WO2018230395A1 - Method for producing liquid crystal film and method for producing functional film - Google Patents

Method for producing liquid crystal film and method for producing functional film Download PDF

Info

Publication number
WO2018230395A1
WO2018230395A1 PCT/JP2018/021560 JP2018021560W WO2018230395A1 WO 2018230395 A1 WO2018230395 A1 WO 2018230395A1 JP 2018021560 W JP2018021560 W JP 2018021560W WO 2018230395 A1 WO2018230395 A1 WO 2018230395A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
film
irradiation
pattern mask
Prior art date
Application number
PCT/JP2018/021560
Other languages
French (fr)
Japanese (ja)
Inventor
昌孝 長谷川
諭史 長野
寛 稲田
二村 恵朗
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197034773A priority Critical patent/KR102285177B1/en
Priority to JP2019525338A priority patent/JP6924832B2/en
Priority to CN201880035113.1A priority patent/CN110691998B/en
Publication of WO2018230395A1 publication Critical patent/WO2018230395A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a liquid crystal film and a method for producing a functional film.
  • a layer containing a cholesteric liquid crystal phase (cholesteric liquid crystal layer) is known as a layer having a property of selectively reflecting either right circularly polarized light or left circularly polarized light in a specific wavelength range (selective reflection wavelength range). .
  • the cholesteric liquid crystal layer reflects light of a selective reflection wavelength, so that an image of a color corresponding to this can be displayed, and has been developed for various uses.
  • Patent Document 1 describes a configuration in which a single layer of a cholesteric liquid crystal layer is provided with a region having a selective reflection wavelength band different from other regions in at least one location, and uses the characteristics of cholesteric liquid crystal. To record authentication information.
  • Patent Document 1 as a method of forming a cholesteric liquid crystal layer having regions having different selective reflection wavelength bands, a cholesteric liquid crystal layer having a patterned selective reflection wavelength by exposing to ultraviolet rays through a pattern-formed mask. A method of forming is described.
  • a cholesteric liquid crystal coating solution is applied to a substrate, dried, and then exposed to ultraviolet rays on the coating film to be cured using a pattern mask. It is carried out.
  • a pattern mask only a binary pattern mask having a light shielding part and a transmission part is described.
  • the cholesteric liquid crystal layer formed by such a method has a desired selective reflection wavelength, that is, a region in which a desired color cannot be obtained or a selective reflection wavelength band is different. It was found that the boundary between the images was blurred and sufficient fineness could not be obtained. Further, when a binary pattern mask is used, it is necessary to perform multiple exposures by changing the pattern mask when forming three or more regions having different selective reflection wavelengths in the cholesteric liquid crystal layer. Therefore, it has been found that in order to form a multicolor cholesteric liquid crystal layer, many steps are required and the production efficiency is poor.
  • the present invention can provide a cholesteric liquid crystal layer capable of displaying a fine and desired color gradation image, and a method for producing a liquid crystal film and a functional film having high productivity.
  • the task is to do.
  • the present inventors have conducted a delivery process of feeding a long support in the longitudinal direction, and the cholesteric liquid crystal compound and the photosensitive material while transporting the delivered support in the longitudinal direction.
  • the coating film is irradiated with light through a pattern mask arranged on the support side, and a pattern is formed.
  • the mask is a multi-tone pattern mask having three or more regions having different transmittances for light having a wavelength to which the chiral agent is exposed.
  • light is applied to the coating film through the multi-tone pattern mask. Doing, by irradiating light of different dose for each region of the coating film was found to be able to solve the above problems. That is, it has been found that the above object can be achieved by the following configuration.
  • the irradiation process has a first irradiation step and a second irradiation step, The method for producing a liquid crystal film according to any one of (1) to (4), wherein the light irradiation amount in the first irradiation step is smaller than the light irradiation amount in the second irradiation step.
  • the irradiation process has a first irradiation step and a second irradiation step, The method for producing a liquid crystal film according to any one of (1) to (6), wherein a peak wavelength of light irradiated in the first irradiation step and a peak wavelength of light irradiated in the second irradiation step are different from each other.
  • the curing step is a step of photocuring the coating film, The method for producing a liquid crystal film according to any one of (1) to (7), wherein the wavelength of light irradiated in the curing step is different from the wavelength of light irradiated in the irradiation step.
  • the pattern mask is integrally conveyed in a state of being arranged on the back side of the support,
  • the manufacturing method of the liquid crystal film as described in (8) which irradiates light to the surface side on the opposite side to a pattern mask.
  • a step of attaching a circularly polarizing plate to the surface of the cured coating film or the back surface of the support is included.
  • a cholesteric liquid crystal layer capable of displaying a fine and desired color gradation image can be obtained, and a liquid crystal film manufacturing method and a functional film manufacturing method having high productivity can be provided. .
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “orthogonal” and “parallel” include a range of errors allowed in the technical field to which the present invention belongs.
  • “orthogonal” and “parallel” mean that the angle is within ⁇ 10 ° with respect to strict orthogonality or parallelism, and an error with respect to strict orthogonality or parallelism is 5 ° or less. Preferably, it is 3 ° or less.
  • an angle represented by other than “orthogonal” and “parallel”, for example, a specific angle such as 15 ° or 45 °, includes a range of errors allowed in the technical field to which the present invention belongs.
  • the angle means less than ⁇ 5 ° with respect to the exact angle shown specifically, and the error with respect to the exact angle shown is ⁇ 3 ° or less. It is preferable that it is ⁇ 1 ° or less.
  • (meth) acrylate is used to mean “one or both of acrylate and methacrylate”.
  • “same” includes an error range generally allowed in the technical field.
  • “all”, “any” or “entire surface” it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
  • Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm.
  • Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
  • light in the wavelength range of 420 nm to 490 nm is blue light
  • light in the wavelength range of 495 nm to 570 nm is green light
  • light in the range of 620 nm to 750 nm The light in the wavelength band is red light.
  • near infrared light is an electromagnetic wave having a wavelength range of 780 nm to 2500 nm.
  • Ultraviolet light is light having a wavelength in the range of 10 to 380 nm.
  • the selective reflection wavelength is a half-value transmittance represented by the following formula: T1 / 2 (%), where Tmin (%) is the minimum value of the transmittance of a target object (member). Is the average value of two wavelengths.
  • T1 / 2 100 ⁇ (100 ⁇ Tmin) ⁇ 2
  • haze means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. Theoretically, haze means a value represented by the following equation. (Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) ⁇ 100%
  • the scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit.
  • the direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
  • the refractive index is a refractive index for light having a wavelength of 589.3 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at the wavelength ⁇ , respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in AxoScan OPMF-1 (manufactured by Optoscience).
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • the method for producing the liquid crystal film of the present invention comprises: A delivery step of feeding a long support in the longitudinal direction; An application step of applying a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent to the support surface while transporting the fed support in the longitudinal direction; An irradiation step of irradiating the coating film of the undried liquid crystal composition with light having a wavelength at which the chiral agent is sensitive, An alignment step of aligning the liquid crystal by heating the coating film; A curing step for curing the oriented coating film, in this order, In the irradiation process, the coating film is irradiated with light through a pattern mask arranged on the support side, The pattern mask is a multi-tone pattern mask having three or more regions having different transmittances for light having a wavelength that the chiral agent is sensitive to, In the irradiation step, a liquid crystal film is produced by irradiating the coating film with light through a multi-tone pattern mask to vary the amount of
  • the method for producing the functional film of the present invention comprises: It is a manufacturing method of the functional film which has the process of sticking a circularly-polarizing plate on the surface of the hardened coating film or the back surface of a support body after the hardening process of the manufacturing method of the said liquid crystal film.
  • FIG. 1 is a schematic diagram of an example of a liquid crystal film manufacturing apparatus (hereinafter also referred to as “manufacturing apparatus”) that implements the liquid crystal film manufacturing method of the present invention (hereinafter also referred to as “the manufacturing method of the present invention”).
  • the manufacturing method of the present invention is a schematic diagram for explaining an example of a method for producing a liquid crystal film performed by the production apparatus shown in FIG.
  • the drawings in the present invention are schematic diagrams, and the size of each part, the relationship between the thicknesses of each layer, the positional relationship, and the like do not necessarily match the actual ones. The same applies to the following figures.
  • a manufacturing apparatus 100a shown in FIG. 1 uses a long support 12a to manufacture a liquid crystal film by roll-to-roll (hereinafter also referred to as “RtoR”).
  • RtoR means that a processed object is sent out from a roll formed by winding a long processed object, and is subjected to processing such as film formation while being conveyed in the longitudinal direction. This is a manufacturing method in which the material is wound again in a roll shape.
  • the manufacturing apparatus 100a includes a delivery roller 102, a first transport unit 120, a coating unit 150, a second transport unit 122, an exposure unit 152, a heating unit 154, a curing unit 156, and a third transport. Part 124 and winding roller 116.
  • the 1st conveyance part 120, the 2nd conveyance part 122, and the 3rd conveyance part 124 have a roller for conveyance etc., and convey a long to-be-processed object by a predetermined
  • the manufacturing apparatus 100a is provided in a known apparatus that forms a film by coating while transporting a long object to be processed, such as a pair of transport rollers, a guide member for a support, and various sensors. Various members may be included.
  • a roll 130 formed by winding a long support 12 a is loaded on the delivery roller 102.
  • the support 12a is pulled out from the roll 130 and passes through the first transport unit 120, the coating unit 150, the second transport unit 122, the exposure unit 152, the heating unit 154, the curing unit 156, and the third transport unit 124, and a winding roller.
  • a predetermined route reaching 116 is inserted.
  • the prepared liquid crystal composition to be a cholesteric liquid crystal layer is supplied to the application nozzle 104 of the application unit 150 to perform application.
  • the feeding of the support 12a from the roll 130 and the winding of the support 12a (laminated film 23d) on which the cholesteric liquid crystal layer 18 is formed are performed in synchronization.
  • the liquid crystal composition prepared in the coating unit 150 is applied to the support 12a while the long support 12a is transported in the longitudinal direction along a predetermined transport path, the coating film is exposed in the exposure unit 152, and then Then, the coating film is heated in the heating unit 154 to align the liquid crystal, and further, the curing film 156 is irradiated with ultraviolet rays and / or heated to cure the coating film to form the cholesteric liquid crystal layer 18.
  • a long laminated film 23 d in which the cholesteric liquid crystal layer 18 is formed on the support 12 a in the winding roller 116 is wound in a roll shape to obtain a roll 132.
  • the liquid crystal film is a film having a cholesteric liquid crystal layer, and in the example shown in FIGS. 1 and 2, a laminated film 23d in which the cholesteric liquid crystal layer 18 is laminated on the surface of the support 12a. Is the liquid crystal film of the present invention.
  • the cholesteric liquid crystal layer 18 may be used in a state of being laminated on the support 12a, or may be used after being peeled from the support 12a.
  • the support 12a delivered from the roll 130 is obtained by forming a pattern mask on a resin film such as a PET film.
  • the resin film forming the support 12a various known sheet-like materials having transparency that are used as substrates (supports) can be used.
  • low density polyethylene LDPE
  • high density polyethylene HDPE
  • polyethylene naphthalate PEN
  • polyamide PA
  • polyethylene terephthalate PET
  • polyvinyl chloride PVC
  • polyvinyl alcohol PVA
  • Polyacrylonitrile PAN
  • polyimide PI
  • PC polycarbonate
  • polyacrylate polymethacrylate
  • polypropylene PP
  • PS polystyrene
  • ABS cycloolefin Films (resin films) made of various resin materials such as copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC) are preferably exemplified.
  • a protective layer such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, a stress relaxation layer, and a release layer are provided on the surface of such a film.
  • a layer (film) that expresses may be used as the support 12a.
  • the pattern mask included in the support 12a is a multi-tone pattern mask having three or more regions having different transmittances with respect to light irradiated by an exposure unit 152 (to be described later) (light having a wavelength sensitive to the chiral agent).
  • a pattern mask can be formed, for example, by printing, and a mask having a desired pattern is obtained by printing so that the light transmittance of the ink layer formed on the surface of the resin film varies depending on the region. be able to. Specifically, it can be formed by gray scale printing (see FIG. 6) or color printing (see FIG. 8).
  • the thickness of the support 12a is preferably 20 ⁇ m to 100 ⁇ m, and more preferably 60 ⁇ m to 100 ⁇ m.
  • the support 12 a sent out from the roll 130 passes through the first transport unit 120 and reaches the coating unit 150.
  • the application unit 150 the support 12a is applied.
  • the liquid crystal composition is applied by the application nozzle 104 while the support 12 a is wound around the backup roller 106 during application by the application unit 150.
  • the backup roller 106 may be omitted.
  • the coating unit 104 applies a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent to the surface of the support 12a to form a coating film 21a.
  • a laminated body of the support 12a and the coating film 21a is referred to as a laminated film 23a.
  • the liquid crystal composition will be described in detail later.
  • a coating method in the coating process a known method such as a coating method such as extrusion coating, gravure coating, die coating, bar coating or applicator coating, or a printing method such as flexographic printing can be applied.
  • a coating method such as extrusion coating, gravure coating, die coating, bar coating or applicator coating, or a printing method such as flexographic printing
  • bar coating is preferable from the viewpoint that uneven coating can be suppressed even if the surface of the support 12a has irregularities (such as irregularities due to an ink layer serving as a pattern mask).
  • the coating film 21a may be formed on the pattern mask side of the support 12a, but is preferably formed on the surface opposite to the pattern mask. That is, the pattern mask is preferably formed on the surface (back surface) opposite to the surface on which the coating film 21a of the support 12a is formed.
  • the laminated film 23 a passes through the second transport unit 122 and reaches the exposure unit 152.
  • the laminated film 23a is subjected to an irradiation process.
  • the exposure apparatus 108 irradiates light on the coating film 21a in an undried state from the support 12a side, that is, through a pattern mask.
  • the light irradiated by the exposure device 108 is light having a wavelength at which the chiral agent in the coating film 21a (liquid crystal composition) is exposed. Therefore, the coating film 21b exposed by the exposure process is formed.
  • the photosensitive chiral agent is exposed and its structure changes.
  • a laminate of the support 12a and the exposed coating film 21b is referred to as a laminate film 23b.
  • the pattern mask is a multi-tone pattern mask having three or more regions having different transmittances with respect to light having a wavelength to which the chiral agent is sensitive. Therefore, the exposed coating film 21b is irradiated with different amounts of light for each region corresponding to the pattern of the pattern mask.
  • the amount of change in the structure of the photosensitive chiral agent due to light exposure varies depending on the amount of irradiation. Therefore, the amount of change in the structure change of the chiral agent differs in each region of the exposed coating film 21b in accordance with the pattern of the pattern mask.
  • the light irradiation amount may be set according to the type of the photosensitive chiral agent, the light transmittance of the pattern mask, and the like.
  • the laminated film 23 b is conveyed and reaches the heating unit 154.
  • the laminated film 23b is subjected to orientation treatment after the coating film is dried.
  • the heated coating film 21b is heated by the heating device 110, so that the liquid crystal compound in the coating film 21b is aligned.
  • a coating film 21c in which the liquid crystal compound is aligned according to the structure of the chiral agent is formed.
  • the coating film 21c there are three or more regions having different exposure amounts. Therefore, each region has a structure in which the length of the helical pitch of the cholesteric liquid crystal phase differs depending on the exposure amount.
  • the selective reflection wavelength in the cholesteric liquid crystal phase depends on the pitch of the helical structure in the cholesteric liquid crystal phase. Accordingly, by forming three or more regions having different helical pitch lengths of the cholesteric liquid crystal phase, three or more regions having different selective reflection wavelengths are formed.
  • a laminated body of the support 12a and the oriented coating film 21c is referred to as a laminated film 23c.
  • the laminated film 23 c is conveyed and reaches the curing unit 156.
  • the laminated film 23c is subjected to a curing process.
  • the oriented coating film 21 c is cured by the curing unit 112 to form the cholesteric liquid crystal layer 18.
  • a liquid crystal film having the cholesteric liquid crystal layer 18 is produced.
  • a laminated body of the support 12a and the cholesteric liquid crystal layer 18 is referred to as a laminated film 23d.
  • a known curing method such as photocuring by irradiation with light such as ultraviolet rays and heat curing by heating can be used.
  • light such as ultraviolet rays
  • heat curing by heating it is preferable to irradiate the coating film 21c with light from the side opposite to the pattern mask.
  • the produced liquid crystal film (laminated film 23 d) passes through the third transport unit 124 and is wound in a roll shape by the winding roller 116 to form a roll 132. Since the cholesteric liquid crystal layer of the produced liquid crystal film has a configuration in which three or more regions having different selective reflection wavelengths are formed in a pattern according to the mask pattern, each region reflects light of the selective reflection wavelength. The image of the color and pattern according to can be displayed.
  • the pattern mask is used to expose the liquid crystal in the coating film by drying. Since the compound is difficult to move, the amount of change in the pitch of the spiral structure of the liquid crystal compound is less than the desired amount of change even when exposure is performed. Therefore, there has been a problem that the desired selective reflection wavelength, that is, the desired color cannot be reproduced. Even in such a case, if the exposure amount is increased, the desired selective reflection wavelength can be obtained. However, if the exposure amount is large, light leaks to the unexposed portion and the unexposed portion is exposed, and the exposed portion and the unexposed portion are exposed.
  • the coating film of the liquid crystal composition before the coating film of the liquid crystal composition is heated and dried, the coating film in an undried state is exposed, so that the liquid crystal compound in the coating film is easy to move, Even with a small exposure amount, the change amount of the pitch of the spiral structure of the liquid crystal compound can be set as a desired change amount. Therefore, a desired selective reflection wavelength can be easily obtained, that is, a desired color can be reproduced. In addition, since the exposure amount is small, it is possible to suppress light from leaking to adjacent regions (regions having different exposure amounts), and a boundary between regions having different selective reflection wavelengths does not blur and a fine image can be obtained. .
  • the production method of the present invention can obtain a cholesteric liquid crystal layer capable of displaying a fine and desired color gradation image, and has high productivity.
  • the pattern mask only needs to have three or more regions having different transmittances for light having a wavelength that the chiral agent sensitizes, but from the viewpoint of being able to reproduce more colors and increase the gradation.
  • the pattern mask preferably has 8 or more regions having different transmittances, more preferably 256 or more.
  • the wavelength of light irradiated in the curing step is preferably different from the wavelength of light irradiated in the irradiation step.
  • the wavelength of the light to be irradiated is preferably longer than the wavelength of the light to be irradiated in the curing step.
  • the wavelength of the light irradiated in the irradiation step is preferably a wavelength at which the chiral agent is sensitized and a wavelength at which the polymerization initiator is not cleaved.
  • the amount of change in the pitch of the helical structure of the liquid crystal compound can be changed as desired. It can be an amount.
  • the wavelength which the chiral agent sensitizes for the wavelength of the light irradiated in an irradiation process is preferably 350 nm to 400 nm. That is, it is preferable to use a chiral agent that is sensitive in this wavelength range.
  • the irradiation amount used as a desired selective reflection wavelength is just to set the irradiation amount used as a desired selective reflection wavelength as the irradiation amount of the light irradiated in an irradiation process according to the kind etc. of a chiral agent.
  • the wavelength of the light irradiated in a hardening process is preferably 300 nm to 350 nm. That is, it is preferable to use a polymerization initiator capable of initiating a polymerization reaction in this wavelength range.
  • a polymerization initiator capable of initiating a polymerization reaction in this wavelength range.
  • the light irradiation is performed once in the irradiation step, but the light irradiation may be divided into two or more.
  • the irradiation process may have a first irradiation step and a second irradiation step.
  • the light irradiation amount in the first irradiation step is smaller than the light irradiation amount in the second irradiation step.
  • the structural change of the chiral agent when the total amount of light irradiation is small, the amount of change with respect to the amount of light irradiation increases, and as the total amount of light irradiation increases, the amount of change with respect to the amount of light irradiation decreases. Therefore, the structural change of the chiral agent due to exposure can be more suitably adjusted by making the light irradiation amount in the first irradiation step smaller than the light irradiation amount in the second irradiation step.
  • the irradiation process has a total irradiation amount of the first irradiation step and the second irradiation step of 200 mJ / cm 2 or less.
  • the total amount of irradiation 200 mJ / cm 2 or less it is preferable in that exposure of unexposed portions can be prevented.
  • the peak wavelength of the light irradiated differ in a 1st irradiation step and a 2nd irradiation step.
  • the first irradiation step irradiates light of 265 nm near the base and the second irradiation.
  • the irradiation amount of light can be substantially adjusted by irradiating light with a peak of 365 nm.
  • the film is wound around the roll 132 immediately after the cholesteric liquid crystal layer 18 is formed.
  • a protective film or the like is attached to the surface of the cholesteric liquid crystal layer 18. You may have the process to do.
  • the circularly polarizing plate 16 is not limited, and a circularly polarizing plate having a configuration in which a linearly polarizing plate and a ⁇ / 4 plate are laminated can be used.
  • the circularly polarizing plate 16 transmits circularly polarized light having a direction opposite to the rotational direction of the circularly polarized light reflected by the cholesteric liquid crystal layer 18.
  • the cholesteric liquid crystal layer 18 has one of the selective reflection wavelengths.
  • the other circularly polarized light is reflected, and other light passes through the cholesteric liquid crystal layer 18 and enters the circularly polarizing plate 16.
  • the other circularly polarized light is transmitted through the circularly polarizing plate 16.
  • the functional film in which the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16 are laminated is observed from the front surface side
  • the other side of the circularly polarized light that is incident and transmitted from the back surface side causes a scene on the other side of the functional film to be observed.
  • light having a selective reflection wavelength in the reflective region of the cholesteric liquid crystal layer 18 is visually recognized. That is, when viewed from the surface side, an image of a pattern corresponding to the pattern shape of the cholesteric liquid crystal layer 18 is visually recognized together with a scene on the other side of the functional film.
  • the functional film in which the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16 are laminated has transparency, and an image viewed from one surface side (cholesteric liquid crystal layer side) and the other surface side ( It can be set as the film from which the image seen from the circularly-polarizing plate side differs.
  • An adhesive layer may be provided between the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16.
  • it is not limited to the structure which sticks a circularly-polarizing plate to the surface of a cholesteric liquid crystal layer,
  • the structure which sticks a circularly-polarizing plate to the back surface of a support body may be sufficient. That is, it is good also as a functional film which has a cholesteric liquid crystal layer, a support body, and a circularly-polarizing plate.
  • the support 12a is configured to have a pattern mask.
  • the present invention is not limited thereto, and a film having a pattern mask may be attached to the support.
  • FIG. 3 the manufacturing apparatus which implements another example of the manufacturing method of the liquid crystal film of this invention is shown typically.
  • the manufacturing apparatus 100b shown in FIG. 3 manufactures a liquid crystal film by RtoR.
  • the manufacturing apparatus 100b includes a feed roller 102, a supply roller 140, a first transport unit 120, a coating unit 150, a second transport unit 122, an exposure unit 152, a heating unit 154, a curing unit 156, and a first transport unit. 3 conveyance section 124, collection roller 144, and winding roller 116.
  • the manufacturing apparatus 100b shown in FIG. 3 is the same as the manufacturing method by the manufacturing apparatus 100a shown in FIG. 1 except that it includes the supply roller 140 and the collection roller 144, and therefore the same parts are denoted by the same reference numerals and the following description will be given. Do mainly different parts.
  • the manufacturing method using the manufacturing apparatus 100b shown in FIG. 3 is the same as the manufacturing method using the manufacturing apparatus 100a shown in FIG. 1 except that the manufacturing method 100b shown in FIG. In the following description, different steps are mainly performed.
  • a roll 130 formed by winding a long support 12 b is loaded on the delivery roller 102. Note that a pattern mask is not formed on the support 12b.
  • the support 12b is pulled out from the roll 130 and passes through the first transport unit 120, the coating unit 150, the second transport unit 122, the exposure unit 152, the heating unit 110, the curing unit 154, and the third transport unit 124, and a winding roller.
  • a predetermined route reaching 116 is inserted.
  • the prepared liquid crystal composition to be a cholesteric liquid crystal layer is filled in a predetermined position of the application unit 104.
  • the supply roller 140 is loaded with a roll 142 formed by winding a mask film 14 (see FIG. 4) having a base film 20 and an ink layer 22 formed as a pattern mask on the surface of the base film 20. Then, the mask film 14 is pulled out from the roll 142 and inserted through a predetermined transport path from the first transport unit 120 to the third transport unit 124.
  • the supply roller 140 is disposed between the feed roller and the first transport unit 120 in the transport direction of the support 12b.
  • the mask film 14 is peeled off from the support 12b, and the mask film 14 peeled off from the support 12b is inserted into the collection roller 144.
  • the collection roller 144 is disposed between the third conveyance unit 124 and the take-up roller 116 in the conveyance direction of the support 12b, and collects the mask film 14 on a roll 146.
  • the feeding of the support 12b from the roll 130 and the winding of the support 12b (laminated film 23d) on which the cholesteric liquid crystal layer 18 is formed are performed in synchronization.
  • the mask film 14 is adhered to the back surface of the support 12b to form a laminated film 25a (see FIG. 4).
  • the liquid crystal composition prepared in the application unit 104 is applied to the surface of the support 12b to form a laminated film 25b (see FIG. 5).
  • the exposure unit 152 exposes the coating film.
  • the pattern mask included in the mask film 14 is a multi-tone pattern mask in which three or more regions having different transmittances with respect to light having a wavelength that the chiral agent is sensitive to are formed by the ink layer 22. Therefore, by irradiating the coating film 21a with light through the pattern mask, light having different irradiation amounts is irradiated for each region corresponding to the pattern of the pattern mask, so that three or more regions having different selective reflection wavelengths can be obtained. Can be formed.
  • the pattern mask (ink layer 22) side it is preferable to stick the pattern mask (ink layer 22) side to the support 12b.
  • the manufacturing method of the present invention since light is irradiated while transporting the support 12b with RtoR, light is incident on the coating film from various directions. There is a risk that the boundary will blur. Therefore, by sticking the pattern mask to the support 12b and shortening the distance between the pattern mask and the coating film, light leakage can be suppressed and a finer image can be formed.
  • the coating film is heated in the heating unit 110 to align the liquid crystal, and further, the coating film is cured by irradiating with ultraviolet rays and / or heating in the curing unit 112 to form the cholesteric liquid crystal layer 18, and the mask film 14 is a laminated film 25e having a support 12b and a cholesteric liquid crystal layer 18. Thereafter, the mask film 14 is peeled from the support 12b. The peeled mask film 14 is wound in a roll shape by the collection roller 144 to form a roll 146. Further, a long laminated film 23 d in which the cholesteric liquid crystal layer 18 is formed on the support 12 b in the winding roller 116 is wound into a roll shape to form a roll 132.
  • the application process, the irradiation process, the orientation process, and the curing process are performed with the mask film 14 adhered to the support 12b.
  • the irradiation process is a mask film. What is necessary is just to perform in the state which adhered 14 to the support body 12b, and may perform other processes in the state which does not adhere the mask film 14.
  • FIG. the structure which affixes the mask film 14 on the support body 12b after an application
  • the roll 130 which wound the laminated body in which the mask film 14 was affixed on the support body 12b in roll shape was loaded into the sending-out roller 102, and the laminated body in which the mask film 14 was affixed on the support body 12b was covered. It is good also as a structure sent out as a processed material. For example, the structure which peels the mask film 14 between an irradiation process and an orientation process may be sufficient, and the structure which peels the mask film 14 between an orientation process and a hardening process may be sufficient. Alternatively, a configuration may be employed in which the mask film 14 is not peeled off and is wound into a roll shape with the mask film 14 being laminated on the winding roller 116 to form the roll 132.
  • the mask film 14 when the mask film 14 is attached to the support 12b, it is preferable to irradiate the surface opposite to the mask film 14 with light.
  • the single cholesteric liquid crystal layer 18 is formed on the support 12a.
  • the present invention is not limited to this, and a coating process, an irradiation process, an alignment process, and A combination of the curing steps may be performed twice or more to form two or more cholesteric liquid crystal layers.
  • a structure in which a cholesteric liquid crystal layer is formed on a cholesteric liquid crystal layer may be provided by supplying a support on which a cholesteric liquid crystal layer is formed to a manufacturing apparatus again as an object to be processed.
  • a manufacturing apparatus has two or more combinations of an application part, an exposure part, a heating part, and a hardening part between a sending-out roller and a winding roller in the conveyance direction of a support body.
  • the cholesteric liquid crystal layer has a three-layer configuration, and each cholesteric liquid crystal layer reflects red, green, and blue, respectively, so that white can be reproduced.
  • a cholesteric liquid crystal layer refers to a layer containing a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal layer is a layer formed by fixing a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal layer reflects right circularly polarized light or left circularly polarized light of light having a selective reflection wavelength, and transmits the other circularly polarized light having a selective reflection wavelength and light in other wavelength regions.
  • the structure in which the cholesteric liquid crystal phase is fixed may be a structure in which the alignment of the liquid crystal compound that is the cholesteric liquid crystal phase is maintained.
  • the polymerizable liquid crystal compound is in an alignment state of the cholesteric liquid crystal phase.
  • any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
  • the liquid crystal compound may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the width of the selective reflection band can be controlled by adjusting ⁇ n.
  • ⁇ n can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer, the mixing ratio thereof, and the temperature during alignment. It is also known that the reflectance in the cholesteric liquid crystal phase depends on ⁇ n. When obtaining a similar reflectance, the larger the ⁇ n, the smaller the number of spiral pitches, that is, the thinner the film thickness. Can do.
  • the reflected light of the cholesteric liquid crystal phase is circularly polarized. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer or the type of chiral agent added.
  • ⁇ ⁇ Widening the wavelength range of reflected light can be realized by sequentially laminating layers with different selective reflection wavelengths ⁇ . Also known is a technique for expanding the wavelength range by stepwise changing the spiral pitch in the layer called the pitch gradient method. Specifically, Nature 378, 467-469 (1995), Examples include the methods described in Japanese Patent No. 281814 and Japanese Patent No. 4990426.
  • the selective reflection wavelength in the region of the cholesteric liquid crystal layer can be set in any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm). The method is as described above.
  • the cholesteric liquid crystal layer has three or more regions having different selective reflection wavelengths.
  • the cholesteric liquid crystal layer has a region where red light (light having a wavelength range of 620 nm to 750 nm) is selected as a selective reflection wavelength, a region where green light (light having a wavelength range of 495 nm to 570 nm) is a selective reflection wavelength, and a blue color A configuration in which light (light in a wavelength region of 420 nm to 490 nm) is a selective reflection wavelength can be employed.
  • liquid crystal composition examples of the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a liquid crystal compound and a photosensitive chiral agent.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing a polymerizable liquid crystal compound may further contain a surfactant, a polymerization initiator, and the like.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. , 190, 2255 (1989), Advanced Materials, Volume 5, 107 (1993), US Pat. Nos.
  • polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (11).
  • cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
  • the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both positions of the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain.
  • a liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
  • the chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, Chapter 3-4-3, TN (twisted nematic), chiral agent for STN (Super-twisted nematic), 199 pages, Japanese academics). Japan Society for the Promotion of Science, 142nd edition, 1989), isosorbide and isomannide derivatives can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral agent may be a liquid crystal compound.
  • a chiral agent also called a photosensitive chiral agent
  • a photosensitive chiral agent is a compound that changes its structure by absorbing light and can change the helical pitch of the cholesteric liquid crystal phase.
  • a compound that causes at least one of a photoisomerization reaction, a photodimerization reaction, and a photolysis reaction is preferable.
  • a compound that undergoes a photoisomerization reaction refers to a compound that undergoes stereoisomerization or structural isomerization by the action of light.
  • a photoisomerization compound an azobenzene compound, a spiropyran compound, etc. are mentioned, for example.
  • the compound that causes a photodimerization reaction refers to a compound that undergoes an addition reaction between two groups upon irradiation with light to cyclize.
  • Examples of the photodimerization compound include cinnamic acid derivatives, coumarin derivatives, chalcone derivatives, and benzophenone derivatives.
  • Preferred examples of the photosensitive chiral agent include chiral agents represented by the following general formula (I).
  • This chiral agent can change the alignment structure such as the helical pitch (twisting force, helix twisting angle) of the cholesteric liquid crystal phase according to the amount of light upon light irradiation.
  • Ar 1 and Ar 2 represent an aryl group or a heteroaromatic ring group.
  • the aryl group represented by Ar 1 and Ar 2 may have a substituent, preferably has a total carbon number of 6 to 40, more preferably a total carbon number of 6 to 30.
  • the substituent include a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a hydroxyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxyl group, a cyano group, or a heterocyclic ring.
  • Group is preferred, and a halogen atom, alkyl group, alkenyl group, alkoxy group, hydroxyl group, acyloxy group, alkoxycarbonyl group or aryloxycarbonyl group is more preferred.
  • aryl groups represented by the following general formula (III) or (IV) are preferable.
  • R 1 in the general formula (III) and R 2 in the general formula (IV) are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, A hydroxyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxyl group, or a cyano group is represented.
  • L 1 in the general formula (III) and L 2 in the general formula (IV) each independently represent a halogen atom, an alkyl group, an alkoxy group, or a hydroxyl group, and an alkoxy group having 1 to 10 carbon atoms, Or a hydroxyl group is preferable.
  • l represents an integer of 0, 1 to 4, with 0 and 1 being preferred.
  • m represents an integer of 0, 1 to 6, with 0 and 1 being preferred.
  • L 1 and L 2 may represent different groups.
  • the heteroaromatic ring group represented by Ar 1 and Ar 2 may have a substituent, preferably has a total carbon number of 4 to 40, and more preferably a total carbon number of 4 to 30.
  • a substituent for example, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, a hydroxyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, or a cyano group is preferable.
  • a halogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an acyloxy group is more preferable.
  • heteroaromatic ring group examples include a pyridyl group, a pyrimidinyl group, a furyl group, and a benzofuranyl group. Among them, a pyridyl group or a pyrimidinyl group is preferable.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol% of the amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. Further preferred.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. When the content of the crosslinking agent is less than 3% by mass, the effect of improving the crosslinking density may not be obtained. When the content exceeds 20% by mass, the stability of the cholesteric liquid crystal layer may be decreased.
  • a surfactant if necessary, a surfactant, a polymerization inhibitor, an antioxidant, a horizontal alignment agent, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc. are optically added. It can be added as long as the performance is not lowered.
  • the liquid crystal composition may contain a solvent.
  • a solvent there is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
  • the ⁇ / 4 plate constituting the circularly polarizing plate is a conventionally known ⁇ / 4 plate.
  • light incident on the ⁇ / 4 plate is linearly polarized light, it is emitted as circularly polarized light and incident on the ⁇ / 4 plate.
  • the light to be circularly polarized is emitted as linearly polarized light.
  • the ⁇ / 4 plate may be composed of only the optically anisotropic layer or may be configured such that the optically anisotropic layer is formed on the support, but the ⁇ / 4 plate has the support. In some cases, the combination of support and optically anisotropic layer is intended to be a ⁇ / 4 plate. As the ⁇ / 4 plate, a known ⁇ / 4 plate can be used.
  • the ⁇ / 4 plate preferably has a small Rth (550) which is retardation in the thickness direction.
  • Rth (550) is preferably ⁇ 50 nm to 50 nm, more preferably ⁇ 30 nm to 30 nm, and even more preferably Rth ( ⁇ ) is zero.
  • the ⁇ / 4 plate is arranged with the slow axis aligned so that the other circularly polarized light that is transmitted through the cholesteric liquid crystal layer 18 and incident (circularly polarized light that is transmitted through the cholesteric liquid crystal layer) is linearly polarized light.
  • the linearly polarizing plate constituting the circularly polarizing plate has a polarization axis in one direction and has a function of transmitting specific linearly polarized light.
  • a general linear polarizing plate such as an absorption polarizing plate containing an iodine compound or a reflective polarizing plate such as a wire grid can be used.
  • the polarization axis is synonymous with the transmission axis.
  • an absorption type polarizing plate for example, any of an iodine type polarizing plate, a dye type polarizing plate using a dichroic dye, and a polyene type polarizing plate can be used.
  • the iodine-based polarizing plate and the dye-based polarizing plate are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
  • the linearly polarizing plates are arranged with their polarization axes aligned so that the linearly polarized light that is transmitted through the ⁇ / 4 plate is transmitted.
  • the combination of the linearly polarizing plate and the ⁇ / 4 plate functions as a circularly polarizing plate that transmits the light incident from the ⁇ / 4 plate side with the other circularly polarized light as linearly polarized light.
  • the combination of the ⁇ / 4 plate and the linearly polarizing plate transmits circularly polarized light whose direction of rotation is opposite to that of the circularly polarized light reflected by the cholesteric liquid crystal layer 18.
  • the adhesive layer is a laminate of the cholesteric liquid crystal layer 18 and the ⁇ / 4 plate (circularly polarizing plate).
  • the adhesive layer can be made of various known materials as long as the target layer (sheet-like material) can be bonded together, and has fluidity when bonded. It may be a layer made of an adhesive, a gel-like (rubber-like) soft solid when pasted together, or a layer made of an adhesive that does not change the gel-like state thereafter, or an adhesive and an adhesive It may be a layer made of a material having both characteristics of an agent.
  • the pressure-sensitive adhesive layer may be a known material used for laminating sheet-like materials, such as an optical transparent adhesive (OCA (Optical Clear Adhesive)), an optical transparent double-sided tape, and an ultraviolet curable resin.
  • OCA optical Clear Adhesive
  • liquid crystal film of the present invention is not particularly limited, for example, an advertising medium pasted on a window glass as a building window advertisement, an advertising medium pasted on a window glass of a car, taxi, bus, train, etc.
  • POP advertising Point of purchase advertising
  • Home appliances (camera, instant camera, PC (personal computer), smartphone, TV, recorder, range, audio player, game machine, VR (virtual reality) headset, vacuum cleaner, washing machine), smartphone cover, plush toy, cup, Sports such as dishes, plates, baskets, vases, desks, chairs, CDs (compact discs), DVD cases, books, calendars, plastic bottles, food packaging containers, guitars, pianos and other instruments, rackets, bats, clubs, balls, etc. Attractions such as supplies, labyrinths, ferris wheels, roller coasters, haunted houses, artificial flowers, educational toys, board games, umbrellas, canes, watches, music boxes, necklaces and other clothing materials, cosmetic containers, solar panels, lights and lamp covers Can be used as
  • liquid crystal film of the present invention has been described in detail above.
  • the present invention is not limited to the above-described example, and various improvements and modifications may be made without departing from the gist of the present invention. It is.
  • Example 1 As Example 1, a liquid crystal film was manufactured using a manufacturing apparatus 100a configured as shown in FIG.
  • cholesteric liquid crystal layer As the support 12a, a 50 ⁇ m thick PET film manufactured by FUJIFILM Corporation was used. A predetermined pattern was printed in color on the back surface of the support 12a to form a pattern mask.
  • the coating step the cholesteric liquid crystal ink liquid A prepared above was coated on the surface of the support using a die coater. The coating was adjusted at a room temperature so that the thickness of the coating layer after drying was about 2 to 5 ⁇ m, and a coating film was formed.
  • UV (ultraviolet light, wavelength 365 nm) irradiation was performed at 50 mJ / cm 2 on the coating film through a pattern mask at room temperature.
  • LEDUVHLDL-200X180-U6PSC manufactured by CCS Co., Ltd.
  • the support on which the coating film after the irradiation step was laminated was heated in a hot air drying zone at 90 ° C. for 1 minute.
  • UV irradiation (wavelength 300 to 350 nm, 200 mJ / cm 2 ) is applied from the surface to the coated film after heat treatment at room temperature in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) to cure the coated film.
  • a cholesteric liquid crystal layer was formed.
  • UE0961-426-05CQT manufactured by Iwasaki Electric Co., Ltd.
  • Example 2 As Example 2, a liquid crystal film was manufactured using a manufacturing apparatus 100b having a configuration as shown in FIG. Specifically, a 50 ⁇ m thick PET film manufactured by FUJIFILM Corporation is used as the support 12 b, and a predetermined pattern is formed on the base film 20 (100 ⁇ m thick PET film manufactured by Toyobo Co., Ltd.) as the mask film 14. Is printed in color to form a pattern mask (ink layer 22), the mask film 14 is adhered to the support 12b before the coating step, and the mask film 14 is peeled off after the curing step. Produced a liquid crystal film in the same manner as in Example 1. In addition, the mask film 14 stuck the pattern mask side to the support body 12b.
  • Example 3 A liquid crystal film was produced in the same manner as in Example 2 except that the base film 20 side of the mask film 14 was adhered to the support 12b.
  • Example 4 In the irradiation process, the irradiation is performed twice, the irradiation amount in the first irradiation step is 20 mJ / cm 2, and the irradiation amount in the second irradiation step is 40 mJ / cm 2. A liquid crystal film was prepared.
  • Example 5 A liquid crystal film was produced in the same manner as in Example 4 except that the irradiation amount in the first irradiation step was 50 mJ / cm 2 and the irradiation amount in the second irradiation step was 100 mJ / cm 2 .
  • Example 6 The wavelength of the light of the first irradiation step was 385 nm, dose of the 50 mJ / cm 2, 365 nm of the wavelength of the second irradiation step, except for using 50 mJ / cm 2 irradiation amount in the same manner as in Example 4, the liquid crystal A film was prepared.
  • Example 7 A liquid crystal film was produced in the same manner as in Example 4 except that the irradiation amount in the first irradiation step was 125 mJ / cm 2 and the irradiation amount in the second irradiation step was 125 mJ / cm 2 .
  • Example 8 As an initiator contained in the liquid crystal composition (cholesteric liquid crystal ink liquid A), IRGACURE 369 (manufactured by BASF), 40 mg was used, except that the wavelength of light in the curing step was 365 nm. A liquid crystal film was prepared.
  • Example 1 A liquid crystal film was produced in the same manner as in Example 1 except that the irradiation step was performed after the alignment step.
  • Example 2 A liquid crystal film was produced in the same manner as in Example 1 except that a black and white binary pattern mask was formed on the support by printing as a pattern mask.
  • Example 3 A liquid crystal film was produced in the same manner as in Example 2 except that a black and white binary pattern mask was formed on the support by printing as a pattern mask.
  • the liquid crystal films of Examples 1 to 8 produced by the production method of the present invention have better definition and gradation than the comparative examples.
  • the pattern mask side is It can be seen that it is preferable to stick to the support.
  • the definition is further improved by irradiating light twice in the irradiation process.
  • the total irradiation amount is preferably 200 mJ / cm 2 or less.
  • the wavelength of light in the irradiation process and the wavelength of light in the curing process are preferably different.
  • Example 9 As Example 9, a liquid crystal film was produced in the same manner as in Example 1 except that the pattern mask shown in FIG. 10 was used. An image of the produced liquid crystal film is shown in FIG. As can be seen from FIG. 10 and FIG. 11, it can be seen that regions having different colors of the cholesteric liquid crystal layer, that is, selective reflection wavelengths, are formed in accordance with the pattern and density of the pattern mask. From the above results, the effect of the present invention is clear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are: a method for producing a liquid crystal film with high productivity, which enables the achievement of a cholesteric liquid crystal layer that is capable of displaying a fine image with a desired color gradation; and a method for producing a functional film. This method for producing a liquid crystal film sequentially comprises in the following order: a coating step wherein a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent is applied onto the surface of a supporting body, while conveying the supporting body in the longitudinal direction; an irradiation step wherein a coating film of the liquid crystal composition in an undried state is irradiated with light that has a wavelength at which the chiral agent is photosensitized; an alignment step wherein liquid crystals are aligned by heating the coating film; and a curing step wherein the aligned coating film is cured. In the irradiation step, the coating film is irradiated with light through a patterned mask that is arranged on the supporting body side; and the patterned mask is a gradation patterned mask that has three or more regions having different transmittances with respect to light that has a wavelength at which the chiral agent is photosensitized. By irradiating the coating film with light through the gradation patterned mask in the irradiation step, regions of the coating film are irradiated with light at different irradiances.

Description

液晶フィルムの製造方法および機能性フィルムの製造方法Method for producing liquid crystal film and method for producing functional film
 本発明は、液晶フィルムの製造方法および機能性フィルムの製造方法に関する。 The present invention relates to a method for producing a liquid crystal film and a method for producing a functional film.
 コレステリック液晶相を含む層(コレステリック液晶層)は、特定の波長域(選択反射波長帯域)において右円偏光および左円偏光のいずれか一方を選択的に反射させる性質を有する層として知られている。そのため、コレステリック液晶層は選択反射波長の光を反射することで、これに応じた色の画像を表示することができ、種々の用途へ展開されている。
 例えば、特許文献1には、単一層のコレステリック液晶層において、少なくとも1ヶ所に選択反射波長帯域が他の領域とは異なる領域が設けられた構成が記載されており、コレステリック液晶の特性を利用して認証情報を記録することが記載されている。
 この特許文献1には、選択反射波長帯域が異なる領域を有するコレステリック液晶層の形成方法として、パターンを形成したマスクを介して紫外線露光することで、パターン化された選択反射波長を有するコレステリック液晶層を形成する方法が記載されている。
A layer containing a cholesteric liquid crystal phase (cholesteric liquid crystal layer) is known as a layer having a property of selectively reflecting either right circularly polarized light or left circularly polarized light in a specific wavelength range (selective reflection wavelength range). . For this reason, the cholesteric liquid crystal layer reflects light of a selective reflection wavelength, so that an image of a color corresponding to this can be displayed, and has been developed for various uses.
For example, Patent Document 1 describes a configuration in which a single layer of a cholesteric liquid crystal layer is provided with a region having a selective reflection wavelength band different from other regions in at least one location, and uses the characteristics of cholesteric liquid crystal. To record authentication information.
In Patent Document 1, as a method of forming a cholesteric liquid crystal layer having regions having different selective reflection wavelength bands, a cholesteric liquid crystal layer having a patterned selective reflection wavelength by exposing to ultraviolet rays through a pattern-formed mask. A method of forming is described.
特開2006-142699号公報JP 2006-142699 A
 しかしながら、特許文献1に記載されるコレステリック液晶層の形成方法では、コレステリック液晶の塗布液を基板に塗布し乾燥した後に、塗布膜に紫外線を照射して硬化させる際に、パターンマスクを用いて露光を行っている。また、パターンマスクとしては、遮光部と透過部を有する2値のパターンマスクが記載されるのみである。 However, in the method of forming a cholesteric liquid crystal layer described in Patent Document 1, a cholesteric liquid crystal coating solution is applied to a substrate, dried, and then exposed to ultraviolet rays on the coating film to be cured using a pattern mask. It is carried out. As the pattern mask, only a binary pattern mask having a light shielding part and a transmission part is described.
 本発明者らの検討によれば、このような方法で形成されたコレステリック液晶層は、所望の選択反射波長とすること、すなわち、所望の色味ができなかったり、選択反射波長帯域が異なる領域間の境界が滲んで精細さが十分に得られないことがわかった。また、2値のパターンマスクを用いる場合には、コレステリック液晶層に選択反射波長が異なる3種以上の領域を形成する際に、パターンマスクを変えて複数回露光を行なう必要がある。そのため、より多色のコレステリック液晶層を形成するためには、多くの工程が必要となり製造効率が悪いという問題があることがわかった。 According to the study by the present inventors, the cholesteric liquid crystal layer formed by such a method has a desired selective reflection wavelength, that is, a region in which a desired color cannot be obtained or a selective reflection wavelength band is different. It was found that the boundary between the images was blurred and sufficient fineness could not be obtained. Further, when a binary pattern mask is used, it is necessary to perform multiple exposures by changing the pattern mask when forming three or more regions having different selective reflection wavelengths in the cholesteric liquid crystal layer. Therefore, it has been found that in order to form a multicolor cholesteric liquid crystal layer, many steps are required and the production efficiency is poor.
 本発明は、上記実情に鑑みて、精細で所望の色階調の画像を表示できるコレステリック液晶層を得ることができ、高い生産性を有する液晶フィルムの製造方法および機能性フィルムの製造方法を提供することを課題とする。 In view of the above circumstances, the present invention can provide a cholesteric liquid crystal layer capable of displaying a fine and desired color gradation image, and a method for producing a liquid crystal film and a functional film having high productivity. The task is to do.
 本発明者らは、従来技術の問題点について鋭意検討した結果、長尺な支持体を長手方向に送り出す送出工程と、送り出した支持体を長手方向に搬送しつつ、コレステリック液晶化合物と感光性のキラル剤とを含む液晶組成物を支持体表面に塗布する塗布工程と、未乾燥状態の液晶組成物の塗布膜にキラル剤が感光する波長の光を照射する照射工程と、塗布膜を加熱して液晶を配向する配向工程と、配向した塗布膜を硬化する硬化工程と、をこの順に有し、照射工程において、支持体側に配置されたパターンマスクを介して塗布膜に光を照射し、パターンマスクは、キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有する多階調のパターンマスクであり、照射工程において、多階調のパターンマスクを介して塗布膜に光を照射することで、塗布膜の各領域に対して異なる照射量の光を照射することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of earnestly examining the problems of the prior art, the present inventors have conducted a delivery process of feeding a long support in the longitudinal direction, and the cholesteric liquid crystal compound and the photosensitive material while transporting the delivered support in the longitudinal direction. A coating process for coating a liquid crystal composition containing a chiral agent on the surface of the support; an irradiation process for irradiating the coating film of the liquid crystal composition in an undried state with light having a wavelength at which the chiral agent is sensitive; and heating the coating film. In this order, there is an alignment step for aligning the liquid crystal and a curing step for curing the aligned coating film. In the irradiation step, the coating film is irradiated with light through a pattern mask arranged on the support side, and a pattern is formed. The mask is a multi-tone pattern mask having three or more regions having different transmittances for light having a wavelength to which the chiral agent is exposed. In the irradiation process, light is applied to the coating film through the multi-tone pattern mask. Doing, by irradiating light of different dose for each region of the coating film was found to be able to solve the above problems.
That is, it has been found that the above object can be achieved by the following configuration.
 (1) 長尺な支持体を長手方向に送り出す送出工程と、
 送り出した支持体を長手方向に搬送しつつ、コレステリック液晶化合物と感光性のキラル剤とを含む液晶組成物を支持体表面に塗布する塗布工程と、
 未乾燥状態の液晶組成物の塗布膜にキラル剤が感光する波長の光を照射する照射工程と、
 塗布膜を加熱して液晶を配向する配向工程と、
 配向した塗布膜を硬化する硬化工程と、をこの順に有し、
 照射工程において、支持体側に配置されたパターンマスクを介して塗布膜に光を照射し、
 パターンマスクは、キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有する多階調のパターンマスクであり、
 照射工程において、多階調のパターンマスクを介して塗布膜に光を照射することで、塗布膜の各領域に対して異なる照射量の光を照射する液晶フィルムの製造方法。
 (2) パターンマスクは、支持体の裏面に形成されている(1)に記載の液晶フィルムの製造方法。
 (3) パターンマスクは、長尺な基材フィルムの表面に形成されており、
 照射工程において、パターンマスクが形成された基材フィルムが支持体の裏面に貼着された状態で、光の照射を行なう(1)に記載の液晶フィルムの製造方法。
 (4) パターンマスクは、グレースケール印刷により形成されたものである(1)~(3)のいずれかに記載の液晶フィルムの製造方法。
 (5) 照射工程は、第一照射ステップと第二照射ステップとを有し、
 第一照射ステップにおける光の照射量が、第二照射ステップにおける光の照射量よりも少ない(1)~(4)のいずれかに記載の液晶フィルムの製造方法。
 (6) 第一照射ステップおよび第二照射ステップの照射量の合計が200mJ/cm2以下である(5)に記載の液晶フィルムの製造方法。
 (7) 照射工程は、第一照射ステップと第二照射ステップとを有し、
 第一照射ステップにおいて照射する光のピーク波長と、第二照射ステップにおいて照射する光のピーク波長とが互いに異なる(1)~(6)のいずれかに記載の液晶フィルムの製造方法。
 (8) 硬化工程は、塗布膜を光硬化させる工程であり、
 硬化工程において照射する光の波長が、照射工程において照射する光の波長とは異なる(1)~(7)のいずれかに記載の液晶フィルムの製造方法。
 (9) 硬化工程において、パターンマスクは支持体の裏面側に配置された状態で一体的に搬送されており、
 パターンマスクとは反対側の面側に光を照射する(8)に記載の液晶フィルムの製造方法。
 (10) 塗布工程における液晶組成物の塗布方法がバー塗布である(1)~(9)のいずれかに記載の液晶フィルムの製造方法。
 (11) 塗布工程、照射工程、配向工程および硬化工程の組み合わせを2回以上繰り返して2層以上のコレステリック液晶層を形成する液晶フィルムの製造方法であって、
 2回以上の照射工程において、同一パターンのパターンマスクを介して光を照射し、かつ、各照射工程における光の照射量を互いに異ならせる(1)~(10)のいずれかに記載の液晶フィルムの製造方法。
 (12) (1)~(11)のいずれかに記載の液晶フィルムの製造方法の硬化工程の後に、硬化した塗布膜の表面又は前記支持体の裏面に円偏光板を貼着する工程を有する機能性フィルムの製造方法。
(1) a delivery step of feeding a long support in the longitudinal direction;
An application step of applying a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent to the support surface while transporting the fed support in the longitudinal direction;
An irradiation step of irradiating the coating film of the undried liquid crystal composition with light having a wavelength at which the chiral agent is sensitive,
An alignment step of aligning the liquid crystal by heating the coating film;
A curing step for curing the oriented coating film, in this order,
In the irradiation process, the coating film is irradiated with light through a pattern mask arranged on the support side,
The pattern mask is a multi-tone pattern mask having three or more regions having different transmittances for light having a wavelength that the chiral agent is sensitive to,
A method for producing a liquid crystal film, wherein, in the irradiation step, light is applied to each region of the coating film by irradiating the coating film with light through a multi-tone pattern mask.
(2) The method for producing a liquid crystal film according to (1), wherein the pattern mask is formed on the back surface of the support.
(3) The pattern mask is formed on the surface of the long base film,
The method for producing a liquid crystal film according to (1), wherein, in the irradiation step, the substrate film on which the pattern mask is formed is attached to the back surface of the support, and the light irradiation is performed.
(4) The method for producing a liquid crystal film according to any one of (1) to (3), wherein the pattern mask is formed by gray scale printing.
(5) The irradiation process has a first irradiation step and a second irradiation step,
The method for producing a liquid crystal film according to any one of (1) to (4), wherein the light irradiation amount in the first irradiation step is smaller than the light irradiation amount in the second irradiation step.
(6) The manufacturing method of the liquid-crystal film as described in (5) whose sum total of the irradiation amount of a 1st irradiation step and a 2nd irradiation step is 200 mJ / cm < 2 > or less.
(7) The irradiation process has a first irradiation step and a second irradiation step,
The method for producing a liquid crystal film according to any one of (1) to (6), wherein a peak wavelength of light irradiated in the first irradiation step and a peak wavelength of light irradiated in the second irradiation step are different from each other.
(8) The curing step is a step of photocuring the coating film,
The method for producing a liquid crystal film according to any one of (1) to (7), wherein the wavelength of light irradiated in the curing step is different from the wavelength of light irradiated in the irradiation step.
(9) In the curing step, the pattern mask is integrally conveyed in a state of being arranged on the back side of the support,
The manufacturing method of the liquid crystal film as described in (8) which irradiates light to the surface side on the opposite side to a pattern mask.
(10) The method for producing a liquid crystal film according to any one of (1) to (9), wherein the application method of the liquid crystal composition in the application step is bar application.
(11) A method for producing a liquid crystal film in which a combination of a coating process, an irradiation process, an alignment process, and a curing process is repeated twice or more to form two or more cholesteric liquid crystal layers,
The liquid crystal film according to any one of (1) to (10), wherein light is irradiated through a pattern mask having the same pattern in two or more irradiation steps, and the amount of light irradiation in each irradiation step is different from each other Manufacturing method.
(12) After the curing step of the liquid crystal film production method according to any one of (1) to (11), a step of attaching a circularly polarizing plate to the surface of the cured coating film or the back surface of the support is included. A method for producing a functional film.
 本発明によれば、精細で所望の色階調の画像を表示できるコレステリック液晶層を得ることができ、高い生産性を有する液晶フィルムの製造方法および機能性フィルムの製造方法を提供することができる。 According to the present invention, a cholesteric liquid crystal layer capable of displaying a fine and desired color gradation image can be obtained, and a liquid crystal film manufacturing method and a functional film manufacturing method having high productivity can be provided. .
本発明の液晶フィルムの製造方法の一例を実施する製造装置を模式的に示す図である。It is a figure which shows typically the manufacturing apparatus which enforces an example of the manufacturing method of the liquid crystal film of this invention. 図1の製造装置により実施される液晶フィルムの製造方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing method of the liquid crystal film implemented with the manufacturing apparatus of FIG. 本発明の液晶フィルムの製造方法の他の一例を実施する製造装置を模式的に示す図である。It is a figure which shows typically the manufacturing apparatus which enforces another example of the manufacturing method of the liquid crystal film of this invention. 図3の製造装置により実施される液晶フィルムの製造方法の一例を説明するための模式的断面図である。It is typical sectional drawing for demonstrating an example of the manufacturing method of the liquid crystal film implemented with the manufacturing apparatus of FIG. 図3の製造装置により実施される液晶フィルムの製造方法の一例を説明するための模式的断面図である。It is typical sectional drawing for demonstrating an example of the manufacturing method of the liquid crystal film implemented with the manufacturing apparatus of FIG. 実施例で用いたパターンマスクを表す図である。It is a figure showing the pattern mask used in the Example. 実施例で作製された液晶フィルムを表す図である。It is a figure showing the liquid crystal film produced in the Example. 本発明で用いられるパターンマスクの他の一例を表す図である。It is a figure showing another example of the pattern mask used by this invention. 比較例で用いた2値のパターンマスクを表す図である。It is a figure showing the binary pattern mask used by the comparative example. 本発明の製造方法で用いられるパターンマスクの一例を表す図である。It is a figure showing an example of the pattern mask used with the manufacturing method of this invention. 図10に示すパターンマスクを用いて作製された液晶フィルムを表す図である。It is a figure showing the liquid crystal film produced using the pattern mask shown in FIG.
 以下、本発明の液晶フィルムの製造方法について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「直交」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「直交」および「平行」とは、厳密な直交あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な直交あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 また、「直交」および「平行」以外で表される角度、例えば、15°や45°等の具体的な角度についても、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、本発明においては、角度は、具体的に示された厳密な角度に対して、±5°未満であることなどを意味し、示された厳密な角度に対する誤差は、±3°以下であるのが好ましく、±1°以下であるのが好ましい。
Hereinafter, the manufacturing method of the liquid crystal film of this invention is demonstrated in detail. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, “orthogonal” and “parallel” include a range of errors allowed in the technical field to which the present invention belongs. For example, “orthogonal” and “parallel” mean that the angle is within ± 10 ° with respect to strict orthogonality or parallelism, and an error with respect to strict orthogonality or parallelism is 5 ° or less. Preferably, it is 3 ° or less.
Further, an angle represented by other than “orthogonal” and “parallel”, for example, a specific angle such as 15 ° or 45 °, includes a range of errors allowed in the technical field to which the present invention belongs. For example, in the present invention, the angle means less than ± 5 ° with respect to the exact angle shown specifically, and the error with respect to the exact angle shown is ± 3 ° or less. It is preferable that it is ± 1 ° or less.
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
In this specification, “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
In this specification, “same” includes an error range generally allowed in the technical field. In addition, in the present specification, when “all”, “any” or “entire surface” is used, it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
 可視光は電磁波のうち、ヒトの目で見える波長の光であり、380nm~780nmの波長域の光を示す。非可視光は、380nm未満の波長域または780nmを超える波長域の光である。
 またこれに限定されるものではないが、可視光のうち、420nm~490nmの波長域の光は、青色光であり、495nm~570nmの波長域の光は、緑色光であり、620nm~750nmの波長域の光は、赤色光である。
 赤外光のうち、近赤外光は780nm~2500nmの波長域の電磁波である。紫外光は波長10~380nmの範囲の光である。
 本明細書において、選択反射波長とは、対象となる物(部材)における透過率の極小値をTmin(%)とした場合、下記の式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことを言う。
 半値透過率を求める式: T1/2=100-(100-Tmin)÷2
Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm. Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
Although not limited to this, among visible light, light in the wavelength range of 420 nm to 490 nm is blue light, light in the wavelength range of 495 nm to 570 nm is green light, and light in the range of 620 nm to 750 nm. The light in the wavelength band is red light.
Of the infrared light, near infrared light is an electromagnetic wave having a wavelength range of 780 nm to 2500 nm. Ultraviolet light is light having a wavelength in the range of 10 to 380 nm.
In this specification, the selective reflection wavelength is a half-value transmittance represented by the following formula: T1 / 2 (%), where Tmin (%) is the minimum value of the transmittance of a target object (member). Is the average value of two wavelengths.
Formula for calculating half-value transmittance: T1 / 2 = 100− (100−Tmin) ÷ 2
 本明細書において、「ヘイズ」は、日本電色工業株式会社製のヘーズメーターNDH-2000を用いて測定される値を意味する。
 理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
 散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。
 屈折率は、波長589.3nmの光に対する屈折率である。
In the present specification, “haze” means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
Theoretically, haze means a value represented by the following equation.
(Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) × 100%
The scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit. The direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
The refractive index is a refractive index for light having a wavelength of 589.3 nm.
 本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、および、厚さ方向のレターデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本明細書において、Re(λ)、Rth(λ)は、AxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))を入力することにより、
遅相軸方向(°)
Re(λ)=R0(λ)
Rth(λ)=((Nx+Ny)/2-Nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at the wavelength λ, respectively. Unless otherwise specified, the wavelength λ is 550 nm.
In this specification, Re (λ) and Rth (λ) are values measured at a wavelength λ in AxoScan OPMF-1 (manufactured by Optoscience). By inputting the average refractive index ((Nx + Ny + Nz) / 3) and film thickness (d (μm)) in AxoScan,
Slow axis direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((Nx + Ny) / 2−Nz) × d
Is calculated.
Note that R0 (λ) is displayed as a numerical value calculated by AxoScan, and means Re (λ).
 本明細書において、屈折率Nx、Ny、Nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルタとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することもできる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
In this specification, the refractive indexes Nx, Ny, and Nz are measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) and a sodium lamp (λ = 589 nm) as a light source. Further, when measuring the wavelength dependence, it can be measured in combination with an interference filter by a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.).
In addition, values in polymer handbooks (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
 本発明の液晶フィルムの製造方法は、
 長尺な支持体を長手方向に送り出す送出工程と、
 送り出した支持体を長手方向に搬送しつつ、コレステリック液晶化合物と感光性のキラル剤とを含む液晶組成物を支持体表面に塗布する塗布工程と、
 未乾燥状態の液晶組成物の塗布膜にキラル剤が感光する波長の光を照射する照射工程と、
 塗布膜を加熱して液晶を配向する配向工程と、
 配向した塗布膜を硬化する硬化工程と、をこの順に有し、
 照射工程において、支持体側に配置されたパターンマスクを介して塗布膜に光を照射し、
 パターンマスクは、キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有する多階調のパターンマスクであり、
 照射工程において、多階調のパターンマスクを介して塗布膜に光を照射することで、塗布膜の領域に応じて光の照射量を異ならせる液晶フィルムの製造方法である。
The method for producing the liquid crystal film of the present invention comprises:
A delivery step of feeding a long support in the longitudinal direction;
An application step of applying a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent to the support surface while transporting the fed support in the longitudinal direction;
An irradiation step of irradiating the coating film of the undried liquid crystal composition with light having a wavelength at which the chiral agent is sensitive,
An alignment step of aligning the liquid crystal by heating the coating film;
A curing step for curing the oriented coating film, in this order,
In the irradiation process, the coating film is irradiated with light through a pattern mask arranged on the support side,
The pattern mask is a multi-tone pattern mask having three or more regions having different transmittances for light having a wavelength that the chiral agent is sensitive to,
In the irradiation step, a liquid crystal film is produced by irradiating the coating film with light through a multi-tone pattern mask to vary the amount of light irradiation according to the region of the coating film.
 また、本発明の機能性フィルムの製造方法は、
 上記液晶フィルムの製造方法の硬化工程の後に、硬化した塗布膜の表面または支持体の裏面に円偏光板を貼着する工程を有する機能性フィルムの製造方法である。
Moreover, the method for producing the functional film of the present invention comprises:
It is a manufacturing method of the functional film which has the process of sticking a circularly-polarizing plate on the surface of the hardened coating film or the back surface of a support body after the hardening process of the manufacturing method of the said liquid crystal film.
<液晶フィルムの製造方法>
 以下に、本発明の液晶フィルムの製造方法の好適な実施態様の一例について図面を参照して説明する。
 図1に、本発明の液晶フィルムの製造方法(以下、「本発明の製造方法」ともいう)を実施する液晶フィルムの製造装置(以下、「製造装置」ともいう)の一例の模式的な図を示す。また、図2に、図1に示す製造装置により実施される液晶フィルムの製造方法の一例を説明するための模式図を示す。
 なお、本発明における図は模式図であり、各部の大きさ、各層の厚みの関係、および、位置関係などは必ずしも実際のものとは一致しない。以下の図も同様である。
<Method for producing liquid crystal film>
Below, an example of the suitable embodiment of the manufacturing method of the liquid-crystal film of this invention is demonstrated with reference to drawings.
FIG. 1 is a schematic diagram of an example of a liquid crystal film manufacturing apparatus (hereinafter also referred to as “manufacturing apparatus”) that implements the liquid crystal film manufacturing method of the present invention (hereinafter also referred to as “the manufacturing method of the present invention”). Indicates. FIG. 2 is a schematic diagram for explaining an example of a method for producing a liquid crystal film performed by the production apparatus shown in FIG.
Note that the drawings in the present invention are schematic diagrams, and the size of each part, the relationship between the thicknesses of each layer, the positional relationship, and the like do not necessarily match the actual ones. The same applies to the following figures.
 図1に示す製造装置100aは、長尺な支持体12aを用いて、ロールトゥロール(以下、「RtoR」ともいう)によって液晶フィルムの製造を行うものである。周知のように、RtoRとは、長尺な被処理物を巻回してなるロールから被処理物を送り出して、長手方向に搬送しつつ成膜等の処理を行い、処理済の被処理物を、再度、ロール状に巻回する製造方法である。 A manufacturing apparatus 100a shown in FIG. 1 uses a long support 12a to manufacture a liquid crystal film by roll-to-roll (hereinafter also referred to as “RtoR”). As is well known, RtoR means that a processed object is sent out from a roll formed by winding a long processed object, and is subjected to processing such as film formation while being conveyed in the longitudinal direction. This is a manufacturing method in which the material is wound again in a roll shape.
 製造装置100aは、一例として、送り出しローラ102と、第1搬送部120と、塗布部150と、第2搬送部122と、露光部152と、加熱部154と、硬化部156と、第3搬送部124と、巻取りローラ116と、を有する。第1搬送部120、第2搬送部122および第3搬送部124は、搬送用のローラ等を有し、長尺な被処理物を所定の経路で搬送するものである。
 なお、製造装置100aは、図示した部材以外にも、搬送ローラ対、支持体のガイド部材、各種のセンサなど、長尺な被処理物を搬送しつつ塗布による成膜を行なう公知の装置に設けられる各種の部材を有してもよい。
For example, the manufacturing apparatus 100a includes a delivery roller 102, a first transport unit 120, a coating unit 150, a second transport unit 122, an exposure unit 152, a heating unit 154, a curing unit 156, and a third transport. Part 124 and winding roller 116. The 1st conveyance part 120, the 2nd conveyance part 122, and the 3rd conveyance part 124 have a roller for conveyance etc., and convey a long to-be-processed object by a predetermined | prescribed path | route.
In addition to the illustrated members, the manufacturing apparatus 100a is provided in a known apparatus that forms a film by coating while transporting a long object to be processed, such as a pair of transport rollers, a guide member for a support, and various sensors. Various members may be included.
 製造装置100aにおいて、長尺な支持体12aを巻回してなるロール130を、送り出しローラ102に装填する。
 ロール130から支持体12aを引き出して、第1搬送部120、塗布部150、第2搬送部122、露光部152、加熱部154、硬化部156および第3搬送部124を通過して巻取りローラ116に到る所定の経路に挿通させる。
 また、調製したコレステリック液晶層となる液晶組成物を塗布部150の塗布ノズル104に供給し、塗布を行う。
In the manufacturing apparatus 100 a, a roll 130 formed by winding a long support 12 a is loaded on the delivery roller 102.
The support 12a is pulled out from the roll 130 and passes through the first transport unit 120, the coating unit 150, the second transport unit 122, the exposure unit 152, the heating unit 154, the curing unit 156, and the third transport unit 124, and a winding roller. A predetermined route reaching 116 is inserted.
In addition, the prepared liquid crystal composition to be a cholesteric liquid crystal layer is supplied to the application nozzle 104 of the application unit 150 to perform application.
 RtoRを利用する製造装置100aでは、ロール130からの支持体12aの送り出しと、コレステリック液晶層18を形成した支持体12a(積層フィルム23d)の巻き取りとを同期して行なう。これにより、長尺な支持体12aを所定の搬送経路で長手方向に搬送しつつ、塗布部150において調製した液晶組成物を支持体12aに塗布し、露光部152において塗布膜を露光し、次いで、加熱部154において塗布膜を加熱して液晶を配向し、さらに、硬化部156において紫外線照射および/または加熱等を行なって塗布膜を硬化させてコレステリック液晶層18を形成する。さらに、巻取りローラ116において支持体12a上にコレステリック液晶層18が形成された長尺な積層フィルム23dをロール状に巻回して、ロール132とする。
 なお、本発明において、液晶フィルムとは、コレステリック液晶層を有するフィルム状物であり、図1および図2に示す例においては、コレステリック液晶層18が支持体12aの表面に積層された積層フィルム23dが本発明の液晶フィルムである。コレステリック液晶層18は、支持体12aに積層された状態で用いられても良いし、支持体12aから剥離されて用いられてもよい。
In the manufacturing apparatus 100a using RtoR, the feeding of the support 12a from the roll 130 and the winding of the support 12a (laminated film 23d) on which the cholesteric liquid crystal layer 18 is formed are performed in synchronization. Thereby, the liquid crystal composition prepared in the coating unit 150 is applied to the support 12a while the long support 12a is transported in the longitudinal direction along a predetermined transport path, the coating film is exposed in the exposure unit 152, and then Then, the coating film is heated in the heating unit 154 to align the liquid crystal, and further, the curing film 156 is irradiated with ultraviolet rays and / or heated to cure the coating film to form the cholesteric liquid crystal layer 18. Further, a long laminated film 23 d in which the cholesteric liquid crystal layer 18 is formed on the support 12 a in the winding roller 116 is wound in a roll shape to obtain a roll 132.
In the present invention, the liquid crystal film is a film having a cholesteric liquid crystal layer, and in the example shown in FIGS. 1 and 2, a laminated film 23d in which the cholesteric liquid crystal layer 18 is laminated on the surface of the support 12a. Is the liquid crystal film of the present invention. The cholesteric liquid crystal layer 18 may be used in a state of being laminated on the support 12a, or may be used after being peeled from the support 12a.
 図2にS1で示す送出工程において、ロール130から送り出される支持体12aは、PETフィルム等の樹脂フィルムにパターンマスクが形成されたものである。 In the delivery step indicated by S1 in FIG. 2, the support 12a delivered from the roll 130 is obtained by forming a pattern mask on a resin film such as a PET film.
 支持体12aを形成する樹脂フィルムとしては、基板(支持体)として利用されている、透明性を有する公知のシート状物が、各種、利用可能である。 As the resin film forming the support 12a, various known sheet-like materials having transparency that are used as substrates (supports) can be used.
 具体的には、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、シクロオレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)などの、各種の樹脂材料からなるフィルム(樹脂フィルム)が、好適に例示される。 Specifically, low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), Polyacrylonitrile (PAN), polyimide (PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), ABS, cycloolefin Films (resin films) made of various resin materials such as copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC) are preferably exemplified.
 本発明においては、このようなフィルムの表面に、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、応力緩和層、離型層等の、必要な機能を発現する層(膜)が形成されているものを、支持体12aとして用いてもよい。 In the present invention, necessary functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, a stress relaxation layer, and a release layer are provided on the surface of such a film. A layer (film) that expresses may be used as the support 12a.
 支持体12aが有するパターンマスクは、後述する露光部152で照射する光(キラル剤が感光する波長の光)に対する透過率が異なる3以上の領域を有する多階調のパターンマスクである。
 このようなパターンマスクは、例えば、印刷によって形成することができ、樹脂フィルムの表面に形成されるインク層の光透過率が、領域によって異なるように印刷することによって、所望のパターンのマスクとすることができる。具体的には、グレースケール印刷(図6参照)、あるいは、カラー印刷(図8参照)によって形成することができる。
The pattern mask included in the support 12a is a multi-tone pattern mask having three or more regions having different transmittances with respect to light irradiated by an exposure unit 152 (to be described later) (light having a wavelength sensitive to the chiral agent).
Such a pattern mask can be formed, for example, by printing, and a mask having a desired pattern is obtained by printing so that the light transmittance of the ink layer formed on the surface of the resin film varies depending on the region. be able to. Specifically, it can be formed by gray scale printing (see FIG. 6) or color printing (see FIG. 8).
 支持体12aの厚みは、薄すぎると支持性が低下し、搬送中に折れ曲がり等が発生するおそれがある。一方、厚すぎると可撓性が低下し、搬送し難くなったり、ロールに巻き取った際に大型化したり、あるいは、形成したコレステリック液晶層を支持体12aから剥離するのが難しくなるおそれがある。
 以上の観点から、支持体12aの厚みは、20μm~100μmが好ましく、60μm~100μmがより好ましい。
If the thickness of the support 12a is too thin, the supportability is lowered, and there is a possibility that bending or the like may occur during conveyance. On the other hand, if it is too thick, the flexibility may be reduced, making it difficult to transport, increasing the size when wound on a roll, or making it difficult to peel the formed cholesteric liquid crystal layer from the support 12a. .
From the above viewpoint, the thickness of the support 12a is preferably 20 μm to 100 μm, and more preferably 60 μm to 100 μm.
 図1に示すように、ロール130から送り出された支持体12aは、第1搬送部120を通過して、塗布部150に到る。塗布部150おいて支持体12aに塗布処理がなされる。なお、図1に示す例では、塗布部150での塗布に際し、支持体12aはバックアップローラ106に巻き掛けられた状態で、塗布ノズル104によって液晶組成物が塗布される。バー塗布など、バックアップローラ106無しで塗布可能な方法で塗布を行なう場合には、バックアップローラ106は無くてもよい。
 図2にS2で示すように、塗布工程において、塗布部104がコレステリック液晶化合物と感光性キラル剤とを含む液晶組成物を支持体12aの表面に塗布して塗布膜21aを形成する。支持体12aと塗布膜21aとの積層体を積層フィルム23aとする。
 液晶組成物については後に詳述する。
As shown in FIG. 1, the support 12 a sent out from the roll 130 passes through the first transport unit 120 and reaches the coating unit 150. In the application unit 150, the support 12a is applied. In the example shown in FIG. 1, the liquid crystal composition is applied by the application nozzle 104 while the support 12 a is wound around the backup roller 106 during application by the application unit 150. When the coating is performed by a method that can be applied without the backup roller 106 such as bar coating, the backup roller 106 may be omitted.
As shown by S2 in FIG. 2, in the coating process, the coating unit 104 applies a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent to the surface of the support 12a to form a coating film 21a. A laminated body of the support 12a and the coating film 21a is referred to as a laminated film 23a.
The liquid crystal composition will be described in detail later.
 塗布工程における塗布方法としては、エクストルージョン塗布、グラビア塗布、ダイ塗布、バー塗布、アプリケータ塗布等の塗布法、あるいは、フレキソ印刷等の印刷法の公知の方法を適用できる。
 中でも、支持体12a表面に凹凸(パターンマスクとなるインク層による凹凸など)があっても塗布ムラを抑制することができる等の観点からバー塗布が好ましい。
As a coating method in the coating process, a known method such as a coating method such as extrusion coating, gravure coating, die coating, bar coating or applicator coating, or a printing method such as flexographic printing can be applied.
Among these, bar coating is preferable from the viewpoint that uneven coating can be suppressed even if the surface of the support 12a has irregularities (such as irregularities due to an ink layer serving as a pattern mask).
 また、塗布膜21aは、支持体12aのパターンマスク側に形成されてもよいが、パターンマスクとは反対側の面に形成されるのが好ましい。すなわち、パターンマスクは、支持体12aの塗布膜21aが形成される面とは反対側の面(裏面)に形成されるのが好ましい。 The coating film 21a may be formed on the pattern mask side of the support 12a, but is preferably formed on the surface opposite to the pattern mask. That is, the pattern mask is preferably formed on the surface (back surface) opposite to the surface on which the coating film 21a of the support 12a is formed.
 次に、図1に示すように、積層フィルム23aは第2搬送部122を通過して露光部152に到る。露光部152において積層フィルム23aは照射工程を施される。
 図2にS3で示すように、照射工程において、露光装置108が支持体12a側から、すなわち、パターンマスクを介して未乾燥状態の塗布膜21aに光を照射する。露光装置108が照射する光は、塗布膜21a(液晶組成物)中のキラル剤が感光する波長の光である。従って、露光処理によって露光した塗布膜21bが形成される。露光した塗布膜21b中では、感光性キラル剤が感光し、その構造が変化する。
 支持体12aと露光した塗布膜21bとの積層体を積層フィルム23bとする。
Next, as shown in FIG. 1, the laminated film 23 a passes through the second transport unit 122 and reaches the exposure unit 152. In the exposure unit 152, the laminated film 23a is subjected to an irradiation process.
As shown by S3 in FIG. 2, in the irradiation step, the exposure apparatus 108 irradiates light on the coating film 21a in an undried state from the support 12a side, that is, through a pattern mask. The light irradiated by the exposure device 108 is light having a wavelength at which the chiral agent in the coating film 21a (liquid crystal composition) is exposed. Therefore, the coating film 21b exposed by the exposure process is formed. In the exposed coating film 21b, the photosensitive chiral agent is exposed and its structure changes.
A laminate of the support 12a and the exposed coating film 21b is referred to as a laminate film 23b.
 ここで、パターンマスクは、キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有する多階調のパターンマスクである。従って、露光した塗布膜21bは、パターンマスクのパターンに対応して、領域ごとに異なる照射量の光が照射される。
 ここで、感光性キラル剤の感光による構造変化の変化量は、照射量に応じて異なる。そのため、露光した塗布膜21bは、パターンマスクのパターンに応じて領域ごとにキラル剤の構造変化の変化量が異なるものとなる。
Here, the pattern mask is a multi-tone pattern mask having three or more regions having different transmittances with respect to light having a wavelength to which the chiral agent is sensitive. Therefore, the exposed coating film 21b is irradiated with different amounts of light for each region corresponding to the pattern of the pattern mask.
Here, the amount of change in the structure of the photosensitive chiral agent due to light exposure varies depending on the amount of irradiation. Therefore, the amount of change in the structure change of the chiral agent differs in each region of the exposed coating film 21b in accordance with the pattern of the pattern mask.
 露光に用いる光の波長は、感光性キラル剤の種類等に応じて設定すればよい。
 また、光の照射量も、感光性キラル剤の種類、パターンマスクの光透過率等に応じて設定すればよい。
What is necessary is just to set the wavelength of the light used for exposure according to the kind etc. of a photosensitive chiral agent.
The light irradiation amount may be set according to the type of the photosensitive chiral agent, the light transmittance of the pattern mask, and the like.
 次に、図1に示すように、積層フィルム23bは搬送されて加熱部154に到る。加熱装置110において積層フィルム23bは、塗布膜が乾燥され、配向処理を施される。
 図2にS4で示すように、配向工程において、露光した塗布膜21bを加熱装置110が加熱することで、塗布膜21b中の液晶化合物を配向する。加熱処理によって、キラル剤の構造に応じて液晶化合物を配向した塗布膜21cが形成される。
 ここで、前述のとおり塗布膜21c中においては、露光量が異なる3以上の領域がある。そのため、それぞれの領域では露光量に応じてコレステリック液晶相の螺旋ピッチの長さが異なる構造となる。後に詳述するが、コレステリック液晶相における選択反射波長は、コレステリック液晶相における螺旋構造のピッチに依存する。従って、コレステリック液晶相の螺旋ピッチの長さが異なる3以上の領域を形成することで、選択反射波長が異なる3以上の領域が形成される。
 支持体12aと配向した塗布膜21cとの積層体を積層フィルム23cとする。
Next, as shown in FIG. 1, the laminated film 23 b is conveyed and reaches the heating unit 154. In the heating device 110, the laminated film 23b is subjected to orientation treatment after the coating film is dried.
As shown by S4 in FIG. 2, in the alignment step, the heated coating film 21b is heated by the heating device 110, so that the liquid crystal compound in the coating film 21b is aligned. By the heat treatment, a coating film 21c in which the liquid crystal compound is aligned according to the structure of the chiral agent is formed.
Here, as described above, in the coating film 21c, there are three or more regions having different exposure amounts. Therefore, each region has a structure in which the length of the helical pitch of the cholesteric liquid crystal phase differs depending on the exposure amount. As will be described in detail later, the selective reflection wavelength in the cholesteric liquid crystal phase depends on the pitch of the helical structure in the cholesteric liquid crystal phase. Accordingly, by forming three or more regions having different helical pitch lengths of the cholesteric liquid crystal phase, three or more regions having different selective reflection wavelengths are formed.
A laminated body of the support 12a and the oriented coating film 21c is referred to as a laminated film 23c.
 次に、図1に示すように、積層フィルム23cは搬送されて硬化部156に到る。硬化部156において積層フィルム23cは硬化処理を施される。
 図2にS5で示すように、硬化工程において、配向した塗布膜21cを硬化部112が硬化させてコレステリック液晶層18を形成する。これにより、コレステリック液晶層18を有する液晶フィルムが作製される。支持体12aとコレステリック液晶層18との積層体を積層フィルム23dとする。
 塗布膜21cの硬化の方法としては、紫外線等の光照射による光硬化、および、加熱による熱硬化等の公知の硬化方法が利用可能である。
 光照射により硬化を行なう場合には、パターンマスクとは反対側の面側から塗布膜21cに光を照射するのが好ましい。
Next, as shown in FIG. 1, the laminated film 23 c is conveyed and reaches the curing unit 156. In the curing unit 156, the laminated film 23c is subjected to a curing process.
As shown by S <b> 5 in FIG. 2, in the curing step, the oriented coating film 21 c is cured by the curing unit 112 to form the cholesteric liquid crystal layer 18. Thereby, a liquid crystal film having the cholesteric liquid crystal layer 18 is produced. A laminated body of the support 12a and the cholesteric liquid crystal layer 18 is referred to as a laminated film 23d.
As a method for curing the coating film 21c, a known curing method such as photocuring by irradiation with light such as ultraviolet rays and heat curing by heating can be used.
When curing is performed by light irradiation, it is preferable to irradiate the coating film 21c with light from the side opposite to the pattern mask.
 次に、作製した液晶フィルム(積層フィルム23d)は、第3搬送部124を通過して巻取りローラ116にてロール状に巻回してロール132とする。
 作製した液晶フィルムのコレステリック液晶層は、選択反射波長の異なる3以上の領域がマスクパターンに応じたパターンで形成された構成を有するため、各領域が選択反射波長の光を反射することで、これに応じた色およびパターンの画像を表示することができる。
Next, the produced liquid crystal film (laminated film 23 d) passes through the third transport unit 124 and is wound in a roll shape by the winding roller 116 to form a roll 132.
Since the cholesteric liquid crystal layer of the produced liquid crystal film has a configuration in which three or more regions having different selective reflection wavelengths are formed in a pattern according to the mask pattern, each region reflects light of the selective reflection wavelength. The image of the color and pattern according to can be displayed.
 従来のように、コレステリック液晶の塗布液を基板に塗布し乾燥した後に、塗布膜に紫外線を照射して硬化させる際に、パターンマスクを用いて露光を行う構成では、乾燥により塗布膜中の液晶化合物が動きにくくなっているため、露光を行なっても液晶化合物の螺旋構造のピッチの変化量が所望の変化量よりも少なくなってしまう。そのため、所望の選択反射波長とすること、すなわち、所望の色味が再現できないという問題があった。
 このような場合でも露光量を多くすれば所望の選択反射波長とすることができるが、露光量が多いと未露光部に光が漏れて未露光部も露光されてしまい、露光部と未露光部との(選択反射波長が異なる領域間の)境界が滲んで精細さが十分に得られないという問題があることがわかった。
 また、パターンマスクとして、遮光部と透過部を有する2値のパターンマスクを用いる構成では、2値のパターンマスクを用いる場合には、コレステリック液晶層に選択反射波長が異なる3種以上の領域を形成する際に、パターンマスクを変えて複数回露光を行なう必要がある。そのため、より多色のコレステリック液晶層を形成するためには、多くの工程が必要となり製造効率が悪いという問題があることがわかった。
In a conventional configuration in which a coating film of cholesteric liquid crystal is applied to a substrate and dried, and then exposed to ultraviolet rays on the coating film to be cured, the pattern mask is used to expose the liquid crystal in the coating film by drying. Since the compound is difficult to move, the amount of change in the pitch of the spiral structure of the liquid crystal compound is less than the desired amount of change even when exposure is performed. Therefore, there has been a problem that the desired selective reflection wavelength, that is, the desired color cannot be reproduced.
Even in such a case, if the exposure amount is increased, the desired selective reflection wavelength can be obtained. However, if the exposure amount is large, light leaks to the unexposed portion and the unexposed portion is exposed, and the exposed portion and the unexposed portion are exposed. It has been found that there is a problem that the boundary (between regions having different selective reflection wavelengths) with the portion blurs and fineness cannot be obtained sufficiently.
In the configuration using a binary pattern mask having a light-shielding portion and a transmissive portion as the pattern mask, when the binary pattern mask is used, three or more types of regions having different selective reflection wavelengths are formed in the cholesteric liquid crystal layer. In this case, it is necessary to perform exposure multiple times by changing the pattern mask. Therefore, it has been found that in order to form a multicolor cholesteric liquid crystal layer, many steps are required and the production efficiency is poor.
 これに対して、本発明の製造方法においては、液晶組成物の塗布膜を加熱乾燥する前に、未乾燥状態の塗布膜に対して露光を行なうので、塗布膜中の液晶化合物が動きやすく、少ない露光量でも液晶化合物の螺旋構造のピッチの変化量を所望の変化量とすることができる。そのため、容易に所望の選択反射波長とすること、すなわち、所望の色味が再現できる。また、露光量が少ないため、隣接する領域(露光量が異なる領域)に光が漏れることを抑制でき、選択反射波長が異なる領域間の境界が滲むことがなく、精細な画像を得ることができる。
 また、パターンマスクとして、キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有する多階調のパターンマスクを用いるため、一度の露光で、コレステリック液晶層に選択反射波長が異なる3以上の領域を形成することができる。そのため、多色のコレステリック液晶層を少ない工程で効率よく製造することができる。
 このように本発明の製造方法は、精細で所望の色階調の画像を表示できるコレステリック液晶層を得ることができ、高い生産性を有する。
On the other hand, in the production method of the present invention, before the coating film of the liquid crystal composition is heated and dried, the coating film in an undried state is exposed, so that the liquid crystal compound in the coating film is easy to move, Even with a small exposure amount, the change amount of the pitch of the spiral structure of the liquid crystal compound can be set as a desired change amount. Therefore, a desired selective reflection wavelength can be easily obtained, that is, a desired color can be reproduced. In addition, since the exposure amount is small, it is possible to suppress light from leaking to adjacent regions (regions having different exposure amounts), and a boundary between regions having different selective reflection wavelengths does not blur and a fine image can be obtained. .
In addition, since a multi-tone pattern mask having three or more regions having different transmittances for light having a wavelength to which the chiral agent is sensitive is used as the pattern mask, the selective reflection wavelength of the cholesteric liquid crystal layer is different 3 in one exposure. The above regions can be formed. Therefore, a multicolor cholesteric liquid crystal layer can be efficiently manufactured with few processes.
As described above, the production method of the present invention can obtain a cholesteric liquid crystal layer capable of displaying a fine and desired color gradation image, and has high productivity.
 ここで、パターンマスクは、キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有するものであればよいが、より多くの色を再現して階調を高くできる等の観点から、パターンマスクは、透過率が異なる領域を8以上有するのが好ましく、256以上有するのがより好ましい。 Here, the pattern mask only needs to have three or more regions having different transmittances for light having a wavelength that the chiral agent sensitizes, but from the viewpoint of being able to reproduce more colors and increase the gradation. The pattern mask preferably has 8 or more regions having different transmittances, more preferably 256 or more.
 また、図1に示す例においては、作製した液晶フィルムをロール状に巻き取る構成としたが、これに限定はされず、作製した液晶フィルムを所定の大きさに裁断する裁断部を有する構成としてもよい。 Moreover, in the example shown in FIG. 1, although it was set as the structure which winds the produced liquid crystal film in roll shape, it is not limited to this, As a structure which has a cutting part which cuts the produced liquid crystal film to a predetermined | prescribed magnitude | size. Also good.
 また、硬化工程における塗布膜の硬化方法が光硬化である場合には、硬化工程において照射する光の波長は、照射工程において照射する光の波長とは異なる波長であることが好ましく、照射工程において照射する光の波長が硬化工程において照射する光の波長よりも長波長であるのが好ましい。具体的には、照射工程において照射する光の波長は、キラル剤が感光する波長であって、重合開始剤が開裂しない波長であるのが好ましい。
 硬化工程と照射工程とで、照射する光の波長を異ならせることで照射工程における光照射で塗布膜が硬化してしまうことを抑制でき、液晶化合物の螺旋構造のピッチの変化量を所望の変化量とすることができる。
Further, when the curing method of the coating film in the curing step is photocuring, the wavelength of light irradiated in the curing step is preferably different from the wavelength of light irradiated in the irradiation step. The wavelength of the light to be irradiated is preferably longer than the wavelength of the light to be irradiated in the curing step. Specifically, the wavelength of the light irradiated in the irradiation step is preferably a wavelength at which the chiral agent is sensitized and a wavelength at which the polymerization initiator is not cleaved.
By differentiating the wavelength of the light to be irradiated between the curing process and the irradiation process, it is possible to suppress the coating film from being cured by light irradiation in the irradiation process, and the amount of change in the pitch of the helical structure of the liquid crystal compound can be changed as desired. It can be an amount.
 照射工程において照射する光の波長は、キラル剤の種類に応じてキラル剤が感光する波長を選択すればよい。具体的には、照射工程において照射する光の波長は、350nm~400nmが好ましい。すなわち、この波長範囲で感光するキラル剤を用いるのが好ましい。
 また、照射工程において照射する光の照射量は、キラル剤の種類等に応じて所望の選択反射波長となる照射量を設定すればよい。
What is necessary is just to select the wavelength which the chiral agent sensitizes for the wavelength of the light irradiated in an irradiation process according to the kind of chiral agent. Specifically, the wavelength of light irradiated in the irradiation step is preferably 350 nm to 400 nm. That is, it is preferable to use a chiral agent that is sensitive in this wavelength range.
Moreover, what is necessary is just to set the irradiation amount used as a desired selective reflection wavelength as the irradiation amount of the light irradiated in an irradiation process according to the kind etc. of a chiral agent.
 硬化工程において照射する光の波長は、重合開始剤等の種類に応じて、選択すればよい。具体的には、硬化工程において照射する光の波長は、300nm~350nmが好ましい。すなわち、この波長範囲で重合反応を開始可能な重合開始剤を用いるのが好ましい。
 また、硬化工程において照射する光の照射量は、重合開始剤等の種類等に応じて設定すればよい。
What is necessary is just to select the wavelength of the light irradiated in a hardening process according to kinds, such as a polymerization initiator. Specifically, the wavelength of light irradiated in the curing step is preferably 300 nm to 350 nm. That is, it is preferable to use a polymerization initiator capable of initiating a polymerization reaction in this wavelength range.
Moreover, what is necessary is just to set the irradiation amount of the light irradiated in a hardening process according to types, such as a polymerization initiator.
 また、図1に示す例では、照射工程において光照射を一度行なう構成としたが、光照射を二度以上に分けて行なう構成としてもよい。例えば、照射工程が第一照射ステップと第二照射ステップとを有する構成としてもよい。
 照射工程における光照射を二度以上に分けて行なう構成とすることで、露光によるキラル剤の構造変化をより好適に調整することができ、所望の選択反射波長とすることができる。
In the example shown in FIG. 1, the light irradiation is performed once in the irradiation step, but the light irradiation may be divided into two or more. For example, the irradiation process may have a first irradiation step and a second irradiation step.
By adopting a configuration in which the light irradiation in the irradiation step is performed twice or more, the structural change of the chiral agent due to exposure can be more suitably adjusted, and a desired selective reflection wavelength can be obtained.
 その際、第一照射ステップにおける光の照射量が第二照射ステップにおける光の照射量よりも少ないことが好ましい。
 キラル剤の構造変化は、光の照射量の合計が少ないときには、光の照射量に対する変化量が大きく、光の照射量の合計が多くなるほど、光の照射量に対する変化量が小さくなる。従って、第一照射ステップにおける光の照射量を第二照射ステップにおける光の照射量よりも少なくすることで、露光によるキラル剤の構造変化をより好適に調整することができる。
In that case, it is preferable that the light irradiation amount in the first irradiation step is smaller than the light irradiation amount in the second irradiation step.
As for the structural change of the chiral agent, when the total amount of light irradiation is small, the amount of change with respect to the amount of light irradiation increases, and as the total amount of light irradiation increases, the amount of change with respect to the amount of light irradiation decreases. Therefore, the structural change of the chiral agent due to exposure can be more suitably adjusted by making the light irradiation amount in the first irradiation step smaller than the light irradiation amount in the second irradiation step.
 また、照射工程が第一照射ステップと第二照射ステップとの照射量の合計は、200mJ/cm2以下であるのが好ましい。
 照射量の合計を200mJ/cm2以下とすることで、未露光部の露光が防げる点で好ましい。
Moreover, it is preferable that the irradiation process has a total irradiation amount of the first irradiation step and the second irradiation step of 200 mJ / cm 2 or less.
By making the total amount of irradiation 200 mJ / cm 2 or less, it is preferable in that exposure of unexposed portions can be prevented.
 また、第一照射ステップおよび第二照射ステップにおいて、照射する光のピーク波長を異ならせる構成としてもよい。
 第一照射ステップにおける光のピーク波長をキラル剤が感光する光のピーク波長からずらした波長とし、第二照射ステップにおける光のピーク波長をキラル剤が感光する光のピーク波長と一致させることで、実質的に、光の照射量を調整することができる。
 具体的には、例えば、キラル剤の光吸ピークが365nmで、250nm~450nmの範囲で裾野を有するスペクトルであれば、第一照射ステップでは、裾野付近の265nmの光を照射し、第二照射ステップでは、ピークの365nmの光を照射することで、実質的に、光の照射量を調整することができる。
Moreover, it is good also as a structure which makes the peak wavelength of the light irradiated differ in a 1st irradiation step and a 2nd irradiation step.
By making the peak wavelength of the light in the first irradiation step a wavelength shifted from the peak wavelength of the light sensitive to the chiral agent, and matching the peak wavelength of the light in the second irradiation step with the peak wavelength of the light sensitive to the chiral agent, In effect, the amount of light irradiation can be adjusted.
Specifically, for example, if the light absorption peak of the chiral agent is 365 nm and the spectrum has a base in the range of 250 nm to 450 nm, the first irradiation step irradiates light of 265 nm near the base and the second irradiation. In the step, the irradiation amount of light can be substantially adjusted by irradiating light with a peak of 365 nm.
 また、図1に示す例では、コレステリック液晶層18を形成した直後に、ロール132に巻き取る構成としたが、ロール132に巻き取る前に、コレステリック液晶層18の表面に保護フィルム等を貼着する工程を有していてもよい。 In the example shown in FIG. 1, the film is wound around the roll 132 immediately after the cholesteric liquid crystal layer 18 is formed. However, before the film is wound around the roll 132, a protective film or the like is attached to the surface of the cholesteric liquid crystal layer 18. You may have the process to do.
 さらに、図2にS6で示すように、液晶フィルムを作製した後、コレステリック液晶層18を円偏光板16に転写する工程を有し、コレステリック液晶層18と円偏光板16とを有する機能性フィルムを作製する構成としてもよい。
 具体的には、コレステリック液晶層18を形成した後、ロール132に巻き取る前に、コレステリック液晶層18の表面に円偏光板16を貼着する構成であってもよいし、コレステリック液晶層18を形成した後、ロール132に巻き取った後に、ロール132を一般的な貼合装置に装填して、コレステリック液晶層18の表面に円偏光板16を貼着する構成としてもよい。
 また、円偏光板16を貼着した後には、支持体12aを剥離する工程を有していてもよい。
Furthermore, as shown by S6 in FIG. 2, after producing a liquid crystal film, it has the process of transferring the cholesteric liquid crystal layer 18 to the circularly-polarizing plate 16, and the functional film which has the cholesteric liquid crystal layer 18 and the circularly-polarizing plate 16 It is good also as a structure which produces.
Specifically, after forming the cholesteric liquid crystal layer 18 and before winding it on the roll 132, the circularly polarizing plate 16 may be adhered to the surface of the cholesteric liquid crystal layer 18, or the cholesteric liquid crystal layer 18 may be formed. After forming, after winding up to the roll 132, it is good also as a structure which loads the roll 132 in a common bonding apparatus, and sticks the circularly-polarizing plate 16 on the surface of the cholesteric liquid crystal layer 18. FIG.
Moreover, after sticking the circularly-polarizing plate 16, you may have the process of peeling the support body 12a.
 円偏光板16としては限定はなく、直線偏光板とλ/4板とを積層した構成の円偏光板等を用いることができる。また、円偏光板16は、コレステリック液晶層18によって反射される円偏光の旋回方向とは逆向きの円偏光を透過するものとする。 The circularly polarizing plate 16 is not limited, and a circularly polarizing plate having a configuration in which a linearly polarizing plate and a λ / 4 plate are laminated can be used. The circularly polarizing plate 16 transmits circularly polarized light having a direction opposite to the rotational direction of the circularly polarized light reflected by the cholesteric liquid crystal layer 18.
 コレステリック液晶層18と円偏光板16とを積層した構成とすることで、コレステリック液晶層18側(以下、表面側ともいう)から入射した光のうち、コレステリック液晶層18では、選択反射波長の一方の円偏光が反射され、それ以外の光はコレステリック液晶層18を透過し、円偏光板16に入射する。円偏光板16に入射した光のうち、他方の円偏光は円偏光板16を透過する。
 一方、円偏光板16側(以下、裏面側ともいう)から入射した光は、円偏光板16により他方の円偏光に変換されて円偏光板16を透過し、コレステリック液晶層18に入射する。
 円偏光板16を透過した他方の円偏光は、コレステリック液晶層18のコレステリック液晶相の螺旋の旋回方向と逆の旋回方向であるため、コレステリック液晶層18で反射されずにコレステリック液晶層18を透過する。
 従って、コレステリック液晶層18と円偏光板16とを積層した機能性フィルムを表面側から観察した際には、裏面側から入射し透過する他方の円偏光により、機能性フィルムの向こう側の光景が視認されるとともに、コレステリック液晶層18の反射領域の選択反射波長の光が視認される。すなわち、表面側から見た際には、機能性フィルムの向こう側の光景とともに、コレステリック液晶層18のパターン形状に応じた模様の画像が視認される。
 一方、機能性フィルムを裏面側から観察した際には、表面側から入射し透過する左円偏光により、機能性フィルムの向こう側の光景が視認されるが、表面側からは観察できるコレステリック液晶層18により表示される画像は視認されない。
 このようにコレステリック液晶層18と円偏光板16とを積層した機能性フィルムは、透明性を有していながら、一方の面側(コレステリック液晶層側)から見た画像と、他方の面側(円偏光板側)から見た画像とが異なるフィルムとすることができる。
By adopting a configuration in which the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16 are laminated, of the light incident from the cholesteric liquid crystal layer 18 side (hereinafter also referred to as the surface side), the cholesteric liquid crystal layer 18 has one of the selective reflection wavelengths. The other circularly polarized light is reflected, and other light passes through the cholesteric liquid crystal layer 18 and enters the circularly polarizing plate 16. Of the light incident on the circularly polarizing plate 16, the other circularly polarized light is transmitted through the circularly polarizing plate 16.
On the other hand, light incident from the circularly polarizing plate 16 side (hereinafter also referred to as the back surface side) is converted into the other circularly polarized light by the circularly polarizing plate 16, passes through the circularly polarizing plate 16, and enters the cholesteric liquid crystal layer 18.
The other circularly polarized light that has passed through the circularly polarizing plate 16 is in a direction opposite to the spiral direction of the cholesteric liquid crystal phase of the cholesteric liquid crystal layer 18, and thus is not reflected by the cholesteric liquid crystal layer 18 and is transmitted through the cholesteric liquid crystal layer 18. To do.
Therefore, when the functional film in which the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16 are laminated is observed from the front surface side, the other side of the circularly polarized light that is incident and transmitted from the back surface side causes a scene on the other side of the functional film to be observed. While being visually recognized, light having a selective reflection wavelength in the reflective region of the cholesteric liquid crystal layer 18 is visually recognized. That is, when viewed from the surface side, an image of a pattern corresponding to the pattern shape of the cholesteric liquid crystal layer 18 is visually recognized together with a scene on the other side of the functional film.
On the other hand, when the functional film is observed from the back side, the sight of the other side of the functional film is visually recognized by the left circularly polarized light incident and transmitted from the front side, but the cholesteric liquid crystal layer that can be observed from the front side The image displayed by 18 is not visually recognized.
In this way, the functional film in which the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16 are laminated has transparency, and an image viewed from one surface side (cholesteric liquid crystal layer side) and the other surface side ( It can be set as the film from which the image seen from the circularly-polarizing plate side differs.
 なお、コレステリック液晶層18と円偏光板16との間には、粘着層を有していてもよい。
 また、円偏光板をコレステリック液晶層の表面に貼着する構成に限定はされず、円偏光板を支持体の裏面に貼着する構成であってもよい。すなわち、コレステリック液晶層と支持体と円偏光板とを有する機能性フィルムとしてもよい。
An adhesive layer may be provided between the cholesteric liquid crystal layer 18 and the circularly polarizing plate 16.
Moreover, it is not limited to the structure which sticks a circularly-polarizing plate to the surface of a cholesteric liquid crystal layer, The structure which sticks a circularly-polarizing plate to the back surface of a support body may be sufficient. That is, it is good also as a functional film which has a cholesteric liquid crystal layer, a support body, and a circularly-polarizing plate.
 ここで、図1および図2に示す例においては、支持体12aがパターンマスクを有する構成としたが、これに限定はされず、パターンマスクを有するフィルムを支持体に貼着する構成としてもよい。
 図3に、本発明の液晶フィルムの製造方法の他の一例を実施する製造装置を模式的に示す。
Here, in the example shown in FIGS. 1 and 2, the support 12a is configured to have a pattern mask. However, the present invention is not limited thereto, and a film having a pattern mask may be attached to the support. .
In FIG. 3, the manufacturing apparatus which implements another example of the manufacturing method of the liquid crystal film of this invention is shown typically.
 図3に示す製造装置100bは、RtoRによって液晶フィルムの製造を行なうものである。製造装置100bは、送り出しローラ102と、供給ローラ140と、第1搬送部120と、塗布部150と、第2搬送部122と、露光部152と、加熱部154と、硬化部156と、第3搬送部124と、回収ローラ144と、巻取りローラ116と、を有する。
 なお、図3に示す製造装置100bは、供給ローラ140および回収ローラ144を有する以外は、図1に示す製造装置100aによる製造方法と同じであるので同じ部位には同じ符号を付し以下の説明は異なる部位を主に行なう。また、図3に示す製造装置100bによる製造方法は、支持体12bにマスクフィルム14を貼着する工程および剥離する工程を有する以外は、図1に示す製造装置100aによる製造方法と同じであるので、以下の説明は異なる工程を主に行なう。
The manufacturing apparatus 100b shown in FIG. 3 manufactures a liquid crystal film by RtoR. The manufacturing apparatus 100b includes a feed roller 102, a supply roller 140, a first transport unit 120, a coating unit 150, a second transport unit 122, an exposure unit 152, a heating unit 154, a curing unit 156, and a first transport unit. 3 conveyance section 124, collection roller 144, and winding roller 116.
The manufacturing apparatus 100b shown in FIG. 3 is the same as the manufacturing method by the manufacturing apparatus 100a shown in FIG. 1 except that it includes the supply roller 140 and the collection roller 144, and therefore the same parts are denoted by the same reference numerals and the following description will be given. Do mainly different parts. The manufacturing method using the manufacturing apparatus 100b shown in FIG. 3 is the same as the manufacturing method using the manufacturing apparatus 100a shown in FIG. 1 except that the manufacturing method 100b shown in FIG. In the following description, different steps are mainly performed.
 製造装置100bにおいて、長尺な支持体12bを巻回してなるロール130を、送り出しローラ102に装填する。なお、支持体12bには、パターンマスクが形成されていない。
 ロール130から支持体12bを引き出して、第1搬送部120、塗布部150、第2搬送部122、露光部152、加熱部110、硬化部154および第3搬送部124を通過して巻取りローラ116に到る所定の経路に挿通させる。
 また、調製したコレステリック液晶層となる液晶組成物を塗布部104の所定位置に充填する。
In the manufacturing apparatus 100 b, a roll 130 formed by winding a long support 12 b is loaded on the delivery roller 102. Note that a pattern mask is not formed on the support 12b.
The support 12b is pulled out from the roll 130 and passes through the first transport unit 120, the coating unit 150, the second transport unit 122, the exposure unit 152, the heating unit 110, the curing unit 154, and the third transport unit 124, and a winding roller. A predetermined route reaching 116 is inserted.
In addition, the prepared liquid crystal composition to be a cholesteric liquid crystal layer is filled in a predetermined position of the application unit 104.
 また、供給ローラ140には、基材フィルム20と基材フィルム20の表面にパターンマスクとして形成されたインク層22とを有するマスクフィルム14(図4参照)を巻回してなるロール142を装填し、ロール142からマスクフィルム14を引き出して、第1搬送部120から第3搬送部124に到る所定の搬送経路に挿通させる。供給ローラ140は、支持体12bの搬送方向において、送り出しローラと第1搬送部120との間に配置されている。 Further, the supply roller 140 is loaded with a roll 142 formed by winding a mask film 14 (see FIG. 4) having a base film 20 and an ink layer 22 formed as a pattern mask on the surface of the base film 20. Then, the mask film 14 is pulled out from the roll 142 and inserted through a predetermined transport path from the first transport unit 120 to the third transport unit 124. The supply roller 140 is disposed between the feed roller and the first transport unit 120 in the transport direction of the support 12b.
 また、第3搬送部124の搬送ローラの位置において、支持体12bからマスクフィルム14を剥離して、支持体12bから剥離したマスクフィルム14を回収ローラ144に挿通させる。回収ローラ144は、支持体12bの搬送方向において、第3搬送部124と巻取りローラ116との間に配置されて、マスクフィルム14をロール146に回収するものである。 Also, at the position of the transport roller of the third transport unit 124, the mask film 14 is peeled off from the support 12b, and the mask film 14 peeled off from the support 12b is inserted into the collection roller 144. The collection roller 144 is disposed between the third conveyance unit 124 and the take-up roller 116 in the conveyance direction of the support 12b, and collects the mask film 14 on a roll 146.
 製造装置100bでは、ロール130からの支持体12bの送り出しと、コレステリック液晶層18を形成した支持体12b(積層フィルム23d)の巻き取りとを同期して行なう。
 まず、長尺な支持体12bを所定の搬送経路で長手方向に搬送しつつ、マスクフィルム14を支持体12bの裏面に貼着して積層フィルム25aとする(図4参照)。
 次に、塗布部104において調製した液晶組成物を支持体12bの表面に塗布して積層フィルム25bとする(図5参照)。
In the manufacturing apparatus 100b, the feeding of the support 12b from the roll 130 and the winding of the support 12b (laminated film 23d) on which the cholesteric liquid crystal layer 18 is formed are performed in synchronization.
First, while transporting the long support 12b in the longitudinal direction along a predetermined transport path, the mask film 14 is adhered to the back surface of the support 12b to form a laminated film 25a (see FIG. 4).
Next, the liquid crystal composition prepared in the application unit 104 is applied to the surface of the support 12b to form a laminated film 25b (see FIG. 5).
 次に、露光部152において塗布膜を露光する。その際、支持体12bに貼着したマスクフィルム14側から塗布膜21aに光を照射する。
 ここで、マスクフィルム14が有するパターンマスクは、インク層22によってキラル剤が感光する波長の光に対する透過率が異なる3以上の領域が形成されている、多階調のパターンマスクである。従って、パターンマスクを介して塗布膜21aに光を照射することで、パターンマスクのパターンに対応して、領域ごとに異なる照射量の光が照射されて、選択反射波長が異なる3以上の領域を形成することができる。
Next, the exposure unit 152 exposes the coating film. In that case, light is irradiated to the coating film 21a from the mask film 14 side stuck to the support body 12b.
Here, the pattern mask included in the mask film 14 is a multi-tone pattern mask in which three or more regions having different transmittances with respect to light having a wavelength that the chiral agent is sensitive to are formed by the ink layer 22. Therefore, by irradiating the coating film 21a with light through the pattern mask, light having different irradiation amounts is irradiated for each region corresponding to the pattern of the pattern mask, so that three or more regions having different selective reflection wavelengths can be obtained. Can be formed.
 その際、パターンマスク(インク層22)側を支持体12bに貼着するのが好ましい。
 本発明の製造方法は、RtoRで支持体12bを搬送しながら光の照射を行なうため、塗布膜に対して、種々の方向から光が入射することになるため、光が漏れてしまい、領域の境界が滲んでしまうおそれがある。従って、パターンマスクとを支持体12bに貼着してパターンマスクと塗布膜との距離を短くすることで、光の漏れを抑制でき、より精細な画像を形成することができる。
In that case, it is preferable to stick the pattern mask (ink layer 22) side to the support 12b.
In the manufacturing method of the present invention, since light is irradiated while transporting the support 12b with RtoR, light is incident on the coating film from various directions. There is a risk that the boundary will blur. Therefore, by sticking the pattern mask to the support 12b and shortening the distance between the pattern mask and the coating film, light leakage can be suppressed and a finer image can be formed.
 次いで、加熱部110において塗布膜を加熱して液晶を配向し、さらに、硬化部112において紫外線照射および/または加熱等を行なって塗布膜を硬化させてコレステリック液晶層18を形成して、マスクフィルム14、支持体12bおよびコレステリック液晶層18を有する積層フィルム25eとする。
 その後、支持体12bからマスクフィルム14を剥離する。剥離したマスクフィルム14は、回収ローラ144においてロール状に巻回してロール146とする。
 さらに、巻取りローラ116において支持体12b上にコレステリック液晶層18が形成された長尺な積層フィルム23dをロール状に巻回して、ロール132とする。
Next, the coating film is heated in the heating unit 110 to align the liquid crystal, and further, the coating film is cured by irradiating with ultraviolet rays and / or heating in the curing unit 112 to form the cholesteric liquid crystal layer 18, and the mask film 14 is a laminated film 25e having a support 12b and a cholesteric liquid crystal layer 18.
Thereafter, the mask film 14 is peeled from the support 12b. The peeled mask film 14 is wound in a roll shape by the collection roller 144 to form a roll 146.
Further, a long laminated film 23 d in which the cholesteric liquid crystal layer 18 is formed on the support 12 b in the winding roller 116 is wound into a roll shape to form a roll 132.
 このように、パターンマスクが形成された基材フィルム(マスクフィルム14)を支持体の裏面に貼着して照射工程(露光)を行なう構成としてもよい。
 なお、図3に示す例では、マスクフィルム14を支持体12bに貼着した状態で、塗布工程、照射工程、配向工程、および、硬化工程を行なう構成としたが、少なくとも、照射工程をマスクフィルム14を支持体12bに貼着した状態で行なえばよく、他の工程は、マスクフィルム14を貼着しない状態で行なってもよい。
 例えば、塗布工程の後に支持体12bにマスクフィルム14を貼着する構成であってもよい。あるいは、支持体12bにマスクフィルム14が貼着された積層体をロール状に巻回したロール130を送り出しローラ102に装填して、支持体12bにマスクフィルム14が貼着された積層体を被処理物として送り出す構成としてもよい。
 また、例えば、照射工程と配向工程との間にマスクフィルム14を剥離する構成であってもよく、配向工程と硬化工程との間にマスクフィルム14を剥離する構成であってもよい。あるいは、マスクフィルム14を剥離せずに、巻取りローラ116においてマスクフィルム14が積層された状態でロール状に巻回してロール132とする構成であってもよい。
Thus, it is good also as a structure which sticks the base film (mask film 14) in which the pattern mask was formed on the back surface of a support body, and performs an irradiation process (exposure).
In the example shown in FIG. 3, the application process, the irradiation process, the orientation process, and the curing process are performed with the mask film 14 adhered to the support 12b. However, at least the irradiation process is a mask film. What is necessary is just to perform in the state which adhered 14 to the support body 12b, and may perform other processes in the state which does not adhere the mask film 14. FIG.
For example, the structure which affixes the mask film 14 on the support body 12b after an application | coating process may be sufficient. Or the roll 130 which wound the laminated body in which the mask film 14 was affixed on the support body 12b in roll shape was loaded into the sending-out roller 102, and the laminated body in which the mask film 14 was affixed on the support body 12b was covered. It is good also as a structure sent out as a processed material.
For example, the structure which peels the mask film 14 between an irradiation process and an orientation process may be sufficient, and the structure which peels the mask film 14 between an orientation process and a hardening process may be sufficient. Alternatively, a configuration may be employed in which the mask film 14 is not peeled off and is wound into a roll shape with the mask film 14 being laminated on the winding roller 116 to form the roll 132.
 なお、硬化工程において、マスクフィルム14が支持体12bに貼着された状態である場合には、マスクフィルム14とは反対側の面側に光を照射するのが好ましい。 In the curing step, when the mask film 14 is attached to the support 12b, it is preferable to irradiate the surface opposite to the mask film 14 with light.
 ここで、図1及び図2に示す例においては、支持体12a上に1層のコレステリック液晶層18を形成する構成としたが、これに限定はされず、塗布工程、照射工程、配向工程および硬化工程の組み合わせを2回以上行なって、2層以上のコレステリック液晶層を形成する構成としてもよい。
 例えば、コレステリック液晶層を形成した支持体を被処理物として再度、製造装置に供給することで、コレステリック液晶層の上にコレステリック液晶層を形成する構成としてもよい。あるいは、製造装置が、支持体の搬送方向において、送り出しローラと巻取りローラとの間に、塗布部、露光部、加熱部および硬化部の組み合わせを2以上有する構成としてもよい。
Here, in the example shown in FIGS. 1 and 2, the single cholesteric liquid crystal layer 18 is formed on the support 12a. However, the present invention is not limited to this, and a coating process, an irradiation process, an alignment process, and A combination of the curing steps may be performed twice or more to form two or more cholesteric liquid crystal layers.
For example, a structure in which a cholesteric liquid crystal layer is formed on a cholesteric liquid crystal layer may be provided by supplying a support on which a cholesteric liquid crystal layer is formed to a manufacturing apparatus again as an object to be processed. Or it is good also as a structure which a manufacturing apparatus has two or more combinations of an application part, an exposure part, a heating part, and a hardening part between a sending-out roller and a winding roller in the conveyance direction of a support body.
 2回以上の照射工程を行なう場合には、同一パターンのパターンマスクを介して光を照射し、かつ、各照射工程における光の照射量を互いに異なるものとするのが好ましい。
 これにより、コレステリック液晶層の表面に垂直な方向から見た際に、同じ位置での選択反射波長が、各コレステリック液晶層で異なるものとなる。この構成によって、複数のコレステリック液晶層の選択反射波長の光が混ざった色が視認される。すなわち、種々の色を再現することができる。例えば、コレステリック液晶層を3層構成とし、各コレステリック液晶層がそれぞれ赤色、緑色および青色を反射するものとすることで白色を再現することができる。
When two or more irradiation steps are performed, it is preferable to irradiate light through a pattern mask having the same pattern, and to make the amount of light irradiation in each irradiation step different from each other.
Thereby, when viewed from the direction perpendicular to the surface of the cholesteric liquid crystal layer, the selective reflection wavelengths at the same position are different in each cholesteric liquid crystal layer. With this configuration, a color in which light having selective reflection wavelengths of a plurality of cholesteric liquid crystal layers is mixed is visually recognized. That is, various colors can be reproduced. For example, the cholesteric liquid crystal layer has a three-layer configuration, and each cholesteric liquid crystal layer reflects red, green, and blue, respectively, so that white can be reproduced.
 (コレステリック液晶層)
 次に、コレステリック液晶層について説明する。
 コレステリック液晶層とは、コレステリック液晶相を含む層のことを言う。コレステリック液晶層はコレステリック液晶相を固定してなる層である。
 コレステリック液晶層は、選択反射波長の光の右円偏光あるいは左円偏光を反射し、選択反射波長の他方の円偏光および他の波長域の光を透過する。
(Cholesteric liquid crystal layer)
Next, the cholesteric liquid crystal layer will be described.
A cholesteric liquid crystal layer refers to a layer containing a cholesteric liquid crystal phase. The cholesteric liquid crystal layer is a layer formed by fixing a cholesteric liquid crystal phase.
The cholesteric liquid crystal layer reflects right circularly polarized light or left circularly polarized light of light having a selective reflection wavelength, and transmits the other circularly polarized light having a selective reflection wavelength and light in other wavelength regions.
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場や外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。 The structure in which the cholesteric liquid crystal phase is fixed may be a structure in which the alignment of the liquid crystal compound that is the cholesteric liquid crystal phase is maintained. Typically, the polymerizable liquid crystal compound is in an alignment state of the cholesteric liquid crystal phase. Thus, any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force. In the structure in which the cholesteric liquid crystal phase is fixed, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may no longer exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
 コレステリック液晶相の選択反射波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射波長を調節することができる。コレステリック液晶相のピッチは、重合性液晶化合物と共に用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
 また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相の屈折率異方性Δnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向時の温度により調節できる。なお、コレステリック液晶相における反射率はΔnに依存することも知られており、同程度の反射率を得る場合に、Δnが大きいほど、螺旋ピッチの数を少なく、すなわち膜厚を薄く、することができる。
 螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
The selective reflection wavelength λ of the cholesteric liquid crystal phase depends on the pitch P (= spiral period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal phase and λ = n × P. Therefore, the selective reflection wavelength can be adjusted by adjusting the pitch of the spiral structure. Since the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
Further, the half-value width Δλ (nm) of the selective reflection band (circular polarization reflection band) indicating selective reflection depends on the refractive index anisotropy Δn of the cholesteric liquid crystal phase and the helical pitch P, and Δλ = Δn × P Follow the relationship. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer, the mixing ratio thereof, and the temperature during alignment. It is also known that the reflectance in the cholesteric liquid crystal phase depends on Δn. When obtaining a similar reflectance, the larger the Δn, the smaller the number of spiral pitches, that is, the thinner the film thickness. Can do.
For the measurement of spiral sense and pitch, it is possible to use the method described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editorial Committee Maruzen 196 pages. it can.
 コレステリック液晶相の反射光は円偏光である。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相は螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
The reflected light of the cholesteric liquid crystal phase is circularly polarized. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase. The selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
The direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer or the type of chiral agent added.
 反射する光の波長領域を広くするには、選択反射波長λをずらした層を順次積層することで実現することができる。また、ピッチグラジエント法と呼ばれる層内の螺旋ピッチを段階的に変化させる方法で、波長範囲を広げる技術も知られており、具体的にはNature 378、467-469(1995)、特開平6-281814号公報、および、特許4990426号公報に記載の方法などが挙げられる。 広 く Widening the wavelength range of reflected light can be realized by sequentially laminating layers with different selective reflection wavelengths λ. Also known is a technique for expanding the wavelength range by stepwise changing the spiral pitch in the layer called the pitch gradient method. Specifically, Nature 378, 467-469 (1995), Examples include the methods described in Japanese Patent No. 281814 and Japanese Patent No. 4990426.
 本発明において、コレステリック液晶層の領域における選択反射波長は、可視光(380~780nm程度)および近赤外光(780~2000nm程度)のいずれの範囲にも設定することが可能であり、その設定方法は上述した通りである。 In the present invention, the selective reflection wavelength in the region of the cholesteric liquid crystal layer can be set in any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm). The method is as described above.
 ここで、前述のとおり、本発明の製造方法で作製する液晶フィルムにおいては、コレステリック液晶層は、選択反射波長が異なる3以上の領域を有する。
 例えば、コレステリック液晶層は、赤色光(620nm~750nmの波長域の光)を選択反射波長とする領域、緑色光(495nm~570nmの波長域の光)を選択反射波長とする領域、および、青色光(420nm~490nmの波長域の光)を選択反射波長とする領域を有する構成とすることができる。
 また、赤外線を選択反射波長とする反射領域を有していてもよい。なお、赤外線とは、780nmを超え、1mm以下の波長領域の光であり、中でも、近赤外領域とは、780nmを超え、2000nm以下の波長領域の光である。
Here, as described above, in the liquid crystal film produced by the production method of the present invention, the cholesteric liquid crystal layer has three or more regions having different selective reflection wavelengths.
For example, the cholesteric liquid crystal layer has a region where red light (light having a wavelength range of 620 nm to 750 nm) is selected as a selective reflection wavelength, a region where green light (light having a wavelength range of 495 nm to 570 nm) is a selective reflection wavelength, and a blue color A configuration in which light (light in a wavelength region of 420 nm to 490 nm) is a selective reflection wavelength can be employed.
Moreover, you may have a reflective area | region which uses infrared rays as a selective reflection wavelength. Note that infrared rays are light in a wavelength region exceeding 780 nm and 1 mm or less, and among these, near-infrared regions are light in a wavelength region exceeding 780 nm and 2000 nm or less.
 (液晶組成物)
 コレステリック液晶層の形成に用いる材料としては、液晶化合物および感光性キラル剤を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であることが好ましい。
 重合性液晶化合物を含む液晶組成物はさらに界面活性剤、重合開始剤等を含んでいてもよい。
(Liquid crystal composition)
Examples of the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a liquid crystal compound and a photosensitive chiral agent. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
The liquid crystal composition containing a polymerizable liquid crystal compound may further contain a surfactant, a polymerization initiator, and the like.
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であることが好ましい。
 コレステリック液晶層を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
--Polymerizable liquid crystal compound--
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。 The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. , 190, 2255 (1989), Advanced Materials, Volume 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, and 5770107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, and JP-A-7-110469. 11-80081 and JP-A-2001-328773, and the like. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
 重合性液晶化合物の具体例としては、下記式(1)~(11)に示す化合物が挙げられる。 Specific examples of the polymerizable liquid crystal compound include compounds represented by the following formulas (1) to (11).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[化合物(11)において、X1は2~5(整数)である。]
Figure JPOXMLDOC01-appb-C000002
[In the compound (11), X 1 is 2 to 5 (integer). ]
 また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。 Further, as polymerizable liquid crystal compounds other than the above, cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used. Further, the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both positions of the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain. A liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%であることが好ましく、80~99質量%であることがより好ましく、85~90質量%であることが特に好ましい。 The addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
--キラル剤(光学活性化合物)--
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super-twisted nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
--Chiral agent (optically active compound)-
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral compound may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
The chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, Chapter 3-4-3, TN (twisted nematic), chiral agent for STN (Super-twisted nematic), 199 pages, Japanese academics). Japan Society for the Promotion of Science, 142nd edition, 1989), isosorbide and isomannide derivatives can be used.
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this aspect, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
The chiral agent may be a liquid crystal compound.
 なお、前述のとおり、コレステリック液晶層を製造する際に、光照射によってコレステリック液晶相の螺旋ピッチの大きさを制御するものである。従って、光に感応しコレステリック液晶相の螺旋ピッチを変化させ得るキラル剤(感光性キラル剤とも称する)を用いる。
 感光性キラル剤とは、光を吸収することにより構造が変化し、コレステリック液晶相の螺旋ピッチを変化させ得る化合物である。このような化合物としては、光異性化反応、光二量化反応、および、光分解反応の少なくとも1つを起こす化合物が好ましい。
 光異性化反応を起こす化合物とは、光の作用で立体異性化または構造異性化を起こす化合物をいう。光異性化化合物としては、例えば、アゾベンゼン化合物、および、スピロピラン化合物などが挙げられる。
 また、光二量化反応を起こす化合物とは、光の照射によって、二つの基の間に付加反応を起こして環化する化合物をいう。光二量化化合物としては、例えば、桂皮酸誘導体、クマリン誘導体、カルコン誘導体、および、ベンゾフェノン誘導体などが挙げられる。
As described above, when the cholesteric liquid crystal layer is manufactured, the size of the helical pitch of the cholesteric liquid crystal phase is controlled by light irradiation. Therefore, a chiral agent (also called a photosensitive chiral agent) that can change the helical pitch of the cholesteric liquid crystal phase in response to light is used.
A photosensitive chiral agent is a compound that changes its structure by absorbing light and can change the helical pitch of the cholesteric liquid crystal phase. As such a compound, a compound that causes at least one of a photoisomerization reaction, a photodimerization reaction, and a photolysis reaction is preferable.
A compound that undergoes a photoisomerization reaction refers to a compound that undergoes stereoisomerization or structural isomerization by the action of light. As a photoisomerization compound, an azobenzene compound, a spiropyran compound, etc. are mentioned, for example.
The compound that causes a photodimerization reaction refers to a compound that undergoes an addition reaction between two groups upon irradiation with light to cyclize. Examples of the photodimerization compound include cinnamic acid derivatives, coumarin derivatives, chalcone derivatives, and benzophenone derivatives.
 上記感光性キラル剤としては、以下の一般式(I)で表されるキラル剤が好ましく挙げられる。このキラル剤は、光照射時の光量に応じてコレステリック液晶相の螺旋ピッチ(捻れ力、螺旋の捻れ角)などの配向構造を変化させ得る。 Preferred examples of the photosensitive chiral agent include chiral agents represented by the following general formula (I). This chiral agent can change the alignment structure such as the helical pitch (twisting force, helix twisting angle) of the cholesteric liquid crystal phase according to the amount of light upon light irradiation.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(I)中、Ar1とAr2は、アリール基または複素芳香環基を表す。
 Ar1とAr2で表されるアリール基は、置換基を有していてもよく、総炭素数6~40が好ましく、総炭素数6~30がより好ましい。置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ヒドロキシル基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、カルボキシル基、シアノ基、または、複素環基が好ましく、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、ヒドロキシル基、アシルオキシ基、アルコキシカルボニル基、または、アリールオキシカルボニル基がより好ましい。
In general formula (I), Ar 1 and Ar 2 represent an aryl group or a heteroaromatic ring group.
The aryl group represented by Ar 1 and Ar 2 may have a substituent, preferably has a total carbon number of 6 to 40, more preferably a total carbon number of 6 to 30. Examples of the substituent include a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a hydroxyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxyl group, a cyano group, or a heterocyclic ring. Group is preferred, and a halogen atom, alkyl group, alkenyl group, alkoxy group, hydroxyl group, acyloxy group, alkoxycarbonyl group or aryloxycarbonyl group is more preferred.
 このようなアリール基のうち、下記一般式(III)または(IV)式で表されるアリール基が好ましい。 Among such aryl groups, aryl groups represented by the following general formula (III) or (IV) are preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(III)中のR1および一般式(IV)中のR2は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アルコキシ基、ヒドロキシル基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、カルボキシル基、または、シアノ基を表す。なかでも、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、アルコキシ基、ヒドロキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、または、アシルオキシ基が好ましく、アルコキシ基、ヒドロキシル基、または、アシルオキシ基がより好ましい。
 一般式(III)中のL1および一般式(IV)中のL2は、それぞれ独立に、ハロゲン原子、アルキル基、アルコキシ基、または、ヒドロキシル基を表し、炭素数1~10のアルコキシ基、または、ヒドロキシル基が好ましい。
 lは0、1~4の整数を表し、0、1が好ましい。mは0、1~6の整数を表し、0、1が好ましい。l、mが2以上のときは、L1とL2は互いに異なる基を表してもよい。
R 1 in the general formula (III) and R 2 in the general formula (IV) are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, A hydroxyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxyl group, or a cyano group is represented. Among these, a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, a hydroxyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, or an acyloxy group is preferable, and an alkoxy group, a hydroxyl group, or an acyloxy group is preferable. Is more preferable.
L 1 in the general formula (III) and L 2 in the general formula (IV) each independently represent a halogen atom, an alkyl group, an alkoxy group, or a hydroxyl group, and an alkoxy group having 1 to 10 carbon atoms, Or a hydroxyl group is preferable.
l represents an integer of 0, 1 to 4, with 0 and 1 being preferred. m represents an integer of 0, 1 to 6, with 0 and 1 being preferred. When l and m are 2 or more, L 1 and L 2 may represent different groups.
 Ar1とAr2で表される複素芳香環基は、置換基を有していてもよく、総炭素数4~40が好ましく、総炭素数4~30がより好ましい。置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、ヒドロキシル基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、または、シアノ基が好ましく、ハロゲン原子、アルキル基、アルケニル基、アリール基、アルコキシ基、または、アシルオキシ基がより好ましい。
 複素芳香環基としては、ピリジル基、ピリミジニル基、フリル基、および、ベンゾフラニル基などが挙げられ、この中でも、ピリジル基、または、ピリミジニル基が好ましい。
The heteroaromatic ring group represented by Ar 1 and Ar 2 may have a substituent, preferably has a total carbon number of 4 to 40, and more preferably a total carbon number of 4 to 30. As the substituent, for example, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, a hydroxyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, or a cyano group is preferable. A halogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an acyloxy group is more preferable.
Examples of the heteroaromatic ring group include a pyridyl group, a pyrimidinyl group, a furyl group, and a benzofuranyl group. Among them, a pyridyl group or a pyrimidinyl group is preferable.
 液晶組成物における、キラル剤の含有量は、重合性液晶性化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。 The content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol% of the amount of the polymerizable liquid crystal compound.
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましく、0.5質量%~12質量%であることがさらに好ましい。
--Polymerization initiator--
When the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970), and the like. .
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. Further preferred.
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、3質量%~20質量%が好ましく、5質量%~15質量%がより好ましい。架橋剤の含有量が、3質量%未満であると、架橋密度向上の効果が得られないことがあり、20質量%を超えると、コレステリック液晶層の安定性を低下させてしまうことがある。
-Crosslinking agent-
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. When the content of the crosslinking agent is less than 3% by mass, the effect of improving the crosslinking density may not be obtained. When the content exceeds 20% by mass, the stability of the cholesteric liquid crystal layer may be decreased.
--その他の添加剤--
 液晶組成物中には、必要に応じて、さらに界面活性剤、重合禁止剤、酸化防止剤、水平配向剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
-Other additives-
In the liquid crystal composition, if necessary, a surfactant, a polymerization inhibitor, an antioxidant, a horizontal alignment agent, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc. are optically added. It can be added as long as the performance is not lowered.
 液晶組成物は溶媒を含んでいてもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。上述の単官能重合性モノマーなどの上述の成分が溶媒として機能していてもよい。
The liquid crystal composition may contain a solvent. There is no restriction | limiting in particular as a solvent, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load. The above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
 (λ/4板)
 円偏光板を構成するλ/4板は、従来公知のλ/4板であり、λ/4板に入射する光が直線偏光の場合には円偏光にして出射し、λ/4板に入射する光が円偏光の場合には直線偏光にして出射する。
(Λ / 4 plate)
The λ / 4 plate constituting the circularly polarizing plate is a conventionally known λ / 4 plate. When light incident on the λ / 4 plate is linearly polarized light, it is emitted as circularly polarized light and incident on the λ / 4 plate. When the light to be circularly polarized is emitted as linearly polarized light.
 λ/4板とは、ある特定の波長の直線偏光を円偏光に、または、円偏光を直線偏光に変換する機能を有する板である。より具体的には、所定の波長λnmにおける面内レターデーション値がRe(λ)=λ/4(または、この奇数倍)を示す板である。この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよい。
 なお、λ/4板は、光学異方性層のみからなる構成であっても、支持体に光学異方性層を形成した構成であってもよいが、λ/4板が支持体を有する場合には、支持体と光学異方性層との組み合わせが、λ/4板であることを意図する。
 λ/4板は、公知のλ/4板が利用可能である。
The λ / 4 plate is a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light or converting circularly polarized light into linearly polarized light. More specifically, the plate has an in-plane retardation value of Re (λ) = λ / 4 (or an odd multiple thereof) at a predetermined wavelength λnm. This expression only needs to be achieved at any wavelength in the visible light range (for example, 550 nm).
The λ / 4 plate may be composed of only the optically anisotropic layer or may be configured such that the optically anisotropic layer is formed on the support, but the λ / 4 plate has the support. In some cases, the combination of support and optically anisotropic layer is intended to be a λ / 4 plate.
As the λ / 4 plate, a known λ / 4 plate can be used.
 また、本発明の液晶フィルムにおいては、λ/4板は、厚さ方向のレターデーションであるRth(550)が少ないのが好ましい。
 具体的には、Rth(550)が-50nm~50nmであるのが好ましく、-30nm~30nmであるのがより好ましく、Rth(λ)がゼロであるのがさらに好ましい。これにより、λ/4板に対して斜めに入射する円偏光を直線偏光に変換できる点で好ましい結果を得る。
In the liquid crystal film of the present invention, the λ / 4 plate preferably has a small Rth (550) which is retardation in the thickness direction.
Specifically, Rth (550) is preferably −50 nm to 50 nm, more preferably −30 nm to 30 nm, and even more preferably Rth (λ) is zero. Thereby, a preferable result is obtained in that circularly polarized light incident obliquely on the λ / 4 plate can be converted into linearly polarized light.
 ここで、λ/4板はコレステリック液晶層18を透過して入射する他方の円偏光(コレステリック液晶層を透過する旋回方向の円偏光)が直線偏光になるように遅相軸を合わせて配置される。 Here, the λ / 4 plate is arranged with the slow axis aligned so that the other circularly polarized light that is transmitted through the cholesteric liquid crystal layer 18 and incident (circularly polarized light that is transmitted through the cholesteric liquid crystal layer) is linearly polarized light. The
 (直線偏光板)
 円偏光板を構成する直線偏光板は、一方向の偏光軸を有し、特定の直線偏光を透過する機能を有する。
 直線偏光板としては、ヨウ素化合物を含む吸収型偏光板やワイヤーグリッドなどの反射型偏光板等の一般的な直線偏光板が利用可能である。なお、偏光軸とは、透過軸と同義である。
 吸収型偏光板としては、例えば、ヨウ素系偏光板、二色性染料を利用した染料系偏光板、および、ポリエン系偏光板の、いずれも用いることができる。ヨウ素系偏光板、および染料系偏光板は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
(Linear polarizing plate)
The linearly polarizing plate constituting the circularly polarizing plate has a polarization axis in one direction and has a function of transmitting specific linearly polarized light.
As the linear polarizing plate, a general linear polarizing plate such as an absorption polarizing plate containing an iodine compound or a reflective polarizing plate such as a wire grid can be used. The polarization axis is synonymous with the transmission axis.
As an absorption type polarizing plate, for example, any of an iodine type polarizing plate, a dye type polarizing plate using a dichroic dye, and a polyene type polarizing plate can be used. The iodine-based polarizing plate and the dye-based polarizing plate are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
 ここで、直線偏光板は、λ/4板を透過して入射する直線偏光が透過するように、偏光軸を合わせて配置される。これにより、直線偏光板とλ/4板との組み合わせは、λ/4板側から入射した光のうち、他方の円偏光を直線偏光にして透過する円偏光板として機能する。すなわち、λ/4板と直線偏光板との組み合わせは、コレステリック液晶層18が反射する円偏光とは旋回方向が逆向きの円偏光を透過するものである。 Here, the linearly polarizing plates are arranged with their polarization axes aligned so that the linearly polarized light that is transmitted through the λ / 4 plate is transmitted. Thus, the combination of the linearly polarizing plate and the λ / 4 plate functions as a circularly polarizing plate that transmits the light incident from the λ / 4 plate side with the other circularly polarized light as linearly polarized light. In other words, the combination of the λ / 4 plate and the linearly polarizing plate transmits circularly polarized light whose direction of rotation is opposite to that of the circularly polarized light reflected by the cholesteric liquid crystal layer 18.
 (粘着層)
 粘着層は、コレステリック液晶層18とλ/4板(円偏光板)とを貼り合わせるものである。
 粘着層は、対象となる層(シート状物)を貼り合わせられる物であれば、公知の各種の材料からなるものが利用可能であり、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でもよいし、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でもよいし、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、粘着層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、紫外線硬化型樹脂等、シート状物の貼り合わせに用いられる公知のものを用いればよい。
(Adhesive layer)
The adhesive layer is a laminate of the cholesteric liquid crystal layer 18 and the λ / 4 plate (circularly polarizing plate).
The adhesive layer can be made of various known materials as long as the target layer (sheet-like material) can be bonded together, and has fluidity when bonded. It may be a layer made of an adhesive, a gel-like (rubber-like) soft solid when pasted together, or a layer made of an adhesive that does not change the gel-like state thereafter, or an adhesive and an adhesive It may be a layer made of a material having both characteristics of an agent. Accordingly, the pressure-sensitive adhesive layer may be a known material used for laminating sheet-like materials, such as an optical transparent adhesive (OCA (Optical Clear Adhesive)), an optical transparent double-sided tape, and an ultraviolet curable resin.
 〔用途〕
 本発明の液晶フィルムの用途は特に限定されないが、例えば、ビルの窓広告として窓ガラスに貼り付けられる広告媒体、車、タクシー、バス、電車などの窓ガラスに貼り付けられる広告媒体やライト部分やデザイン性の加飾、道路標識、住宅や店舗、水族館、動物園、植物館、美術館などの窓ガラス、遊戯機、遊戯用カード、下敷きなどの玩具や文房具、舞台、劇場用の器材、エレベータ、エスカレータ、階段などの透明部材、カバンや服、ゴーグルやサングラスなどのファッション部材、カベ、カーテンや床などのインテリアファブリクス用材料、POP広告(Point of purchase advertising)、名刺、ステッカー、はがき、写真、コースター、チケット、うちわ、せんす、テント、ブラインド、シャッター、防護用盾、衝立などのセパレーション、家電製品(カメラ、インスタントカメラ、PC(personal computer)、スマートフォン、テレビ、レコーダー、レンジ、オーディオプレーヤー、ゲーム機、VR(virtual reality)ヘッドセット、掃除機、洗濯機)、スマートフォンカバー、ぬいぐるみ、コップ、お皿、プレート、壺や花瓶、机、イス、CD(compact disc)、DVDケース、本、カレンダー、ペットボトル、食品包装容器、ギターやピアノなどの楽器、ラケット、バット、クラブ、ボールなどのスポーツ用品、迷路、観覧車、ジェットコースター、お化け屋敷などのアトラクション、造花、知育玩具、ボードゲーム、かさ、杖、時計、オルゴール、ネックレスなどの服飾材料、化粧品などの容器、ソーラーパネル、電灯やランプカバーとして用いることができる。
[Use]
Although the use of the liquid crystal film of the present invention is not particularly limited, for example, an advertising medium pasted on a window glass as a building window advertisement, an advertising medium pasted on a window glass of a car, taxi, bus, train, etc. Design decorations, road signs, houses and stores, aquariums, zoos, botanical museums, museum windows, toys and stationery such as play machines, play cards, underlays, stage, theater equipment, elevators, escalators , Transparent materials such as stairs, fashion materials such as bags and clothes, goggles and sunglasses, materials for interior fabrics such as bags, curtains and floors, POP advertising (Point of purchase advertising), business cards, stickers, postcards, photos, coasters, Separation of tickets, fan, paper, tent, blind, shutter, protective shield, screen, etc. Home appliances (camera, instant camera, PC (personal computer), smartphone, TV, recorder, range, audio player, game machine, VR (virtual reality) headset, vacuum cleaner, washing machine), smartphone cover, plush toy, cup, Sports such as dishes, plates, baskets, vases, desks, chairs, CDs (compact discs), DVD cases, books, calendars, plastic bottles, food packaging containers, guitars, pianos and other instruments, rackets, bats, clubs, balls, etc. Attractions such as supplies, labyrinths, ferris wheels, roller coasters, haunted houses, artificial flowers, educational toys, board games, umbrellas, canes, watches, music boxes, necklaces and other clothing materials, cosmetic containers, solar panels, lights and lamp covers Can be used as
 以上、本発明の液晶フィルムについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 The liquid crystal film of the present invention has been described in detail above. However, the present invention is not limited to the above-described example, and various improvements and modifications may be made without departing from the gist of the present invention. It is.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples. The materials, reagents, used amounts, substance amounts, ratios, processing details, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
 実施例1として、図1に示すような構成の製造装置100aを用いて液晶フィルムを作製した。
[Example 1]
As Example 1, a liquid crystal film was manufactured using a manufacturing apparatus 100a configured as shown in FIG.
(液晶組成物の調製)
 下記に示す組成物を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶インク液A(液晶組成物)を調製した。
----------------------------------
コレステリック液晶インク液A
----------------------------------
下記の液晶化合物1                    1g
下記構造のキラル剤1                   107mg
下記構造の水平配向剤1                  1mg
開始剤:IRGACURE 907 (BASF社製)      40mg
IRGANOX1010                  10mg
MEK(メチルエチルケトン)               1.6g
----------------------------------
(Preparation of liquid crystal composition)
The composition shown below was stirred and dissolved in a container kept at 25 ° C. to prepare a cholesteric liquid crystal ink liquid A (liquid crystal composition).
---------------------------------
Cholesteric liquid crystal ink A
---------------------------------
The following liquid crystal compound 1 1g
Chiral agent 1 with the following structure 107 mg
1 mg of horizontal alignment agent with the following structure
Initiator: IRGACURE 907 (BASF) 40 mg
IRGANOX1010 10mg
MEK (methyl ethyl ketone) 1.6 g
---------------------------------
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(コレステリック液晶層の形成)
 支持体12aとして、厚み50μmの富士フイルム(株)社製PETフィルムを用いた。支持体12aの裏面には、所定のパターンをカラーで印刷してパターンマスクを形成した。
(Formation of cholesteric liquid crystal layer)
As the support 12a, a 50 μm thick PET film manufactured by FUJIFILM Corporation was used. A predetermined pattern was printed in color on the back surface of the support 12a to form a pattern mask.
 塗布工程として、上記で調製したコレステリック液晶インク液Aを支持体の表面にダイコーターを用いて塗布した。塗布は乾燥後の塗布層の厚みが2~5μm程度になるように調整して、室温にて行い、塗布膜を形成した。
 次に、照射工程として、室温でパターンマスクを介して、塗布膜にUV(紫外線、波長365nm)照射を50mJ/cm行った。なお、UV照射の光源として、LEDUVHLDL-200X180-U6PSC(CCS(株)社製)を用いた。
As the coating step, the cholesteric liquid crystal ink liquid A prepared above was coated on the surface of the support using a die coater. The coating was adjusted at a room temperature so that the thickness of the coating layer after drying was about 2 to 5 μm, and a coating film was formed.
Next, as an irradiation step, UV (ultraviolet light, wavelength 365 nm) irradiation was performed at 50 mJ / cm 2 on the coating film through a pattern mask at room temperature. In addition, LEDUVHLDL-200X180-U6PSC (manufactured by CCS Co., Ltd.) was used as a light source for UV irradiation.
 次に、加熱工程として、照射工程後の塗布膜が積層された支持体を、90℃の熱風乾燥ゾーンで1分間加熱した。
 次に、硬化工程として、窒素雰囲気下(酸素濃度500ppm以下)、室温で、加熱処理後の塗布膜に表面からUV照射(波長300~350nm、200mJ/cm2)を行い、塗布膜を硬化させてコレステリック液晶層を形成した。
 なお、UV照射の光源として、UE0961-426-05CQT(岩崎電気(株)社製)を用いた。
 その後、巻取りローラで巻き取った。
Next, as a heating step, the support on which the coating film after the irradiation step was laminated was heated in a hot air drying zone at 90 ° C. for 1 minute.
Next, as a curing step, UV irradiation (wavelength 300 to 350 nm, 200 mJ / cm 2 ) is applied from the surface to the coated film after heat treatment at room temperature in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) to cure the coated film. A cholesteric liquid crystal layer was formed.
Note that UE0961-426-05CQT (manufactured by Iwasaki Electric Co., Ltd.) was used as a light source for UV irradiation.
Then, it wound up with the winding roller.
[実施例2]
 実施例2として、図3に示すような構成の製造装置100bを用いて液晶フィルムを作製した。
 具体的には、支持体12bとして、厚み50μmの富士フイルム(株)社製PETフィルムを用い、マスクフィルム14として、基材フィルム20(厚み100μm 東洋紡(株)社製 PETフィルム)に所定のパターンをカラーで印刷してパターンマスク(インク層22)を形成し、塗布工程の前に、マスクフィルム14を支持体12bに貼着し、硬化工程の後に、マスクフィルム14を剥離する構成とした以外は、実施例1と同様にして、液晶フィルムを作製した。
 なお、マスクフィルム14は、パターンマスク側を支持体12bに貼着した。
[Example 2]
As Example 2, a liquid crystal film was manufactured using a manufacturing apparatus 100b having a configuration as shown in FIG.
Specifically, a 50 μm thick PET film manufactured by FUJIFILM Corporation is used as the support 12 b, and a predetermined pattern is formed on the base film 20 (100 μm thick PET film manufactured by Toyobo Co., Ltd.) as the mask film 14. Is printed in color to form a pattern mask (ink layer 22), the mask film 14 is adhered to the support 12b before the coating step, and the mask film 14 is peeled off after the curing step. Produced a liquid crystal film in the same manner as in Example 1.
In addition, the mask film 14 stuck the pattern mask side to the support body 12b.
[実施例3]
 マスクフィルム14の基材フィルム20側を支持体12bに貼着した以外は、実施例2と同様にして液晶フィルムを作製した。
[Example 3]
A liquid crystal film was produced in the same manner as in Example 2 except that the base film 20 side of the mask film 14 was adhered to the support 12b.
[実施例4]
 照射工程において、2回照射を行なう構成とし、第一照射ステップの照射量を20mJ/cm2とし、第二照射ステップの照射量を40mJ/cm2とした以外は、実施例1と同様にして、液晶フィルムを作製した。
[Example 4]
In the irradiation process, the irradiation is performed twice, the irradiation amount in the first irradiation step is 20 mJ / cm 2, and the irradiation amount in the second irradiation step is 40 mJ / cm 2. A liquid crystal film was prepared.
[実施例5]
 第一照射ステップの照射量を50mJ/cm2とし、第二照射ステップの照射量を100mJ/cm2とした以外は、実施例4と同様にして、液晶フィルムを作製した。
[Example 5]
A liquid crystal film was produced in the same manner as in Example 4 except that the irradiation amount in the first irradiation step was 50 mJ / cm 2 and the irradiation amount in the second irradiation step was 100 mJ / cm 2 .
[実施例6]
 第一照射ステップの光の波長を385nm、照射量を50mJ/cm2とし、第二照射ステップの波長を365nm、照射量を50mJ/cm2とした以外は、実施例4と同様にして、液晶フィルムを作製した。
[Example 6]
The wavelength of the light of the first irradiation step was 385 nm, dose of the 50 mJ / cm 2, 365 nm of the wavelength of the second irradiation step, except for using 50 mJ / cm 2 irradiation amount in the same manner as in Example 4, the liquid crystal A film was prepared.
[実施例7]
 第一照射ステップの照射量を125mJ/cm2とし、第二照射ステップの照射量を125mJ/cm2とした以外は、実施例4と同様にして、液晶フィルムを作製した。
[Example 7]
A liquid crystal film was produced in the same manner as in Example 4 except that the irradiation amount in the first irradiation step was 125 mJ / cm 2 and the irradiation amount in the second irradiation step was 125 mJ / cm 2 .
[実施例8]
 液晶組成物(コレステリック液晶インク液A)に含まれる開始剤として、IRGACURE 369 (BASF社製)、40mgを用い、硬化工程における光の波長を365nmとした以外は、実施例1と同様にして、液晶フィルムを作製した。
[Example 8]
As an initiator contained in the liquid crystal composition (cholesteric liquid crystal ink liquid A), IRGACURE 369 (manufactured by BASF), 40 mg was used, except that the wavelength of light in the curing step was 365 nm. A liquid crystal film was prepared.
[比較例1]
 配向工程の後に照射工程を行なう構成とした以外は、実施例1と同様にして、液晶フィルムを作製した。
[Comparative Example 1]
A liquid crystal film was produced in the same manner as in Example 1 except that the irradiation step was performed after the alignment step.
[比較例2]
 パターンマスクとして、白黒2値のパターンマスクを印刷により支持体に形成した以外は、実施例1と同様にして液晶フィルムを作製した。
[Comparative Example 2]
A liquid crystal film was produced in the same manner as in Example 1 except that a black and white binary pattern mask was formed on the support by printing as a pattern mask.
[比較例3]
 パターンマスクとして、白黒2値のパターンマスクを印刷により支持体に形成した以外は、実施例2と同様にして液晶フィルムを作製した。
[Comparative Example 3]
A liquid crystal film was produced in the same manner as in Example 2 except that a black and white binary pattern mask was formed on the support by printing as a pattern mask.
<評価>
 各実施例で作製した液晶フィルムについて、コレステリック液晶層側から目視で観察してパターンの精細度、および、色表示の階調性を評価し以下の基準で評価した。
<Evaluation>
About the liquid crystal film produced in each Example, it observed visually from the cholesteric-liquid-crystal layer side, evaluated the fineness of a pattern and the gradation of a color display, and evaluated it with the following references | standards.
 パターン精細度の評価
 AA:かなり良好
 A:良好
 B:やや良好
 C:パターンがぼやける。
Evaluation of pattern definition AA: Pretty good A: Good B: Somewhat good C: Pattern is blurred.
 色表示の階調性の評価
 A:階調性が高い
 B:階調性がやや高い
 C:2値、または、色が滲む。
 結果を表1に示す。
 また、実施例1のパターンマスクを撮影した画像を図8に示し、実施例1で作製した液晶フィルムを撮影した画像を図7に示す。なお、本発明においては、図6に示すグレースケールのパターンマスクであっても同様の効果が得られる。また、図7に示す液晶フィルムは、一部を評価のために切り取っている。
 また、比較例2および3で用いた2値マスクの画像を図9に示す。
Evaluation of gradation of color display A: High gradation B: Slightly high gradation C: Binary or color is blurred.
The results are shown in Table 1.
Moreover, the image which image | photographed the pattern mask of Example 1 is shown in FIG. 8, and the image which image | photographed the liquid crystal film produced in Example 1 is shown in FIG. In the present invention, the same effect can be obtained even with the gray scale pattern mask shown in FIG. Further, a part of the liquid crystal film shown in FIG. 7 is cut out for evaluation.
FIG. 9 shows an image of the binary mask used in Comparative Examples 2 and 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、本発明の製造方法で作製した実施例1~8の液晶フィルムは、比較例と比べて、精細度および階調性が良好であることがわかる。
 また、実施例2と実施例3との対比から、パターンマスクを支持体とは別のフィルムに形成し、支持体に貼着して照射工程を行なう構成とする場合には、パターンマスク側を支持体に貼着するのが好ましいことがわかる。
 また、実施例1と実施例5および6との対比から、照射工程において光の照射を2回に分けて照射することで、精細度がより向上することがわかる。
 また、実施例5および6と実施例7との対比から、照射量の合計は200mJ/cm2以下とするのが好ましいことがわかる。
 また、実施例1と実施例8との対比から、照射工程の光の波長と硬化工程の光の波長とを異ならせることが好ましいことがわかる。
As shown in Table 1, it can be seen that the liquid crystal films of Examples 1 to 8 produced by the production method of the present invention have better definition and gradation than the comparative examples.
Further, from the comparison between Example 2 and Example 3, when the pattern mask is formed on a film different from the support and is attached to the support to perform the irradiation process, the pattern mask side is It can be seen that it is preferable to stick to the support.
Further, it can be seen from the comparison between Example 1 and Examples 5 and 6 that the definition is further improved by irradiating light twice in the irradiation process.
Further, from comparison between Examples 5 and 6 and Example 7, it is understood that the total irradiation amount is preferably 200 mJ / cm 2 or less.
Further, it can be seen from the comparison between Example 1 and Example 8 that the wavelength of light in the irradiation process and the wavelength of light in the curing process are preferably different.
[実施例9]
 実施例9として、図10に示すパターンマスクを用いた以外は、実施例1と同様にして液晶フィルムを作製した。作製した液晶フィルムを撮影した画像を図11に示す。
 図10および図11からわかるように、パターンマスクのパターンおよび濃淡に応じて、コレステリック液晶層の色、すなわち、選択反射波長が異なる領域が形成されるのがわかる。
 以上の結果より本発明の効果は明らかである。
[Example 9]
As Example 9, a liquid crystal film was produced in the same manner as in Example 1 except that the pattern mask shown in FIG. 10 was used. An image of the produced liquid crystal film is shown in FIG.
As can be seen from FIG. 10 and FIG. 11, it can be seen that regions having different colors of the cholesteric liquid crystal layer, that is, selective reflection wavelengths, are formed in accordance with the pattern and density of the pattern mask.
From the above results, the effect of the present invention is clear.
 12a、12b 支持体
 14 マスクフィルム
 16 円偏光板
 18 コレステリック液晶層
 20 基材フィルム
 21a 塗布膜
 21b 露光した塗布膜
 21c 配向した塗布膜
 22 インク層
 23a~23d、25a~25b 積層フィルム
 100a、100b 液晶フィルム製造装置
 102 送り出しローラ
 104 塗布ノズル
 106、114 バックアップローラ
 108 露光装置
 110 加熱装置
 112 UV照射装置
 116 巻取りローラ
 120 第1搬送部
 122 第2搬送部
 124 第3搬送部
 130、132、142、146 ロール
 140 供給ローラ
 144 回収ローラ
 150 塗布部
 152 露光部
 154 加熱部
 156 硬化部
12a, 12b Support 14 Mask film 16 Circular polarizing plate 18 Cholesteric liquid crystal layer 20 Base film 21a Coating film 21b Exposed coating film 21c Oriented coating film 22 Ink layers 23a-23d, 25a-25b Laminated film 100a, 100b Liquid crystal film Manufacturing device 102 Delivery roller 104 Coating nozzle 106, 114 Backup roller 108 Exposure device 110 Heating device 112 UV irradiation device 116 Winding roller 120 First transport unit 122 Second transport unit 124 Third transport unit 130, 132, 142, 146 Roll 140 Supply roller 144 Collection roller 150 Application unit 152 Exposure unit 154 Heating unit 156 Curing unit

Claims (12)

  1.  長尺な支持体を長手方向に送り出す送出工程と、
     送り出した支持体を長手方向に搬送しつつ、コレステリック液晶化合物と感光性のキラル剤とを含む液晶組成物を支持体表面に塗布する塗布工程と、
     未乾燥状態の前記液晶組成物の塗布膜に前記キラル剤が感光する波長の光を照射する照射工程と、
     前記塗布膜を加熱して液晶を配向する配向工程と、
     配向した前記塗布膜を硬化する硬化工程と、をこの順に有し、
     前記照射工程において、前記支持体側に配置されたパターンマスクを介して前記塗布膜に光を照射し、
     前記パターンマスクは、前記キラル剤が感光する波長の光に対する透過率が異なる3以上の領域を有する多階調のパターンマスクであり、
     前記照射工程において、多階調の前記パターンマスクを介して前記塗布膜に光を照射することで、前記塗布膜の各領域に対して異なる照射量の光を照射する液晶フィルムの製造方法。
    A delivery step of feeding a long support in the longitudinal direction;
    An application step of applying a liquid crystal composition containing a cholesteric liquid crystal compound and a photosensitive chiral agent to the support surface while transporting the fed support in the longitudinal direction;
    An irradiation step of irradiating the coating film of the liquid crystal composition in an undried state with light having a wavelength at which the chiral agent is sensitive;
    An alignment step of aligning liquid crystals by heating the coating film;
    A curing step of curing the oriented coating film, in this order,
    In the irradiation step, the coating film is irradiated with light through a pattern mask arranged on the support side,
    The pattern mask is a multi-tone pattern mask having three or more regions having different transmittances with respect to light having a wavelength to which the chiral agent is sensitive.
    In the irradiation step, a method of manufacturing a liquid crystal film in which light is applied to each region of the coating film by irradiating the coating film with light through the multi-tone pattern mask.
  2.  前記パターンマスクは、前記支持体の裏面に形成されている請求項1に記載の液晶フィルムの製造方法。 The method for producing a liquid crystal film according to claim 1, wherein the pattern mask is formed on a back surface of the support.
  3.  前記パターンマスクは、長尺な基材フィルムの表面に形成されており、
     前記照射工程において、前記パターンマスクが形成された前記基材フィルムが前記支持体の裏面に貼着された状態で、光の照射を行なう請求項1に記載の液晶フィルムの製造方法。
    The pattern mask is formed on the surface of a long base film,
    2. The method for producing a liquid crystal film according to claim 1, wherein in the irradiation step, light irradiation is performed in a state where the base film on which the pattern mask is formed is attached to the back surface of the support.
  4.  前記パターンマスクは、グレースケール印刷により形成されたものである請求項1~3のいずれか一項に記載の液晶フィルムの製造方法。 The method for producing a liquid crystal film according to any one of claims 1 to 3, wherein the pattern mask is formed by gray scale printing.
  5.  前記照射工程は、第一照射ステップと第二照射ステップとを有し、
     前記第一照射ステップにおける光の照射量が、前記第二照射ステップにおける光の照射量よりも少ない請求項1~4のいずれか一項に記載の液晶フィルムの製造方法。
    The irradiation step has a first irradiation step and a second irradiation step,
    The method for producing a liquid crystal film according to any one of claims 1 to 4, wherein a light irradiation amount in the first irradiation step is smaller than a light irradiation amount in the second irradiation step.
  6.  前記第一照射ステップおよび前記第二照射ステップの照射量の合計が200mJ/cm2以下である請求項5に記載の液晶フィルムの製造方法。 The method for producing a liquid crystal film according to claim 5, wherein the total irradiation amount of the first irradiation step and the second irradiation step is 200 mJ / cm 2 or less.
  7.  前記照射工程は、第一照射ステップと第二照射ステップとを有し、
     前記第一照射ステップにおいて照射する光のピーク波長と、前記第二照射ステップにおいて照射する光のピーク波長とが互いに異なる請求項1~6のいずれか一項に記載の液晶フィルムの製造方法。
    The irradiation step has a first irradiation step and a second irradiation step,
    The method for producing a liquid crystal film according to any one of claims 1 to 6, wherein a peak wavelength of light irradiated in the first irradiation step and a peak wavelength of light irradiated in the second irradiation step are different from each other.
  8.  前記硬化工程は、前記塗布膜を光硬化させる工程であり、
     前記硬化工程において照射する光の波長が、前記照射工程において照射する光の波長とは異なる請求項1~7のいずれか一項に記載の液晶フィルムの製造方法。
    The curing step is a step of photocuring the coating film,
    The method for producing a liquid crystal film according to any one of claims 1 to 7, wherein a wavelength of light irradiated in the curing step is different from a wavelength of light irradiated in the irradiation step.
  9.  前記硬化工程において、前記パターンマスクは前記支持体の裏面側に配置された状態で一体的に搬送されており、
     前記パターンマスクとは反対側の面側に光を照射する請求項8に記載の液晶フィルムの製造方法。
    In the curing step, the pattern mask is integrally transported in a state of being arranged on the back side of the support,
    The manufacturing method of the liquid crystal film of Claim 8 which irradiates light to the surface side on the opposite side to the said pattern mask.
  10.  前記塗布工程における前記液晶組成物の塗布方法がバー塗布である請求項1~9のいずれか一項に記載の液晶フィルムの製造方法。 The method for producing a liquid crystal film according to any one of claims 1 to 9, wherein a coating method of the liquid crystal composition in the coating step is bar coating.
  11.  前記塗布工程、前記照射工程、前記配向工程および前記硬化工程の組み合わせを2回以上繰り返して2層以上のコレステリック液晶層を形成する液晶フィルムの製造方法であって、
     2回以上の前記照射工程において、同一パターンの前記パターンマスクを介して光を照射し、かつ、各前記照射工程における光の照射量を互いに異ならせる請求項1~10のいずれか一項に記載の液晶フィルムの製造方法。
    A method for producing a liquid crystal film in which a combination of the coating step, the irradiation step, the alignment step, and the curing step is repeated twice or more to form two or more cholesteric liquid crystal layers,
    The light irradiation is performed through the pattern mask having the same pattern in the two or more irradiation steps, and the amount of light irradiation in each of the irradiation steps is different from each other. Liquid crystal film production method.
  12.  請求項1~11のいずれか一項に記載の液晶フィルムの製造方法の前記硬化工程の後に、硬化した前記塗布膜の表面又は前記支持体の裏面に円偏光板を貼着する工程を有する機能性フィルムの製造方法。 A function having a step of attaching a circularly polarizing plate to the surface of the cured coating film or the back surface of the support after the curing step of the method for producing a liquid crystal film according to any one of claims 1 to 11. For producing a conductive film.
PCT/JP2018/021560 2017-06-13 2018-06-05 Method for producing liquid crystal film and method for producing functional film WO2018230395A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197034773A KR102285177B1 (en) 2017-06-13 2018-06-05 Manufacturing method of liquid crystal film and manufacturing method of functional film
JP2019525338A JP6924832B2 (en) 2017-06-13 2018-06-05 Liquid crystal film manufacturing method and functional film manufacturing method
CN201880035113.1A CN110691998B (en) 2017-06-13 2018-06-05 Method for producing liquid crystal film and method for producing functional film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115892 2017-06-13
JP2017-115892 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018230395A1 true WO2018230395A1 (en) 2018-12-20

Family

ID=64660736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021560 WO2018230395A1 (en) 2017-06-13 2018-06-05 Method for producing liquid crystal film and method for producing functional film

Country Status (4)

Country Link
JP (1) JP6924832B2 (en)
KR (1) KR102285177B1 (en)
CN (1) CN110691998B (en)
WO (1) WO2018230395A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071221A1 (en) * 2018-10-03 2020-04-09 富士フイルム株式会社 Image forming apparatus and image forming method
WO2022009508A1 (en) * 2020-07-06 2022-01-13 富士フイルム株式会社 Liquid crystal film, method for producing liquid crystal film, decorative film and case panel for electronic devices
WO2022059292A1 (en) * 2020-09-18 2022-03-24 富士フイルム株式会社 Decorative film, method for manufacturing decorative film, molded object, electronic device, and automobile exterior plate
WO2022064776A1 (en) * 2020-09-23 2022-03-31 富士フイルム株式会社 Decorative film, production method therefor, molded body thereof, and product therefrom
CN114667214A (en) * 2019-12-25 2022-06-24 富士胶片株式会社 Laminate and method for producing same, molded article and method for producing same, case panel for electronic device, and electronic device
WO2022196327A1 (en) * 2021-03-18 2022-09-22 富士フイルム株式会社 Decorative material, decorative panel, electronic device, and method for producing decorative material
JP7513732B2 (en) 2020-09-18 2024-07-09 富士フイルム株式会社 Decorative film, manufacturing method for decorative film, molded product, electronic device, and automobile exterior plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702731B (en) * 2022-04-13 2023-03-10 烟台先进材料与绿色制造山东省实验室 Photonic crystal thin film material, preparation method thereof and application thereof in rapid visual mixed solvent identification

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344637A (en) * 2002-05-27 2003-12-03 Dainippon Printing Co Ltd Method for manufacturing cholesteric liquid crystal color filter and cholesteric liquid crystal color filter manufactured thereby
JP2010033008A (en) * 2008-03-31 2010-02-12 Toppan Printing Co Ltd Retardation plate, method for manufacturing the same, and liquid crystal display device
JP2011027833A (en) * 2009-07-22 2011-02-10 Toppan Printing Co Ltd Color filter substrate and liquid crystal display device
JP2016012084A (en) * 2014-06-30 2016-01-21 富士フイルム株式会社 Liquid crystal display device
WO2016076439A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Liquid crystal display device
JP2016150286A (en) * 2015-02-16 2016-08-22 日東電工株式会社 Production method of optical film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236898B2 (en) * 2002-10-10 2009-03-11 大日本印刷株式会社 Polarizing element and manufacturing method thereof
JP4446444B2 (en) 2004-11-22 2010-04-07 日東電工株式会社 Method for manufacturing sheet with anti-counterfeit function, article, authentication card, barcode label, and authentication system
EP2400321A1 (en) * 2009-02-20 2011-12-28 Toppan Printing Co., Ltd. Phase-type diffraction device, manufacturing method thereof and image pick-up apparatus
JP2012198523A (en) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd Long pattern alignment film and long pattern phase difference film using the same
TWI614297B (en) * 2012-09-12 2018-02-11 日產化學工業股份有限公司 Production method of alignment material, alignment material, production method of retardation material, and retardation material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344637A (en) * 2002-05-27 2003-12-03 Dainippon Printing Co Ltd Method for manufacturing cholesteric liquid crystal color filter and cholesteric liquid crystal color filter manufactured thereby
JP2010033008A (en) * 2008-03-31 2010-02-12 Toppan Printing Co Ltd Retardation plate, method for manufacturing the same, and liquid crystal display device
JP2011027833A (en) * 2009-07-22 2011-02-10 Toppan Printing Co Ltd Color filter substrate and liquid crystal display device
JP2016012084A (en) * 2014-06-30 2016-01-21 富士フイルム株式会社 Liquid crystal display device
WO2016076439A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Liquid crystal display device
JP2016150286A (en) * 2015-02-16 2016-08-22 日東電工株式会社 Production method of optical film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071221A1 (en) * 2018-10-03 2020-04-09 富士フイルム株式会社 Image forming apparatus and image forming method
JPWO2020071221A1 (en) * 2018-10-03 2021-09-02 富士フイルム株式会社 Image forming device and image forming method
JP7052065B2 (en) 2018-10-03 2022-04-11 富士フイルム株式会社 Image forming device and image forming method
CN114667214A (en) * 2019-12-25 2022-06-24 富士胶片株式会社 Laminate and method for producing same, molded article and method for producing same, case panel for electronic device, and electronic device
WO2022009508A1 (en) * 2020-07-06 2022-01-13 富士フイルム株式会社 Liquid crystal film, method for producing liquid crystal film, decorative film and case panel for electronic devices
JPWO2022009508A1 (en) * 2020-07-06 2022-01-13
WO2022059292A1 (en) * 2020-09-18 2022-03-24 富士フイルム株式会社 Decorative film, method for manufacturing decorative film, molded object, electronic device, and automobile exterior plate
JP7513732B2 (en) 2020-09-18 2024-07-09 富士フイルム株式会社 Decorative film, manufacturing method for decorative film, molded product, electronic device, and automobile exterior plate
WO2022064776A1 (en) * 2020-09-23 2022-03-31 富士フイルム株式会社 Decorative film, production method therefor, molded body thereof, and product therefrom
JP7483026B2 (en) 2020-09-23 2024-05-14 富士フイルム株式会社 Decorative film and its manufacturing method, molded body and article
WO2022196327A1 (en) * 2021-03-18 2022-09-22 富士フイルム株式会社 Decorative material, decorative panel, electronic device, and method for producing decorative material

Also Published As

Publication number Publication date
JPWO2018230395A1 (en) 2020-03-26
CN110691998A (en) 2020-01-14
JP6924832B2 (en) 2021-08-25
KR102285177B1 (en) 2021-08-02
KR20190138692A (en) 2019-12-13
CN110691998B (en) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2018230395A1 (en) Method for producing liquid crystal film and method for producing functional film
JP6727321B2 (en) Transparent decorative film and method of manufacturing transparent decorative film
JP6705908B2 (en) Transparent decorative film
JP2021140157A (en) Laminate
JP6521748B2 (en) Method of manufacturing half mirror used for image display unit surface of image display device, half mirror, and mirror with image display function
WO2018079625A1 (en) Transmissive decorative laminate and production method therefor, and glass substrate equipped with transmissive decorative laminate
WO2015050202A1 (en) Half mirror for displaying projected image and projected image display system
WO2017145580A1 (en) Vehicle mirror including image display function and method for manufacturing same
WO2019142707A1 (en) Film, laminate, imaging device, sensor and head-up display
JP6286440B2 (en) Projected video display half mirror and projected video display system
JP2015155948A (en) Reflection member that can be used for heat-shielding application, and projector including reflection member
JP6749854B2 (en) Transparent decorative film
JP6586882B2 (en) Retardation film, method for producing retardation film, polarizing plate and image display device using this retardation film, and 3D image display system using this image display device
WO2015125908A1 (en) Projected-image-displaying member and projection system containing said projected-image-displaying member
JP2018124431A (en) Decorative film
US9910197B2 (en) Optical member and display including the optical member
JP2007079548A (en) Method of manufacturing optical film
WO2014168258A1 (en) Method for producing optically anisotropic film
CN113874765B (en) Laminate for transferring circularly polarizing element and method for producing optical article using same
JP7380554B2 (en) Identification media and methods for identifying authenticity of identification media
CN118131384A (en) Laminate and organic EL display device
JP2000310716A (en) Transferring element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197034773

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019525338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818224

Country of ref document: EP

Kind code of ref document: A1