WO2018230415A1 - Linear material for medical use - Google Patents

Linear material for medical use Download PDF

Info

Publication number
WO2018230415A1
WO2018230415A1 PCT/JP2018/021738 JP2018021738W WO2018230415A1 WO 2018230415 A1 WO2018230415 A1 WO 2018230415A1 JP 2018021738 W JP2018021738 W JP 2018021738W WO 2018230415 A1 WO2018230415 A1 WO 2018230415A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear material
medical
mass
alloy
medical linear
Prior art date
Application number
PCT/JP2018/021738
Other languages
French (fr)
Japanese (ja)
Inventor
三宅 行一
広夫 内田
顕成 檜
Original Assignee
三井金属鉱業株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社, 国立大学法人名古屋大学 filed Critical 三井金属鉱業株式会社
Publication of WO2018230415A1 publication Critical patent/WO2018230415A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent

Definitions

  • the present invention relates to a medical linear material.
  • various metal materials are known as implant medical materials that are implanted in a living body for treatment.
  • Conventionally used medical materials made of Ti alloys do not have biodegradability, so they remain permanently in the body after surgery, and there is a fear of infection and a psychological burden on patients.
  • Fe alloys also have a slow biodegradation rate (hereinafter also referred to as corrosion rate), there are concerns similar to those of Ti alloys.
  • Mg alloy is attracting attention as a biodegradable alloy, its corrosion rate is high. Therefore, as described in Patent Documents 1 and 2, as an alternative, a technique using a Zn alloy as a biodegradable implant Has also been developed in recent years.
  • Patent Document 3 describes that various elements are added to a Zn alloy.
  • Zn alloys used in conventional biodegradable implants containing magnesium as described in Patent Document 1 and aluminum described in Patent Document 2 support the structure of biological tissues such as stents. Since the composition is prescribed for the device of, the strength is high, but the bendability is poor. For this reason, it is not suitable as a medical linear material having a relatively small cross-sectional area, such as a suture or anastomosis such as a staple or a clip.
  • Patent Document 3 describes that various additive elements are added to the Zn alloy. However, this document does not describe any medical use such as suture or anastomosis. Furthermore, the document does not describe or suggest any linear material having a specific cross-sectional area required for this application.
  • An object of the present invention is to provide a medical linear material that can eliminate various drawbacks of the above-described conventional technology.
  • a Zn alloy containing a specific amount of Cu or Ti is suitable as a medical linear material having a specific cross-sectional area.
  • the present invention is based on this finding, and includes a Zn alloy containing at least one of 0.05% by mass to 5% by mass Cu and 0.01% by mass to 0.4% by mass Ti. made, there is provided a medical linear material is cross-sectional area 0.01 mm 2 or more 4.0 mm 2 or less.
  • FIG. 1A is a schematic diagram illustrating an example of a staple shape.
  • FIG. 1B is a schematic diagram illustrating a state in which the staple illustrated in FIG.
  • FIG. 2A is a schematic diagram illustrating an example of a clip shape.
  • FIG. 2B is a schematic diagram illustrating a state where the clip illustrated in FIG. It is a schematic diagram which shows the method of the bending test of the material of an Example and a comparative example.
  • the medical linear material of the present invention is 0.05 mass% or more and 5 mass% or less of copper (hereinafter referred to as Cu), or 0.01 mass% or more and 0.4 mass% or less of titanium (hereinafter, Ti). And zinc) (hereinafter referred to as Zn) alloy.
  • the medical linear material of the present embodiment is suitable as a medical linear material having a specific cross-sectional area by employing a Zn alloy having this composition.
  • the Zn alloy preferably has a Zn ratio of 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the Zn alloy constituting the medical linear material further contains Cu or Ti.
  • the bendability of the medical linear material is set to a certain level or more by the amount of Cu in the Zn alloy being 0.05% by mass or more.
  • the intergranular corrosion of the linear material can be suppressed.
  • the ductility required for the process to a linear material can be improved, maintaining the intensity
  • the amount of Cu in the Zn alloy is 5% by mass or less, it is easy to improve the bendability and ductility of the medical linear material, and it is possible to prevent the corrosion rate of the linear material from becoming too high.
  • the amount of Cu in the Zn alloy is preferably 0.1% by mass or more and 4.0% by mass or less, and 0.5% by mass or more. 3.0 mass% or less is more preferable.
  • the bendability of the medical linear material is more than a certain level when the Ti content in the Zn alloy is 0.01% by mass or more.
  • the ductility can be increased without impairing the strength. If the amount of Ti in the Zn alloy exceeds 0.4% by mass, the bendability and ductility deteriorate and the desired function cannot be expressed, which is not preferable.
  • the amount of Ti in the Zn alloy is preferably 0.05% by mass or more and 0.4% by mass or less, and 0.1% by mass or more. 0.3 mass% or less is more preferable.
  • Zn alloy constituting the medical linear material may further contain Mn or Ca in addition to Cu or Ti.
  • the Zn alloy constituting the medical linear material contains Cu and Ti, or contains Cu and Mn or Ca, so that it is easy to obtain a medical linear material having bendability, ductility, and strength. preferable.
  • a Zn alloy containing Cu and Mn or Ca may further contain Ti.
  • a Zn alloy containing Ti and Mn also has bendability and strength.
  • the Zn alloy is an alloy containing Zn and Cu and / or Ti and may contain at least one selected from Mn, Ca and Mg, and the balance is only an inevitable element.
  • the alloy contains Zn and Cu and / or Ti and may contain at least one selected from Mn and Ca, with the balance being only inevitable elements.
  • the specific structure of such an alloy includes an alloy containing Zn and Cu and the balance being inevitable elements only; an alloy containing Zn and Ti and the balance being only inevitable elements; the balance containing Zn, Cu and Ti Is an alloy that contains only inevitable elements; an alloy that contains Zn, Cu, and Mn, and the balance that contains only inevitable elements; an alloy that contains Zn, Cu and Ca, and the balance that contains only inevitable elements; which contains Zn, Ti and Mn An alloy in which the balance is only inevitable elements; an alloy in which Zn, Cu, Mn and Ti are included, and the balance is only inevitable elements; an alloy in which the balance is Zn, Cu, Mn and Ca and the balance is only inevitable elements.
  • the Zn alloy constituting the medical linear material contains 0.1% by mass or more of manganese (hereinafter referred to as Mn) from the viewpoint of increasing the strength or elongation and the bendability. Further, when the Zn alloy contains Mn, it is preferable that the amount of Mn in the Zn alloy is 5% by mass or less because the bendability and ductility are improved and a predetermined function is easily exhibited. From these points, when the Zn alloy constituting the medical linear material contains Mn, the amount of Mn in the Zn alloy is preferably 0.12% by mass or more and 3.0% by mass or less, and 0.15% by mass or more. 2.0 mass% or less is more preferable.
  • Mn manganese
  • the Zn alloy constituting the medical linear material contains 0.01% by mass or more of calcium (hereinafter referred to as Ca) from the viewpoint of increasing the strength and adjusting the corrosion rate.
  • Ca calcium
  • the amount of Ca in the Zn alloy is preferably 0.5% by mass or less because the bendability and ductility are improved and a predetermined function is easily exhibited. From these points, when the Zn alloy constituting the medical linear material contains Ca, the Ca content in the Zn alloy is preferably 0.03% by mass or more and 0.4% by mass or less, and 0.05% by mass or more. 0.3 mass% or less is more preferable. *
  • the Zn alloy constituting the medical linear material preferably has a low magnesium (hereinafter referred to as Mg) content in order to further improve the bendability suitable for applications such as staples and clips. It is preferably not contained.
  • Mg content in the Zn alloy is preferably 50 ppm or less on a mass basis, more preferably 20 ppm or less, and particularly preferably less than 10 ppm. The smaller the Mg content in the Zn alloy, the better. However, when the content is 0.001 ppm or more, the production is easy.
  • the Zn alloy contains Zn and Cu and / or Ti as described above, and may contain at least one selected from Mn, Ca and Mg, and the remainder is preferably only inevitable elements. .
  • the remainder being only inevitable elements is intended to include the case where the remainder is zero, that is, the case where no inevitable elements are contained.
  • An inevitable element refers to an element that must be contained as an inevitable impurity due to reasons such as being present in a raw material or being mixed in a manufacturing process. Inevitable elements include, for example, Fe, Sn, and Al, and Pb and Cd are usually present in very small amounts.
  • the Zn alloy constituting the medical linear material preferably has a total content of these inevitable elements of 0.05% by mass or less, particularly preferably 0.01% by mass or less. Further, in the Zn alloy, the content of each inevitable element is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • the contents of Cu, Ti, Ca, Mn, and Mg and unavoidable elements in the Zn alloy can be measured by ICP emission analysis, and specifically by the method described in the examples.
  • the linear material has a specific cross-sectional area.
  • the cross-sectional area here means a cross-sectional area of a cross section orthogonal to the extending direction of the medical linear material.
  • a fastening force capable of suturing or anastomosing living tissue can be obtained.
  • the cross-sectional area is 4.0 mm 2 or less, a material having a sufficient corrosion rate for suturing or anastomosis can be obtained.
  • the cross-sectional area of the medical linear material is 0.02 mm 2 or more 2.0 mm 2 or less, and more preferably 0.03 mm 2 or more 1.0 mm 2 or less.
  • the cross-sectional area of the medical linear material indicates the maximum value Smax of the cross-sectional area when the cross-sectional area is not constant along the extending direction of the medical linear material.
  • the linear shape in the medical linear material includes not only a linear shape but also a curved shape.
  • the linear material include a material having a shape in which the length X in the extending direction is very long with respect to the length Y in the width direction of the cross section perpendicular to the length in the extending direction.
  • the medical linear material preferably has a ratio X / Y of the length X in the extending direction and the length Y in the width direction of the cross section perpendicular to the extending direction, preferably 15 or more, more preferably 20 The above is particularly preferable.
  • the width direction length Y here means the length of the longest line segment among the line segments crossing the cross section orthogonal to the extending direction of the linear material.
  • the length X in the extending direction here refers to the length of the road (the length along the line) when the medical linear material has a curved shape or a bent portion.
  • the width direction length Y of the medical linear material indicates a maximum value Ymax when the width direction length Y along the extending direction of the medical linear material is not constant.
  • the medical linear material may or may not have a constant length Y in the width direction along the extending direction.
  • the difference (Ymax ⁇ Ymin) between the maximum value Ymax and the minimum value Ymin of the length Y in the width direction along the extending direction in one medical linear material is 40% or less with respect to Ymax. Preferably, it is 20% or less.
  • the medical linear material of the present embodiment is one excluding a stent. Although there is a stent in which a linear material is formed in a mesh shape, the medical material of this embodiment does not include this.
  • the medical linear material of the present embodiment is preferably used for applications that are deformed during use, particularly for applications that are bent and deformed, and is particularly preferably used for applications that are bent for fastening during use. Such applications include staples and clips.
  • the staple is formed by bending a linear medical linear material into a shape suitable for use in a stapler or the like.
  • the clip is also formed by bending one linear medical linear material into a shape suitable for use with a clip applier or the like.
  • Both the staple and the clip are further deformed and used for fastening in order to suture or anastomoses the living tissue.
  • a stent is used for maintaining the structure of a living tissue, and is not used for an application of bending deformation during use.
  • staples and clips are examples of a suture or anastomosis body of a living tissue made of the medical linear material of the present embodiment.
  • the cross-sectional shape of the medical linear material may be a circular shape, a rectangular shape, a polygonal shape other than a rectangular shape, an ellipse, or the like. Further, the cross-sectional shape of the medical linear material may be constant or different along the extending direction of the medical linear material. From the viewpoint of obtaining a force for fixing a living tissue, the medical linear material is preferably not hollow, and more preferably solid.
  • the medical linear material preferably has a bent portion, more preferably has a bent portion and a linear portion, and the linear portions have a continuous shape via the bent portion. Is particularly preferred.
  • the bent portion preferably has R.
  • the medical linear material may have a branch portion or may not have a branch portion.
  • the medical linear material may form a medical device by itself, or may constitute a part of the medical device.
  • the aspect ratio (major axis / minor axis) of the cross section is 4 or less. It is preferable in terms of fastening force and the like, and more preferably 2 or less.
  • the major axis refers to the length in the longitudinal direction when the cross-sectional shape is long in one direction, such as an ellipse, a rectangle, or an indefinite shape.
  • the minor axis refers to the length in the direction orthogonal to the longitudinal direction.
  • the medical linear material of the present embodiment preferably has a staple shape or a clip shape.
  • the staple shape and the clip shape include shapes formed by bending a single linear medical linear material.
  • a staple shape for example, a staple 20 shown in FIG. 1A, a pair of limbs 21 and 22 and end portions located on the same side of the pair of limbs 21 and 22, respectively.
  • connection part 23 which connects 21a and 22a mutually is mentioned.
  • the pair of limbs 21 and 22 have substantially the same length.
  • the edge parts 21b and 22b on the opposite side to the connection part 23 of the limbs 21 and 22 have the tapering shape which becomes so thin that it goes inside toward the front. As shown in FIG.
  • the staple includes one that folds a pair of limbs 21 and 22 inward, thereby suturing or anastomosing living tissue or closing a wound.
  • the limb portions 21 and 22 of the staple are bent so that the portions 21c and 22c face the connecting portion 23 and the end portions 21b and 22b are close to each other.
  • each of the limbs 21 and 22 is bent further toward the connecting portion 23 side than the portions 21c and 22c facing the connecting portion 23 at the end portions 21b and 22b side.
  • the pair of limbs 21 and 22 extend in substantially the same direction, are substantially parallel and have the same length, and the connecting portion 23 is substantially orthogonal to the limbs 21 and 22. Since it is linear, the limbs 21 and 22 and the connecting part 23 form a rectangular staple shape with one side missing.
  • the rectangular shape include a rectangular shape and a square shape.
  • the term “rectangular shape with one side missing” includes a shape in which a corner portion of the rectangular shape has R.
  • the staple shape is not limited to a rectangular shape with one side missing.
  • the staple shape may be a circular shape or an elliptical shape in which a part such as a U shape or a C shape is missing.
  • the staple shape may be, for example, a rectangular shape with one side missing, and the connecting portion 23 may have a stepped portion or a curved portion.
  • the cross-sectional area is preferably 0.01 mm 2 or more and 0.3 mm 2 or less, and 0.03 mm 2 or more and 0.2 mm. 2 or less is more preferable.
  • connection part 33 has a convex shape toward the direction away from the pair of limbs 31 and 32.
  • the clip shape include a shape that is line-symmetric with respect to the center line A that is a straight line passing through the apex of the convex shape of the connecting portion 33 like the clip 30 in FIG. Therefore, the pair of limbs 31 and 32 have substantially the same length, and are connected to the connecting part 33 in a line-symmetric state with respect to the center line A passing through the convex apex. As shown in FIG.
  • the clip is formed by bending the connecting portion 33 so that the inner surfaces 31b and 32b face each other, as shown in FIG. 2B. And those that sew or anastomoses living tissue or ligate vessels.
  • the pair of limbs 31 and 32 are provided slightly inclined with respect to the center line A so as to approach the center line A as the distance from the connecting portion 33 increases.
  • the connecting portion 33 is V-shaped. The shape of the clip is not limited to this, and various shapes such as a rectangular shape lacking one side, a V shape, and a C shape can be mentioned.
  • the cross-sectional area is preferably 0.05 mm 2 or more and 4.0 mm 2 or less, 0.1 mm 2 or more and 2.0 mm 2 or less is more preferable.
  • the length of the medical linear material is preferably 3 mm or more because it can be easily used for suturing or anastomosing living tissue, ligating vessels, or closing wounds. Is preferably 40 mm or less from the viewpoint of minimizing foreign matter embedded in the body. From these points, it is more preferable that the length of the medical linear material is 3 mm or more and 40 mm or less. In this specification, the length of the medical linear material refers to the length along the line of the medical linear material.
  • the length of the linear material for use is preferably 3 mm or more and 20 mm or less, and more preferably 4 mm or more and 15 mm or less.
  • the staple width W1 is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 8 mm or less.
  • the staple height H1 is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 8 mm or less.
  • the length of the medical linear material is preferably 5 mm or more and 40 mm or less, and more preferably 6 mm or more and 30 mm or less.
  • the width W2 of the clip is preferably 1 mm or more and 20 mm or less, and more preferably 2 mm or more and 10 mm or less.
  • the height H2 of the clip is preferably 1 mm or more and 20 mm or less, and more preferably 2 mm or more and 15 mm or less.
  • the medical linear material of the present embodiment can satisfy the mechanical characteristics when used as a staple or a clip.
  • a medical linear material preferably has a 0.2% proof stress of 80 MPa or more because strength sufficient to hold a sutured, anastomotic or ligated portion can be obtained, more preferably 100 MPa or more, and 120 MPa or more. It is particularly preferred.
  • the 0.2% yield strength of the medical linear material is preferably high, but it is preferably 1000 MPa or less from the viewpoint of ease of production of the medical linear material and ease of treatment, and 700 MPa or less. More preferred.
  • the 0.2% yield strength of the medical linear material is measured according to the offset method of JIS Z 2241: 2011 so that the tensile direction is parallel to the extending direction of the medical linear material.
  • the concentration of the added metal is adjusted within a predetermined range, and excessive heating at 400 ° C. or higher is avoided during processing after casting. And so on.
  • the medical linear material preferably has a tensile strength of 120 MPa or more, more preferably 130 MPa or more, and particularly preferably 140 MPa or more.
  • the tensile strength of the medical linear material is preferably high, but it is preferably 2000 MPa or less from the viewpoint of ease of production of the medical linear material and ease of treatment, and more preferably 1000 MPa or less.
  • the concentration of the additive metal is adjusted within a predetermined range, or excessive heating at 400 ° C. or more is avoided during processing after casting. Good.
  • the linear medical material preferably has an elongation at break of 30% or more from the viewpoint of obtaining sufficient extensibility, more preferably 40% or more, and particularly preferably 50% or more.
  • the concentration of the additive metal may be adjusted within a predetermined range, or excessive heating at 400 ° C. or higher may be avoided during processing.
  • the elongation at break is preferably high, but is preferably 200% or less from the viewpoint of processing.
  • the tensile strength and breaking elongation of the medical linear material are measured in accordance with JIS Z 2241: 2011 so that the tensile direction is parallel to the extending direction of the medical linear material.
  • the medical linear material is preferably used as a biodegradable implant.
  • An implant refers to an instrument for implantation in a living body.
  • examples of a linear implant include a wire, a pin, a probe, a wire, a cable, a band, a clip, a staple, and the like. Staples or clips are preferable from the viewpoint of exhibiting the bendability, strength, elongation, and biodegradability of the linear material.
  • a corrosion rate of 0.01 mm / year or more is used as a stopper for blood vessels or tissues such as staples or clips. It is preferable because suitable biodegradability can be obtained when it is used.
  • the corrosion rate is preferably 5 mm / year or less from the viewpoint of preventing the medical linear material from being decomposed too quickly and decomposing before blood vessels, lymphatic vessels and tissues are joined together. . From this viewpoint, the corrosion rate is preferably 0.01 mm / year or more and 5 mm / year or less, and more preferably 0.05 mm / year or more and 3 mm / year or less.
  • the composition of the Zn alloy may be adjusted within the above range, and a coating for adjusting the corrosion rate may be formed on the surface.
  • ⁇ Corrosion test conditions The medical linear material is immersed in artificial intestinal fluid at the time of eating at 37 ° C., and the weight loss of corrosion is calculated from the mass change before and after the test. Further, the corrosion rate (mm / year) is calculated from the surface area of the test piece according to the following formula.
  • K constant 10
  • W mass loss (g)
  • A surface area (cm 2 )
  • T time (year)
  • D density (g / cm 3 ).
  • Examples of the artificial intestinal fluid at the time of feeding include those imitating the intestinal fluid at the time of feeding by the human body and other mammals. ⁇ 210 mmol / L, phospholipid 0.5 ⁇ 5 mmol / L, pH 5 ⁇ 7.
  • an artificial intestinal fluid at the time of feeding for example, the trade name “FeSSIF” of biolevrant can be used.
  • the artificial intestinal fluid during feeding is preferably changed every 1 to 3 days.
  • the test period is preferably 1 to 4 weeks, for example.
  • the test piece is taken out after the test, washed with pure water, and dried at room temperature. After drying, it is preferable to remove the corroded test piece using a 200 g / L CrO 3 aqueous solution, sufficiently wash with water and then dry.
  • the amount of the artificial intestinal fluid used is preferably 0.2 ml or more with respect to the surface area of 1 mm 2 of the medical linear material. Specifically, the corrosion test can be measured by the method described in Examples described later.
  • the preferred method for producing the medical linear material of the present embodiment is as follows: (1) A metal alloy obtained by melting a raw material metal of Zn alloy at 450 ° C. or higher and 900 ° C. or lower and then casting it by a mold casting method or a continuous casting method. (2) A bar is cut out from the obtained metal lump and subjected to a wire drawing process.
  • the raw material metal of the Zn alloy may be blended with the above-described composition, such as Zn, Ti, or Cu, and, if necessary, Mn and Ca.
  • the melting temperature of the raw material metal is preferably 450 ° C. or higher and 900 ° C. or lower, and more preferably 500 ° C. or higher and 800 ° C. or lower from the viewpoint of easy mixing of raw materials and prevention of raw material volatilization.
  • the wire drawing process may be performed either hot or cold, but in the initial stage of processing, it is performed hot to reduce the load on the processing apparatus and the soundness of the structure.
  • the wire drawing treatment extrusion molding, hole die drawing, roller die drawing, swaging, roll rolling, etc. can be appropriately combined, and in particular, extrusion molding and hole die drawing are performed in this order. Is preferred.
  • the reduction ratio (area reduction rate) of the obtained medical linear material relative to the cross-sectional area of the rod cut out from the metal lump is 90% or more. It is preferable from the viewpoint of miniaturization, that is, strength and elongation, and more preferably 95% or more.
  • the medical linear material of the present embodiment obtained by the above manufacturing method utilizes the bendability, biodegradability, strength, ductility, and the above-described staple, clip, metal wire, pin, probe, wire, cable. It can be used for various applications such as bands. Specific uses of the medical linear material of the present embodiment include in vivo application, such as small intestine, esophagus, large intestine (rectum, colon), duodenum, jejunum, ileum, cecum, uterus, etc.
  • the target of the medical linear material of the present invention is not limited to humans, but includes mammals such as mice, dogs, cats, rats, rabbits, pigs, monkeys.
  • the present invention also provides a suture, anastomosis or ligation method using the medical linear material of the present invention for suture or anastomosis of these tissues or vessels in a living body, or ligation of vessels.
  • Examples 1 to 9, Comparative Examples 1 to 4 As a raw material, zinc alone or zinc and copper (64 brass plate), titanium, manganese or magnesium were used. The raw materials were put into a graphite crucible so as to have the composition shown in Table 1 or 2 below, and dissolved at 650 ° C. in an Ar atmosphere using a vacuum melting furnace. At the same temperature, a molten metal was poured into a mold having a width of 2 cm, a length of 17 cm, and a height of 13.5 cm, and cooled and solidified to obtain a cast metal lump. “%” In the term of composition in Tables 1 and 2 means mass%. The following evaluation was performed about the obtained material.
  • Example 1 to 8 and Comparative Examples 1 to 4 the tensile strength, 0.2% resistance, elongation at break, and bending evaluation of the material are the same regardless of the shape as long as the area reduction rate of the material is the same. Since it becomes an evaluation result, these tests were performed about the board
  • a plate material having a thickness of 10 mm was cut out from the metal block cast in Examples 1 to 8 and Comparative Examples 1 to 4.
  • the plate material heated to 200 ° C. was rolled through a pair of rolling rolls (room temperature).
  • the rolling of one rolling pass was 1 to 2 mm, and the plate was reheated to 200 ° C. during the rolling pass.
  • the material is rolled to a thickness of 2 mm, the material is cooled to room temperature, the reheating is stopped, and the sheet material at room temperature is rolled so that the setting of the rolling reduction of the same rolling pass becomes 0.5 mm.
  • the shape of the test piece was a plate shape 10 mm wide, 50 mm long, and 0.5 mm thick in the rolling direction.
  • a wrinkle generated in the bent portion after the test piece 13 was bent at 90 ° using a die 10 having an R of 0.5 mm, a pad 11 and a punch 12 as shown in FIG.
  • the state of cracks was visually evaluated in 6 stages.
  • the evaluation criteria were as follows based on FIG. 4 of the Japan Copper and Brass Association Technical Standard JCBA T307: 2007. Table 1 shows the average value of the five evaluation points. If this evaluation score is 4 or more, it can be said that the bendability is good. No wrinkle: 5 points Small wrinkle: 4 points Large wrinkle: 3 points Small crack: 2 points Large crack: 1 point Break: 0 points
  • composition analysis This was performed by ICP emission spectrometry using ARCOS manufactured by SPECTRO. The measurement sample was dissolved in aqua regia and adjusted to an appropriate concentration with pure water.
  • Example 9 Manufacture of staples and clips
  • a round bar with a diameter of 15 mm was cut out from the above metal lump. This round bar was swaged cold until it had a substantially circular cross section with a diameter of 10 mm.
  • the rod is rolled to a circle-converted diameter of 1.11 mm and drawn, A linear material was obtained.
  • the wire was drawn to a diameter of 1 mm with a cassette roller die, and then cold and drawn to a diameter of 0.4 mm with a round hole die to obtain a linear material having a circular cross section.
  • the obtained linear material having a diameter of 0.4 mm was formed into a staple shape having the same shape as that shown in FIG. 1A using a forming machine and having a width W1 of 5 mm and a height H1 of 4 mm. .
  • the obtained linear material having a diameter of 0.4 mm is cut to a length of 10 mm, and has the same shape as FIG. 2A, with a width W2 of 3 mm and a height H2 of 4.5 mm. To obtain a clip.
  • the linear material of the present invention is excellent in elongation at break, bendability and biodegradability while maintaining strength, and requires bendability such as staples or clips, and It turns out that it is suitable for a biodegradable implant which needs to be processed linearly.
  • the medical linear material of the present invention has excellent bendability and good ductility, strength and biodegradability, and is particularly suitable for living body staples, clips and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Surgery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

This linear material for medical use is composed of a Zn alloy that contains from 0.05% by mass to 5% by mass (inclusive) of Cu or from 0.01% by mass to 0.4% by mass (inclusive) of Ti, and has a cross-sectional area of from 0.01 mm2 to 4.0 mm2 (inclusive). It is preferable that this linear material for medical use contains from 0.1% by mass to 5% by mass (inclusive) of Mn. It is also preferable that this linear material for medical use contains from 0.01% by mass to 0.5% by mass (inclusive) of Ca. It is also preferable that the Mg content in the Zn alloy is 50 ppm or less. It is also preferable that this linear material for medical use has the shape of a staple or the shape of a clip.

Description

医療用線状材料Medical linear material
 本発明は、医療用線状材料に関する。 The present invention relates to a medical linear material.
 従来、治療のために生体内に埋入されるインプラント医療用材料として種々の金属材料が知られている。
 従来から使用されているTi合金製の医療用材料は生分解性を有さないため、手術後も永久に体内に残ったままであり、感染症の恐れや患者への心理的負担がある。Fe合金も生分解速度(以下、腐食速度ともいう)が遅いため、Ti合金と同様の懸念がある。
 これらに対し、Mg合金が生分解性合金として注目されているものの、その腐食速度が大きいことから、代替策として特許文献1及び2に記載のように、Zn合金を生分解性インプラントとして用いる技術も近年開発されている。
Conventionally, various metal materials are known as implant medical materials that are implanted in a living body for treatment.
Conventionally used medical materials made of Ti alloys do not have biodegradability, so they remain permanently in the body after surgery, and there is a fear of infection and a psychological burden on patients. Since Fe alloys also have a slow biodegradation rate (hereinafter also referred to as corrosion rate), there are concerns similar to those of Ti alloys.
On the other hand, although Mg alloy is attracting attention as a biodegradable alloy, its corrosion rate is high. Therefore, as described in Patent Documents 1 and 2, as an alternative, a technique using a Zn alloy as a biodegradable implant Has also been developed in recent years.
 また、特許文献3には、種々の元素をZn合金に添加することが記載されている。 Patent Document 3 describes that various elements are added to a Zn alloy.
中国公開105986146号公報Chinese publication 10986146 WO2015/147183号のパンフレットWO2015 / 147183 pamphlet EP0899349A1EP0899349A1
 しかしながら、特許文献1のようにマグネシウムを含むものや、特許文献2に記載されたアルミニウム等を含む従来の生分解性インプラント用途に用いられるZn合金は、ステント等の生体組織の構造を支持するための器具を対象として組成が規定されていることから、強度が高い反面、曲げ性に乏しい。このため、比較的断面積の小さな、ステープルやクリップといった縫合用又は吻合用等の医療用線状材料として適したものではない。 However, Zn alloys used in conventional biodegradable implants containing magnesium as described in Patent Document 1 and aluminum described in Patent Document 2 support the structure of biological tissues such as stents. Since the composition is prescribed for the device of, the strength is high, but the bendability is poor. For this reason, it is not suitable as a medical linear material having a relatively small cross-sectional area, such as a suture or anastomosis such as a staple or a clip.
 また上述したように、特許文献3には、種々の添加元素をZn合金に添加することが記載されている。しかし同文献には、縫合用又は吻合用等の医療用途について何ら記載されていない。まして、同文献には、この用途に求められる特定断面積の線状材料とすることについて何ら記載も示唆もされていない。 As described above, Patent Document 3 describes that various additive elements are added to the Zn alloy. However, this document does not describe any medical use such as suture or anastomosis. Furthermore, the document does not describe or suggest any linear material having a specific cross-sectional area required for this application.
 本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る医療用線状材料を提供することにある。 An object of the present invention is to provide a medical linear material that can eliminate various drawbacks of the above-described conventional technology.
 本発明者らは、上記課題を解決するために鋭意検討した結果、Cu又はTiを特定量含むZn合金は、特定断面積を有する医療用線状材料として適したものとなることを知見した。 As a result of intensive studies to solve the above problems, the present inventors have found that a Zn alloy containing a specific amount of Cu or Ti is suitable as a medical linear material having a specific cross-sectional area.
 本発明は、この知見に基づくものであり、0.05質量%以上5質量%以下のCu、又は0.01質量%以上0.4質量%以下のTiのうち少なくとも何れか一種を含むZn合金からなり、断面積が0.01mm以上4.0mm以下である医療用線状材料を提供するものである。 The present invention is based on this finding, and includes a Zn alloy containing at least one of 0.05% by mass to 5% by mass Cu and 0.01% by mass to 0.4% by mass Ti. made, there is provided a medical linear material is cross-sectional area 0.01 mm 2 or more 4.0 mm 2 or less.
図1(A)は、ステープル形状の例を示す模式図である。図1(B)は、図1(A)に示すステープルを折り曲げた状態を示す模式図である。FIG. 1A is a schematic diagram illustrating an example of a staple shape. FIG. 1B is a schematic diagram illustrating a state in which the staple illustrated in FIG. 図2(A)は、クリップ形状の例を示す模式図である。図2(B)は、図2(A)に示すクリップを折り曲げた状態を示す模式図である。FIG. 2A is a schematic diagram illustrating an example of a clip shape. FIG. 2B is a schematic diagram illustrating a state where the clip illustrated in FIG. 実施例及び比較例の材料の曲げ試験の方法を示す模式図である。It is a schematic diagram which shows the method of the bending test of the material of an Example and a comparative example.
 以下本発明の医療用線状材料を、その好ましい実施形態に基づき説明する。
本実施形態の医療用線状材料は、0.05質量%以上5質量%以下の銅(以下、Cuと表す)、又は0.01質量%以上0.4質量%以下のチタン(以下、Tiと表す)を含む亜鉛(以下、Znと表す)合金からなる。本実施形態の医療用線状材料はこの組成のZn合金を採用することで、特定断面積を有する医療用線状材料として適したものとなる。
Hereinafter, the medical linear material of the present invention will be described based on preferred embodiments thereof.
The medical linear material of this embodiment is 0.05 mass% or more and 5 mass% or less of copper (hereinafter referred to as Cu), or 0.01 mass% or more and 0.4 mass% or less of titanium (hereinafter, Ti). And zinc) (hereinafter referred to as Zn) alloy. The medical linear material of the present embodiment is suitable as a medical linear material having a specific cross-sectional area by employing a Zn alloy having this composition.
 本実施形態でいうZn合金とは、好ましくはZnの割合が80質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上のものである。医療用線状材料を構成するZn合金は、更にCu又はTiを含有する。 In the present embodiment, the Zn alloy preferably has a Zn ratio of 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The Zn alloy constituting the medical linear material further contains Cu or Ti.
 医療用線状材料を構成するZn合金がCuを含有する場合、Zn合金中のCu量が0.05質量%以上であることで、医療用線状材料の曲げ性を一定以上のものとすることができるほか、線状材料の粒界腐食を抑制できる。またZn合金中のCu量が0.05質量%以上であることで医療用線状材料の強度を保ちつつ、線状材料への加工に必要な延性を高めることができる。Zn合金中のCu量は5質量%以下であることで、医療用線状材料の曲げ性や延性を良好なものとしやすいほか、該線状材料の腐食速度が大きくなりすぎることを防止できる。これらの観点から、医療用線状材料を構成するZn合金がCuを含有する場合、Zn合金中のCu量は0.1質量%以上4.0質量%以下が好ましく、0.5質量%以上3.0質量%以下がより好ましい。 When the Zn alloy constituting the medical linear material contains Cu, the bendability of the medical linear material is set to a certain level or more by the amount of Cu in the Zn alloy being 0.05% by mass or more. In addition, the intergranular corrosion of the linear material can be suppressed. Moreover, the ductility required for the process to a linear material can be improved, maintaining the intensity | strength of a medical linear material because the amount of Cu in Zn alloy is 0.05 mass% or more. When the amount of Cu in the Zn alloy is 5% by mass or less, it is easy to improve the bendability and ductility of the medical linear material, and it is possible to prevent the corrosion rate of the linear material from becoming too high. From these viewpoints, when the Zn alloy constituting the medical linear material contains Cu, the amount of Cu in the Zn alloy is preferably 0.1% by mass or more and 4.0% by mass or less, and 0.5% by mass or more. 3.0 mass% or less is more preferable.
 医療用線状材料を構成するZn合金がTiを含有する場合、Zn合金中のTi量が0.01質量%以上であることで、医療用線状材料の曲げ性を一定以上のものとすることができるほか、強度を損なわずに延性を高めることができる。Zn合金中のTi量が0.4質量%を超えると、曲げ性や延性が悪化し、所望の機能を発現できないため好ましくない。これらの観点から、医療用線状材料を構成するZn合金がTiを含有する場合、Zn合金中のTi量は0.05質量%以上0.4質量%以下が好ましく、0.1質量%以上0.3質量%以下がより好ましい。 In the case where the Zn alloy constituting the medical linear material contains Ti, the bendability of the medical linear material is more than a certain level when the Ti content in the Zn alloy is 0.01% by mass or more. In addition, the ductility can be increased without impairing the strength. If the amount of Ti in the Zn alloy exceeds 0.4% by mass, the bendability and ductility deteriorate and the desired function cannot be expressed, which is not preferable. From these viewpoints, when the Zn alloy constituting the medical linear material contains Ti, the amount of Ti in the Zn alloy is preferably 0.05% by mass or more and 0.4% by mass or less, and 0.1% by mass or more. 0.3 mass% or less is more preferable.
 医療用線状材料を構成するZn合金はCu又はTiに加えて、更にMn又はCaを有していてもよい。医療用線状材料を構成するZn合金は、Cu及びTiを含むか、CuとMn又はCaとを含むことが、曲げ性、延性、強度とを兼ね備えた医療用線状材料が得やすい点で好ましい。CuとMn又はCaを含むZn合金に更にTiを含有させてもよい。またTiとMnとを含むZn合金も、曲げ性と強度を有する。 Zn alloy constituting the medical linear material may further contain Mn or Ca in addition to Cu or Ti. The Zn alloy constituting the medical linear material contains Cu and Ti, or contains Cu and Mn or Ca, so that it is easy to obtain a medical linear material having bendability, ductility, and strength. preferable. A Zn alloy containing Cu and Mn or Ca may further contain Ti. A Zn alloy containing Ti and Mn also has bendability and strength.
 好ましいZn合金の構成としては、Zn並びにCu及び/又はTiを含み、且つMn、Ca及びMgから選ばれる少なくとも1種を含んでいてもよく、残部が不可避的元素のみである合金であり、更に好ましくは、Zn並びにCu及び/又はTiを含み、且つMn及びCaから選ばれる少なくとも1種を含んでいてもよく、残部が不可避的元素のみである合金である。そのような合金の具体的な構成としては、Zn及びCuを含み残部が不可避的元素のみである合金;Zn及びTiを含み残部が不可避的元素のみである合金;Zn、Cu及びTiを含み残部は不可避的元素のみである合金;Zn、Cu及びMnを含み残部は不可避的元素のみである合金;Zn、Cu及びCaを含み残部は不可避的元素のみである合金;Zn、Ti及びMnを含み残部は不可避的元素のみである合金;Zn、Cu、Mn及びTiを含み残部は不可避的元素のみである合金;Zn、Cu、Mn及びCaを含み残部は不可避的元素のみである合金である。 As a preferable composition of the Zn alloy, it is an alloy containing Zn and Cu and / or Ti and may contain at least one selected from Mn, Ca and Mg, and the balance is only an inevitable element. Preferably, the alloy contains Zn and Cu and / or Ti and may contain at least one selected from Mn and Ca, with the balance being only inevitable elements. The specific structure of such an alloy includes an alloy containing Zn and Cu and the balance being inevitable elements only; an alloy containing Zn and Ti and the balance being only inevitable elements; the balance containing Zn, Cu and Ti Is an alloy that contains only inevitable elements; an alloy that contains Zn, Cu, and Mn, and the balance that contains only inevitable elements; an alloy that contains Zn, Cu and Ca, and the balance that contains only inevitable elements; which contains Zn, Ti and Mn An alloy in which the balance is only inevitable elements; an alloy in which Zn, Cu, Mn and Ti are included, and the balance is only inevitable elements; an alloy in which the balance is Zn, Cu, Mn and Ca and the balance is only inevitable elements.
 例えば、医療用線状材料を構成するZn合金は、マンガン(以下Mnと表す)を0.1質量%以上含むことが、強度又は伸びを高める点や曲げ性の点から好ましい。またZn合金がMnを含有する場合、Zn合金中のMn量を5質量%以下とすることで、曲げ性や延性を良好なものとし、所定の機能を発現しやすいため好ましい。これらの点から、医療用線状材料を構成するZn合金がMnを含有する場合、Zn合金中のMn量は0.12質量%以上3.0質量%以下が好ましく、0.15質量%以上2.0質量%以下がより好ましい。 For example, it is preferable that the Zn alloy constituting the medical linear material contains 0.1% by mass or more of manganese (hereinafter referred to as Mn) from the viewpoint of increasing the strength or elongation and the bendability. Further, when the Zn alloy contains Mn, it is preferable that the amount of Mn in the Zn alloy is 5% by mass or less because the bendability and ductility are improved and a predetermined function is easily exhibited. From these points, when the Zn alloy constituting the medical linear material contains Mn, the amount of Mn in the Zn alloy is preferably 0.12% by mass or more and 3.0% by mass or less, and 0.15% by mass or more. 2.0 mass% or less is more preferable.
 また例えば、医療用線状材料を構成するZn合金は、カルシウム(以下、Caと表す)を0.01質量%以上含むことが、強度を高める点や腐食速度の調整の点から好ましい。また、Zn合金がCaを含有する場合、Zn合金中のCaの量を0.5質量%以下とすることで、曲げ性や延性を良好なものとし、所定の機能を発現しやすいため好ましい。これらの点から、医療用線状材料を構成するZn合金がCaを含有する場合、Zn合金中のCa量は0.03質量%以上0.4質量%以下が好ましく、0.05質量%以上0.3質量%以下がより好ましい。  For example, it is preferable that the Zn alloy constituting the medical linear material contains 0.01% by mass or more of calcium (hereinafter referred to as Ca) from the viewpoint of increasing the strength and adjusting the corrosion rate. In addition, when the Zn alloy contains Ca, the amount of Ca in the Zn alloy is preferably 0.5% by mass or less because the bendability and ductility are improved and a predetermined function is easily exhibited. From these points, when the Zn alloy constituting the medical linear material contains Ca, the Ca content in the Zn alloy is preferably 0.03% by mass or more and 0.4% by mass or less, and 0.05% by mass or more. 0.3 mass% or less is more preferable. *
 医療用線状材料を構成するZn合金は、マグネシウム(以下、Mgと表す)含量が低いことが、ステープルやクリップ等の用途に適した曲げ性をより一層高めるために好ましく、実質的にMgを非含有であることが好ましい。具体的には、Zn合金中のMg含量は質量基準で50ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm未満であることが特に好ましい。Zn合金中のMg含量は少なければ少ないほど好ましいが、0.001ppm以上であると製造が容易である。 The Zn alloy constituting the medical linear material preferably has a low magnesium (hereinafter referred to as Mg) content in order to further improve the bendability suitable for applications such as staples and clips. It is preferably not contained. Specifically, the Mg content in the Zn alloy is preferably 50 ppm or less on a mass basis, more preferably 20 ppm or less, and particularly preferably less than 10 ppm. The smaller the Mg content in the Zn alloy, the better. However, when the content is 0.001 ppm or more, the production is easy.
 Zn合金は、上述したようにZnと、Cu及び/又はTiとを含み、且つMn、Ca及びMgから選ばれる少なくとも1種を含んでいてもよく、残部が不可避的元素のみであることが好ましい。残部が不可避的元素のみであるとは、残部がゼロつまり不可避的元素を含まない場合をも包含する意図である。不可避的元素とは、原料中に存在する又は製造過程で混入する等の理由により、不可避的不純物として含有せざるを得ない元素をいう。不可避的元素としては、例えばFe、Sn、Alが挙げられ、また通常ごく微量であるがPb、Cdが挙げられる。医療用線状材料を構成するZn合金は、これらの不可避的元素の含有量が合計で0.05質量%以下であることがより好ましく、0.01質量%以下であることが特に好ましい。またZn合金は各不可避的元素の含有量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。 The Zn alloy contains Zn and Cu and / or Ti as described above, and may contain at least one selected from Mn, Ca and Mg, and the remainder is preferably only inevitable elements. . The remainder being only inevitable elements is intended to include the case where the remainder is zero, that is, the case where no inevitable elements are contained. An inevitable element refers to an element that must be contained as an inevitable impurity due to reasons such as being present in a raw material or being mixed in a manufacturing process. Inevitable elements include, for example, Fe, Sn, and Al, and Pb and Cd are usually present in very small amounts. The Zn alloy constituting the medical linear material preferably has a total content of these inevitable elements of 0.05% by mass or less, particularly preferably 0.01% by mass or less. Further, in the Zn alloy, the content of each inevitable element is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
 Zn合金中のCu、Ti、Ca、Mn及びMg並びに不可避的元素の含有量は、ICP発光分析法により測定することができ、具体的には、実施例に記載の方法にて測定できる。 The contents of Cu, Ti, Ca, Mn, and Mg and unavoidable elements in the Zn alloy can be measured by ICP emission analysis, and specifically by the method described in the examples.
 本発明の医療用線状材料は、特定の断面積を有する線状であることを別の特徴とする。ここでいう断面積とは医療用線状材料の延び方向と直交する断面の断面積をいう。医療用線状材料は、断面積が0.01mm以上であることで、生体組織を縫合又は吻合することが可能な締結力を得ることができる。また断面積が4.0mm以下であることで、縫合又は吻合用として腐食速度の十分なものを得ることができる。これらの点から、医療用線状材料の断面積は0.02mm以上2.0mm以下であることが好ましく、0.03mm以上1.0mm以下であることがより好ましい。医療用線状材料の断面積は、医療用線状材料の延び方向に沿って断面積が一定でない場合、断面積の最大値Smaxを指す。 Another feature of the medical linear material of the present invention is that the linear material has a specific cross-sectional area. The cross-sectional area here means a cross-sectional area of a cross section orthogonal to the extending direction of the medical linear material. When the medical linear material has a cross-sectional area of 0.01 mm 2 or more, a fastening force capable of suturing or anastomosing living tissue can be obtained. In addition, when the cross-sectional area is 4.0 mm 2 or less, a material having a sufficient corrosion rate for suturing or anastomosis can be obtained. From these points, it is preferable that the cross-sectional area of the medical linear material is 0.02 mm 2 or more 2.0 mm 2 or less, and more preferably 0.03 mm 2 or more 1.0 mm 2 or less. The cross-sectional area of the medical linear material indicates the maximum value Smax of the cross-sectional area when the cross-sectional area is not constant along the extending direction of the medical linear material.
 医療用線状材料における線状とは、直線状だけでなく曲線状を含むものである。線状材料とは、その延び方向の長さに垂直な断面の幅方向長さYに対して、延び方向の長さXが非常に長い形状の材料が挙げられる。医療用線状材料は例えばその延び方向長さXと、延び方向と直交する断面の幅方向長さYとの比X/Yが10以上のものが好ましく、15以上のものがより好ましく、20以上のものが特に好ましい。ここでいう幅方向長さYとは、線状材料の延び方向と直交する断面を横断する線分のうち最長の線分の長さをいう。ここでいう延び方向長さXとは、医療用線状材料が曲線状又は曲げ部を有している場合は道なりの長さ(線に沿う長さ)を指す。また医療用線状材料の幅方向長さYは、医療用線状材料の延び方向に沿った幅方向長さYが一定でない場合、最大値Ymaxを指す。 The linear shape in the medical linear material includes not only a linear shape but also a curved shape. Examples of the linear material include a material having a shape in which the length X in the extending direction is very long with respect to the length Y in the width direction of the cross section perpendicular to the length in the extending direction. The medical linear material preferably has a ratio X / Y of the length X in the extending direction and the length Y in the width direction of the cross section perpendicular to the extending direction, preferably 15 or more, more preferably 20 The above is particularly preferable. The width direction length Y here means the length of the longest line segment among the line segments crossing the cross section orthogonal to the extending direction of the linear material. The length X in the extending direction here refers to the length of the road (the length along the line) when the medical linear material has a curved shape or a bent portion. Further, the width direction length Y of the medical linear material indicates a maximum value Ymax when the width direction length Y along the extending direction of the medical linear material is not constant.
 なお、医療用線状材料は延び方向に沿って、幅方向長さYが一定であってもよく、一定でなくてもよい。好ましくは、一本の医療用線状材料における延び方向に沿った幅方向長さYの最大値Ymaxと最小値Yminとの差(Ymax-Ymin)がYmaxに対して40%以下であることが好ましく、20%以下であることがより好ましい。 The medical linear material may or may not have a constant length Y in the width direction along the extending direction. Preferably, the difference (Ymax−Ymin) between the maximum value Ymax and the minimum value Ymin of the length Y in the width direction along the extending direction in one medical linear material is 40% or less with respect to Ymax. Preferably, it is 20% or less.
 本実施形態の医療用線状材料はステントを除くものである。線状材料を網目形状に形成したステントも存在するが、本実施形態の医療用材料はこれを含まない。
 本実施形態の医療用線状材料は、その使用時に変形させる用途、特に折り曲げ変形させる用途に使用されることが好ましく、特に、使用時に締結のため折り曲げる用途に使用されることが好ましい。そのような用途としては、ステープルやクリップが挙げられる。ステープルは、1本の直線状の医療用線状材料を、ステープラー等での使用に適した形状に折り曲げられて形成される。またクリップも1本の直線状の医療用線状材料を、クリップアプライヤー等での使用に適した形状に折り曲げられて形成される。そしてステープル及びクリップのいずれも、生体組織を縫合又は吻合するため、更に変形させて締結に用いられる。これに対し、例えばステントは、生体組織の構造維持のために用いられ、使用時に曲げ変形させる用途に用いられるものではない。本実施形態において、ステープル及びクリップは、いずれも本実施形態の医療用線状材料からなる生体組織の縫合体又は吻合体の例である。
The medical linear material of the present embodiment is one excluding a stent. Although there is a stent in which a linear material is formed in a mesh shape, the medical material of this embodiment does not include this.
The medical linear material of the present embodiment is preferably used for applications that are deformed during use, particularly for applications that are bent and deformed, and is particularly preferably used for applications that are bent for fastening during use. Such applications include staples and clips. The staple is formed by bending a linear medical linear material into a shape suitable for use in a stapler or the like. The clip is also formed by bending one linear medical linear material into a shape suitable for use with a clip applier or the like. Both the staple and the clip are further deformed and used for fastening in order to suture or anastomoses the living tissue. On the other hand, for example, a stent is used for maintaining the structure of a living tissue, and is not used for an application of bending deformation during use. In the present embodiment, staples and clips are examples of a suture or anastomosis body of a living tissue made of the medical linear material of the present embodiment.
 医療用線状材料の断面形状は、円形状、矩形状の他、矩形以外の多角形状や楕円などであってもよい。また医療用線状材料の断面形状は、医療用線状材料の延び方向に沿って一定であってもよく、異なっていてもよい。生体組織を固定する力を得る点から、医療用線状材料は中空でないことが好ましく、中実であることがより好ましい。医療用線状材料は、曲げ部を有していることが好ましく、曲げ部と直線状部を有していることがより好ましく、直線状部同士が曲げ部を介して連続した形状であることが特に好ましい。曲げ部はRを有していることが好ましい。医療用線状材料は分岐部を有していてもよく、或いは、分岐部を有していなくてもよい。医療用線状材料は、それのみで医療用器具を形成していてもよく、又は、医療用器具の一部を構成していてもよい。 The cross-sectional shape of the medical linear material may be a circular shape, a rectangular shape, a polygonal shape other than a rectangular shape, an ellipse, or the like. Further, the cross-sectional shape of the medical linear material may be constant or different along the extending direction of the medical linear material. From the viewpoint of obtaining a force for fixing a living tissue, the medical linear material is preferably not hollow, and more preferably solid. The medical linear material preferably has a bent portion, more preferably has a bent portion and a linear portion, and the linear portions have a continuous shape via the bent portion. Is particularly preferred. The bent portion preferably has R. The medical linear material may have a branch portion or may not have a branch portion. The medical linear material may form a medical device by itself, or may constitute a part of the medical device.
 また上述したように医療用線状材料の延び方向と直交する断面の形状が、一方に長い形状を有する場合、その断面のアスペクト比(長径/短径)は4以下であることが曲げやすさや締結力等の点から好ましく、2以下であることが更に好ましい。長径は、前記の断面形状が楕円形、長方形や不定形等、一方向に長い場合の当該長手方向の長さを指す。短径とは、当該長手方向と直交する方向の長さを指すものとする。 Further, as described above, when the cross-sectional shape perpendicular to the extending direction of the medical linear material has a long shape on one side, the aspect ratio (major axis / minor axis) of the cross section is 4 or less. It is preferable in terms of fastening force and the like, and more preferably 2 or less. The major axis refers to the length in the longitudinal direction when the cross-sectional shape is long in one direction, such as an ellipse, a rectangle, or an indefinite shape. The minor axis refers to the length in the direction orthogonal to the longitudinal direction.
 本実施形態の医療用線状材料は、ステープル形状又はクリップ形状を有していることが好ましい。ステープル形状及びクリップ形状としては、一本の直線状の医療用線状材料を折り曲げることにより形成される形状が挙げられる。
 具体的には、ステープルの形状としては、例えば図1(A)に示すステープル20のように、一対の肢部21、22と、一対の肢部21、22のそれぞれ同じ側に位置する端部21a、22a同士を接続する連結部23とを有するものが挙げられる。図1(A)の例では、一対の肢部21、22は略同一の長さを有している。また肢部21、22の連結部23と反対側の端部21b、22bは、内側に向け先端に向かうほど細くなる先細り形状を有している。ステープルとしては図1(B)に示すように、このような一対の肢部21、22を内側に折り曲げることで、生体組織を縫合又は吻合したり、創傷を閉鎖するものが挙げられる。図1(B)に示すように、ステープルの肢部21、22は、その一部21c、22cを連結部23と相対向させるとともに端部21b、22bが互いに近接するように折り曲げられる。図1(B)の例では、肢部21、22それぞれは、連結部23と相対向する部分21c、22cよりも端部21b、22b側が、更に連結部23側に折り曲げられている。図1(A)に示すステープル形状において一対の肢部21、22は略同方向に伸び、略平行且つ略同じ長さの直線状であり、連結部23は肢部21、22と略直交する直線状であることから、肢部21、22と連結部23とが一辺が欠落した矩形状のステープル形状を形成している。矩形状としては長方形状や正方形状が挙げられる。本明細書において一辺が欠落した矩形状という場合、当該矩形状における角部がRを有する形状を含む。しかしながらステープル形状は当該一辺が欠落した矩形状に限定されない。例えばステープル形状はU字状やC字状等の一部が欠損した円状や楕円状であってもよい。ステープル形状はまた例えば一辺が欠落した矩形状であって連結部23に段差部や曲線部を有するものであってもよい。
The medical linear material of the present embodiment preferably has a staple shape or a clip shape. Examples of the staple shape and the clip shape include shapes formed by bending a single linear medical linear material.
Specifically, as a staple shape, for example, a staple 20 shown in FIG. 1A, a pair of limbs 21 and 22 and end portions located on the same side of the pair of limbs 21 and 22, respectively. What has the connection part 23 which connects 21a and 22a mutually is mentioned. In the example of FIG. 1A, the pair of limbs 21 and 22 have substantially the same length. Moreover, the edge parts 21b and 22b on the opposite side to the connection part 23 of the limbs 21 and 22 have the tapering shape which becomes so thin that it goes inside toward the front. As shown in FIG. 1 (B), the staple includes one that folds a pair of limbs 21 and 22 inward, thereby suturing or anastomosing living tissue or closing a wound. As shown in FIG. 1B, the limb portions 21 and 22 of the staple are bent so that the portions 21c and 22c face the connecting portion 23 and the end portions 21b and 22b are close to each other. In the example of FIG. 1 (B), each of the limbs 21 and 22 is bent further toward the connecting portion 23 side than the portions 21c and 22c facing the connecting portion 23 at the end portions 21b and 22b side. In the staple shape shown in FIG. 1 (A), the pair of limbs 21 and 22 extend in substantially the same direction, are substantially parallel and have the same length, and the connecting portion 23 is substantially orthogonal to the limbs 21 and 22. Since it is linear, the limbs 21 and 22 and the connecting part 23 form a rectangular staple shape with one side missing. Examples of the rectangular shape include a rectangular shape and a square shape. In this specification, the term “rectangular shape with one side missing” includes a shape in which a corner portion of the rectangular shape has R. However, the staple shape is not limited to a rectangular shape with one side missing. For example, the staple shape may be a circular shape or an elliptical shape in which a part such as a U shape or a C shape is missing. The staple shape may be, for example, a rectangular shape with one side missing, and the connecting portion 23 may have a stepped portion or a curved portion.
 良好な生分解性及び固定力を得る観点から、医療用線状材料がステープル形状を有する場合、その断面積は0.01mm以上0.3mm以下が好ましく、0.03mm以上0.2mm以下がより好ましい。 From the viewpoint of obtaining good biodegradability and fixing force, when the medical linear material has a staple shape, the cross-sectional area is preferably 0.01 mm 2 or more and 0.3 mm 2 or less, and 0.03 mm 2 or more and 0.2 mm. 2 or less is more preferable.
 クリップとしては、例えば図2(A)に示すように、互いに相対向する一対の肢部31、32と、一対の肢部31、32のそれぞれ同じ側に位置する端部31a、32a同士を連結する連結部33とを有しており、連結部33は一対の肢部31、32から遠ざかる方向に向けて凸の形状を有している。クリップ形状としては、図2(A)のクリップ30のように、連結部33を凸形状の頂点を通る直線である中心線Aに対して線対称な形状が挙げられる。従って、一対の肢部31、32は略同じ長さを有しており、当該凸形状の頂点を通る中心線Aに対して線対称な状態で連結部33に連結されている。クリップとは、このような一対の肢部31、32を、図2(B)に示すように、その内面31b、32b同士が相対向した状態で互いに近接するように連結部33を折り曲げることで、生体組織を縫合又は吻合したり、脈管を結紮するものが挙げられる。図2(A)の例では、一対の肢部31、32は連結部33から遠ざかるにつれて中心線Aに近づくように中心線Aに対して若干傾斜して設けられている。図2(A)に示すクリップの形状は、連結部33がV字状である。クリップの形状はこれに限定されず、一辺が欠落した長方形状、V字状、C字状等各種の形状が挙げられる。 As a clip, for example, as shown in FIG. 2A, a pair of limbs 31 and 32 facing each other and ends 31a and 32a located on the same side of the pair of limbs 31 and 32 are connected to each other. The connection part 33 has a convex shape toward the direction away from the pair of limbs 31 and 32. Examples of the clip shape include a shape that is line-symmetric with respect to the center line A that is a straight line passing through the apex of the convex shape of the connecting portion 33 like the clip 30 in FIG. Therefore, the pair of limbs 31 and 32 have substantially the same length, and are connected to the connecting part 33 in a line-symmetric state with respect to the center line A passing through the convex apex. As shown in FIG. 2B, the clip is formed by bending the connecting portion 33 so that the inner surfaces 31b and 32b face each other, as shown in FIG. 2B. And those that sew or anastomoses living tissue or ligate vessels. In the example of FIG. 2A, the pair of limbs 31 and 32 are provided slightly inclined with respect to the center line A so as to approach the center line A as the distance from the connecting portion 33 increases. In the shape of the clip shown in FIG. 2A, the connecting portion 33 is V-shaped. The shape of the clip is not limited to this, and various shapes such as a rectangular shape lacking one side, a V shape, and a C shape can be mentioned.
 良好な生分解性及び固定力を得る観点から、医療用線状材料がクリップ形状を有する場合、その断面積は0.05mm以上4.0mm以下が好ましく、0.1mm以上2.0mm以下がより好ましい。 From the viewpoint of obtaining good biodegradability and fixing force, when the medical linear material has a clip shape, the cross-sectional area is preferably 0.05 mm 2 or more and 4.0 mm 2 or less, 0.1 mm 2 or more and 2.0 mm 2 or less is more preferable.
 医療用線状材料はその長さが3mm以上であることが、生体組織を縫合又は吻合する用途、脈管を結紮する用途や創傷を閉鎖する用途に容易に用いることができるため好ましく、長さが40mm以下であることが、体内に埋入する異物を最小限にするという観点から好ましい。これらの点から、医療用線状材料の長さが3mm以上40mm以下であることがより好ましい。本明細書中、医療用線状材料の長さとは、医療用線状材料の線に沿う長さをいう。 The length of the medical linear material is preferably 3 mm or more because it can be easily used for suturing or anastomosing living tissue, ligating vessels, or closing wounds. Is preferably 40 mm or less from the viewpoint of minimizing foreign matter embedded in the body. From these points, it is more preferable that the length of the medical linear material is 3 mm or more and 40 mm or less. In this specification, the length of the medical linear material refers to the length along the line of the medical linear material.
 特に、ステープル形状を有している場合、生体組織を縫合又は吻合する用途及び創傷を閉鎖する用途に容易に用いることができる点や体内に埋入する異物を最小限にするという点から、医療用線状材料の長さが3mm以上20mm以下であることが好ましく、4mm以上15mm以下であることがより好ましい。またステープルの幅W1(図1(A)参照)は1mm以上10mm以下であることが好ましく、2mm以上8mm以下であることがより好ましい。またステープルの高さH1(図1(A)参照)は1mm以上10mm以下であることが好ましく、2mm以上8mm以下であることがより好ましい。 In particular, when it has a staple shape, it can be easily used for the purpose of suturing or anastomosing living tissue and the purpose of closing a wound, and from the viewpoint of minimizing foreign matter embedded in the body. The length of the linear material for use is preferably 3 mm or more and 20 mm or less, and more preferably 4 mm or more and 15 mm or less. The staple width W1 (see FIG. 1A) is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 8 mm or less. The staple height H1 (see FIG. 1A) is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 8 mm or less.
 また特に、クリップ形状を有している場合、生体組織を縫合又は吻合したり脈管を結紮する用途に容易に用いることができる点や体内に埋入する異物を最小限にするという点から、医療用線状材料の長さが5mm以上40mm以下であることが好ましく、6mm以上30mm以下であることがより好ましい。またクリップの幅W2(図2(A)参照)は1mm以上20mm以下であることが好ましく、2mm以上10mm以下であることがより好ましい。またクリップの高さH2(図2(A)参照)は1mm以上20mm以下であることが好ましく、2mm以上15mm以下であることがより好ましい。 In particular, in the case of having a clip shape, from the point that it can be easily used for the purpose of suturing or anastomosing living tissue or ligating the blood vessels, or minimizing foreign matter embedded in the body, The length of the medical linear material is preferably 5 mm or more and 40 mm or less, and more preferably 6 mm or more and 30 mm or less. The width W2 of the clip (see FIG. 2A) is preferably 1 mm or more and 20 mm or less, and more preferably 2 mm or more and 10 mm or less. The height H2 of the clip (see FIG. 2A) is preferably 1 mm or more and 20 mm or less, and more preferably 2 mm or more and 15 mm or less.
 本実施形態の医療用線状材料は、ステープル又はクリップ等として用いる場合の機械的特性を満足できるものである。例えば医療用線状材料は0.2%耐力が80MPa以上であることで縫合、吻合又は結紮した箇所を十分に保持できる強度が得られるため好ましく、100MPa以上であることがより好ましく、120MPa以上であることが特に好ましい。医療用線状材料の0.2%耐力は高いことが好ましいが、1000MPa以下であることが、医療用線状材料の製造容易性や施術の容易性の点で好ましく、700MPa以下であることがより好ましい。医療用線状材料の0.2%耐力は、JIS Z 2241:2011のオフセット法に準拠して、引張方向が医療用線状材料の延び方向と平行となるように測定する。医療用線状材料の0.2%耐力を上記の範囲内とするためには、添加金属の濃度を所定の範囲内に調整する、鋳造後の加工中に400℃以上の過度な加熱を避ける等すればよい。 The medical linear material of the present embodiment can satisfy the mechanical characteristics when used as a staple or a clip. For example, a medical linear material preferably has a 0.2% proof stress of 80 MPa or more because strength sufficient to hold a sutured, anastomotic or ligated portion can be obtained, more preferably 100 MPa or more, and 120 MPa or more. It is particularly preferred. The 0.2% yield strength of the medical linear material is preferably high, but it is preferably 1000 MPa or less from the viewpoint of ease of production of the medical linear material and ease of treatment, and 700 MPa or less. More preferred. The 0.2% yield strength of the medical linear material is measured according to the offset method of JIS Z 2241: 2011 so that the tensile direction is parallel to the extending direction of the medical linear material. In order to make the 0.2% proof stress of the medical linear material within the above range, the concentration of the added metal is adjusted within a predetermined range, and excessive heating at 400 ° C. or higher is avoided during processing after casting. And so on.
 同様の観点から、医療用線状材料は引張強度が120MPa以上であることが好ましく、130MPa以上であることがより好ましく、140MPa以上であることが特に好ましい。医療用線状材料の引張強度は高いことが好ましいが、2000MPa以下であることが、医療用線状材料の製造容易性や施術容易性の点で好ましく、1000MPa以下であることがより好ましい。医療用線状材料の引張強度を上記の範囲内とするためには、添加金属の濃度を所定の範囲内に調整する、鋳造後の加工中に400℃以上の過度な加熱を避ける等すればよい。 From the same viewpoint, the medical linear material preferably has a tensile strength of 120 MPa or more, more preferably 130 MPa or more, and particularly preferably 140 MPa or more. The tensile strength of the medical linear material is preferably high, but it is preferably 2000 MPa or less from the viewpoint of ease of production of the medical linear material and ease of treatment, and more preferably 1000 MPa or less. In order to set the tensile strength of the medical linear material within the above range, the concentration of the additive metal is adjusted within a predetermined range, or excessive heating at 400 ° C. or more is avoided during processing after casting. Good.
 更に医療用線状材料は、破断伸び率が30%以上であることが、十分な伸展性を得る点から好ましく、40%以上であることがより好ましく、50%以上であることが特に好ましい。医療用線状材料の破断伸び率を上記の範囲内とするためには、添加金属の濃度を所定の範囲内に調整する、加工中に400℃以上の過度な加熱を避ける等すればよい。破断伸び率は高いことが好ましいが、200%以下であることが加工上の観点から好ましい。 Further, the linear medical material preferably has an elongation at break of 30% or more from the viewpoint of obtaining sufficient extensibility, more preferably 40% or more, and particularly preferably 50% or more. In order to set the elongation at break of the medical linear material within the above range, the concentration of the additive metal may be adjusted within a predetermined range, or excessive heating at 400 ° C. or higher may be avoided during processing. The elongation at break is preferably high, but is preferably 200% or less from the viewpoint of processing.
 医療用線状材料の引張強度、破断伸び率は、JIS Z 2241:2011に準拠して、引張方向が医療用線状材料の延び方向と平行となるように測定する。 The tensile strength and breaking elongation of the medical linear material are measured in accordance with JIS Z 2241: 2011 so that the tensile direction is parallel to the extending direction of the medical linear material.
 医療用線状材料は、生分解性インプラントとして用いられることが好ましい。インプラントとは、生体内に埋入するための器具をいい、例えば、線状インプラントとしては、線、ピン、プローブ、ワイヤ、ケーブル、バンド、クリップ、ステープル等が挙げられ、本実施形態の医療用線状材料の曲げ性や強度、伸び、生分解性を発揮させる点からステープル又はクリップが好ましい。 The medical linear material is preferably used as a biodegradable implant. An implant refers to an instrument for implantation in a living body. For example, examples of a linear implant include a wire, a pin, a probe, a wire, a cable, a band, a clip, a staple, and the like. Staples or clips are preferable from the viewpoint of exhibiting the bendability, strength, elongation, and biodegradability of the linear material.
 医療用線状材料の生分解性としては、人工腸液を用いた以下の条件の腐食試験において、0.01mm/year以上の腐食速度を呈することがステープル又はクリップ等の血管や組織の止具として使用されたときに好適な生分解性を得られるために好ましい。また前記の腐食速度は、5mm/year以下であることが、医療用線状材料の分解が速すぎて血管やリンパ管、組織同士が接合する前に分解してしまうことを防止する点で好ましい。この観点から腐食速度は、0.01mm/year以上5mm/year以下であることが好ましく、0.05mm/year以上3mm/year以下であることがより好ましい。医療用線状材料の腐食速度を上記範囲とするためには、Zn合金の組成を上記の範囲で調整するほか、表面に腐食速度調整用の被膜を形成する等すればよい。 As a biodegradability of a medical linear material, in a corrosion test under the following conditions using an artificial intestinal fluid, a corrosion rate of 0.01 mm / year or more is used as a stopper for blood vessels or tissues such as staples or clips. It is preferable because suitable biodegradability can be obtained when it is used. The corrosion rate is preferably 5 mm / year or less from the viewpoint of preventing the medical linear material from being decomposed too quickly and decomposing before blood vessels, lymphatic vessels and tissues are joined together. . From this viewpoint, the corrosion rate is preferably 0.01 mm / year or more and 5 mm / year or less, and more preferably 0.05 mm / year or more and 3 mm / year or less. In order to set the corrosion rate of the medical linear material within the above range, the composition of the Zn alloy may be adjusted within the above range, and a coating for adjusting the corrosion rate may be formed on the surface.
 <腐食試験条件>
 医療用線状材料を37℃の摂食時人工腸液中に浸漬し、試験前後の質量変化より、腐食減量を計算する。また試験片の表面積より、下記式によって腐食速度(mm/year)を算出する。
Figure JPOXMLDOC01-appb-M000002
 上記式において、K:定数  10、W:質量減(g)、A:表面積(cm)、T:時間(year)、D: 密度(g/cm)である。
<Corrosion test conditions>
The medical linear material is immersed in artificial intestinal fluid at the time of eating at 37 ° C., and the weight loss of corrosion is calculated from the mass change before and after the test. Further, the corrosion rate (mm / year) is calculated from the surface area of the test piece according to the following formula.
Figure JPOXMLDOC01-appb-M000002
In the above formula, K: constant 10, W: mass loss (g), A: surface area (cm 2 ), T: time (year), D: density (g / cm 3 ).
 摂食時人工腸液としては、人体その他の哺乳類の摂食時の腸液を模したものが挙げられ、例えば、酢酸を50~200mmol/L、胆汁酸塩を5~20mmol/L、塩化ナトリウムを50~210mmol/L、リン脂質を0.5~5mmol/L含有する、pH5~7のものが挙げられる。このような摂食時人工腸液としては、例えば、biorelevant社の 商品名「FeSSIF」を用いることができる。
 摂食時人工腸液は、1~3日毎に液交換することが好ましい。試験期間は例えば1~4週間とすることが好ましい。試験片は、試験経過後に取り出して純水で洗浄後、室温で乾燥する。乾燥後、腐食した試験片を200g/LのCrO水溶液を用いて除去し、十分に水洗した後に乾燥することが好ましい。
 用いる人工腸液の量は、医療用線状材料の表面積1mmに対して、0.2ml以上であることが好ましい。
 腐食試験は具体的には、後述する実施例に記載の方法にて測定できる。
Examples of the artificial intestinal fluid at the time of feeding include those imitating the intestinal fluid at the time of feeding by the human body and other mammals. ˜210 mmol / L, phospholipid 0.5˜5 mmol / L, pH 5˜7. As such an artificial intestinal fluid at the time of feeding, for example, the trade name “FeSSIF” of biolevrant can be used.
The artificial intestinal fluid during feeding is preferably changed every 1 to 3 days. The test period is preferably 1 to 4 weeks, for example. The test piece is taken out after the test, washed with pure water, and dried at room temperature. After drying, it is preferable to remove the corroded test piece using a 200 g / L CrO 3 aqueous solution, sufficiently wash with water and then dry.
The amount of the artificial intestinal fluid used is preferably 0.2 ml or more with respect to the surface area of 1 mm 2 of the medical linear material.
Specifically, the corrosion test can be measured by the method described in Examples described later.
 次に、医療用線状材料の好適な製法を以下説明する。
 本実施形態の医療用線状材料の好適な製造方法はまず、(1)Zn合金の原料金属を、450℃以上900℃以下で溶解した後、鋳型鋳造法又は連続鋳造法により鋳造した金属塊を得、(2)得られた金属塊から棒材を切り出し、伸線処理を行うものである。
Next, the suitable manufacturing method of a medical linear material is demonstrated below.
The preferred method for producing the medical linear material of the present embodiment is as follows: (1) A metal alloy obtained by melting a raw material metal of Zn alloy at 450 ° C. or higher and 900 ° C. or lower and then casting it by a mold casting method or a continuous casting method. (2) A bar is cut out from the obtained metal lump and subjected to a wire drawing process.
 (1)の工程において、Zn合金の原料金属は、上記で挙げたZn、Ti若しくはCu、並びに必要に応じてMn及びCa等を上記の組成にて配合すればよい。原料金属の溶解温度としては原料の混合しやすさや原料揮発防止等の点から、450℃以上900℃以下が好ましく、500℃以上800℃以下がより好ましい。 In the step (1), the raw material metal of the Zn alloy may be blended with the above-described composition, such as Zn, Ti, or Cu, and, if necessary, Mn and Ca. The melting temperature of the raw material metal is preferably 450 ° C. or higher and 900 ° C. or lower, and more preferably 500 ° C. or higher and 800 ° C. or lower from the viewpoint of easy mixing of raw materials and prevention of raw material volatilization.
 (2)の工程において伸線処理は、熱間及び冷間のいずれで行われてもよいが、加工初期においては熱間にて行うことが、加工装置の負荷低減や組織の健全性の点から好ましい。伸線処理としては、押出し成形、穴ダイス伸線、ローラーダイス伸線、スウェージング、ロール圧延などを適宜組み合わせて行うことができるが、特に押出し成形、穴ダイス伸線それぞれをこの順で行うことが好ましい。 In the step (2), the wire drawing process may be performed either hot or cold, but in the initial stage of processing, it is performed hot to reduce the load on the processing apparatus and the soundness of the structure. To preferred. As the wire drawing treatment, extrusion molding, hole die drawing, roller die drawing, swaging, roll rolling, etc. can be appropriately combined, and in particular, extrusion molding and hole die drawing are performed in this order. Is preferred.
 (2)における伸線処理は、金属塊から切り出した棒材の断面積に対する得られた医療用線状材料の断面積の減少率(減面率)が、90%以上であることが組織の微細化すなわち強度や伸びの点から好ましく、95%以上であることが更に好ましい。 In the wire drawing process in (2), the reduction ratio (area reduction rate) of the obtained medical linear material relative to the cross-sectional area of the rod cut out from the metal lump is 90% or more. It is preferable from the viewpoint of miniaturization, that is, strength and elongation, and more preferably 95% or more.
 以上の製造方法で得られた本実施形態の医療用線状材料は、その曲げ性、生分解性、強度、延性を活かして、上述したステープル、クリップ、金属線、ピン、プローブ、ワイヤ、ケーブル、バンド等に各種の用途に使用することができる。本実施形態の医療用線状材料の具体的な用途としては、生体内への適用が挙げられ、例えば、小腸、食道、大腸(直腸、結腸)、十二指腸、空腸、回腸、盲腸、子宮等の組織や血管、リンパ管等の脈管における、切除部分の縫合若しくは吻合、又は、移植片の縫合若しくは吻合;脈管の閉鎖又は結紮等に好適に用いることができる。本発明の医療用線状材料の対象は、ヒトに限定されず、マウス、イヌ、ネコ、ラット、ウサギ、ブタ、サル等の哺乳類を含めるものである。本発明は、生体におけるこれらの組織又は脈管の縫合若しくは吻合、又は脈管の結紮に本発明の医療用線状材料を用いる縫合、吻合又は結紮方法を併せて提供するものである。 The medical linear material of the present embodiment obtained by the above manufacturing method utilizes the bendability, biodegradability, strength, ductility, and the above-described staple, clip, metal wire, pin, probe, wire, cable. It can be used for various applications such as bands. Specific uses of the medical linear material of the present embodiment include in vivo application, such as small intestine, esophagus, large intestine (rectum, colon), duodenum, jejunum, ileum, cecum, uterus, etc. It can be suitably used for suturing or anastomosis of a resected part or suturing or anastomosis of a graft in a vessel such as a tissue, blood vessel, or lymphatic vessel; closing or ligating a vessel. The target of the medical linear material of the present invention is not limited to humans, but includes mammals such as mice, dogs, cats, rats, rabbits, pigs, monkeys. The present invention also provides a suture, anastomosis or ligation method using the medical linear material of the present invention for suture or anastomosis of these tissues or vessels in a living body, or ligation of vessels.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
 〔実施例1~9、比較例1~4〕
 原料として、亜鉛単独、又は亜鉛と、銅(64黄銅板)、チタン、マンガン若しくはマグネシウムとを用いた。
 下記表1又は表2の組成となるように原料を、黒鉛製の坩堝に投入し、真空溶解炉を用いAr雰囲気下で650℃にて溶解させた。同温度にて、幅2cm、長さ17cm、高さ13.5cmの金型に溶解金属を流し込み、冷やし固めて鋳造した金属塊を得た。なお、表1及び表2中の組成の項の「%」は質量%を意味する。
 得られた材料について、以下の評価を行った。
 なお、実施例1~8、比較例1~4では、材料の引張強度や0.2%耐性、破断伸び率、曲げ評価は、材料の減面率が同様であれば形状に関わらず同様の評価結果となることから、実験を実施する便宜上、板材についてこれらの試験を行った。
 また、表1及び表2の「組成」の項におけるZnの量は、Cu、Ti、Mn、Ca又はMgといった添加元素の残余である。
[Examples 1 to 9, Comparative Examples 1 to 4]
As a raw material, zinc alone or zinc and copper (64 brass plate), titanium, manganese or magnesium were used.
The raw materials were put into a graphite crucible so as to have the composition shown in Table 1 or 2 below, and dissolved at 650 ° C. in an Ar atmosphere using a vacuum melting furnace. At the same temperature, a molten metal was poured into a mold having a width of 2 cm, a length of 17 cm, and a height of 13.5 cm, and cooled and solidified to obtain a cast metal lump. “%” In the term of composition in Tables 1 and 2 means mass%.
The following evaluation was performed about the obtained material.
In Examples 1 to 8 and Comparative Examples 1 to 4, the tensile strength, 0.2% resistance, elongation at break, and bending evaluation of the material are the same regardless of the shape as long as the area reduction rate of the material is the same. Since it becomes an evaluation result, these tests were performed about the board | plate material for the convenience of implementing experiment.
Further, the amount of Zn in the “Composition” section of Tables 1 and 2 is the remainder of the additive element such as Cu, Ti, Mn, Ca, or Mg.
 <実施例1~8、比較例1~4の評価>
 実施例1~8、比較例1~4において鋳造した金属塊から厚さ10mmの板材を切り出した。200℃に加熱した板材を一対の圧延ロール(室温)間に通して圧延した。1回の圧延パスの圧下は1~2mmとし、圧延パスの間に板材を200℃に再加熱した。厚さ2mmに圧延したところで、材料を室温に冷却し、再加熱をやめ、室温状態の板材に対して、同1回の圧延パスの圧下の設定が0.5mmとなる圧延を行い、厚さ0.5mmまで繰り返し圧延した。得られた板材について、引張強度、0.2%耐力及び破断伸び率を以下の方法で測定したほか、曲げ試験を以下の方法で行った。得られた板材からシャーリングによって長さ10mm、幅1mm、厚さ0.5mmの線状の試験片を得て、これを以下の腐食試験に供した。また線状の試験片の組成分析を以下の方法で行った。
<Evaluation of Examples 1 to 8 and Comparative Examples 1 to 4>
A plate material having a thickness of 10 mm was cut out from the metal block cast in Examples 1 to 8 and Comparative Examples 1 to 4. The plate material heated to 200 ° C. was rolled through a pair of rolling rolls (room temperature). The rolling of one rolling pass was 1 to 2 mm, and the plate was reheated to 200 ° C. during the rolling pass. When the material is rolled to a thickness of 2 mm, the material is cooled to room temperature, the reheating is stopped, and the sheet material at room temperature is rolled so that the setting of the rolling reduction of the same rolling pass becomes 0.5 mm. Rolled repeatedly to 0.5 mm. About the obtained board | plate material, the tensile strength, the 0.2% yield strength, and elongation at break were measured with the following method, and the bending test was done with the following method. A linear test piece having a length of 10 mm, a width of 1 mm and a thickness of 0.5 mm was obtained from the obtained plate material by shearing, and this was subjected to the following corrosion test. Moreover, the composition analysis of the linear test piece was performed with the following method.
 (引張強度、0.2%耐力及び破断伸び率)
 JIS Z 2241:2011に準拠して行った。試験片形状は JIS Z 2241 13B号に準拠した。試験機としてはインストロン5582型万能試験機を用い、引張速度10mm/minで測定した。引張試験においては、引張方向が圧延方向と平行となるようにした。0.2%耐力は、オフセット法で求めた。
(Tensile strength, 0.2% proof stress and elongation at break)
This was performed according to JIS Z 2241: 2011. The shape of the test piece conformed to JIS Z 2241 13B. As a tester, an Instron 5582 universal tester was used, and measurement was performed at a tensile speed of 10 mm / min. In the tensile test, the tensile direction was made parallel to the rolling direction. The 0.2% proof stress was obtained by the offset method.
 (曲げ試験)
 試験片形状は横10mm、縦50mm、厚さ0.5mmの圧延方向に長い板状とした。
 各5枚の試験片について、図3のように0.5mmのRを持ったダイ10と、パッド11及びパンチ12を用い、試験片13を90°に曲げた後、曲げ部に発生したしわや割れの状態を目視により6段階で評価した。評価基準は、日本伸銅協会技術標準 JCBA T307:2007の図4に基づき、以下のようにした。5枚の評価点の平均値を表1に示す。この評価点で4点以上であれば折り曲げ性が良好といえる。
しわ無:5点
しわ小:4点
しわ大:3点
割れ小:2点
割れ大:1点 
破断:0点
(Bending test)
The shape of the test piece was a plate shape 10 mm wide, 50 mm long, and 0.5 mm thick in the rolling direction.
For each of the five test pieces, a wrinkle generated in the bent portion after the test piece 13 was bent at 90 ° using a die 10 having an R of 0.5 mm, a pad 11 and a punch 12 as shown in FIG. The state of cracks was visually evaluated in 6 stages. The evaluation criteria were as follows based on FIG. 4 of the Japan Copper and Brass Association Technical Standard JCBA T307: 2007. Table 1 shows the average value of the five evaluation points. If this evaluation score is 4 or more, it can be said that the bendability is good.
No wrinkle: 5 points Small wrinkle: 4 points Large wrinkle: 3 points Small crack: 2 points Large crack: 1 point
Break: 0 points
 (腐食試験)
 試験液として人工腸液(biorelevant社の 商品名「FeSSIF」、pH=5.5)を用いた。これを液温37℃に設定した。液は20mL用い、3日毎に液交換した。
 線状試験片3本を人工腸液中に浸漬した。2週間経過後に取り出して純水で洗浄後、室温で乾燥した。乾燥後、腐食物を200g/LのCrO水溶液を用いて除去し、十分に水洗した後に乾燥した。試験前後の質量変化より、腐食減量を計算した。また試験片の表面積より、下記式によって腐食速度(mm/year)を算出した。n=4で測定した平均値を表1に示す。なお、下記式において、K:定数 10、W:質量減(g)、A:表面積(cm)、T:時間(year)、D: 密度(g/cm)である。
(Corrosion test)
Artificial intestinal fluid (trade name “FeSSIF”, pH = 5.5, manufactured by biolevant) was used as a test solution. This was set to a liquid temperature of 37 ° C. 20 mL of the liquid was used, and the liquid was changed every 3 days.
Three linear test pieces were immersed in the artificial intestinal fluid. After 2 weeks, it was taken out, washed with pure water, and dried at room temperature. After drying, the corrosives were removed using a 200 g / L CrO 3 aqueous solution, washed thoroughly with water and then dried. Corrosion weight loss was calculated from the mass change before and after the test. Further, the corrosion rate (mm / year) was calculated from the surface area of the test piece according to the following formula. Table 1 shows the average values measured at n = 4. In the following formula, K: constant 10, W: mass loss (g), A: surface area (cm 2 ), T: time (year), D: density (g / cm 3 ).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (組成分析)
 SPECTRO社製ARCOSを用いてICP発光分析法にて行った。測定用試料は王水で溶解を行い、純水で適正な濃度に調整した。
(Composition analysis)
This was performed by ICP emission spectrometry using ARCOS manufactured by SPECTRO. The measurement sample was dissolved in aqua regia and adjusted to an appropriate concentration with pure water.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <実施例9の評価>
 (ステープル、クリップの製造)
 実施例9において、上記の金属塊から、直径15mmの丸棒材を切り出した。この丸棒材を直径10mmの断面略円形となるまで冷間でスウェージングした。次いで、冷間にて、溝の断面が正六角形を等分した台形状となっている溝部を有する一対の溝ロールにて、棒材を円換算直径1.11mmまで圧延して伸線し、線状材を得た。次いで冷間にて、カセットローラーダイスにて、直径1mmまで伸線した後、冷間にて、丸穴ダイスにて直径0.4mmまで伸線し、断面円形の線状材料を得た。得られた直径0.4mmの線状材料を、フォーミングマシンで図1(A)と同様の形状であって、幅W1が5mm、高さH1が4mmのステープル形状に成形し、ステープルを得た。またそれとは別に、得られた直径0.4mmの線状材料を、長さ10mmに切断し、図2(A)と同様の形状であって、幅W2が3mm、高さH2が4.5mmのクリップ形状に成形し、クリップを得た。
 (引張強度、0.2%耐力及び破断伸び率)
 直径0.4mmの線状材料について、試験片形状を JIS Z 2241 9A号に準拠した以外は、実施例1~8、比較例1~4と同様にして引張強度、0.2%耐力及び破断伸び率を測定した。また組成分析を実施例1~8、比較例1~4と同様の方法で行った。
 得られたステープルを用いて腐食試験を実施した。腐食試験は人工腸液の液量を35mLとし、ステープル10本を浸漬した以外は、実施例1~8及び比較例1~4で行った(腐食試験)と同様の方法で行った。
 n=4で測定した平均値を下記表2に示す。
 また、得られたステープルを高砂医科工業製のNT4連ペッツ縫合器用のカートリッジに挿入してスポンジ片に適用したところ、問題なく縫合できることを確認した。
<Evaluation of Example 9>
(Manufacture of staples and clips)
In Example 9, a round bar with a diameter of 15 mm was cut out from the above metal lump. This round bar was swaged cold until it had a substantially circular cross section with a diameter of 10 mm. Next, in a cold, with a pair of groove rolls having a groove portion having a trapezoidal shape in which the cross section of the groove is equally divided into regular hexagons, the rod is rolled to a circle-converted diameter of 1.11 mm and drawn, A linear material was obtained. Then, after cold, the wire was drawn to a diameter of 1 mm with a cassette roller die, and then cold and drawn to a diameter of 0.4 mm with a round hole die to obtain a linear material having a circular cross section. The obtained linear material having a diameter of 0.4 mm was formed into a staple shape having the same shape as that shown in FIG. 1A using a forming machine and having a width W1 of 5 mm and a height H1 of 4 mm. . Separately, the obtained linear material having a diameter of 0.4 mm is cut to a length of 10 mm, and has the same shape as FIG. 2A, with a width W2 of 3 mm and a height H2 of 4.5 mm. To obtain a clip.
(Tensile strength, 0.2% proof stress and elongation at break)
For a linear material having a diameter of 0.4 mm, the tensile strength, 0.2% proof stress and fracture were the same as in Examples 1 to 8 and Comparative Examples 1 to 4 except that the shape of the test piece conformed to JIS Z 2241 9A. The elongation was measured. The composition analysis was performed in the same manner as in Examples 1 to 8 and Comparative Examples 1 to 4.
A corrosion test was carried out using the obtained staples. The corrosion test was performed in the same manner as in Examples 1 to 8 and Comparative Examples 1 to 4 (corrosion test) except that the amount of artificial intestinal fluid was 35 mL and 10 staples were immersed.
The average values measured at n = 4 are shown in Table 2 below.
Further, when the obtained staple was inserted into a cartridge for NT4 continuous pez suture device manufactured by Takasago Medical Industry and applied to a sponge piece, it was confirmed that it could be sutured without any problem.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1及び表2に示す結果より、本発明の線状材料が、強度を維持しつつ、破断伸び率、曲げ性、生分解性に優れており、ステープル又はクリップ等の曲げ性を要し且つ線状に加工が必要な生分解性インプラントに好適であることが判る。 From the results shown in Table 1 and Table 2, the linear material of the present invention is excellent in elongation at break, bendability and biodegradability while maintaining strength, and requires bendability such as staples or clips, and It turns out that it is suitable for a biodegradable implant which needs to be processed linearly.
 本発明の医療用線状材料は、優れた曲げ性を有するとともに良好な延性、強度、生分解性を有し、特に生体用のステープル、クリップ等に好適である。 The medical linear material of the present invention has excellent bendability and good ductility, strength and biodegradability, and is particularly suitable for living body staples, clips and the like.

Claims (13)

  1.  0.05質量%以上5質量%以下のCuを含むか、又は0.01質量%以上0.4質量%以下のTiを含むZn合金からなり、断面積が0.01mm以上4.0mm以下である医療用線状材料。 Or containing 0.05 wt% to 5 wt% or less of Cu, or consist Zn alloy containing 0.01 mass% to 0.4 mass% of Ti, the cross-sectional area 0.01 mm 2 or more 4.0 mm 2 Medical linear material that is:
  2.  前記Zn合金が、Zn並びにCu及び/又はTiを含み、且つMn、Ca及びMgの少なくとも一種を含んでいてもよく、残部が不可避的元素のみである合金である、請求項1に記載の医療用線状材料。 The medical treatment according to claim 1, wherein the Zn alloy contains Zn and Cu and / or Ti, and may contain at least one of Mn, Ca and Mg, and the balance is an inevitable element only. Linear material for use.
  3.  前記Zn合金が更にMnを0.1質量%以上5質量%以下含む、請求項1又は2に記載の医療用線状材料。 The medical linear material according to claim 1 or 2, wherein the Zn alloy further contains 0.1 mass% to 5 mass% of Mn.
  4.  前記Zn合金が更にCaを0.01質量%以上0.5質量%以下含む、請求項1ないし3のいずれか1項に記載の医療用線状材料。 The medical linear material according to any one of claims 1 to 3, wherein the Zn alloy further contains 0.01 mass% or more and 0.5 mass% or less of Ca.
  5.  前記Zn合金のMg含量が50ppm以下である、請求項1ないし4のいずれか1項に記載の医療用線状材料。 The medical linear material according to any one of claims 1 to 4, wherein the Mg content of the Zn alloy is 50 ppm or less.
  6.  長さ3mm以上20mm以下、断面積0.01mm以上0.3mm以下の線状材料であってステープル形状をしている、請求項1ないし5のいずれか1項に記載の医療用線状材料。 The linear medical material according to any one of claims 1 to 5, which is a linear material having a length of 3 mm to 20 mm and a cross-sectional area of 0.01 mm 2 to 0.3 mm 2 and having a staple shape. material.
  7.  長さ5mm以上40mm以下、断面積0.05mm以上4.0mm以下の線状材料であってクリップ形状をしている、請求項1ないし5のいずれか1項に記載の医療用線状材料。 The linear medical material according to any one of claims 1 to 5, which is a linear material having a length of 5 mm to 40 mm and a cross-sectional area of 0.05 mm 2 to 4.0 mm 2 and having a clip shape. material.
  8.  0.2%耐力が80MPa以上1000MPa以下である請求項1ないし7のいずれか1項に記載の医療用線状材料。 The linear medical material according to any one of claims 1 to 7, having a 0.2% proof stress of 80 MPa to 1000 MPa.
  9.  以下の条件の腐食試験において、0.01mm/year以上5mm/year以下の腐食速度を呈する生分解性を有する、請求項1ないし8のいずれか1項に記載の医療用線状材料。
     <腐食試験条件>
     医療用線状材料を37℃の摂食時人工腸液中に浸漬し、試験前後の質量変化より、腐食減量を計算する。また試験片の表面積より、下記式によって腐食速度(mm/year)を算出する。
    Figure JPOXMLDOC01-appb-M000001
     上記式において、K:定数 10、W:質量減(g)、A:表面積(cm)、T:時間(year)、D: 密度(g/cm)である。
    The medical linear material according to any one of claims 1 to 8, which has biodegradability and exhibits a corrosion rate of 0.01 mm / year to 5 mm / year in a corrosion test under the following conditions.
    <Corrosion test conditions>
    The medical linear material is immersed in artificial intestinal fluid at the time of eating at 37 ° C., and the weight loss of corrosion is calculated from the mass change before and after the test. Further, the corrosion rate (mm / year) is calculated from the surface area of the test piece according to the following formula.
    Figure JPOXMLDOC01-appb-M000001
    In the above formula, K: constant 10, W: mass loss (g), A: surface area (cm 2 ), T: time (year), D: density (g / cm 3 ).
  10.  請求項1ないし9のいずれか1項に記載の医療用線状材料からなる生体組織の縫合体又は吻合体。 A suture or anastomosis body of a living tissue comprising the medical linear material according to any one of claims 1 to 9.
  11.  請求項1ないし9のいずれか1項に記載の医療用線状材料からなる生分解性インプラント。 A biodegradable implant comprising the medical linear material according to any one of claims 1 to 9.
  12.  請求項1ないし9のいずれか1項に記載の医療用線状材料からなる生分解性インプラントである生体組織の縫合体又は吻合体。 A biological tissue suture or anastomosis body, which is a biodegradable implant made of the medical linear material according to any one of claims 1 to 9.
  13.  請求項1ないし9のいずれか1項に記載の医療用線状材料を生体組織の縫合又は吻合に用いる、生体組織の縫合又は吻合方法。 A method for suturing or anastomosing living tissue, wherein the linear medical material according to any one of claims 1 to 9 is used for suturing or anastomosing living tissue.
PCT/JP2018/021738 2017-06-15 2018-06-06 Linear material for medical use WO2018230415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017117435 2017-06-15
JP2017-117435 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230415A1 true WO2018230415A1 (en) 2018-12-20

Family

ID=64659752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021738 WO2018230415A1 (en) 2017-06-15 2018-06-06 Linear material for medical use

Country Status (1)

Country Link
WO (1) WO2018230415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111529761A (en) * 2020-05-12 2020-08-14 浙江工贸职业技术学院 Degradable Zn-Ti binary biomedical material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070055305A1 (en) * 2004-09-23 2007-03-08 Guido Schnyder Biodegradable and/or bioabsorbable member for vascular sealing
JP2008536540A (en) * 2005-03-11 2008-09-11 タイコ ヘルスケア グループ エルピー Absorbable surgical fasteners
WO2017028646A1 (en) * 2015-08-19 2017-02-23 上海交通大学 Biodegradable medical zinc-copper alloy and preparation method and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070055305A1 (en) * 2004-09-23 2007-03-08 Guido Schnyder Biodegradable and/or bioabsorbable member for vascular sealing
JP2008536540A (en) * 2005-03-11 2008-09-11 タイコ ヘルスケア グループ エルピー Absorbable surgical fasteners
WO2017028646A1 (en) * 2015-08-19 2017-02-23 上海交通大学 Biodegradable medical zinc-copper alloy and preparation method and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111529761A (en) * 2020-05-12 2020-08-14 浙江工贸职业技术学院 Degradable Zn-Ti binary biomedical material and preparation method thereof

Similar Documents

Publication Publication Date Title
Pogorielov et al. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements
RU2754035C2 (en) Magnesium alloy, method for its production and use
JP5721017B2 (en) Bimetallic composite wire for medical devices, stent formed from bimetallic composite wire, and method of manufacturing bimetallic composite wire and stent
ES2797499T3 (en) This patent application refers to an implant made of a magnesium alloy and to a method for the production thereof.
EP2087915B1 (en) Implant with a base body made of a biocorrodible iron alloy
ES2797498T3 (en) The invention relates to an implant made of a magnesium alloy and to a method for producing the same.
US20060052825A1 (en) Surgical implant alloy
US20060052824A1 (en) Surgical implant
US4602632A (en) Bio absorbable metal hemostatic clip
AU2020286372B2 (en) Magnesium-based absorbable alloys
Gao et al. The mechanical property and corrosion resistance of Mg-Zn-Nd alloy fine wires in vitro and in vivo
JP6883290B2 (en) Alloy members that can be used in living organisms and their manufacturing methods
WO2016145958A1 (en) Corrosion-resistant, high strength and ductility zn-fe-li zinc alloy degradable by the human body and applications of the alloy
WO2016038892A1 (en) Device for fixing biological soft tissue, and method for producing same
WO2016145957A1 (en) Corrosion-resistant, high strength and ductility zn-fe zinc alloy degradable by human body and applications of the alloy
Amano et al. Novel zinc alloys for biodegradable surgical staples
WO2016145955A1 (en) Corrosion-resistant, high strength and ductility zn-fe-re zinc alloy degradable by human body and applications of the alloy
WO2016145956A1 (en) Corrosion-resistant, high strength and ductility zn-fe-x zinc alloy degradable by human body and applications of the alloy
WO2018230415A1 (en) Linear material for medical use
JP2016540128A (en) Implant, production method thereof and use thereof
JP2006523482A (en) Use of precipitation hardened martensitic stainless steel
JP6823321B2 (en) Bioabsorbable staple
CN109811265B (en) Fe-Mn-Cu-C alloy and medical application thereof
CN111012420A (en) Preparation method and application of antibacterial and biodegradable zinc alloy anastomosis nail
CN111803721A (en) Degradable zinc alloy anastomosis instrument and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP