ L of a cytidine deaminase phosphate buffered saline solution was added to the resulting solution and stirred at 37 ° C. for about 1 hour. 1 mL of acetonitrile was added to the reaction solution and centrifuged, and the supernatant was analyzed by HPLC.
  • Table 1 shows the analysis results for 5′-O-triethylsilyl-gemcitabine (Compound A) and 5′-O-isopropyldiethylsilyl-gemcitabine (Compound C).
  • Cytidine deaminase CDA (1-146aa), Human, His-tagged, Recombinant cytidine deaminase (ATGen) HPLC measurement conditions: Column: CAPCELL PAK ADME 4.6 mm ⁇ 150 mm, particle size: 3 ⁇ m
  • Elution: Eluent A 10 mM ammonium formate-containing purified water
  • Detector UV260nm
  • the 5′-position silyl ether derivative (see formula (I)) of the nucleoside anticancer agent or antiviral agent having a cytosine skeleton according to the present invention was very stable against cytidine deaminase. .
  • cytidine and gemcitabine disappeared completely under the reaction conditions described above.
  • a 5′-position silyl ether derivative of a nucleoside anticancer agent or antiviral agent for example, about 1 mg of 5′-O-triethylsilyl-gemcitabine (compound A) is dissolved in 1 mL of acetonitrile; 5 ⁇ L of the solution was added to 100 ⁇ L of 10 mM phosphate buffered saline solution and stirred at 37 ° C. As a result of HPLC analysis of the reaction product over time, the production of gemcitabine was confirmed, and the production of other decomposition products was not observed.
  • medical agent which can replace the nucleoside type

Abstract

[Problem] To provide a drug that replaces nucleoside anti-cancer agents or anti-virus agents clinically used as therapeutic medicines for cancer or virus infection, that is highly stable against various hydrolytic metabolic enzymes, that can be taken orally, and that is incorporated in the biosynthetic routes of DNA and RNA and produces a cytocidal effect by performing DNA or RNA modification and extension inhibition or reverse transcriptase inhibition, and protein synthesis inhibition. [Solution] A novel compound represented by formula (I) solves the above problem. (In the formula: D is the 5' position of a nucleoside anti-cancer agent or anti-virus agent; and R1, R2, and R3 are each, each optionally being the same or different, an alkyl group that may have a substituent, or an aryl alkyl group.)

Description

ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体5'-position silyl ether derivative of nucleoside anticancer agent or antiviral agent
 本発明は、様々な加水分解的代謝酵素に対して高い安定性を有し、且つ、ヌクレオシド系抗がん剤又は抗ウィルス剤のプロドラッグとして利用できる化合物の創製に関する。 The present invention relates to the creation of compounds that have high stability against various hydrolytic metabolic enzymes and can be used as prodrugs of nucleoside anticancer agents or antiviral agents.
 現在、臨床で使用されている抗がん性ヌクレオシド類としては、シタラビン、フロクスウリジン、ペントスタチン、フルダラビン、クラドリビン、ゲムシタビン、5-アザシチジン、2’-デオキシ-5-アザシチジン、クロファラビン、ネララビン、トリフルオロチミジン等が挙げられる。これらのヌクレオシド類は、分裂が盛んながん細胞において核酸生合成ルートを経てDNAやRNAに取り込まれ、DNAやRNAの修飾・伸長阻害をしたり、対応するタンパク質の合成阻害をしたりして殺細胞作用を示すことから、様々ながんの治療薬として利用されている(非特許文献1)。 The anticancer nucleosides currently used in clinical practice include cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, 5-azacytidine, 2'-deoxy-5-azacytidine, clofarabine, nelarabine, tri Examples include fluorothymidine. These nucleosides are incorporated into DNA and RNA via a nucleic acid biosynthetic route in mitotic cancer cells to inhibit modification and elongation of DNA and RNA, and inhibit synthesis of the corresponding protein. Since it shows a cell killing action, it is used as a therapeutic agent for various cancers (Non-patent Document 1).
 また、現在、臨床で使用されている抗ウィルス性ヌクレオシド類としては、ジドブジン、ラミブジン、スタブジン、アバカビル、エムトリシタビン、ジダノシン、ザルシタビン等が挙げられるが、これらのヌクレオシド類はいずれも、ウィルス感染した細胞において核酸生合成ルートを経てDNAやRNAに取り込まれ、DNAやRNA合成に関与する逆転写酵素を阻害して殺細胞作用を示すことから、抗ウィルス剤として利用されている(非特許文献2~3)。 In addition, currently used antiviral nucleosides in clinical use include zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine, zalcitabine, etc., but all of these nucleosides are used in virus-infected cells. Since it is incorporated into DNA or RNA via a nucleic acid biosynthesis route and inhibits reverse transcriptase involved in DNA or RNA synthesis and exhibits a cell killing action, it is used as an antiviral agent (Non-Patent Documents 2 to 3). ).
 しかし、これらのヌクレオシド類のうち、シチジン誘導体やアデノシン誘導体は、血中もしくは肝臓中に存在する加水分解的代謝酵素、即ち、シチジンデアミナーゼあるいはアデノシンデアミナーゼに対する安定性が非常に低かったり、他のヌクレオシド誘導体の中には、経口吸収性が低かったり、細胞膜透過性が低かったりして、期待された抗がん活性や抗ウィルス活性が得られないため、結果的に多量の抗がん剤や抗ウィルス剤を投与せざるを得なく、それらの多量薬剤投与による副作用の発現を惹起する場合が多い。 However, among these nucleosides, cytidine derivatives and adenosine derivatives have very low stability to hydrolytic metabolic enzymes present in blood or liver, ie cytidine deaminase or adenosine deaminase, and other nucleoside derivatives. Some of these drugs have low oral absorbability and low cell membrane permeability, so the expected anticancer activity and antiviral activity cannot be obtained. In many cases, side effects are caused by administration of these large doses of drugs.
 以上の背景の下に、ヌクレオシド系抗がん剤や抗ウィルス剤に関して、更に安全性が高く且つ効率良く用いるために、対応する糖部水酸基の様々なプロドラッグ化が検討されてきた。例えば、カルボキシルエステラーゼによって加水分解的に代謝されやすいエステル化の検討が挙げられる(特許文献1~2)。 Against this background, various prodrugs of the corresponding sugar group hydroxyl group have been studied for higher safety and efficient use of nucleoside anticancer agents and antiviral agents. For example, studies on esterification that can be easily metabolized hydrolytically by carboxylesterase can be mentioned (Patent Documents 1 and 2).
 しかし、これらの試みの多くは、血中もしくは肝臓中に存在する各種加水分解酵素に対する安定性が低すぎるために、望まれる臨床効果を示すことができなかった。例えば、ゲムシタビンの糖部水酸基のアセチルエステルやアザシチジンの5’位エライディックエステル(CP-4200)が挙げられる(非特許文献4~7)。 However, many of these attempts have failed to show the desired clinical effects because the stability to various hydrolases present in blood or liver is too low. Examples include acetyl ester of the sugar moiety hydroxyl group of gemcitabine and 5′-position eridic ester (CP-4200) of azacitidine (Non-Patent Documents 4 to 7).
 それ故、ヌクレオシド系抗がん剤又は抗ウィルス剤のプロドラッグとしては、それ自身は様々な加水分解的代謝酵素に対する高い安定性を有し、細胞内では非酵素的もしくは酵素的に脱保護されてヌクレオシド系抗がん剤又は抗ウィルス剤を容易に遊離できる誘導体が望まれる。 Therefore, as a prodrug of a nucleoside anticancer agent or antiviral agent, it itself has high stability against various hydrolytic metabolic enzymes and is deprotected enzymatically or enzymatically in cells. Therefore, a derivative capable of easily releasing a nucleoside anticancer agent or antiviral agent is desired.
WO2008/092127.WO2008 / 092127. WO2009/042766.WO2009 / 042766.
 本発明の課題は、ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位水酸基部分の誘導体であって、それ自身は様々な加水分解的代謝酵素、例えば、シチジンデアミナーゼあるいはアデノシンデアミナーゼやエステラーゼ等に対する高い安定性を有し、且つ、対応するヌクレオシド系抗がん剤又は抗ウィルス剤を生理的条件下で非酵素的に徐々に遊離できる化合物をヌクレオシド系抗がん剤又は抗ウィルス剤のプロドラッグとして提供することにある。 The subject of the present invention is a derivative of the 5′-hydroxyl moiety of a nucleoside anticancer agent or antiviral agent, which itself is against various hydrolytic metabolic enzymes such as cytidine deaminase, adenosine deaminase, esterase and the like. A prodrug of a nucleoside anticancer agent or antiviral agent having a high stability and capable of gradually releasing the corresponding nucleoside anticancer agent or antiviral agent non-enzymatically under physiological conditions There is to provide as.
 本発明者らは、がん又はウィルス感染症の予防又は治療剤として更に有用な医薬品を提供するために、シチジンデアミナーゼ等の加水分解的代謝酵素に対する高い安定性を有し、且つ、経口投与が可能であり、生体内では核酸生合成ルートへ入り込むことができる優れた薬理作用と物理化学的性質を兼ね備えた新たな化合物を見出すべく鋭意研究を行った。そして、本発明者らは、5-アザシチジン類をはじめとするヌクレオシド系抗がん剤又は抗ウィルス剤の様々な5’位シリルエーテル誘導体を合成し、それらの化学的反応性を調べた結果、ヌクレオシド系抗がん剤又は抗ウィルス剤の特定な構造を有する5’位シリルエーテル誘導体が、予想外に、それ自身は様々な加水分解的代謝酵素に対する高い安定性を有する一方、経口投与が可能であり、且つ、細胞内では非酵素的にスムーズに脱保護されて核酸生合成ルートへ入り込むことができる、医薬品として極めて優れた性質を有することを見出した。そして、更に検討を重ね、本発明の完成に到った。 The present inventors have a high stability against hydrolytic metabolic enzymes such as cytidine deaminase, and can be administered orally in order to provide a drug that is further useful as a preventive or therapeutic agent for cancer or viral infection. We have conducted extensive research to find new compounds that have both excellent pharmacological action and physicochemical properties that are possible and can enter the nucleic acid biosynthetic route in vivo. Then, the present inventors synthesized various 5′-position silyl ether derivatives of nucleoside anticancer agents or antiviral agents including 5-azacytidines, and investigated their chemical reactivity. The 5'-position silyl ether derivative having a specific structure of a nucleoside anticancer agent or antiviral agent unexpectedly has high stability against various hydrolytic metabolic enzymes, but can be administered orally. In addition, the present inventors have found that it has extremely excellent properties as a pharmaceutical that can be smoothly deprotected non-enzymatically and enter the nucleic acid biosynthetic route in cells. Further studies were made and the present invention was completed.
 すなわち、本発明は、下記記載の発明を提供することにより、上記課題を解決したものである。
〔1〕
 式(I):
Figure JPOXMLDOC01-appb-I000003
 
(式中、Dはヌクレオシド系抗がん剤又は抗ウィルス剤の5’位部分であり、RとRとRはそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいアルキル基又はアリールアルキル基である。)で表される化合物又は其の塩。
[2]
 前記ヌクレオシド系抗がん剤は、シタラビン、フロクスウリジン、ペントスタチン、フルダラビン、クラドリビン、ゲムシタビン、クロファラビン、ネララビン、トリフルオロチミジン、DFP-10917、コルジセピン、8-クロロアクチノマイシン、RX-3117、トリシリビン、フォロデシン、5-フルオロデオキシシチジン、リバビリン又はアカデシンである、〔1〕に記載の化合物又は其の塩。
〔3〕
 前記抗ウィルス剤は、ジドブジン、ラミブジン、スタブジン、アバカビル、エムトリシタビン、ジダノシン又はザルシタビンである、〔1〕に記載の化合物又は其の塩。
〔4〕
 化合物が、
Figure JPOXMLDOC01-appb-I000004
 
である、〔1〕に記載の化合物又は其の塩。
〔5〕
 前記RとRとRがそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいC~Cアルキル基又はフェニルC~Cアルキル基又はナフチルC~Cアルキル基である、〔1〕~〔4〕のいずれか1項に記載の化合物又は其の塩。
〔6〕
 前記RとRとRがそれぞれ、同一又は異なっていてもよく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基又はヘキシル基である、〔1〕~〔4〕のいずれか1項に記載の化合物又は其の塩。
〔7〕
 前記RとRとRがそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいベンジル基,フェネチル基又はナフチルメチル基である、〔1〕~〔4〕のいずれか1項に記載の化合物又は其の塩。
〔8〕
 前記RとRとRがそれぞれ、同一又は異なっていてもよく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基又はベンジル基である、[1] ~〔4〕のいずれか1項に記載の化合物又は其の塩。
〔9〕
 ヌクレオシド系抗がん剤又は抗ウィルス剤を、置換基を有していてもよいトリアルキルシリルハライド又はジアルキルモノアリールアルキルシリルハライド又はモノアルキルジアリールアルキルシリルハライド又はトリアリールアルキルシリルハライドと脱ハロゲン化水素剤存在下に反応させることを包含する、〔1〕に記載の化合物の製造方法。
〔10〕
 ヌクレオシド系抗がん剤又は抗ウィルス剤を、置換基を有していてもよいトリアルキルシリルアシレート又はジアルキルモノアリールアルキルシリルアシレート又はモノアルキルジアリールアルキルシリルアシレート又はトリアリールアルキルシリルアシレートと塩基存在下に反応させることを包含する、〔1〕に記載の化合物の製造方法。
〔11〕
 〔1〕ないし〔8〕のいずれかの化合物又は其の塩を含有する医薬組成物。
〔12〕
 がん細胞又はウィルス感染細胞の増殖抑制剤である、〔11〕に記載の医薬組成物。
〔13〕
  がん又はウィルス感染症の予防又は治療剤である、〔11〕に記載の医薬組成物。
〔14〕
 〔1〕ないし〔8〕のいずれかの化合物又は其の塩の有効量を哺乳動物に投与することを包含する、哺乳動物におけるがん細胞又はウィルス感染細胞の増殖抑制方法。
〔15〕
〔1〕ないし〔8〕のいずれかの化合物又は其の塩の有効量を哺乳動物に投与することを包含する、哺乳動物におけるがん又はウィルス感染症の予防又は治療方法。
That is, this invention solves the said subject by providing the invention of the following description.
[1]
Formula (I):
Figure JPOXMLDOC01-appb-I000003

(In the formula, D is the 5′-position of the nucleoside anticancer agent or antiviral agent, and R 1 , R 2 and R 3 may be the same or different and have a substituent. Or an alkyl group or an arylalkyl group thereof) or a salt thereof.
[2]
The nucleoside anticancer agent is cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, clofarabine, nelarabine, trifluorothymidine, DFP-10917, cordycepin, 8-chloroactinomycin, RX-3117, triciribine, The compound or a salt thereof according to [1], which is forodesine, 5-fluorodeoxycytidine, ribavirin or acadesine.
[3]
The compound or a salt thereof according to [1], wherein the antiviral agent is zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine or zalcitabine.
[4]
Compound is
Figure JPOXMLDOC01-appb-I000004

The compound according to [1] or a salt thereof.
[5]
R 1 , R 2 and R 3 may be the same or different and each may have a C 1 -C 6 alkyl group or phenyl C 1 -C 6 alkyl group or naphthyl C 1- The compound or a salt thereof according to any one of [1] to [4], which is a C 6 alkyl group.
[6]
R 1 , R 2 and R 3 may be the same or different from each other, and are methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group. Or a compound or a salt thereof according to any one of [1] to [4], which is a hexyl group.
[7]
Any of [1] to [4], wherein R 1 , R 2 and R 3 may be the same or different and each is a benzyl group, phenethyl group or naphthylmethyl group which may have a substituent. 2. The compound according to claim 1 or a salt thereof.
[8]
R 1 , R 2 and R 3 may be the same or different, and may be a methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group or benzyl group. The compound or a salt thereof according to any one of [1] to [4], wherein
[9]
A nucleoside anticancer agent or an antiviral agent may be substituted with a trialkylsilyl halide, dialkylmonoarylalkylsilyl halide, monoalkyldiarylalkylsilyl halide, or triarylalkylsilyl halide, which may have a substituent, and dehydrohalogenated. The method for producing a compound according to [1], comprising reacting in the presence of an agent.
[10]
The nucleoside anticancer agent or antiviral agent is a trialkylsilyl acylate or dialkyl monoarylalkylsilyl acylate or monoalkyldiarylalkylsilyl acylate or triarylalkylsilyl acylate which may have a substituent. The process for producing a compound according to [1], which comprises reacting in the presence of a base.
[11]
[1] A pharmaceutical composition comprising any one of [8] or a salt thereof.
[12]
[11] The pharmaceutical composition according to [11], which is a growth inhibitor of cancer cells or virus-infected cells.
[13]
[11] The pharmaceutical composition according to [11], which is a preventive or therapeutic agent for cancer or viral infection.
[14]
A method for inhibiting the growth of cancer cells or virus-infected cells in a mammal, comprising administering to the mammal an effective amount of any one of [1] to [8] or a salt thereof.
[15]
A method for preventing or treating cancer or a viral infection in a mammal, comprising administering an effective amount of any one of [1] to [8] or a salt thereof to the mammal.
 本発明によれば、ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体は、対応するヌクレオシド系抗がん剤又は抗ウィルス剤よりも脂溶性が高くなるので、経口投与が可能となり、腸部で吸収された後、血中もしくは肝臓内で様々な加水分解的代謝酵素(カルボキシエステラーゼ、シチジンデアミナーゼやアデノシンデアミナーゼ等)の影響を受けることなく、細胞分裂の盛んながん細胞やウィルス感染細胞の細胞膜を通過し、生理的条件下、細胞膜内あるいは細胞内で非酵素的に徐々に加水分解されて、対応するヌクレオシド系抗がん剤又は抗ウィルス剤を効率良く遊離する。これらのヌクレオシド類が核酸生合成ルートを経てDNAやRNAに取り込まれてDNAやRNAの修飾・伸長阻害をしたり、対応するタンパク質の合成阻害をしたり、逆転写酵素を阻害したりして殺細胞作用を示すことが推測されることから、様々ながんやウィルス感染症の予防もしくは治療薬として機能することが期待できる。 According to the present invention, the 5′-position silyl ether derivative of a nucleoside anticancer agent or antiviral agent is more lipophilic than the corresponding nucleoside anticancer agent or antiviral agent, and thus can be administered orally. After being absorbed in the intestine, without being affected by various hydrolytic metabolic enzymes (carboxyesterase, cytidine deaminase, adenosine deaminase, etc.) in the blood or liver, It passes through the cell membrane of a virus-infected cell and is gradually hydrolyzed non-enzymatically in the cell membrane or in the cell under physiological conditions to efficiently release the corresponding nucleoside anticancer agent or antiviral agent. These nucleosides are incorporated into DNA or RNA via the nucleic acid biosynthesis route to inhibit modification or elongation of DNA or RNA, inhibit synthesis of the corresponding protein, or inhibit reverse transcriptase to kill. Since it is presumed to show cell action, it can be expected to function as a preventive or therapeutic agent for various cancers and viral infections.
 特に言及しない限り、本明細書及び特許請求の範囲で用いた用語は、以下に述べる意味を有する。 Unless otherwise stated, terms used in the present specification and claims have the meanings described below.
本発明の化合物又は其の塩
 本発明の化合物は、下記の式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-I000005
 
 
 ここで、式(I)中、Dはヌクレオシド系抗がん剤又は抗ウィルス剤の5’位部分であり、RとRとRはそれぞれ、置換基を有していてもよいアルキル基又はアリールアルキル基である。RとRとRはそれぞれ、同一であってもよく、異なっていてもよい。
The compound of the present invention or a salt thereof The compound of the present invention is a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-I000005


Here, in the formula (I), D is the 5′-position of the nucleoside anticancer agent or antiviral agent, and R 1 , R 2, and R 3 are each optionally substituted alkyl. Group or an arylalkyl group. R 1 , R 2 and R 3 may be the same or different.
 ヌクレオシド系抗がん剤としては、シタラビン(Cytarabine)、フロクスウリジン(Floxuridine)、ペントスタチン(Pentostatin)、フルダラビン(Fludarabine)、クラドリビン(Cladribine)、ゲムシタビンGemcitabine)、クロファラビン(Clofalabine)、ネララビン(Nelarabine)、トリフルオロチミジン(Trifluorothymidine、TFT)、DFP-10917、コルジセピン(Cordycepin)、8-クロロアクチノマイシン(8-Chloro-adenosine)、RX-3117、トリシリビン(Triciribine)、フォロデシン(Forodesine)、5-フルオロデオキシシチジン(5-Fluoro-2’-deoxycytidine)、リバビリン(Ribavirin)、アカデシン(Acadecine)等が挙げられ、これらのヌクレオシド系抗がん剤の化学構造を例として下記に示す。
Figure JPOXMLDOC01-appb-I000006
 
 
Nucleoside anticancer agents include cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, clofalabine, and nearabine , Trifluorothymidine (TFT), DFP-10917, Cordycepin, 8-Chloro-adenosine, RX-3117, Triciribine, Forodesine, 5-Fluorodeoxy Examples include cytidine (5-Fluoro-2'-deoxycytidine), ribavirin, acadecine, etc. The chemical structures of these nucleoside anticancer agents are shown below as examples.
Figure JPOXMLDOC01-appb-I000006

 また、ヌクレオシド系抗ウィルス剤としては、ジドブジン(Zidovudine)、ラミブジン(Lamivudine)、スタブジン(Stavudine)、アバカビル(Abacavir)、エムトリシタビン(Emtricitabine)、ジダノシン(Didanosine)、ザルシタビン(Zalcitabine)等が挙げられ、これらのヌクレオシド系抗ウィルス剤の化学構造を下記に示す。
Figure JPOXMLDOC01-appb-I000007
Examples of the nucleoside antiviral agent include zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine, zalcitabine, and the like. The chemical structure of the nucleoside antiviral agent is shown below.
Figure JPOXMLDOC01-appb-I000007
 本発明の式(I)で表わす化合物としては、例えば、下記の式(i)~ (xvi) 等が挙げられる。
Figure JPOXMLDOC01-appb-I000008
 
 
 上記の式(i)~ (xvi)において、RとRとRはそれぞれ、置換基を有していてもよいアルキル基又はアリールアルキル基である。また、RとRとRはそれぞれ、同一であってもよく、異なっていてもよい。
Examples of the compound represented by the formula (I) of the present invention include the following formulas (i) to (xvi).
Figure JPOXMLDOC01-appb-I000008


In the above formulas (i) to (xvi), R 1 , R 2 and R 3 are each an alkyl group or an arylalkyl group which may have a substituent. R 1 , R 2 and R 3 may be the same or different.
 「置換基を有していてもよいアルキル基」とは、置換基を有していてもよく、また、有していなくてもよい。置換基はアルキル基の置換可能な位置に1ないし5個、好ましくは1~3個有していてもよく、置換基数が2個以上の場合は各置換基が同一又は異なっていてもよい。置換基としては、アルキル基、ハロゲン原子、シアノ基、ニトロ基等が挙げられるが、好ましい置換基の例は、アルキル基及びハロゲン原子である。 The “alkyl group optionally having substituent (s)” may or may not have a substituent. The substituent may have 1 to 5, preferably 1 to 3 substituents at the substitutable position of the alkyl group, and when the number of substituents is 2 or more, each substituent may be the same or different. Examples of the substituent include an alkyl group, a halogen atom, a cyano group, and a nitro group. Preferred examples of the substituent are an alkyl group and a halogen atom.
 「アルキル基」とは、特に限定しない限り、飽和脂肪族炭化水素基、例えば炭素数が1~20の直鎖または分岐鎖状のアルキル基あるいは環状のアルキル基を示す。直鎖または分岐鎖状のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基等のC~Cアルキル基、ヘプチル基、1-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、1,1,3-トリメチルブチル基、1,2,2-トリメチルブチル基、1,3,3-トリメチルブチル基、2,2,3-トリメチルブチル基、2,3,3-トリメチルブチル基、1-プロピルブチル基、1,1,2,2-テトラメチルプロピル基、オクチル基、1-メチルヘプチル基、3-メチルヘプチル基、6-メチルヘプチル基、2-エチルヘキシル基、5,5-ジメチルヘキシル基、2,4,4-トリメチルペンチル基、1-エチル-1-メチルペンチル基、ノニル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、7-メチルオクチル基、1-エチルヘプチル基、1,1-ジメチルヘプチル基、6,6-ジメチルヘプチル基、デシル基、1-メチルノニル基、2-メチルノニル基、6-メチルノニル基、1-エチルオクチル基、1-プロピルヘプチル基、n-ノニル基、n-デシル等の置換基を挙げることができるが、C~Cアルキルの基が好ましい。C~Cアルキルの基の好ましい例は、メチル基及びエチル基である。環状のアルキル基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の基を挙げることができる。また、環状のアルキル基の好ましい例は、シクロペンチル基及びシクロヘキシル基である。 The “alkyl group” refers to a saturated aliphatic hydrocarbon group, for example, a linear or branched alkyl group having 1 to 20 carbon atoms or a cyclic alkyl group, unless otherwise specified. Examples of the linear or branched alkyl group include C 1 such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, and hexyl group. ∼C 6 alkyl group, heptyl group, 1-methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 4,4-dimethylpentyl group, 1-ethylpentyl group 2-ethylpentyl group, 1,1,3-trimethylbutyl group, 1,2,2-trimethylbutyl group, 1,3,3-trimethylbutyl group, 2,2,3-trimethylbutyl group, 2,3 , 3-trimethylbutyl group, 1-propylbutyl group, 1,1,2,2-tetramethylpropyl group, octyl group, 1-methylheptyl group, 3-methylheptyl group 6-methylheptyl group, 2-ethylhexyl group, 5,5-dimethylhexyl group, 2,4,4-trimethylpentyl group, 1-ethyl-1-methylpentyl group, nonyl group, 1-methyloctyl group, 2- Methyloctyl group, 3-methyloctyl group, 7-methyloctyl group, 1-ethylheptyl group, 1,1-dimethylheptyl group, 6,6-dimethylheptyl group, decyl group, 1-methylnonyl group, 2-methylnonyl group , 6-methylnonyl group, 1-ethyloctyl group, 1-propylheptyl group, n-nonyl group, n-decyl group and the like, and a C 1 -C 6 alkyl group is preferable. Preferred examples of the C 1 -C 6 alkyl group are a methyl group and an ethyl group. Examples of the cyclic alkyl group include groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Preferred examples of the cyclic alkyl group are a cyclopentyl group and a cyclohexyl group.
 「置換基を有していてもよいアリールアルキル基」とは、置換基を有していてもよく、また、有していなくてもよい。置換基はアリールアルキル基の置換可能な位置に1ないし5個、好ましくは1~3個有していてもよく、置換基数が2個以上の場合は各置換基が同一又は異なっていてもよい。置換基としては、アルキル基、ハロゲン原子、シアノ基、ニトロ基等が挙げられるが、好ましい置換基の例は、アルキル基及びハロゲン原子である。 The “arylalkyl group which may have a substituent” may or may not have a substituent. The substituent may have 1 to 5, preferably 1 to 3 substituents at the substitutable position of the arylalkyl group. When the number of substituents is 2 or more, each substituent may be the same or different. . Examples of the substituent include an alkyl group, a halogen atom, a cyano group, and a nitro group. Preferred examples of the substituent are an alkyl group and a halogen atom.
 「アリールアルキル」とは、アリールにより置換されたアルキル基を意味する。好ましくは、フェニルC~Cアルキル基、ナフチルC~Cアルキル基である。フェニルC~Cアルキル基の例は、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、3-フェニルプロピル基、4-フェニルブチル基、5-フェニルペンチル基、6-フェニルヘキシル基等を含み、ナフチルC~Cアルキル基の例は、ナフチルメチル基やナフチルエチル基等を含むが、これらに限定されるものではない。 “Arylalkyl” refers to an alkyl group substituted by an aryl. Preferred are a phenyl C 1 -C 6 alkyl group and a naphthyl C 1 -C 6 alkyl group. Examples of phenyl C 1 -C 6 alkyl groups are benzyl group, 1-phenylethyl group, 2-phenylethyl group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group. Examples of the naphthyl C 1 -C 6 alkyl group include, but are not limited to, a naphthylmethyl group, a naphthylethyl group, and the like.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子やヨウ素原子等を示し、好ましい例は、フッ素原子、塩素原子及び臭素原子である。 “Halogen atom” means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like, and preferred examples are a fluorine atom, a chlorine atom and a bromine atom.
 生成物の観点から、式(I)及び式(i)~ (xvi)中、R、R及びRの好ましい組み合わせは、R、R及びRがそれぞれ、同一又は異なっていてもよく、ハロゲン原子で置換されていてもよいC~Cアルキル基、又はハロゲン原子又はC~Cアルキル基で置換されていてもよいフェニルC~Cアルキル基である。 From the viewpoint of the product, in formula (I) and formula (i) ~ (xvi), a preferred combination of R 1, R 2 and R 3, R 1, R 2 and R 3 are each the same or different at best, a halogen atom optionally substituted C 1 have ~ C 6 alkyl group, or a halogen atom or a C 1 ~ C 6 alkyl-substituted phenyl C 1 optionally ~ C 6 alkyl group group.
 上記と同様の観点から、式(I)及び式(i)~ (xvi)中、R、R及びRのより好ましい組み合わせは、R、R及びRがそれぞれ、同一又は異なっていてもよく、C~Cアルキル基又はハロゲン原子で置換されていてもよいC~Cアルキル基又はC~Cアルキル基又はハロゲン原子で置換されていてもよいフェニルC~Cアルキル基である。 From the same viewpoint as above, in formulas (I) and (i) ~ (xvi), more preferred combinations of R 1, R 2 and R 3, R 1, R 2 and R 3 are each the same or different even if well, C 1 ~ C 6 alkyl group or a - optionally C 1 be substituted by a halogen atom C 6 alkyl group or a C 1 - C 6 alkyl group or a phenyl optionally substituted by a halogen atom C 1 A C 6 alkyl group.
 上記と同様の観点から、式(I)及び式(i)~ (xvi)中、R、R及びRのさらに好ましい組み合わせは、Rがメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基又はベンジル基であり、Rがメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基又はベンジル基であり、Rがメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基又はベンジル基である。 From the same viewpoint as described above, in the formula (I) and the formulas (i) to (xvi), a more preferable combination of R 1 , R 2 and R 3 is that R 1 is a methyl group, an ethyl group, a propyl group or an isopropyl group. Butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group or benzyl group, and R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group , Isobutyl group, tert-butyl group, pentyl group, hexyl group or benzyl group, and R 3 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group , A pentyl group, a hexyl group or a benzyl group.
 本発明の式(I)で表わす化合物の塩は、薬理学的に許容される塩であれば如何なる塩であってもよい。其の塩としては、例えば、無機酸塩(例えば、塩酸塩、硫酸塩、臭化水素酸塩、リン酸塩等)、有機酸塩(例えば、酢酸塩、トリフルオロ酢酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、プロピオン酸塩、クエン酸塩、酒石酸塩、乳酸塩、蓚酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩等)等の酸付加塩等が挙げられるが、これらに限定されるものではない。 The salt of the compound represented by the formula (I) of the present invention may be any salt as long as it is a pharmacologically acceptable salt. Examples of the salt include inorganic acid salts (for example, hydrochloride, sulfate, hydrobromide, phosphate, etc.), organic acid salts (for example, acetate, trifluoroacetate, succinate, And acid addition salts such as maleate, fumarate, propionate, citrate, tartrate, lactate, oxalate, methanesulfonate, p-toluenesulfonate, etc. It is not limited to.
  本発明の式(I)で表わす化合物は、結晶であってもよく、結晶形が単一であっても、複数の結晶形の混合物であってもよい。結晶は、自体公知の結晶化法を適用して、結晶化することによって製造することができる。 化合物 The compound represented by the formula (I) of the present invention may be a crystal, and may be a single crystal form or a mixture of a plurality of crystal forms. The crystal can be produced by crystallization by applying a crystallization method known per se.
  また、本発明の式(I)で表わす化合物は、溶媒和物(例えば、水和物等)であってもよく、溶媒和物及び無溶媒和物(例えば、非水和物等)のいずれも化合物(I)に包含される。 In addition, the compound represented by the formula (I) of the present invention may be a solvate (for example, a hydrate), and any of a solvate and a non-solvate (for example, a non-hydrate). Are also encompassed in compound (I).
 本発明のヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体は、ヌクレオシド系抗がん剤又は抗ウィルス剤のプロドラッグとなり得る。 The 5′-position silyl ether derivative of the nucleoside anticancer agent or antiviral agent of the present invention can be a prodrug of a nucleoside anticancer agent or antiviral agent.
本発明の化合物(I)の製造法
 本発明の化合物(I)は、例えば、以下に示す方法又はこれに準じた方法(例えば、Corey, E.J. et al., J. Am. Chem. Soc., 94, 6190, 1972; Morita, T. et al., Tetrahedron Lett., 21, 835, 1980; Kita, Y. et al., Tetrahedron Lett., 4311, 1979に記載されたシリルエーテル化等を参照。総説としては、Lalonde, M.; Chan, T.H. Synthesis, 817-845, 1985等を参照)によって製造することができる。
Production Method of Compound (I) of the Present Invention Compound (I) of the present invention can be produced , for example, by the method shown below or a method analogous thereto (for example, Corey, EJ et al., J. Am. Chem. Soc., 94, 6190, 1972; Morita, T. et al., Tetrahedron Lett., 21, 835, 1980; see Kita, Y. et al., Tetrahedron Lett., 4311, 1979, etc. For reviews, see Lalonde, M .; Chan, TH Synthesis, 817-845, 1985, etc.).
 即ち、化合物(I)又は其の塩は、自体公知の方法又はそれに準ずる方法によって製造することができる。例えば、各種ヌクレオシド類を適切な溶媒中、脱ハロゲン化水素の存在下、トリアルキルシリルハライド化合物と反応させることにより、又は、塩基存在下、トリアルキルシリルアシレート化合物と反応させることにより、目的とするヌクレオシド類の5’位トリアルキルシリルエーテル誘導体を得ることができる。 That is, compound (I) or a salt thereof can be produced by a method known per se or a method analogous thereto. For example, by reacting various nucleosides with a trialkylsilyl halide compound in an appropriate solvent in the presence of dehydrohalogen, or by reacting with a trialkylsilyl acylate compound in the presence of a base. 5'-position trialkylsilyl ether derivatives of nucleosides can be obtained.
シリルハライド又はシリルアシレート化合物
 シリルハライド化合物の種類は特に限定されず、当業界で用いられるものはいずれも本発明の方法に使用できる。例えば、トリアルキルシリルハライド化合物、モノアルキルジアリールアルキルシリルハライド化合物、ジアルキルモノアリールアルキルシリルハライド、トリアリールアルキルシリルハライド化合物等を用いることができる。シリルハライド化合物がアルキル基を有する場合には、アルキル基として、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基又はtert-ブチル基等を用いることができる。これらのうち、メチル基又はエチル基又はプロピル基が好ましい。シリルハライド化合物がアリールアルキル基を有する場合にはベンジル基等を用いることができる。シリルハライド化合物を構成するハロゲン原子としては、塩素原子又は臭素原子又はヨウ素原子等を用いることができ、塩素原子を用いることが好ましい。シリルハライド化合物として、より具体的には、トリメチルシリルクロライド(トリメチルクロロシランと呼ばれる場合もある。以下の化合物についても同様である。)、トリエチルシリルクロライド、イソプロピルジメチルシリルクロライド、tert-ブチルジメチルシリルクロライド等を挙げることができる。
 シリルアシレート化合物の種類は特に限定されず、当業界で用いられるものはいずれも本発明の方法に使用できる。例えば、トリアルキルシリルアシレート化合物、モノアルキルジアリールアルキルシリルアシレート化合物、ジアルキルモノアリールアルキルシリルアシレート、トリアリールアルキルシリルアシレート化合物等を用いることができる。シリルアシレート化合物がアルキル基を有する場合には、アルキル基として、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基又はtert-ブチル基等を用いることができる。これらのうち、メチル基又はエチル基又はプロピル基が好ましい。シリルアシレート化合物がアリールアルキル基を有する場合にはベンジル基等を用いることができる。シリルアシレート化合物として、より具体的には、トリメチルシリルアセテート、トリエチルシリルアセテート、イソプロピルジメチルシリルアセテート、tert-ブチルジメチルシリルアセテート、トリメチルシリルトリフレート、トリエチルシリルトリフレート、イソプロピルジメチルシリルトリフレート、tert-ブチルジメチルシリルトリフレート等を挙げることができる。
The kind of silyl halide or silyl acylate compound is not particularly limited, and any of those used in the art can be used in the method of the present invention. For example, a trialkylsilyl halide compound, a monoalkyldiarylalkylsilyl halide compound, a dialkylmonoarylalkylsilyl halide, a triarylalkylsilyl halide compound, or the like can be used. When the silyl halide compound has an alkyl group, examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group. Can be used. Of these, a methyl group, an ethyl group, or a propyl group is preferable. When the silyl halide compound has an arylalkyl group, a benzyl group or the like can be used. As a halogen atom which comprises a silyl halide compound, a chlorine atom, a bromine atom, an iodine atom, etc. can be used, and it is preferable to use a chlorine atom. More specifically, examples of the silyl halide compound include trimethylsilyl chloride (sometimes referred to as trimethylchlorosilane; the same applies to the following compounds), triethylsilyl chloride, isopropyldimethylsilyl chloride, tert-butyldimethylsilyl chloride, and the like. Can be mentioned.
The kind of silyl acylate compound is not particularly limited, and any of those used in the art can be used in the method of the present invention. For example, a trialkylsilyl acylate compound, a monoalkyldiarylalkylsilyl acylate compound, a dialkyl monoarylalkylsilyl acylate, a triarylalkylsilyl acylate compound, or the like can be used. When the silyl acylate compound has an alkyl group, examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group. Can be used. Of these, a methyl group, an ethyl group, or a propyl group is preferable. When the silyl acylate compound has an arylalkyl group, a benzyl group or the like can be used. More specifically, as the silyl acylate compound, trimethylsilyl acetate, triethylsilyl acetate, isopropyldimethylsilyl acetate, tert-butyldimethylsilyl acetate, trimethylsilyl triflate, triethylsilyl triflate, isopropyldimethylsilyl triflate, tert-butyldimethyl Examples thereof include silyl triflate.
(脱ハロゲン化水素剤又は塩基) 使用する脱ハロゲン化水素剤又は塩基としては、有機塩基及び無機塩基が挙げられ、有機塩基としては、これらに限られないが、トリエチルアミン、N,N-ジイソプロピルエチルアミン、イミダゾール、ピリジン、4-ジメチルアミノピリジン、n-ブチルリチウム、カリウム tert-ブトキサイド等が挙げられ、イミダゾール及びトリエチルアミンが好ましい。無機塩基としては、これらに限られないが、水素化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム又は炭酸セシウム等が挙げられる。塩基の使用量としては、原料化合物の当量以上が好ましい。更には、原料化合物1モルに対して通常1.0~10.0当量の範囲を例示できるが、好ましくは1.0~6.0当量の範囲が良く、より好ましくは1.0~4.0当量の範囲であることが良い。 (Dehydrohalogenating agent or base) Examples of the dehydrohalogenating agent or base used include organic bases and inorganic bases. Examples of organic bases include, but are not limited to, triethylamine, N, N-diisopropylethylamine. Imidazole, pyridine, 4-dimethylaminopyridine, n-butyllithium, potassium tert-butoxide and the like, and imidazole and triethylamine are preferred. Examples of the inorganic base include, but are not limited to, sodium hydride, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, cesium carbonate, and the like. As the usage-amount of a base, the equivalent of a raw material compound or more is preferable. Furthermore, a range of 1.0 to 10.0 equivalents can usually be exemplified with respect to 1 mol of the raw material compound, but a range of 1.0 to 6.0 equivalents is preferable, and 1.0 to 4.4 is more preferable. The range is preferably 0 equivalent.
(反応溶媒)
 反応の円滑な進行等の観点から、本発明の反応は溶媒の存在下で実施することが好ましい。本発明の反応における溶媒は、反応が進行する限りは、いずれの溶媒でもよい。
 本発明の反応における溶媒としては、例えば、アミド類(例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジエチルアセトアミド、N-メチルピロリドン(NMP)等、好ましくはDMF、DMAC、NMP、より好ましくはDMFやスルホキシド類(例えば、ジメチルスルホキシド等)を含むが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。本発明の反応における溶媒の使用量は、当業者により適切に調整されることができる。
(Reaction solvent)
From the viewpoint of smooth progress of the reaction, the reaction of the present invention is preferably carried out in the presence of a solvent. The solvent in the reaction of the present invention may be any solvent as long as the reaction proceeds.
Examples of the solvent in the reaction of the present invention include amides (for example, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N, N-diethylacetamide, N-methylpyrrolidone (NMP)). Etc., preferably DMF, DMAC, NMP, more preferably DMF and sulfoxides (for example, dimethyl sulfoxide, etc.), but are not limited to these, as long as the reaction proceeds, The amount of the solvent used in the reaction of the present invention can be appropriately adjusted by those skilled in the art.
(反応温度)
 本発明の反応温度は、特に制限されない。一つの態様においては、収率の向上や副生成物の抑制及び経済的効率等の観点から、-20℃~50℃(すなわち、マイナス20℃~プラス50℃)、好ましくは-10℃~30℃(すなわち、マイナス10℃~プラス30℃)の範囲を例示できる。
(Reaction temperature)
The reaction temperature of the present invention is not particularly limited. In one embodiment, from the viewpoints of yield improvement, suppression of by-products and economic efficiency, etc., −20 ° C. to 50 ° C. (ie, minus 20 ° C. to plus 50 ° C.), preferably −10 ° C. to 30 ° C. A range of ° C. (that is, minus 10 ° C. to plus 30 ° C.) can be exemplified.
(反応時間)
 本発明の反応時間は、特に制限されない。一つの態様においては、収率の向上や副生成物の抑制及び経済的効率等の観点から、0.5時間~120時間、好ましくは0.5時間~72時間、より好ましくは0.5時間~48時間、さらに好ましくは0.5時間~24時間の範囲を例示できる。しかしながら、本発明の反応時間は、当業者により適切に調整されることができる。
(Reaction time)
The reaction time of the present invention is not particularly limited. In one embodiment, from the viewpoint of improvement in yield, suppression of by-products and economic efficiency, etc., 0.5 hours to 120 hours, preferably 0.5 hours to 72 hours, more preferably 0.5 hours. A range of ˜48 hours, more preferably 0.5 hours to 24 hours can be exemplified. However, the reaction time of the present invention can be appropriately adjusted by those skilled in the art.
本発明の医薬組成物
 本発明の化合物(I)は、そのまま、あるいは自体公知の方法により薬理学的に許容される担体と混合して医薬組成物とすることにより、哺乳動物(例、ヒト、サル、ネコ、ブタ、ウマ、ウシ、マウス、ラット、モルモット、イヌ、ウサギ等)に対して安全な医薬として用いることができる。
Pharmaceutical composition of the present invention The compound (I) of the present invention can be used as a pharmaceutical composition by mixing it with a pharmacologically acceptable carrier as it is or by a method known per se. Monkeys, cats, pigs, horses, cows, mice, rats, guinea pigs, dogs, rabbits, etc.).
 ここにおいて、薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、例えば、固形製剤における賦形剤、滑沢剤、結合剤及び崩壊剤;液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤及び緩衝剤等が挙げられる。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤等の製剤添加物を用いることもできる。
 医薬組成物の剤形としては、例えば、錠剤、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、シロップ剤、乳剤、懸濁剤、徐放剤等の経口剤等が挙げられ、これらは経口的に安全に投与できる。また、液剤も可能であるので、これに限られたものではない。
 医薬組成物は、製剤技術分野において慣用の方法、例えば、日本薬局方に記載の方法等により製造することができる。
Here, as the pharmacologically acceptable carrier, various organic or inorganic carrier substances commonly used as pharmaceutical materials are used. For example, excipients, lubricants, binders and disintegrants in solid formulations; liquid formulations Solvents, solubilizing agents, suspending agents, tonicity agents, buffering agents and the like. If necessary, preparation additives such as preservatives, antioxidants, colorants, sweeteners and the like can also be used.
Examples of the dosage form of the pharmaceutical composition include tablets, capsules (including soft capsules and microcapsules), granules, powders, syrups, emulsions, suspensions, sustained-release oral preparations, and the like. These can be safely administered orally. Moreover, since a liquid agent is also possible, it is not restricted to this.
The pharmaceutical composition can be produced by a method commonly used in the field of pharmaceutical technology, for example, a method described in the Japanese Pharmacopoeia.
本発明の化合物(I)の用途
  本発明の化合物(I)は、多くの治療的及び予防的用途を有する。好ましい実施態様では、本発明の化合物(I)は、それぞれ対応するヌクレオシド類の適応症に対して用いられる。例えば、ゲムシタビンの5’位シリルエーテル誘導体(上図中の式 (vi) を参照)の場合は、非小細胞肺癌、膵癌、胆道癌、尿路上皮癌、手術不能又は再発乳癌、がん化学療法後に増悪した卵巣癌、再発又は難治性の悪性リンパ腫等が好ましい適応症である。
Uses of Compound (I) of the Invention The compound (I) of the invention has many therapeutic and prophylactic uses. In a preferred embodiment, the compounds (I) of the invention are each used for the corresponding nucleoside indication. For example, 5'-position silyl ether derivative of gemcitabine (see formula (vi) in the above figure), non-small cell lung cancer, pancreatic cancer, biliary tract cancer, urothelial cancer, inoperable or recurrent breast cancer, cancer chemistry Ovarian cancer, exacerbated after therapy, relapsed or refractory malignant lymphoma, etc. are preferred indications.
 本発明で使用される医薬組成物は、経口投与用剤形として提供される。本明細書において提供される医薬組成物は、経口投与のために、固形、半固形又は液状投与剤形で提供され得る。本明細書で用いられる場合、経口投与には、頬、舌及び舌下投与も含まれる。適切な経口投与剤形には、錠剤、カプセル、丸剤、トローチ、薬用キャンディー、芳香製剤、カシェ剤、ペレット剤、薬物添加チューインガム、顆粒剤、原末、発泡製剤又は非発泡粉末若しくは顆粒剤、溶液、エマルション、懸濁液、溶液、ウェハ、スプリンクル(sprinkles)、エリキシル剤及びシロップ剤が含まれるが、これらに限定されない。活性成分に加え、医薬組成物は、結合剤、充填材、希釈剤、崩壊剤、湿潤剤、滑沢剤、流動促進剤、着色剤、色素遊走阻止剤、甘味剤及び香味料を含むが、これらに限定されない1種以上の医薬として許容し得る担体又は賦形剤を含んでもよい。
 医薬組成物又は剤形内の本発明の化合物(I)の量は、例えば、約1mg~約2,000mg、約10mg~約2,000mg、約20mg~約2,000mg、約50mg~約1,000mg、約100mg~約500mg、約150mg~約500mg又は約150mg~約250mgの範囲であってもよい。
The pharmaceutical composition used in the present invention is provided as a dosage form for oral administration. The pharmaceutical compositions provided herein can be provided in solid, semi-solid or liquid dosage forms for oral administration. As used herein, oral administration also includes buccal, lingual and sublingual administration. Suitable oral dosage forms include tablets, capsules, pills, troches, medicinal candy, aroma preparations, cachets, pellets, drug-added chewing gum, granules, bulk powders, foamed formulations or non-foamed powders or granules, Examples include, but are not limited to, solutions, emulsions, suspensions, solutions, wafers, sprinkles, elixirs and syrups. In addition to the active ingredient, the pharmaceutical composition comprises binders, fillers, diluents, disintegrants, wetting agents, lubricants, glidants, colorants, pigment migration inhibitors, sweeteners and flavoring agents, One or more pharmaceutically acceptable carriers or excipients may be included without limitation.
The amount of compound (I) of the present invention within the pharmaceutical composition or dosage form is, for example, from about 1 mg to about 2,000 mg, from about 10 mg to about 2,000 mg, from about 20 mg to about 2,000 mg, from about 50 mg to about 1,000 mg, about It may range from 100 mg to about 500 mg, from about 150 mg to about 500 mg, or from about 150 mg to about 250 mg.
 本発明の化合物を抗がん剤として用いる場合、その有効投与量は、がんの性質、がんの進行程度、治療方針、転移の程度、腫瘍の量、体重、年齢、性別及び患者の(遺伝的)人種的背景等に依存して適宜選択できるが、薬学的有効量は一般に、臨床上観察される症状、がんの進行度合い等の要因に基づいて決定される。一日あたりの投与量は、例えば、ヒトに投与する場合は、約0.01~約10mg/kg(体重60kgの成人では、約0.5mg~約500mg)、好ましくは約0.05~約5mg/kg、より好ましくは約0.1~約2mg/kgである。投与は、1回で投与しても複数回に分けて投与してもよい。 When the compound of the present invention is used as an anticancer agent, the effective dose is determined according to the nature of the cancer, the degree of progression of the cancer, the treatment policy, the degree of metastasis, the amount of the tumor, the body weight, age, sex, and the patient's ( Although it can be appropriately selected depending on genetic or racial background, the pharmaceutically effective amount is generally determined based on factors such as clinically observed symptoms and the degree of progression of cancer. The daily dose is, for example, about 0.01 to about 10 mg / kg (about 0.5 mg to about 500 mg for a 60 kg adult), preferably about 0.05 to about 5 mg / kg when administered to a human. Preferably, it is about 0.1 to about 2 mg / kg. Administration may be performed once or divided into multiple times.
 このようにして得られたヌクレオシド類の5’位シリルエーテル誘導体について、加水分解的代謝酵素シチジンデアミナーゼ存在下での安定性を調べたところ、本発明に係る誘導体のうち、シトシン骨格を有するヌクレオシド類の5’位シリルエーテル誘導体(式(I)を参照)はいずれの場合も、シチジンデアミナーゼ存在下でも非常に安定であることが判明し、これらシトシン誘導体の5’位シリルエーテル誘導体は血中や肝臓にある酵素シチジンデアミナーゼによる加水分解的代謝を受けにくいことが確認できた。一方、5’位に水酸基を有するヌクレオシド類(例えば、ゲムシタビン等)は、用いた条件下で、30分以内に分解した。 The stability of the 5′-position silyl ether derivatives of the nucleosides thus obtained in the presence of the hydrolytic metabolic enzyme cytidine deaminase was examined. Among the derivatives according to the present invention, nucleosides having a cytosine skeleton were used. 5′-position silyl ether derivatives (see formula (I)) were found to be very stable in the presence of cytidine deaminase in all cases. It was confirmed that it was difficult to undergo hydrolytic metabolism by the enzyme cytidine deaminase in the liver. On the other hand, nucleosides having a hydroxyl group at the 5 'position (for example, gemcitabine) were decomposed within 30 minutes under the conditions used.
 また、このようにして得られたヌクレオシド類の5’位シリルエーテル誘導体(式(I)を参照)について、生理的条件に近い環境下(例えば、37℃、リン酸緩衝生理食塩水溶液中)で安定性を調べたところ、本発明に係る誘導体のうち、シリル基に直結した置換基(R、R及びR)を適切に選択すると、適度なスピードで加水分解され、対応するヌクレオシド類を効率良く与えることが確認できた。 In addition, the 5′-position silyl ether derivative of the nucleoside thus obtained (see formula (I)) is used in an environment close to physiological conditions (for example, at 37 ° C. in a phosphate buffered saline solution). When the stability was examined, among the derivatives according to the present invention, when the substituents (R 1 , R 2 and R 3 ) directly linked to the silyl group were appropriately selected, the derivatives were hydrolyzed at an appropriate speed and the corresponding nucleosides were obtained. Was confirmed to be efficiently given.
 それ故、上記の加水分解的代謝酵素に対する高い安定性を有し、且つ、生理的条件下で適度な加水分解反応性を有する本発明に係るヌクレオシド類の5’位シリルエーテル誘導体(式(I)を参照)は、対応するヌクレオシド類のプロドラッグとなり得る。 Therefore, the 5′-position silyl ether derivative of the nucleoside according to the present invention having a high stability to the above-mentioned hydrolytic metabolic enzyme and an appropriate hydrolysis reactivity under physiological conditions (formula (I Can be prodrugs of the corresponding nucleosides.
 それらヌクレオシド類の5’位シリルエーテル誘導体(式(I)を参照)の製造と代謝的加水分解酵素、例えば、シチジンデアミナーゼに対する安定性やリン酸緩衝生理食塩水溶液中の加水分解反応性に関する実験の詳細につき、以下に示す。
実施例
Production of 5'-position silyl ether derivatives of these nucleosides (see formula (I)) and experiments on the stability to metabolic hydrolases such as cytidine deaminase and hydrolysis reactivity in phosphate buffered saline solutions Details are shown below.
Example
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but these do not limit the present invention.
 以下の実施例において、室温は、約15~30℃を意味する。H-NMRと13C-NMRは、日本電子JNM-ECZ 400Rを用いて測定し、内部標準のテトラメチルシランからのケミカルシフトδ(ppm)を示した。 其の他の本明細書中の記号は、以下の意味を示す。 s:シングレット、d:ダブレット、t:トリプレット、m:マルチプレット、br:ブロード、br s:ブロードシングレット、J:結合定数 また、各化合物のMassは、Yamazen Smart Flash MS system装置を用いて測定した値である。 In the following examples, room temperature means about 15-30 ° C. 1 H-NMR and 13 C-NMR were measured using JEOL JNM-ECZ 400R and showed a chemical shift δ (ppm) from tetramethylsilane as an internal standard. Other symbols in the present specification have the following meanings. s: singlet, d: doublet, t: triplet, m: multiplet, br: broad, br s: broad singlet, J: binding constant Mass of each compound was measured using a Yamazen Smart Flash MS system apparatus. Value.
ヌクレオシド類とトリアルキルシリルハライドとの脱ハロゲン化水素剤存在下での縮合 Condensation of nucleosides with trialkylsilyl halides in the presence of dehydrohalogenating agents.
 ヌクレオシド類(1mM)を無水N、N-ジメチルホルムアミド(DMF)約3mLに室温にて溶解もしくは懸濁させ、これにイミダゾール(原料に対して、約1.2倍モル)と対応するトリアルキルシリルハライド(原料に対して、約1.2倍モル)を0℃冷却下にて添加し、次いで、徐々に室温にもどしながら原料が消失するまで(約0.5~17時間)撹拌した。其の反応液を酢酸エチル-飽和食塩水(2:1)混液50mLに注ぎ、酢酸エチルで抽出した。其の抽出液を、飽和食塩水(10mL、二度)にて洗浄後、無水硫酸ナトリウムで乾燥し、不溶物を除いた抽出液を減圧乾固して得られた油状残留物をシリカゲルパックカラム(Yamazen Smart Flash MS system装置)にて分離精製することにより、目的とするヌクレオシド類の5’位トリアルキルシリルエーテル誘導体を白色粉末として得た。なお、以後は、これを合成法Aと称する。 Nucleosides (1 mM) are dissolved or suspended in about 3 mL of anhydrous N, N-dimethylformamide (DMF) at room temperature, and this is mixed with imidazole (about 1.2 times mol with respect to the raw material) and the corresponding trialkylsilyl. Halide (about 1.2 times mol with respect to the raw material) was added under cooling at 0 ° C., and then the mixture was stirred while gradually returning to room temperature until the raw material disappeared (about 0.5 to 17 hours). The reaction mixture was poured into 50 mL of a mixture of ethyl acetate and saturated brine (2: 1), and extracted with ethyl acetate. The extract was washed with saturated brine (10 mL, twice), dried over anhydrous sodium sulfate, and the extract obtained by removing the insoluble matter under reduced pressure was dried under reduced pressure to obtain an oily residue. Separating and purifying with (Yamazen Smart Flash MS system apparatus), the 5′-position trialkylsilyl ether derivative of the target nucleoside was obtained as a white powder. Hereinafter, this is referred to as synthesis method A.
 ヌクレオシド類とトリアルキルシリルアシレートとの塩基存在下での縮合 Condensation of nucleosides with trialkylsilyl acylate in the presence of a base
 ヌクレオシド類(1mM)を無水DMF約3mLに室温にて溶解もしくは懸濁させ、これにトリエチルアミン(原料に対して、約1.2倍モル)と対応するトリアルキルシリルアシレート(原料に対して、約1.2倍モル)を0℃冷却下にて添加し、次いで、徐々に室温にもどしながら原料が消失するまで(約0.5~17時間)撹拌した。其の反応液を酢酸エチル-飽和食塩水(2:1)混液50mLに注ぎ、酢酸エチルで抽出した。其の抽出液を、飽和食塩水(10mL、二度)にて洗浄後、無水硫酸ナトリウムで乾燥し、不溶物を除いた抽出液を減圧乾固して得られた油状残留物をシリカゲルパックカラム(Yamazen Smart Flash MS system装置)にて分離精製することにより、目的とするヌクレオシド類の5’位トリアルキルシリルエーテル誘導体を白色粉末として得た。なお、以後は、これを合成法Bと称する。 Nucleosides (1 mM) were dissolved or suspended in about 3 mL of anhydrous DMF at room temperature, and triethylamine (about 1.2 times mol to the raw material) and corresponding trialkylsilyl acylate (to the raw material, About 1.2 times mol) was added under cooling at 0 ° C., and then the mixture was stirred while gradually returning to room temperature until the raw materials disappeared (about 0.5 to 17 hours). The reaction mixture was poured into 50 mL of a mixture of ethyl acetate and saturated brine (2: 1), and extracted with ethyl acetate. The extract was washed with saturated brine (10 mL, twice), dried over anhydrous sodium sulfate, and the extract obtained by removing the insoluble matter under reduced pressure was dried under reduced pressure to obtain an oily residue. Separating and purifying with (Yamazen Smart Flash MS system apparatus), the 5′-position trialkylsilyl ether derivative of the target nucleoside was obtained as a white powder. Hereinafter, this is referred to as synthesis method B.
 ヌクレオシド類とトリアルキルシリルトリフレートとの塩基存在下での縮合 Condensation of nucleosides with trialkylsilyl triflate in the presence of a base
 ヌクレオシド類(1mM)を無水DMF約3mLに室温にて溶解もしくは懸濁させ、これにトリエチルアミン(原料に対して、約1.2倍モル)と対応するトリアルキルシリルトリフレート(原料に対して、約1.2倍モル)を-10℃冷却下にて添加し、次いで、徐々に室温にもどしながら原料が消失するまで(約0.5~17時間)撹拌した。其の反応液を酢酸エチル-飽和食塩水(2:1)混液50mLに注ぎ、酢酸エチルで抽出した。其の抽出液を、飽和食塩水(10mL、二度)にて洗浄後、無水硫酸ナトリウムで乾燥し、不溶物を除いた抽出液を減圧乾固して得られた油状残留物をシリカゲルパックカラム(Yamazen Smart Flash MS system装置)にて分離精製することにより、目的とするヌクレオシド類の5’位トリアルキルシリルエーテル誘導体を白色粉末として得た。なお、以後は、これを合成法Cと称する。 Nucleosides (1 mM) are dissolved or suspended in about 3 mL of anhydrous DMF at room temperature, and triethylamine (about 1.2 times mol to the raw material) and corresponding trialkylsilyl triflate (to the raw material, About 1.2-fold mol) was added under cooling at −10 ° C., and the mixture was stirred while gradually returning to room temperature until the raw material disappeared (about 0.5 to 17 hours). The reaction mixture was poured into 50 mL of a mixture of ethyl acetate and saturated brine (2: 1), and extracted with ethyl acetate. The extract was washed with saturated brine (10 mL, twice), dried over anhydrous sodium sulfate, and the extract obtained by removing the insoluble matter under reduced pressure was dried under reduced pressure to obtain an oily residue. Separating and purifying with (Yamazen Smart Flash MS system apparatus), the 5′-position trialkylsilyl ether derivative of the target nucleoside was obtained as a white powder. Hereinafter, this is referred to as synthesis method C.
 以下に、上記合成法A又は合成法B又は合成法Cにより、合成したヌクレオシド類の5’位トリアルキルシリルエーテル化合物に関するシリカゲルカラム分離系、単離収率、機器データ、分配係数を示す。
Figure JPOXMLDOC01-appb-I000009
 
(化合物A):5'-O-トリエチルシリル-ゲムシタビン:
(式(I)中、R1= R2= R3=エチル, D=ゲムシタビン-5'-イル)
合成法:A法(反応時間:約0.5時間、カラム溶出溶媒:酢酸エチル-メタノール系、単離収率:21%)、B法(単離収率:15%)、C法(単離収率:5%).
1H-NMR (DMSO-d6)δ:7.68 (d, J= 8.0Hz, 1H), 7.40 (s, 2H), 6.31 (d, J= 6.4Hz, 1H), 6.14 (t, J= 8.0Hz, 1H), 5.76 (d, J= 7.6Hz, 1H), 4.08-4.17 (m, 1H), 3.94 (d, J= 12Hz, 1H), 3.85 (dt, J= 8.4 & 2.4Hz, 1H), 3.80 (dd, J= 12 & 3.2Hz, 1H), 0.94 (t, J= 8.0Hz, 9H), and 0.63 (q, J= 8.0Hz, 6H) ppm. 
13C-NMR (DMSO-d6)δ:166.1, 155.1, 140.5, 123.5, 122.4 (t, J= 173Hz), 94.9, 84.0 (br t), 80.2, 68.6 (t, J= 22Hz), 60.8, 7.1, and 4.3 ppm. 
Mass: 378.1 (M++1) (Calcd. for  C15H25F2N3O4Si, MW= 377.46).
分配係数:log P = 2.75 (n-オクタノール/リン酸緩衝生理食塩水).
(化合物B):5'-O-tert-ブチルジメチルシリル-ゲムシタビン:
(式(I)中、R1= R2=メチル, R3= tert-ブチル, D=ゲムシタビン-5'-イル)
合成法:A法(反応時間:約0.5時間、カラム溶出溶媒:酢酸エチル-メタノール系、単離収率:46%)
1H-NMR (DMSO-d6)δ:7.63 (d, J= 7.2Hz, 1H), 7.39 (d, J= 4.0Hz, 2H), 6.31 (d, J= 6.4Hz, 1H), 6.14 (t, J= 7.2Hz, 1H), 5.75 (d, J= 8.0Hz, 1H), 4.07-4.17 (m, 1H), 3.94 (d, J= 11.6Hz, 1H), 3.86 (dt, J= 8.8 & 2.8Hz, 1H), 3.80 (dd, J= 12 & 3.2Hz, 1H), 0.90 (s, 9H), and 0.09 (d, J= 1.6Hz, 6H) ppm. 
13C-NMR (DMSO-d6)δ:165.5, 154.4, 139.8, 123.0 94.4, 84.1 (br t), 79.6, 68.0 (br t), 60.5, 25.6, 17.9, -5.6, and -5.7 ppm. 
Mass:378.1 (M++1) (Calcd. for  C15H25F2N3O4Si, MW= 377.46).
分配係数:log P = 2.70 (n-オクタノール/リン酸緩衝生理食塩水).
(化合物C):5'-O-イソプロピルジエチルシリル-ゲムシタビン:
(式(I)中、R1= R2=エチル, R3=イソプロピル, D=ゲムシタビン-5'-イル)
合成法:A法(反応時間:約0.5時間、カラム溶出溶媒:酢酸エチル-メタノール系、単離収率:46%)
1H-NMR (DMSO-d6)δ:7.67 (d, J= 7.2Hz, 1H), 7.39 (d, J= 6.8Hz, 2H), 6.32 (d, J= 6.4Hz, 1H), 6.14 (t, J= 7.6Hz, 1H), 5.75 (d, J= 7.2Hz, 1H), 4.10-4.21 (m, 1H), 3.97 (d, J= 11.2Hz, 1H), 3.87 (dt, J= 11.2 & 2.8Hz, 1H), 3.83 (dd, J= 14.8 & 2.8Hz, 1H), 0.97-1.10 (m, 1H), 0.98 (s, 6H), 0.95 (t, J= 4.4Hz, 6H), and 0.64 (q, J= 7.6Hz, 4H) ppm. 
13C-NMR (DMSO-d6)δ:165.4, 154.4, 139.7, 123.5 (t, J= 255Hz), 94.2, 83.2 (t, J= 22Hz), 79.6, 68.5 (t, J= 22Hz), 60.4, 16.9, 11.9, 6.6, 2.4, and 2.3 ppm. 
Mass:392.1 (M++1) (Calcd. for C16H27F2N3O4Si, MW= 391.49).
分配係数:log P = 3.16 (n-オクタノール/リン酸緩衝生理食塩水).
(化合物D):5'-O-ベンジルジメチルシリル-ゲムシタビン:
(式(I)中、R1= R2=メチル, R3=ベンジル, D= ゲムシタビン-5'-イル)
合成法:A法(反応時間:約0.5時間、カラム溶出溶媒:酢酸エチル-メタノール系、単離収率:37%)
1H-NMR (DMSO-d6)δ:7.55 (d, J= 7.6Hz, 1H), 7.39 (s, 2H), 7.16-7.23 (m, 2H), 7.04-7.08 (m, 3H), 6.31 (d, J= 6.8Hz, 1H), 6.14 (t, J= 7.6Hz, 1H), 5.71 (d, J= 7.2Hz, 1H), 4.05-4.16 (m, 1H), 3.93 (d, J= 10.4Hz, 1H), 3.78-3.86 (m, 2H), 2.22 (s, 2H), 0.08 (s, 3H), and 0.07 (s, 3H) ppm. 
13C-NMR (DMSO-d6)δ:166.1, 155.1, 140.8, 139.1, 128.7, 124.7, 123.5 (t, J= 256Hz), 95.1, 83.8 (br t), 80.1, 69.0 (t, J= 22Hz), 61.0, 26.1, and -2.2 ppm.
Mass:412.1 (M++1) (Calcd. for C18H23F2N3O4Si, MW= 411.48).
分配係数:log P = 2.26 (n-オクタノール/リン酸緩衝生理食塩水).
(化合物E):5'-O-トリエチルシリル-5-フルオロ-2'-デオキシシチジン:
(式(I)中、R1= R2= R3= エチル, D= 5-フルオロ-2'-デオキシシチジン-5'-イル)
合成法:A法(反応時間:約0.5時間、カラム溶出溶媒:クルロホルム-メタノール系、単離収率:37%)
1H-NMR (DMSO-d6)δ:8.03 (d, J= 6.8Hz, 1H), 7.79 (br, 1H), 7.53 (br, 1H), 6.11 (br t, 1H), 5.28 (d, J= 4.5Hz, 1H), 4.25-4.15 (m, 1H), 3.85-3.70 (m, 3H), 2.20-2.10 and 2.05-1.95 (each m, each 1H), 1.00-0.85 (m, 9H), and 0.70-0.55 (m, 6H) ppm. 
13C-NMR (DMSO-d6)δ:157.2 (J= 13Hz), 153.1, 135.9 (J= 241Hz), 124.7 (J= 32Hz), 86.5, 85.0, 69.7, 62.2, 40.6, 6.5, and 3.5 ppm.
Mass:360.2 (M++1) (Calcd. for C15H26FN3O4Si, MW= 359.47).
分配係数:log P = 2.66 (n-オクタノール/リン酸緩衝生理食塩水).
(化合物F):5'-O-トリエチルシリル-5-フルオロ-2'-デオキシウリジン:
(式(I)中、R1= R2= R3= エチル, D= 5-フルオロ-2'-デオキシウリジン-5'-イル)
合成法:A法(反応時間:約0.5時間、カラム溶出溶媒:クルロホルム-メタノール系、単離収率:28%)
1H-NMR (DMSO-d6)δ:11.86 (br, 1H), 8.05 (d, J= 7.4Hz, 1H), 6.14 (br t, 1H), 5.32 (br s, 1H), 4.22 (m, 1H), 3.90-3.70 (m, 3H), 2.20-2.10 (m, 1H), 1.00-0.90 (m, 9H), and 0.70-0.55 (m, 6H) ppm. 
13C-NMR (DMSO-d6)δ:156.9 (J= 16Hz), 148.8, 139.9 (J= 230Hz), 124.2 (J= 34Hz), 86.8, 84.5, 69.8, 62.2, 40.0, 6.5, and 3.5 ppm.
Mass:359.1 (M++1) (Calcd. for C15H25FN2O5Si, MW= 360.15).
分配係数:log P = 2.76 (n-オクタノール/リン酸緩衝生理食塩水).
The silica gel column separation system, isolated yield, instrument data, and distribution coefficient for the 5 ′ trialkylsilyl ether compound of the nucleoside synthesized by the above synthesis method A, synthesis method B, or synthesis method C are shown below.
Figure JPOXMLDOC01-appb-I000009

(Compound A): 5′-O-triethylsilyl-gemcitabine:
(In formula (I), R 1 = R 2 = R 3 = ethyl, D = gemcitabine-5'-yl)
Synthesis method: Method A (reaction time: about 0.5 hour, column elution solvent: ethyl acetate-methanol system, isolated yield: 21%), method B (isolated yield: 15%), method C (single (Separation yield: 5%).
1 H-NMR (DMSO-d 6 ) δ: 7.68 (d, J = 8.0 Hz, 1H), 7.40 (s, 2H), 6.31 (d, J = 6.4 Hz, 1H), 6.14 (t, J = 8.0 Hz, 1H), 5.76 (d, J = 7.6Hz, 1H), 4.08-4.17 (m, 1H), 3.94 (d, J = 12Hz, 1H), 3.85 (dt, J = 8.4 & 2.4Hz, 1H) , 3.80 (dd, J = 12 & 3.2Hz, 1H), 0.94 (t, J = 8.0Hz, 9H), and 0.63 (q, J = 8.0Hz, 6H) ppm.
13 C-NMR (DMSO-d 6 ) δ: 166.1, 155.1, 140.5, 123.5, 122.4 (t, J = 173Hz), 94.9, 84.0 (br t), 80.2, 68.6 (t, J = 22Hz), 60.8, 7.1, and 4.3 ppm.
Mass: 378.1 (M + +1) (Calcd. For C 15 H 25 F 2 N 3 O 4 Si, MW = 377.46).
Partition coefficient: log P = 2.75 (n-octanol / phosphate buffered saline).
(Compound B): 5′-O-tert-butyldimethylsilyl-gemcitabine:
(In the formula (I), R 1 = R 2 = methyl, R 3 = tert-butyl, D = gemcitabine-5'-yl)
Synthesis method: Method A (reaction time: about 0.5 hour, column elution solvent: ethyl acetate-methanol system, isolated yield: 46%)
1 H-NMR (DMSO-d 6 ) δ: 7.63 (d, J = 7.2Hz, 1H), 7.39 (d, J = 4.0Hz, 2H), 6.31 (d, J = 6.4Hz, 1H), 6.14 ( t, J = 7.2Hz, 1H), 5.75 (d, J = 8.0Hz, 1H), 4.07-4.17 (m, 1H), 3.94 (d, J = 11.6Hz, 1H), 3.86 (dt, J = 8.8 & 2.8Hz, 1H), 3.80 (dd, J = 12 & 3.2Hz, 1H), 0.90 (s, 9H), and 0.09 (d, J = 1.6Hz, 6H) ppm.
13 C-NMR (DMSO-d 6 ) δ: 165.5, 154.4, 139.8, 123.0 94.4, 84.1 (br t), 79.6, 68.0 (br t), 60.5, 25.6, 17.9, -5.6, and -5.7 ppm.
Mass: 378.1 (M + +1) (Calcd. For C 15 H 25 F 2 N 3 O 4 Si, MW = 377.46).
Partition coefficient: log P = 2.70 (n-octanol / phosphate buffered saline).
(Compound C): 5′-O-isopropyldiethylsilyl-gemcitabine:
(In formula (I), R 1 = R 2 = ethyl, R 3 = isopropyl, D = gemcitabine-5'-yl)
Synthesis method: Method A (reaction time: about 0.5 hour, column elution solvent: ethyl acetate-methanol system, isolated yield: 46%)
1 H-NMR (DMSO-d 6 ) δ: 7.67 (d, J = 7.2 Hz, 1H), 7.39 (d, J = 6.8 Hz, 2H), 6.32 (d, J = 6.4 Hz, 1H), 6.14 ( t, J = 7.6Hz, 1H), 5.75 (d, J = 7.2Hz, 1H), 4.10-4.21 (m, 1H), 3.97 (d, J = 11.2Hz, 1H), 3.87 (dt, J = 11.2 & 2.8Hz, 1H), 3.83 (dd, J = 14.8 & 2.8Hz, 1H), 0.97-1.10 (m, 1H), 0.98 (s, 6H), 0.95 (t, J = 4.4Hz, 6H), and 0.64 (q, J = 7.6Hz, 4H) ppm.
13 C-NMR (DMSO-d 6 ) δ: 165.4, 154.4, 139.7, 123.5 (t, J = 255 Hz), 94.2, 83.2 (t, J = 22 Hz), 79.6, 68.5 (t, J = 22 Hz), 60.4 , 16.9, 11.9, 6.6, 2.4, and 2.3 ppm.
Mass: 392.1 (M + +1) (Calcd. For C 16 H 27 F 2 N 3 O 4 Si, MW = 391.49).
Partition coefficient: log P = 3.16 (n-octanol / phosphate buffered saline).
(Compound D): 5′-O-benzyldimethylsilyl-gemcitabine:
(In formula (I), R 1 = R 2 = methyl, R 3 = benzyl, D = gemcitabine-5'-yl)
Synthesis method: Method A (reaction time: about 0.5 hour, column elution solvent: ethyl acetate-methanol system, isolated yield: 37%)
1 H-NMR (DMSO-d 6 ) δ: 7.55 (d, J = 7.6 Hz, 1H), 7.39 (s, 2H), 7.16-7.23 (m, 2H), 7.04-7.08 (m, 3H), 6.31 (d, J = 6.8Hz, 1H), 6.14 (t, J = 7.6Hz, 1H), 5.71 (d, J = 7.2Hz, 1H), 4.05-4.16 (m, 1H), 3.93 (d, J = 10.4Hz, 1H), 3.78-3.86 (m, 2H), 2.22 (s, 2H), 0.08 (s, 3H), and 0.07 (s, 3H) ppm.
13 C-NMR (DMSO-d 6 ) δ: 166.1, 155.1, 140.8, 139.1, 128.7, 124.7, 123.5 (t, J = 256Hz), 95.1, 83.8 (br t), 80.1, 69.0 (t, J = 22Hz ), 61.0, 26.1, and -2.2 ppm.
Mass: 412.1 (M + +1) (Calcd. For C 18 H 23 F 2 N 3 O 4 Si, MW = 411.48).
Partition coefficient: log P = 2.26 (n-octanol / phosphate buffered saline).
(Compound E): 5′-O-triethylsilyl-5-fluoro-2′-deoxycytidine:
(In formula (I), R 1 = R 2 = R 3 = ethyl, D = 5-fluoro-2'-deoxycytidin-5'-yl)
Synthesis method: Method A (reaction time: about 0.5 hour, column elution solvent: Kurroform-methanol system, isolated yield: 37%)
1 H-NMR (DMSO-d 6 ) δ: 8.03 (d, J = 6.8Hz, 1H), 7.79 (br, 1H), 7.53 (br, 1H), 6.11 (br t, 1H), 5.28 (d, J = 4.5Hz, 1H), 4.25-4.15 (m, 1H), 3.85-3.70 (m, 3H), 2.20-2.10 and 2.05-1.95 (each m, each 1H), 1.00-0.85 (m, 9H), and 0.70-0.55 (m, 6H) ppm.
13 C-NMR (DMSO-d 6 ) δ: 157.2 (J = 13 Hz), 153.1, 135.9 (J = 241 Hz), 124.7 (J = 32 Hz), 86.5, 85.0, 69.7, 62.2, 40.6, 6.5, and 3.5 ppm .
Mass: 360.2 (M + +1) (Calcd. For C 15 H 26 FN 3 O 4 Si, MW = 359.47).
Partition coefficient: log P = 2.66 (n-octanol / phosphate buffered saline).
(Compound F): 5′-O-triethylsilyl-5-fluoro-2′-deoxyuridine:
(In formula (I), R 1 = R 2 = R 3 = ethyl, D = 5-fluoro-2'-deoxyuridine-5'-yl)
Synthesis method: Method A (reaction time: about 0.5 hour, column elution solvent: Kurroform-methanol system, isolated yield: 28%)
1 H-NMR (DMSO-d 6 ) δ: 11.86 (br, 1H), 8.05 (d, J = 7.4Hz, 1H), 6.14 (br t, 1H), 5.32 (br s, 1H), 4.22 (m , 1H), 3.90-3.70 (m, 3H), 2.20-2.10 (m, 1H), 1.00-0.90 (m, 9H), and 0.70-0.55 (m, 6H) ppm.
13 C-NMR (DMSO-d 6 ) δ: 156.9 (J = 16 Hz), 148.8, 139.9 (J = 230 Hz), 124.2 (J = 34 Hz), 86.8, 84.5, 69.8, 62.2, 40.0, 6.5, and 3.5 ppm .
Mass: 359.1 (M + +1) (Calcd. For C 15 H 25 FN 2 O 5 Si, MW = 360.15).
Partition coefficient: log P = 2.76 (n-octanol / phosphate buffered saline).
試験例1Test example 1
 ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体のシチジンデアミナーゼに対する安定性 Stability of nucleoside anticancer or antiviral 5'-position silyl ether derivatives against cytidine deaminase
 ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体(式(I)を参照)約1mgをアセトニトリル1mLに溶解し、其の10μLをリン酸緩衝生理食塩水1mLに添加し、得られた溶液にシチジンデアミナーゼのリン酸緩衝生理食塩水溶液10μLを加えて、37℃にて約1時間撹拌した。其の反応液にアセトニトリル1mLを加えて遠心分離し、上澄液をHPLC分析した。例えば、5'-O-トリエチルシリル-ゲムシタビン(化合物A)と5'-O-イソプロピルジエチルシリル-ゲムシタビン(化合物C)の場合の分析結果を表1に示す。
 シチジンデアミナーゼ:CDA(1-146aa), Human, His-tagged, Recombinant cytidine deaminase (ATGen社)
HPLC測定条件:
   カラム:CAPCELL PAK ADME
       4.6mmx150mm、粒子サイズ:3μm
   溶出: 溶出液A=10mM蟻酸アンモニウム含有精製水
       溶出液B=アセトニトリル
       A:B=99:1→5:95、30分間のグラジエントモード
   流出速度:1.0mL/分    オーブン温度:40℃
   検出器:UV260nm
About 1 mg of a 5′-position silyl ether derivative (see formula (I)) of a nucleoside anticancer agent or antiviral agent is dissolved in 1 mL of acetonitrile, and 10 μL thereof is added to 1 mL of phosphate buffered saline. 10 μL of a cytidine deaminase phosphate buffered saline solution was added to the resulting solution and stirred at 37 ° C. for about 1 hour. 1 mL of acetonitrile was added to the reaction solution and centrifuged, and the supernatant was analyzed by HPLC. For example, Table 1 shows the analysis results for 5′-O-triethylsilyl-gemcitabine (Compound A) and 5′-O-isopropyldiethylsilyl-gemcitabine (Compound C).
Cytidine deaminase: CDA (1-146aa), Human, His-tagged, Recombinant cytidine deaminase (ATGen)
HPLC measurement conditions:
Column: CAPCELL PAK ADME
4.6 mm × 150 mm, particle size: 3 μm
Elution: Eluent A = 10 mM ammonium formate-containing purified water Eluent B = acetonitrile A: B = 99: 1 → 5: 95, 30 minute gradient mode Outflow rate: 1.0 mL / min Oven temperature: 40 ° C.
Detector: UV260nm
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 このように、本発明に係るシトシン骨格を有するヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体(式(I)を参照)は、シチジンデアミナーゼに対して非常に安定であった。一方、シチジンやゲムシタビンはいずれの場合も、上記した反応条件下で完全に消失した。 Thus, the 5′-position silyl ether derivative (see formula (I)) of the nucleoside anticancer agent or antiviral agent having a cytosine skeleton according to the present invention was very stable against cytidine deaminase. . On the other hand, cytidine and gemcitabine disappeared completely under the reaction conditions described above.
試験例2Test example 2
 ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体の非酵素的加水分解反応 Non-enzymatic hydrolysis reaction of 5'-position silyl ether derivative of nucleoside anticancer agent or antiviral agent
 ヌクレオシド系抗がん剤又は抗ウィルス剤の5’位シリルエーテル誘導体(式(I)を参照)、例えば、5'-O-トリエチルシリル-ゲムシタビン(化合物A)約1mgをアセトニトリル1mLに溶解し、其の5μLを10mM リン酸緩衝生理食塩水溶液100μLに添加し、37℃にて撹拌した。其の反応物を経時的にHPLC分析した結果、ゲムシタビンの生成が確認でき、他の分解物の生成は認められなかった。また、5'-O-トリエチルシリル-5-フルオロ-2'-デオキシシチジン(化合物E)の場合も同様な結果が得られ、対応する脱シリル体(5-フルオロ-2'-デオキシシチジン)の生成が確認できた。
 なお、HPLC測定条件は、試験例1の場合と同じ分析条件である。
A 5′-position silyl ether derivative of a nucleoside anticancer agent or antiviral agent (see formula (I)), for example, about 1 mg of 5′-O-triethylsilyl-gemcitabine (compound A) is dissolved in 1 mL of acetonitrile; 5 μL of the solution was added to 100 μL of 10 mM phosphate buffered saline solution and stirred at 37 ° C. As a result of HPLC analysis of the reaction product over time, the production of gemcitabine was confirmed, and the production of other decomposition products was not observed. Similar results were obtained with 5′-O-triethylsilyl-5-fluoro-2′-deoxycytidine (Compound E), and the corresponding desilylated form (5-fluoro-2′-deoxycytidine) Generation was confirmed.
The HPLC measurement conditions are the same analysis conditions as in Test Example 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明によれば、様々ながんやウィルス感染症の治療薬もしくは予防薬として臨床使用されているヌクレオシド系抗がん剤又は抗ウィルス剤に代わり得る薬剤を医療現場に提供することができる。
 
ADVANTAGE OF THE INVENTION According to this invention, the chemical | medical agent which can replace the nucleoside type | system | group anticancer agent or antiviral agent currently used clinically as a therapeutic agent or preventive agent of various cancer and viral infection can be provided to a medical field.

Claims (15)

  1. 式(I):
     
    Figure JPOXMLDOC01-appb-I000001
     
    (式中、Dはヌクレオシド系抗がん剤又は抗ウィルス剤の5’位部分であり、RとRとRはそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいアルキル基又はアリールアルキル基である。)で表される化合物又は其の塩。
    Formula (I):

    Figure JPOXMLDOC01-appb-I000001

    (In the formula, D is the 5′-position of the nucleoside anticancer agent or antiviral agent, and R 1 , R 2 and R 3 may be the same or different and have a substituent. Or an alkyl group or an arylalkyl group thereof) or a salt thereof.
  2. 前記ヌクレオシド系抗がん剤は、シタラビン、フロクスウリジン、ペントスタチン、フルダラビン、クラドリビン、ゲムシタビン、クロファラビン、ネララビン、トリフルオロチミジン、DFP-10917、コルジセピン、8-クロロアクチノマイシン、RX-3117、トリシリビン、フォロデシン、5-フルオロデオキシシチジン、リバビリン又はアカデシンである、請求項1に記載の化合物又は其の塩。 The nucleoside anticancer agent is cytarabine, floxuridine, pentostatin, fludarabine, cladribine, gemcitabine, clofarabine, nelarabine, trifluorothymidine, DFP-10917, cordycepin, 8-chloroactinomycin, RX-3117, triciribine, The compound or a salt thereof according to claim 1, which is forodesine, 5-fluorodeoxycytidine, ribavirin or acadesine.
  3. 前記抗ウィルス剤は、ジドブジン、ラミブジン、スタブジン、アバカビル、エムトリシタビン、ジダノシン又はザルシタビンである、請求項1に記載の化合物又は其の塩。 The compound or a salt thereof according to claim 1, wherein the antiviral agent is zidovudine, lamivudine, stavudine, abacavir, emtricitabine, didanosine or zalcitabine.
  4. 化合物が、
    Figure JPOXMLDOC01-appb-I000002
     
    である、請求項1に記載の化合物又は其の塩。
    Compound is
    Figure JPOXMLDOC01-appb-I000002

    The compound according to claim 1 or a salt thereof.
  5. とRとRがそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいC~Cアルキル基又はフェニルC~Cアルキル基又はナフチルC~Cアルキル基である、請求項1~請求項4のいずれか1項に記載の化合物又は其の塩。 R 1 , R 2 and R 3 may be the same or different and each may have a C 1 -C 6 alkyl group or phenyl C 1 -C 6 alkyl group or naphthyl C 1 -C which may have a substituent. The compound or a salt thereof according to any one of claims 1 to 4, which is a 6 alkyl group.
  6. とRとRがそれぞれ、同一又は異なっていてもよく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基又はヘキシル基である、請求項1~請求項4のいずれか1項に記載の化合物又は其の塩。 R 1 , R 2 and R 3 may be the same or different, and may be a methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group or The compound or a salt thereof according to any one of claims 1 to 4, which is a hexyl group.
  7. とRとRがそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいベンジル基,フェネチル基又はナフチルメチル基である、請求項1~請求項4のいずれか1項に記載の化合物又は其の塩。 R 1 , R 2, and R 3 may be the same or different and each is a benzyl group, a phenethyl group, or a naphthylmethyl group that may have a substituent. 2. The compound according to item 1 or a salt thereof.
  8. とRとRがそれぞれ、同一又は異なっていてもよく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基又はベンジル基である、請求項1~請求項4のいずれか1項に記載の化合物又は其の塩。 R 1 , R 2 and R 3 may be the same or different and each is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group or benzyl group. The compound according to any one of claims 1 to 4 or a salt thereof.
  9. ヌクレオシド系抗がん剤又は抗ウィルス剤を、置換基を有していてもよいトリアルキルシリルハライド又はジアルキルモノアリールアルキルシリルハライド又はモノアルキルジアリールアルキルシリルハライド又はトリアリールアルキルシリルハライドと脱ハロゲン化水素剤存在下に反応させることを包含する、請求項1に記載の化合物の製造方法。 A nucleoside anticancer agent or an antiviral agent may be substituted with a trialkylsilyl halide, dialkylmonoarylalkylsilyl halide, monoalkyldiarylalkylsilyl halide, or triarylalkylsilyl halide, which may have a substituent, and dehydrohalogenated. The method for producing a compound according to claim 1, comprising reacting in the presence of an agent.
  10. ヌクレオシド系抗がん剤又は抗ウィルス剤を、置換基を有していてもよいトリアルキルシリルアシレート又はジアルキルモノアリールアルキルシリルアシレート又はモノアルキルジアリールアルキルシリルアシレート又はトリアリールアルキルアシレートと塩基存在下に反応させることを包含する、請求項1に記載の化合物の製造方法。 A nucleoside anticancer agent or an antiviral agent, a trialkylsilyl acylate or dialkyl monoarylalkylsilyl acylate or monoalkyldiarylalkylsilyl acylate or triarylalkyl acylate optionally having a substituent, and a base The manufacturing method of the compound of Claim 1 including reacting in presence.
  11. 請求項1ないし8のいずれかの化合物又は其の塩を含有する医薬組成物。 A pharmaceutical composition comprising the compound according to any one of claims 1 to 8, or a salt thereof.
  12. がん細胞又はウィルス感染細胞の増殖抑制剤である、請求項11に記載の医薬組成物。 The pharmaceutical composition according to claim 11, which is an agent for suppressing the growth of cancer cells or virus-infected cells.
  13. がん又はウィルス感染症の予防又は治療剤である、請求項11に記載の医薬組成物。 The pharmaceutical composition according to claim 11, which is a preventive or therapeutic agent for cancer or viral infection.
  14. 請求項1ないし8のいずれかの化合物又は其の塩の有効量を哺乳動物に投与することを包含する、哺乳動物におけるがん細胞又はウィルス感染細胞の増殖抑制方法。 A method for inhibiting the growth of cancer cells or virus-infected cells in a mammal, comprising administering an effective amount of the compound according to any one of claims 1 to 8 or a salt thereof to the mammal.
  15. 請求項1ないし8のいずれかの化合物又は其の塩の有効量を哺乳動物に投与することを包含する、哺乳動物におけるがん又はウィルス感染症の予防又は治療方法。
     
    A method for preventing or treating cancer or viral infection in a mammal, comprising administering an effective amount of the compound according to any one of claims 1 to 8 or a salt thereof to the mammal.
PCT/JP2018/022132 2017-06-13 2018-06-11 5'-position silyl ether derivative for nucleoside anti-cancer agent or anti-virus agent WO2018230479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115526 2017-06-13
JP2017-115526 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018230479A1 true WO2018230479A1 (en) 2018-12-20

Family

ID=64660196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022132 WO2018230479A1 (en) 2017-06-13 2018-06-11 5'-position silyl ether derivative for nucleoside anti-cancer agent or anti-virus agent

Country Status (1)

Country Link
WO (1) WO2018230479A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022216A1 (en) 2021-08-20 2023-02-23 塩野義製薬株式会社 Nucleoside derivatives and prodrugs thereof having viral growth inhibitory action

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908441A (en) * 1988-07-19 1990-03-13 Warner-Lambert Company Deoxyadenosine compounds and methods of making and using the same
US5420117A (en) * 1988-07-11 1995-05-30 Taiho Pharmaceutical Co., Ltd. 5-substituted uridine derivatives
US5420276A (en) * 1987-11-03 1995-05-30 Abbott Laboratories Analogs of oxetanyl purines and pyrimidines
US5492897A (en) * 1990-07-19 1996-02-20 Burroughs Wellcome Co. (141) Method for treating T-cell lymphoblastic leukemia with ara-G nucleoside derivatives
US5506349A (en) * 1992-05-13 1996-04-09 Ribozyme Pharmaceuticals, Inc. Chemical synthesis of 2', 3'-dideoxycytidine
JPH09124641A (en) * 1995-10-31 1997-05-13 Noguchi Kenkyusho Production of 2',3'-didehydro-2',3'-dideoxynucleoside
US20030036528A1 (en) * 1998-11-05 2003-02-20 The Centre National Da La Recherche Scientifique Beta-L-2'-deoxy-nucleosides for the treatment of HIV infection
WO2004050665A1 (en) * 2002-11-29 2004-06-17 Amedis Pharmaceuticals Ltd. Silicon compounds
WO2004050666A1 (en) * 2002-11-29 2004-06-17 Amedis Pharmaceuticals Ltd. Silicon compounds useful in cancer therapy
WO2004052905A2 (en) * 2002-12-10 2004-06-24 F. Hoffmann-La Roche Ag Antiviral nucleoside derivatives
JP2006524711A (en) * 2003-04-25 2006-11-02 ギリアード サイエンシーズ, インコーポレイテッド Antiviral phosphonate analogues
US20090118222A1 (en) * 2005-01-31 2009-05-07 Taiho Pharmaceutical Co., Ltd. Novel pyrimidine nucleoside compound or its salt
US20090306008A1 (en) * 2006-07-24 2009-12-10 Takuma Sasaki 3'-ethynylcytidine derivative
US20100093609A1 (en) * 2007-03-29 2010-04-15 John Hilfinger Prodrugs of triciribine and triciribine phosphate
US20110039798A1 (en) * 2007-07-09 2011-02-17 Eastern Virginia Medical School Substituted nucleoside derivatives with antiviral and antimicrobial properties
US20120309705A1 (en) * 2009-12-17 2012-12-06 Novadex Pharmaceuticals Ab Novel 3'-deoxy-3'-methylidene-beta-l-nucleosides
US20140200229A1 (en) * 2012-01-03 2014-07-17 Cellceutix Corporation Carbocyclic nucleosides and their pharmaceutical use and compositions
JP2014189499A (en) * 2013-03-26 2014-10-06 Taiho Yakuhin Kogyo Kk Silyl derivative of novel pyrimidine nucleoside

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420276A (en) * 1987-11-03 1995-05-30 Abbott Laboratories Analogs of oxetanyl purines and pyrimidines
US5420117A (en) * 1988-07-11 1995-05-30 Taiho Pharmaceutical Co., Ltd. 5-substituted uridine derivatives
US4908441A (en) * 1988-07-19 1990-03-13 Warner-Lambert Company Deoxyadenosine compounds and methods of making and using the same
US5492897A (en) * 1990-07-19 1996-02-20 Burroughs Wellcome Co. (141) Method for treating T-cell lymphoblastic leukemia with ara-G nucleoside derivatives
US5506349A (en) * 1992-05-13 1996-04-09 Ribozyme Pharmaceuticals, Inc. Chemical synthesis of 2', 3'-dideoxycytidine
JPH09124641A (en) * 1995-10-31 1997-05-13 Noguchi Kenkyusho Production of 2',3'-didehydro-2',3'-dideoxynucleoside
US20030036528A1 (en) * 1998-11-05 2003-02-20 The Centre National Da La Recherche Scientifique Beta-L-2'-deoxy-nucleosides for the treatment of HIV infection
WO2004050666A1 (en) * 2002-11-29 2004-06-17 Amedis Pharmaceuticals Ltd. Silicon compounds useful in cancer therapy
WO2004050665A1 (en) * 2002-11-29 2004-06-17 Amedis Pharmaceuticals Ltd. Silicon compounds
WO2004052905A2 (en) * 2002-12-10 2004-06-24 F. Hoffmann-La Roche Ag Antiviral nucleoside derivatives
JP2006524711A (en) * 2003-04-25 2006-11-02 ギリアード サイエンシーズ, インコーポレイテッド Antiviral phosphonate analogues
US20090118222A1 (en) * 2005-01-31 2009-05-07 Taiho Pharmaceutical Co., Ltd. Novel pyrimidine nucleoside compound or its salt
US20090306008A1 (en) * 2006-07-24 2009-12-10 Takuma Sasaki 3'-ethynylcytidine derivative
US20100093609A1 (en) * 2007-03-29 2010-04-15 John Hilfinger Prodrugs of triciribine and triciribine phosphate
US20110039798A1 (en) * 2007-07-09 2011-02-17 Eastern Virginia Medical School Substituted nucleoside derivatives with antiviral and antimicrobial properties
US20120309705A1 (en) * 2009-12-17 2012-12-06 Novadex Pharmaceuticals Ab Novel 3'-deoxy-3'-methylidene-beta-l-nucleosides
US20140200229A1 (en) * 2012-01-03 2014-07-17 Cellceutix Corporation Carbocyclic nucleosides and their pharmaceutical use and compositions
JP2014189499A (en) * 2013-03-26 2014-10-06 Taiho Yakuhin Kogyo Kk Silyl derivative of novel pyrimidine nucleoside

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AGARWAL, H. K. ET AL.: "Synthesis and Anti-HIV Activities of Glutamate and Peptide Conjugates of Nucleoside Reverse Transcriptase Inhibitors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 6, 21 February 2012 (2012-02-21), pages 2672 - 2687, XP055562401, Retrieved from the Internet <URL:doi:10.1021/jm201551m> *
BONACHE, M. ET AL.: "Structure-activity relationship studies on a novel family of specific HIV-1 reverse transcriptase inhibitors", ANTIVIRAL CHEMISTRY & CHEMOTHERAPY, vol. 14, no. 5, 1 October 2003 (2003-10-01), pages 249 - 262, XP055562397, Retrieved from the Internet <URL:https://doi.org/10.1177/095632020301400504> *
TSYBULSKAYA, I. ET AL.: "Phospholipid derivatives of cladribine and fludarabine: Synthesis and biological properties", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 23, no. 13, 25 April 2015 (2015-04-25), pages 3287 - 3296, XP029170440 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022216A1 (en) 2021-08-20 2023-02-23 塩野義製薬株式会社 Nucleoside derivatives and prodrugs thereof having viral growth inhibitory action

Similar Documents

Publication Publication Date Title
JP6769000B2 (en) A novel compound of 4&#39;-thionucleoside, its preparation method, its pharmaceutical composition and its use
CN104955818B (en) Nucleoside kinase bypasses composition and method
JP2008523082A (en) Nucleotides having antibacterial and anticancer activities
KR102579485B1 (en) Sugar moiety silyl ether derivatives of 5-azacytidines
WO2018199048A1 (en) 5&#39;-position dibenzyl monophosphate derivative of nucleoside-based anticancer agent or antivirus agent
JP6142098B1 (en) 5-azacytidine or its 2&#39;-deoxy 5&#39;-position dibenzyl phosphate
US10500224B2 (en) Mutual prodrug comprising short chain fatty acids and zebularine or 1&#39;-cyano-cytarabine for cancer treatment
JP6956937B2 (en) Uses of DNMT inhibitors
WO2018230479A1 (en) 5&#39;-position silyl ether derivative for nucleoside anti-cancer agent or anti-virus agent
JP6162349B1 (en) Sacyl moiety silyl ether derivatives of 5-azacytidines
EP4059938A1 (en) Imidazoquinoline substituted phosphoric ester agonist, and preparation therefor and application thereof
US10227374B2 (en) Silyl etherified derivatives of 5-azacytidines in carbohydrate moiety
US11173174B2 (en) DNMT inhibitor as solid tumor therapeutic drug
JP7354246B2 (en) A novel phosphoric acid ester compound having a pyrrolopyrimidine skeleton or a pharmaceutically acceptable salt thereof
CN102666562A (en) Novel 3&#39;-deoxy-3&#39;-methylidene- -l-nucleosides
CN114423438A (en) Use of DNMT inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP